FN Thomson Reuters Web of Science™ VR 1.0 PT S AU Go, S Mathias, DL Nejad, HS AF Go, Susie Mathias, Donovan L. Nejad, Hamed S. GP IEEE TI Integrated Risk Sensitivity Study for Lunar Surface Systems SO ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2010 PROCEEDINGS SE Reliability and Maintainability Symposium LA English DT Proceedings Paper CT Annual Reliability and Maintainability Symposium/International Symposium on Product Quality and Integrity CY JAN 25-28, 2010 CL San Jose, CA SP AIAA, IEEE, ASQ, IEST, IIE, SAE, SOLE, SRE, SSS DE Reliability; Risk Analysis; Monte Carlo Simulation AB This paper illustrates an innovative approach to assessing the reliability of conceptual Lunar Surface Systems architectures using an integrated analysis model. The integrated model represents systems, dependencies, and interactions to develop risk-based reliability requirements that balance functional characteristics, needs, demands, and constraints to achieve availability goals. The model utilizes "availability" metrics based on first-order descriptions of the architecture to begin providing reliability impacts even before much design detail exists. Sensitivity analyses are performed to identify key risk parameters and find "knees" in the curve for establishment of system architecture- and element-level requirements. C1 [Go, Susie; Mathias, Donovan L.; Nejad, Hamed S.] NASA, Ames Res Ctr, Mail Stop 258-1, Moffett Field, CA 94035 USA. RP Go, S (reprint author), NASA, Ames Res Ctr, Mail Stop 258-1, Moffett Field, CA 94035 USA. EM Susie.Go@nasa.gov; Donovan.L.Mathias@nasa.gov; Hamed.Nejad@nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0149-144X BN 978-1-4244-5103-6 J9 P REL MAINT S PY 2010 PG 6 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BTL33 UT WOS:000287207000060 ER PT S AU Manning, TA Lawrence, SL Nejad, HS Gee, K AF Manning, Ted A. Lawrence, Scott L. Nejad, Hamed S. Gee, Ken GP IEEE TI Intermediate Failure States in Simulation-Based Launch Vehicle Risk Study SO ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2010 PROCEEDINGS SE Reliability and Maintainability Symposium LA English DT Proceedings Paper CT Annual Reliability and Maintainability Symposium/International Symposium on Product Quality and Integrity CY JAN 25-28, 2010 CL San Jose, CA SP AIAA, IEEE, ASQ, IEST, IIE, SAE, SOLE, SRE, SSS DE Space launch vehicle; launch abort; risk analysis framework AB A framework for representing intermediate failure states in an assessment of abort risk during the ascent phase of a crewed space launch vehicle mission is presented. The framework refines a previously established, simulation-based risk assessment approach (Ref. 1) by improving the characterization of vehicle failure prior to the onset of final, potentially catastrophic "loss of crew" (LOC) hazards through the introduction of system-level "loss of mission" (LOM) failure states, or "LOM environments." The intermediate failure state framework is found to improve the risk analysis with respect to both risk model fidelity and risk model management. While LOM environments primarily provide an incremental point of reference for failure evolution modeling and refinement, they also serve to consolidate the risk analysis in late failure evolution and thereby reduce overall analysis effort. Ultimately, the logical boundary in failure event sequences formed by LOM environments is found to effectively delineate areas of failure analysis responsibility between the teams that provide inputs to the risk assessment, and furthermore, define the data interface between those teams. The merits of this framework are illustrated in a case study concerning the treatment of upper stage liquid fuel engine failures. C1 [Manning, Ted A.; Lawrence, Scott L.; Gee, Ken] NASA, Ames Res Ctr, Mail Stop 258-1, Moffett Field, CA 94035 USA. [Nejad, Hamed S.] ELORET Corp, Sunnyvale, CA 94086 USA. RP Manning, TA (reprint author), NASA, Ames Res Ctr, Mail Stop 258-1, Moffett Field, CA 94035 USA. EM Ted.A.Manning@nasa.gov; Scott.L.Lawrence@nasa.gov; Hamed.Nejad@nasa.gov; Ken.Gee-1@nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0149-144X BN 978-1-4244-5103-6 J9 P REL MAINT S PY 2010 PG 6 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BTL33 UT WOS:000287207000054 ER PT S AU Miller, I Zampino, E Pai, SS Nagpal, V AF Miller, Ian Zampino, Edward Pai, Shantaram S. Nagpal, Vinod GP IEEE TI Potential application of FORM and SORM for PRA SO ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2010 PROCEEDINGS SE Reliability and Maintainability Symposium LA English DT Proceedings Paper CT Annual Reliability and Maintainability Symposium/International Symposium on Product Quality and Integrity CY JAN 25-28, 2010 CL San Jose, CA SP AIAA, IEEE, ASQ, IEST, IIE, SAE, SOLE, SRE, SSS DE First Order Reliability Method (FORM); Second Order Reliability Method (SORM); Probabilistic Risk Assessment (PRA) AB The focus of this paper is two-fold: 1) a discussion of a process by which a probabilistic risk assessments (PRA) system model is used to direct a multi-disciplinary development project. 2) Under this framework, a potential technique for the application of the First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) to provide probabilistic failure data for PRA of structural systems. Technique 2) is an elaboration of the analysis techniques described in chapter 14 of [1]. Specifically, the technique relies on the concept of the limit state function in conjunction with varying levels of model fidelity, sound engineering judgment, and expert opinion. This methodology is complementary to the Response Surface Method presented in [2] and is best utilized during the conceptual or preliminary stages of a design project. This technique is beneficial when reliability data is not readily available and/or one is constrained by aggressive development schedules. As the design matures, the events in the system event tree can be systematically re-defined by a process that uses the results of refined physics-based models. C1 [Miller, Ian; Nagpal, Vinod] N&R Engn & Management Serv, 6659 Pearl Rd,Suite 400, Parma Hts, OH 44130 USA. [Zampino, Edward] NASA, Glenn Res Ctr, Program & Project Assurance Div, Cleveland, OH 44135 USA. [Pai, Shantaram S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Miller, I (reprint author), N&R Engn & Management Serv, 6659 Pearl Rd,Suite 400, Parma Hts, OH 44130 USA. EM imiller@nrengineering.com; Edward.J.Zampino@nasa.gov; vnagpal@nrengineering.com NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0149-144X BN 978-1-4244-5103-6 J9 P REL MAINT S PY 2010 PG 6 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BTL33 UT WOS:000287207000058 ER PT S AU Shi, Y Kalia, P Evans, J DiVenti, A AF Shi, Ying Kalia, Prince Evans, John DiVenti, Anthony GP IEEE TI An Integrated Life Cycle-based Software Reliability Assurance Approach for NASA Projects SO ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2010 PROCEEDINGS SE Reliability and Maintainability Symposium LA English DT Proceedings Paper CT Annual Reliability and Maintainability Symposium/International Symposium on Product Quality and Integrity CY JAN 25-28, 2010 CL San Jose, CA SP AIAA, IEEE, ASQ, IEST, IIE, SAE, SOLE, SRE, SSS DE Software Reliability; Fault Tolerance; Integrated System Health Management; Fault Detection; Isolation and Recovery AB This paper proposes a software reliability assurance approach for NASA projects. The approach provides a success road-map of integrated system risk management from early development phases for timely identification of valued proactive improvement on software while striving for achieving mission reliability goals. The informed decision making process throughout the life cycle is supported to ensure successful deployment of the system. C1 [Shi, Ying] NASA, Goddard Space Flight Ctr, ManTech SRS Technol, Code 322, Greenbelt, MD 20771 USA. [Kalia, Prince; Evans, John; DiVenti, Anthony] NASA, Goddard Space Flight Ctr, Code 322, Greenbelt, MD 20771 USA. RP Shi, Y (reprint author), NASA, Goddard Space Flight Ctr, ManTech SRS Technol, Code 322, Greenbelt, MD 20771 USA. EM ying.shi@nasa.gov; prince.kalia@nasa.gov; john.winton.evans@nasa.gov; anthony.j.diventi@nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0149-144X BN 978-1-4244-5103-6 J9 P REL MAINT S PY 2010 PG 7 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BTL33 UT WOS:000287207000062 ER PT S AU Seager, S Deming, D AF Seager, Sara Deming, Drake BE Blandford, R Faber, SM VanDishoeck, E Kormendy, J TI Exoplanet Atmospheres SO ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 48 SE Annual Review of Astronomy and Astrophysics LA English DT Review; Book Chapter DE biosignatures; infrared observations; radiative transfer ID EXTRASOLAR GIANT PLANETS; EARTH-LIKE PLANETS; INFRARED-EMISSION SPECTRUM; SECONDARY ECLIPSE PHOTOMETRY; ORBITING M-DWARFS; LOW-MASS STAR; HD 189733B; THERMAL EMISSION; HOT JUPITERS; BROWN DWARF AB At the dawn of the first discovery of exoplanets orbiting Sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral feature:;, observation of day-night temperature gradients, and constraints on verticil atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and ultimately the spaceborne direct imaging of true Earth analogs. C1 [Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Dept Phys, Cambridge, MA 02139 USA. [Deming, Drake] Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Seager, S (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Dept Phys, Cambridge, MA 02139 USA. EM seager@mit.edu; Leo.D.Deming@nasa.gov NR 174 TC 148 Z9 150 U1 14 U2 73 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 0066-4146 BN 978-0-8243-0948-0 J9 ANNU REV ASTRON ASTR JI Annu. Rev. Astron. Astrophys. PY 2010 VL 48 BP 631 EP 672 DI 10.1146/annurev-astro-081309-130837 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BRK23 UT WOS:000282902900016 ER PT S AU Toon, OB Segura, T Zahnle, K AF Toon, Owen B. Segura, Teresa Zahnle, Kevin BE Jeanloz, R Freeman, KH TI The Formation of Martian River Valleys by Impacts SO ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 38 SE Annual Review of Earth and Planetary Sciences LA English DT Review; Book Chapter DE Mars; climate change; greenhouse; erosion; rainfall ID EARLY MARS; CLIMATIC-CHANGE; CARBON-DIOXIDE; EVOLUTION; CRATERS; WATER; CONSTRAINTS; GULLIES; MODELS; ROCKS AB We explore the role of large impacts in creating the Martian valley networks. Recent dating shows that some large impact basins are contemporaneous with the valley networks. The mass deposited (and volatiles released) by impacts is large, and comparable with the mass from the Tharsis volcanic construct. Steam atmospheres formed after large impacts can produce more than 600 m of rainfall, followed by rainfall from water-vapor greenhouse atmospheres, and snowmelt. The erosion rates from impacts that created the currently visible craters are somewhat less than the erosion rates suggested for the Noachian (4.2 to 3.82 Gya). There are several possible explanations for this difference, and it is possible that erosion rates are overestimated because the burial of small craters by global debris layers from impacts has not been considered. Rainfall after the Noachian was low because the impact rate and CO2 pressure declined. We suggest tests of the hypothesis that impacts caused the river valleys. C1 [Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Toon, Owen B.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Segura, Teresa] Northrop Grumman Aerosp Syst, Civil Syst, Redondo Beach, CA 90278 USA. [Zahnle, Kevin] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Toon, OB (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. EM toon@lasp.colorado.edu; Teresa.Segura@ngc.com; kzahnle@mail.arc.nasa.gov NR 47 TC 42 Z9 42 U1 1 U2 8 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 0084-6597 BN 978-0-8243-2038-6 J9 ANNU REV EARTH PL SC JI Annu. Rev. Earth Planet. Sci. PY 2010 VL 38 BP 303 EP 322 DI 10.1146/annurev-earth-040809-152354 PG 20 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA BPF37 UT WOS:000278757100012 ER PT J AU Corke, TC Enloe, CL Wilkinson, SP AF Corke, Thomas C. Enloe, C. Lon Wilkinson, Stephen P. TI Dielectric Barrier Discharge Plasma Actuators for Flow Control SO ANNUAL REVIEW OF FLUID MECHANICS SE Annual Review of Fluid Mechanics LA English DT Review; Book Chapter DE aerodynamic control; ionized gasses; body force ID PRESSURE TURBINE-BLADES; ATMOSPHERIC-PRESSURE; GLOW-DISCHARGE; SEPARATION CONTROL; SLIDING DISCHARGE; AIR; NITROGEN; SURFACE; MECHANISMS; RESPONSES AB The term plasma actuator has now been a part of the fluid dynamics flow-control vernacular for more than a decade. A particular type of plasma actuator that has gained wide use is based on a single-dielectric barrier discharge (SDBD) mechanism that has desirable features for use in air at atmospheric pressures. For these actuators, the mechanism of flow control is through a generated body-force vector field that couples with the momentum in the external flow. The body force can be derived from first principles, and the effect of plasma actuators can be easily incorporated into flow solvers so that their placement and operation can be optimized. They have been used in a wide range of internal and external flow applications. Although initially considered useful only at low speeds, plasma actuators are effective in a number of applications at high subsonic, transonic, and supersonic Mach numbers, owing largely to more optimized actuator designs that were developed through better understanding and modeling of the actuator physics. New applications continue to appear through a growing number of programs in the United States, Germany, France, England, the Netherlands, Russia, Australia, Japan, and China. This review provides an overview of the physics and modeling of SDBD plasma actuators. It highlights some of the capabilities of plasma actuators through examples from experiments and simulations. C1 [Corke, Thomas C.] Univ Notre Dame, Dept Aerosp & Mech Engn, Ctr Flow Phys & Control, Notre Dame, IN 46556 USA. [Enloe, C. Lon] USAF Acad, Dept Phys, Colorado Springs, CO 80840 USA. [Wilkinson, Stephen P.] NASA, Langley Res Ctr, Flow Phys & Control Branch, Hampton, VA 23681 USA. RP Corke, TC (reprint author), Univ Notre Dame, Dept Aerosp & Mech Engn, Ctr Flow Phys & Control, Notre Dame, IN 46556 USA. EM tcorke@nd.edu NR 106 TC 263 Z9 288 U1 20 U2 113 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA SN 0066-4189 J9 ANNU REV FLUID MECH JI Annu. Rev. Fluid Mech. PY 2010 VL 42 BP 505 EP 529 DI 10.1146/annurev-fluid-121108-145550 PG 25 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 550DG UT WOS:000274107900021 ER PT S AU Centrella, J Baker, JG Kelly, BJ van Meter, JR AF Centrella, Joan Baker, John G. Kelly, Bernard J. van Meter, James R. BE Holstein, BR Haxton, WC Jawahery, A TI The Final Merger of Black-Hole Binaries SO ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 60 SE Annual Review of Nuclear and Particle Science LA English DT Review; Book Chapter DE black holes; gravitational waves; numerical relativity ID WAVE STANDARD SIRENS; NUMERICAL RELATIVITY; GRAVITATIONAL RECOIL; INITIAL DATA; RADIATION RECOIL; COMPACT OBJECTS; MODELING KICKS; EVOLUTION; SPIN; ACCRETION AB Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of general relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear, observable record of the process. After decades of slow progress, these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation and discuss some of the impacts of this new knowledge in various areas of astrophysics. C1 [Centrella, Joan; Baker, John G.; Kelly, Bernard J.; van Meter, James R.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, Bernard J.; van Meter, James R.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Kelly, Bernard J.; van Meter, James R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP Centrella, J (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. EM Joan.M.Centrella@nasa.gov; John.G.Baker@nasa.gov; Bernard.J.Kelly@nasa.gov; James.R.vanMeter@nasa.gov RI van meter, james/E-7893-2011; Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454 NR 150 TC 15 Z9 15 U1 0 U2 6 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 0163-8998 BN 978-0-8243-1560-3 J9 ANNU REV NUCL PART S JI Annu. Rev. Nucl. Part. Sci. PY 2010 VL 60 BP 75 EP 100 DI 10.1146/annurev.nucl.010909.083246 PG 26 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BSX34 UT WOS:000286042800004 ER PT S AU Schumann, J Gupta, P Liu, Y AF Schumann, Johann Gupta, Pramod Liu, Yan BE Schumann, J Liu, Y TI Application of Neural Networks in High Assurance Systems: A Survey SO APPLICATIONS OF NEURAL NETWORKS IN HIGH ASSURANCE SYSTEMS SE Studies in Computational Intelligence LA English DT Article; Book Chapter AB Artificial Neural Networks (ANNs) are employed in many areas of industry such as pattern recognition, robotics, controls, medicine, and defence. Their learning and generalization capabilities make them highly desirable solutions for complex problems. However, they are commonly perceived as black boxes since their behavior is typically scattered around its elements with little meaning to an observer. The primary concern in safety critical systems development and assurance is the identification and management of hazards. The application of neural networks in systems where their failure can result in loss of life or property must be backed up with techniques to minimize these undesirable effects. Furthermore, to meet the requirements of many statutory bodies such as FAA, such a system must be certified. There is a growing concern in validation of such learning paradigms as continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure a reliable system performance. In this paper, we survey the application of neural networks in high assurance systems that have emerged in various fields, which include flight control, chemical engineering, power plants, automotive control, medical systems, and other systems that require autonomy. More importantly, we provide an overview of assurance issues and challenges with the neural network model based control scheme. Methods and approaches that have been proposed to validate the performance of the neural networks are outlined and discussed after a comparative examination. C1 [Schumann, Johann] NASA, Ames Res Ctr, RIACS USRA, Moffett Field, CA 94035 USA. [Gupta, Pramod] NASA, Ames Res Ctr, Univ Affiliated Res Ctr, Moffett Field, CA 94035 USA. [Liu, Yan] Motorola Inc, Motorola Labs, Schaumburg, IL 60196 USA. RP Schumann, J (reprint author), NASA, Ames Res Ctr, RIACS USRA, M-S 269-3, Moffett Field, CA 94035 USA. EM Johann.M.Schumann@nasa.gov; Pramod.Gupta-1@nasa.gov; yanliu@motorola.com NR 57 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1860-949X BN 978-3-642-10689-7 J9 STUD COMPUT INTELL PY 2010 VL 268 BP 1 EP 19 D2 10.1007/978-3-642-10690-3 PG 19 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Industrial; Engineering, Mechanical; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BNX51 UT WOS:000275823200001 ER PT S AU Nguyen, NT Jacklin, SA AF Nguyen, Nhan T. Jacklin, Stephen A. BE Schumann, J Liu, Y TI Stability, Convergence, and Verification and Validation Challenges of Neural Net Adaptive Flight Control SO APPLICATIONS OF NEURAL NETWORKS IN HIGH ASSURANCE SYSTEMS SE Studies in Computational Intelligence LA English DT Article; Book Chapter AB This paper provides a discussion of challenges of neural net adaptive flight control and an examination of stability and convergence issues of adaptive control algorithms. Understanding stability and convergence issues with adaptive control is important in order to advance adaptive control to a higher technology readiness level. The stability and convergence of neural net learning law are investigated. The effect of unmodeled dynamics on learning law is examined. Potential improvements in the learning law and adaptive control architecture based on optimal estimation are presented. The paper provides a brief summary of the future research of the Integrated Resilient Aircraft Control (IRAC) in the area of adaptive flight control. The paper also discusses challenges and future research in verification and validation. C1 [Nguyen, Nhan T.; Jacklin, Stephen A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nguyen, NT (reprint author), NASA, Ames Res Ctr, Mail Stop 269-2, Moffett Field, CA 94035 USA. EM Nhan.T.Nguyen@nasa.gov; Stephen.A.Jacklin@nasa.gov NR 37 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1860-949X BN 978-3-642-10689-7 J9 STUD COMPUT INTELL PY 2010 VL 268 BP 77 EP 110 D2 10.1007/978-3-642-10690-3 PG 34 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Industrial; Engineering, Mechanical; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA BNX51 UT WOS:000275823200005 ER PT S AU Newman, N AF Newman, Neal BE Bainum, PM Misra, AK Morita, Y Chi, Z TI ADVANCEMENT OF INTERNATIONAL SPACE EXPLORATION SO APPLICATIONS OF SPACE TECHNOLOGY FOR HUMANITY SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 12th International Space Conference of Pacific-basin Societies (ISCOPS) CY JUL 27-30, 2010 CL Montreal, CANADA SP Amer Astronaut Soc, Chinese Soc Astronaut, Japanese Rocket Soc C1 NASA, Off Int & Integrat Relat, Washington, DC USA. RP Newman, N (reprint author), NASA, Off Int & Integrat Relat, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-562-6 J9 ADV ASTRONAUT SCI PY 2010 VL 138 BP 43 EP 49 PG 7 WC Engineering, Aerospace SC Engineering GA BDA19 UT WOS:000312276400003 ER PT S AU Vilnrotter, V Andrews, K Tkacenko, A Hamkins, J AF Vilnrotter, V. Andrews, K. Tkacenko, A. Hamkins, J. BE Bainum, PM Misra, AK Morita, Y Chi, Z TI OPTIMAL ESTIMATORS OF DOPPLER AND DELAY FOR DEEP-SPACE NAVIGATION APPLICATIONS SO APPLICATIONS OF SPACE TECHNOLOGY FOR HUMANITY SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 12th International Space Conference of Pacific-basin Societies (ISCOPS) CY JUL 27-30, 2010 CL Montreal, CANADA SP Amer Astronaut Soc, Chinese Soc Astronaut, Japanese Rocket Soc AB Deep-space navigation uses estimates of range and Doppler to update and improve spacecraft trajectory solutions. However, the transmission of tones or PN sequences drain power and bandwidth that could be better used for transmitting additional science data from the spacecraft. Our scheme uses a conventional uplink ranging signal, but the downlink is replaced with an asynchronous telemetry signal whose timing relative to the acquired uplink signal is measured. This measurement, along with the acquired timing of the received telemetry, enables the round-trip light-time to be computed on the ground. In this paper, the structure of the joint maximum likelihood estimator for range and Doppler is derived, and its performance determined relative to Cramer-Rao bounds via simulation and analysis. Performance of individual frequency estimators based on conventional Costas loop phase estimates where the delay is assumed to be known, and of delay-tracking loops that assume known frequency and phase are also derived, and contrasted with the performance of the optimum Doppler-delay estimator. Advantages of this new approach include the ability to simultaneously collect ranging measurements and transmit the highest supported telemetry rate throughout the pass, and compatibility with suppressed carrier signaling and higher order modulations. This approach could result in significant additional ranging data and total data volume return for future missions. C1 [Vilnrotter, V.; Andrews, K.; Tkacenko, A.; Hamkins, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vilnrotter, V (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Victor.A.Vilnrotter@jpl.nasa.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-562-6 J9 ADV ASTRONAUT SCI PY 2010 VL 138 BP 387 EP 398 PG 12 WC Engineering, Aerospace SC Engineering GA BDA19 UT WOS:000312276400034 ER PT J AU Ingram, GW Richards, WJ Lamkin, JT Muhling, B AF Ingram, G. Walter, Jr. Richards, William J. Lamkin, John T. Muhling, Barbara TI Annual indices of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico developed using delta-lognormal and multivariate models SO AQUATIC LIVING RESOURCES LA English DT Article DE Mathematical models; Multivariate analysis; Fish larvae; Atlantic Ocean ID BINOMIAL REGRESSION; ZERO; ABUNDANCE AB Fishery independent indices of spawning biomass of Atlantic bluefin tuna in western North Atlantic Ocean are presented which utilize National Marine Fisheries Service ichthyoplankton survey data collected from 1977 through 2007 in the Gulf of Mexico. Indices were developed using similarly standardized data from which previous indices were developed (i.e. abundance of larvae with a first daily otolith increment formed per 100 m(2) of water sampled with bongo gear). Indices were also developed for the first time from standardized data collected with neuston gear [i.e. abundance of 5-mm larvae (i. e. seven-day-old larvae) per 10 minute tow]. Indices of larval abundance were developed using delta-lognormal models, including following covariates: time of day, time of month, area sampled and year. Due to the large frequency of zero catches during ichthyoplankton surveys, a zero-inflated delta-lognormal approach was also used to develop indices. Finally, a multivariate delta-lognormal approach was employed to develop indices of annual abundance based on both bongo and neuston catches. The results of these approaches were compared with one another and with other indices of larval abundance previously developed for the Gulf ofMexico. Residual analyses indicated that abundance indices of Atlantic bluefin tuna larvae were more appropriately developed from bongo-collected data through the zero-inflated delta-lognormal approach than other data sets and modeling approaches. Also, when modeling bongo-collected data with the zero-inflated delta-lognormal approach, the index values increased, indicating some correction for zero-inflation, and their variability decreased as compared to indices developed with the delta-lognormal approach. C1 [Ingram, G. Walter, Jr.] SE Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, Pascagoula, MS 39567 USA. [Richards, William J.; Lamkin, John T.; Muhling, Barbara] SE Fisheries Sci Ctr, Natl Marine Fisheries Serv, Protected Resources & Biodivers Div, Miami, FL 33149 USA. RP Ingram, GW (reprint author), SE Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, 3209 Frederic St, Pascagoula, MS 39567 USA. EM Walter.Ingram@noaa.gov NR 23 TC 15 Z9 15 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0990-7440 J9 AQUAT LIVING RESOUR JI Aquat. Living Resour. PD JAN-MAR PY 2010 VL 23 IS 1 BP 35 EP 47 DI 10.1051/alr/2009053 PG 13 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 571QX UT WOS:000275770700004 ER PT J AU Berman-Kowalewski, M Gulland, FMD Wilkin, S Calambokidis, J Mate, B Cordaro, J Rotstein, D Leger, JS Collins, P Fahy, K Dover, S AF Berman-Kowalewski, Michelle Gulland, Frances M. D. Wilkin, Sarah Calambokidis, John Mate, Bruce Cordaro, Joe Rotstein, Dave Leger, Judy St. Collins, Paul Fahy, Krista Dover, Samuel TI Association Between Blue Whale (Balaenoptera musculus) Mortality and Ship Strikes Along the California Coast SO AQUATIC MAMMALS LA English DT Article DE blue whale; Balaenoptera musculus; ship strike; trauma; shipping lane; Sarcocystis ID EASTERN NORTH PACIFIC; FIN WHALES; COLLISIONS AB Blue whales (Balaenoptera musculus) are distributed worldwide, and although severely depleted by commercial whaling, their abundance off the California coast now appears to be increasing. Little is known about natural causes of mortality of blue whales, but human-related mortality continues despite legal protection. Ship strikes are a significant mortality factor for other species of baleen whale, and changes in shipping traffic have been advocated to minimize further deaths. Between 1988 and 2007, 21 blue whale deaths were reported along the California coast, typically one or two cases annually. Three pulses in strandings were observed, with three carcasses observed in fall 1988, three in 2002, and four in fall 2007. Two of the four animals in 2007 were first observed dead in the Santa Barbara Channel and had wounds typical of a ship strike. Blue whale strandings were spatially associated with locations of shipping lanes, especially those associated with the Ports of Los Angeles and Long Beach, and were most common in the fall months. C1 [Berman-Kowalewski, Michelle; Collins, Paul; Fahy, Krista] Santa Barbara Museum Nat Hist, Dept Vertebrate Zool, Santa Barbara, CA 93105 USA. [Gulland, Frances M. D.] Marine Mammal Ctr, Sausalito, CA 94965 USA. [Wilkin, Sarah; Cordaro, Joe] Natl Marine Fisheries Serv, Long Beach, CA 90803 USA. [Calambokidis, John] Cascadia Res, Olympia, WA 98501 USA. [Mate, Bruce] Oregon State Univ, Hatfield Marine Sci Ctr, Marine Mammal Inst, Newport, OR 97365 USA. [Rotstein, Dave] UCAR Smithsonian Museum Osteoprep Lab, Suitland, MD 20746 USA. [Dover, Samuel] Channel Isl Marine & Wildlife Inst, Santa Barbara, CA 93140 USA. RP Berman-Kowalewski, M (reprint author), Santa Barbara Museum Nat Hist, Dept Vertebrate Zool, Santa Barbara, CA 93105 USA. EM mberman@sbnature2.org FU National Marine Fisheries Service FX We thank all the California Marine Mammal Stranding Network participants for assistance in generating the data reported here, the National Marine Fisheries Service Marine Mammal Unusual Mortality Event Response Fund for financial assistance, and the numerous volunteers who made full necropsy examinations in 2007 possible. We also thank Spencer Fire, National Ocean Service, for his rapid bio-toxin analysis, as well as volunteer pilot Stephen Parker and National Geographic photographer Flip Nicklin for reporting specimen SBMNH 2007-19 during their spotting and aerial photography in support of Oregon State University's satellite tagging of blue whales. NR 28 TC 18 Z9 21 U1 9 U2 50 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2010 VL 36 IS 1 BP 59 EP 66 DI 10.1578/AM.36.1.2010.59 PG 8 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA 670SP UT WOS:000283447900007 ER PT B AU Wheeler, KR Kurtoglu, T Poll, SD AF Wheeler, Kevin R. Kurtoglu, Tolga Poll, Scott D. GP ASME TI A SURVEY OF HEALTH MANAGEMENT USER OBJECTIVES RELATED TO DIAGNOSTIC AND PROGNOSTIC METRICS SO ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, PROCEEDINGS, VOL 2, PTS A AND B LA English DT Proceedings Paper CT ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference CY AUG 30-SEP 02, 2009 CL San Diego, CA SP ASME, Design Engn Div, ASME, Computers & Info Engn Div DE IVHM; ISHM; diagnostic & prognostic metrics AB One of the most prominent technical challenges to effective deployment of health management systems is the vast difference in user objectives with respect to engineering development In this paper, a detailed survey on the objectives of different users of health management systems is presented These user objectives are then mapped to the metrics typically encountered in the development and testing of two main systems health management functions diagnosis and prognosis Using this mapping, the gaps between user goals and the metrics associated with diagnostics and prognostics are identified and presented with a collection of lessons learned from previous studies that Include both industrial and military aerospace applications C1 [Wheeler, Kevin R.; Poll, Scott D.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. RP Wheeler, KR (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. NR 35 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4899-9 PY 2010 BP 1287 EP 1298 PG 12 WC Computer Science, Information Systems; Engineering, Mechanical SC Computer Science; Engineering GA BSU94 UT WOS:000285850200141 ER PT J AU Fridlund, M Eiroa, C Henning, T Herbst, T Lammer, H Leger, A Liseau, R Paresce, F Penny, A Quirrenbach, A Rottgering, H Selsis, F White, GJ Absil, O Defrere, D Hanot, C Stam, D Schneider, J Tinetti, G Karlsson, A Gondoin, P den Hartog, R D'Arcio, L Stankov, AM Kilter, M Erd, C Beichman, C Coulter, D Danchi, W Devirian, M Johnston, KJ Lawson, P Lay, OP Lunine, J Kaltenegger, L AF Fridlund, Malcolm Eiroa, Carlos Henning, Thomas Herbst, Tom Lammer, Helmut Leger, Alain Liseau, Rene Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Selsis, Franck White, Glenn J. Absil, Olivier Defrere, Denis Hanot, C. Stam, Daphne Schneider, Jean Tinetti, Giovanna Karlsson, Anders Gondoin, Phillipe den Hartog, Roland D'Arcio, Luigi Stankov, Anna-Maria Kilter, Mikael Erd, Christian Beichman, Charles Coulter, Daniel Danchi, William Devirian, Michael Johnston, Kenneth J. Lawson, Peter Lay, Oliver P. Lunine, Jonathan Kaltenegger, Lisa TI The Search for Worlds Like Our Own SO ASTROBIOLOGY LA English DT Article DE Terrestrial exoplanets; Habitability; Planet-detection methods; Bioastronomy ID EXTRA-SOLAR PLANETS; GIANT PLANETS; NULLING INTERFEROMETER; DARWIN PROJECT; COMPANION; MISSION; SYSTEMS; SPACE; STARS; DISK AB The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets particularly, their evolution, their atmospheres, and their ability to host life-constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus similar to 300 BC: "Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist.'' Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts-atoms-also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning-not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21(st)-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years. C1 [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Estec, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Leger, Alain] Univ Paris 11, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan] Royal Observ, Edinburgh, Blackford Hill, Scotland. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Selsis, Franck] Univ Bordeaux 1, Bordeaux, France. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Absil, Olivier] Observ Grenoble, Astrophys Lab, St Martin Dheres, France. [Absil, Olivier; Defrere, Denis; Hanot, C.] Inst Astrophys & Geophys, Liege, Belgium. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Schneider, Jean] Observ Paris, Lab Univers & Theories, Meudon, France. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [Karlsson, Anders; Gondoin, Phillipe; den Hartog, Roland; D'Arcio, Luigi; Stankov, Anna-Maria; Kilter, Mikael; Erd, Christian] ESA, European Space Res & Technol Ctr, Payload & Adv Concepts Div, Noordwijk, Netherlands. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles; Coulter, Daniel; Devirian, Michael; Lawson, Peter; Lay, Oliver P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Johnston, Kenneth J.] USN Observ, Washington, DC 20392 USA. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Fridlund, M (reprint author), European Space Agcy, European Space Res & Technol Ctr, Estec, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. EM malcolm.fridlund@esa.int OI Tinetti, Giovanna/0000-0001-6058-6654; Absil, Olivier/0000-0002-4006-6237 NR 62 TC 10 Z9 10 U1 2 U2 11 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 5 EP 17 DI 10.1089/ast.2009.0380 PG 13 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900002 PM 20307179 ER PT J AU Alibert, Y Broeg, C Benz, W Wuchterl, G Grasset, O Sotin, C Eiroa, C Henning, T Herbst, T Kaltenegger, L Leger, A Liseau, R Lammer, H Beichman, C Danchi, W Fridlund, M Lunine, J Paresce, F Penny, A Quirrenbach, A Rottgering, H Selsis, F Schneider, J Stam, D Tinetti, G White, GJ AF Alibert, Y. Broeg, C. Benz, W. Wuchterl, G. Grasset, O. Sotin, C. Eiroa, Carlos Henning, Thomas Herbst, Tom Kaltenegger, Lisa Leger, Alain Liseau, Rene Lammer, Helmut Beichman, Charles Danchi, William Fridlund, Malcolm Lunine, Jonathan Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Selsis, Frank Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI Origin and Formation of Planetary Systems SO ASTROBIOLOGY LA English DT Article DE Planet formation; Gas giants; Ice giants; Terrestrial exoplanets; Habitability ID STELLAR X-RAY; GIANT PLANETS; PROTOPLANETARY DISKS; MASS PLANETS; ORBITAL MIGRATION; OCEAN-PLANETS; SOLAR NEBULA; EVOLUTION; EARTH; ACCRETION AB To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets. C1 [Alibert, Y.] Observ Besancon, Inst UTINAM, Besancon, France. [Alibert, Y.; Broeg, C.; Benz, W.] Univ Bern, Inst Phys, Bern, Switzerland. [Wuchterl, G.] Thuringer Landessternwarte Tautenburg, Sternwarte, Tautenburg, Germany. [Grasset, O.; Sotin, C.] CNRS, UMR, Lab Planetol & Geodynam, Nantes, France. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Leger, Alain] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Penny, Alan] Royal Observ, Edinburgh, Blackford Hill, Scotland. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Selsis, Frank] Univ Bordeaux 1, Bordeaux, France. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Alibert, Y (reprint author), Observ Besancon, Inst UTINAM, Besancon, France. EM alibert@obs-besancon.fr OI Tinetti, Giovanna/0000-0001-6058-6654 NR 84 TC 9 Z9 11 U1 1 U2 9 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 19 EP 32 DI 10.1089/ast.2009.0372 PG 14 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900003 PM 20307180 ER PT J AU Dvorak, R Pilat-Lohinger, E Bois, E Schwarz, R Funk, B Beichman, C Danchi, W Eiroa, C Fridlund, M Henning, T Herbst, T Kaltenegger, L Lammer, H Leger, A Liseau, R Lunine, J Paresce, F Penny, A Quirrenbach, A Rottgering, H Selsis, F Schneider, J Stam, D Tinetti, G White, GJ AF Dvorak, Rudolf Pilat-Lohinger, Elke Bois, Eric Schwarz, Richard Funk, Barbara Beichman, Charles Danchi, William Eiroa, Carlos Fridlund, Malcolm Henning, Thomas Herbst, Tom Kaltenegger, Lisa Lammer, Helmut Leger, Alain Liseau, Rene Lunine, Jonathan Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Selsis, Frank Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI Dynamical Habitability of Planetary Systems SO ASTROBIOLOGY LA English DT Article DE Orbital dynamics; Habitability; Terrestrial exoplanets ID EXTRA-SOLAR PLANETS; GLOBAL DYNAMICS; TERRESTRIAL PLANETS; PREDICTING PLANETS; APSIDAL RESONANCE; STABILITY LIMITS; DOUBLE STARS; ORBITS; ZONES; MOTION AB The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component ( e. g., gamma Cephei) and around both stars (e.g., eclipsing binaries). C1 [Dvorak, Rudolf; Pilat-Lohinger, Elke; Schwarz, Richard; Funk, Barbara] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Bois, Eric] Observ Cote Azur, F-06003 Nice, France. [Schwarz, Richard; Funk, Barbara] Univ Budapest, Dept Astron, Budapest, Hungary. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Leger, Alain] Univ Paris 11, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Selsis, Frank] Univ Bordeaux 1, Bordeaux, France. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Dvorak, R (reprint author), Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. EM dvorak@astro.univie.ac.at OI Tinetti, Giovanna/0000-0001-6058-6654; Funk, Barbara/0000-0001-7233-9730 FU Austrian science foundation FWF [P18930-N16, P19569-N16, J2892-N16]; Osterreichische Forschungsgesellschaft [MOEL 309] FX R.D. (project P18930-N16), E. P.-L. (project P19569-N16), and B. F. (Erwin Schrodinger grant J2892-N16) wish to acknowledge support by the Austrian science foundation FWF. R. S. wishes to acknowledge the support of the Osterreichische Forschungsgesellschaft (project MOEL 309). NR 57 TC 8 Z9 8 U1 0 U2 7 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 33 EP 43 DI 10.1089/ast.2009.0379 PG 11 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900004 PM 20307181 ER PT J AU Brack, A Horneck, G Cockell, CS Berces, A Belisheva, NK Eiroa, C Henning, T Herbst, T Kaltenegger, L Leger, A Liseau, R Lammer, H Selsis, F Beichman, C Danchi, W Fridlund, M Lunine, J Paresce, F Penny, A Quirrenbach, A Rottgering, H Schneider, J Stam, D Tinetti, G White, GJ AF Brack, A. Horneck, G. Cockell, C. S. Berces, A. Belisheva, N. K. Eiroa, Carlos Henning, Thomas Herbst, Tom Kaltenegger, Lisa Leger, Alain Liseau, Rene Lammer, Helmut Selsis, Franck Beichman, Charles Danchi, William Fridlund, Malcolm Lunine, Jonathan Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI Origin and Evolution of Life on Terrestrial Planets SO ASTROBIOLOGY LA English DT Article DE Organic molecules; Origin of life; Astrobiology; Radiation ID EARTH-LIKE PLANETS; GALACTIC HABITABLE ZONE; AMINO-ACIDS; ULTRAVIOLET-RADIATION; HYDROTHERMAL VENTS; BACTERIA; STARS; PERMAFROST; BIOSPHERE; SEDIMENTS AB The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H2O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment. C1 [Brack, A.] CNRS, Ctr Biophys Mol, F-45071 Orleans 2, France. [Horneck, G.] DLR, Inst Aerosp Med, Cologne, Germany. [Cockell, C. S.] Open Univ, Geochem Res Grp, Milton Keynes MK7 6AA, Bucks, England. [Berces, A.] Hungarian Acad Sci, MTA SE Res Grp Biophys, Budapest, Hungary. [Belisheva, N. K.] Russian Acad Sci, Kola Sci Ctr, Polar Alpine Bot Garden Inst, Apatity, Russia. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Leger, Alain] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Selsis, Franck] Univ Bordeaux 1, Bordeaux, France. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Brack, A (reprint author), CNRS, Ctr Biophys Mol, Rue Charles Sadron, F-45071 Orleans 2, France. EM brack@cnrs-orleans.fr RI Berces, Attila/K-1180-2013; OI Berces, Attila/0000-0002-7234-5660; Tinetti, Giovanna/0000-0001-6058-6654 NR 66 TC 18 Z9 18 U1 3 U2 37 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 69 EP 76 DI 10.1089/ast.2009.0374 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900005 PM 20307183 ER PT J AU Grenfell, JL Rauer, H Selsis, F Kaltenegger, L Beichman, C Danchi, W Eiroa, C Fridlund, M Henning, T Herbst, T Lammer, H Leger, A Liseau, R Lunine, J Paresce, F Penny, A Quirrenbach, A Rottgering, H Schneider, J Stam, D Tinetti, G White, GJ AF Grenfell, J. Lee Rauer, Heike Selsis, Franck Kaltenegger, Lisa Beichman, Charles Danchi, William Eiroa, Carlos Fridlund, Malcolm Henning, Thomas Herbst, Tom Lammer, Helmut Leger, Alain Liseau, Rene Lunine, Jonathan Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI Co-Evolution of Atmospheres, Life, and Climate SO ASTROBIOLOGY LA English DT Article DE Early Earth; Biomarker; Atmospheres; Climate; Exoplanets ID HALOGEN OCCULTATION EXPERIMENT; EARTH-LIKE PLANETS; MIDDLE-ATMOSPHERE; HABITABLE ZONES; LONG-TERM; 2-DIMENSIONAL MODEL; OZONE; EVOLUTION; METHANE; HYDROGEN AB After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO2. CH4 was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO2 plus H-2 to CH4, may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate. C1 [Grenfell, J. Lee; Rauer, Heike] DLR, German Aerosp Ctr, Inst Planetary Res, Berlin, Germany. [Rauer, Heike] Tech Univ Berlin, Berlin, Germany. [Selsis, Franck] Univ Bordeaux 1, Bordeaux, France. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Leger, Alain] Univ Paris 11, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Grenfell, JL (reprint author), Tech Univ Berlin, Zentrum Astron & Astrophys, Hardenbergstr 36, D-10623 Berlin, Germany. EM lee.Grenfell@dlr.de OI Tinetti, Giovanna/0000-0001-6058-6654 FU Helmholtz Association; International Space Science Institute (ISSI, Bern, Switzerland); Evolution of Habitable Planets'; Evolution of Exoplanet Atmospheres and Their Characterization FX The authors acknowledge the Helmholtz-Gemeinschaft, as this research has been supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life,'' the International Space Science Institute (ISSI, Bern, Switzerland) and the ISSI teams "Evolution of Habitable Planets'' and "Evolution of Exoplanet Atmospheres and Their Characterization.'' NR 66 TC 8 Z9 8 U1 5 U2 21 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 77 EP 88 DI 10.1089/ast.2009.0375 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900006 PM 20307184 ER PT J AU Kaltenegger, L Selsis, F Fridlund, M Lammer, H Beichman, C Danchi, W Eiroa, C Henning, T Herbst, T Leger, A Liseau, R Lunine, J Paresce, F Penny, A Quirrenbach, A Rottgering, H Schneider, J Stam, D Tinetti, G White, GJ AF Kaltenegger, Lisa Selsis, Frank Fridlund, Malcolm Lammer, Helmut Beichman, Charles Danchi, William Eiroa, Carlos Henning, Thomas Herbst, Tom Leger, Alain Liseau, Rene Lunine, Jonathan Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI Deciphering Spectral Fingerprints of Habitable Exoplanets SO ASTROBIOLOGY LA English DT Article DE Habitable planets; Exoplanet search; Biomarkers; Planetary atmospheres ID EARTH-LIKE PLANETS; EXTRASOLAR TERRESTRIAL PLANETS; INFRARED RADIATION; THERMAL EMISSION; HD 189733B; RED-EDGE; LIFE; SEARCH; STARS; ATMOSPHERES AB We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M-Earth) (so-called "super Earths''), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context. C1 [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. [Selsis, Frank] Univ Bordeaux 1, Bordeaux, France. [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Leger, Alain] Univ Paris 11, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Kaltenegger, L (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS-20, Cambridge, MA USA. EM lkaltene@cfa.harvard.edu OI Tinetti, Giovanna/0000-0001-6058-6654 FU Harvard Origins of Life Initiative; NASA Astrobiology Institute FX L. Kaltenegger acknowledges the support of the Harvard Origins of Life Initiative and the NASA Astrobiology Institute. NR 63 TC 36 Z9 37 U1 3 U2 20 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 89 EP 102 DI 10.1089/ast.2009.0381 PG 14 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900007 PM 20307185 ER PT J AU Kaltenegger, L Eiroa, C Ribas, I Paresce, F Leitzinger, M Odert, P Hanslmeier, A Fridlund, M Lammer, H Beichman, C Danchi, W Henning, T Herbst, T Leger, A Liseau, R Lunine, J Penny, A Quirrenbach, A Rottgering, H Selsis, F Schneider, J Stam, D Tinetti, G White, GJ AF Kaltenegger, Lisa Eiroa, Carlos Ribas, Ignasi Paresce, Francesco Leitzinger, Martin Odert, Petra Hanslmeier, Arnold Fridlund, Malcolm Lammer, Helmut Beichman, Charles Danchi, William Henning, Thomas Herbst, Tom Leger, Alain Liseau, Rene Lunine, Jonathan Penny, Alan Quirrenbach, Andreas Rottgering, Huub Selsis, Frank Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI Stellar Aspects of Habitability-Characterizing Target Stars for Terrestrial Planet-Finding Missions SO ASTROBIOLOGY LA English DT Article DE Darwin/TPF; Nearby stars; Habitability; Exoplanet search ID EXTRA-SOLAR PLANETS; M-CIRCLE-PLUS; EARTH-LIKE EXOPLANETS; EJECTION CME ACTIVITY; LATE-TYPE DWARFS; X-RAY-EMISSION; MASS M-STARS; HARPS SEARCH; SUPER-EARTH; MAIN-SEQUENCE AB We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability. C1 [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Ribas, Ignasi] CSIC, IEEC, Inst Ciencies Espai, Barcelona, Spain. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Leitzinger, Martin; Hanslmeier, Arnold] Graz Univ, Graz, Austria. [Odert, Petra; Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Leger, Alain] Univ Paris 11, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Selsis, Frank] Univ Bordeaux 1, Bordeaux, France. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Kaltenegger, L (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS-20, Cambridge, MA 02138 USA. EM lkaltene@cfa.harvard.edu RI Ribas, Ignasi/M-2134-2014; OI Ribas, Ignasi/0000-0002-6689-0312; Tinetti, Giovanna/0000-0001-6058-6654 FU Harvard Origins of Life Initiative; NASA; NSF; Austrian FWF (Wissenschaftsfond) [P19446] FX L.K. gratefully acknowledges support from the Harvard Origins of Life Initiative. We thank ISSI. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France; NASA's Astrophysics Data System; and data products from the Two Micron All Sky Survey, which is a joint project of the UMass and IPAC, funded by NASA and NSF. M.L., P.O., and A. H. acknowledge the Austrian FWF (Wissenschaftsfond), grant P19446, for supporting this project. NR 71 TC 11 Z9 11 U1 0 U2 8 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 103 EP 112 DI 10.1089/ast.2009.0367 PG 10 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900008 PM 20307186 ER PT J AU Fridlund, M Eiroa, C Henning, T Herbst, T Kaltenegger, L Leger, A Liseau, R Lammer, H Selsis, F Beichman, C Danchi, W Lunine, J Paresce, F Penny, A Quirrenbach, A Rottgering, H Schneider, J Stam, D Tinetti, G White, GJ AF Fridlund, Malcolm Eiroa, Carlos Henning, Thomas Herbst, Tom Kaltenegger, Lisa Leger, Alain Liseau, Rene Lammer, Helmut Selsis, Franck Beichman, Charles Danchi, William Lunine, Jonathan Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Schneider, Jean Stam, Daphne Tinetti, Giovanna White, Glenn J. TI A Roadmap for the Detection and Characterization of Other Earths SO ASTROBIOLOGY LA English DT Article DE Exoplanets; Life in the Universe; Space missions; Biomarkers AB The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?'' This main theme is addressed through further questions: (1) How do gas and dust give rise to stars and planets? (2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers*)? (3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earthlike planets. C1 [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Estec, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Leger, Alain] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Selsis, Franck] Univ Bordeaux 1, Bordeaux, France. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan; White, Glenn J.] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Fridlund, M (reprint author), European Space Agcy, European Space Res & Technol Ctr, Estec, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. EM malcolm.fridlund@esa.int OI Tinetti, Giovanna/0000-0001-6058-6654 NR 1 TC 2 Z9 2 U1 2 U2 10 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 113 EP 119 DI 10.1089/ast.2009.0391 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900009 PM 20307187 ER PT J AU Schneider, J Leger, A Fridlund, M White, GJ Eiroa, C Henning, T Herbst, T Lammer, H Liseau, R Paresce, F Penny, A Quirrenbach, A Rottgering, H Selsis, F Beichman, C Danchi, W Kaltenegger, L Lunine, J Stam, D Tinetti, G AF Schneider, Jean Leger, Alain Fridlund, Malcolm White, Glenn J. Eiroa, Carlos Henning, Thomas Herbst, Tom Lammer, Helmut Liseau, Rene Paresce, Francesco Penny, Alan Quirrenbach, Andreas Rottgering, Huub Selsis, Franck Beichman, Charles Danchi, William Kaltenegger, Lisa Lunine, Jonathan Stam, Daphne Tinetti, Giovanna TI The Far Future of Exoplanet Direct Characterization SO ASTROBIOLOGY LA English DT Article DE Far future missions; Direct imaging; High-resolution spectroscopy; Habitable exoplanets; Exo-moons; Surface features ID EXTRA-SOLAR PLANETS; SIGNATURES; SEARCH; IMAGER AB We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms. C1 [Schneider, Jean] Observ Paris, Lab Univers & Ses Theories, Meudon, France. [Leger, Alain] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Fridlund, Malcolm] European Space Agcy, European Space Res & Technol Ctr, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [White, Glenn J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [White, Glenn J.; Penny, Alan] CCLRC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot, Oxon, England. [Eiroa, Carlos] Univ Autonoma Madrid, Madrid, Spain. [Henning, Thomas; Herbst, Tom] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lammer, Helmut] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Liseau, Rene] Chalmers, Dept Radio & Space Sci, Onsala, Sweden. [Paresce, Francesco] Ist Nazl Astrofis, Rome, Italy. [Penny, Alan] Royal Observ, Edinburgh, Blackford Hill, Scotland. [Quirrenbach, Andreas] Landessternwarte Heidelberg, Heidelberg, Germany. [Rottgering, Huub] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Selsis, Franck] Univ Bordeaux 1, Bordeaux, France. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Danchi, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kaltenegger, Lisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Stam, Daphne] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Tinetti, Giovanna] UCL, Dept Phys & Astron, London, England. RP Schneider, J (reprint author), Observ Paris, Lab Univers & Ses Theories, Meudon, France. EM Jean.Schneider@obspm.fr OI Tinetti, Giovanna/0000-0001-6058-6654 NR 25 TC 9 Z9 9 U1 1 U2 10 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JAN-FEB PY 2010 VL 10 IS 1 BP 121 EP 126 DI 10.1089/ast.2009.0371 PG 6 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 572NG UT WOS:000275838900010 PM 20307188 ER PT S AU Carpenter, JR Hur-Diaz, S Markley, FL AF Carpenter, J. Russell Hur-Diaz, Sun Markley, F. Landis BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI GENERALIZED COVARIANCE ANALYSIS OF ADDITIVE DIVIDED-DIFFERENCE SIGMA-POINT FILTERS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID NONLINEAR TRANSFORMATION; ESTIMATORS AB The divided-difference sigma-point filter is a sequential estimator that replaces first-order truncations of Taylor series approximations with second-order numerical differencing equations to approximate nonlinear dynamics and measurement models. If the process and measurement noise enter the system additively, several simplifications are possible, including a substantial reduction in the number of sigma-points. As a consequence of the additive noise assumption, a generalized covariance analysis approach that partitions the contributions to the total error of a priori, process, and measurement noise may be applied to the additive divided-difference sigma-point filter. The Cholesky decompositions of the true and formal initial covariances provide true and formal a priori Cholesky factors, and true and formal measurement and process Cholesky partitions are initialized to zero. Two sets of sigma points, truth and formal, are spawned and propagated from the joint set of all three partitions for each. Divided differences are separately extracted from each partition, and factorized to derive time updates for each partition separately, as well as merged to form propagated states. This process is repeated for the measurement update, with a filter gain similarly derived from a joint set of all three partitions. The states ignored by the filter are not updated by this gain. The entire algorithm is formulated using only Cholesky factors. As an example, a simulated highly elliptical orbit is estimated from nonlinear Global Positioning System measurements. In this example, there is a significant nonlinearity at perigee. C1 [Carpenter, J. Russell] NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Greenbelt, MD 20771 USA. RP Carpenter, JR (reprint author), NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Greenbelt, MD 20771 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 69 EP 84 PN 1-3 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900005 ER PT S AU Carpenter, JR AF Carpenter, J. Russell BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI MAGNETOSPHERIC MULTI-SCALE MISSION'S ORBIT PROPAGATION SENSITIVITY TO NAVIGATION ERRORS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The objective of this paper is to address a need for onboard navigation solutions to propagate accurately, in the context of a formation of satellites in highly elliptical orbits that will study magnetic reconnection. The onboard navigation function is not intended to perform state prediction; rather, it produces definitive states that ground operators will use to generate flight dynamics and science products. Many of these products, such as maneuver plans, conjunction predictions, and tracking acquisition plans, require predictive states. In particular, the paper examines relationships between predictive navigation accuracy and the time between previously unscheduled maneuvers. Planning for such maneuvers, which are needed for formation maintenance and collision avoidance, should accommodate a trade between false alarms and missed detections, and must also meet operational constraints on maneuver frequency. The paper shows how these trades relate to secular growth in the achieved formation states and predictive navigation errors. These relationships refine previous results by including the effect of Earth's oblateness on secular growth of knowledge and execution errors. C1 NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Greenbelt, MD 20771 USA. RP Carpenter, JR (reprint author), NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Code 595, Greenbelt, MD 20771 USA. NR 5 TC 0 Z9 0 U1 1 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 317 EP 334 PN 1-3 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900019 ER PT S AU Williams, T AF Williams, Trevor BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI MMS SEPARATION AND COMMISSIONING PHASE MANEUVERS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The four Magnetospheric Multi Scale (MMS) spacecraft are launched in a stack, and released sequentially by identical sets of springs. They then enter a four-month commissioning phase, during which they must: raise the perigee of their highly elliptical orbits from the initial altitude of 185 km, to avoid any possibility of subsequent imminent deorbit from lunisolar perturbations; deploy wire booms and other appendages; calibrate experiments, thrusters and navigation systems; and enter into the initial tetrahedron formation for science observations around apogee. This paper will discuss the design of the various maneuvers required during the commissioning phase, starting with the separation maneuvers. C1 NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Greenbelt, MD 20771 USA. RP Williams, T (reprint author), NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Greenbelt, MD 20771 USA. EM Trevor.W.Williams@nasa.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 375 EP 394 PN 1-3 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900022 ER PT S AU Gramling, CJ AF Gramling, Cheryl J. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI OVERVIEW OF THE MAGNETOSPHERIC MULTISCALE FORMATION FLYING MISSION SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The Magnetospheric Multi-Scale (MMS) Mission is a tetrahedral formation mission designed to study magnetic reconnection in the Earth's magnetosphere. To sample these regions of interest, the MMS mission will be divided into two main science phases: Phase 1 and Phase 2 with 1.2 x 12 Earth Radii (RE) and 1.2 x 25 RE orbits, respectively. This paper provides an overview of the MMS spacecraft and the engineering and science constraints that affect the mission design. C1 NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, Greenbelt, MD 20771 USA. RP Gramling, CJ (reprint author), NASA, Goddard Space Flight Ctr, Nav & Mission Design Branch, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 4 TC 1 Z9 1 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 407 EP 417 PN 1-3 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900024 ER PT S AU Hughes, SP AF Hughes, Steven P. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI OPTIMAL CONTROL AND NEAR OPTIMAL GUIDANCE FOR THE MAGNETOSPHERIC MULTISCALE MISSION (MMS) SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID SPACECRAFT FORMATIONS; OPTIMIZATION AB In this paper we present a method for fuel optimal formation control of the Magnetospheric Multiscale Mission (MMS). MMS is a NASA mission(1) that employs 4 spacecraft that must maintain a near-regular tetrahedron in a region centered about apogee of a highly elliptic orbit. The method employs nonlinear parameter optimization to minimize total Delta V while simultaneously satisfying guidance, Delta V equalization, periodicity, eccentricity, and close approach constraints among others. The proposed approach is fully nonlinear, accommodates orbital perturbations, and is applicable to multiple flight regimes including circular, highly elliptic, hyperbolic, and libration point orbits. Furthermore, the method is applicable to small formations and large constellations. Optimal solutions for MMS are presented that illustrate the fuel savings for various tetrahedron formations. C1 NASA, Nav & Mission Design Branch, Goddard Space Flight Ctr, Washington, DC 20546 USA. RP Hughes, SP (reprint author), NASA, Nav & Mission Design Branch, Goddard Space Flight Ctr, Washington, DC 20546 USA. RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 37 TC 0 Z9 0 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 439 EP 462 PN 1-3 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900026 ER PT S AU Gist, EM Ballard, CG Hahn, YS Stumpf, PW Wagner, SV Williams, PN AF Gist, Emily M. Ballard, Christopher G. Hahn, Yungsun Stumpf, Paul W. Wagner, Sean V. Williams, Powtawche N. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI CASSINI-HUYGENS MANEUVER EXPERIENCE: FIRST YEAR OF THE EQUINOX MISSION SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The Cassini-Huygens spacecraft was launched in 1997 on a mission to observe Saturn and its many moons. After a seven-year cruise, it entered a Saturnian orbit for a four-year, prime mission. Due to the success of the prime mission, spacecraft health, and remaining propellant, a two-year extended mission, the Equinox Mission, was approved. Maneuver designs and analyses performed through the first year of the Equinox Mission are presented. Results for the 46 most recent maneuvers are given. A substantial contribution to the navigation success of the Cassini-Huygens spacecraft is the continued accurate performance, which has exceeded the pre-launch expectations and requirements. C1 [Gist, Emily M.; Ballard, Christopher G.; Hahn, Yungsun; Stumpf, Paul W.; Wagner, Sean V.; Williams, Powtawche N.] CALTECH, Jet Prop Lab, Flight Path Control Grp, Pasadena, CA 91109 USA. RP Gist, EM (reprint author), CALTECH, Jet Prop Lab, Flight Path Control Grp, Mail Stop 230-205,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Emily.M.Gist@jpl.nasa.gov NR 29 TC 0 Z9 0 U1 0 U2 2 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 787 EP 807 PN 1-3 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900044 ER PT S AU Smith, J Buffington, B AF Smith, John Buffington, Brent BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI OVERVIEW OF THE CASSINI SOLSTICE MISSION TRAJECTORY SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The Cassini Project has completed a 7.2 year mission extension (1-Jul-2010 to 15-Sep-2017) which will govern the remainder of Cassini's operational lifetime. The resultant extended mission, stemming from 1.5 years of development, includes an additional 54 close Titan flybys, 12 close Enceladus flybys, 11 close flybys of other moons, and 160 orbits about Saturn in a variety of orientations. The mission ends with a spectacular series of orbits whose periapses are only a few thousand kilometers above Saturn's cloud tops culminating with impact into Saturn. This paper describes the different phases of the Solstice mission and the associated design methodology. C1 [Smith, John; Buffington, Brent] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Smith, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 230-205, Pasadena, CA 91109 USA. NR 20 TC 0 Z9 0 U1 1 U2 3 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 829 EP 854 PN 1-3 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900046 ER PT S AU Kloster, KW Petropoulos, AE Longuski, JM AF Kloster, Kevin W. Petropoulos, Anastassios E. Longuski, James M. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI EUROPA ORBITER MISSION DESIGN WITH IO GRAVITY ASSISTS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB Recent improvements in radiation hardening enable spacecraft to endure greater radiation exposure than previously possible, in particular allowing the current iteration of the Europa Orbiter mission to perform several consecutive flybys of Io. The strategy for designing tours with To flybys differs significantly from schemes developed for previous versions of the mission, but the Tisserand graph continues to provide important insights into the tour design. While Io flybys increase the duration of tours that are ultimately bound for Europa, they offer delta-v savings and greater scientific return, including the possibility of flying through the plume of one of Io's volcanoes. C1 [Kloster, Kevin W.; Petropoulos, Anastassios E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kloster, KW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 10 TC 0 Z9 0 U1 1 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 875 EP 889 PN 1-3 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900048 ER PT S AU Petropoulos, AE Kloster, KW Landau, DF AF Petropoulos, Anastassios E. Kloster, Kevin W. Landau, Damon F. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI MISSION DESIGN FOR THE JUPITER EUROPA ORBITER FLAGSHIP MISSION STUDY SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB With high priority given to exploration of Europa in the National Research Council's last Planetary Science Decadal Survey, NASA commissioned the development of a mission concept for a flagship-class mission to Europa, which would include international collaboration, especially with an ESA Jupiter Ganymede Orbiter mission. Here we describe the Jupiter Europa Orbiter mission design. Numerous types of gravity-assist trajectories to Jupiter are analyzed, including a nominal 2020-launch, Venus-Earth-Earth trajectory. We also present a nominal Jovian system tour, whose purpose is not only study of the system, but also reduction of the size of the insertion burn into Europan orbit. C1 [Petropoulos, Anastassios E.; Kloster, Kevin W.; Landau, Damon F.] CALTECH, Jet Prop Lab, Guidance Nav & Control Sect, Pasadena, CA 91109 USA. RP Petropoulos, AE (reprint author), CALTECH, Jet Prop Lab, Guidance Nav & Control Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Anastassios.E.Petropoulos@jpl.nasa.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 891 EP 903 PN 1-3 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900049 ER PT S AU Lam, T Landau, D Strange, N AF Lam, Try Landau, Damon Strange, Nathan BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI BROAD SEARCH FOR SOLAR ELECTRIC PROPULSION TRAJECTORIES TO SATURN WITH GRAVITY ASSISTS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB Solar electric propulsion (SEP) trajectories to Saturn using multiple gravity assists are explored for the joint NASA and ESA Titan Saturn System Mission concept. Results show that these new set of trajectories enable greater performance compared to chemical propulsion with similar gravity assists or SEP without gravity assists. This paper will discuss the method used in finding these interplanetary trajectories and examines variations in the performance for difference SEP systems, flight times, and flyby sequences. The benefits of the SEP trajectories for a mission to Saturn are also discussed. C1 [Lam, Try; Landau, Damon] CALTECH, Jet Prop Lab, Outer Planet Mission Anal Grp, Pasadena, CA 91125 USA. RP Lam, T (reprint author), CALTECH, Jet Prop Lab, Outer Planet Mission Anal Grp, M-S 301-121, Pasadena, CA 91125 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 905 EP 918 PN 1-3 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900050 ER PT S AU Strange, N Spilker, T Landau, D Lam, T Lyons, D Guzman, J AF Strange, Nathan Spilker, Thomas Landau, Damon Lam, Try Lyons, Daniel Guzman, Jose BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI MISSION DESIGN FOR THE TITAN SATURN SYSTEM MISSION CONCEPT SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB In 2008, NASA and ESA commissioned a study of an international flagship-class mission to Titan, Saturn, and Enceladus consisting of a NASA orbiter and two ESA in situ elements, a Montgolfiere hot air balloon and a lake lander. This paper provides an overview of the trajectory design for this mission, which consists of a solar electric interplanetary trajectory to Saturn, a gravity-assist tour of Titan and Enceladus, delivery of the two in situ elements, Titan aerobraking, and a Titan circular orbit. C1 [Strange, Nathan; Spilker, Thomas; Landau, Damon; Lam, Try; Lyons, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Strange, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 10 TC 0 Z9 0 U1 1 U2 2 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 919 EP 934 PN 1-3 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900051 ER PT S AU Lock, RE Ludwinski, JM Petropoulos, AE Clark, KB Pappalardo, RT AF Lock, Robert E. Ludwinski, Jan M. Petropoulos, Anastassios E. Clark, Karla B. Pappalardo, Robert T. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI AN OVERVIEW OF THE JUPITER EUROPA ORBITER CONCEPT'S EUROPA SCIENCE PHASE ORBIT DESIGN SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB Jupiter Europa Orbiter (JEO), the NASA element of the joint NASA-ESA Europa Jupiter System Mission (EJSM), would launch in February 2020 and arrive at Jupiter in December of 2025. In the baseline concept, JEO would perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper will provide an overview of the JEO mission and describe the Europa Science phase orbit design and the related science priorities, model payload and operations scenarios needed to conduct the Europa Science phase as currently envisioned. C1 [Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lock, RE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 935 EP 952 PN 1-3 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900052 ER PT S AU Lyons, DT Strange, NJ AF Lyons, Daniel T. Strange, Nathan J. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI AEROBRAKING AT TITAN SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB NASA and ESA recently completed a Pre-Phase A concept study in support of a joint selection process for the next Outer Planet Flagship Mission. The following describes the aerobraking phase of the Titan Saturn System Mission concept. The mission would launch in 2020, require a solar electrically propelled, gravity assisted tour of the inner solar system before reaching Saturn 9 years later. The spacecraft would be propulsively captured into orbit around Saturn, where it would begin a two year, gravity assisted tour of the Saturnian system. A Montgolfiere Balloon would be released at the first Titan flyby, while a lander would be released on the second Titan flyby. The spacecraft would be propulsively captured into a 19.7 hour orbit around Titan and immediately begin a two month aerobraking phase that would sample the atmosphere of the entire southern hemisphere. This paper describes the details of the aerobraking phase, which ends when the orbit is circularized at 1500 km to begin a 20 month science orbit phase. C1 [Lyons, Daniel T.; Strange, Nathan J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lyons, DT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 953 EP 966 PN 1-3 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900053 ER PT S AU Stumpf, PW Ballard, CG Gist, EM Hahn, Y Jones, JB Wagner, SV Williams, PN AF Stumpf, P. W. Ballard, C. G. Gist, E. M. Hahn, Y. Jones, J. B. Wagner, S. V. Williams, P. N. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI COMPARISON BETWEEN THE MISSION DESIGN AND RECONSTRUCTION OF THE CASSINI-HUYGENS TRAJECTORIES AND MANEUVERS OF THE PRIME MISSION SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB During the Cassini-Huygens orbital phase, the maneuver team collected data to determine the maneuver prediction accuracy and maneuver implementation accuracy as well as data to assess the ability of the navigation team to adhere to the reference trajectory. During the mission planning stage, questions arose as to what level the spacecraft would be able to maintain the reference trajectory and what value of statistical maneuver cost would be needed for each encounter. Conservative answers were provided due to the lack of similar data from past projects. Data obtained by the maneuver team and analysis that revisits these questions is presented. C1 [Stumpf, P. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stumpf, PW (reprint author), CALTECH, Jet Prop Lab, Mail Stop 230-205,4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 1053 EP 1064 PN 1-3 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900059 ER PT S AU Newman, LK Frigm, R McKinley, D AF Newman, Lauri Kraft Frigm, Ryan McKinley, David BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI IT'S NOT A BIG SKY AFTER ALL: JUSTIFICATION FOR A CLOSE APPROACH PREDICTION AND RISK ASSESSMENT PROCESS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB There is often skepticism about the need for Conjunction Assessment from mission operators that invest in the "big sky theory", which states that the likelihood of a collision is so small that it can be neglected. On 10 February 2009, the collision between Iridium 33 and COSMOS 2251 provided an indication that this theory is becoming invalid and that a CA process should be considered for all missions. This paper presents statistics of the effect of the Iridium/COSMOS collision on NASA's Earth Science Constellation as well as results of analyses which characterize the debris environment for NASA's robotic missions. C1 [Newman, Lauri Kraft] NASA, Goddard Space Flight Ctr, Space Syst Protect Mission Support Off, Greenbelt, MD 20771 USA. RP Newman, LK (reprint author), NASA, Goddard Space Flight Ctr, Space Syst Protect Mission Support Off, Mail Code 595, Greenbelt, MD 20771 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 1113 EP 1132 PN 1-3 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900063 ER PT S AU Wilson, RS Kangas, JA Chung, MKJ AF Wilson, Roby S. Kangas, Julie A. Chung, Min-Kun J. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI KEPLER TRAJECTORY DESIGN SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The Kepler mission launched on March 6, 2009, placing the spacecraft in an Earth-trailing heliocentric orbit. The primary objective of the Kepler mission is to better understand the origins of the Solar System by determining the frequency of Earth-like planets around other stars. The Kepler science instrument itself is a highly sensitive photometer that will conduct a census of extra-solar terrestrial planets by observing the dimming of light caused by planetary transits in a fixed portion of the sky. This paper will provide a brief overview of the mission and then describe in detail the design of the Earth-trailing trajectory to support this planet finding survey. C1 [Wilson, Roby S.; Kangas, Julie A.; Chung, Min-Kun J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wilson, RS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 1281 EP 1295 PN 1-3 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900073 ER PT S AU Broschart, SB Chung, MKJ Hatch, SJ Ma, JH Sweetser, TH Weinstein-Weiss, SS Angelopoulos, V AF Broschart, Stephen B. Chung, Min-Kun J. Hatch, Sara J. Ma, Jin H. Sweetser, Theodore H. Weinstein-Weiss, Stacy S. Angelopoulos, Vassilis BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI PRELIMINARY TRAJECTORY DESIGN FOR THE ARTEMIS LUNAR MISSION SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The ARTEMIS mission is an extension to the THEMIS mission that will send two of the Earth-orbiting THEMIS spacecraft on a circuitous route to the Moon beginning in July 2009. This paper describes the ARTEMIS trajectory design proposed to the NASA Heliophysics Senior Review in April 2008 (and accepted in May 2008). The trajectory design problem for ARTEMIS is very challenging due to the constraints imposed by the capabilities of the orbiting hardware. Nonetheless, the mission science objectives are successfully addressed by two unique trajectory solutions which include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar orbits. C1 [Broschart, Stephen B.; Chung, Min-Kun J.; Hatch, Sara J.; Ma, Jin H.; Sweetser, Theodore H.; Weinstein-Weiss, Stacy S.; Angelopoulos, Vassilis] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Broschart, SB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 301-150, Pasadena, CA 91109 USA. EM Stephen.B.Broschart@jpl.nasa.gov; Min-Kun.Chung@jpl.nasa.gov; Sara.J.Hatch@jpl.nasa.gov; Jin.H.Ma@jpl.nasa.gov; Theodore.H.Sweetser@jpl.nasa.gov; Stacy.S.Weinstein-Weiss@jpl.nasa.gov; vassilis@ucla.edu NR 7 TC 1 Z9 1 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 1329 EP 1343 PN 1-3 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900076 ER PT S AU Capo-Lugo, PA Bainum, PM AF Capo-Lugo, Pedro A. Bainum, Peter M. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI FORMATION FLYING CONTROL IMPLEMENTATION FOR HIGHLY ELLIPTICAL ORBITS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB The Tschauner-Hempel equations are used to correct the separation distance drifts between a pair of satellites within a constellation in highly elliptical orbits. This set of equations was discretized in the true anomaly angle to be used in a digital steady-state hierarchical controller. The objective of a discretized system is to develop a simple algorithm to be implemented in the computer onboard the satellite. The main advantage of discrete systems is that the computational time can be reduced by selecting a suitable sampling interval. The purpose of this paper is to show an implementation of the discrete Tschauner-Hempel equations and the steady-state hierarchical controller in the computer onboard the satellite. This set of equations is expressed in the true anomaly angle in which a relation between the time and the true anomaly angle domains is formulated. C1 [Capo-Lugo, Pedro A.] NASA, George C Marshall Space Flight Ctr, Guidance Nav & Control Syst Design & Anal Branch, EV41, Huntsville, AL 35812 USA. RP Capo-Lugo, PA (reprint author), NASA, George C Marshall Space Flight Ctr, Guidance Nav & Control Syst Design & Anal Branch, EV41, Huntsville, AL 35812 USA. EM Pedro.A.Capo-Lugo@nasa.gov; pbainum@fac.howard.edu NR 18 TC 0 Z9 0 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 1553 EP 1572 PN 1-3 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900088 ER PT S AU Broschart, SB Scheeres, DJ Villac, BF AF Broschart, Stephen B. Scheeres, Daniel J. Villac, Benjamin F. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI NEW FAMILIES OF MULTI-REVOLUTION TERMINATOR ORBITS NEAR SMALL BODIES SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID ASTEROID 1620 GEOGRAPHOS; SATELLITE DYNAMICS; RADIATION PRESSURE; STABILITY; RADAR AB Terminator orbits are known to be robust under the influence of a strong solar radiation pressure perturbation and a weak and irregular gravitational potential. These orbits are ideal for missions that require long-term stable motion near small asteroids and comets. This paper describes the geometry and stability characteristics of two examples of a new class of multi-revolution terminator orbits. These orbits offer improved observation geometry for some scientific observations over terminator orbits while retaining long-term stability and robustness characteristics. C1 [Broschart, Stephen B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Broschart, SB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 301-150, Pasadena, CA 91109 USA. EM Stephen.B.Broschart@jpl.nasa.gov; scheeres@colorado.edu; bvillac@uci.edu NR 18 TC 5 Z9 6 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 1685 EP 1702 PN 1-3 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900095 ER PT S AU Senent, JS AF Senent, Juan S. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI AN OPTIMAL INITIAL GUESS GENERATOR FOR ENTRY INTERFACE TARGETERS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB If a pure numerical iterative approach is used, targeting entry interface (El) conditions for nominal and abort return trajectories or for correction maneuvers can be computationally expensive. This paper describes an algorithm to obtain an optimal impulsive maneuver that generates a trajectory satisfying a set of El targets: inequality constraints on longitude, latitude and azimuth and a fixed flight-path angle. Most of the calculations require no iterations, making it suitable for real-time applications or large trade studies. This algorithm has been used to generate initial guesses for abort trajectories during Earth-Moon transfers. C1 Odyssey Space Res, Aerosci & Flight Mech Div EG5, Johnson Space Ctr, Houston, TX 77058 USA. RP Senent, JS (reprint author), Odyssey Space Res, Aerosci & Flight Mech Div EG5, Johnson Space Ctr, 2101 Nasa Pkwy, Houston, TX 77058 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 2057 EP 2076 PN 1-3 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900117 ER PT S AU Landau, D Lam, T Strange, N AF Landau, Damon Lam, Try Strange, Nathan BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI BROAD SEARCH AND OPTIMIZATION OF SOLAR ELECTRIC PROPULSION TRAJECTORIES TO URANUS AND NEPTUNE SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID MISSIONS AB A procedure to produce a large variety of trajectories to Uranus and Neptune is presented. A small set of exceptional trajectories emerges from this broad search and expands the range of missions available to these planets. Payload mass increases dramatically when a Jupiter flyby is available, and the choice of gravity-assist sequence has a greater effect on performance than the choice of propulsion system. The combination of solar electric propulsion and gravity assists enable missions with larger payloads than with chemical propulsion over a broad range of flight times and power levels. Results are provided for both aerocapture and chemical orbit insertion. C1 [Landau, Damon; Lam, Try] CALTECH, Jet Prop Lab, Outer Planet Mission Anal Grp, Pasadena, CA 91125 USA. RP Landau, D (reprint author), CALTECH, Jet Prop Lab, Outer Planet Mission Anal Grp, M-S 301-121, Pasadena, CA 91125 USA. NR 15 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 2093 EP 2112 PN 1-3 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900119 ER PT S AU Strange, NJ Campagnola, S Russell, RP AF Strange, Nathan J. Campagnola, Stefano Russell, Ryan P. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI LEVERAGING FLYBYS OF LOW MASS MOONS TO ENABLE AN ENCELADUS ORBITER SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID TRAJECTORIES AB As a result of discoveries made by the Cassini spacecraft, Saturn's moon Enceladus has emerged as a high science-value target for a future orbiter mission. However, past studies of an Enceladus orbiter mission found that entering Enceladus orbit either requires a prohibitively large orbit insertion Delta V (> 3.5 km/s) or a prohibitively long flight time. In order to reach Enceladus with a reasonable flight time and Delta V budget, a new tour design method is presented that uses gravity-assists of low-mass moons combined with v-infinity leveraging maneuvers. This new method can achieve Enceladus orbit with a combined leveraging and insertion Delta V of similar to 1 km/s and a 2.5 year Saturn tour. C1 [Strange, Nathan J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Strange, NJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 22 TC 1 Z9 1 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 2207 EP 2225 PN 1-3 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900125 ER PT S AU Ely, TA AF Ely, Todd A. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI MEAN ELEMENT PROPAGATIONS USING NUMERICAL AVERAGING SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID CUBATURE AB The long-term evolution characteristics (and stability) of an orbit are best characterized using a mean element propagation of the perturbed two body variational equations of motion. The averaging process eliminates short period terms leaving only secular and long period effects. In this study, a non-traditional approach is taken that averages the variational equations using adaptive numerical techniques and then numerically integrating the resulting EOMs. Doing this avoids the Fourier series expansions and truncations required by the traditional analytic methods. The resultant numerical techniques can be easily adapted to propagations at most solar system bodies. C1 CALTECH, Jet Prop Lab, Guidance Nav & Control Sect, Pasadena, CA 91109 USA. RP Ely, TA (reprint author), CALTECH, Jet Prop Lab, Guidance Nav & Control Sect, 4800 Oak Grove Dr,MS 301-121, Pasadena, CA 91109 USA. EM Todd.A.Ely@jpl.nasa.gov NR 16 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 2287 EP 2305 PN 1-3 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900129 ER PT S AU Parker, JS AF Parker, Jeffrey S. BE Rao, AV Lovell, TA Chan, FK Cangahuala, LA TI LOW-ENERGY BALLISTIC TRANSFERS TO LUNAR HALO ORBITS SO ASTRODYNAMICS 2009, VOL 135, PTS 1-3 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut ID RESTRICTED 3-BODY PROBLEM; PERIODIC-ORBITS; MOON; TRAJECTORIES AB Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Parker, JS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 41 TC 0 Z9 0 U1 1 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-557-2 J9 ADV ASTRONAUT SCI PY 2010 VL 135 BP 2339 EP 2358 PN 1-3 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQA45 UT WOS:000280501900132 ER PT S AU Hanner, MS Zolensky, ME AF Hanner, M. S. Zolensky, M. E. BE Henning, T TI The Mineralogy of Cometary Dust SO ASTROMINERALOGY, SECOND EDITION SE Lecture Notes in Physics LA English DT Article; Book Chapter ID BOPP C/1995 O1; INTERPLANETARY DUST; HALE-BOPP; HALLEY DUST; SOLAR NEBULA; KUIPER-BELT; EMBEDDED METAL; CARBONACEOUS CHONDRITE; CRYSTALLINE SILICATES; STARDUST SPACECRAFT AB Cometary dust is a heterogeneous mixture of unequilibrated olivine and pyroxenes, amorphous silicates, Fe-Ni sulfides, and minor amounts of oxides and other minerals. While forsterite (Mg2SiO4) and enstatite (MgSiO3) are the most common silicate minerals, both the olivine and pyroxenes also show a wide range in Mg/Fe in at least some comets. Carbon in the dust is enriched relative to CI chondrites; a significant fraction of the carbon is in the form of organic refractory material. The return of the particulate sample from ecliptic comet 81P/Wild 2 has opened up a new window for revealing the dust mineralogy at a level of detail not previously possible. The most interesting result from the Wild 2 sample to date is the discovery of refractory calcium aluminum-rich inclusions (CAI) similar to those found in primitive meteorites; chondrule fragments are also present. Comets formed in the outer parts of the solar nebula where temperatures remained low enough so that interstellar grains could have survived. The small glassy silicates in comets may indeed be interstellar grains. The CAI and the widespread, abundant crystalline silicates must have condensed in the hot inner solar nebula; their presence in comets is evidence for strong radial mixing in the solar nebula. The preponderance of Mg-rich silicates has a natural explanation in the condensation sequence; they are the first to condense in a hot gas and only react with iron at lower temperatures. This review discusses the mineralogy of cometary dust determined from infrared spectroscopy, in situ Halley measurements, IDPs, and the captured particles from comet Wild 2. C1 [Hanner, M. S.] Univ Massachusetts, Amherst, MA 01003 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Hanner, MS (reprint author), Univ Massachusetts, Amherst, MA 01003 USA. EM mhanner@astro.umass.edu; Michael.E.Zolensky@nasa.gov NR 140 TC 26 Z9 26 U1 1 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0075-8450 BN 978-3-642-13258-2 J9 LECT NOTES PHYS PY 2010 VL 815 BP 203 EP 232 DI 10.1007/978-3-642-13259-9_4 D2 10.1007/978-3-642-13259-9 PG 30 WC Astronomy & Astrophysics; Mineralogy; Physics, Applied SC Astronomy & Astrophysics; Mineralogy; Physics GA BRP56 UT WOS:000283333100004 ER PT B AU Mahabal, A Djorgovski, SG Donalek, C Drake, A Graham, M Williams, R Moghaddam, B Turmon, M AF Mahabal, Ashish Djorgovski, S. G. Donalek, Ciro Drake, Andrew Graham, Matthew Williams, Roy Moghaddam, Baback Turmon, Michael BE Mizumoto, Y Morita, KI Ohishi, M TI Mixing Bayesian Techniques for Effective Real-time Classification of Astronomical Transients SO ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIX SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 19th Annual Conference on Astronomical Data Analysis Software and Systems CY OCT 04-08, 2009 CL Sapporo, JAPAN AB With the recent advent of time domain astronomy through various surveys several approaches at classification of transients are being tried. Choosing relatively interesting and rarer transients for follow-up is important since following all transients being detected per night is not possible given the limited resources available. In addition, the classification needs to be carried out using minimal number of observations available in order to catch some of the more interesting objects. We present details on two such classification methods: (1) using Bayesian networks with colors and contextual information, and (2) using Gaussian Process Regression and light-curves. Both can be carried out in real-time and from a very small number of epochs. In order to improve classification i.e. narrow down number of competing classes, it is important to combine as many different classifiers as possible. We mention how this can be accomplished using a higher order fusion network. C1 [Mahabal, Ashish; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew; Graham, Matthew; Williams, Roy] CALTECH, Pasadena, CA 91125 USA. [Moghaddam, Baback; Turmon, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mahabal, A (reprint author), CALTECH, Pasadena, CA 91125 USA. NR 4 TC 6 Z9 6 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-748-3 J9 ASTR SOC P PY 2010 VL 434 BP 115 EP + PG 2 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA BUU27 UT WOS:000290361300018 ER PT B AU Coulais, A Schellens, M Gales, J Arabas, S Boquien, M Chanial, P Messmer, P Fillmore, D Poplawski, O Maret, S Marchal, G Galmiche, N Mermet, T AF Coulais, A. Schellens, M. Gales, J. Arabas, S. Boquien, M. Chanial, P. Messmer, P. Fillmore, D. Poplawski, O. Maret, S. Marchal, G. Galmiche, N. Mermet, T. BE Mizumoto, Y Morita, KI Ohishi, M TI Status of GDL - GNU Data Language SO ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIX SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 19th Annual Conference on Astronomical Data Analysis Software and Systems CY OCT 04-08, 2009 CL Sapporo, JAPAN AB Gnu Data Language (GDL) is an open-source interpreted language aimed at numerical data analysis and visualisation. It is a free implementation of the Interactive Data Language (IDL) widely used in Astronomy. GDL has a full syntax compatibility with IDL, and includes a large set of library routines targeting advanced matrix manipulation, plotting, time-series and image analysis, mapping, and data input/output including numerous scientific data formats. We will present the current status of the project, the key accomplishments, and the weaknesses - areas where contributions are welcome! C1 [Coulais, A.] CNRS, UPMC, UCP, LERMA,Obs Paris,ENS, Paris, France. [Gales, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Arabas, S.] Warsaw Univ, Inst Geophys, Warsaw, Poland. [Boquien, M.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Messmer, P.; Fillmore, D.] Tech X GmbH, Zurich, Switzerland. [Messmer, P.; Fillmore, D.] Tech X Corp, Boulder, CO 80303 USA. [Poplawski, O.] Northwest Res Ass Inc, Colorado Div, Boulder, CO 80301 USA. [Maret, S.] Observ Grenoble, CNRS, UJF, LAOG, Grenoble, France. [Marchal, G.; Galmiche, N.; Mermet, T.] Observ Paris, CNRS, LERMA, Paris, France. RP Coulais, A (reprint author), CNRS, UPMC, UCP, LERMA,Obs Paris,ENS, Paris, France. RI Boquien, Mederic/J-5964-2015 OI Boquien, Mederic/0000-0003-0946-6176 NR 4 TC 2 Z9 2 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-748-3 J9 ASTR SOC P PY 2010 VL 434 BP 187 EP + PG 2 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA BUU27 UT WOS:000290361300036 ER PT B AU Gross, MAK Rasmussen, JJ Moore, EM AF Gross, Michael A. K. Rasmussen, John J. Moore, Elizabeth M. BE Mizumoto, Y Morita, KI Ohishi, M TI Pointing the SOFIA Telescope SO ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIX SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 19th Annual Conference on Astronomical Data Analysis Software and Systems CY OCT 04-08, 2009 CL Sapporo, JAPAN AB SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers. C1 [Gross, Michael A. K.; Moore, Elizabeth M.] NASA, Ames Res Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Rasmussen, John J.] CRIT REALM CORP, San Jose, CA 95135 USA. RP Gross, MAK (reprint author), NASA, Ames Res Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-748-3 J9 ASTR SOC P PY 2010 VL 434 BP 271 EP + PG 2 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA BUU27 UT WOS:000290361300057 ER PT B AU Pence, WD White, RL Seaman, R AF Pence, W. D. White, R. L. Seaman, R. BE Mizumoto, Y Morita, KI Ohishi, M TI Optimal Compression of Floating-Point FITS Images SO ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XIX SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 19th Annual Conference on Astronomical Data Analysis Software and Systems CY OCT 04-08, 2009 CL Sapporo, JAPAN AB Lossless compression (e.g., with GZIP) of floating-point format astronomical FITS images is ineffective and typically only reduces the file size by 10% to 30%. We describe a much more effective compression method that is supported by the publicly available fpack and funpack FITS image compression utilities that can compress floating point images by a factor of 10 without loss of significant scientific precision. A "subtractive dithering" technique is described which permits coarser quantization (and thus higher compression) than is possible with simple scaling methods. C1 [Pence, W. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Seaman, R.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. RP Pence, WD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 1 TC 0 Z9 0 U1 0 U2 2 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-748-3 J9 ASTR SOC P PY 2010 VL 434 BP 365 EP + PG 2 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA BUU27 UT WOS:000290361300081 ER PT J AU Lazio, TJW Carmichael, S Clark, J Elkins, E Gudmundsen, P Mott, Z Szwajkowski, M Hennig, LA AF Lazio, T. Joseph W. Carmichael, S. Clark, J. Elkins, E. Gudmundsen, P. Mott, Z. Szwajkowski, M. Hennig, L. A. TI A BLIND SEARCH FOR MAGNETOSPHERIC EMISSIONS FROM PLANETARY COMPANIONS TO NEARBY SOLAR-TYPE STARS SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems ID STELLAR WIND CONDITIONS; RADIOMETRIC BODES LAW; RADIO-EMISSION; EXTRASOLAR PLANETS; COOL STARS; NSTARS PROJECT; MASS; DETECTABILITY; SPECTROSCOPY; PREDICTIONS AB This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (less than or similar to 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74 MHz (4 m wavelength) VLA Low-frequency Sky Survey, obtaining 3 sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5-10 x 10(23) erg s(-1). Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15-50 times larger than that of the Sun, and the typical magnetic energy is 5-10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10-100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array and the Long Wavelength Array, offer the promise of improvements by factors of 10-100. C1 [Lazio, T. Joseph W.] USN, Res Lab, Washington, DC 20375 USA. [Lazio, T. Joseph W.] NASA, Lunar Sci Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Carmichael, S.; Clark, J.; Elkins, E.; Gudmundsen, P.; Mott, Z.; Szwajkowski, M.; Hennig, L. A.] Thomas Jefferson High Sch Sci & Technol, Alexandria, VA 22312 USA. RP Lazio, TJW (reprint author), USN, Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. EM Joseph.Lazio@nrl.navy.mil FU 6.1 Base funding FX We thank N. Kassim, S. Kulkarni, and B. Farrell for discussions which spurred this analysis, A. Cohen for discussions on the VLSS, B. Erickson and B. Slee for discussions about solar decameter- wavelength emissions, and the referee for several comments that improved the presentation of these results. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. Basic research in radio astronomy at the NRL is supported by 6.1 Base funding. NR 51 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JAN PY 2010 VL 139 IS 1 BP 96 EP 101 DI 10.1088/0004-6256/139/1/96 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 530RO UT WOS:000272610200008 ER PT J AU Folatelli, G Phillips, MM Burns, CR Contreras, C Hamuy, M Freedman, WL Persson, SE Stritzinger, M Suntzeff, NB Krisciunas, K Boldt, L Gonzalez, S Krzeminski, W Morrell, N Roth, M Salgado, F Madore, BF Murphy, D Wyatt, P Li, WD Filippenko, AV Miller, N AF Folatelli, Gaston Phillips, M. M. Burns, Christopher R. Contreras, Carlos Hamuy, Mario Freedman, W. L. Persson, S. E. Stritzinger, Maximilian Suntzeff, Nicholas B. Krisciunas, Kevin Boldt, Luis Gonzalez, Sergio Krzeminski, Wojtek Morrell, Nidia Roth, Miguel Salgado, Francisco Madore, Barry F. Murphy, David Wyatt, Pamela Li, Weidong Filippenko, Alexei V. Miller, Nicole TI THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE SO ASTRONOMICAL JOURNAL LA English DT Article DE distance scale; dust, extinction; galaxies: distances and redshifts; galaxies: ISM; supernovae: general ID 2-PARAMETER LUMINOSITY CORRECTION; SURFACE BRIGHTNESS FLUCTUATIONS; RELAXED GALAXY CLUSTERS; INFRARED LIGHT CURVES; DARK ENERGY; HUBBLE CONSTANT; DECLINE-RATE; ULTRAVIOLET EXTINCTION; IMPROVED DISTANCES; STANDARD CANDLES AB An analysis of the first set of low-redshift (z < 0.08) Type Ia supernovae (SNe Ia) monitored by the Carnegie Supernova Project between 2004 and 2006 is presented. The data consist of well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHK(s)) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit SN Ia data in the ugriBVYJH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae (SNe) assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, R(V) approximate to 1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe (SN 2005A and SN 2006X) in the sample are excluded, a value R(V) approximate to 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the SNe are studied in all bands using a two-parameter linear fit to the decline rates and the colors at maximum light, or alternatively, the color excesses. In both cases, similar results are obtained with dispersions in absolute magnitudes of 0.12-0.16 mag, depending on the specific filter-color combination. In contrast to the results obtained from the comparison of the color excesses, these fits of absolute magnitude give R(V) approximate to 1-2 when the dispersion is minimized, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the "normal" interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram for the best-observed subsample of SNe is produced by combining the results of the fits of absolute magnitude versus decline rate and color excess for each filter. The resulting scatter of 0.12 mag appears to be limited by the peculiar velocities of the host galaxies as evidenced by the strong correlation between the distance-modulus residuals observed in the individual filters. The implication is that the actual precision of SNe Ia distances is 3%-4%. C1 [Folatelli, Gaston; Phillips, M. M.; Contreras, Carlos; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [Folatelli, Gaston; Hamuy, Mario; Salgado, Francisco; Miller, Nicole] Univ Chile, Dept Astron, Santiago, Chile. [Burns, Christopher R.; Freedman, W. L.; Persson, S. E.; Madore, Barry F.; Murphy, David] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Suntzeff, Nicholas B.; Krisciunas, Kevin] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Suntzeff, Nicholas B.; Krisciunas, Kevin] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Madore, Barry F.; Wyatt, Pamela] CALTECH, Jet Prop Lab, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Li, Weidong; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Stritzinger, Maximilian] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. RP Folatelli, G (reprint author), Carnegie Observ, Las Campanas Observ, Casilla 601, La Serena, Chile. RI Folatelli, Gaston/A-4484-2011; Hamuy, Mario/G-7541-2016; OI stritzinger, maximilian/0000-0002-5571-1833 NR 78 TC 161 Z9 162 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JAN PY 2010 VL 139 IS 1 BP 120 EP 144 DI 10.1088/0004-6256/139/1/120 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 530RO UT WOS:000272610200010 ER PT J AU Hedman, MM Nicholson, PD Baines, KH Buratti, BJ Sotin, C Clark, RN Brown, RH French, RG Marouf, EA AF Hedman, M. M. Nicholson, P. D. Baines, K. H. Buratti, B. J. Sotin, C. Clark, R. N. Brown, R. H. French, R. G. Marouf, E. A. TI THE ARCHITECTURE OF THE CASSINI DIVISION SO ASTRONOMICAL JOURNAL LA English DT Article DE occultations; planets: rings ID SATURNS RINGS; VOYAGER OBSERVATIONS; STELLAR OCCULTATION; PLANETARY RINGS; SHARP EDGES; SYSTEM; SATELLITES AB The Cassini Division in Saturn's rings contains a series of eight named gaps, three of which contain dense ringlets. Observations of stellar occultations by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft have yielded similar to 40 accurate and precise measurements of the radial position of the edges of all of these gaps and ringlets. These data reveal suggestive patterns in the shapes of many of the gap edges: the outer edges of the five gaps without ringlets are circular to within 1 km, while the inner edges of six of the gaps are eccentric, with apsidal precession rates consistent with those expected for eccentric orbits near each edge. Intriguingly, the pattern speeds of these eccentric inner gap edges, together with that of the eccentric Huygens Ringlet, form a series with a characteristic spacing of 0 degrees.06 day(-1). The two gaps with non-eccentric inner edges lie near first-order inner Lindblad resonances (ILRs) with moons. One such edge is close to the 5:4 ILR with Prometheus, and the radial excursions of this edge do appear to have an m = 5 component aligned with that moon. The other resonantly confined edge is the outer edge of the B ring, which lies near the 2:1 Mimas ILR. Detailed investigation of the B-ring-edge data confirm the presence of an m = 2 perturbation on the B-ring edge, but also show that during the course of the Cassini Mission, this pattern has drifted backward relative to Mimas. Comparisons with earlier occultation measurements going back to Voyager suggest the possibility that the m = 2 pattern is actually librating relative to Mimas with a libration frequency L similar to 0 degrees.06 day(-1) (or possibly 0 degrees.12 day(-1)). In addition to the m = 2 pattern, the B-ring edge also has an m = 1 component that rotates around the planet at a rate close to the expected apsidal precession rate ((pi) over dot(B) similar to 5 degrees.06 day(-1)). Thus, the pattern speeds of the eccentric edges in the Cassini Division can be generated from various combinations of the pattern speeds of structures observed on the edge of the B ring: Omega(p) = (pi) over dot(B) - jL for j = 1, 2, 3,..., 7. We therefore suggest that most of the gaps in the Cassini Division are produced by resonances involving perturbations from the massive edge of the Bring. We find that a combination of gravitational perturbations generated by the radial excursions in the B-ring edge and the gravitational perturbations from the Mimas 2: 1 ILR yields terms in the equations of motion that should act to constrain the pericenter location of particle orbits in the vicinity of each of the eccentric inner gap edges in the Cassini Division. This alignment of pericenters could be responsible for forming the Cassini-Division Gaps and thus explain why these gaps are located where they are. C1 [Hedman, M. M.; Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Baines, K. H.; Buratti, B. J.; Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clark, R. N.] US Geol Survey, Denver, CO 80225 USA. [Brown, R. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [French, R. G.] Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. [Marouf, E. A.] San Jose State Univ, Dept Elect Engn, San Jose, CA 95192 USA. RP Hedman, MM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM mmhedman@astro.cornell.edu FU NASA via the Cassini-Huygens program; Cassini Project; VIMS team FX This work was carried out with financial support from NASA via the Cassini-Huygens program. We acknowledge the support of the Cassini Project and the VIMS team. We thank M. Evans, M. Tiscareno, and R. French for help in the development and validation of the code used to reconstruct the occultation geometries. We also thank the RSS team for sharing their data on the B-ring edge in advance of publication. We also thank J. Burns, J. Cuzzi, C. Murray, N. Rappaport, J. Spitale, and M. Tiscareno for stimulating and useful conversations. NR 31 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JAN PY 2010 VL 139 IS 1 BP 228 EP 251 DI 10.1088/0004-6256/139/1/228 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 530RO UT WOS:000272610200018 ER PT J AU Stiles, BW Kirk, RL Lorenz, RD Hensley, S Lee, E Ostro, SJ Allison, MD Callahan, PS Gim, Y Iess, L del Marmo, PP Hamilton, G Johnson, WTK West, RD AF Stiles, Bryan W. Kirk, Randolph L. Lorenz, Ralph D. Hensley, Scott Lee, Ella Ostro, Steven J. Allison, Michael D. Callahan, Philip S. Gim, Yonggyu Iess, Luciano del Marmo, Paolo Perci Hamilton, Gary Johnson, William T. K. West, Richard D. CA Cassini RADAR Team TI DETERMINING TITAN'S SPIN STATE FROM CASSINI RADAR IMAGES (vol 135, pg 1669, 2008) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Stiles, Bryan W.; Hensley, Scott; Ostro, Steven J.; Callahan, Philip S.; Gim, Yonggyu; Hamilton, Gary; Johnson, William T. K.; West, Richard D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kirk, Randolph L.; Lee, Ella] US Geol Survey, Flagstaff, AZ 86001 USA. [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Allison, Michael D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Iess, Luciano; del Marmo, Paolo Perci] Univ Rome, Dept Aerosp Engn & Astronaut, Rome, Italy. RP Stiles, BW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI IESS, Luciano/F-4902-2011; Lorenz, Ralph/B-8759-2016 OI IESS, Luciano/0000-0002-6230-5825; Lorenz, Ralph/0000-0001-8528-4644 NR 2 TC 25 Z9 25 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JAN PY 2010 VL 139 IS 1 BP 311 EP 311 DI 10.1088/0004-6256/139/1/311 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 530RO UT WOS:000272610200024 ER PT J AU Cocchi, M Farinelli, R Paizis, A Titarchuk, L AF Cocchi, M. Farinelli, R. Paizis, A. Titarchuk, L. TI Wide band observations of the X-ray burster GS 1826-238 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: general; X-rays: binaries; X-rays: individuals: GS 1826-238 ID COMPTONIZATION; GS-1826-238; EMISSION; BINARIES; SPECTRA AB Context. GS 1826-238 is a well-studied X-ray bursting neutron star in a low mass binary system. Thermal Comptonisation by a hot electron cloud (kT(e) similar to 20 keV) is a widely accepted mechanism accounting for its high energy emission, while the nature of most of its soft X-ray output is not completely understood. A further low energy component is typically needed to model the observed spectra: pure blackbody and Comptonisation-modified blackbody radiation by a lower temperature (a few keV) electron plasma were suggested to explain the low energy data. Aims. In order to better characterise the nature of the low energy emission and the bolometric output of the source, the steady emission of GS 1826-238 is studied by means of sensitive, broad band (X to soft Gamma-rays) measurements obtained by the INTEGRAL observatory. Methods. In this data analysis, the newly developed, up-to-date Comptonisation model COMPTB is applied for the first time to study effectively the low-hard state variability of a low-luminosity neutron star in a low-mass X-ray binary system. Three joint ISGRI/JEM-X data sets (two from observations performed in 2003 and one from 2006) were analysed. Results. We confirm that the 3-200 keV emission of GS 1826-238 is characterised by Comptonisation of soft seed photons by a hot electron plasma. A single spectral component is sufficient to model the observed spectra. At lower energies, no direct blackbody emission is observed and there is no need to postulate a low temperature Compton region. Compared to the 2003 measurements, the plasma temperature decreased from similar to 20 to similar to 14 keV in 2006, together with the seed photons temperature. The source intensity was also found to be similar to 30% lower in 2006, whilst the average recurrence frequency of the X-ray bursts significantly increased. Possible explanations for this apparent deviation from the typical limit-cycle behaviour of this burster are discussed. C1 [Cocchi, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, Sez Roma, I-00133 Rome, Italy. [Farinelli, R.; Titarchuk, L.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Paizis, A.] Ist Astrofis Spaziale & Fis Cosm, INAF, Sez Milano, Milan, Italy. [Titarchuk, L.] George Mason Univ, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Titarchuk, L.] USN, Res Lab, High Energy Space Environm Branch, Washington, DC 20375 USA. [Titarchuk, L.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Cocchi, M (reprint author), Ist Astrofis Spaziale & Fis Cosm, INAF, Sez Roma, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. EM Massimo.Cocchi@iasf-roma.inaf.it OI Paizis, Adamantia/0000-0001-5067-0377 FU INAF [PRIN 2007]; Italian Space Agency [I/008/07/0] FX This work has been supported by the grant from the INAF PRIN 2007 Bulk motion Comptonization models in X-ray Binaries: from phenomenology to physics, PI M. Cocchi. A. P. acknowledges the Italian Space Agency financial and programmatic support via contract I/008/07/0. The authors thank C. Ferrigno and A. Segreto for useful suggestions and tips. NR 25 TC 4 Z9 4 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JAN PY 2010 VL 509 DI 10.1051/0004-6361/200912796 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 550VM UT WOS:000274159400014 ER PT J AU Doherty, M Tanaka, M De Breuck, C Ly, C Kodama, T Kurk, J Seymour, N Vernet, J Stern, D Venemans, B Kajisawa, M Tanaka, I AF Doherty, M. Tanaka, M. De Breuck, C. Ly, C. Kodama, T. Kurk, J. Seymour, N. Vernet, J. Stern, D. Venemans, B. Kajisawa, M. Tanaka, I. TI Optical and near-IR spectroscopy of candidate red galaxies in two z similar to 2.5 proto-clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: MRC 1138-262; galaxies: clusters: individual: MRC 0943-242; galaxies: evolution; galaxies: high-redshift; large-scale structure of Universe; infrared: galaxies ID COLOR-MAGNITUDE RELATION; GOODS-MUSIC SAMPLE; H-ALPHA EMITTERS; HIGH-REDSHIFT; RADIO GALAXY; PHOTOMETRIC REDSHIFTS; STELLAR POPULATIONS; SUBARU TELESCOPE; MASSIVE GALAXY; STAR-FORMATION AB We present a spectroscopic campaign to follow-up red colour-selected candidate massive galaxies in two high redshift proto-clusters surrounding radio galaxies. We observed a total of 57 galaxies in the field of MRC0943-242 (z = 2.93) and 33 in the field of MRC 1138-262 (z = 2.16) with a mix of optical and near-infrared multi-object spectroscopy. We confirm two red galaxies in the field of MRC 1138-262 at the redshift of the radio galaxy. Based on an analysis of their spectral energy distributions, and their derived star formation rates from the Ha and observed frame 24 mu m flux, one object belongs to the class of dust-obscured star-forming red galaxies, while the other is evolved with little ongoing star formation. This result represents the first red and mainly passively evolving galaxy to be confirmed as companion galaxies in a z > 2 proto-cluster. Both red galaxies in MRC 1138-262 are massive, of the order of 4-6 x 10(11) M(circle dot). They lie along a colour-magnitude relation which implies that they formed the bulk of their stellar population around z = 4. In the MRC0943-242 field we find no red galaxies at the redshift of the radio galaxy but we do confirm the effectiveness of our JHK(s) selection of galaxies at 2.3 < z < 3.1, finding that 10 out of 18 (56%) of JHK(s)-selected galaxies whose redshifts could be measured fall within this redshift range. We also serendipitously identify an interesting foreground structure of 6 galaxies at z = 2.6 in the field of MRC0943-242. This may be a proto-cluster itself, but complicates any interpretation of the red sequence build-up in MRC 0943-242 until more redshifts can be measured. C1 [Doherty, M.] European So Observ, ESO Santiago, Santiago, Chile. [Tanaka, M.; De Breuck, C.; Vernet, J.; Venemans, B.] European So Observ, ESO Garching, D-85748 Garching, Germany. [Ly, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kodama, T.; Kajisawa, M.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kurk, J.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kurk, J.] Max Planck Inst Extraterr Phys, D-68165 Garching, Germany. [Seymour, N.] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kajisawa, M.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Tanaka, I.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Doherty, M (reprint author), European So Observ, ESO Santiago, Alonso Cordova 3107, Santiago, Chile. EM mdoherty@eso.org OI Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536; De Breuck, Carlos/0000-0002-6637-3315 FU Japanese Ministry of Education, Culture, Sports and Science [18684004, 21340045]; NASA [NNX08AW14H]; DFG [SFB 439] FX We thank the referee G. Zamorani for a very constructive referee report, which has substantially improved this paper. This work was financially supported in part by the Grant-in-Aid for Scientific Research (Nos. 18684004 and 21340045) by the Japanese Ministry of Education, Culture, Sports and Science. CL is supported by NASA grant NNX08AW14H through their Graduate Student Researcher Program (GSRP). We thank Dr. Bruzual and Dr. Charlot for kindly providing us with their latest population synthesis code. M. D. thanks Andy Bunker and Rob Sharp for useful discussions on manipulating MOIRCS data. The work of DS was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. J. K. acknowledges financial support from DFG grant SFB 439. The authors wish to respectfully acknowledge the significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are fortunate to have the opportunity to conduct scientific observations from this mountain. NR 49 TC 31 Z9 31 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JAN PY 2010 VL 509 DI 10.1051/0004-6361/200912868 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 550VM UT WOS:000274159400094 ER PT J AU Perlman, ES Georganopoulos, M May, EM Kazanas, D AF Perlman, Eric S. Georganopoulos, Markos May, Emily M. Kazanas, Demosthenes TI CHANDRA OBSERVATIONS OF THE RADIO GALAXY 3C 445 AND THE HOT SPOT X-RAY EMISSION MECHANISM SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (3C 445); galaxies: jets; radio continuum: galaxies; X-rays: galaxies ID MAGNETIC-FIELD STRENGTHS; SPITZER-SPACE-TELESCOPE; ACTIVE GALACTIC NUCLEI; PARTICLE-ACCELERATION; PICTOR-A; CYGNUS-A; EXTRAGALACTIC JETS; RELATIVISTIC JETS; OPTICAL-EMISSION; SYNCHROTRON AB We present new Chandra observations of the radio galaxy 3C 445, centered on its southern radio hot spot. Our observations detect X-ray emission displaced upstream and to the west of the radio-optical hot spot. Attempting to reproduce both the observed spectral energy distribution and the displacement excludes all one-zone models. Modeling of the radio-optical hot spot spectrum suggests that the electron distribution has a low-energy cutoff or break approximately at the proton rest mass energy. The X-rays could be due to external Compton scattering of the cosmic microwave background coming from the fast (Lorentz factor Gamma approximate to 4) part of a decelerating flow, but this requires a small angle between the jet velocity and the observer's line of sight (theta approximate to 14 degrees). Alternatively, the X-ray emission can be synchrotron from a separate population of electrons. This last interpretation does not require the X-ray emission to be beamed. C1 [Perlman, Eric S.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Georganopoulos, Markos] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Georganopoulos, Markos; Kazanas, Demosthenes] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. [May, Emily M.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. RP Perlman, ES (reprint author), Florida Inst Technol, Dept Phys & Space Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA. OI Perlman, Eric/0000-0002-3099-1664 FU Chandra [G07-8113A]; NASA LTSA [NNX07AM17G]; National Science Foundation [NSFAST-0552798]; Research Experiences for Undergraduates (REU); Department of Defense (DoD) FX We thank an anonymous referee for comments that significantly strengthened this paper. This work was supported at FIT and UMBC by the Chandra grant G07-8113A and the NASA LTSA grant NNX07AM17G. This project was also partially funded by a partnership between the National Science Foundation (NSFAST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs. NR 48 TC 13 Z9 13 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 1 EP 8 DI 10.1088/0004-637X/708/1/1 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400001 ER PT J AU Schnee, S Enoch, M Noriega-Crespo, A Sayers, J Terebey, S Caselli, P Foster, J Goodman, A Kauffmann, J Padgett, D Rebull, L Sargent, A Shetty, R AF Schnee, Scott Enoch, Melissa Noriega-Crespo, Alberto Sayers, Jack Terebey, Susan Caselli, Paola Foster, Jonathan Goodman, Alyssa Kauffmann, Jens Padgett, Deborah Rebull, Luisa Sargent, Anneila Shetty, Rahul TI THE DUST EMISSIVITY SPECTRAL INDEX IN THE STARLESS CORE TMC-1C SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; stars: formation ID TEMPERATURE-DEPENDENCE; ABSORPTION-COEFFICIENT; INITIAL CONDITIONS; SILICATE GRAINS; MOLECULAR CLOUD; MU-M; CONTINUUM; SPITZER; PERSEUS; TAURUS AB In this paper, we present a dust emission map of the starless core TMC-1C taken at 2100 mu m. Along with maps at 160, 450, 850, and 1200 mu m, we study the dust emissivity spectral index from the (sub)millimeter spectral energy distribution, and find that it is close to the typically assumed value of beta = 2. We also map the dust temperature and column density in TMC-1C, and find that at the position of the dust peak (A(V) similar to 50) the line-of-sight-averaged temperature is similar to 7 K. Employing simple Monte Carlo modeling, we show that the data are consistent with a constant value for the emissivity spectral index over the whole map of TMC-1C. C1 [Schnee, Scott; Shetty, Rahul] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Enoch, Melissa] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Noriega-Crespo, Alberto; Padgett, Deborah; Rebull, Luisa] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Sayers, Jack] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Terebey, Susan] Calif State Univ Los Angeles, Dept Phys & Astron PS315, Los Angeles, CA 90032 USA. [Caselli, Paola] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Foster, Jonathan; Goodman, Alyssa; Kauffmann, Jens; Shetty, Rahul] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Schnee, S (reprint author), NRC HIA, 5071 W Saanich Rd, Victoria, BC V9E 2E7, Canada. EM scott.schnee@nrc-cnrc.gc.ca RI Goodman, Alyssa/A-6007-2010; OI Goodman, Alyssa/0000-0003-1312-0477; Rebull, Luisa/0000-0001-6381-515X FU National Science Foundation [AST 05-40399]; NASA Postdoctoral Program; Spitzer Space Telescope; INSU/CNRS (France); MPG (Germany); IGN (Spain); NSF [AST 02-29008] FX We thank our referee, Yancy Shirley, for comments that improved the clarity of this paper. S.S. acknowledges support from the Owens Valley Radio Observatory, which is supported by the National Science Foundation through grant AST 05-40399. J.S. was partially supported by a NASA Postdoctoral Program Fellowship. Support was provided to M.E. by NASA through the Spitzer Space Telescope Fellowship Program. The JCMT is operated by the Joint Astronomy Centre on behalf of the Particle Physics and Astronomy Research Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). The CSO is supported by the NSF fund under contract AST 02-29008. NR 43 TC 33 Z9 33 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 127 EP 136 DI 10.1088/0004-637X/708/1/127 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400013 ER PT J AU Perlman, ES Padgett, CA Georganopoulos, M Worrall, DM Kastner, JH Franz, G Birkinshaw, M Dulwich, F O'Dea, CP Baum, SA Sparks, WB Biretta, JA Lara, L Jester, S Martel, A AF Perlman, E. S. Padgett, C. A. Georganopoulos, M. Worrall, D. M. Kastner, J. H. Franz, G. Birkinshaw, M. Dulwich, F. O'Dea, C. P. Baum, S. A. Sparks, W. B. Biretta, J. A. Lara, L. Jester, S. Martel, A. TI A MULTI-WAVELENGTH SPECTRAL AND POLARIMETRIC STUDY OF THE JET OF 3C 264 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: elliptical and lenticular, cD; galaxies: jets; polarization; radiation mechanisms: non-thermal ID I RADIO-GALAXIES; SPACE-TELESCOPE OBSERVATIONS; OPTICAL SYNCHROTRON JET; EMISSION-LINE NEBULAE; X-RAY-EMISSION; M87 JET; FR-I; PARTICLE-ACCELERATION; EXTRAGALACTIC JETS; VLBI OBSERVATIONS AB We present a comprehensive multi-band spectral and polarimetric study of the jet of 3C 264 (NGC 3862). Included in this study are three Hubble Space Telescope (HST) optical and ultraviolet polarimetry data sets, along with new and archival Very Large Array radio imaging and polarimetry, a re-analysis of numerous HST broadband data sets from the near infrared to the far ultraviolet, and a Chandra ACIS-S observation. We investigate similarities and differences between optical and radio polarimetry, in both degree of polarization and projected magnetic field direction. We also examine the broadband spectral energy distribution of both the nucleus and jet of 3C 264, from the radio through the X-rays. From this, we place constraints on the physics of the 3C 264 system, the jet and its dynamics. We find significant curvature of the spectrum from the near-IR to ultraviolet, and synchrotron breaks steeper than 0.5, a situation also encountered in the jet of M87. This likely indicates velocity and/or magnetic field gradients and more efficient particle acceleration localized in the faster/higher magnetic field parts of the flow. The magnetic field structure of the 3C 264 jet is remarkably smooth; however, we do find complex magnetic field structure that is correlated with changes in the optical spectrum. We find that the X-ray emission is due to the synchrotron process; we model the jet spectrum and discuss mechanisms for accelerating particles to the needed energies, together with implications for the orientation of the jet under a possible spine-sheath model. C1 [Perlman, E. S.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Perlman, E. S.; Padgett, C. A.; Georganopoulos, M.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Padgett, C. A.; Georganopoulos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Worrall, D. M.; Birkinshaw, M.; Dulwich, F.] Univ Bristol, Dept Phys, Bristol BS8 1TL, Avon, England. [Kastner, J. H.; Franz, G.; O'Dea, C. P.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Baum, S. A.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Sparks, W. B.; Biretta, J. A.; Martel, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lara, L.] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain. [Jester, S.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Perlman, ES (reprint author), Florida Inst Technol, Dept Phys & Space Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA. EM eperlman@fit.edu FU National Aeronautics; Space Administration; Chandra X-rayObservatory Center [SAO-05701071]; National Aeronautics Space Administration [NAS8-03060]; NASA LTSA [NNX07AM17G, NNG05GD63ZG, NAG5-9997]; NASA ATFP [NNX08AG77G]; HST [GO-9847.01, GO-9142.01] FX Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number SAO-05701071 issued by the Chandra X-rayObservatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Research on jets at FIT and UMBC is funded by NASA LTSA grants NNX07AM17G, NNG05GD63ZG, and NAG5-9997, as well as NASA ATFP grant NNX08AG77G. Other support for this work came from HST grants GO-9847.01 and GO-9142.01. We thank an anonymous referee for comments that significantly improved this work. NR 82 TC 12 Z9 12 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 171 EP 187 DI 10.1088/0004-637X/708/1/171 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400016 ER PT J AU Turner, NJ Carballido, A Sano, T AF Turner, N. J. Carballido, A. Sano, T. TI DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instabilities; MHD; solar system: formation; stars: formation ID T-TAURI STARS; X-RAY-EMISSION; RADIATION MAGNETOHYDRODYNAMICS CODE; SPECTRAL ENERGY-DISTRIBUTIONS; ANGULAR-MOMENTUM TRANSPORT; HH-30 CIRCUMSTELLAR DISK; WEAKLY MAGNETIZED DISKS; ORION NEBULA CLUSTER; 2 SPACE DIMENSIONS; PROTOPLANETARY DISKS AB We apply ionization balance and magnetohydrodynamical (MHD) calculations to investigate whether magnetic activity moderated by recombination on dust grains can account for the mass accretion rates and the mid-infrared spectra and variability of protostellar disks. The MHD calculations use the stratified shearing-box approach and include grain settling and the feedback from the changing dust abundance on the resistivity of the gas. The two-decade spread in accretion rates among solar-mass T Tauri stars is too large to result solely from variations in the grain size and stellar X-ray luminosity, but can plausibly be produced by varying these parameters together with the disk magnetic flux. The diverse shapes and strengths of the mid-infrared silicate bands can come from the coupling of grain settling to the distribution of the magnetorotational turbulence, through the following three effects. First, recombination on grains 1 mu m or smaller yields a magnetically inactive dead zone extending more than two scale heights from the midplane, while turbulent motions in the magnetically active disk atmosphere overshoot the dead zone boundary by only about one scale height. Second, grains deep in the dead zone oscillate vertically in wave motions driven by the turbulent layer above, but on average settle at the rates found in laminar flow, so that the interior of the dead zone is a particle sink and the disk atmosphere will become dust-depleted unless resupplied from elsewhere. Third, with sufficient depletion, the dead zone is thinner and mixing dredges grains off the midplane. The last of these processes enables evolutionary signatures such as the degree of settling to sometimes decrease with age. The MHD results also show that the magnetic activity intermittently lifts clouds of small grains into the atmosphere. Consequently the photosphere height changes by up to one-third over timescales of a few orbits, while the extinction along lines of sight grazing the disk surface varies by factors of 2 over times down to a tenth of an orbit. We suggest that the changing shadows cast by the dust clouds on the outer disk are a cause of the daily to monthly mid-infrared variability found in many young stars. C1 [Turner, N. J.; Carballido, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Carballido, A.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Sano, T.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. RP Turner, NJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM neal.turner@jpl.nasa.gov RI Sano, Takayoshi/E-7860-2010 FU JPL Research and Technology Development; NASA FX We gratefully acknowledge discussions with S. Desch, C. Dullemond, A. Glassgold, J. Goodman, K. Kretke, and M. Wardle. The work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, with the support of the JPL Research and Technology Development and NASA Solar Systems Origins Programs. NR 84 TC 76 Z9 76 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 188 EP 201 DI 10.1088/0004-637X/708/1/188 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400017 ER PT J AU Abbas, MM Kandadi, H LeClair, A Achterberg, RK Flasar, FM Kunde, VG Conrath, BJ Bjoraker, G Brasunas, J Carlson, R Jennings, DE Segura, M AF Abbas, M. M. Kandadi, H. LeClair, A. Achterberg, R. K. Flasar, F. M. Kunde, V. G. Conrath, B. J. Bjoraker, G. Brasunas, J. Carlson, R. Jennings, D. E. Segura, M. TI D/H RATIO OF TITAN FROM OBSERVATIONS OF THE CASSINI/COMPOSITE INFRARED SPECTROMETER SO ASTROPHYSICAL JOURNAL LA English DT Article DE molecular data; planetary nebulae: individual (Saturn); planets and satellites: individual (Saturn, Titan) ID ATMOSPHERIC TEMPERATURES; DEUTERIUM FRACTIONATION; INTERSTELLAR CLOUDS; SOLAR-SYSTEM; ORIGIN; SPECTRA; METHANE; ABUNDANCE; SURFACE; SATURN AB The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, launched in 1997 October and inserted into Saturn's orbit in 2004 July for exploration of the Saturnian system, has been making observations of Titan during its close flybys. The infrared spectra of Titan observed over a wide range of latitudes cover the 10-1400 cm(-1) spectral region with variable apodized resolutions from 0.53 to 15 cm-1. The spectra exhibit features of the nu(4) band of methane (CH(4)) in the 1300 cm(-1) region, and the deuterated isotope of methane (CH(3)D) centered around 1156 cm(-1), along with features of many trace constituents in other spectral regions, comprising hydrocarbons and nitriles in Titan's atmosphere. An analysis of the observed infrared spectra in the 1300 cm(-1) and 1156 cm(-1) regions, respectively, permits retrieval of the thermal structure and the CH(3)D distributions of Titan's atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared spectra for retrieval of the CH(3)D abundance and the corresponding D/H ratio in Titan's atmosphere. The analysis is based on the 0.53 cm(-1) resolution infrared spectra obtained during the Titan flybys from 2004 July 3 to 2008 May 28 over a range of latitudes extending from 74.degrees 4 N to 84.degrees 9 S. Using the CH(4) mixing ratio of 1.4 x 10(-2) as measured by the Gas Chromatograph and Mass Spectrometer on the Huygens probe on the Cassini mission, we determine the D/H ratio of Titan as (1.58 +/- 0.16) x 10(-4), where the 1 sigma uncertainty includes the standard deviation due to spectral noise and the estimated errors arising from uncertainties in the temperature retrieval, the mixing ratio of CH(4), and the spectral line parameters. Comparison of this value with the previously measured values for Titan as well as in other astrophysical sources, and its possible implications are discussed. C1 [Abbas, M. M.; LeClair, A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Kandadi, H.] Univ Alabama, Huntsville, AL 35899 USA. [Achterberg, R. K.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Flasar, F. M.; Bjoraker, G.; Brasunas, J.; Carlson, R.; Jennings, D. E.; Segura, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kunde, V. G.; Segura, M.] Univ Maryland, College Pk, MD 20742 USA. [Conrath, B. J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Carlson, R.] Catholic Univ Amer, Washington, DC 20064 USA. RP Abbas, MM (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM mian.m.abbas@nasa.gov; harini.kandadi@uah.edu; andre.c.leClair@nasa.gov; richard.achterberg@nasa.gov; f.m.flasar@nasa.gov; virgil.g.kunde@gsfc.nasa.gov; conrath@astro.cornell.edu; gordon.l.bjoraker@nasa.gov; john.c.brasunas@nasa.gov; ronald.c.carlson@nasa.gov; donald.e.jennings@nasa.gov; maraa.e.garcia@nasa.gov RI Flasar, F Michael/C-8509-2012; Bjoraker, Gordon/D-5032-2012; Jennings, Donald/D-7978-2012; brasunas, john/I-2798-2013 NR 68 TC 10 Z9 10 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 342 EP 353 DI 10.1088/0004-637X/708/1/342 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400030 ER PT J AU Berghea, CT Dudik, RP Weaver, KA Kallman, TR AF Berghea, C. T. Dudik, R. P. Weaver, K. A. Kallman, T. R. TI THE FIRST DETECTION OF [O IV] FROM AN ULTRALUMINOUS X-RAY SOURCE WITH SPITZER. I. OBSERVATIONAL RESULTS FOR HOLMBERG II ULX SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: individual (Holmberg II); infrared: ISM; X-rays: binaries ID NEARBY GALAXIES SURVEY; MASS BLACK-HOLES; ACTIVE GALACTIC NUCLEUS; XMM-NEWTON OBSERVATIONS; INFRARED SPECTROGRAPH; EXTERNAL GALAXIES; ACCRETION DISKS; SPACE-TELESCOPE; RADIO-EMISSION; SPECTROSCOPY AB We present the first Spitzer Infrared Spectrograph observations of the [O IV] 25.89 mu m emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well-established signature of high excitation, usually associated with active galactic nucleus (AGN). Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high-resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower-ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the photoionization. The best XMM-Newton data are used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use previously published optical and radio data to construct the full spectral energy distribution (SED) for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M(circle dot) for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper, we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX. C1 [Berghea, C. T.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Berghea, C. T.; Dudik, R. P.] USN Observ, Washington, DC 20392 USA. [Weaver, K. A.; Kallman, T. R.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Berghea, CT (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. EM 79berghea@cardinalmail.cua.edu; rpdudik@usno.navy.mil FU National Aeronautics and Space Administration FX C. T. B. is grateful to Lisa Winter for allowing us to use the processed XMM-Newton data. He thanks Richard Mushotzky, Lisa Winter, and Marcio Melendez for helpful discussions, R. P. D. gratefully acknowledges financial support from the NASA Graduate Student Research Program. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. SMART was developed by the IRS Team at Cornell University and is available through the Spitzer Science Center at Caltech. We thank the referee for very helpful and constructive comments that have significantly improved this NR 60 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 354 EP 363 DI 10.1088/0004-637X/708/1/354 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400031 ER PT J AU Berghea, CT Dudik, RP Weaver, KA Kallman, TR AF Berghea, C. T. Dudik, R. P. Weaver, K. A. Kallman, T. R. TI THE FIRST DETECTION OF [O IV] FROM AN ULTRALUMINOUS X-RAY SOURCE WITH SPITZER. II. EVIDENCE FOR HIGH LUMINOSITY IN HOLMBERG II ULX SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: individual (Holmberg II); infrared: ISM; X-rays: binaries ID MASS BLACK-HOLES; NEARBY GALAXIES; RADIO-EMISSION; NEBULA; SPECTROSCOPY; DIAGNOSTICS; REGIONS; MODELS AB This is the second of two papers examining Spitzer Infrared Spectrograph observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here, we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 mu m emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line-of-sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(40) erg s(-1) would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-ionization line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries. C1 [Berghea, C. T.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Berghea, C. T.; Dudik, R. P.] USN Observ, Washington, DC 20392 USA. [Weaver, K. A.; Kallman, T. R.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Berghea, CT (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. EM 79berghea@cardinalmail.cua.edu; rpdudik@usno.navy.mil FU NASA FX C. T. B. thanks Richard Mushotzky and Lisa Winter for helpful discussions, and Nicholas Sterling and Marcio Melendez for their help with CLOUDY. R. P. D. gratefully acknowledges financial support from the NASA Graduate Student Research Program. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We thank the referee for very helpful and constructive comments that have significantly improved this paper. NR 39 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 364 EP 374 DI 10.1088/0004-637X/708/1/364 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400032 ER PT J AU Crenshaw, DM Schmitt, HR Kraemer, SB Mushotzky, RF Dunn, JP AF Crenshaw, D. M. Schmitt, H. R. Kraemer, S. B. Mushotzky, R. F. Dunn, J. P. TI RADIAL VELOCITY OFFSETS DUE TO MASS OUTFLOWS AND EXTINCTION IN ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: kinematics and dynamics; galaxies: Seyfert ID NARROW-LINE REGION; QUASAR SDSS J092712.65+294344.0; SEYFERT-2 GALAXY NGC-1068; EMISSION-LINE; BLACK-HOLE; PHYSICAL CONDITIONS; NGC 4151; RESOLVED SPECTROSCOPY; DUST MORPHOLOGY; IONIZED-GAS AB We present a study of the radial velocity offsets between narrow emission lines and host galaxy lines (stellar absorption and Hi 21 cm emission) in Seyfert galaxies with observed redshifts less than 0.043. We find that 35% of the Seyferts in the sample show [O III] emission lines with blueshifts with respect to their host galaxies exceeding 50 km s(-1), whereas only 6% show redshifts this large, in qualitative agreement with most previous studies. We also find that a greater percentage of Seyfert 1 galaxies show blueshifts than Seyfert 2 galaxies. Using Hubble Spce Talescope/Space Telescope Imaging Spectrograph spatially resolved spectra of the Seyfert 2 galaxy NGC 1068 and the Seyfert 1 galaxy NGC 4151, we generate geometric models of their narrow-line regions (NLRs) and inner galactic disks, and show how these models can explain the blueshifted [O III] emission lines in collapsed STIS spectra of these two Seyferts. We conclude that the combination of mass outflow of ionized gas in the NLR and extinction by dust in the inner disk (primarily in the form of dust spirals) is primarily responsible for the velocity offsets in Seyfert galaxies. More exotic explanations are not needed. We discuss the implications of this result for the velocity offsets found in higher redshift active galactic nuclei. C1 [Crenshaw, D. M.] Georgia State Univ, Astron Off, Dept Phys & Astron, Atlanta, GA 30303 USA. [Schmitt, H. R.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Schmitt, H. R.] Interferometrics Inc, Herndon, VA 20171 USA. [Kraemer, S. B.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Mushotzky, R. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dunn, J. P.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. RP Crenshaw, DM (reprint author), Georgia State Univ, Astron Off, Dept Phys & Astron, 1 Pk Pl S SE,Suite 700, Atlanta, GA 30303 USA. EM crenshaw@chara.gsu.edu FU National Aeronautics and Space Administration FX This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 73 TC 57 Z9 58 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 419 EP 426 DI 10.1088/0004-637X/708/1/419 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400037 ER PT J AU Shanmugaraju, A Moon, YJ Cho, KS Bong, SC Gopalswamy, N Akiyama, S Yashiro, S Umapathy, S Vrsnak, B AF Shanmugaraju, A. Moon, Y. -J. Cho, K. -S. Bong, S. C. Gopalswamy, N. Akiyama, S. Yashiro, S. Umapathy, S. Vrsnak, B. TI QUASI-PERIODIC OSCILLATIONS IN LASCO CORONAL MASS EJECTION SPEEDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); solar wind ID MAGNETIC-FLUX ROPE; AERODYNAMIC DRAG; ACCELERATION; ERUPTIONS; DYNAMICS; FORCES; LOOPS AB Quasi-periodic oscillations in the speed profile of coronal mass ejections (CMEs) in the radial distance range 2-30 solar radii are studied. We considered the height-time data of the 307 CMEs recorded by the Large Angle and Spectrometric Coronagraph (LASCO) during 2005 January-March. In order to study the speed-distance profile of the CMEs, we have used only 116 events for which there are at least 10 height-time measurements made in the LASCO field of view. The instantaneous CME speed is estimated using a pair of height-time data points, providing the speed-distance profile. We found quasi-periodic patterns in at least 15 speed-distance profiles, where the speed amplitudes are larger than the speed errors. For these events we have determined the speed amplitude and period of oscillations. The periods of quasi-periodic oscillations are found in the range 48-240 minutes, tending to increase with height. The oscillations have similar properties as those reported by Krall et al., who interpreted them in terms of the flux-rope model. The nature of forces responsible for the motion of CMEs and their oscillations are discussed. C1 [Shanmugaraju, A.] Arul Anandar Coll, Dept Phys, Karumathur 625514, India. [Moon, Y. -J.] Kyung Hee Univ, Sch Space Res, Yongin 446701, South Korea. [Cho, K. -S.; Bong, S. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Gopalswamy, N.; Akiyama, S.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Umapathy, S.] Madurai Kamaraj Univ, Sch Phys, Madurai 625021, Tamil Nadu, India. [Vrsnak, B.] Hvar Observ, Fac Geodesy, Zagreb, Croatia. RP Shanmugaraju, A (reprint author), Arul Anandar Coll, Dept Phys, Karumathur 625514, India. EM shanmugaraju_a@yahoo.com; moonyj@khu.ac.kr RI Gopalswamy, Nat/D-3659-2012; Moon, Yong-Jae/E-1711-2013 FU WCU; Korean Ministry of Education, Science and Technology [R31-10016]; Korean Government (MOEHRD) [KRF-2008-314-C00158, 20090071744] FX We thank the referee for his/ her comments on this paper. This work has been supported by the " Development of Korean Space Weather Center" of KASI and KASI basic research funds. Y. J. M. has been supported by the WCU grant (No. R31-10016) funded by the Korean Ministry of Education, Science and Technology, and by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund; KRF-2008-314-C00158, 20090071744). This CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. NR 27 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 450 EP 455 DI 10.1088/0004-637X/708/1/450 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400041 ER PT J AU Todorov, K Deming, D Harrington, J Stevenson, KB Bowman, WC Nymeyer, S Fortney, JJ Bakos, GA AF Todorov, Kamen Deming, Drake Harrington, Jospeph Stevenson, Kevin B. Bowman, William C. Nymeyer, Sarah Fortney, Jonathan J. Bakos, Gaspar A. TI SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; planetary systems; techniques: photometric ID INFRARED-EMISSION SPECTRUM; EXOPLANET HD 189733B; THERMAL EMISSION; TEMPERATURE INVERSION; HOT JUPITERS; GIANT PLANETS; LIGHT CURVES; ATMOSPHERES; 209458B; SEARCH AB We report Spitzer/IRAC photometry of the transiting giant exoplanet HAT-P-1b during its secondary eclipse. This planet lies near the postulated boundary between the pM and pL-class of hot Jupiters, and is important as a test of models for temperature inversions in hot Jupiter atmospheres. We derive eclipse depths for HAT-P-1b, in units of the stellar flux, that are: 0.080%+/- 0.008% [3.6 mu m], 0.135%+/- 0.022% [4.5 mu m], 0.203%+/- 0.031% [5.8 mu m], and 0.238%+/- 0.040% [8.0 mu m]. These values are best fit using an atmosphere with a modest temperature inversion, intermediate between the archetype inverted atmosphere (HD 209458b) and a model without an inversion. The observations also suggest that this planet is radiating a large fraction of the available stellar irradiance on its dayside, with little available for redistribution by circulation. This planet has sometimes been speculated to be inflated by tidal dissipation, based on its large radius in discovery observations, and on a non-zero orbital eccentricity allowed by the radial velocity data. The timing of the secondary eclipse is very sensitive to orbital eccentricity, and we find that the central phase of the eclipse is 0.4999 +/- 0.0005. The difference between the expected and observed phase indicates that the orbit is close to circular, with a 3 sigma limit of vertical bar e cos omega vertical bar < 0.002. C1 [Todorov, Kamen; Deming, Drake] Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Harrington, Jospeph; Stevenson, Kevin B.; Bowman, William C.; Nymeyer, Sarah] Univ Cent Florida, Dept Phys, Planetary Sci Grp, Orlando, FL 32816 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Bakos, Gaspar A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Todorov, Kamen] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. RP Todorov, K (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. RI Harrington, Joseph/E-6250-2011; OI Fortney, Jonathan/0000-0002-9843-4354; Todorov, Kamen/0000-0002-9276-8118; Stevenson, Kevin/0000-0002-7352-7941; Harrington, Joseph/0000-0002-8955-8531 FU NASA FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA. We are grateful to the anonymous referee for thoughtful comments that improved this paper. NR 32 TC 34 Z9 34 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 498 EP 504 DI 10.1088/0004-637X/708/1/498 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400047 ER PT J AU Eckart, ME McGreer, ID Stern, D Harrison, FA Helfand, DJ AF Eckart, Megan E. McGreer, Ian D. Stern, Daniel Harrison, Fiona A. Helfand, David J. TI A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; infrared: galaxies; X-rays: galaxies ID SPITZER-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; DEEP-FIELD-NORTH; DIGITAL-SKY-SURVEY; SUPERMASSIVE BLACK-HOLES; SPECTRAL ENERGY-DISTRIBUTIONS; IDENTIFICATION SEXSI PROGRAM; MULTIBAND IMAGING PHOTOMETER; QUASAR LUMINOSITY FUNCTION; OPTICAL-IDENTIFICATION AB We compare the relative merits of active galactic nuclei (AGNs) selection at X-ray and mid-infrared wavelengths using data from moderately deep fields observed by both Chandra and Spitzer. The X-ray-selected AGN sample and associated photometric and spectroscopic optical follow-up are drawn from a subset of fields studied as part of the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program. Mid-infrared data in these fields are derived from targeted and archival Spitzer imaging, and mid-infrared AGN selection is accomplished primarily through application of the Infrared Array Camera (IRAC) color-color AGN "wedge" selection technique. Nearly all X-ray sources in these fields which exhibit clear spectroscopic signatures of AGN activity have mid-infrared colors consistent with IRAC AGN selection. These are predominantly the most luminous X-ray sources. X-ray sources that lack high-ionization and/or broad lines in their optical spectra are far less likely to be selected as AGNs by mid-infrared color selection techniques. The fraction of X-ray sources identified as AGNs in the mid-infrared increases monotonically as the X-ray luminosity increases. Conversely, only 22% of mid-infrared-selected AGNs are detected at X-ray energies in the moderately deep (< t(exp)> approximate to 100 ks) SEXSI Chandra data. We hypothesize that IRAC sources with AGN colors that lack X-ray detections are predominantly high-luminosity AGNs that are obscured and/or lie at high redshift. A stacking analysis of X-ray-undetected sources shows that objects in the mid-infrared AGN selection wedge have average X-ray fluxes in the 2-8 keV band 3 times higher than sources that fall outside the wedge. Their X-ray spectra are also harder. The hardness ratio of the wedge-selected stack is consistent with moderate intrinsic obscuration, but is not suggestive of a highly obscured, Compton-thick source population. It is evident from this comparative study that in order to create a complete, unbiased census of supermassive black hole growth and evolution, a combination of sensitive infrared, X-ray, and hard X-ray selection is required. We conclude by discussing what samples will be provided by upcoming survey missions such as WISE, eROSITA, and NuSTAR. C1 [Eckart, Megan E.; Harrison, Fiona A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Eckart, Megan E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McGreer, Ian D.; Helfand, David J.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [McGreer, Ian D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Helfand, David J.] Quest Univ Canada, Squamish, BC V8B0N8, Canada. RP Eckart, ME (reprint author), CALTECH, Space Radiat Lab, Mail Stop 290-17, Pasadena, CA 91125 USA. FU NASA [1314516] FX This work is based on observations made with Spitzer, which is operated by the Jet Propulsion Laboratory, California Institute of the Technology under contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA through award number 1314516 issued by JPL/Caltech. The authors thank the anonymous referee for his/her careful read and unusually diligent comments as well as Lewis Kotredes for assistance with Spitzer data reduction. M. E. E. acknowledges support from the NASA Postdoctoral Program. NR 80 TC 36 Z9 36 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 584 EP 597 DI 10.1088/0004-637X/708/1/584 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400052 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boeser, S Botner, O Bradley, L Braun, J Breder, D Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Heise, J Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Klepser, S Knops, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Laihem, K Landsman, H Lauer, R Leich, H Lennarz, D Lucke, A Lundberg, J Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Middell, E Milke, N Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Nieen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Satalecka, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Tluczykont, M Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bradley, L. Braun, J. Breder, D. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Heise, J. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Klepser, S. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Lauer, R. Leich, H. Lennarz, D. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Middell, E. Milke, N. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Nieen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Satalecka, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Swillens, Q. Taboada, I. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Tluczykont, M. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, A. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. CA IceCube Collaboration TI SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE "NAKED-EYE" GRB 080319B WITH THE ICECUBE NEUTRINO TELESCOPE (vol 701, pg 1721, 2009) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Ryckbosch, D.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Danninger, M.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Berg Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Nieen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Nieen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci CP 230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Milke, N.; Muenich, K.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Huelss, J. -P.; Laihem, K.; Lennarz, D.; Schukraft, A.; Wiebusch, C. H.; Wissing, H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Burgess, T.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Cohen, S.; Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. [Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. [Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.; IceCube Collaboration] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kuehn, K.; Rott, C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.; Rott, C.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Stamatikos, M.] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X NR 1 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 1 PY 2010 VL 708 IS 1 BP 911 EP 912 DI 10.1088/0004-637X/708/1/911 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 532ZM UT WOS:000272790400077 ER PT J AU Zhang, X Ajello, JM Yung, YL AF Zhang, X. Ajello, J. M. Yung, Y. L. TI ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Titan); radiative transfer; scattering ID PIONEER VENUS ORBITER; PHOTOCHEMISTRY AB The atomic carbon emission C-I line feature at 1657 angstrom (P-3(J)0-P-3(J)) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C2H2 and C2H4) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations. C1 [Zhang, X.; Yung, Y. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ajello, J. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Zhang, X (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. FU NASA PATM [NNX09AB72G] FX We thank M. C. Liang and J. I. Moses for making their updated kinetics for the Titan model available and D. E. Shemansky for providing the Cassini UVIS stellar occultation data, V. Natraj, M. Line, and M. Gerstell for reading the manuscript. We thank an anonymous referee for providing updates of reaction coefficients. The research was supported in part by NASA PATM grant NNX09AB72G to the California Institute of Technology. NR 28 TC 11 Z9 11 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 1 PY 2010 VL 708 IS 1 BP L18 EP L21 DI 10.1088/2041-8205/708/1/L18 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 540BX UT WOS:000273306700005 ER PT J AU Arendt, RG Kashlinsky, A Moseley, SH Mather, J AF Arendt, Richard G. Kashlinsky, A. Moseley, S. H. Mather, J. TI COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER INFRARED ARRAY CAMERA IMAGES: DATA PROCESSING AND ANALYSIS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; diffuse radiation; early universe ID POPULATION-III STARS; COBE DIRBE MAPS; ALL-SKY SURVEY; SPACE-TELESCOPE; 1ST STARS; EXPERIMENT SEARCH; PRIMORDIAL STARS; LIGHT; CONSTRAINTS; EMISSION AB This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (greater than or similar to 30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the similar to 1-5 mu m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (greater than or similar to 1 nW m(-2) sr(-1) at 3-5 mu m), and thus consistent with current gamma-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these source-subtracted CIB fluctuations, and to isolate the individual fluxes of these populations. C1 [Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Arendt, Richard G.; Kashlinsky, A.] Sci Syst & Applicat Inc, Lanham, MD USA. [Arendt, Richard G.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. RP Arendt, RG (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Richard.G.Arendt@nasa.gov; Alexander.Kashlinsky@nasa.gov; Harvey.Moseley@nasa.gov; John.C.Mather@nasa.gov RI Moseley, Harvey/D-5069-2012; OI Arendt, Richard/0000-0001-8403-8548 FU National Science Foundation [AST 04-06587] FX Support was provided by the National Science Foundation through grant NSF AST 04-06587. This work is based on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Additional support for the First Look Survey (FLS) portion of this work was provided by an award issued by JPL/Caltech (NASA Spitzer NM0710076). NR 57 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JAN PY 2010 VL 186 IS 1 BP 10 EP 47 DI 10.1088/0067-0049/186/1/10 PG 38 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 538JH UT WOS:000273179900002 ER PT J AU Burton, SP Thomason, LW Zawodny, JM AF Burton, S. P. Thomason, L. W. Zawodny, J. M. TI Technical Note: Time-dependent limb-darkening calibration for solar occultation instruments SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GAS EXPERIMENT-II; STRATOSPHERIC AEROSOL; CHLORINE; ERUPTION AB Solar occultation has proven to be a reliable technique for the measurement of atmospheric constituents in the stratosphere. NASA's Stratospheric Aerosol and Gas Experiments ( SAGE, SAGE II, and SAGE III) together have provided over 25 years of quality solar occultation data, a data record which has been an important resource for the scientific exploration of atmospheric composition and climate change. Herein, we describe an improvement to the processing of SAGE data that corrects for a previously uncorrected short-term time-dependence in the calibration function. The variability relates to the apparent rotation of the scanning track with respect to the face of the sun due to the motion of the satellite. Correcting for this effect results in a decrease in the measurement noise in the Level 1 line-of-sight optical depth measurements of approximately 40% in the middle and upper stratospheric SAGE II and III observations where it has been applied. The technique is potentially useful for any scanning solar occultation instrument and suggests further improvement for future occultation measurements if a full disk imaging system can be included. C1 [Burton, S. P.] SAIC, Hampton, VA USA. [Thomason, L. W.; Zawodny, J. M.] NASA Langley Res Ctr, Hampton, VA USA. RP Burton, SP (reprint author), Sci Syst & Applicat Inc, Hampton, VA USA. EM sharon.p.burton@nasa.gov OI Thomason, Larry/0000-0002-1902-0840 NR 15 TC 7 Z9 7 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 1 EP 8 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600001 ER PT J AU Mao, H Chen, M Hegarty, JD Talbot, RW Koermer, JP Thompson, AM Avery, MA AF Mao, H. Chen, M. Hegarty, J. D. Talbot, R. W. Koermer, J. P. Thompson, A. M. Avery, M. A. TI A comprehensive evaluation of seasonal simulations of ozone in the northeastern US during summers of 2001-2005 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID 1999 SOUTHERN OXIDANTS; AIR-QUALITY; REGIONAL CLIMATE; PERFORMANCE EVALUATION; TROPOSPHERIC OZONE; MODEL EVALUATION; BOUNDARY-LAYER; UNITED-STATES; PART I; EPISODE AB Regional air quality simulations were conducted for summers 2001-2005 in the eastern US and subjected to extensive evaluation using various ground and airborne measurements. A brief climate evaluation focused on transport by comparing modeled dominant map types with ones from reanalysis. Reasonable agreement was found for their frequency of occurrence and distinctness of circulation patterns. The two most frequent map types from reanalysis were the Bermuda High (22%) and passage of a Canadian cold frontal over the northeastern US (20%). The model captured their frequency of occurrence at 25% and 18% respectively. The simulated five average distributions of 1-h ozone (O-3) daily maxima using the Community Multiscale Air Quality (CMAQ) modeling system reproduced salient features in observations. This suggests that the ability of the regional climate model to depict transport processes accurately is critical for reasonable simulations of surface O-3. Comparison of mean bias, root mean square error, and index of agreement for CMAQ summer surface 8-h O-3 daily maxima and observations showed -0.6 +/- 14 nmol/mol, 14 nmol/mol, and 71% respectively. CMAQ performed best in moderately polluted conditions and less satisfactorily in highly polluted ones. This highlights the common problem of overestimating/underestimating lower/higher modeled O-3 levels. Diagnostic analysis suggested that significant overestimation of inland nighttime low O-3 mixing ratios may be attributed to underestimates of nitric oxide (NO) emissions at night. The absence of the second daily peak in simulations for the Appledore Island marine site possibly resulted from coarse grid resolution misrepresentation of land surface type. Comparison with shipboard measurements suggested that CMAQ has an inherent problem of underpredicting O-3 levels in continental outflow. Modeled O-3 vertical profiles exhibited a lack of structure indicating that key processes missing from CMAQ, such as lightning produced NO and stratospheric intrusions, are important for accurate upper tropospheric representations. C1 [Mao, H.; Hegarty, J. D.; Talbot, R. W.] Univ New Hampshire, Climate Change Res Ctr, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Chen, M.] Natl Ctr Atmospher Res, Earth & Sun Syst Lab, Boulder, CO 80305 USA. [Koermer, J. P.] Plymouth State Univ, Dept Atmospher Sci & Chem, Plymouth, NH 03264 USA. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Avery, M. A.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. RP Mao, H (reprint author), Univ New Hampshire, Climate Change Res Ctr, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. EM hmao@gust.sr.unh.edu RI Thompson, Anne /C-3649-2014 OI Thompson, Anne /0000-0002-7829-0920 FU Environment Protection Agency under STAR [RD-83145401]; Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration [NA06OAR4600189] FX We thank two referees' constructive comments. We thank Eric Williams and Brian Lerner of NOAA/ESRL/CSD for the Ronald Brown O3 measurements. We thank T. Hagan's assistance in model simulation and the help of C. Hogrefe with technical questions on SMOKE and CMAQ runs. This work was funded by the Environment Protection Agency under STAR grant #RD-83145401 and the Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration under AIRMAP grant #NA06OAR4600189 to UNH. NR 49 TC 7 Z9 7 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 9 EP 27 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600002 ER PT J AU Koch, D Schulz, M Kinne, S McNaughton, C Spackman, JR Balkanski, Y Bauer, S Berntsen, T Bond, TC Boucher, O Chin, M Clarke, A De Luca, N Dentener, F Diehl, T Dubovik, O Easter, R Fahey, DW Feichter, J Fillmore, D Freitag, S Ghan, S Ginoux, P Gong, S Horowitz, L Iversen, T Kirkevag, A Klimont, Z Kondo, Y Krol, M Liu, X Miller, R Montanaro, V Moteki, N Myhre, G Penner, JE Perlwitz, J Pitari, G Reddy, S Sahu, L Sakamoto, H Schuster, G Schwarz, JP Seland, O Stier, P Takegawa, N Takemura, T Textor, C van Aardenne, JA Zhao, Y AF Koch, D. Schulz, M. Kinne, S. McNaughton, C. Spackman, J. R. Balkanski, Y. Bauer, S. Berntsen, T. Bond, T. C. Boucher, O. Chin, M. Clarke, A. De Luca, N. Dentener, F. Diehl, T. Dubovik, O. Easter, R. Fahey, D. W. Feichter, J. Fillmore, D. Freitag, S. Ghan, S. Ginoux, P. Gong, S. Horowitz, L. Iversen, T. Kirkevag, A. Klimont, Z. Kondo, Y. Krol, M. Liu, X. Miller, R. Montanaro, V. Moteki, N. Myhre, G. Penner, J. E. Perlwitz, J. Pitari, G. Reddy, S. Sahu, L. Sakamoto, H. Schuster, G. Schwarz, J. P. Seland, O. Stier, P. Takegawa, N. Takemura, T. Textor, C. van Aardenne, J. A. Zhao, Y. TI Evaluation of black carbon estimations in global aerosol models (vol 9, pg 9001, 2009) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Koch, D.; Bauer, S.; Perlwitz, J.] Columbia Univ, New York, NY 10027 USA. [Koch, D.; Bauer, S.; Perlwitz, J.] NASA GISS, New York, NY USA. [Schulz, M.; Balkanski, Y.; Textor, C.] Lab Sci Climat & Environm, Gif Sur Yvette, France. [Kinne, S.; Feichter, J.] Max Planck Inst Meteorol, Hamburg, Germany. [Schuster, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Bond, T. C.] Univ Illinois, Urbana, IL 61801 USA. [Klimont, Z.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [van Aardenne, J. A.] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21020 Ispra, Italy. [Spackman, J. R.; Fahey, D. W.; Schwarz, J. P.] Univ Colorado, NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80309 USA. [Spackman, J. R.; Fahey, D. W.; Schwarz, J. P.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [McNaughton, C.; Clarke, A.; Freitag, S.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Kondo, Y.; Moteki, N.; Sahu, L.; Sakamoto, H.; Takegawa, N.] Univ Tokyo, RCAST, Tokyo 1138654, Japan. [Krol, M.] Wageningen Univ, Wageningen, Netherlands. [Berntsen, T.; Iversen, T.; Myhre, G.] Univ Oslo, Oslo, Norway. [Boucher, O.; Dubovik, O.; Reddy, S.] Univ Sci & Technol Lille, CNRS, Villeneuve Dascq, France. [Chin, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dentener, F.] Inst Environm & Sustainabil, Joint Res Ctr, EC, Ispra, Italy. [Diehl, T.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Easter, R.; Ghan, S.; Liu, X.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ginoux, P.; Horowitz, L.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Gong, S.] ARQM Meteorol Serv Canada, Toronto, ON, Canada. [Zhao, Y.] Univ Calif Davis, Davis, CA 95616 USA. [Fillmore, D.] NCAR, Boulder, CO USA. [Liu, X.; Penner, J. E.] Univ Michigan, Ann Arbor, MI 48109 USA. [De Luca, N.; Montanaro, V.; Pitari, G.] Univ Aquila, I-67100 Laquila, Italy. [Stier, P.] Univ Oxford, Oxford OX1 2JD, England. [Takemura, T.] Kyushu Univ, Fukuoka 812, Japan. [Iversen, T.; Kirkevag, A.; Seland, O.] Norwegian Meteorol Inst, Oslo, Norway. [Myhre, G.] CICERO, Oslo, Norway. RP Koch, D (reprint author), Columbia Univ, New York, NY 10027 USA. EM dkoch@giss.nasa.gov RI Horowitz, Larry/D-8048-2014; Liu, Xiaohong/E-9304-2011; Balkanski, Yves/A-6616-2011; Bauer, Susanne/P-3082-2014; Bond, Tami/A-1317-2013; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Fahey, David/G-4499-2013; Kyushu, RIAM/F-4018-2015; Krol, Maarten/B-3597-2010; Ginoux, Paul/C-2326-2008; Myhre, Gunnar/A-3598-2008; Kondo, Yutaka/D-1459-2012; Takemura, Toshihiko/C-2822-2009; Miller, Ron/E-1902-2012; Boucher, Olivier/J-5810-2012; Boucher, Olivier/K-7483-2012; Chin, Mian/J-8354-2012; schwarz, joshua/G-4556-2013; Penner, Joyce/J-1719-2012; Dubovik, Oleg/A-8235-2009 OI Horowitz, Larry/0000-0002-5886-3314; Liu, Xiaohong/0000-0002-3994-5955; Balkanski, Yves/0000-0001-8241-2858; Bond, Tami/0000-0001-5968-8928; Ghan, Steven/0000-0001-8355-8699; Fahey, David/0000-0003-1720-0634; Stier, Philip/0000-0002-1191-0128; Ginoux, Paul/0000-0003-3642-2988; Myhre, Gunnar/0000-0002-4309-476X; Takemura, Toshihiko/0000-0002-2859-6067; Boucher, Olivier/0000-0003-2328-5769; Boucher, Olivier/0000-0003-2328-5769; schwarz, joshua/0000-0002-9123-2223; Dubovik, Oleg/0000-0003-3482-6460 NR 1 TC 8 Z9 8 U1 1 U2 28 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 79 EP 81 PG 3 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600007 ER PT J AU Jourdain, L Kulawik, SS Worden, HM Pickering, KE Worden, J Thompson, AM AF Jourdain, L. Kulawik, S. S. Worden, H. M. Pickering, K. E. Worden, J. Thompson, A. M. TI Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TROPOSPHERIC OZONE; NITROGEN-OXIDES; UNITED-STATES; TROPOPAUSE REGION; DISTRIBUTIONS; SATELLITE; CHEMISTRY; TRANSPORT; SPECTROMETER; VARIABILITY AB Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations. C1 [Worden, H. M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Pickering, K. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Jourdain, L.; Kulawik, S. S.; Worden, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Jourdain, L (reprint author), Lab Phys & Chim Environm & Espace, Orleans, France. EM line.jourdain@cnrs-orleans.fr RI Pickering, Kenneth/E-6274-2012; Chem, GEOS/C-5595-2014; Thompson, Anne /C-3649-2014 OI Thompson, Anne /0000-0002-7829-0920 NR 50 TC 21 Z9 21 U1 0 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 107 EP 119 DI 10.5194/acp-10-107-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600010 ER PT J AU Konopka, P Grooss, JU Gunther, G Ploeger, F Pommrich, R Muller, R Livesey, N AF Konopka, P. Grooss, J. -U. Guenther, G. Ploeger, F. Pommrich, R. Mueller, R. Livesey, N. TI Annual cycle of ozone at and above the tropical tropopause: observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BREWER-DOBSON CIRCULATION; TRANSPORT; TROPOSPHERE; MONSOON; HALOE; LAYER; CONVECTION; EXCHANGE AB Multi-annual simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) were conducted to study the seasonality of O(3) within the stratospheric part of the tropical tropopause layer (TTL), i.e. above theta = 360K potential temperature level. In agreement with satellite (HALOE) and in-situ observations (SHADOZ), CLaMS simulations show a pronounced annual cycle in O(3), at and above theta = 380 K, with the highest mixing ratios in the late boreal summer. Within the model, this cycle is driven by the seasonality of both upwelling and in-mixing. The latter process occurs through enhanced horizontal transport from the extratropics into the TTL that is mainly driven by the meridional, isentropic winds. The strongest in-mixing occurs during the late boreal summer from the Northern Hemisphere in the potential temperature range between 370 and 420 K. Complementary, the strongest upwelling occurs in winter reducing O(3) to the lowest values in early spring. Both CLaMS simulations and Aura MLS O(3) observations consistently show that enhanced in-mixing in summer is mainly driven by the Asian monsoon anticyclone. C1 [Konopka, P.; Grooss, J. -U.; Guenther, G.; Ploeger, F.; Pommrich, R.; Mueller, R.] Forschungszentrum Julich ICG 1 Stratosphere, Julich, Germany. [Livesey, N.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Konopka, P (reprint author), Forschungszentrum Julich ICG 1 Stratosphere, Julich, Germany. EM p.konopka@fz-juelich.de RI GrooSS, Jens-Uwe/A-7315-2013; Konopka, Paul/A-7329-2013; Guenther, Gebhard/K-7583-2012; Ploeger, Felix/A-1393-2013; Muller, Rolf/A-6669-2013 OI GrooSS, Jens-Uwe/0000-0002-9485-866X; Guenther, Gebhard/0000-0003-4111-6221; Muller, Rolf/0000-0002-5024-9977 NR 40 TC 52 Z9 53 U1 0 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 121 EP 132 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600011 ER PT J AU Notholt, J Toon, GC Fueglistaler, S Wennberg, PO Irion, FW McCarthy, M Scharringhausen, M Rhee, TS Kleinbohl, A Velazco, V AF Notholt, J. Toon, G. C. Fueglistaler, S. Wennberg, P. O. Irion, F. W. McCarthy, M. Scharringhausen, M. Rhee, T. Siek Kleinboehl, A. Velazco, V. TI Trend in ice moistening the stratosphere - constraints from isotope data of water and methane SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TROPICAL TROPOPAUSE TEMPERATURES; TROPOSPHERE EXCHANGE; VAPOR; TRANSPORT; CLOUDS; RATIOS; HDO AB Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H2O, HDO, CH4 and CH3D in the period 1991-2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H2O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H2O are mirrored in the variation of the ratio of HDO to H2O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H2O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01 +/- 0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere. C1 [Notholt, J.; Scharringhausen, M.] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. [Toon, G. C.; Irion, F. W.; Kleinboehl, A.; Velazco, V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fueglistaler, S.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Wennberg, P. O.] CALTECH, Pasadena, CA 91125 USA. [McCarthy, M.] Sonoma Technol Inc, Petaluma, CA 94954 USA. [Rhee, T. Siek] Korean Polar Res Inst, Ansan 426744, South Korea. RP Notholt, J (reprint author), Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. EM notholt@uni-bremen.de RI McCarthy, Michael/E-5970-2010; Velazco, Voltaire/H-2280-2011; Wennberg, Paul/A-5460-2012; Fueglistaler, Stephan/I-5803-2013; Notholt, Justus/P-4520-2016 OI Velazco, Voltaire/0000-0002-1376-438X; Notholt, Justus/0000-0002-3324-885X FU EU-project SCOUT; national Helmholtz Association within the virtual institute PEP; NASA FX This research was financially supported by the EU-project SCOUT and by the national Helmholtz Association within the virtual institute PEP. We gratefully acknowledge Robert Toth (JPL/NASA, Pasadena) for updates of the H2O and HDO spectral line list. We thank the Columbia Scientific Balloon Facility (CSBF) who launched the balloons from which the MkIV data were acquired and the financial support from NASA. We acknowledge Jean-Francois Blavier, Bhaswar Sen, and David Petterson of JPL for their various contributions to the JPL MkIV instrument. NR 36 TC 9 Z9 9 U1 1 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 201 EP 207 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600015 ER PT J AU Froyd, KD Murphy, DM Lawson, P Baumgardner, D Herman, RL AF Froyd, K. D. Murphy, D. M. Lawson, P. Baumgardner, D. Herman, R. L. TI Aerosols that form subvisible cirrus at the tropical tropopause SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID UPPER TROPOSPHERE; ICE NUCLEATION; RADIATIVE IMPACTS; AMMONIUM-SULFATE; CLOUD FORMATION; DEHYDRATION; THIN; SUPERSATURATIONS; SPECTROMETER; INSTRUMENT AB The composition of residual particles from evaporated cirrus ice crystals near the tropical tropopause as well as unfrozen aerosols were measured with a single particle mass spectrometer. Subvisible cirrus residuals were predominantly composed of internal mixtures of neutralized sulfate with organic material and were chemically indistinguishable from unfrozen sulfate-organic aerosols. Ice residuals were also similar in size to unfrozen aerosol. Heterogeneous ice nuclei such as mineral dust were not enhanced in these subvisible cirrus residuals. Biomass burning particles were depleted in the residuals. Cloud probe measurements showing low cirrus ice crystal number concentrations were inconsistent with conventional homogeneous freezing. Recent laboratory studies provide heterogeneous nucleation scenarios that may explain tropopause level subvisible cirrus formation. C1 [Froyd, K. D.; Murphy, D. M.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Froyd, K. D.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Lawson, P.] SPEC Inc, Boulder, CO USA. [Baumgardner, D.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Herman, R. L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Froyd, KD (reprint author), NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. EM Karl.Froyd@noaa.gov RI Murphy, Daniel/J-4357-2012; Froyd, Karl/H-6607-2013 OI Murphy, Daniel/0000-0002-8091-7235; FU NOAA; NASA FX The authors thank Eric Jensen and Benjamin Murray for their valuable input. This work was funded by NOAA base and climate change programs as well as NASA funding for aircraft deployments. Work performed at the Jet Propulsion Laboratory, California Institute of Technology, was under a contract with NASA. NR 52 TC 60 Z9 60 U1 1 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 1 BP 209 EP 218 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 551QR UT WOS:000274224600016 ER PT J AU Larar, AM Smith, WL Zhou, DK Liu, X Revercomb, H Taylor, JP Newman, SM Schlussel, P AF Larar, A. M. Smith, W. L. Zhou, D. K. Liu, X. Revercomb, H. Taylor, J. P. Newman, S. M. Schluessel, P. TI IASI spectral radiance validation inter-comparisons: case study assessment from the JAIVEx field campaign SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AQUA THERMODYNAMIC EXPERIMENT; INTERFEROMETER NAST-I; RADIATIVE-TRANSFER; RADIOMETRIC CALIBRATION; MODEL; PERFORMANCES; SATELLITE; EAQUATE AB Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated Fourier Transform Spectrometer (FTS) sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral and spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This manuscript focuses on validating infrared spectral radiance from the Infrared Atmospheric Sounding Interferometer (IASI) through a case study analysis using data obtained during the recent Joint Airborne IASI Validation Experiment (JAIVEx) field campaign. Emphasis is placed upon the benefits achievable from employing airborne interferometers such as the NAST-I since, in addition to IASI radiance calibration performance assessments, cross-validation with other advanced sounders such as the AQUA Atmospheric InfraRed Sounder (AIRS) is enabled. C1 [Larar, A. M.; Zhou, D. K.; Liu, X.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Smith, W. L.] Hampton Univ, Hampton, VA 23668 USA. [Smith, W. L.; Revercomb, H.] Univ Wisconsin, Madison, WI USA. [Taylor, J. P.; Newman, S. M.] Met Off, Exeter, Devon, England. [Schluessel, P.] EUMETSAT, Darmstadt, Germany. RP Larar, AM (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM allen.m.larar@nasa.gov RI Taylor, Jonathan/B-3786-2013 FU NASA Langley Research Center; NASA SMD; NPOESS Integrated Program Office; UK Met Office and the Natural Environment Research Council FX The authors wish to acknowledge the NASA Langley Research Center, NASA SMD, NPOESS Integrated Program Office, and the various team members and their respective institutions for their continued, enabling support of the NAST program. The authors greatly appreciate the contributions from members of the NAST instrument and JAIVEx field campaign teams for making JAIVEx and this work possible. The FAAM is jointly funded by the UK Met Office and the Natural Environment Research Council. IASI has been developed and built under the responsibility of the Centre National dEtudes Spatiales (CNES). It is flown onboard the Metop satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the Unified Meteorological Archival and Retrieval Facility (UMARF) of EUMETSAT. NR 47 TC 33 Z9 33 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 2 BP 411 EP 430 DI 10.5194/acp-10-411-2010 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 548IK UT WOS:000273954200008 ER PT J AU Kopacz, M Jacob, DJ Fisher, JA Logan, JA Zhang, L Megretskaia, IA Yantosca, RM Singh, K Henze, DK Burrows, JP Buchwitz, M Khlystova, I McMillan, WW Gille, JC Edwards, DP Eldering, A Thouret, V Nedelec, P AF Kopacz, M. Jacob, D. J. Fisher, J. A. Logan, J. A. Zhang, L. Megretskaia, I. A. Yantosca, R. M. Singh, K. Henze, D. K. Burrows, J. P. Buchwitz, M. Khlystova, I. McMillan, W. W. Gille, J. C. Edwards, D. P. Eldering, A. Thouret, V. Nedelec, P. TI Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CARBON-MONOXIDE; NORTH-AMERICA; TROPOSPHERIC CHEMISTRY; SURFACE EMISSIONS; OZONE POLLUTION; WFM-DOAS; ACE-FTS; INTEX-B; TRANSPORT; AIRCRAFT AB We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004-April 2005) global inversion of CO sources at 4 degrees x 5 degrees spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM) and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD), and aircraft (MOZAIC) are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a(-1). This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets. C1 [Singh, K.] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA USA. [Henze, D. K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Burrows, J. P.; Buchwitz, M.; Khlystova, I.] Univ Bremen, IUP, Bremen, Germany. [McMillan, W. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Eldering, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gille, J. C.; Edwards, D. P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Thouret, V.; Nedelec, P.] Univ Toulouse, UPS, LA, F-31400 Toulouse, France. [Thouret, V.; Nedelec, P.] CNRS, LA, F-31400 Toulouse, France. [Kopacz, M.; Jacob, D. J.; Fisher, J. A.; Logan, J. A.; Zhang, L.; Megretskaia, I. A.; Yantosca, R. M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Kopacz, M (reprint author), Princeton Univ, Woodrow Wilson Sch Int & Publ Affairs, Princeton, NJ 08544 USA. EM mkopacz@princeton.edu RI Buchwitz, Michael/G-1510-2011; Henze, Daven/A-1920-2012; Zhang, Lin/A-6729-2008; Fisher, Jenny/J-3979-2012; Yantosca, Robert/F-7920-2014; Zhang, Lin/H-9801-2014; Chem, GEOS/C-5595-2014; Singh, Kumaresh/P-4857-2016; Burrows, John/B-6199-2014 OI Zhang, Lin/0000-0003-2383-8431; Fisher, Jenny/0000-0002-2921-1691; Yantosca, Robert/0000-0003-3781-1870; Burrows, John/0000-0002-6821-5580 FU NASA [NGT5 06-ESSF06-45]; European Commission; Airbus; Airlines (Lufthansa, Austrian, Air France); INSU-CNRS (France); Meteo-France; Forschungszentrum (FZJ, Julich, Germany); ETHER FX This work was supported by the NASA Atmospheric Chemistry Modeling and Analysis Program and by NASA Headquarters under the Earth System Science Fellowship Grant NGT5 06-ESSF06-45 to Monika Kopacz. The authors acknowledge the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Austrian, Air France) who carry free of charge the MOZAIC equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, and Forschungszentrum (FZJ, Julich, Germany). The MOZAIC database is supported by ETHER (CNES and INSU-CNRS). MK would also like to thank Christopher Holmes, Eric Leibensperger, Kevin Wecht, Jos de Laat, Annemieke Gloudemans and Ilse Aben for useful insight and discussions. NR 95 TC 138 Z9 140 U1 4 U2 51 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 855 EP 876 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000001 ER PT J AU Correira, J Aikin, AC Grebowsky, JM Burrows, JP AF Correira, J. Aikin, A. C. Grebowsky, J. M. Burrows, J. P. TI Metal concentrations in the upper atmosphere during meteor showers SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID STREAMS; REGION; IMPACT; RADAR; MODEL AB Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg(+) from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg(+) metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux. C1 [Grebowsky, J. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Burrows, J. P.] Univ Bremen, IUP, Bremen, Germany. [Correira, J.; Aikin, A. C.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP Correira, J (reprint author), Computat Phys Inc, Springfield, VA 22151 USA. EM john.correira@gmail.com RI Grebowsky, Joseph/I-7185-2013; Burrows, John/B-6199-2014 OI Burrows, John/0000-0002-6821-5580 FU United States Air Force [0710035]; NASA [G06GC53A] FX We are grateful for the financial support from the United States Air Force, grant number 0710035, and NASA, grant number G06GC53A. We would also like to acknowledge the assistance of W. Dean Pesnell in development of early versions of the GOME data analysis algorithm and Fred Bruhweiler for his suggestions which helped improve this paper. NR 19 TC 4 Z9 5 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 909 EP 917 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000004 ER PT J AU Fisher, JA Jacob, DJ Purdy, MT Kopacz, M Le Sager, P Carouge, C Holmes, CD Yantosca, RM Batchelor, RL Strong, K Diskin, GS Fuelberg, HE Holloway, JS Hyer, EJ McMillan, WW Warner, J Streets, DG Zhang, Q Wang, Y Wu, S AF Fisher, J. A. Jacob, D. J. Purdy, M. T. Kopacz, M. Le Sager, P. Carouge, C. Holmes, C. D. Yantosca, R. M. Batchelor, R. L. Strong, K. Diskin, G. S. Fuelberg, H. E. Holloway, J. S. Hyer, E. J. McMillan, W. W. Warner, J. Streets, D. G. Zhang, Q. Wang, Y. Wu, S. TI Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID NORTH-AMERICA; SURFACE OBSERVATIONS; OZONE POLLUTION; ASIAN OUTFLOW; BLACK CARBON; BERING-SEA; TRANSPORT; EMISSIONS; PACIFIC; CO AB We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month(-1) for Asian anthropogenic, 9.4 for European anthropogenic, 4.1 for North American anthropogenic, 15 for Russian biomass burning (anomalously large that year), and 23 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Russian biomass burning makes little contribution to mean CO (reflecting the long CO lifetime) but makes a large contribution to CO variability in the form of combustion plumes. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS can successfully observe pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and Asian pollution transport to the Arctic. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions. C1 [Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; Le Sager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; Le Sager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Batchelor, R. L.; Strong, K.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Diskin, G. S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Fuelberg, H. E.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Holloway, J. S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Holloway, J. S.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Hyer, E. J.] USN, Res Lab, UCAR Visiting Scientist Program, Monterey, CA USA. [McMillan, W. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [McMillan, W. W.; Warner, J.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. [Streets, D. G.; Zhang, Q.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Zhang, Q.] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Wang, Y.] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Wu, S.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Wu, S.] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. RP Fisher, JA (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM jafisher@fas.harvard.edu RI Yantosca, Robert/F-7920-2014; Chem, GEOS/C-5595-2014; Hyer, Edward/E-7734-2011; Carouge, Claire/A-4755-2012; Strong, Kimberly/D-2563-2012; Zhang, Qiang/D-9034-2012; Fisher, Jenny/J-3979-2012; Holloway, John/F-9911-2012; Wang, Yuxuan/C-6902-2014; Holmes, Christopher/C-9956-2014 OI Yantosca, Robert/0000-0003-3781-1870; Streets, David/0000-0002-0223-1350; Hyer, Edward/0000-0001-8636-2026; Carouge, Claire/0000-0002-0313-8385; Fisher, Jenny/0000-0002-2921-1691; Holloway, John/0000-0002-4585-9594; Wang, Yuxuan/0000-0002-1649-6974; Holmes, Christopher/0000-0002-2727-0954 FU NASA; Canadian Foundation for Climate and Atmospheric Science; Canadian Foundation for Innovation; Canadian Space Agency; Environment Canada, Government of Canada; Ontario Research Fund; Natural Sciences and Engineering Research Council; Northern Scientific Training Program; Polar Continental Shelf Program; Atlantic, Nova Scotia and Ontario Innovation Trusts; AIRS Project Office; National Defense Science and Engineering FX This work was supported by the NASA Tropospheric Chemistry Program and the NASA Atmospheric Composition Modeling and Analysis Program. The FTS measurements at Eureka were made as part of the Canadian Arctic ACE validation campaigns and by the Canadian Network for the Detection of Atmospheric Change, supported by the Canadian Foundation for Climate and Atmospheric Science, Canadian Foundation for Innovation, Canadian Space Agency, Environment Canada, Government of Canada International Polar Year funding, Ontario Research Fund, Natural Sciences and Engineering Research Council, Northern Scientific Training Program, Polar Continental Shelf Program, and the Atlantic, Nova Scotia and Ontario Innovation Trusts. WWM thanks the AIRS Project Office for support. JAF acknowledges support from a National Defense Science and Engineering Graduate Fellowship. NR 81 TC 83 Z9 84 U1 2 U2 29 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 977 EP 996 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000009 ER PT J AU Lee, JD McFiggans, G Allan, JD Baker, AR Ball, SM Benton, AK Carpenter, LJ Commane, R Finley, BD Evans, M Fuentes, E Furneaux, K Goddard, A Good, N Hamilton, JF Heard, DE Herrmann, H Hollingsworth, A Hopkins, JR Ingham, T Irwin, M Jones, CE Jones, RL Keene, WC Lawler, MJ Lehmann, S Lewis, AC Long, MS Mahajan, A Methven, J Moller, SJ Muller, K Muller, T Niedermeier, N O'Doherty, S Oetjen, H Plane, JMC Pszenny, AAP Read, KA Saiz-Lopez, A Saltzman, ES Sander, R von Glasow, R Whalley, L Wiedensohler, A Young, D AF Lee, J. D. McFiggans, G. Allan, J. D. Baker, A. R. Ball, S. M. Benton, A. K. Carpenter, L. J. Commane, R. Finley, B. D. Evans, M. Fuentes, E. Furneaux, K. Goddard, A. Good, N. Hamilton, J. F. Heard, D. E. Herrmann, H. Hollingsworth, A. Hopkins, J. R. Ingham, T. Irwin, M. Jones, C. E. Jones, R. L. Keene, W. C. Lawler, M. J. Lehmann, S. Lewis, A. C. Long, M. S. Mahajan, A. Methven, J. Moller, S. J. Mueller, K. Mueller, T. Niedermeier, N. O'Doherty, S. Oetjen, H. Plane, J. M. C. Pszenny, A. A. P. Read, K. A. Saiz-Lopez, A. Saltzman, E. S. Sander, R. von Glasow, R. Whalley, L. Wiedensohler, A. Young, D. TI Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SEA-SALT AEROSOL; NONMETHANE HYDROCARBONS; OZONE DESTRUCTION; DOAS MEASUREMENTS; IODINE CHEMISTRY; EASTERN ATLANTIC; INDIAN-OCEAN; MACE HEAD; TROPOSPHERE; BROMINE AB The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to Sao Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on Sao Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol(-1) and nmol mol(-1) to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O-3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O-3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O-3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth. C1 [McFiggans, G.; Allan, J. D.; Fuentes, E.; Good, N.; Irwin, M.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England. [Lee, J. D.; Carpenter, L. J.; Hamilton, J. F.; Hopkins, J. R.; Jones, C. E.; Lewis, A. C.; Moller, S. J.; Read, K. A.] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Lee, J. D.; Hopkins, J. R.; Lewis, A. C.] Univ York, Natl Ctr Atmospher Sci, York YO10 5DD, N Yorkshire, England. [Allan, J. D.] Univ Manchester, Natl Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England. [Baker, A. R.; von Glasow, R.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Ball, S. M.; Hollingsworth, A.] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England. [Benton, A. K.; Jones, R. L.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Commane, R.; Furneaux, K.; Goddard, A.; Heard, D. E.; Ingham, T.; Mahajan, A.; Oetjen, H.; Plane, J. M. C.; Whalley, L.] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. [Finley, B. D.; Lawler, M. J.; Saltzman, E. S.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA 92697 USA. [Evans, M.] Univ Leeds, Sch Earth & Environm, Inst Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Heard, D. E.; Ingham, T.; Whalley, L.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Herrmann, H.; Lehmann, S.; Mueller, K.; Mueller, T.; Niedermeier, N.; Wiedensohler, A.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. [Keene, W. C.; Long, M. S.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Methven, J.] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England. [O'Doherty, S.; Young, D.] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. [Pszenny, A. A. P.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Pszenny, A. A. P.] Mt Washington Observ, N Conway, NH 03860 USA. [Saiz-Lopez, A.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Sander, R.] Max Planck Inst Chem, Dept Atmospher Chem, D-55020 Mainz, Germany. RP McFiggans, G (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England. EM g.mcfiggans@manchester.ac.uk RI Wiedensohler, Alfred/D-1223-2013; Herrmann, Hartmut/C-2486-2009; Saiz-Lopez, Alfonso/B-3759-2015; Sander, Rolf/A-5725-2011; Baker, Alex/D-1233-2011; von Glasow, Roland/E-2125-2011; McFiggans, Gordon/B-8689-2011; Mahajan, Anoop/D-2714-2012; Evans, Mathew/A-3886-2012; Allan, James/B-1160-2010; Carpenter, Lucy/E-6742-2013; Lewis, Alastair/A-6721-2008; Plane, John/C-7444-2015; Mueller, Thomas/E-5426-2015; Commane, Roisin/E-4835-2016; Oetjen, Hilke/H-3708-2016; OI Herrmann, Hartmut/0000-0001-7044-2101; Saiz-Lopez, Alfonso/0000-0002-0060-1581; Sander, Rolf/0000-0001-6479-2092; Baker, Alex/0000-0002-8365-8953; von Glasow, Roland/0000-0002-3944-2784; McFiggans, Gordon/0000-0002-3423-7896; Mahajan, Anoop/0000-0002-2909-5432; Evans, Mathew/0000-0003-4775-032X; Allan, James/0000-0001-6492-4876; Lewis, Alastair/0000-0002-4075-3651; Plane, John/0000-0003-3648-6893; Moller, Sarah/0000-0003-4923-9509; Heard, Dwayne/0000-0002-0357-6238; Commane, Roisin/0000-0003-1373-1550; Oetjen, Hilke/0000-0002-3542-1337; Carpenter, Lucy/0000-0002-6257-3950; Jones, Roderic /0000-0002-6761-3966 FU NERC UK SOLAS [NE/D006570/1, NE/E01111X/1, NE/E011454/1, NE/D005175/1, NE/C001931/1]; UK National Centre for Atmospheric Sciences (NCAS); School of Chemistry, University of Leeds; US National Science Foundation [ATM-0646865, ATM-0646854]; US Department of Energy; NSF [ATM-0614816] FX This work was supported by the NERC UK SOLAS programme under the "Reactive Halogens in the Marine Boundary Layer" (RHaMBLe) grant number NE/D006570/1. The aircraft measurements were made within the UK SOLAS "Chemical and Physical Structure Of The Lower Atmosphere Of The Tropical Eastern North Atlantic" project (NE/E01111X/1). Additional support for University of Manchester personnel was provided by the UK SOLAS "Aerosol Characterisation and Modelling in the Marine Environment" (ACMME, NE/E011454/1) grant and the NERC "Composition Of Microlayer Produced AeroSol" (COMPAS, NE/D005175/1) grant and results were presented through the "Integration & synthesis of current research into the formation, evolution and roles of cloud condensation nuclei in the marine environment" (UK SOLAS CCN Knowledge Transfer) activity (NE/G000247/1). JDL, JDA, DEH, TI, LJW were all supported in part or in whole by UK National Centre for Atmospheric Sciences (NCAS) funding. ARB was funded under UK SOLAS grant number NE/C001931/1. ASM thanks the School of Chemistry, University of Leeds for his Ph.D. studentship. The University of New Hampshire and University of Virginia components were funded by the US National Science Foundation through award numbers ATM-0646865 and ATM-0646854, respectively; additional support was provided by the US Department of Energy's Office of Biological and Environmental Research Global Change Education Program. J. Maben (University of Virginia), R. Deegan (Mount Washington Observatory, Conway, NH, USA), and E. Crete (University of New Hampshire) assisted in sample collection and analysis. The University of California at Irvine participation was supported by NSF grant ATM-0614816. This is a contribution to SOLAS and the SOLAS/IGAC task Halogens in the Troposphere (HitT). NR 86 TC 36 Z9 36 U1 3 U2 49 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 1031 EP 1055 DI 10.5194/acp-10-1031-2010 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000012 ER PT J AU Russell, PB Bergstrom, RW Shinozuka, Y Clarke, AD DeCarlo, PF Jimenez, JL Livingston, JM Redemann, J Dubovik, O Strawa, A AF Russell, P. B. Bergstrom, R. W. Shinozuka, Y. Clarke, A. D. DeCarlo, P. F. Jimenez, J. L. Livingston, J. M. Redemann, J. Dubovik, O. Strawa, A. TI Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SKY RADIANCE MEASUREMENTS; SINGLE SCATTERING ALBEDO; OPTICAL-PROPERTIES; LIGHT-ABSORPTION; MEXICO-CITY; SPECTRAL DEPENDENCE; MASS-SPECTROMETRY; SOLAR IRRADIANCE; RETRIEVAL; PARTICLES AB Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (often expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The main purpose of this paper is to show that AAE values for an Aerosol Robotic Network (AERONET) set of retrievals from Sun-sky measurements describing full aerosol vertical columns are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. These AERONET results are consistent with results from other, very different, techniques, including solar flux-aerosol optical depth (AOD) analyses and airborne in situ analyses examined in this paper, as well as many other previous results. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which seeks to provide retrievals of multi-wavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Multidimensional cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity. C1 [Russell, P. B.; Strawa, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bergstrom, R. W.; Redemann, J.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Shinozuka, Y.] NASA, Ames Res Ctr, Oak Ridge Associated Univ, Moffett Field, CA 94035 USA. [Clarke, A. D.] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [DeCarlo, P. F.; Jimenez, J. L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [DeCarlo, P. F.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Livingston, J. M.] SRI Int, Menlo Pk, CA 94025 USA. [Dubovik, O.] Univ Lille, CNRS, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. RP Russell, PB (reprint author), NASA, Ames Res Ctr, MS 245-5, Moffett Field, CA 94035 USA. EM philip.b.russell@nasa.gov RI Jimenez, Jose/A-5294-2008; DeCarlo, Peter/B-2118-2008; Dubovik, Oleg/A-8235-2009 OI Jimenez, Jose/0000-0001-6203-1847; DeCarlo, Peter/0000-0001-6385-7149; Dubovik, Oleg/0000-0003-3482-6460 FU NASA [NNX08AD39G]; NSF [ATM05-11521, NSF-ATM-0513116]; NSF/UCAR [S05-39607] FX PBR, RWB, JML, JR, and AS were supported by the NASA Radiation Science Program. ADC and YS were supported by NSF grant number ATM05-11521. PFD and JLJ were supported by NASA NNX08AD39G, NSF/UCAR S05-39607, and NSF-ATM-0513116. We appreciate helpful discussions with Brent Holben and Lorraine Remer on AERONET measurements, with Omar Torres on OMI future measurements and with Brian Cairns on Glory APS measurements, as well as internal reviews by Robert Chatfield and Laura Iraci. NR 72 TC 200 Z9 205 U1 4 U2 62 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 1155 EP 1169 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000019 ER PT J AU Pfister, GG Emmons, LK Edwards, DP Arellano, A Sachse, G Campos, T AF Pfister, G. G. Emmons, L. K. Edwards, D. P. Arellano, A. Sachse, G. Campos, T. TI Variability of springtime transpacific pollution transport during 2000-2006: the INTEX-B mission in the context of previous years SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID INTERANNUAL VARIABILITY; ASIAN EMISSIONS; NORTH-AMERICA; FAST-RESPONSE; PACIFIC; OZONE; INSTRUMENT; PATHWAYS; OUTFLOW AB We analyze the transport of pollution across the Pacific during the NASA INTEX-B (Intercontinental Chemical Transport Experiment Part B) campaign in spring 2006 and examine how this year compares to the time period for 2000 through 2006. In addition to aircraft measurements of carbon monoxide (CO) collected during INTEX-B, we include in this study multi-year satellite retrievals of CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument and simulations from the chemistry transport model MOZART-4. Model tracers are used to examine the contributions of different source regions and source types to pollution levels over the Pacific. Additional modeling studies are performed to separate the impacts of inter-annual variability in meteorology and dynamics from changes in source strength. Interannual variability in the tropospheric CO burden over the Pacific and the US as estimated from the MOPITT data range up to 7% and a somewhat smaller estimate (5%) is derived from the model. When keeping the emissions in the model constant between years, the year-to-year changes are reduced (2%), but show that in addition to changes in emissions, variable meteorological conditions also impact transpacific pollution transport. We estimate that about 1/3 of the variability in the tropospheric CO loading over the contiguous US is explained by changes in emissions and about 2/3 by changes in meteorology and transport. Biomass burning sources are found to be a larger driver for inter-annual variability in the CO loading compared to fossil and biofuel sources or photochemical CO production even though their absolute contributions are smaller. Source contribution analysis shows that the aircraft sampling during INTEX-B was fairly representative of the larger scale region, but with a slight bias towards higher influence from Asian contributions. C1 [Pfister, G. G.; Emmons, L. K.; Edwards, D. P.; Arellano, A.; Campos, T.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Pfister, GG (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM pfister@ucar.edu RI Arellano, Avelino, Jr./F-5674-2010; Pfister, Gabriele/A-9349-2008; Emmons, Louisa/R-8922-2016 OI Emmons, Louisa/0000-0003-2325-6212 FU NASA [EOS/03-0601-0145, NNG04GA459]; National Science Foundation FX The authors acknowledge Helen Worden, Steve Massie and three anonymous reviewers for valuable input to the manuscript. We further acknowledge the INTEX-B teams for providing an extensive and unique set of measurements and Paul Novelli for providing NOAA surface CO measurements. The work was supported by NASA grants EOS/03-0601-0145 and NNG04GA459. NCAR is operated by the University Corporation of Atmospheric Research under sponsorship of the National Science Foundation. NR 37 TC 14 Z9 15 U1 0 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 1345 EP 1359 DI 10.5194/acp-10-1345-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000031 ER PT J AU Jensen, EJ Pfister, L Bui, TP Lawson, P Baumgardner, D AF Jensen, E. J. Pfister, L. Bui, T. -P. Lawson, P. Baumgardner, D. TI Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AMMONIUM-SULFATE PARTICLES; SUBVISIBLE CIRRUS; STRATOSPHERIC AEROSOL; RADIATIVE IMPACTS; UPPER TROPOSPHERE; MINERAL DUST; TEMPERATURE; AIRCRAFT; LIDAR; VARIABILITY AB In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L-1 effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics) actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed. C1 [Jensen, E. J.; Pfister, L.; Bui, T. -P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lawson, P.] SPEC Inc, Boulder, CO USA. [Baumgardner, D.] Univ Nacl Autonoma Mexico, Ctr Ciencias Atmosfera, Circuito Exterior, Mexico. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov FU NASA's Radiation Science Program FX We thank Qiang Fu and Qiong Yang for providing the tropical tropopause layer heating rates used in this work. We also than Mark Vaughan and Charles Trepte for helpful discussions. This work was supported by NASA's Radiation Science Program. NR 61 TC 56 Z9 56 U1 3 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 3 BP 1369 EP 1384 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 554BH UT WOS:000274410000033 ER PT J AU Martin, MV Logan, JA Kahn, RA Leung, FY Nelson, DL Diner, DJ AF Martin, M. Val Logan, J. A. Kahn, R. A. Leung, F. -Y. Nelson, D. L. Diner, D. J. TI Smoke injection heights from fires in North America: analysis of 5 years of satellite observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID FOREST-FIRES; LOWER STRATOSPHERE; CARBON-MONOXIDE; CLIMATE-CHANGE; BOREAL FOREST; PLUME-RISE; TRANSPORT; MODIS; MISR; CO AB We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004-2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11: 00-14: 00 local time). The largest plumes are found over the boreal region (median values of similar to 850 m height, 24 km length and 940m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of similar to 530 m height, 12 km length and 550-640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4-12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620-1640 MW) than those remaining within the BL (174-465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 m thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June-July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire intensity and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion. C1 [Martin, M. Val; Logan, J. A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kahn, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leung, F. -Y.] Washington State Univ, Pullman, WA 99164 USA. [Nelson, D. L.] Raytheon Intelligence & Informat Syst, Pasadena, CA USA. [Diner, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Martin, MV (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM mvalmart@seas.harvard.edu RI Val Martin, Maria/D-6955-2011; Kahn, Ralph/D-5371-2012 OI Kahn, Ralph/0000-0002-5234-6359 FU National Science Foundation [ATM0554804]; STAR Research Assistance [RD-83227501-0]; US Environmental Protection Agency (EPA); Jet Propulsion Laboratory, California Institute of Technology FX This worked was supported by the National Science Foundation, grant ATM0554804, and by STAR Research Assistance Agreement No. RD-83227501-0 awarded by the US Environmental Protection Agency (EPA). This publication has not been formally reviewed by the EPA. The views expressed in this document are solely those of authors and the EPA does not endorse any products or commercial services mentioned in this publication. Part of this research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). We thank Charles Ichoku for helpful discussions about MODIS fire radiative power; the work of many summer students who contributed to the digitizing effort at the Jet Propulsion Laboratory is gratefully acknowledged. NR 71 TC 69 Z9 69 U1 1 U2 30 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 4 BP 1491 EP 1510 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 559TS UT WOS:000274851500002 ER PT J AU Lin, B Chambers, L Stackhouse, P Wielicki, B Hu, Y Minnis, P Loeb, N Sun, W Potter, G Min, Q Schuster, G Fan, TF AF Lin, B. Chambers, L. Stackhouse, P., Jr. Wielicki, B. Hu, Y. Minnis, P. Loeb, N. Sun, W. Potter, G. Min, Q. Schuster, G. Fan, T. -F. TI Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID DECADAL VARIABILITY; ENERGY BUDGET; MODEL AB Large climate feedback uncertainties limit the accuracy in predicting the response of the Earth's climate to the increase of CO2 concentration within the atmosphere. This study explores a potential to reduce uncertainties in climate sensitivity estimations using energy balance analysis, especially top-of-atmosphere (TOA) radiation imbalance. The time-scales studied generally cover from decade to century, that is, middle-range climate sensitivity is considered, which is directly related to the climate issue caused by atmospheric CO2 change. The significant difference between current analysis and previous energy balance models is that the current study targets at the boundary condition problem instead of solving the initial condition problem. Additionally, climate system memory and deep ocean heat transport are considered. The climate feedbacks are obtained based on the constraints of the TOA radiation imbalance and surface temperature measurements of the present climate. In this study, the TOA imbalance value of 0.85 W/m(2) is used. Note that this imbalance value has large uncertainties. Based on this value, a positive climate feedback with a feedback coefficient ranging from -1.3 to -1.0 W/m(2)/K is found. The range of feedback coefficient is determined by climate system memory. The longer the memory, the stronger the positive feedback. The estimated time constant of the climate is large (70 similar to 120 years) mainly owing to the deep ocean heat transport, implying that the system may be not in an equilibrium state under the external forcing during the industrial era. For the doubled-CO2 climate (or 3.7 W/m(2) forcing), the estimated global warming would be 3.1K if the current estimate of 0.85 W/m(2) TOA net radiative heating could be confirmed. With accurate long-term measurements of TOA radiation, the analysis method suggested by this study provides a great potential in the estimations of middle-range climate sensitivity. C1 [Lin, B.; Chambers, L.; Stackhouse, P., Jr.; Wielicki, B.; Hu, Y.; Minnis, P.; Loeb, N.; Schuster, G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Sun, W.; Fan, T. -F.] SSAI, Hampton, VA 23666 USA. [Potter, G.] Univ Calif Davis, Davis, CA 95616 USA. [Min, Q.] SUNY Albany, Albany, NY 12222 USA. RP Lin, B (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM bing.lin@nasa.gov RI Hu, Yongxiang/K-4426-2012; Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA FX The authors would like to express their appreciation to T. Wong, G. Gibson, D. Young, and D. Garber for their valuable comments and encouragement. This research was supported by NASA CERES mission and Energy and Water cycle Studies (NEWS) program. NR 22 TC 12 Z9 12 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 4 BP 1923 EP 1930 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 559TS UT WOS:000274851500028 ER PT J AU Adhikary, B Carmichael, GR Kulkarni, S Wei, C Tang, Y D'Allura, A Mena-Carrasco, M Streets, DG Zhang, Q Pierce, RB Al-Saadi, JA Emmons, LK Pfister, GG Avery, MA Barrick, JD Blake, DR Brune, WH Cohen, RC Dibb, JE Fried, A Heikes, BG Huey, LG O'Sullivan, DW Sachse, GW Shetter, RE Singh, HB Campos, TL Cantrell, CA Flocke, FM Dunlea, EJ Jimenez, JL Weinheimer, AJ Crounse, JD Wennberg, PO Schauer, JJ Stone, EA Jaffe, DA Reidmiller, DR AF Adhikary, B. Carmichael, G. R. Kulkarni, S. Wei, C. Tang, Y. D'Allura, A. Mena-Carrasco, M. Streets, D. G. Zhang, Q. Pierce, R. B. Al-Saadi, J. A. Emmons, L. K. Pfister, G. G. Avery, M. A. Barrick, J. D. Blake, D. R. Brune, W. H. Cohen, R. C. Dibb, J. E. Fried, A. Heikes, B. G. Huey, L. G. O'Sullivan, D. W. Sachse, G. W. Shetter, R. E. Singh, H. B. Campos, T. L. Cantrell, C. A. Flocke, F. M. Dunlea, E. J. Jimenez, J. L. Weinheimer, A. J. Crounse, J. D. Wennberg, P. O. Schauer, J. J. Stone, E. A. Jaffe, D. A. Reidmiller, D. R. TI A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LONG-RANGE TRANSPORT; NORTH-AMERICA; TRANSPACIFIC TRANSPORT; POLLUTION TRANSPORT; ASIAN AEROSOLS; AIR-POLLUTION; MINERAL DUST; ORGANIC MASS; EMISSIONS; AIRCRAFT AB The Sulfur Transport and dEposition Model (STEM) is applied to the analysis of observations obtained during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), conducted over the eastern Pacific Ocean during spring 2006. Predicted trace gas and aerosol distributions over the Pacific are presented and discussed in terms of transport and source region contributions. Trace species distributions show a strong west (high) to east (low) gradient, with the bulk of the pollutant transport over the central Pacific occurring between similar to 20 degrees N and 50 degrees N in the 2-6 km altitude range. These distributions are evaluated in the eastern Pacific by comparison with the NASA DC-8 and NSF/NCAR C-130 airborne measurements along with observations from the Mt. Bachelor (MBO) surface site. Thirty different meteorological, trace gas and aerosol parameters are compared. In general the meteorological fields are better predicted than gas phase species, which in turn are better predicted than aerosol quantities. PAN is found to be significantly overpredicted over the eastern Pacific, which is attributed to uncertainties in the chemical reaction mechanisms used in current atmospheric chemistry models in general and to the specifically high PAN production in the SAPRC-99 mechanism used in the regional model. A systematic underprediction of the elevated sulfate layer in the eastern Pacific observed by the C-130 is another issue that is identified and discussed. Results from source region tagged CO simulations are used to estimate how the different source regions around the Pacific contribute to the trace gas species distributions. During this period the largest contributions were from China and from fires in South/Southeast and North Asia. For the C-130 flights, which operated off the coast of the Northwest US, the regional CO contributions range as follows: China (35%), South/Southeast Asia fires (35%), North America anthropogenic (20%), and North Asia fires (10%). The transport of pollution into the western US is studied at MBO and a variety of events with elevated Asian dust, and periods with contributions from China and fires from both Asia and North America are discussed. The role of heterogeneous chemistry on the composition over the eastern Pacific is also studied. The impacts of heterogeneous reactions at specific times can be significant, increasing sulfate and nitrate aerosol production and reducing gas phase nitric acid levels appreciably (similar to 50%). C1 [Adhikary, B.; Carmichael, G. R.; Kulkarni, S.; Wei, C.; Tang, Y.; D'Allura, A.; Mena-Carrasco, M.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Adhikary, B.] Kathmandu Univ, Sch Engn, Dhulikhel, Kavre, Nepal. [Streets, D. G.; Zhang, Q.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Pierce, R. B.; Al-Saadi, J. A.; Avery, M. A.; Barrick, J. D.; Sachse, G. W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Emmons, L. K.; Pfister, G. G.; Fried, A.; Shetter, R. E.; Campos, T. L.; Cantrell, C. A.; Flocke, F. M.; Weinheimer, A. J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Brune, W. H.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Cohen, R. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dibb, J. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Heikes, B. G.] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Huey, L. G.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [O'Sullivan, D. W.] USN Acad, Annapolis, MD 21402 USA. [Singh, H. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Dunlea, E. J.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Dunlea, E. J.; Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Crounse, J. D.; Wennberg, P. O.] CALTECH, Pasadena, CA 91125 USA. [Schauer, J. J.; Stone, E. A.] Univ Wisconsin, Coll Engn, Madison, WI USA. [Jaffe, D. A.] Univ Washington, Bothell, WA 98011 USA. [Reidmiller, D. R.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP Kulkarni, S (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. EM sarika-kulkarni@uiowa.edu RI Mena-Carrasco, Marcelo/L-9730-2016; Emmons, Louisa/R-8922-2016; Crounse, John/C-3700-2014; Jimenez, Jose/A-5294-2008; Cohen, Ronald/A-8842-2011; wei, chao/E-4379-2011; Crounse, John/E-4622-2011; Pierce, Robert Bradley/F-5609-2010; Wennberg, Paul/A-5460-2012; Zhang, Qiang/D-9034-2012; Pfister, Gabriele/A-9349-2008; Mena-Carrasco, Marcelo/B-8483-2012 OI Streets, David/0000-0002-0223-1350; Emmons, Louisa/0000-0003-2325-6212; Crounse, John/0000-0001-5443-729X; O'Sullivan, Daniel/0000-0001-9104-5703; Jimenez, Jose/0000-0001-6203-1847; Cohen, Ronald/0000-0001-6617-7691; Pierce, Robert Bradley/0000-0002-2767-1643; FU NASA [NNG04GC58G]; NSF [0613124] FX We would like to thank the INTEX-B science team. This work was supported by a NASA grants (NNG04GC58G and INTEX-B). The heterogeneous chemistry portion was based on work done under a NSF grant (0613124). The authors would also like to acknowledge NOAA and Atmospheric Brown Cloud project for support of the Trinidad Head and Kathmandu measurements. NR 55 TC 24 Z9 24 U1 0 U2 21 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 5 BP 2091 EP 2115 DI 10.5194/acp-10-2091-2010 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568ER UT WOS:000275505500002 ER PT J AU Thomason, LW Moore, JR Pitts, MC Zawodny, JM Chiou, EW AF Thomason, L. W. Moore, J. R. Pitts, M. C. Zawodny, J. M. Chiou, E. W. TI An evaluation of the SAGE similar to III version 4 aerosol extinction coefficient and water vapor data products SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID STRATOSPHERIC AEROSOL; POAM-III; OZONE OBSERVATIONS; VALIDATION; SENSOR; VORTEX; HALOE; GAS; NM AB Herein, we provide an assessment of the data quality of Stratospheric Aerosol and Gas Experiment (SAGE similar to III) Version 4 aerosol extinction coefficient and water vapor data products. The evaluation is based on comparisons with data from four instruments: SAGE II, the Polar Ozone and Aerosol Measurement (POAM III), the Halogen Occultation Experiment (HALOE), and the Microwave Limb Sounder (MLS). Since only about half of the SAGE III channels have a direct comparison with measurements by other instruments, we have employed some empirical techniques to evaluate measurements at some wavelengths. We find that the aerosol extinction coefficient measurements at 449, 520, 755, 869, and 1021 nm are reliable with accuracies and precisions on the order of 10% in the mission's primary aerosol target range of 15 to 25 km. We also believe this to be true of the aerosol measurements at 1545 nm though we cannot exclude some positive bias below 15 km. We recommend use of the 385 nm measurements above 16 km where the accuracy is on par with other aerosol channels. The 601 nm measurement is much noisier (similar to 20%) than other channels and we suggest caution in the use of these data. We believe that the 676 nm data are clearly defective particularly above 20 km (accuracy as poor as 50%) and the precision is also low (similar to 30%). We suggest excluding this channel under most circumstances. The SAGE III Version 4 water vapor data product appears to be high quality and is recommended for science applications in the stratosphere below 45 km. In this altitude range, the mean differences with all four corroborative data sets are no bigger than 15% and often less than 10% with exceptional agreement with POAM III and MLS. Above 45 km, it seems likely that SAGE III water vapor values are increasingly too large and should be used cautiously or avoided. We believe that SAGE III meets its preflight goal of 15% accuracy and 10% precision between 15 and 45 km. SAGE III water vapor data does not appear to be affected by aerosol loading in the stratosphere. C1 [Thomason, L. W.; Pitts, M. C.; Zawodny, J. M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Moore, J. R.] Sci Syst & Applicat Inc, Hampton, VA USA. [Chiou, E. W.] ADNET Syst Inc, Lanham, MD USA. RP Thomason, LW (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM l.w.thomason@nasa.gov OI Thomason, Larry/0000-0002-1902-0840 FU NASA [TM 2003-243] FX The solar attenuator test was performed by Ed Burcher, Joseph Goad, and Michael Cisewski of NASA Langley Research Center and archived as SAGE III Technical Memorandum TM 2003-243 and is available from the authors. NR 32 TC 18 Z9 18 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 5 BP 2159 EP 2173 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568ER UT WOS:000275505500006 ER PT J AU Liang, Q Stolarski, RS Kawa, SR Nielsen, JE Douglass, AR Rodriguez, JM Blake, DR Atlas, EL Ott, LE AF Liang, Q. Stolarski, R. S. Kawa, S. R. Nielsen, J. E. Douglass, A. R. Rodriguez, J. M. Blake, D. R. Atlas, E. L. Ott, L. E. TI Finding the missing stratospheric Br-y: a global modeling study of CHBr3 and CH2Br2 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID PACIFIC EXPLORATORY MISSION; BROMINE CHEMISTRY; TROPICAL PACIFIC; ATLANTIC-OCEAN; PEM-TROPICS; TRANSPORT; BROMOFORM; TROPOSPHERE; AIR; HALOCARBONS AB Recent in situ and satellite measurements suggest a contribution of similar to 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a 'top-down' emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(-1) for CHBr3 and 57 Gg Br yr(-1) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes similar to 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (Br-y(VSLS)) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CH2Br2 near the tropical tropopause and its contribution rapidly increases to similar to 100% as altitude increases. More than 85% of the wet scavenging of Br-y(VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br-y(VSLS) in the stratosphere is not sensitive to convection. Convective scavenging only accounts for similar to 0.2 pptv (4%) difference in inorganic bromine delivered to the stratosphere. C1 [Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Douglass, A. R.; Rodriguez, J. M.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Liang, Q.] Oak Ridge Associated Univ, NASA Postdoctoral Program, Oak Ridge, TN 37831 USA. [Nielsen, J. E.; Ott, L. E.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Nielsen, J. E.] Sci Syst & Applicat Inc, Lanham, MD USA. [Blake, D. R.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atlas, E. L.] Univ Miami, Miami, FL 33149 USA. [Ott, L. E.] Univ Maryland, Goddard Earth Sci & Technol Ctr, College Pk, MD 20742 USA. RP Liang, Q (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, College Pk, MD 20742 USA. EM qing.liang@nasa.gov RI Liang, Qing/B-1276-2011; Ott, Lesley/E-2250-2012; Douglass, Anne/D-4655-2012; Atlas, Elliot/J-8171-2015; Kawa, Stephan/E-9040-2012; Stolarski, Richard/B-8499-2013; Rodriguez, Jose/G-3751-2013 OI Stolarski, Richard/0000-0001-8722-4012; Rodriguez, Jose/0000-0002-1902-4649 FU NASA FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We thank Stephan Fueglistaler for helpful discussions on transport in the tropical tropopause layer. We also acknowledge the useful comments from two anonymous reviewers. NR 72 TC 57 Z9 57 U1 2 U2 23 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 5 BP 2269 EP 2286 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568ER UT WOS:000275505500013 ER PT J AU Voulgarakis, A Savage, NH Wild, O Braesicke, P Young, PJ Carver, GD Pyle, JA AF Voulgarakis, A. Savage, N. H. Wild, O. Braesicke, P. Young, P. J. Carver, G. D. Pyle, J. A. TI Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID 1997-1998 EL-NINO; INTERCONTINENTAL TRANSPORT; ATMOSPHERIC CHEMISTRY; NORTH-AMERICA; SURFACE OZONE; IMPACT; MODEL; SIMULATION; PHOTOLYSIS; GOME AB We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies. C1 [Voulgarakis, A.; Braesicke, P.; Young, P. J.; Carver, G. D.; Pyle, J. A.] Univ Cambridge, Ctr Atmospher Sci, Cambridge CB2 1TN, England. [Savage, N. H.] Met Off, Exeter, Devon, England. [Wild, O.] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YW, England. RP Voulgarakis, A (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM avoulgarakis@giss.nasa.gov RI Wild, Oliver/A-4909-2009; Young, Paul/E-8739-2010; Braesicke, Peter/D-8330-2016; OI Wild, Oliver/0000-0002-6227-7035; Young, Paul/0000-0002-5608-8887; Braesicke, Peter/0000-0003-1423-0619; Savage, Nicholas/0000-0001-9391-5100 FU NERC; NCAS (UK); IKY (Greece) FX The authors wish to thank NERC and NCAS (UK), and IKY (Greece) for funding. A. V. thanks Paul Telford for useful suggestions on the data analysis methods. The authors thank Paul Berrisford for providing the ECMWF data. Emission datasets were obtained from the RETRO Project website (http://retro.enes.org/). We also acknowledge the local staffs of the NyAlesund, Saturna, Zugspitze, Tsukuba, Izana, Mauna Loa, Baltic Sea, Ulaan Uul, Ascension Island, Tutuila and Palmer Station measurement stations, as well as NOAA-ESRL-GMD and WDCGG. NR 46 TC 26 Z9 27 U1 0 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 5 BP 2491 EP 2506 DI 10.5194/acp-10-2491-2010 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568ER UT WOS:000275505500027 ER PT J AU Liu, X Bhartia, PK Chance, K Spurr, RJD Kurosu, TP AF Liu, X. Bhartia, P. K. Chance, K. Spurr, R. J. D. Kurosu, T. P. TI Ozone profile retrievals from the Ozone Monitoring Instrument SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ROTATIONAL RAMAN-SCATTERING; TROPOSPHERIC OZONE; TROPICAL ATLANTIC; SATELLITE; POLLUTION; ALGORITHM; VALIDATION; DERIVATION; RADIANCES; TRANSPORT AB Ozone profiles from the surface to about 60 km are retrieved from Ozone Monitoring Instrument (OMI) ultraviolet radiances using the optimal estimation technique. OMI provides daily ozone profiles for the entire sunlit portion of the earth at a horizontal resolution of 13 kmx48 km for the nadir position. The retrieved profiles have sufficient accuracy in the troposphere to see ozone perturbations caused by convection, biomass burning and anthropogenic pollution, and to track their spatiotemporal transport. However, to achieve such accuracy it has been necessary to calibrate OMI radiances carefully (using two days of Aura/Microwave Limb Sounder data taken in the tropics). The retrieved profiles contain similar to 6-7 degrees of freedom for signal, with 5-7 in the stratosphere and 0-1.5 in the troposphere. Vertical resolution varies from 7-11 km in the stratosphere to 10-14 km in the troposphere. Retrieval precisions range from 1% in the middle stratosphere to 10% in the lower stratosphere and troposphere. Solution errors (i.e., root sum square of precisions and smoothing errors) vary from 1-6% in the middle stratosphere to 6-35% in the troposphere, and are dominated by smoothing errors. Total, stratospheric, and tropospheric ozone columns can be retrieved with solution errors typically in the few Dobson unit range at solar zenith angles less than 80 degrees. C1 [Liu, X.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, X.; Chance, K.; Kurosu, T. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Liu, X.; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Spurr, R. J. D.] RT Solut Inc, Cambridge, MA USA. RP Liu, X (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM xliu@cfa.harvard.edu RI Liu, Xiong/P-7186-2014; Bhartia, Pawan/A-4209-2016; OI Liu, Xiong/0000-0003-2939-574X; Bhartia, Pawan/0000-0001-8307-9137; Chance, Kelly/0000-0002-7339-7577 FU NASA [NNG06GH99G]; New Investigator Program in Earth Science [NNX08AN98G]; Smithsonian Institution FX This study was supported by the NASA Atmospheric Composition Program (NNG06GH99G), the New Investigator Program in Earth Science (NNX08AN98G), and the Smithsonian Institution. The Dutch-Finnish OMI instrument is part of the NASA EOS Aura satellite payload. The OMI Project is managed by NIVR and KNMI in the Netherlands. We acknowledge the OMI International Science Team and MLS science team for providing satellite data used in this study. NCEP Reanalysis data are provided by NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their Web site at http://www.cdc.noaa.gov. We also thank J. Joiner, S. Taylor, and G. Jaross for discussions on OMI radiance calibration. NR 60 TC 81 Z9 83 U1 6 U2 29 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 5 BP 2521 EP 2537 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568ER UT WOS:000275505500029 ER PT J AU Liu, X Bhartia, PK Chance, K Froidevaux, L Spurr, RJD Kurosu, TP AF Liu, X. Bhartia, P. K. Chance, K. Froidevaux, L. Spurr, R. J. D. Kurosu, T. P. TI Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article AB We validate OMI ozone profiles between 0.22-215 hPa and stratospheric ozone columns down to 215 hPa (SOC215) against v2.2 MLS data from 2006. The validation demonstrates convincingly that SOC can be derived accurately from OMI data alone, with errors comparable to or smaller than those from current MLS retrievals, and it demonstrates implicitly that tropospheric ozone column can be retrieved accurately from OMI or similar nadir-viewing ultraviolet measurements alone. The global mean biases are within 2.5% above 100 hPa and 5-10% below 100 hPa; the standard deviations of the differences (1 sigma) are 3.5-5% between 1-50 hPa, 6-9% above 1 hPa and 8-15% below 50 hPa. OMI shows some latitude and solar zenith angle dependent biases, but the mean biases are mostly within 5% and the standard deviations are mostly within 2-5% except for low altitudes and high latitudes. The excellent agreement with MLS data shows that OMI retrievals can be used to augment the validation of MLS and other stratospheric ozone measurements made with even higher vertical resolution than that for OMI. OMI SOC215 shows a small bias of -0.6% with a standard deviation of 2.8%. When compared as a function of latitude and solar zenith angle, the mean biases are within 2% and the standard deviations range from 2.1 to 3.4%. Assuming 2% precision for MLS SOC215, we deduce that the upper limits of random-noise and smoothing errors for OMI SOC215 range from 0.6% in the southern tropics to 2.8% at northern middle latitudes. C1 [Liu, X.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, X.; Chance, K.; Kurosu, T. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Liu, X.; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Froidevaux, L.] NASA, Jet Prop Lab, Pasadena, CA USA. [Spurr, R. J. D.] RT Solut Inc, Cambridge, MA USA. RP Liu, X (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM xliu@cfa.harvard.edu RI Liu, Xiong/P-7186-2014; Bhartia, Pawan/A-4209-2016; OI Liu, Xiong/0000-0003-2939-574X; Bhartia, Pawan/0000-0001-8307-9137; Chance, Kelly/0000-0002-7339-7577 FU NASA Atmospheric Composition Program [NNG06GH99G]; Smithsonian Institution FX This study was supported by the NASA Atmospheric Composition Program (NNG06GH99G) and by the Smithsonian Institution. The Dutch-Finnish OMI instrument is part of the NASA EOS Aura satellite payload. The OMI Project is managed by NIVR and KNMI in the Netherlands. We acknowledge the OMI International Science Team and MLS science team for the satellite data used in this study. NR 14 TC 27 Z9 28 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 5 BP 2539 EP 2549 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568ER UT WOS:000275505500030 ER PT J AU Gatebe, CK Dubovik, O King, MD Sinyuk, A AF Gatebe, C. K. Dubovik, O. King, M. D. Sinyuk, A. TI Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SKY RADIANCE MEASUREMENTS; REFLECTANCE CSAR MODEL; BIDIRECTIONAL REFLECTANCE; EXTINCTION MEASUREMENTS; ATMOSPHERIC TURBIDITY; SOUTHERN AFRICA; INVERSION; ALGORITHM; SUNLIGHT; AERONET AB This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 mu m) and angular range (180 degrees) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method. C1 [Gatebe, C. K.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Gatebe, C. K.; King, M. D.; Sinyuk, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dubovik, O.] Univ Sci & Tech Lille Flandres Artois, CNRS, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [King, M. D.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Sinyuk, A.] Sigma Space Corp, Lanham, MD 20706 USA. RP Gatebe, CK (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM charles.k.gatebe@nasa.gov RI King, Michael/C-7153-2011; Gatebe, Charles/G-7094-2011; Dubovik, Oleg/A-8235-2009 OI King, Michael/0000-0003-2645-7298; Gatebe, Charles/0000-0001-9261-2239; Dubovik, Oleg/0000-0003-3482-6460 FU NASA [NNX08AF89G] FX This research was supported by the Science Mission Directorate of the National Aeronautics and Space Administration as part of the Radiation Sciences Program under Hal B. Maring and Airborne Science Program under Andrew C. Roberts. Special thanks to Gala Wind and Thomas Arnold for their facilitating of CAR data processing and Rajesh Poudyal for help with Fig. 3. We thank the AERONET project and staff for supporting and providing access to the sunphotometer raw data, and RickWagener for establishing and maintaining AERONET sun/sky radiometers at the ARM sites in Oklahoma and Barrow, Alaska. This work was performed under NASA Grant NNX08AF89G. NR 58 TC 10 Z9 10 U1 1 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 6 BP 2777 EP 2794 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 576XA UT WOS:000276182100015 ER PT J AU Lohmann, U Rotstayn, L Storelvmo, T Jones, A Menon, S Quaas, J Ekman, AML Koch, D Ruedy, R AF Lohmann, U. Rotstayn, L. Storelvmo, T. Jones, A. Menon, S. Quaas, J. Ekman, A. M. L. Koch, D. Ruedy, R. TI Total aerosol effect: radiative forcing or radiative flux perturbation? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MIXED-PHASE CLOUDS; ANTHROPOGENIC SULFATE AEROSOLS; GENERAL-CIRCULATION MODELS; CLIMATE SYSTEM PROPERTIES; MODIS SATELLITE DATA; GLOBAL CLIMATE; SPECTRAL DISPERSION; SULFUR CYCLE; BLACK CARBON; SENSITIVITY AB Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models. C1 [Lohmann, U.; Storelvmo, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Rotstayn, L.] CSIRO, Ctr Australian Weather & Climate Res, Aspendale, Vic, Australia. [Jones, A.] Met Off Hadley Ctr, Exeter, Devon, England. [Menon, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Quaas, J.] Max Planck Inst Meteorol, Hamburg, Germany. [Ekman, A. M. L.] Stockholm Univ, S-10691 Stockholm, Sweden. [Koch, D.; Ruedy, R.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Lohmann, U (reprint author), Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. EM ulrike.lohmann@env.ethz.ch RI Rotstayn, Leon/A-1756-2012; Quaas, Johannes/I-2656-2013; Lohmann, Ulrike/B-6153-2009 OI Rotstayn, Leon/0000-0002-2385-4223; Quaas, Johannes/0000-0001-7057-194X; Lohmann, Ulrike/0000-0001-8885-3785 NR 92 TC 94 Z9 95 U1 3 U2 38 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 7 BP 3235 EP 3246 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 583HD UT WOS:000276663600006 ER PT J AU Shindell, D Faluvegi, G AF Shindell, D. Faluvegi, G. TI The net climate impact of coal-fired power plant emissions SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GREENHOUSE GASES; TROPOSPHERIC OZONE; ANTHROPOGENIC SULFATE; SURFACE-TEMPERATURE; CARBON EMISSIONS; GISS MODELE; AEROSOLS; SIMULATIONS; PREINDUSTRIAL; 20TH-CENTURY AB Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until similar to 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight. C1 [Shindell, D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Columbia Univ, New York, NY USA. RP Shindell, D (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM dshindell@giss.nasa.gov RI Shindell, Drew/D-4636-2012 NR 64 TC 25 Z9 26 U1 5 U2 26 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 7 BP 3247 EP 3260 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 583HD UT WOS:000276663600007 ER PT J AU Nam, J Wang, Y Luo, C Chu, DA AF Nam, J. Wang, Y. Luo, C. Chu, D. A. TI Trans-Pacific transport of Asian dust and CO: accumulation of biomass burning CO in the subtropics and dipole structure of transport SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LONG-RANGE TRANSPORT; MINERAL DUST; TRANSPACIFIC TRANSPORT; UNITED-STATES; INTEX-B; INTERCONTINENTAL TRANSPORT; POLLUTION TRANSPORT; OZONE POLLUTION; CARBON-MONOXIDE; NORTH-AMERICA AB In May 2003, both MODIS aerosol optical depth (AOD) and carbon monoxide (CO) measurements from MOPITT show significant trans-Pacific transport to North America. We apply the global chemical transport model, GEOSChem, to analyze the main features of the long-range transport events. Enhancements of MOPITT CO over the tropical Pacific are much broader than MODIS AOD enhancements. We find in model simulations that a major fraction of the CO enhancements in the subtropics in May is due to biomass burning in Southeast Asia in April. Biomass burning CO was recirculated into the subtropical high-pressure system and lingered for a much longer period than aerosols transported at higher latitudes. Simulated AOD enhancements are due to a combination of dust, sulfate, and organic and elemental carbons. Dust contribution dominates the AOD enhancements in early May. Model results indicate that dust transport takes place at higher altitude than the other aerosols. MODIS observations indicate a bias in model simulated pathway of dust transport in one out of the three cases analyzed. Sensitivities of dust transport pathways are analyzed in the model. The dipole structure of transport, consisting of the Aleutian Low to the north and the Pacific High to the south, over the Pacific is found to be a key factor. The placement of the dipole structure relative to model parameters such as up-stream wind field and source location may lead to the high sensitivity of simulated transport pathways. C1 [Nam, J.; Wang, Y.; Luo, C.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Chu, D. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Nam, J (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM junsang.nam@eas.gatech.edu RI Wang, Yuhang/B-5578-2014 FU NASA; National Science Foundation FX The authors thank the NASA Langley Research Center Atmospheric Science Data Center for providing the MOIPITT data. We thank Jennifer Logan for the suggestion of using NOAA ESRL CO measurements in this work. The GEOS-CHEM model is managed at Harvard University with support from the NASA Atmospheric Chemistry Modeling and Analysis Program. We used in this work the NASA's Giovanni, an online data visualization and analysis tool maintained by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC), a part of the NASA Earth-Sun System Division. This work was supported by the NASA Atmospheric Chemistry Modeling and Analysis Program and the National Science Foundation Atmospheric Chemistry Program. NR 52 TC 13 Z9 14 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 7 BP 3297 EP 3308 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 583HD UT WOS:000276663600010 ER PT J AU Aghedo, AM Rast, S Schultz, MG AF Aghedo, A. M. Rast, S. Schultz, M. G. TI Sensitivity of tracer transport to model resolution, prescribed meteorology and tracer lifetime in the general circulation model ECHAM5 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GLOBAL TROPOSPHERIC OZONE; VERTICAL RESOLUTION; INTEGRATION SCHEME; AIR-POLLUTION; ATMOSPHERE; SF6; CHEMISTRY; CLIMATE; RN-222; GCM AB Atmospheric transport of traces gases and aerosols plays an important role in the distribution of air pollutants and radiatively active compounds. For model simulations of chemistry-climate interactions it is important to know how the transport of tracers depends on the geographical resolution of the general circulation model. However, this aspect has been scarcely investigated until now. Here, we analyse tracer transport in the ECHAM5 general circulation model using 6 independent idealized tracers with constant lifetimes, which are released in two different altitudes at the surface and in the stratosphere, respectively. Model resolutions from T21L19 to T106L31 were tested by performing multi-annual simulations with prescribed sea surface temperatures and sea ice fields of the 1990s. The impacts of the tracer lifetime were investigated by varying the globally uniform exponential decay time between 0.5 and 50 months. We also tested the influence of using prescribed meteorological fields (ERA40) instead of climatological sea surface temperature and sea ice fields. Meridional transport of surface tracers decreases in the coarse resolution model due to enhanced vertical mixing, with the exception of the advection into the tropical region, which shows an inconsistent trend between the resolutions. Whereas, the meridional transport of tracers released in the stratosphere was enhanced with higher model resolutions, except in the transport from tropical stratosphere to the Southern Hemisphere, which exhibits an increase trend with increasing model resolution. The idealized tracers exhibit a seasonal cycle, which is modulated by the tracer lifetime. In comparison to the run with prescribed sea surface temperature and sea ice fields, the simulation with prescribed meteorological fields did not exhibit significant change in the meridional transport, except in the exchange of stratospheric tracers between both hemispheres, where it causes about 100% increase. The import of the surface tracers into the stratosphere is increased by up to a factor of 2.5, and the export from the stratosphere into the troposphere was increased by up to 60% when prescribed meteorological fields is used. The ERA40 simulation also showed larger interannual variability (up to 24% compared to 12% in the standard simulations). Using our surface tracers released in either the northern or Southern Hemisphere, respectively, we calculate inter-hemispheric transport times between 11 and 17 months, consistent with values reported in the literature. While this study cannot be used to relate differences in model results to specific changes in transport processes, it nevertheless provides some insight into the characteristics of tracer transport in the widely used ECHAM5 general circulation model. C1 [Aghedo, A. M.; Rast, S.; Schultz, M. G.] Max Planck Inst Meteorol, Hamburg, Germany. RP Aghedo, AM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM adetutu.m.aghedo@jpl.nasa.gov RI Schultz, Martin/I-9512-2012 OI Schultz, Martin/0000-0003-3455-774X FU ZEIT foundation through the International Max Planck Research School on Earth System Modelling (IMPRS-ESM); EU [EVK2-CT-2002-00170] FX This work was carried out during the doctoral work of AMA, sponsored by the ZEIT foundation through the International Max Planck Research School on Earth System Modelling (IMPRS-ESM). SR and MGS acknowledge funding from the EU project RETRO (EVK2-CT-2002-00170). We are grateful to the ECMWF for providing the reanalysis data, and to Erich Roeckner, Marco Giorgetta, and Kevin W Bowman for their useful comments, and also to Luis Kornblueh for the technical assistance. The model runs were performed on the Sun Computing system (YANG) at the Max Planck Institute for Meteorology, Hamburg and the NEC SX-6 computer at the German Climate Computing Centre ("Deutsches Klimarechenzentrum"). We thank the editor, Peter Haynes, and appreciate the comments of Kenneth Bowman, and three other anonymous referees, which have significantly improve the manuscript. NR 37 TC 6 Z9 6 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 7 BP 3385 EP 3396 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 583HD UT WOS:000276663600017 ER PT J AU Millet, DB Guenther, A Siegel, DA Nelson, NB Singh, HB de Gouw, JA Warneke, C Williams, J Eerdekens, G Sinha, V Karl, T Flocke, F Apel, E Riemer, DD Palmer, PI Barkley, M AF Millet, D. B. Guenther, A. Siegel, D. A. Nelson, N. B. Singh, H. B. de Gouw, J. A. Warneke, C. Williams, J. Eerdekens, G. Sinha, V. Karl, T. Flocke, F. Apel, E. Riemer, D. D. Palmer, P. I. Barkley, M. TI Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; EDDY COVARIANCE MEASUREMENTS; BIOMASS-BURNING EMISSIONS; OXYGENATED VOC EMISSIONS; AIR-SEA EXCHANGE; CARBONYL-COMPOUNDS; UNITED-STATES; MASS-SPECTROMETRY; TROPICAL PACIFIC; PEROXY-RADICALS AB We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a(-1), a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOSChem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a(-1), the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN: NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a(-1). Other terrestrial acetaldehyde sources include biomass burning (3 Tg a(-1)) and anthropogenic emissions (2 Tg a(-1)). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NOx: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a(-1) and 7.8 Tg a(-1), approximately 60% and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel. C1 [Millet, D. B.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. [Guenther, A.; Karl, T.; Flocke, F.; Apel, E.] NCAR, Div Atmospher Chem, Boulder, CO USA. [Siegel, D. A.; Nelson, N. B.] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA. [Singh, H. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [de Gouw, J. A.; Warneke, C.] NOAA, ESRL, Boulder, CO USA. [Williams, J.; Eerdekens, G.; Sinha, V.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Riemer, D. D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Palmer, P. I.; Barkley, M.] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. RP Millet, DB (reprint author), Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. EM dbm@umn.edu RI Warneke, Carsten/E-7174-2010; Karl, Thomas/D-1891-2009; Palmer, Paul/F-7008-2010; Millet, Dylan/G-5832-2012; Sinha, Vinayak/C-2309-2009; Siegel, David/C-5587-2008; Nelson, Norman/B-7343-2014; Chem, GEOS/C-5595-2014; de Gouw, Joost/A-9675-2008; Manager, CSD Publications/B-2789-2015 OI Karl, Thomas/0000-0003-2869-9426; Sinha, Vinayak/0000-0002-5508-0779; Nelson, Norman/0000-0003-1767-7598; de Gouw, Joost/0000-0002-0385-1826; FU NERC [NE/D001471] FX We gratefully acknowledge the science teams for the GABRIEL, INTEX-A, INTEX-B, ITCT-2K2, ITCT-2K4, MILAGRO, PEM-TB, TEXAQS-II, and TROFFEE aircraft experiments. Particular thanks go to B. Brune, X. Ren, J. Mao, T. Ryerson, G. Huey, A. Weinheimer, and R. Cohen for the use of their airborne NO and NO2 measurements. MPB and PIP acknowledge funding from NERC (grant NE/D001471). NR 125 TC 93 Z9 94 U1 7 U2 66 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 7 BP 3405 EP 3425 DI 10.5194/acp-10-3405-2010 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 583HD UT WOS:000276663600019 ER PT J AU Torres, O Chen, Z Jethva, H Ahn, C Freitas, SR Bhartia, PK AF Torres, O. Chen, Z. Jethva, H. Ahn, C. Freitas, S. R. Bhartia, P. K. TI OMI and MODIS observations of the anomalous 2008-2009 Southern Hemisphere biomass burning seasons SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AMAZON; DEFORESTATION; VARIABILITY; EMISSIONS; SMOKE AB Significant inter-annual variability of biomass burning was observed in South America over the 2007-2009 period. The 2007 number of fires detected from space in South America, as well as the magnitude of the atmospheric aerosol load resulting from fire activity, was the largest over the last ten years. The huge 2007 increase in fire activity was followed by large reductions in the 2008 and 2009 burning seasons. Large drops of the atmospheric load of carbonaceous aerosols over the subcontinent, relative to previous years, was registered in 2008 and 2009 by the OMI sensor onboard the Aura platform, and the MODIS sensors on the Terra and Aqua satellites. The 2009 fire season in South America was the least active of the last ten years. Satellite observations of fire statistics, precipitation, and aerosol optical depth data were used to analyze the fire season over South America and Central Africa during the last ten years to understand the factors that led to the 2007 and 2009 extremes. An analysis of precipitation anomaly data shows that the largest 6-month (May-October) precipitation deficit of the last ten years in South America occurred during 2007. The same analysis indicates that in 2009, this region experienced the largest excess precipitation of the decade. Since precipitation is the most important meteorological factor controlling biomass burning activity, it can be concluded that the 2007 maximum and 2009 minimum in fire activity and aerosol load were driven by the observed levels of precipitation. Analysis of the precipitation record, however, does not explain the extremely low 2008 biomass burning activity. Although the 2008 precipitation deficit was similar in magnitude to the one that in 2005 contributed to the second most intense biomass burning season in the last ten years, the 2008 fire season was surprisingly weak. The combined analysis of satellite data on atmospheric aerosol load, fire counts and precipitation strongly suggests that the observed 2008 decline in aerosol load and fire activity in South America was heavily influenced by conditions other than meteorological factors. C1 [Torres, O.; Chen, Z.; Jethva, H.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Ahn, C.] Sci Syst & Applicat Inc, Lanham, MD USA. [Freitas, S. R.] INPE, Ctr Weather Forecasting & Climate Studies, Cachoeira Paulista, Brazil. [Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Torres, O (reprint author), Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. EM omar.torres@hamptonu.edu RI Jethva, Hiren/H-2258-2012; Freitas, Saulo/A-2279-2012; Torres, Omar/G-4929-2013; Bhartia, Pawan/A-4209-2016 OI Jethva, Hiren/0000-0002-5408-9886; Freitas, Saulo/0000-0002-9879-646X; Bhartia, Pawan/0000-0001-8307-9137 NR 24 TC 36 Z9 37 U1 0 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 8 BP 3505 EP 3513 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 589WR UT WOS:000277185400004 ER PT J AU Ziemke, JR Chandra, S Oman, LD Bhartia, PK AF Ziemke, J. R. Chandra, S. Oman, L. D. Bhartia, P. K. TI A new ENSO index derived from satellite measurements of column ozone SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TROPICAL TROPOSPHERIC OZONE; 1997-1998 EL-NINO; OSCILLATION; DYNAMICS; WAVES; TOMS AB Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the 'Ozone ENSO Index' (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1 K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7 DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4 DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases. C1 [Ziemke, J. R.; Chandra, S.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ziemke, JR (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM j.r.ziemke@nasa.gov RI Oman, Luke/C-2778-2009; Bhartia, Pawan/A-4209-2016 OI Oman, Luke/0000-0002-5487-2598; Bhartia, Pawan/0000-0001-8307-9137 FU Goddard Earth Science Technology (GEST) [NGC5-494] FX The authors thank the Aura OMI and MLS instrument and algorithm teams for producing the satellite measurements used in this study. We especially thank Stacey Hollandsworth Frith and Richard Stolarski for development of the extensive "merged" total ozone data set from combined TOMS and SBUV measurements. We also especially thank Nathaniel Livesey and Lucien Froidevaux from the MLS team for their helpful guidance regarding the MLS data. Funding for this research was provided in part by Goddard Earth Science Technology (GEST) grant NGC5-494. NR 28 TC 33 Z9 34 U1 1 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 8 BP 3711 EP 3721 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 589WR UT WOS:000277185400017 ER PT J AU Fairlie, TD Jacob, DJ Dibb, JE Alexander, B Avery, MA van Donkelaar, A Zhang, L AF Fairlie, T. D. Jacob, D. J. Dibb, J. E. Alexander, B. Avery, M. A. van Donkelaar, A. Zhang, L. TI Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; EASTERN NORTH PACIFIC; NITRIC-ACID; SULFUR-DIOXIDE; INTEX-B; HETEROGENEOUS REACTION; CALCIUM-CARBONATE; UNITED-STATES; TROPOSPHERIC CHEMISTRY; NORTHEASTERN PACIFIC AB We use a 3-D global chemical transport model (GEOS-Chem) to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April-May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (gamma(HNO3) similar to 10(-3)) much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2-3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from similar to 30% in fresh Asian outflow to 80-90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk). This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10-15% or up to 1 ppb. C1 [Fairlie, T. D.; Avery, M. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Fairlie, T. D.; Jacob, D. J.; Zhang, L.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, D. J.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Dibb, J. E.] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA. [Alexander, B.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [van Donkelaar, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. RP Fairlie, TD (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM t.d.fairlie@nasa.gov RI Zhang, Lin/A-6729-2008; Alexander, Becky/N-7048-2013; Zhang, Lin/H-9801-2014; Chem, GEOS/C-5595-2014 OI Zhang, Lin/0000-0003-2383-8431; Alexander, Becky/0000-0001-9915-4621; FU NASA; NASA Langley Research Center Science Directorate; Advanced Study Program FX This work was funded by the NASA Global Tropospheric Chemistry Program, the NASA Langley Research Center Science Directorate, and the Advanced Study Program. Thanks to the following colleagues for discussions in the course of this work: M. Ammann, B. Anderson, J. Baltrusaitis, G. Chen, J. Crawford, J. Crounse, B. Doddridge, V. Grassian, C. Jordan, C. Kittaka, A. Laskin, H. Liu, C. McNaughton, R. Martin, S. Martin, N. Meskhidze, J. Olson, R. Park, E. Scheuer, Z. Shi, F. Solmon, C. Song, P. Wennberg. Thanks to the two anonymous reviewers for their comments. NR 94 TC 75 Z9 77 U1 8 U2 75 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 8 BP 3999 EP 4012 DI 10.5194/acp-10-3999-2010 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 589WR UT WOS:000277185400036 ER PT J AU Chen, B Huang, J Minnis, P Hu, Y Yi, Y Liu, Z Zhang, D Wang, X AF Chen, B. Huang, J. Minnis, P. Hu, Y. Yi, Y. Liu, Z. Zhang, D. Wang, X. TI Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID APRIL 1998; MINERAL DUST; STORMS; CLOUD; MODIS; CIRRUS; MODEL; CERES; PERFORMANCE; SIMULATION AB The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layers) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 mu m (BTD(11-12)) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as similar to 7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate. C1 [Chen, B.; Huang, J.; Zhang, D.; Wang, X.] Lanzhou Univ, Key Lab Semiarid Climate Change, Minist Educ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. [Minnis, P.; Hu, Y.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. [Yi, Y.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Liu, Z.] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Chen, B (reprint author), Lanzhou Univ, Key Lab Semiarid Climate Change, Minist Educ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. EM chenb03@lzu.cn RI Hu, Yongxiang/K-4426-2012; Liu, Zhaoyan/B-1783-2010; Minnis, Patrick/G-1902-2010; wang, xin/H-3936-2015 OI Liu, Zhaoyan/0000-0003-4996-5738; Minnis, Patrick/0000-0002-4733-6148; wang, xin/0000-0002-8839-8345 FU National Science Foundation of China [40725015, 40633017]; NASA FX This research is supported by National Science Foundation of China under grant (40725015, and 40633017) and by the NASA Science Mission through the CALIPSO Project and the Radiation Sciences Program. CloudSat data were obtained through the CloudSat Data Processing Center (http://www.cloudsat.cira.colostate.edu). CALIPSO data have been obtained from the Atmospheric Sciences Data Center (ASDC) at NASA Langley Research Center. The MODIS data were obtained from the NASA Earth Observing System Data and Information System, Distributed Active Archive Center (DAAC) at the GSFC. NR 46 TC 42 Z9 44 U1 6 U2 25 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 9 BP 4241 EP 4251 DI 10.5194/acp-10-4241-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 595HQ UT WOS:000277601700010 ER PT J AU Lyapustin, A Gatebe, CK Kahn, R Brandt, R Redemann, J Russell, P King, MD Pedersen, CA Gerland, S Poudyal, R Marshak, A Wang, Y Schaaf, C Hall, D Kokhanovsky, A AF Lyapustin, A. Gatebe, C. K. Kahn, R. Brandt, R. Redemann, J. Russell, P. King, M. D. Pedersen, C. A. Gerland, S. Poudyal, R. Marshak, A. Wang, Y. Schaaf, C. Hall, D. Kokhanovsky, A. TI Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AIRBORNE SUN PHOTOMETER; SOLAR SPECTRAL IRRADIANCE; IN-SITU MEASUREMENTS; GRAIN-SIZE; RADIATIVE-TRANSFER; OPTICAL-PROPERTIES; SURFACE-ROUGHNESS; NADIR REFLECTANCE; ANTARCTIC SNOW; WATER-VAPOR AB The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degrees angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi < 40A degrees), the best fit MRPV and RTLS models fit snow BRF to within +/- 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about +/- 0.05 with a possible bias of +/- 0.03 in the spectral range 0.4-2.2 mu m. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions. C1 [Lyapustin, A.; Gatebe, C. K.; Wang, Y.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Lyapustin, A.; Gatebe, C. K.; Kahn, R.; Poudyal, R.; Marshak, A.; Wang, Y.; Hall, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brandt, R.] Univ Washington, Seattle, WA 98195 USA. [Redemann, J.] BAERI, Sonoma, CA USA. [Russell, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [King, M. D.] Univ Colorado, Boulder, CO 80309 USA. [Pedersen, C. A.; Gerland, S.] Norwegian Polar Res Inst, N-9296 Tromso, Norway. [Poudyal, R.] Sci Syst & Applicat Inc, Lanham, MD USA. [Schaaf, C.] Boston Univ, Dept Geog, Boston, MA 02215 USA. [Kokhanovsky, A.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. RP Lyapustin, A (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. EM alexei.i.lyapustin@nasa.gov RI King, Michael/C-7153-2011; Hall, Dorothy/D-5562-2012; Gatebe, Charles/G-7094-2011; Marshak, Alexander/D-5671-2012; Lyapustin, Alexei/H-9924-2014; Kahn, Ralph/D-5371-2012; Kokhanovsky, Alexander/C-6234-2016 OI King, Michael/0000-0003-2645-7298; Gatebe, Charles/0000-0001-9261-2239; Lyapustin, Alexei/0000-0003-1105-5739; Kahn, Ralph/0000-0002-5234-6359; Kokhanovsky, Alexander/0000-0001-7370-1164 FU NASA Terrestrial Ecology Program; NASA's Radiation Sciences Program [NNX08AF89G]; NASA ARCTAS Field Campaign Program; NASA [NNX08AE94A]; NASA Cryosphere Program; ESA; NSF [ARC-06-12636]; Norwegian Research Council FX The research of A. Lyapustin and Y. Wang was funded by the NASA Terrestrial Ecology Program (D. Wickland). Research by C. K. Gatebe and R. Poudyal was sponsored by NASA's Radiation Sciences Program through Grant NNX08AF89G. The contribution of R. Kahn to this work is supported in part by the NASA ARCTAS Field Campaign Program, under J. Crawford, and the NASA Radiation Sciences Program (H. Maring). J. Redemann and P. Russell were supported by the NASA Radiation Sciences Program (H. Maring). C. Schaaf was funded by the NASA grant NNX08AE94A. A. Marshak was supported by the NASA Cryosphere Program (T. Wagner) as part of ICESat-2 Science Definition Team. A. Kokhanovsky was supported by the ESA Snow Radiance Project. The surface measurements were supported by funding from NSF Grant ARC-06-12636 and by Norwegian Research Council through the project Measurements of black carbon aerosols in Arctic snow- interpretation of effect on snow reflectance. Terje Berntsen and Borgar Aamaas assisted with the surface measurements at Barrow. We thank Glen Sheehan of the Barrow Arctic Science Consortium (BASC) for logistical support. We also thank the site managers of the AERONET and AEROCan sun photometer stations at Barrow and Eureka, respectively, for providing data for the snow BRF/albedo experiment. We appreciate the assistance of many individuals who made ARCTAS a success, particularly NASA P-3B pilots and supporting crew, and other members of the ARCTAS Science Team. S. Warren is particularly thanked for reading the manuscript and providing valuable discussion and suggestions. NR 53 TC 26 Z9 26 U1 2 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 9 BP 4359 EP 4375 DI 10.5194/acp-10-4359-2010 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 595HQ UT WOS:000277601700018 ER PT J AU Menon, S Koch, D Beig, G Sahu, S Fasullo, J Orlikowski, D AF Menon, S. Koch, D. Beig, G. Sahu, S. Fasullo, J. Orlikowski, D. TI Black carbon aerosols and the third polar ice cap SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CLOUD MICROPHYSICS; CLIMATE; IMPACTS; INDIA; TRENDS; MODEL; SNOW; SOOT; ASIA; SEA AB Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by similar to 0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is similar to 36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates. C1 [Menon, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, D.] Columbia Univ, NASA GISS, New York, NY USA. [Beig, G.; Sahu, S.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Fasullo, J.] CGD NCAR, Climate Anal Sect, Boulder, CO USA. [Orlikowski, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Menon, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM smenon@lbl.gov OI Beig, Gufran/0000-0002-5564-7210; FASULLO, JOHN/0000-0003-1216-892X FU US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA; DOE FX This work was supported by the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and under Contract DE-AC52-07NA27344 at Lawrence Livermore National Laboratory. S. M. acknowledges support from the NASA MAP Program and the DOE Atmospheric Radiation Program and thanks Hugh Morrison (NCAR) and Igor Sednev (LBNL) for help with the cloud scheme used in the climate model and Nadine Unger (NASA GISS) for help with determining the statistical significance of the results. NR 39 TC 98 Z9 101 U1 7 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 10 BP 4559 EP 4571 DI 10.5194/acp-10-4559-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603CE UT WOS:000278184700008 ER PT J AU Zhang, L Jacob, DJ Liu, X Logan, JA Chance, K Eldering, A Bojkov, BR AF Zhang, L. Jacob, D. J. Liu, X. Logan, J. A. Chance, K. Eldering, A. Bojkov, B. R. TI Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID UNITED-STATES; MONITORING INSTRUMENT; EMISSION SPECTROMETER; STRATOSPHERIC OZONE; MODEL DESCRIPTION; HIGH-RESOLUTION; AIR-QUALITY; 3-D MODELS; A-PRIORI; DISTRIBUTIONS AB We analyze the theoretical basis of three different methods to validate and intercompare satellite measurements of atmospheric composition, and apply them to tropospheric ozone retrievals from the Tropospheric Emission Spectrometer (TES) and the Ozone Monitoring Instrument (OMI). The first method (in situ method) uses in situ vertical profiles for absolute instrument validation; it is limited by the sparseness of in situ data. The second method (CTM method) uses a chemical transport model (CTM) as an intercomparison platform; it provides a globally complete intercomparison with relatively small noise from model error. The third method (averaging kernel smoothing method) involves smoothing the retrieved profile from one instrument with the averaging kernel matrix of the other; it also provides a global intercomparison but dampens the actual difference between instruments and adds noise from the a priori. We apply the three methods to a full year (2006) of TES and OMI data. Comparison with in situ data from ozonesondes shows mean positive biases of 5.3 parts per billion volume (ppbv) (10%) for TES and 2.8 ppbv (5%) for OMI at 500 hPa. We show that the CTM method (using the GEOS-Chem CTM) closely approximates results from the in situ method while providing global coverage. It reveals that differences between TES and OMI are generally less than 10 ppbv (18%), except at northern mid-latitudes in summer and over tropical continents. The CTM method further allows for CTM evaluation using both satellite observations. We thus find that GEOS-Chem underestimates tropospheric ozone in the tropics due to possible underestimates of biomass burning, soil, and lightning emissions. It overestimates ozone in the northern subtropics and southern mid-latitudes, likely because of excessive stratospheric influx of ozone. C1 [Zhang, L.; Jacob, D. J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, D. J.; Logan, J. A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Liu, X.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, X.; Chance, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Liu, X.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eldering, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bojkov, B. R.] European Space Agcy ESA ESRIN, Sci Applicat & Future Technol Dept, I-00044 Frascati, RM, Italy. RP Zhang, L (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM linzhang@fas.harvard.edu RI Zhang, Lin/A-6729-2008; Zhang, Lin/H-9801-2014; Chem, GEOS/C-5595-2014; Liu, Xiong/P-7186-2014; OI Zhang, Lin/0000-0003-2383-8431; Liu, Xiong/0000-0003-2939-574X; Chance, Kelly/0000-0002-7339-7577 FU NASA [NNX07AN65H, NNX08AN98G, NNG06GH99G]; Smithsonian Institution FX This work was funded by the NASA Atmospheric Composition Modeling and Analysis Program and by NASA Headquarters under the Earth and Space Science Fellowship Program Grant NNX07AN65H to Lin Zhang, and by the New Investigator Program in Earth Science (NNX08AN98G) to Xiong Liu. Xiong Liu and Kelly Chance also acknowledge support from the NASA Atmospheric Composition Program (NNG06GH99G) and the Smithsonian Institution. NR 66 TC 44 Z9 45 U1 1 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 10 BP 4725 EP 4739 DI 10.5194/acp-10-4725-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603CE UT WOS:000278184700020 ER PT J AU Remsberg, E Natarajan, M Marshall, BT Gordley, LL Thompson, RE Lingenfelser, G AF Remsberg, E. Natarajan, M. Marshall, B. T. Gordley, L. L. Thompson, R. E. Lingenfelser, G. TI Improvements in the profiles and distributions of nitric acid and nitrogen dioxide with the LIMS version 6 dataset SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID NONLOCAL THERMODYNAMIC-EQUILIBRIUM; INFRARED MONITOR; NIMBUS-7 LIMS; STRATOSPHERIC AEROSOL; MIDDLE ATMOSPHERE; POLAR WINTER; WATER-VAPOR; MU-M; OZONE; MODEL AB The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO(3)) and nitrogen dioxide (NO(2)) profiles and distributions of 1978/1979 are described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO(3) profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO(2) are accounted for better with V6. The accuracy of the retrieved V6 NO(2) is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO(3)/NO(2) ratio, day-to-night NO(2) ratio, and with estimates of the production of NO(2) in the mesosphere and its descent to the upper stratosphere during polar night. In particular, the findings for middle and upper stratospheric NO(2) should also be more compatible with those obtained from more recent satellite sensors because the effects of the spin-splitting of the NO(2) lines are accounted for now with the LIMS V6 algorithm. The improved precisions and more frequent retrievals of the LIMS profiles along their orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be studied quantitatively throughout the stratosphere with the LIMS V6 data. C1 [Remsberg, E.; Natarajan, M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Marshall, B. T.; Gordley, L. L.; Thompson, R. E.] GATS Inc, Newport News, VA 23606 USA. [Lingenfelser, G.] SSAI, Hampton, VA 23661 USA. RP Remsberg, E (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 401B, Hampton, VA 23681 USA. EM ellis.e.remsberg@nasa.gov FU NASA NRA [NNH08ZDA001N] FX We recognize the extensive efforts of John Gille and Jim Russell III (Co-PIs) and the members of the original Project and Science Teams for their development and conduct of the LIMS experiment. Yun-fei Wang conducted analyses of the LIMS HNO3 radiances for evidence of any spurious effects from its FOV side lobes. The comments and suggestions from the two anonymous reviewers of the manuscript have been helpful and are appreciated. The research leading to the improvement and generation of the LIMS V6 Level 2 dataset was conducted with the consistent support of Jack Kaye of NASA Headquarters. The archival of the LIMS Level 3 product and the analyses in this manuscript were supported with funds from the NASA NRA NNH08ZDA001N of the MAP Program administered by David Considine. NR 61 TC 2 Z9 2 U1 1 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 10 BP 4741 EP 4756 DI 10.5194/acp-10-4741-2010 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603CE UT WOS:000278184700021 ER PT J AU Wyant, MC Wood, R Bretherton, CS Mechoso, CR Bacmeister, J Balmaseda, MA Barrett, B Codron, F Earnshaw, P Fast, J Hannay, C Kaiser, JW Kitagawa, H Klein, SA Kohler, M Manganello, J Pan, HL Sun, F Wang, S Wang, Y AF Wyant, M. C. Wood, R. Bretherton, C. S. Mechoso, C. R. Bacmeister, J. Balmaseda, M. A. Barrett, B. Codron, F. Earnshaw, P. Fast, J. Hannay, C. Kaiser, J. W. Kitagawa, H. Klein, S. A. Koehler, M. Manganello, J. Pan, H. -L. Sun, F. Wang, S. Wang, Y. TI The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; GENERAL-CIRCULATION MODELS; LAYER MIXING SCHEME; LARGE-SCALE MODELS; LIQUID WATER PATH; PART I; CLIMATE MODEL; MICROPHYSICAL PROCESSES; BULK PARAMETERIZATION; OROGRAPHIC INFLUENCES AB The Preliminary VOCALS Model Assessment (PreVOCA) aims to assess contemporary atmospheric modeling of the subtropical South East Pacific, with a particular focus on the clouds and the marine boundary layer (MBL). Models results from fourteen modeling centers were collected including operational forecast models, regional models, and global climate models for the month of October 2006. Forecast models and global climate models produced daily forecasts, while most regional models were run continuously during the study period, initialized and forced at the boundaries with global model analyses. Results are compared in the region from 40 degrees S to the equator and from 110 degrees W to 70 degrees W, corresponding to the Pacific coast of South America. Mean-monthly model surface winds agree well with QuikSCAT observed winds and models agree fairly well on mean weak large-scale subsidence in the region next to the coast. However they have greatly differing geographic patterns of mean cloud fraction with only a few models agreeing well with MODIS observations. Most models also underestimate the MBL depth by several hundred meters in the eastern part of the study region. The diurnal cycle of liquid water path is underestimated by most models at the 85 degrees W 20 degrees S stratus buoy site compared with satellite, consistent with previous modeling studies. The low cloud fraction is also underestimated during all parts of the diurnal cycle compared to surface-based climatologies. Most models qualitatively capture the MBL deepening around 15 October 2006 at the stratus buoy, associated with colder air at 700 hPa. C1 [Wyant, M. C.; Wood, R.; Bretherton, C. S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Mechoso, C. R.; Wang, S.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Bacmeister, J.] NASA, Global Modeling & Assimiliat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. [Balmaseda, M. A.; Kaiser, J. W.; Koehler, M.] European Ctr Medium Range Weather Forecasts, Dept Res, Reading RG2 9AX, Berks, England. [Barrett, B.] Univ Chile, Dept Geophys, Santiago, Chile. [Codron, F.] Univ Paris 06, Meteorol Dynam Lab, Paris, France. [Earnshaw, P.] Met Off, Exeter, Devon, England. [Fast, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hannay, C.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Kitagawa, H.] Japan Meteorol Agcy, Meteorol Coll, Tokyo, Japan. [Klein, S. A.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Manganello, J.] Ctr Ocean Land Atmosphere Studies, Calverton, MD USA. [Pan, H. -L.] Natl Ctr Environm Predict, Environm Modeling Ctr, Camp Springs, MD USA. [Wang, S.] USN, Marine Meteorol Div, Res Lab, Monterey, CA USA. [Wang, Y.] Univ Hawaii Manoa, Int Pacific Res Ctr, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. RP Wyant, MC (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. EM mwyant@atmos.washington.edu RI Earnshaw, Paul/F-7148-2010; Earnshaw, Paul/A-3289-2009; Wood, Robert/A-2989-2008; Kaiser, Johannes/A-7057-2012; Codron, Francis/F-2719-2014; Klein, Stephen/H-4337-2016 OI Wood, Robert/0000-0002-1401-3828; Kaiser, Johannes/0000-0003-3696-9123; Codron, Francis/0000-0001-7038-6189; Klein, Stephen/0000-0002-5476-858X FU U.S. Department of Energy's Office of Science; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NX06AB74G]; NSF [ATM0745702]; NOAA [NA070AR4310282] FX Thanks to D. Painemal and P. Zuidema for providing MODIS retrieved cloud-top heights. Also thanks to S. Park who provided his gridded EECRA data. COSMIC data was provided by B. Kuo. Many thanks to L. O'Neill at NRL who provided diurnal fits and monthly mean of LWP from satellite. CALIPSO cloud top-height data was provided by D. Wu of the Ocean University of China. Thanks also to Virendra Ghate for providing diurnal cloud fraction data. QuikSCAT data are produced by Remote Sensing Systems and sponsored by the NASA Ocean Vector Winds Science Team. S. deSzoeke's archive of ship observations was very helpful to this work. The ISCCP FD data were obtained from the ISCCP web site http://isccp.giss.nasa.gov maintained at NASA GISS. S. A. Klein acknowledges M. Zhao (GFDL) for performing GFDL model integrations, J. Boyle (LLNL) for preparing analysis data, and the U.S. Department of Energy's Office of Science Climate Change Prediction and Atmospheric Radiation Measurement programs for financial support. The contribution of S. A. Klein to this work is performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We acknowledge the support of NASA award No. NX06AB74G for C. Hannay. This work was also supported by NSF grant ATM0745702 and NOAA grant NA070AR4310282. NR 65 TC 64 Z9 64 U1 0 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 10 BP 4757 EP 4774 DI 10.5194/acp-10-4757-2010 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603CE UT WOS:000278184700022 ER PT J AU Koren, I Remer, LA Altaratz, O Martins, JV Davidi, A AF Koren, I. Remer, L. A. Altaratz, O. Martins, J. V. Davidi, A. TI Aerosol-induced changes of convective cloud anvils produce strong climate warming SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID RADIATIVE-TRANSFER; POLLUTION; ALBEDO; AMAZON; SMOKE; MODIS; WATER; RAIN; AIR AB The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(-2). Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (tau), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations. C1 [Koren, I.; Altaratz, O.; Davidi, A.] Dept Environm Sci Weizmann Inst, IL-76100 Rehovot, Israel. [Remer, L. A.; Martins, J. V.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Martins, J. V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Martins, J. V.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Koren, I (reprint author), Dept Environm Sci Weizmann Inst, IL-76100 Rehovot, Israel. EM ilan.koren@weizmann.ac.il RI Koren, Ilan/K-1417-2012 OI Koren, Ilan/0000-0001-6759-6265 FU Minerva Foundation; Weizmann-Argentina Cooperation program; Yeda-Sela program; NASA FX I. K. would like to thank A. Kostinski for helpful comments on the research. This research was supported in part by the Minerva Foundation, the Weizmann-Argentina Cooperation program, the Yeda-Sela program and the NASA's Interdisciplinary Sciences Program under the direction of Hal Maring. I. K. is incumbent of the Benjamin H. Swig and Jack D. Weiler career development chair. NR 31 TC 51 Z9 52 U1 0 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 10 BP 5001 EP 5010 DI 10.5194/acp-10-5001-2010 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603CE UT WOS:000278184700038 ER PT J AU Jacob, DJ Crawford, JH Maring, H Clarke, AD Dibb, JE Emmons, LK Ferrare, RA Hostetler, CA Russell, PB Singh, HB Thompson, AM Shaw, GE McCauley, E Pederson, JR Fisher, JA AF Jacob, D. J. Crawford, J. H. Maring, H. Clarke, A. D. Dibb, J. E. Emmons, L. K. Ferrare, R. A. Hostetler, C. A. Russell, P. B. Singh, H. B. Thompson, A. M. Shaw, G. E. McCauley, E. Pederson, J. R. Fisher, J. A. TI The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID FOREST-FIRE SMOKE; CHEMICAL EVOLUTION; OPTICAL-PROPERTIES; AIR-POLLUTION; NORTH-AMERICA; DIODE-LASER; AIRBORNE OBSERVATIONS; ABSORPTION PROPERTIES; REACTIVE NITROGEN; CURRENT KNOWLEDGE AB The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. The June-July deployment was preceded by one week of flights over California (ARCTAS-CARB) focused on (1) improving state emission inventories for greenhouse gases and aerosols, (2) providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A) revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5-10 pptv) in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B) indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution. C1 [Jacob, D. J.; Fisher, J. A.] Harvard Univ, Cambridge, MA 02138 USA. [Crawford, J. H.; Ferrare, R. A.; Hostetler, C. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Maring, H.] NASA Headquarters, Washington, DC USA. [Clarke, A. D.] Univ Hawaii, Honolulu, HI 96822 USA. [Dibb, J. E.] Univ New Hampshire, Durham, NH 03824 USA. [Emmons, L. K.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Russell, P. B.; Singh, H. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thompson, A. M.] Penn State Univ, State Coll, PA USA. [Shaw, G. E.] Univ Alaska, Fairbanks, AK 99701 USA. [McCauley, E.; Pederson, J. R.] Calif Air Resources Board, Sacramento, CA USA. RP Jacob, DJ (reprint author), Harvard Univ, Cambridge, MA 02138 USA. EM djacob@fas.harvard.edu RI Fisher, Jenny/J-3979-2012; Pfister, Gabriele/A-9349-2008; Crawford, James/L-6632-2013; Emmons, Louisa/R-8922-2016; Thompson, Anne /C-3649-2014 OI Fisher, Jenny/0000-0002-2921-1691; Crawford, James/0000-0002-6982-0934; Emmons, Louisa/0000-0003-2325-6212; Thompson, Anne /0000-0002-7829-0920 FU NASA; California Air Resources Board FX This work was funded by the NASA Global Tropospheric Chemistry Program, the NASA Radiation Sciences Program, and the California Air Resources Board. We thank Kelly Chance, Charles Gatebe, and Ross Salawitch for useful comments. NR 177 TC 186 Z9 187 U1 6 U2 47 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 11 BP 5191 EP 5212 DI 10.5194/acp-10-5191-2010 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 610PI UT WOS:000278745300014 ER PT J AU Kar, J Fishman, J Creilson, JK Richter, A Ziemke, J Chandra, S AF Kar, J. Fishman, J. Creilson, J. K. Richter, A. Ziemke, J. Chandra, S. TI Are there urban signatures in the tropospheric ozone column products derived from satellite measurements? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AIR-QUALITY; UNITED-STATES; POLLUTION; CITY; EMISSIONS; NORTHEASTERN; CAMPAIGN; EPISODE; PLUMES; SPACE AB In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from Total Ozone Mapping Spectrometer (TOMS)/Solar Backscattered Ultraviolet (SBUV) and Ozone Monitoring Instrument (OMI)/Microwave Limb Sounder (MLS) satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIA-MACHY) instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that ultraviolet (UV) measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites. C1 [Kar, J.; Creilson, J. K.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Fishman, J.; Creilson, J. K.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Richter, A.] Univ Bremen, Inst Environm Phys, Bremen, Germany. [Ziemke, J.; Chandra, S.] Univ Maryland, GEST, Baltimore, MD 21201 USA. RP Kar, J (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM jayanta.kar@nasa.gov RI Richter, Andreas/C-4971-2008 OI Richter, Andreas/0000-0003-3339-212X NR 37 TC 19 Z9 19 U1 1 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 11 BP 5213 EP 5222 DI 10.5194/acp-10-5213-2010 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 610PI UT WOS:000278745300015 ER PT J AU Chen, B Huang, J Minnis, P Hu, Y Yi, Y Liu, Z Zhang, D Wang, X AF Chen, B. Huang, J. Minnis, P. Hu, Y. Yi, Y. Liu, Z. Zhang, D. Wang, X. TI Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements (vol 10, pg 4241, 2010) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Chen, B.; Huang, J.; Zhang, D.; Wang, X.] Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China. [Minnis, P.; Hu, Y.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. [Yi, Y.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Liu, Z.] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Chen, B (reprint author), Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China. EM chenb03@lzu.cn RI Hu, Yongxiang/K-4426-2012; zhang, zhijuan/H-9917-2016 OI zhang, zhijuan/0000-0002-5328-7506 NR 1 TC 0 Z9 0 U1 1 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 12 BP 5359 EP 5359 DI 10.5194/acp-10-5359-2010 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618YC UT WOS:000279391100005 ER PT J AU Naik, V Fiore, AM Horowitz, LW Singh, HB Wiedinmyer, C Guenther, A de Gouw, JA Millet, DB Goldan, PD Kuster, WC Goldstein, A AF Naik, V. Fiore, A. M. Horowitz, L. W. Singh, H. B. Wiedinmyer, C. Guenther, A. de Gouw, J. A. Millet, D. B. Goldan, P. D. Kuster, W. C. Goldstein, A. TI Observational constraints on the global atmospheric budget of ethanol SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; MASS-SPECTROMETRY; PEROXY-RADICALS; EMISSIONS; ACETALDEHYDE; METHANOL; MODEL; TROPOSPHERE; CHEMISTRY; TRANSPORT AB Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr(-1) from industrial sources and biofuels, 9.2 Tg yr(-1) from terrestrial plants, similar to 0.5 Tg yr(-1) from biomass burning, and 0.05 Tg yr(-1) from atmospheric reactions of the ethyl peroxy radical (C2H5O2) with itself and with the methyl peroxy radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel. C1 [Naik, V.] Princeton Univ, Woodrow Wilson Sch, Princeton, NJ 08544 USA. [Naik, V.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Singh, H. B.] NASA AMES, Moffett Field, CA USA. [Wiedinmyer, C.; Guenther, A.] NCAR, Boulder, CO USA. [de Gouw, J. A.; Goldan, P. D.; Kuster, W. C.] NOAA Earth Syst Res Lab, Boulder, CO USA. [de Gouw, J. A.; Goldan, P. D.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Millet, D. B.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. [Goldstein, A.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Naik, V (reprint author), NOAA, High Performance Technol Inc, Geophys Fluid Dynam Lab, Princeton, NJ USA. EM vaishali.naik@noaa.gov RI Goldstein, Allen/A-6857-2011; Millet, Dylan/G-5832-2012; Kuster, William/E-7421-2010; Horowitz, Larry/D-8048-2014; Naik, Vaishali/A-4938-2013; Guenther, Alex/B-1617-2008; de Gouw, Joost/A-9675-2008; Manager, CSD Publications/B-2789-2015 OI Goldstein, Allen/0000-0003-4014-4896; Kuster, William/0000-0002-8788-8588; Horowitz, Larry/0000-0002-5886-3314; Naik, Vaishali/0000-0002-2254-1700; Guenther, Alex/0000-0001-6283-8288; de Gouw, Joost/0000-0002-0385-1826; FU Princeton Environmental Institute at Princeton University; Atmospheric and Oceanic Sciences at Princeton; NOAA/GFDL FX We thank Michael Oppenheimer for helpful discussions and Erin Czech for providing INTEX-B data. We are grateful to Hiram Levy and Song-Miao Fan for reviewing an earlier version of this manuscript. V. Naik was supported by the Carbon Mitigation Initiative (CMI) of the Princeton Environmental Institute at Princeton University (http://cmi.princeton.edu) which is sponsored by BP and Ford, and the visiting scientist program in Atmospheric and Oceanic Sciences at Princeton and NOAA/GFDL. NR 43 TC 20 Z9 20 U1 1 U2 29 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 12 BP 5361 EP 5370 DI 10.5194/acp-10-5361-2010 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618YC UT WOS:000279391100006 ER PT J AU Kulawik, SS Jones, DBA Nassar, R Irion, FW Worden, JR Bowman, KW Machida, T Matsueda, H Sawa, Y Biraud, SC Fischer, ML Jacobson, AR AF Kulawik, S. S. Jones, D. B. A. Nassar, R. Irion, F. W. Worden, J. R. Bowman, K. W. Machida, T. Matsueda, H. Sawa, Y. Biraud, S. C. Fischer, M. L. Jacobson, A. R. TI Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC CO2; SATELLITE DATA; ABSOLUTE INTENSITIES; SOURCE INVERSIONS; WESTERN PACIFIC; LASER BANDS; SPACE; SINKS; DIOXIDE; (CO2)-C-12-O-16 AB We present carbon dioxide (CO2) estimates from the Tropospheric Emission Spectrometer (TES) on the EOS-Aura satellite launched in 2004. For observations between 40 degrees S and 45 degrees N, we find about 1 degree of freedom with peak sensitivity at 511 hPa. The estimated error is similar to 10 ppm for a single target and 1.3-2.3 ppm for monthly averages on spatial scales of 20 degrees x30 degrees. Monthly spatially-averaged TES data from 2005-2008 processed with a uniform initial guess and prior are compared to CONTRAIL aircraft data over the Pacific ocean, aircraft data at the Southern Great Plains (SGP) ARM site in the southern US, and the Mauna Loa and Samoa surface stations. Comparisons to Mauna Loa data show a correlation of 0.92, a standard deviation of 1.3 ppm, a predicted error of 1.2 ppm, and a similar to 2% low bias, which is subsequently corrected. Comparisons to SGP aircraft data over land show a correlation of 0.67 and a standard deviation of 2.3 ppm. TES data between 40 degrees S and 45 degrees N for 2006-2007 are compared to surface flask data, GLOBALVIEW, the Atmospheric Infrared Sounder (AIRS), and CarbonTracker. Comparison to GLOBALVIEW-CO2 ocean surface sites shows a correlation of 0.60 which drops when TES is offset in latitude, longitude, or time. At these same locations, TES shows a 0.62 and 0.67 correlation to Carbon-Tracker at the surface and 5 km, respectively. We also conducted an observing system simulation experiment to assess the potential utility of the TES data for inverse modeling of CO2 fluxes. We find that if biases in the data and model are well characterized, the averaged data have the potential to provide sufficient information to significantly reduce uncertainty on annual estimates of regional CO2 sources and sinks. Averaged pseudo-data at 10 degrees x10 degrees reduced uncertainty in flux estimates by as much as 70% for some tropical regions. C1 [Kulawik, S. S.; Irion, F. W.; Worden, J. R.; Bowman, K. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jones, D. B. A.; Nassar, R.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Nassar, R.] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada. [Machida, T.; Sawa, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Matsueda, H.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Biraud, S. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Fischer, M. L.] EO Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. [Jacobson, A. R.] NOAA Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. RP Kulawik, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM susan.kulawik@jpl.nasa.gov RI Biraud, Sebastien/M-5267-2013; Jones, Dylan/O-2475-2014; OI Biraud, Sebastien/0000-0001-7697-933X; Jones, Dylan/0000-0002-1935-3725; Nassar, Ray/0000-0001-6282-1611 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; Natural Sciences and Engineering Research Council (NSERC); National Aeronautics and Space Administration (NASA) FX SGP data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. Contact: Margaret Torn, Lead Scientist.; Work at the University of Toronto was funded through grants from the Natural Sciences and Engineering Research Council (NSERC).; Work at the Jet Propulsion Laboratory, California Institute of Technology, was performed under a contract with the National Aeronautics and Space Administration and funded through the NASA Roses 2007 Atmospheric Composition: Aura Science Team proposal, "Estimation of CO2 Profiles from the Tropospheric Emission Spectrometer (TES) and Application to Carbon Dioxide Source and Sink Estimates". NR 73 TC 49 Z9 51 U1 1 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 12 BP 5601 EP 5623 DI 10.5194/acp-10-5601-2010 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618YC UT WOS:000279391100021 ER PT J AU Jonson, JE Stohl, A Fiore, AM Hess, P Szopa, S Wild, O Zeng, G Dentener, FJ Lupu, A Schultz, MG Duncan, BN Sudo, K Wind, P Schulz, M Marmer, E Cuvelier, C Keating, T Zuber, A Valdebenito, A Dorokhov, V De Backer, H Davies, J Chen, GH Johnson, B Tarasick, DW Stubi, R Newchurch, MJ von der Gathen, P Steinbrecht, W Claude, H AF Jonson, J. E. Stohl, A. Fiore, A. M. Hess, P. Szopa, S. Wild, O. Zeng, G. Dentener, F. J. Lupu, A. Schultz, M. G. Duncan, B. N. Sudo, K. Wind, P. Schulz, M. Marmer, E. Cuvelier, C. Keating, T. Zuber, A. Valdebenito, A. Dorokhov, V. De Backer, H. Davies, J. Chen, G. H. Johnson, B. Tarasick, D. W. Stuebi, R. Newchurch, M. J. von der Gathen, P. Steinbrecht, W. Claude, H. TI A multi-model analysis of vertical ozone profiles SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID DISPERSION MODEL FLEXPART; TRANSPORT; EUROPE AB A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP). Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations. In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further. At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by region. Intercontinental transport of ozone is finally determined based on differences in model ensemble calculations. With emissions perturbed by 20% per region, calculated intercontinental contributions to ozone in the free troposphere range from less than 1 ppb to 3 ppb, with small contributions in winter. The results are corroborated by the retroplume calculations. At several locations the seasonal contributions to ozone in the free troposphere from intercontinental transport differ from what was shown earlier at the surface using the same dataset. The large spread in model results points to a need of further evaluation of the chemical and physical processes in order to improve the credibility of global model results. C1 [Jonson, J. E.; Wind, P.; Valdebenito, A.] Norwegian Meteorol Inst, Oslo, Norway. [Stohl, A.] NILU, Kjeller, Norway. [Fiore, A. M.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Hess, P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Szopa, S.; Schulz, M.] CEA CNRS UVSQ IPSL, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Wild, O.] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YW, England. [Zeng, G.] Univ Cambridge, Ctr Atmospher Sci, Cambridge CB2 1TN, England. [Dentener, F. J.; Marmer, E.; Cuvelier, C.] Inst Environm & Sustainabil, DG Joint Res Ctr, European Commiss, Ispra, Italy. [Lupu, A.] York Univ, Ctr Res Earth & Space Sci, N York, ON M3J 1P3, Canada. [Schultz, M. G.] Forschungszentrum Julich, ICG 2, D-52425 Julich, Germany. [Duncan, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sudo, K.] Nagoya Univ, Grad Sch Environ Studies, Nagoya, Aichi 4648601, Japan. [Keating, T.] US EPA, Off Policy Anal & Review, Washington, DC 20460 USA. [Zuber, A.] Commiss European Communities, Environm Directorate Gen, B-1049 Brussels, Belgium. [Dorokhov, V.] Cent Aerol Observ, Moscow, Russia. [De Backer, H.] RMIB, Brussels, Belgium. [Davies, J.; Tarasick, D. W.] Environm Canada, Downsview, ON, Canada. [Chen, G. H.] Cent Weather Bur, Taipei, Taiwan. [Johnson, B.] NOAA ESRL, Boulder, CO USA. [Stuebi, R.] MeteoSwiss, Fed Off Meteorol & Climatol, Payerne, Switzerland. [Newchurch, M. J.] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA. [von der Gathen, P.] Alfred Wegener Inst Polar & Marine Res, D-14473 Potsdam, Germany. RP Jonson, JE (reprint author), Norwegian Meteorol Inst, Oslo, Norway. EM j.e.jonson@met.no RI Steinbrecht, Wolfgang/G-6113-2010; Duncan, Bryan/A-5962-2011; Schultz, Martin/I-9512-2012; Hess, Peter/M-3145-2015; Schulz, Michael/A-6930-2011; Wild, Oliver/A-4909-2009; Szopa, Sophie/F-8984-2010; Lupu, Alexandru/D-3689-2009; Stohl, Andreas/A-7535-2008; von der Gathen, Peter/B-8515-2009 OI Tarasick, David/0000-0001-9869-0692; Steinbrecht, Wolfgang/0000-0003-0680-6729; Schultz, Martin/0000-0003-3455-774X; Hess, Peter/0000-0003-2439-3796; Schulz, Michael/0000-0003-4493-4158; Wild, Oliver/0000-0002-6227-7035; Szopa, Sophie/0000-0002-8641-1737; Lupu, Alexandru/0000-0002-4520-5523; Stohl, Andreas/0000-0002-2524-5755; von der Gathen, Peter/0000-0001-7409-1556 FU Long-range Transmission of Air pollutants in Europe (EMEP) under UNECE; Belgian Federal Government FX This work was supported by the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air pollutants in Europe (EMEP) under UNECE. We would like to thank Asmund Fahre Vik, NILU and Johannes Stahelin, ETH Zurich, for valuable advice on the interpretation of ozonesonde data. We would also like to thank WOUDC for making the ozonesonde measurements available. The ozone sounding program in Uccle is supported by the Solar-Terrestrial Centre of Excellence, a research collaboration established by the Belgian Federal Government through the action plan for reinforcement of the federal scientific institutes (decision council of ministers taken on 22/03/2006). NR 30 TC 29 Z9 29 U1 3 U2 23 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 12 BP 5759 EP 5783 DI 10.5194/acp-10-5759-2010 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618YC UT WOS:000279391100030 ER PT J AU Mao, J Jacob, DJ Evans, MJ Olson, JR Ren, X Brune, WH St Clair, JM Crounse, JD Spencer, KM Beaver, MR Wennberg, PO Cubison, MJ Jimenez, JL Fried, A Weibring, P Walega, JG Hall, SR Weinheimer, AJ Cohen, RC Chen, G Crawford, JH McNaughton, C Clarke, AD Jaegle, L Fisher, JA Yantosca, RM Le Sager, P Carouge, C AF Mao, J. Jacob, D. J. Evans, M. J. Olson, J. R. Ren, X. Brune, W. H. St Clair, J. M. Crounse, J. D. Spencer, K. M. Beaver, M. R. Wennberg, P. O. Cubison, M. J. Jimenez, J. L. Fried, A. Weibring, P. Walega, J. G. Hall, S. R. Weinheimer, A. J. Cohen, R. C. Chen, G. Crawford, J. H. McNaughton, C. Clarke, A. D. Jaegle, L. Fisher, J. A. Yantosca, R. M. Le Sager, P. Carouge, C. TI Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID PHOTOCHEMISTRY EXPERIMENT 2; BOUNDARY-LAYER; AEROSOL-PARTICLES; UNITED-STATES; TRANSPACIFIC TRANSPORT; ATMOSPHERIC CHEMISTRY; CONVECTIVE INJECTION; ACCURATE SIMULATION; PEROXY-RADICALS; CHEMICAL-MODELS AB We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HOx H+OH+peroxy radicals) and their reservoirs (HOy HOx+peroxides) in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism overestimates the observed HO2 and H2O2 concentrations. Computation of HOx and HOy gasphase chemical budgets on the basis of the aircraft observations also indicates a large missing sink for both. We hy-pothesize that this could reflect HO2 uptake by aerosols, favored by low temperatures and relatively high aerosol loadings, through a mechanism that does not produce H2O2. We implemented such an uptake of HO2 by aerosol in the model using a standard reactive uptake coefficient parameterization with gamma(HO2) values ranging from 0.02 at 275K to 0.5 at 220 K. This successfully reproduces the concentrations and vertical distributions of the different HOx species and HOy reservoirs. HO2 uptake by aerosol is then a major HOx and HOy sink, decreasing mean OH and HO2 concentrations in the Arctic troposphere by 32% and 31% respectively. Better rate and product data for HO2 uptake by aerosol are needed to understand this role of aerosols in limiting the oxidizing power of the Arctic atmosphere. C1 [Mao, J.; Jacob, D. J.; Yantosca, R. M.; Le Sager, P.; Carouge, C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Jacob, D. J.; Fisher, J. A.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Evans, M. J.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Olson, J. R.; Chen, G.; Crawford, J. H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23665 USA. [Ren, X.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Brune, W. H.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [St Clair, J. M.; Crounse, J. D.; Spencer, K. M.; Beaver, M. R.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Wennberg, P. O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wennberg, P. O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Fried, A.; Weibring, P.; Walega, J. G.] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA. [Hall, S. R.; Weinheimer, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Cohen, R. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cohen, R. C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [McNaughton, C.; Clarke, A. D.] Univ Hawaii, Honolulu, HI 96822 USA. [Jaegle, L.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP Mao, J (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM mao@fas.harvard.edu RI Evans, Mathew/A-3886-2012; Fisher, Jenny/J-3979-2012; Cohen, Ronald/A-8842-2011; Crawford, James/L-6632-2013; Yantosca, Robert/F-7920-2014; Chem, GEOS/C-5595-2014; Ren, Xinrong/E-7838-2015; Crounse, John/C-3700-2014; Mao, Jingqiu/F-2511-2010; Jimenez, Jose/A-5294-2008; Crounse, John/E-4622-2011; Carouge, Claire/A-4755-2012; Wennberg, Paul/A-5460-2012 OI Evans, Mathew/0000-0003-4775-032X; Fisher, Jenny/0000-0002-2921-1691; Cohen, Ronald/0000-0001-6617-7691; Crawford, James/0000-0002-6982-0934; Yantosca, Robert/0000-0003-3781-1870; Ren, Xinrong/0000-0001-9974-1666; Crounse, John/0000-0001-5443-729X; Mao, Jingqiu/0000-0002-4774-9751; Jimenez, Jose/0000-0001-6203-1847; Carouge, Claire/0000-0002-0313-8385; FU NASA FX The authors would like to thank Scot T. Martin, Hongyu Liu, Charles E. Miller, Richard A. Ferrare, Karl D. Froyd and Daniel M. Murphy for helpful discussions. We also would like to thank Yuhang Wang for providing the TOPSE dataset, Huisheng Bian for providing Fast-JX updates and Dirk Richter for contributing to the HCHO measurement. J. Mao also thanks David M. Shelow and the NASA DC-8 crew for their generous help with making HOx measurements on the aircraft. This work was supported by the NASA Tropospheric Chemistry Program. NR 113 TC 99 Z9 99 U1 2 U2 48 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 5823 EP 5838 DI 10.5194/acp-10-5823-2010 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400003 ER PT J AU Anton, M Cachorro, VE Vilaplana, JM Toledano, C Krotkov, NA Arola, A Serrano, A de la Morena, B AF Anton, M. Cachorro, V. E. Vilaplana, J. M. Toledano, C. Krotkov, N. A. Arola, A. Serrano, A. de la Morena, B. TI Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) - Part 1: Analysis of parameter influence SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GROUND-BASED MEASUREMENTS; ULTRAVIOLET IRRADIANCE; TOTAL OZONE; SATELLITE ESTIMATION; AEROSOLS; AREA; NETWORK; AERONET AB The main objective of this study is to compare the erythemal UV irradiance (UVER) and spectral UV irradiances (at 305, 310 and 324 nm) from the Ozone Monitoring Instrument (OMI) onboard NASA EOS/Aura polar sun-synchronous satellite (launched in July 2004, local equator crossing time 01: 45 p. m.) with ground-based measurements from the Brewer spectrophotometer #150 located at El Arenosillo (South of Spain). The analyzed period comprises more than four years, from October 2004 to December 2008. The effects of several factors (clouds, aerosols and the solar elevation) on OMI-Brewer comparisons were analyzed. The proxies used for each factor were: OMI Lambertian Equivalent Reflectivity (LER) at 360 nm (clouds), the aerosol optical depth (AOD) at 440 nm measured from the ground-based Cimel sun-photometer (http://aeronet.gsfc.nasa.gov), and solar zenith angle (SZA) at OMI overpass time. The comparison for all sky conditions reveals positive biases (OMI higher than Brewer) 12.3% for UVER, 14.2% for UV irradiance at 305 nm, 10.6% for 310 nm and 8.7% for 324 nm. The OMI-Brewer root mean square error (RMSE) is reduced when cloudy cases are removed from the analysis, (e. g., RMSE similar to 20% for all sky conditions and RMSE smaller than 10% for cloud-free conditions). However, the biases remain and even become more significant for the cloud-free cases with respect to all sky conditions. The mentioned overestimation is partially due to aerosol extinction influence. In addition, the differences OMI-Brewer typically decrease with SZA except days with high aerosol loading, when the bias is near constant. The seasonal dependence of the OMI-Brewer difference for cloud-free conditions is driven by aerosol climatology. To account for the aerosol effect, a first evaluation in order to compare with previous TOMS results (Anton et al., 2007) was performed. This comparison shows that the OMI bias is between +14% and +19% for UVER and spectral UV irradiances for moderately-high aerosol load (AOD>0.25). The OMI bias is decreased by a factor of 2 (the typical bias varies from +8% to +12%) under cloud-free and low aerosol load conditions (AOD<0.1). More detailed analysis of absorbing aerosols influence on OMI bias at our station is presented in a companion paper (Cachorro et al., 2010). C1 [Cachorro, V. E.; Toledano, C.] Univ Valladolid GOA UVA, Grp Opt Atmosfer, Valladolid, Spain. [Anton, M.; Serrano, A.] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain. [Vilaplana, J. M.; de la Morena, B.] INTA, ESAt El Arenosillo, Huelva, Spain. [Krotkov, N. A.] Univ Maryland Baltimore Cty, GEST Ctr, Baltimore, MD 21228 USA. [Arola, A.] FMI, Kuopio, Finland. [Krotkov, N. A.] NASA, Goddard Space Flight Ctr, Lab Atmosphere, Greenbelt, MD 20771 USA. RP Cachorro, VE (reprint author), Univ Valladolid GOA UVA, Grp Opt Atmosfer, Valladolid, Spain. EM chiqui@goa.uva.es RI Krotkov, Nickolay/E-1541-2012; Toledano, Carlos/J-3672-2012; Anton, Manuel/A-8477-2010; Serrano, Antonio/M-2789-2014; OI Krotkov, Nickolay/0000-0001-6170-6750; Toledano, Carlos/0000-0002-6890-6648; Serrano, Antonio/0000-0001-8881-0785; Anton, Manuel/0000-0002-0816-3758; Cachorro, Victoria/0000-0002-4627-9444; Arola, Antti/0000-0002-9220-0194 FU MICIN, UVA-INTA-UEX [CGL2008-05939-C03/CLI]; Junta de Castilla y Leon [GR220]; Ministerio de Ciencia e Innovacion; Fondo Social Europeo FX The authors thank the OMI International Science Team for the satellite data used in this study and also to the teams of aerosol networks GSFC-NASA and PHOTONS. This work has been partially supported by MICIN under coordinated project CGL2008-05939-C03/CLI of UVA-INTA-UEX. Also this work is financed by GR220 project of "Junta de Castilla y Leon". Manuel Anton thanks Ministerio de Ciencia e Innovacion and Fondo Social Europeo for the award of a postdoctoral grant (Juan de la Cierva). NR 46 TC 23 Z9 23 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 5979 EP 5989 DI 10.5194/acp-10-5979-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400014 ER PT J AU Claeyman, M Attie, JL El Amraoui, L Cariolle, D Peuch, VH Teyssedre, H Josse, B Ricaud, P Massart, S Piacentini, A Cammas, JP Livesey, NJ Pumphrey, HC Edwards, DP AF Claeyman, M. Attie, J. -L. El Amraoui, L. Cariolle, D. Peuch, V. -H. Teyssedre, H. Josse, B. Ricaud, P. Massart, S. Piacentini, A. Cammas, J. -P. Livesey, N. J. Pumphrey, H. C. Edwards, D. P. TI A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OZONE PHOTOCHEMISTRY PARAMETERIZATION; GENERAL-CIRCULATION MODEL; BIOMASS BURNING EMISSIONS; STRATOSPHERIC OZONE; CARBON-MONOXIDE; UPPER TROPOSPHERE; NITROUS-OXIDE; SIMULATIONS; ATMOSPHERE; ODIN/SMR AB This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE (MOdele de Chimie Atmospherique Grande Echelle). First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about +/- 25 ppbv (part per billion by volume) or 15% in the troposphere and +/- 10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere (UTLS). In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of similar to -40 ppbv is observed at 700 hPa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years. C1 [Claeyman, M.; Attie, J. -L.; Ricaud, P.; Cammas, J. -P.] Univ Toulouse, Lab Aerol, CNRS, INSU, Toulouse, France. [Claeyman, M.; Attie, J. -L.; El Amraoui, L.; Peuch, V. -H.; Teyssedre, H.; Josse, B.] Meteo France, CNRM GAME, Toulouse, France. [Claeyman, M.; Attie, J. -L.; El Amraoui, L.; Peuch, V. -H.; Teyssedre, H.; Josse, B.] CNRS, URA 1357, Toulouse, France. [Massart, S.; Piacentini, A.] CERFACS, CNRS, URA 1875, F-31057 Toulouse, France. [Livesey, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Pumphrey, H. C.] Univ Edimburgh, Edinburgh, Midlothian, Scotland. [Edwards, D. P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Claeyman, M (reprint author), Univ Toulouse, Lab Aerol, CNRS, INSU, Toulouse, France. EM marine.claeyman@aero.obs-mip.fr RI Peuch, Vincent-Henri/A-7308-2008 FU Centre National de Recherches Scientifiques (CNRS); Astrium-EADS; Centre National de Recherches Meteorologiques (CNRM) of Meteo-France; INSU-CNRS (France); Meteo-France; Forschungszentrum (FZJ, Julich, Germany); ETHER (CNES and INSU-CNRS) FX This work was funded by the Centre National de Recherches Scientifiques (CNRS), Astrium-EADS and the Centre National de Recherches Meteorologiques (CNRM) of Meteo-France. The authors acknowledge for the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Austrian, Air France) who carry free of charge the MOZAIC equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France and Forschungszentrum (FZJ, Julich, Germany). The MOZAIC data based is supported by ETHER (CNES and INSU-CNRS). Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with the National Aeronautics and Space Administration. ETHER (ADOMOCA programme) and the Region Midi-Pyrenees are also acknowledged. NR 75 TC 9 Z9 9 U1 1 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 6097 EP 6115 DI 10.5194/acp-10-6097-2010 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400022 ER PT J AU Carlon, NR Papanastasiou, DK Fleming, EL Jackman, CH Newman, PA Burkholder, JB AF Carlon, N. Rontu Papanastasiou, D. K. Fleming, E. L. Jackman, C. H. Newman, P. A. Burkholder, J. B. TI UV absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) between 210 and 350 K and the atmospheric implications SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ULTRAVIOLET-ABSORPTION; STRATOSPHERIC TEMPERATURES; WATER-VAPOR; NM; PHOTOABSORPTION; METHANES; SINK AB Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented. C1 [Carlon, N. Rontu; Papanastasiou, D. K.; Burkholder, J. B.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Carlon, N. Rontu; Papanastasiou, D. K.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Fleming, E. L.; Jackman, C. H.; Newman, P. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fleming, E. L.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Burkholder, JB (reprint author), NOAA, Earth Syst Res Lab, Div Chem Sci, 325 Broadway, Boulder, CO 80305 USA. EM james.b.burkholder@noaa.gov RI Newman, Paul/D-6208-2012; Jackman, Charles/D-4699-2012; Burkholder, James/H-4914-2013; Papanastasiou, Dimitrios/O-1419-2013; Manager, CSD Publications/B-2789-2015 OI Newman, Paul/0000-0003-1139-2508; Papanastasiou, Dimitrios/0000-0003-3963-162X; FU NOAA; NASA FX This work was supported in part by NOAA's Climate Goal and in part by NASA's Atmospheric Composition Program. We thank S. Ciciora for technical assistance, M. Baasandorj for assistance with the FTIR measurements, J. Gilman for the GC/MS sample analyses and A. R. Ravishankara for helpful discussions. NR 45 TC 15 Z9 15 U1 0 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 6137 EP 6149 DI 10.5194/acp-10-6137-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400025 ER PT J AU Emmons, LK Apel, EC Lamarque, JF Hess, PG Avery, M Blake, D Brune, W Campos, T Crawford, J DeCarlo, PF Hall, S Heikes, B Holloway, J Jimenez, JL Knapp, DJ Kok, G Mena-Carrasco, M Olson, J O'Sullivan, D Sachse, G Walega, J Weibring, P Weinheimer, A Wiedinmyer, C AF Emmons, L. K. Apel, E. C. Lamarque, J. -F. Hess, P. G. Avery, M. Blake, D. Brune, W. Campos, T. Crawford, J. DeCarlo, P. F. Hall, S. Heikes, B. Holloway, J. Jimenez, J. L. Knapp, D. J. Kok, G. Mena-Carrasco, M. Olson, J. O'Sullivan, D. Sachse, G. Walega, J. Weibring, P. Weinheimer, A. Wiedinmyer, C. TI Impact of Mexico City emissions on regional air quality from MOZART-4 simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; AEROSOL MASS-SPECTROMETRY; MILAGRO FIELD CAMPAIGN; URBAN SUPERSITE T0; HIGH-RESOLUTION; INTEX-B; SOURCE APPORTIONMENT; METROPOLITAN-AREA; FLUX MEASUREMENTS; OZONE PRODUCTION AB An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), a global chemical transport model, have been used to provide a regional context for these observations and assist in their interpretation. These MOZART-4 simulations reproduce the aircraft observations generally well, but some differences in the modeled volatile organic compounds (VOCs) from the observations result from incorrect VOC speciation assumed for the emission inventories. The different types of CO sources represented in the model have been "tagged" to quantify the contributions of regions outside Mexico, as well as the various emissions sectors within Mexico, to the regional air quality of Mexico. This analysis indicates open fires have some, but not a dominant, impact on the atmospheric composition in the region around Mexico City when averaged over the month. However, considerable variation in the fire contribution (2-15% of total CO) is seen during the month. The transport and photochemical aging of Mexico City emissions were studied using tags of CO emissions for each day, showing that typically the air downwind of Mexico City was a combination of many ages. Ozone production in MOZART-4 is shown to agree well with the net production rates from box model calculations constrained by the MILAGRO aircraft measurements. Ozone production efficiency derived from the ratio of O-x to NOz is higher in MOZART-4 than in the observations for moderately polluted air. OH reactivity determined from the MOZART-4 results shows the same increase in relative importance of oxygenated VOCs downwind of Mexico City as the reactivity inferred from the observations. The amount of ozone produced by emissions from Mexico City and surrounding areas has been quantified in the model by tracking NO emissions, showing little influence beyond Mexico's borders, and also relatively minor influence from fire emissions on the monthly average tropospheric ozone column. C1 [Emmons, L. K.; Apel, E. C.; Lamarque, J. -F.; Hess, P. G.; Campos, T.; Hall, S.; Knapp, D. J.; Walega, J.; Weibring, P.; Weinheimer, A.; Wiedinmyer, C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Avery, M.; Crawford, J.; Olson, J.; Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Blake, D.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Brune, W.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [DeCarlo, P. F.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Heikes, B.] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Holloway, J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Holloway, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Kok, G.] Droplet Measurement Technol, Boulder, CO USA. [Mena-Carrasco, M.] Univ Iowa, Iowa City, IA 52242 USA. [O'Sullivan, D.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. RP Emmons, LK (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM emmons@ucar.edu RI Jimenez, Jose/A-5294-2008; DeCarlo, Peter/B-2118-2008; Manager, CSD Publications/B-2789-2015; Holloway, John/F-9911-2012; Pfister, Gabriele/A-9349-2008; Crawford, James/L-6632-2013; Mena-Carrasco, Marcelo/B-8483-2012; Lamarque, Jean-Francois/L-2313-2014; Hess, Peter/M-3145-2015; Mena-Carrasco, Marcelo/L-9730-2016; Emmons, Louisa/R-8922-2016; Wiedinmyer, Christine/E-2049-2013 OI Jimenez, Jose/0000-0001-6203-1847; DeCarlo, Peter/0000-0001-6385-7149; O'Sullivan, Daniel/0000-0001-9104-5703; Holloway, John/0000-0002-4585-9594; Crawford, James/0000-0002-6982-0934; Lamarque, Jean-Francois/0000-0002-4225-5074; Hess, Peter/0000-0003-2439-3796; Emmons, Louisa/0000-0003-2325-6212; FU National Aeronautics and Space Administration [NNG06GB27G]; NSF [ATM-0449815]; NOAA [NA08OAR4310565] FX The authors gratefully acknowledge all of the efforts of the Science Teams of the MILAGRO experiments in producing the comprehensive data sets of atmospheric composition in and around Mexico City. The helpful and thorough comments of two anonymous reviewers are greatly appreciated. This material is based upon work supported by the National Aeronautics and Space Administration under Contract No. NNG06GB27G issued by the Tropospheric Chemistry Program. PFD and JLJ were supported by NSF ATM-0449815 and NOAA NA08OAR4310565. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 62 TC 29 Z9 29 U1 2 U2 31 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 6195 EP 6212 DI 10.5194/acp-10-6195-2010 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400029 ER PT J AU Lu, Z Streets, DG Zhang, Q Wang, S Carmichael, GR Cheng, YF Wei, C Chin, M Diehl, T Tan, Q AF Lu, Z. Streets, D. G. Zhang, Q. Wang, S. Carmichael, G. R. Cheng, Y. F. Wei, C. Chin, M. Diehl, T. Tan, Q. TI Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OZONE MONITORING INSTRUMENT; MIYAKEJIMA VOLCANO; SO2 EMISSIONS; MT. TATEYAMA; AIR-QUALITY; ACID-RAIN; JAPAN; TRANSPORT; INVENTORY; AEROSOLS AB With the rapid development of the economy, the sulfur dioxide (SO2) emission from China since 2000 is of increasing concern. In this study, we estimate the annual SO2 emission in China after 2000 using a technology-based methodology specifically for China. From 2000 to 2006, total SO2 emission in China increased by 53%, from 21.7 Tg to 33.2 Tg, at an annual growth rate of 7.3%. Emissions from power plants are the main sources of SO2 in China and they increased from 10.6 Tg to 18.6 Tg in the same period. Geographically, emission from north China increased by 85%, whereas that from the south increased by only 28%. The emission growth rate slowed around 2005, and emissions began to decrease after 2006 mainly due to the wide application of flue-gas desulfurization (FGD) devices in power plants in response to a new policy of China's government. This paper shows that the trend of estimated SO2 emission in China is consistent with the trends of SO2 concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO2 and sulfate concentration in East Asia. A longitudinal gradient in the percentage change of urban SO2 concentration in Japan is found during 2000-2007, indicating that the decrease of urban SO2 is lower in areas close to the Asian continent. This implies that the transport of increasing SO2 from the Asian continent partially counteracts the local reduction of SO2 emission downwind. The aerosol optical depth (AOD) products of Moderate Resolution Imaging Spectroradiometer (MODIS) are found to be highly correlated with the surface solar radiation (SSR) measurements in East Asia. Using MODIS AOD data as a surrogate of SSR, we found that China and East Asia excluding Japan underwent a continuous dimming after 2000, which is in line with the dramatic increase in SO2 emission in East Asia. The trends of AOD from both satellite retrievals and model over East Asia are also consistent with the trend of SO2 emission in China, especially during the second half of the year, when sulfur contributes the largest fraction of AOD. The arrested growth in SO2 emissions since 2006 is also reflected in the decreasing trends of SO2 and SO42- concentrations, acid rain pH values and frequencies, and AOD over East Asia. C1 [Lu, Z.; Streets, D. G.; Wang, S.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Zhang, Q.] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Wang, S.] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Carmichael, G. R.; Cheng, Y. F.; Wei, C.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Chin, M.; Diehl, T.; Tan, Q.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Lu, Z (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zlu@anl.gov RI Cheng, Yafang/F-9362-2010; wei, chao/E-4379-2011; Zhang, Qiang/D-9034-2012; Lu, Zifeng/F-3266-2012; Chin, Mian/J-8354-2012; OI Cheng, Yafang/0000-0003-4912-9879; Streets, David/0000-0002-0223-1350 FU NASA's ARCTAS mission [07-ARCTAS07-0023]; NASA; US Department of Energy [DE-AC02-06CH11357] FX This work was funded by NASA's ARCTAS mission under proposal No. 07-ARCTAS07-0023. The authors are grateful to Jay Al-Saadi, Jim Crawford, and Hal Maring of NASA for their support. Argonne National Laboratory is operated by University of Chicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the US Department of Energy. NR 82 TC 239 Z9 261 U1 32 U2 171 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 6311 EP 6331 DI 10.5194/acp-10-6311-2010 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400037 ER PT J AU Bergstrom, RW Schmidt, KS Coddington, O Pilewskie, P Guan, H Livingston, JM Redemann, J Russell, PB AF Bergstrom, R. W. Schmidt, K. S. Coddington, O. Pilewskie, P. Guan, H. Livingston, J. M. Redemann, J. Russell, P. B. TI Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SINGLE-SCATTERING ALBEDO; LIGHT-ABSORPTION; METROPOLITAN-AREA; ORGANIC-CARBON; BLACK CARBON AB This paper presents estimates of the spectral solar absorption due to atmospheric aerosols during the 2006 MILAGRO/INTEX-B (Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment) field campaign. The aerosol absorption was derived from measurements of the spectral solar radiation and the spectral aerosol optical depth made on the J31 aircraft flying over the Gulf of Mexico and over Mexico City. We present the spectral single scattering albedo (SSA) and aerosol absorption optical depth (AAOD) for two flights over the Gulf of Mexico and three flights over Mexico City for wavelengths from 350 to approximately 1650 nm. The spectral aerosol optical properties of each case are different and illustrate the variability of the aerosol optical properties in the Mexico City area. The results can be described in terms of three different wavelength regions: The 350-500 nm region where the aerosol absorption often falls off sharply presumably due to organic carbonaceous particles and windblown dust; the 500-1000 nm region where the decrease with wavelength is slower presumably due to black carbon; and the near infrared spectral region (1000 nm to 1650 nm) where it is difficult to obtain reliable results since the aerosol absorption is relatively small and the gas absorption dominates. However, there is an indication of a small and somewhat wavelength independent absorption in the region beyond 1000 nm. For one of the flights over the Gulf of Mexico near the coastline it appears that a cloud/fog formation and evaporation led to an increase of absorption possibly due to a water shell remaining on the particles after the cloud/fog had dissipated. For two of the Mexico City cases, the single scattering albedo is roughly constant between 350-500 nm consistent with other Mexico City results. In three of the cases a single absorption Angstrom exponent (AAE) fits the aerosol absorption optical depth over the entire wavelength range of 350 to 1650 nm relatively well (r(2)>0.86). C1 [Bergstrom, R. W.; Guan, H.; Redemann, J.] Bay Area Environm Res Inst, Sonoma, CA USA. [Schmidt, K. S.; Coddington, O.; Pilewskie, P.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Livingston, J. M.] SRI Int, Menlo Pk, CA 94025 USA. [Russell, P. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bergstrom, RW (reprint author), Bay Area Environm Res Inst, Sonoma, CA USA. EM bergstrom@baeri.org RI Coddington, Odele/F-6342-2012; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013 OI Coddington, Odele/0000-0002-4338-7028; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X FU NASA [NNX08AH60, NNX08AI83G] FX All of the authors were supported by the NASA Radiation Science Program, under the direction of Hal Maring. RWB and HG were supported by NASA Grant NNX08AH60. KSS, OC and PP were supported by NASA Grant NNX08AI83G. NR 30 TC 17 Z9 17 U1 0 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 6333 EP 6343 DI 10.5194/acp-10-6333-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400038 ER PT J AU Keim, C Eremenko, M Orphal, J Dufour, G Flaud, JM Hopfner, M Boynard, A Clerbaux, C Payan, S Coheur, PF Hurtmans, D Claude, H De Backer, H Dier, H Johnson, B Kelder, H Kivi, R Koide, T Bartolome, ML Lambkin, K Moore, D Schmidlin, FJ Stubi, R AF Keim, C. Eremenko, M. Orphal, J. Dufour, G. Flaud, J. -M. Hoepfner, M. Boynard, A. Clerbaux, C. Payan, S. Coheur, P. -F. Hurtmans, D. Claude, H. De Backer, H. Dier, H. Johnson, B. Kelder, H. Kivi, R. Koide, T. Lopez Bartolome, M. Lambkin, K. Moore, D. Schmidlin, F. J. Stuebi, R. TI Tropospheric ozone from IASI: comparison of different inversion algorithms and validation with ozone sondes in the northern middle latitudes (vol 9, pg 9329, 2009) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Keim, C.; Eremenko, M.; Orphal, J.; Dufour, G.; Flaud, J. -M.] Univ Paris 12, LISA, CNRS, Creteil, France. [Keim, C.; Eremenko, M.; Orphal, J.; Dufour, G.; Flaud, J. -M.] Univ Paris 07, Creteil, France. [Hoepfner, M.] Forschungszentrum Karlsruhe, Inst Meteorol & Klimaforsch, Karlsruhe, Germany. [Boynard, A.; Clerbaux, C.] Univ Paris 06, CNRS, UMR8190, LATMOS IPSL, Paris, France. [Payan, S.] Univ Paris 06, Lab Phys Mol Atmosphere & Astrophys, Paris, France. [Coheur, P. -F.; Hurtmans, D.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Brussels, Belgium. [Claude, H.] DWD, Meteorol Observ Hohenpeissenberg, Hohenpeissenberg, Germany. [De Backer, H.] RMIB, Brussels, Belgium. [Dier, H.] DWD, Richard Assmann Observ, Lindenberg, Germany. [Johnson, B.] NOAA ESRL, Boulder, CO USA. [Kelder, H.] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. [Kivi, R.] Finnish Meteorol Inst, Sodankyla, Finland. [Koide, T.] Japan Meteorol Agcy, Ozone Layer Monitoring Off, Tokyo 1008122, Japan. [Lopez Bartolome, M.] AEMET, Madrid, Spain. [Lambkin, K.] Valentia Observ, Irish Meteorol Serv, Cahirciveen, Kerry, Ireland. [Moore, D.] Met Off, Exeter, Devon, England. [Schmidlin, F. J.] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Stuebi, R.] MeteoSwiss, Federal Off Meteorol & Climatol, Aerol Stn, Payerne, Switzerland. RP Eremenko, M (reprint author), Univ Paris 12, LISA, CNRS, Creteil, France. EM maxim.eremenko@lisa.univ-paris12.fr RI Hopfner, Michael/A-7255-2013; Orphal, Johannes/A-8667-2012; clerbaux, cathy/I-5478-2013 OI Hopfner, Michael/0000-0002-4174-9531; Orphal, Johannes/0000-0002-1943-4496; NR 1 TC 0 Z9 0 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 13 BP 6345 EP 6345 DI 10.5194/acp-10-6345-2010 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624VY UT WOS:000279851400039 ER PT J AU Guan, H Esswein, R Lopez, J Bergstrom, R Warnock, A Follette-Cook, M Fromm, M Iraci, LT AF Guan, H. Esswein, R. Lopez, J. Bergstrom, R. Warnock, A. Follette-Cook, M. Fromm, M. Iraci, L. T. TI A multi-decadal history of biomass burning plume heights identified using aerosol index measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BOREAL FOREST-FIRE; SMOKE INJECTION; LOWER STRATOSPHERE; OPTICAL-PROPERTIES; NORTH-AMERICA; TRANSPORT; CARBON; SENSITIVITY; EMISSIONS; AFRICA AB We have quantified the relationship between Aerosol Index (AI) measurements and plume height for young biomass burning plumes using coincident Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. This linear relationship allows the determination of high-altitude plumes wherever AI data are available, and it provides a data set for validating global fire plume heights in chemistry transport models. We find that all plumes detected from June 2006 to February 2009 with an AI value >= 9 are located at altitudes higher than 5 km. Older high-altitude plumes have lower AI values than young plumes at similar altitudes. We have examined available AI data from the OMI and TOMS instruments (1978-2009) and find that large AI plumes occur more frequently over North America than over Australia or Russia/Northeast Asia. According to the derived relationship, during this time interval, 181 plumes, in various stages of their evolution, reached altitudes above 8 km. C1 [Guan, H.; Esswein, R.; Lopez, J.; Bergstrom, R.] Bay Area Environm Res Inst, Sonoma, CA USA. [Guan, H.; Esswein, R.; Lopez, J.; Bergstrom, R.; Iraci, L. T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Warnock, A.] Univ Michigan, Ann Arbor, MI 48109 USA. [Follette-Cook, M.; Fromm, M.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. RP Guan, H (reprint author), Bay Area Environm Res Inst, Sonoma, CA USA. EM hong.guan-1@nasa.gov RI Fromm, Michael/F-4639-2010 NR 54 TC 30 Z9 30 U1 0 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6461 EP 6469 DI 10.5194/acp-10-6461-2010 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600001 ER PT J AU Yasunari, TJ Bonasoni, P Laj, P Fujita, K Vuillermoz, E Marinoni, A Cristofanelli, P Duchi, R Tartari, G Lau, KM AF Yasunari, T. J. Bonasoni, P. Laj, P. Fujita, K. Vuillermoz, E. Marinoni, A. Cristofanelli, P. Duchi, R. Tartari, G. Lau, K. -M. TI Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory - Pyramid data and snow albedo changes over Himalayan glaciers SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID 5079 M A.S.L.; TIBETAN PLATEAU; PHYSICAL PARAMETERS; SPECTRAL ALBEDO; DIRTY SNOW; ICE CORE; AEROSOL; DUST; PARTICLES; SURFACE AB The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory - Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. A total BC deposition rate was estimated as 2.89 mu g m(-2) day(-1) providing a total deposition of 266 mu g m(-2) for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0x10(-4) ms(-1) with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analyses between equivalent BC concentration and particulate size distributions in the atmosphere. The BC deposition from the size distribution data was also estimated. It was found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 mu g kg(-1), assuming snow density variations of 195-512 kg m(-3) of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. By assuming these albedo reductions continue throughout the year, and then applying simple numerical experiments with a glacier mass balance model, we estimated reductions would lead to runoff increases of 70-204 mm of water. This runoff is the equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season is comparable to those at similar altitudes in the Himalayan region, where glaciers and perpetual snow regions begin, in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, because we used a fixed slower deposition velocity. In addition, we excluded the effects of atmospheric wind and turbulence, snow aging, dust deposition, and snow albedo feedbacks. This preliminary study represents the first investigation of BC deposition and related albedo on snow, using atmospheric aerosol data observed at the southern slope in the Himalayas. C1 [Yasunari, T. J.; Lau, K. -M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Yasunari, T. J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Bonasoni, P.; Marinoni, A.; Cristofanelli, P.; Duchi, R.] CNR, Inst Atmospher Sci & Climate, I-40126 Bologna, Italy. [Bonasoni, P.; Vuillermoz, E.] Ev K2 CNR Comm, Bergamo, Italy. [Laj, P.] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, UMR5183, F-38402 St Martin Dheres, France. [Fujita, K.] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan. [Tartari, G.] CNR, Water Res Inst, Brugherio, Italy. RP Yasunari, TJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM teppei.j.yasunari@nasa.gov RI Fujita, Koji/E-6104-2010; Yasunari, Teppei/E-5374-2010; Lau, William /E-1510-2012; Bonasoni, Paolo/C-6338-2015; OI Fujita, Koji/0000-0003-3753-4981; Yasunari, Teppei/0000-0002-9896-9404; Lau, William /0000-0002-3587-3691; Bonasoni, Paolo/0000-0002-8812-5291; Cristofanelli, Paolo/0000-0001-5666-9131 NR 45 TC 67 Z9 68 U1 3 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6603 EP 6615 DI 10.5194/acp-10-6603-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600013 ER PT J AU Park, S Atlas, EL Jimenez, R Daube, BC Gottlieb, EW Nan, J Jones, DBA Pfister, L Conway, TJ Bui, TP Gao, RS Wofsy, SC AF Park, S. Atlas, E. L. Jimenez, R. Daube, B. C. Gottlieb, E. W. Nan, J. Jones, D. B. A. Pfister, L. Conway, T. J. Bui, T. P. Gao, R. -S. Wofsy, S. C. TI Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID IN-SITU OBSERVATIONS; MIDLATITUDE LOWER STRATOSPHERE; EMPIRICAL AGE SPECTRA; UPPER TROPOSPHERE; RESIDENCE TIME; CARBON-DIOXIDE; PIPE MODEL; MEAN AGES; OZONE; BROMINE AB Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL) were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4) campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE), in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH) and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading. C1 [Park, S.; Jimenez, R.; Daube, B. C.; Gottlieb, E. W.; Nan, J.; Wofsy, S. C.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Park, S.; Jimenez, R.; Daube, B. C.; Gottlieb, E. W.; Nan, J.; Wofsy, S. C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Atlas, E. L.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Pfister, L.; Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Conway, T. J.; Gao, R. -S.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Wofsy, SC (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM swofsy@seas.harvard.edu RI JIMENEZ, Rodrigo/B-6112-2012; Gao, Ru-Shan/H-7455-2013; Jones, Dylan/O-2475-2014; Atlas, Elliot/J-8171-2015; Manager, CSD Publications/B-2789-2015 OI Jones, Dylan/0000-0002-1935-3725; NR 51 TC 10 Z9 10 U1 0 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6669 EP 6684 DI 10.5194/acp-10-6669-2010 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600018 ER PT J AU Huang, D Gasiewski, AJ Wiscombe, W AF Huang, D. Gasiewski, A. J. Wiscombe, W. TI Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform - Part 1: Field trial results from the Wakasa Bay experiment SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TOTAL-VARIATION MINIMIZATION; RECONSTRUCTION; PRECIPITATION; SURFACE; VAPOR; ART AB Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper) examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR) and Microwave Imaging Radiometer (MIR) aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments. C1 [Huang, D.; Wiscombe, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gasiewski, A. J.] Univ Colorado, Boulder, CO 80309 USA. [Wiscombe, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Huang, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM dhuang@bnl.gov RI Wiscombe, Warren/D-4665-2012; Huang, Dong/H-7318-2014 OI Wiscombe, Warren/0000-0001-6844-9849; Huang, Dong/0000-0001-9715-6922 NR 29 TC 3 Z9 3 U1 2 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6685 EP 6697 DI 10.5194/acp-10-6685-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600019 ER PT J AU Huang, D Gasiewski, A Wiscombe, W AF Huang, D. Gasiewski, A. Wiscombe, W. TI Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform - Part 2: Observation system simulation experiments SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MODEL; RADAR AB Part 1 of this research concluded that many conditions of the 2003 Wakasa Bay experiment were not optimal for the purpose of tomographic retrieval. Part 2 (this paper) then aims to find possible improvements to the mobile cloud tomography method using observation system simulation experiments. We demonstrate that the incorporation of the L(1) norm total variation regularization in the tomographic retrieval algorithm better reproduces discontinuous structures than the widely used L(2) norm Tikhonov regularization. The simulation experiments reveal that a typical ground-based mobile setup substantially outperforms an airborne one because the ground-based setup usually moves slower and has greater contrast in microwave brightness between clouds and the background. It is shown that, as expected, the error in the cloud tomography retrievals increases monotonically with both the radiometer noise level and the uncertainty in the estimate of background brightness temperature. It is also revealed that a lower speed of platform motion or a faster scanning radiometer results in more scan cycles and more overlap between the swaths of successive scan cycles, both of which help to improve the retrieval accuracy. The last factor examined is aircraft height. It is found that the optimal aircraft height is 0.5 to 1.0 km above the cloud top. To summarize, this research demonstrates the feasibility of tomographically retrieving the spatial structure of cloud liquid water using current microwave radiometric technology and provides several general guidelines to improve future field-based studies of cloud tomography. C1 [Huang, D.; Wiscombe, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gasiewski, A.] Univ Colorado, Boulder, CO 80309 USA. [Wiscombe, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Huang, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM dhuang@bnl.gov RI Wiscombe, Warren/D-4665-2012; Huang, Dong/H-7318-2014 OI Wiscombe, Warren/0000-0001-6844-9849; Huang, Dong/0000-0001-9715-6922 NR 27 TC 2 Z9 2 U1 3 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6699 EP 6709 DI 10.5194/acp-10-6699-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600020 ER PT J AU Huang, J Minnis, P Yan, H Yi, Y Chen, B Zhang, L Ayers, JK AF Huang, J. Minnis, P. Yan, H. Yi, Y. Chen, B. Zhang, L. Ayers, J. K. TI Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MARINE STRATOCUMULUS; ABSORBING AEROSOLS; BLACK CARBON; CLOUD; MODEL; CERES; POLLUTION; MODIS; PRECIPITATION; CIRCULATION AB The impact of dust aerosols on the semi-arid climate of Northwest China is analyzed by comparing aerosol and cloud properties derived over the China semi-arid region (hereafter, CSR) and the United States semi-arid region (hereafter, USR) using several years of surface and A-Train satellite observations during active dust event seasons. These regions have similar climatic conditions, but aerosol concentrations are greater over the CSR. Because the CSR is close to two major dust source regions (Taklamakan and Gobi deserts), the aerosols over the CSR not only contain local anthropogenic aerosols (agricultural dust, black carbon and other anthropogenic aerosols), but also include natural dust transported from the source regions. The aerosol optical depth, averaged over a 3-month period, derived from MODIS for the CSR is 0.27, which is 47% higher than that over the USR (0.19). Although transported natural dust only accounts for 53% of this difference, it is a major contributor to the average absorbing aerosol index, which is 27% higher in the CSR (1.07) than in the USR (0.84). During dust event periods, liquid water cloud particle size, optical depth and liquid water path are smaller by 9%, 30% and 33% compared to dust-free conditions, respectively. C1 [Huang, J.; Yan, H.; Chen, B.; Zhang, L.] Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China. [Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. [Yi, Y.; Ayers, J. K.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Huang, J (reprint author), Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China. EM hjp@lzu.edu.cn RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 NR 47 TC 60 Z9 67 U1 3 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6863 EP 6872 DI 10.5194/acp-10-6863-2010 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600032 ER PT J AU Peterson, D Wang, J Ichoku, C Remer, LA AF Peterson, D. Wang, J. Ichoku, C. Remer, L. A. TI Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID RADIATIVE ENERGY; WILDLAND FIRE; REGIONAL REANALYSIS; INTERIOR ALASKA; HAINES INDEX; EOS-MODIS; SATELLITE; CANADA; PRODUCTS; PATTERNS AB The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-km gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above similar to 5700 m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts. C1 [Peterson, D.; Wang, J.] Univ Nebraska, Dept Earth & Atmospher Sci, Lincoln, NE 68583 USA. [Wang, J.; Ichoku, C.; Remer, L. A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Wang, J (reprint author), Univ Nebraska, Dept Earth & Atmospher Sci, Lincoln, NE 68583 USA. EM jwang7@unl.edu RI Ichoku, Charles/E-1857-2012; peterson, david/L-2350-2016; Wang, Jun/A-2977-2008 OI Ichoku, Charles/0000-0003-3244-4549; Wang, Jun/0000-0002-7334-0490 NR 43 TC 19 Z9 21 U1 0 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6873 EP 6888 DI 10.5194/acp-10-6873-2010 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600033 ER PT J AU Xie, F Wu, DL Ao, CO Mannucci, AJ AF Xie, F. Wu, D. L. Ao, C. O. Mannucci, A. J. TI Atmospheric diurnal variations observed with GPS radio occultation soundings SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID UPPER-TROPOSPHERIC HUMIDITY; GENERAL-CIRCULATION MODEL; MESOPAUSE REGION; PART II; HYDROLOGIC-CYCLE; BOUNDARY-LAYER; UNITED-STATES; WATER-VAPOR; TEMPERATURE; TIDES AB The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO) measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate) provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007-2009) COSMIC RO measurements in the troposphere and stratosphere between 30 degrees S and 30 degrees N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At similar to 32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months. C1 [Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Xie, F (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn JIFRESSE, Los Angeles, CA 90095 USA. EM feiqin.xie@jpl.nasa.gov RI XIE, FEIQIN/J-4569-2013; Wu, Dong/D-5375-2012 NR 60 TC 12 Z9 12 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6889 EP 6899 DI 10.5194/acp-10-6889-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600034 ER PT J AU Huang, M Carmichael, GR Adhikary, B Spak, SN Kulkarni, S Cheng, YF Wei, C Tang, Y Parrish, DD Oltmans, SJ D'Allura, A Kaduwela, A Cai, C Weinheimer, AJ Wong, M Pierce, RB Al-Saadi, JA Streets, DG Zhang, Q AF Huang, M. Carmichael, G. R. Adhikary, B. Spak, S. N. Kulkarni, S. Cheng, Y. F. Wei, C. Tang, Y. Parrish, D. D. Oltmans, S. J. D'Allura, A. Kaduwela, A. Cai, C. Weinheimer, A. J. Wong, M. Pierce, R. B. Al-Saadi, J. A. Streets, D. G. Zhang, Q. TI Impacts of transported background ozone on California air quality during the ARCTAS-CARB period - a multi-scale modeling study SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID NORTH-AMERICA; UNITED-STATES; WEST-COAST; VARIABILITY; TROPOSPHERE; AEROSOL; MISSION; SYSTEM; MODIS AB Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of transported background ozone (O-3) from the eastern Pacific on California air quality during the ARCTAS-CARB experiment conducted in June, 2008. Previous work has focused on the importance of long-range transport of O-3 to North America air quality in springtime. However during this summer experiment the long-range transport of O-3 is also shown to be important. Simulated and observed O-3 transport patterns from the coast to inland northern California are shown to vary based on meteorological conditions and the O-3 profiles over the oceans, which are strongly episodically affected by Asian inflows. Analysis of the correlations of O-3 at various altitudes above the coastal site at Trinidad Head and at a downwind surface site in northern California, show that under long-range transport events, high O-3 air-masses (O-3>60 ppb) at altitudes between about 2 and 4 km can be transported inland and can significantly influence surface O-3 20-30 h later. These results show the importance of characterizing the vertical structure of the lateral boundary conditions (LBC) needed in air quality simulations. The importance of the LBC on O-3 prediction during this period is further studied through a series of sensitivity studies using different forms of LBC. It is shown that the use of the LBC downscaled from RAQMS global model that assimilated MLS and OMI data improves the model performance. We also show that the predictions can be further improved through the use of LBC based on NASA DC-8 airborne observations during the ARCTAS-CARB experiment. These results indicate the need to develop observational strategies to provide information on the three-dimensional nature of pollutant distributions, in order to improve our capability to predict pollution levels and to better quantify the influence of these Asian inflows on the US west coast air quality. C1 [Huang, M.; Carmichael, G. R.; Adhikary, B.; Spak, S. N.; Kulkarni, S.; Cheng, Y. F.; Wei, C.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Adhikary, B.] Kathmandu Univ, Dhulikhel, Nepal. [Tang, Y.] NOAA, W NP2, EMC, NCEP, Camp Springs, MD USA. [Parrish, D. D.; Oltmans, S. J.] NOAA, ESRL, Boulder, CO USA. [D'Allura, A.] ARIANET Srl, Milan, Italy. [Kaduwela, A.; Cai, C.] Calif Air Resource Board, Sacramento, CA USA. [Weinheimer, A. J.] NCAR, Boulder, CO USA. [Wong, M.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Pierce, R. B.] NOAA, NESDIS, Madison, WI USA. [Al-Saadi, J. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Streets, D. G.; Zhang, Q.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Huang, M (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. EM mhuang1@engineering.uiowa.edu RI Cheng, Yafang/F-9362-2010; Parrish, David/E-8957-2010; wei, chao/E-4379-2011; Pierce, Robert Bradley/F-5609-2010; Spak, Scott/B-7331-2008; Zhang, Qiang/D-9034-2012; Manager, CSD Publications/B-2789-2015; OI Cheng, Yafang/0000-0003-4912-9879; Parrish, David/0000-0001-6312-2724; Pierce, Robert Bradley/0000-0002-2767-1643; Spak, Scott/0000-0002-8545-1411; Streets, David/0000-0002-0223-1350; Kaduwela, Ajith/0000-0002-7236-2698 NR 47 TC 39 Z9 39 U1 1 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 14 BP 6947 EP 6968 DI 10.5194/acp-10-6947-2010 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 633PL UT WOS:000280515600037 ER PT J AU Lamarque, JF Bond, TC Eyring, V Granier, C Heil, A Klimont, Z Lee, D Liousse, C Mieville, A Owen, B Schultz, MG Shindell, D Smith, SJ Stehfest, E Van Aardenne, J Cooper, OR Kainuma, M Mahowald, N McConnell, JR Naik, V Riahi, K van Vuuren, DP AF Lamarque, J. -F. Bond, T. C. Eyring, V. Granier, C. Heil, A. Klimont, Z. Lee, D. Liousse, C. Mieville, A. Owen, B. Schultz, M. G. Shindell, D. Smith, S. J. Stehfest, E. Van Aardenne, J. Cooper, O. R. Kainuma, M. Mahowald, N. McConnell, J. R. Naik, V. Riahi, K. van Vuuren, D. P. TI Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CARBONACEOUS PARTICLES; DIOXIDE EMISSIONS; ATLANTIC-OCEAN; GLOBAL-MODEL; TRACE GASES; FOSSIL-FUEL; OZONE; CLIMATE; INVENTORY; SCENARIOS AB We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5 degrees in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models are used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations. C1 [Lamarque, J. -F.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bond, T. C.] Univ Illinois, Urbana, IL 61801 USA. [Eyring, V.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhoffen, Germany. [Granier, C.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Granier, C.; Cooper, O. R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Granier, C.; Mieville, A.] Univ Paris 06, CNRS, UPMC, INSU,LATMOS IPSL,UMR 8190, Paris, France. [Heil, A.; Schultz, M. G.] Forschungszentrum Julich, D-52425 Julich, Germany. [Klimont, Z.; Riahi, K.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Lee, D.; Owen, B.] Manchester Metropolitan Univ, Manchester M15 6BH, Lancs, England. [Liousse, C.] Lab Aerol, Toulouse, France. [Shindell, D.] Natl Aeronaut & Space Agcy, Goddard Inst Space Studies, New York, NY USA. [Smith, S. J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Stehfest, E.; van Vuuren, D. P.] Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. [Van Aardenne, J.] Commiss European Communities, Joint Res Ctr, DG, I-21020 Ispra, Italy. [Kainuma, M.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Mahowald, N.] Cornell Univ, Ithaca, NY USA. [McConnell, J. R.] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Naik, V.] NOAA, High Performance Technol Inc, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Lamarque, JF (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM lamar@ucar.edu RI Heil, Angelika/J-7182-2012; Bond, Tami/A-1317-2013; Pfister, Gabriele/A-9349-2008; Mahowald, Natalie/D-8388-2013; Granier, Claire/D-5360-2013; Cooper, Owen/H-4875-2013; Naik, Vaishali/A-4938-2013; Lamarque, Jean-Francois/L-2313-2014; van Vuuren, Detlef/A-4764-2009; Klimont, Zbigniew/P-7641-2015; Riahi, Keywan/B-6426-2011; Shindell, Drew/D-4636-2012; Schultz, Martin/I-9512-2012; Eyring, Veronika/O-9999-2016; Manager, CSD Publications/B-2789-2015 OI Heil, Angelika/0000-0002-8768-5027; Bond, Tami/0000-0001-5968-8928; Mahowald, Natalie/0000-0002-2873-997X; Granier, Claire/0000-0001-7344-7995; Naik, Vaishali/0000-0002-2254-1700; Lamarque, Jean-Francois/0000-0002-4225-5074; van Vuuren, Detlef/0000-0003-0398-2831; Klimont, Zbigniew/0000-0003-2630-198X; Riahi, Keywan/0000-0001-7193-3498; Schultz, Martin/0000-0003-3455-774X; Eyring, Veronika/0000-0002-6887-4885; FU ACCENT European Network; EU; European Union; National Science Foundation FX The authors would like to thank the ACCENT European Network, which provided funding for meetings to develop the emissions dataset. Suvi Monni, Lorenzo Orlandini and Valerio Pagliari are acknowledged for providing support in the gridding of emissions and making available official reported data from EMEP and UNFCCC inventories. O. Buhaug and J. Corbett provided helpful comments on ship emissions. Z. K. would like to acknowledge the support received from the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI), a project within EU's Sixth Framework Program. A. H. acknowledges funding from the European Union's CITYZEN project. Surface data was obtained from the World Data Centre for Greenhouse gases, maintained by the Japan Meteorological Agency in cooperation with the World Meteorological Organization. We would like to thank D. Parrish and H.-E. Scheel for providing access to their ozone datasets. AERONET data was kindly made available by the AERONET investigators and used for this study. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NR 122 TC 719 Z9 736 U1 32 U2 271 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 15 BP 7017 EP 7039 DI 10.5194/acp-10-7017-2010 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 637VV UT WOS:000280847700002 ER PT J AU Perring, AE Bertram, TH Farmer, DK Wooldridge, PJ Dibb, J Blake, NJ Blake, DR Singh, HB Fuelberg, H Diskin, G Sachse, G Cohen, RC AF Perring, A. E. Bertram, T. H. Farmer, D. K. Wooldridge, P. J. Dibb, J. Blake, N. J. Blake, D. R. Singh, H. B. Fuelberg, H. Diskin, G. Sachse, G. Cohen, R. C. TI The production and persistence of Sigma RONO2 in the Mexico City plume SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID INDUCED FLUORESCENCE INSTRUMENT; VOLATILE ORGANIC-COMPOUNDS; IN-SITU; PEROXY NITRATES; CHEMICAL MECHANISM; ATMOSPHERIC NO2; NITROGEN-OXIDES; ALKYL NITRATES; MIXING RATIOS; DIODE-LASER AB Alkyl and multifunctional nitrates (RONO2, Sigma ANs) have been observed to be a significant fraction of NOy in a number of different chemical regimes. Their formation is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Sigma ANs also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Numerous studies have investigated the role of nitrate formation from biogenic compounds and in the remote atmosphere. Less attention has been paid to the role Sigma ANs may play in the complex mixtures of hydrocarbons typical of urban settings. Measurements of total alkyl and multifunctional nitrates, NO2, total peroxy nitrates (Sigma PNs), HNO3 and a representative suite of hydrocarbons were obtained from the NASA DC-8 aircraft during spring of 2006 in and around Mexico City and the Gulf of Mexico. Sigma ANs were observed to be 10-20% of NOy in the Mexico City plume and to increase in importance with increased photochemical age. We describe three conclusions: (1) Correlations of Sigma ANs with odd-oxygen (O-x) indicate a stronger role for Sigma ANs in the photochemistry of Mexico City than is expected based on currently accepted photochemical mechanisms, (2) Sigma AN formation suppresses peak ozone production rates by as much as 40% in the near-field of Mexico City and (3) Sigma ANs play a significant role in the export of NOy from Mexico City to the Gulf Region. C1 [Perring, A. E.; Bertram, T. H.; Farmer, D. K.; Wooldridge, P. J.; Cohen, R. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dibb, J.] Univ New Hampshire, Climate Change Res Inst, Durham, NH 03824 USA. [Blake, N. J.; Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Singh, H. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Fuelberg, H.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Diskin, G.; Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Cohen, R. C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Perring, AE (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. EM anne.perring@noaa.gov RI Perring, Anne/G-4597-2013; Cohen, Ronald/A-8842-2011 OI Perring, Anne/0000-0003-2231-7503; Cohen, Ronald/0000-0001-6617-7691 FU NASA [NAG5-13668] FX The work presented here was funded by NASA headquarters under the NASA Earth Systems Science Fellowship Program and by NASA grant #NAG5-13668. The authors would also like to sincerely thank Brian Heikes and Alan Fried for the use of their formaldehyde data, Melody Avery for the use of her ozone data, Bill Brune for the use of his HOx measurements and Greg Huey for the use of his NO measurements. NR 49 TC 27 Z9 27 U1 0 U2 23 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 15 BP 7215 EP 7229 DI 10.5194/acp-10-7215-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 637VV UT WOS:000280847700015 ER PT J AU Bauer, SE Menon, S Koch, D Bond, TC Tsigaridis, K AF Bauer, S. E. Menon, S. Koch, D. Bond, T. C. Tsigaridis, K. TI A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BLACK CARBON; MASS-SPECTROMETRY; EMISSIONS; ABSORPTION; SCATTERING; PARTICLES; SATELLITE; CLIMATE; AEROCOM; SOOT AB Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m(2). However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m(2) depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux. C1 [Bauer, S. E.; Koch, D.; Tsigaridis, K.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bauer, S. E.; Koch, D.] Columbia Univ, Earth Inst, New York, NY USA. [Menon, S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Bond, T. C.] Univ Illinois, Urbana, IL 61801 USA. RP Bauer, SE (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM sbauer@giss.nasa.gov RI Tsigaridis, Kostas/K-8292-2012; Bond, Tami/A-1317-2013; Bauer, Susanne/P-3082-2014 OI Tsigaridis, Kostas/0000-0001-5328-819X; Bond, Tami/0000-0001-5968-8928; FU NASA [NN-H-04-Z-YS-008-N, NNH08ZDA001N-MAP]; NASA at the Goddard Institute for Space Studies; US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; DOE FX This work has been supported by the NASA MAP program Modeling, Analysis and Prediction Climate Variability and Change (NN-H-04-Z-YS-008-N) and (NNH08ZDA001N-MAP). KT was supported by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. SM was supported by the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and also acknowledges support from the DOE Atmospheric System Research Program and the NASA MAP program. We thank Andy Lacis for never getting tired of explaining the GISS radiation code to us, and Jessica Sagona for her work with the AERONET data sets. We acknowledge AERONET data, available at http://aeronet/gsfc.nasa.gov; IMPROVE data available from http://vista.cira.colostate.edu/IMPROVE; and EMEP data from http://tarantula.nilu.no/projects/ccc. We are acknowledging the aircraft measurements made available to us by groups at NOAA: David Fahey, Ru-shan Gao, Joshua Schwarz, Ryan Spackman, Laurel Watts; University of Tokyo: Yutaka Kondo, Nobuhiro Moteki; and University of Hawaii: Antony Clarke, Cameron McNaughton, Steffen Freitag. NR 43 TC 68 Z9 69 U1 1 U2 27 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 15 BP 7439 EP 7456 DI 10.5194/acp-10-7439-2010 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 637VV UT WOS:000280847700031 ER PT J AU Koch, D Del Genio, AD AF Koch, D. Del Genio, A. D. TI Black carbon semi-direct effects on cloud cover: review and synthesis SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TRADE-WIND CUMULI; MARINE STRATOCUMULUS; INDIAN-OCEAN; AEROSOL; CLIMATE; SMOKE; SIMULATIONS; MONSOON; MODEL; INHIBITION AB Absorbing aerosols (AAs) such as black carbon (BC) or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects. C1 [Koch, D.] Columbia Univ, New York, NY 10027 USA. [Koch, D.; Del Genio, A. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Koch, D (reprint author), Columbia Univ, New York, NY 10027 USA. EM dkoch@giss.nasa.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 FU NASA MAP FX We thank Olivier Boucher, Ralph Kahn, Tami Bond and an anonymous reviewer for their helpful comments. We also acknowledge helpful discussions with members of the Bounding Black Carbon author group. This study was supported by NASA MAP. NR 48 TC 157 Z9 160 U1 7 U2 49 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 16 BP 7685 EP 7696 DI 10.5194/acp-10-7685-2010 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 645ED UT WOS:000281432800011 ER PT J AU Daniel, JS Fleming, EL Portmann, RW Velders, GJM Jackman, CH Ravishankara, AR AF Daniel, J. S. Fleming, E. L. Portmann, R. W. Velders, G. J. M. Jackman, C. H. Ravishankara, A. R. TI Options to accelerate ozone recovery: ozone and climate benefits SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GASES NITROUS-OXIDE; FUTURE CONCENTRATIONS; DEPLETION; CHLORINE; 21ST-CENTURY; MIDLATITUDES; POTENTIALS; METHANE; N2O AB Hypothetical reductions in future emissions of ozone-depleting substances (ODSs) and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m(2) lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m(2) lower from the destruction of the chlorofluorocarbon (CFC) bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified. C1 [Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Fleming, E. L.; Jackman, C. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fleming, E. L.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Velders, G. J. M.] Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands. RP Daniel, JS (reprint author), Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. EM john.s.daniel@noaa.gov RI Manager, CSD Publications/B-2789-2015; Portmann, Robert/C-4903-2009; Daniel, John/D-9324-2011; Jackman, Charles/D-4699-2012; Ravishankara, Akkihebbal/A-2914-2011 OI Portmann, Robert/0000-0002-0279-6087; FU NASA FX We appreciate the effort and comments of two anonymous reviewers, who have helped improve the manuscript. We thank S. Solomon for helpful discussions and comments. We thank V. Fioletov for making the ground-based ozone data used in WMO (2007) available for us to include. E. L. Fleming and C. H. Jackman were supported by the NASA Atmospheric Composition: Modeling and Analysis (ACMA) Program. Work at NOAA was funded in part by NOAA's Climate Program. NR 34 TC 10 Z9 10 U1 2 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 16 BP 7697 EP 7707 DI 10.5194/acp-10-7697-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 645ED UT WOS:000281432800012 ER PT J AU Schmidt, KS Pilewskie, P Bergstrom, R Coddington, O Redemann, J Livingston, J Russell, P Bierwirth, E Wendisch, M Gore, W Dubey, MK Mazzoleni, C AF Schmidt, K. S. Pilewskie, P. Bergstrom, R. Coddington, O. Redemann, J. Livingston, J. Russell, P. Bierwirth, E. Wendisch, M. Gore, W. Dubey, M. K. Mazzoleni, C. TI A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SINGLE-SCATTERING ALBEDO; CITY METROPOLITAN-AREA; MEXICO-CITY; SPECTRAL ABSORPTION; OPTICAL-PROPERTIES; SUNPHOTOMETER; AIRCRAFT; CAMPAIGN AB We introduce a method for deriving aerosol spectral radiative forcing along with single scattering albedo, asymmetry parameter, and surface albedo from airborne vertical profile measurements of shortwave spectral irradiance and spectral aerosol optical thickness. The new method complements the traditional, direct measurement of aerosol radiative forcing efficiency from horizontal flight legs below gradients of aerosol optical thickness, and is particularly useful over heterogeneous land surfaces and for homogeneous aerosol layers where the horizontal gradient method is impractical. Using data collected by the Solar Spectral Flux Radiometer (SSFR) and the Ames Airborne Tracking Sunphotometer (AATS-14) during the MILAGRO (Megacity Initiative: Local and Global Research Observations) experiment, we validate an over-ocean spectral aerosol forcing efficiency from the new method by comparing with the traditional method. Retrieved over-land aerosol optical properties are compared with in-situ measurements and AERONET retrievals. The spectral forcing efficiencies over ocean and land are remarkably similar and agree with results from other field experiments. C1 [Schmidt, K. S.; Pilewskie, P.; Coddington, O.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Bergstrom, R.; Redemann, J.] Bay Area Environm Res Inst, Sonoma, CA USA. [Livingston, J.] SRI Int, Menlo Pk, CA 94025 USA. [Russell, P.; Gore, W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bierwirth, E.; Wendisch, M.] Univ Leipzig, Leipzig Inst Meteorol, Leipzig, Germany. [Dubey, M. K.; Mazzoleni, C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mazzoleni, C.] Michigan Technol Univ, Houghton, MI 49931 USA. RP Schmidt, KS (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM sebastian.schmidt@lasp.colorado.edu RI Mazzoleni, Claudio/E-5615-2011; Dubey, Manvendra/E-3949-2010; Coddington, Odele/F-6342-2012; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Wendisch, Manfred/E-4175-2013 OI Dubey, Manvendra/0000-0002-3492-790X; Coddington, Odele/0000-0002-4338-7028; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Wendisch, Manfred/0000-0002-4652-5561 FU NASA [NNX08AI83G]; Robert Bergstrom [NNX08AH60]; NASA Ames Research Center FX This work was financed by the NASA atmospheric radiation program (directed by Hal Maring). Sebastian Schmidt and Peter Pilewskie were supported by NASA grant NNX08AI83G, Robert Bergstrom by NNX08AH60. We thank John Pommier and Tony Trias, NASA Ames Research Center, for their technical support before and during the MILAGRO experiment, the crew of the J-31 aircraft, and for the support of the NASA ESPO team in Veracruz, Mexico. We also thank the staff of the AERONET stations in Tamihua (Mexico) and in the Mexico City urban area for maintaining the AERONET sites; the T0, T1, and T2 AERONET sites were established specifically for the MILAGRO experiment. The major part of this paper was written while the first author worked at the Meteorological Institute of the University for Natural Resources and Applied Life Sciences in Vienna, Austria. Thanks for the hospitality of P. Weihs, J. Wagner, and H. Kromp-Kolb. NR 32 TC 7 Z9 7 U1 2 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 16 BP 7829 EP 7843 DI 10.5194/acp-10-7829-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 645ED UT WOS:000281432800021 ER PT J AU Gasso, S Stein, A Marino, F Castellano, E Udisti, R Ceratto, J AF Gasso, S. Stein, A. Marino, F. Castellano, E. Udisti, R. Ceratto, J. TI A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SAN-SEBASTIAN BAY; TIERRA-DEL-FUEGO; DOME-C; MINERAL DUST; ICE CORES; ATLANTIC-OCEAN; AEROSOL; CLIMATE; MODIS; IRON AB The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (similar to 54A degrees S) and from the shores of the Colihue Huapi lake in Central Patagonia (similar to 46A degrees S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6-7 and 9-10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and similar to 800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at similar to 1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area. C1 [Gasso, S.] Univ Maryland Baltimore Cty, Greenbelt, MD USA. [Gasso, S.] NASA, Greenbelt, MD USA. [Stein, A.] NOAA, Earth Resources Technol & Air Resource Lab, Silver Spring, MD USA. [Marino, F.; Castellano, E.; Udisti, R.] Univ Florence, Dept Chem, I-50121 Florence, Italy. [Ceratto, J.] NASA, Summer Inst, Greenbelt, MD USA. RP Gasso, S (reprint author), Univ Maryland Baltimore Cty, Greenbelt, MD USA. EM santiago.gasso@nasa.gov RI Stein, Ariel/G-1330-2012; Stein, Ariel F/L-9724-2014; Udisti, Roberto/M-7966-2015; Gasso, Santiago/H-9571-2014; OI Stein, Ariel F/0000-0002-9560-9198; Udisti, Roberto/0000-0003-4440-8238; Gasso, Santiago/0000-0002-6872-0018; Becagli, Silvia/0000-0003-3633-4849 NR 75 TC 24 Z9 25 U1 1 U2 26 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 17 BP 8287 EP 8303 DI 10.5194/acp-10-8287-2010 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 650JS UT WOS:000281845800011 ER PT J AU Dikty, S Schmidt, H Weber, M von Savigny, C Mlynczak, MG AF Dikty, S. Schmidt, H. Weber, M. von Savigny, C. Mlynczak, M. G. TI Daytime ozone and temperature variations in the mesosphere: a comparison between SABER observations and HAMMONIA model SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMISTRY-CLIMATE MODEL; LOWER THERMOSPHERE; MAECHAM5 MODEL; SOLAR; STRATOSPHERE; VARIABILITY; INSTRUMENT; MIDDLE AB This paper investigates the latest version 1.07 SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) tropical ozone from the 1.27 mu m as well as from the 9.6 mu m retrieval and temperature data with respect to day time variations in the upper mesosphere. The processes involved are compared to day time variations of the three-dimensional general circulation and chemistry model HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere). The results show a good qualitative agreement for ozone. The amplitude of daytime variations is in both cases approximately 60% of the daytime mean. During equinox the daytime maximum ozone abundance is for both, the observations and the model, higher than during solstice, especially above 0.01 hPa (approx. 80 km). The influence of tidal signatures either directly in ozone or indirectly via a temperature response above 0.01 hPa can not be fully eliminated. Below 0.01 hPa (photo-)chemistry is the main driver for variations. We also use the HAMMONIA output of daytime variation patterns of several other different trace gas species, e.g., water vapor and atomic oxygen, to discuss the daytime pattern in ozone. In contrast to ozone, temperature data show little daytime variations between 65 and 90 km and their amplitudes are on the order of less than 1.5%. In addition, SABER and HAMMONIA temperatures show significant differences above 80 km. C1 [Dikty, S.; Weber, M.; von Savigny, C.] Inst Environm Phys, Bremen, Germany. [Schmidt, H.] Max Planck Inst Meteorol, Hamburg, Germany. [Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Dikty, S (reprint author), Inst Environm Phys, Bremen, Germany. EM dikty@iup.physik.uni-bremen.de RI Weber, Mark/F-1409-2011; Mlynczak, Martin/K-3396-2012; Schmidt, Hauke/J-4469-2013; von Savigny, Christian/B-3910-2014 OI Weber, Mark/0000-0001-8217-5450; Schmidt, Hauke/0000-0001-8271-6456; FU German national CAWSES (Climate and Weather of the Sun-Earth-System) FX We thank the SABER science team for providing data used in this study. This work was funded within the SOLOZON project as part of the German national CAWSES (Climate and Weather of the Sun-Earth-System) priority program. The numerical simulations with HAMMONIA have been performed at the German Climate Computing Center (DKRZ). NR 39 TC 13 Z9 13 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 17 BP 8331 EP 8339 DI 10.5194/acp-10-8331-2010 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 650JS UT WOS:000281845800014 ER PT J AU Walker, TW Martin, RV van Donkelaar, A Leaitch, WR MacDonald, AM Anlauf, KG Cohen, RC Bertram, TH Huey, LG Avery, MA Weinheimer, AJ Flocke, FM Tarasick, DW Thompson, AM Streets, DG Liu, X AF Walker, T. W. Martin, R. V. van Donkelaar, A. Leaitch, W. R. MacDonald, A. M. Anlauf, K. G. Cohen, R. C. Bertram, T. H. Huey, L. G. Avery, M. A. Weinheimer, A. J. Flocke, F. M. Tarasick, D. W. Thompson, A. M. Streets, D. G. Liu, X. TI Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LONG-RANGE TRANSPORT; TRANSBOUNDARY POLLUTION INFLUENCES; EXPERIMENT INTEX-B; UNITED-STATES; TRANSPACIFIC TRANSPORT; TROPOSPHERIC OZONE; ASIAN EMISSIONS; NORTH-AMERICA; NOX EMISSIONS; MONITORING INSTRUMENT AB We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) in spring 2006 using a global chemical transport model (GEOS-Chem) to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30 degrees N-60 degrees N) tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs). A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE) and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is greatest in the eastern Pacific; commonly occurring transport patterns advect this ozone northeastward into Canada. Transport events observed by the aircraft confirm that polluted airmasses were advected in this way. C1 [Walker, T. W.; Martin, R. V.; van Donkelaar, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Leaitch, W. R.; MacDonald, A. M.; Anlauf, K. G.; Tarasick, D. W.] Environm Canada, Downsview, ON, Canada. [Cohen, R. C.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Bertram, T. H.] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92103 USA. [Huey, L. G.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Avery, M. A.] NASA, Div Atmospher Sci, Langley Res Ctr, Hampton, VA USA. [Weinheimer, A. J.; Flocke, F. M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Streets, D. G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Liu, X.] Univ Baltimore Cty UMBC, Baltimore, MD USA. RP Walker, TW (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. EM twalker@atmosp.physics.utoronto.ca RI Cohen, Ronald/A-8842-2011; Martin, Randall/C-1205-2014; Chem, GEOS/C-5595-2014; Liu, Xiong/P-7186-2014; Thompson, Anne /C-3649-2014; OI Cohen, Ronald/0000-0001-6617-7691; Martin, Randall/0000-0003-2632-8402; Liu, Xiong/0000-0003-2939-574X; Thompson, Anne /0000-0002-7829-0920; Streets, David/0000-0002-0223-1350; Tarasick, David/0000-0001-9869-0692 FU Natural Science and Engineering Research Council (NSERC) of Canada; NSERC; NASA; NSF FX This work was supported by the Special Research Opportunity Program of the Natural Science and Engineering Research Council (NSERC) of Canada. Thomas Walker was supported by an NSERC Canadian Graduate Scholarship. The DC-8 and C-130 measurements were supported by NASA and NSF. NR 89 TC 22 Z9 22 U1 0 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 17 BP 8353 EP 8372 DI 10.5194/acp-10-8353-2010 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 650JS UT WOS:000281845800016 ER PT J AU Xu, M Liang, XZ Gao, W Krotkov, N AF Xu, M. Liang, X. -Z. Gao, W. Krotkov, N. TI Comparison of TOMS retrievals and UVMRP measurements of surface spectral UV radiation in the United States SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GROUND-BASED MEASUREMENTS; MONITORING INSTRUMENT OMI; TOTAL OZONE; SATELLITE ESTIMATION; MULTIPLE-SCATTERING; IRRADIANCE MEASUREMENTS; ULTRAVIOLET-RADIATION; B RADIATION; ALGORITHM; AEROSOLS AB Surface noontime spectral ultraviolet (UV) irradiances during May-September of 2000-2004 from the total ozone mapping spectrometer (TOMS) satellite retrievals are systematically compared with the ground measurements at 27 climatological sites maintained by the USDA UV-B Monitoring and Research Program. The TOMS retrievals are evaluated by two cloud screening methods and local air quality conditions to determine their bias dependencies on spectral bands, cloudiness, aerosol loadings, and air pollution. Under clear-sky conditions, TOMS retrieval biases vary from -3.4% (underestimation) to 23.6% (overestimation). Averaged over all sites, the relative mean biases for 305, 311, 325, and 368 nm are respectively 15.4, 7.9, 7.6, and 7.0% (overestimation). The bias enhancement for 305 nm by approximately twice that of other bands likely results from absorption by gaseous pollutants (SO2, O-3), and aerosols that are not included in the TOMS algorithm. For all bands, strong positive correlations of the TOMS biases are identified with aerosol optical depth, which explains nearly 50% of the variances of TOMS biases. The more restrictive in-situ cloud screening method reduces the biases by 3.4-3.9% averaged over all sites. This suggests that the TOMS biases from the in-situ cloud contamination may account for approximately 25% for 305 nm and 50% for other bands of the total bias. The correlation coefficients between total-sky and clear-sky biases across 27 sites are 0.92, 0.89, 0.83, and 0.78 for 305, 311, 325, and 368 nm, respectively. The results show that the spatial characteristics of the TOMS retrieval biases are systematic, representative of both clear and total-sky conditions. C1 [Xu, M.; Liang, X. -Z.] Univ Illinois, Div Illinois State Water Survey, Inst Nat Resource Sustainabil, Champaign, IL 61820 USA. [Gao, W.] Colorado State Univ, USDA, UB B Monitoring & Res Program, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Krotkov, N.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liang, X. -Z.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. RP Liang, XZ (reprint author), Univ Illinois, Div Illinois State Water Survey, Inst Nat Resource Sustainabil, 2204 Griffith, Champaign, IL 61820 USA. EM xliang@illinois.edu RI Krotkov, Nickolay/E-1541-2012; Gao, Wei/C-1430-2016 OI Krotkov, Nickolay/0000-0001-6170-6750; FU United States Department of Agriculture [AG CSU G-1459-1] FX The authors thank the TOMS team for the UV product and the TEMIS team for the SO2 and NO2 data. We are grateful to two anonymous reviewers and the ACP editor for instructive suggestions that help a more concise presentation. We also thank Dr. Torres for providing the OMI Level-3 aerosol product. This research was supported by the United States Department of Agriculture UV-B Monitoring and Research Program (UVMRP) grant to the University of Illinois at Urbana-Champaign (AG CSU G-1459-1). We thank Drs. John Davis, Becky Olson, Gwen Scott, and George Janson from UVMRP for providing the ground UV in situ measurements and valuable discussions. The data processing was mainly conducted at the NCSA/UIUC supercomputing facility. The views expressed are those of the authors and do not necessarily reflect those of the sponsoring agencies or the Illinois State Water Survey. NR 60 TC 1 Z9 1 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 18 BP 8669 EP 8683 DI 10.5194/acp-10-8669-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 657RC UT WOS:000282429000003 ER PT J AU Molina, LT Madronich, S Gaffney, JS Apel, E de Foy, B Fast, J Ferrare, R Herndon, S Jimenez, JL Lamb, B Osornio-Vargas, AR Russell, P Schauer, JJ Stevens, PS Volkamer, R Zavala, M AF Molina, L. T. Madronich, S. Gaffney, J. S. Apel, E. de Foy, B. Fast, J. Ferrare, R. Herndon, S. Jimenez, J. L. Lamb, B. Osornio-Vargas, A. R. Russell, P. Schauer, J. J. Stevens, P. S. Volkamer, R. Zavala, M. TI An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AEROSOL MASS-SPECTROMETRY; VOLATILE ORGANIC-COMPOUNDS; POLYCYCLIC AROMATIC-HYDROCARBONS; PARTICULATE AIR-POLLUTION; CHARACTERIZING OZONE PRODUCTION; POSITIVE MATRIX FACTORIZATION; SPECTRAL-RESOLUTION LIDAR; MCMA-2003 FIELD CAMPAIGN; ABSORPTION CROSS-SECTION; IN-SITU MEASUREMENTS AB MILAGRO (Megacity Initiative: Local And Global Research Observations) is an international collaborative project to examine the behavior and the export of atmospheric emissions from a megacity. The Mexico City Metropolitan Area (MCMA) - one of the world's largest megacities and North America's most populous city - was selected as the case study to characterize the sources, concentrations, transport, and transformation processes of the gases and fine particles emitted to the MCMA atmosphere and to evaluate the regional and global impacts of these emissions. The findings of this study are relevant to the evolution and impacts of pollution from many other megacities. The measurement phase consisted of a month-long series of carefully coordinated observations of the chemistry and physics of the atmosphere in and near Mexico City during March 2006, using a wide range of instruments at ground sites, on aircraft and satellites, and enlisting over 450 scientists from 150 institutions in 30 countries. Three ground supersites were set up to examine the evolution of the primary emitted gases and fine particles. Additional platforms in or near Mexico City included mobile vans containing scientific laboratories and mobile and stationary upward-looking lidars. Seven instrumented research aircraft provided information about the atmosphere over a large region and at various altitudes. Satellite-based instruments peered down into the atmosphere, providing even larger geographical coverage. The overall campaign was complemented by meteorological forecasting and numerical simulations, satellite observations and surface networks. Together, these research observations have provided the most comprehensive characterization of the MCMA's urban and regional atmospheric composition and chemistry that will take years to analyze and evaluate fully. In this paper we review over 120 papers resulting from the MILAGRO/INTEX-B Campaign that have been published or submitted, as well as relevant papers from the earlier MCMA-2003 Campaign, with the aim of providing a road map for the scientific community interested in understanding the emissions from a megacity such as the MCMA and their impacts on air quality and climate. This paper describes the measurements performed during MILAGRO and the results obtained on MCMA's atmospheric meteorology and dynamics, emissions of gases and fine particles, sources and concentrations of volatile organic compounds, urban and regional photochemistry, ambient particulate matter, aerosol radiative properties, urban plume characterization, and health studies. A summary of key findings from the field study is presented. C1 [Molina, L. T.; Zavala, M.] MIT, Cambridge, MA 02139 USA. [Madronich, S.; Apel, E.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Gaffney, J. S.] Univ Arkansas, Little Rock, AR 72204 USA. [de Foy, B.] St Louis Univ, St Louis, MO 63103 USA. [Fast, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ferrare, R.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Herndon, S.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Jimenez, J. L.; Volkamer, R.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Lamb, B.] Washington State Univ, Pullman, WA 99164 USA. [Osornio-Vargas, A. R.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Russell, P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schauer, J. J.] Univ Wisconsin, Madison, WI USA. [Stevens, P. S.] Indiana Univ, Bloomington, IN USA. EM ltmolina@mit.edu RI Jimenez, Jose/A-5294-2008; Liu, Yanan/J-3680-2012; de Foy, Benjamin/A-9902-2010; Madronich, Sasha/D-3284-2015; Osornio Vargas, Alvaro/B-4645-2010; Volkamer, Rainer/B-8925-2016 OI Jimenez, Jose/0000-0001-6203-1847; de Foy, Benjamin/0000-0003-4150-9922; Madronich, Sasha/0000-0003-0983-1313; Osornio Vargas, Alvaro/0000-0001-8287-7102; Volkamer, Rainer/0000-0002-0899-1369 FU Mexican Metropolitan Environmental Commission; Mexican Ministry of the Environment; CONACyT; PEMEX; NSF; DOE; NASA FX The MILAGRO/INTEX-B Campaign is the collaborative efforts of a large number of participants with the support of multi-national agencies. The MILAGRO/INTEX-B participants would like to thank the governments of the Federal District, the States of Mexico, Hidalgo and Veracruz, the Mexican Ministries of the Environment, Foreign Relations, Defense and Finance, the US Embassy in Mexico and the Molina Center for Energy and the Environment for their logistical support; IMP, U-Tecamac, and Rancho La Bisnega for hosting the supersites as well as many other Mexican institutions for their support. The MILAGRO/INTEX-B participants are grateful for funding from the Mexican Metropolitan Environmental Commission, Mexican Ministry of the Environment, CONACyT, PEMEX, NSF Atmospheric Chemistry Program, DOE Atmospheric Science Program and NASA Tropospheric Chemistry and Radiation Science Programs. NR 273 TC 155 Z9 157 U1 7 U2 85 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 18 BP 8697 EP 8760 DI 10.5194/acp-10-8697-2010 PG 64 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 657RC UT WOS:000282429000005 ER PT J AU Koren, I Feingold, G Remer, LA AF Koren, I. Feingold, G. Remer, L. A. TI The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SUPERCOOLED LIQUID WATER; GLOBAL-MODEL GOCART; OPTICAL-THICKNESS; SPECTRAL RADIANCES; POLLUTION AEROSOL; TROPICAL ATLANTIC; DUST TRANSPORT; AMAZON SMOKE; SATELLITE; MODIS AB Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds. C1 [Koren, I.] Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. [Feingold, G.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Remer, L. A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Koren, I (reprint author), Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. EM ilan.koren@weizmann.ac.il RI Feingold, Graham/B-6152-2009; Koren, Ilan/K-1417-2012; Manager, CSD Publications/B-2789-2015 OI Koren, Ilan/0000-0001-6759-6265; FU Cooperative Institute for research in the Environmental Sciences (CIRES); NOAA; NASA FX IK acknowledges a visiting fellowship from the Cooperative Institute for research in the Environmental Sciences (CIRES) for supporting this work. GF and IK acknowledge support from NOAA's Climate Goal. LR and IK acknowledge support from NASA's Interdisciplinary Science program. NR 98 TC 68 Z9 71 U1 0 U2 17 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 18 BP 8855 EP 8872 DI 10.5194/acp-10-8855-2010 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 657RC UT WOS:000282429000011 ER PT J AU Eyring, V Cionni, I Bodeker, GE Charlton-Perez, AJ Kinnison, DE Scinocca, JF Waugh, DW Akiyoshi, H Bekki, S Chipperfield, MP Dameris, M Dhomse, S Frith, SM Garny, H Gettelman, A Kubin, A Langematz, U Mancini, E Marchand, M Nakamura, T Oman, LD Pawson, S Pitari, G Plummer, DA Rozanov, E Shepherd, TG Shibata, K Tian, W Braesicke, P Hardiman, SC Lamarque, JF Morgenstern, O Pyle, JA Smale, D Yamashita, Y AF Eyring, V. Cionni, I. Bodeker, G. E. Charlton-Perez, A. J. Kinnison, D. E. Scinocca, J. F. Waugh, D. W. Akiyoshi, H. Bekki, S. Chipperfield, M. P. Dameris, M. Dhomse, S. Frith, S. M. Garny, H. Gettelman, A. Kubin, A. Langematz, U. Mancini, E. Marchand, M. Nakamura, T. Oman, L. D. Pawson, S. Pitari, G. Plummer, D. A. Rozanov, E. Shepherd, T. G. Shibata, K. Tian, W. Braesicke, P. Hardiman, S. C. Lamarque, J. F. Morgenstern, O. Pyle, J. A. Smale, D. Yamashita, Y. TI Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMISTRY-CLIMATE MODEL; BREWER-DOBSON CIRCULATION; MIDDLE ATMOSPHERE MODEL; GASES NITROUS-OXIDE; GREENHOUSE GASES; FUTURE CONCENTRATIONS; CARBON-DIOXIDE; TECHNICAL NOTE; 21ST-CENTURY; SIMULATIONS AB Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (similar to 2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by similar to 2045 in the Northern Hemisphere (NH) and by similar to 2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (similar to 2045-2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (similar to 2025-2030 for total column ozone, cf. 2050-2070 for Cl-y+60xBr(y)) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by similar to 2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role. C1 [Eyring, V.; Cionni, I.; Dameris, M.; Garny, H.] Deutsch Zentrum Luft & Raumfahrt, Inst Atmospher Phys, Oberpfaffenhofen, Germany. [Bodeker, G. E.] Bodeker Sci, Alexandra, South Africa. [Charlton-Perez, A. J.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Kinnison, D. E.; Gettelman, A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Scinocca, J. F.; Plummer, D. A.] Environm Canada, Victoria, BC, Canada. [Waugh, D. W.; Oman, L. D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Bekki, S.; Marchand, M.] Serv Aeron, Inst Pierre Simone Laplace, Paris, France. [Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Kubin, A.; Langematz, U.] Freie Univ ,Berlin, Inst Meteorol, Berlin, Germany. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Oman, L. D.; Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observatorium Davos, Davos, Switzerland. [Rozanov, E.] Inst Atmospher & Climate Sci ETH, Zurich, Switzerland. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A1, Canada. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. [Braesicke, P.; Morgenstern, O.; Pyle, J. A.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Hardiman, S. C.] Met Off, Exeter, Devon, England. [Morgenstern, O.; Smale, D.] Natl Inst Water & Atmospher Res, Lauder, New Zealand. [Yamashita, Y.] Univ Tokyo, Ctr Climate Syst Res, Tokyo 1138654, Japan. RP Eyring, V (reprint author), Deutsch Zentrum Luft & Raumfahrt, Inst Atmospher Phys, Oberpfaffenhofen, Germany. EM veronika.eyring@dlr.de RI Eyring, Veronika/O-9999-2016; Rozanov, Eugene/A-9857-2012; Oman, Luke/C-2778-2009; Bodeker, Greg/A-8870-2008; Chipperfield, Martyn/H-6359-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pawson, Steven/I-1865-2014; Waugh, Darryn/K-3688-2016; Pitari, Giovanni/O-7458-2016; Dhomse, Sandip/C-8198-2011; Charlton-Perez, Andrew/F-4079-2010 OI Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Rozanov, Eugene/0000-0003-0479-4488; Oman, Luke/0000-0002-5487-2598; Bodeker, Greg/0000-0003-1094-5852; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pawson, Steven/0000-0003-0200-717X; Waugh, Darryn/0000-0001-7692-2798; Pitari, Giovanni/0000-0001-7051-9578; Dhomse, Sandip/0000-0003-3854-5383; Charlton-Perez, Andrew/0000-0001-8179-6220 FU Ministry of the Environment of Japan [A-071]; DECC/Defra [GA01101]; National Science Foundation FX We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. We thank John Austin (AMTRAC3, NOAA GFDL, USA), Martine Michou and Hubert Teyssedre (CNRM-ACM, Meteo-France, France) for supplying model data from the REF-B2 reference simulations. We thank David B. Stephenson (Mathematics Research Institute, University of Exeter, UK) for his work on the TSAM method. CCSRNIES research was supported by the Global Environmental Research Found of the Ministry of the Environment of Japan (A-071) and the simulations were completed with the super computer at CGER, NIES. The MRI simulation was made with the supercomputer at the National Institute for Environmental Studies, Japan. The MetOffice simulation was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). NCAR is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. NR 69 TC 82 Z9 83 U1 0 U2 33 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 19 BP 9451 EP 9472 DI 10.5194/acp-10-9451-2010 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 665WG UT WOS:000283066300015 ER PT J AU Charlton-Perez, AJ Hawkins, E Eyring, V Cionni, I Bodeker, GE Kinnison, DE Akiyoshi, H Frith, SM Garcia, R Gettelman, A Lamarque, JF Nakamura, T Pawson, S Yamashita, Y Bekki, S Braesicke, P Chipperfield, MP Dhomse, S Marchand, M Mancini, E Morgenstern, O Pitari, G Plummer, D Pyle, JA Rozanov, E Scinocca, J Shibata, K Shepherd, TG Tian, W Waugh, DW AF Charlton-Perez, A. J. Hawkins, E. Eyring, V. Cionni, I. Bodeker, G. E. Kinnison, D. E. Akiyoshi, H. Frith, S. M. Garcia, R. Gettelman, A. Lamarque, J. F. Nakamura, T. Pawson, S. Yamashita, Y. Bekki, S. Braesicke, P. Chipperfield, M. P. Dhomse, S. Marchand, M. Mancini, E. Morgenstern, O. Pitari, G. Plummer, D. Pyle, J. A. Rozanov, E. Scinocca, J. Shibata, K. Shepherd, T. G. Tian, W. Waugh, D. W. TI The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMISTRY-CLIMATE MODEL; GASES NITROUS-OXIDE; MIDDLE ATMOSPHERE; FUTURE CONCENTRATIONS; TECHNICAL NOTE; SIMULATION; TRANSPORT; DEPLETION; AEROSOLS; METHANE AB Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, upto and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels. C1 [Charlton-Perez, A. J.; Hawkins, E.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Eyring, V.; Cionni, I.] Deutsch Zentrum Luft & Raumfahrt, Inst Atmospher Phys, Oberpfaffenhofen, Germany. [Bodeker, G. E.] Bodeker Sci, Elms, Alexandra, South Africa. [Kinnison, D. E.; Garcia, R.; Gettelman, A.; Lamarque, J. F.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bekki, S.; Marchand, M.] Serv Aeron, Inst Pierre Simone Laplace, Paris, France. [Braesicke, P.; Pyle, J. A.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Inst Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Morgenstern, O.] Natl Inst Water & Atmospher Reasearch, Lauder, New Zealand. [Plummer, D.; Scinocca, J.] Environm Canada, Victoria, BC, Canada. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observatorium Davos, Davos, Switzerland. [Rozanov, E.] Inst Atmospher & Climate Sci ETH, Zurich, Switzerland. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A1, Canada. [Waugh, D. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. RP Charlton-Perez, AJ (reprint author), Univ Reading, Dept Meteorol, Reading, Berks, England. EM a.j.charlton@reading.ac.uk RI Eyring, Veronika/O-9999-2016; Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Charlton-Perez, Andrew/F-4079-2010; Bodeker, Greg/A-8870-2008; Chipperfield, Martyn/H-6359-2013; Hawkins, Ed/B-7921-2011; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pawson, Steven/I-1865-2014; Waugh, Darryn/K-3688-2016; Pitari, Giovanni/O-7458-2016 OI Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Charlton-Perez, Andrew/0000-0001-8179-6220; Bodeker, Greg/0000-0003-1094-5852; Chipperfield, Martyn/0000-0002-6803-4149; Hawkins, Ed/0000-0001-9477-3677; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pawson, Steven/0000-0003-0200-717X; Waugh, Darryn/0000-0001-7692-2798; Pitari, Giovanni/0000-0001-7051-9578 FU Ministry of the Environment of Japan [A-071] FX This work was carried out as part of the ongoing CCMVal2 project. We acknowledge the support of Martine Michou and Hubert Teyssedre (CNRM-ACM, Meteo-France) and John Austin (AMTRAC3, GFDL) for supplying model data from the REF-B2 runs along with the support of the many scientists who contributed analysis and data to the SPARC CCMVal report which allowed us to make rapid progress on understanding the different model simulations. We also acknowledge the British Atmospheric Data Centre for providing the data archive for the simulations. CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071) and the simulations were completed with the super computer at CGER, NIES. The MRI simulation was made with the supercomputer at the National Institute for Environmental Studies, Japan. NR 48 TC 13 Z9 13 U1 1 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 19 BP 9473 EP 9486 DI 10.5194/acp-10-9473-2010 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 665WG UT WOS:000283066300016 ER PT J AU Warner, JX Wei, Z Strow, LL Barnet, CD Sparling, LC Diskin, G Sachse, G AF Warner, J. X. Wei, Z. Strow, L. L. Barnet, C. D. Sparling, L. C. Diskin, G. Sachse, G. TI Improved agreement of AIRS tropospheric carbon monoxide products with other EOS sensors using optimal estimation retrievals SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID NADIR RETRIEVALS; SPRING 2006; TRANSPORT; POLLUTION; MOPITT; TES; CO; MISSION; AIRS/AMSU/HSB; VARIABILITY AB We present in this paper an alternative retrieval algorithm for the Atmospheric Infrared Sounder (AIRS) tropospheric Carbon Monoxide (CO) products using the Optimal Estimation (OE) technique, which is different from the AIRS operational algorithm. The primary objective for this study was to compare AIRS CO, as well as the other retrieval properties such as the Averaging Kernels (AKs), the Degrees of Freedom for Signal (DOFS), and the error covariance matrix, against the Tropospheric Emission Spectrometer (TES) and the Measurement of Pollution in the Troposphere (MOPITT) CO, which were also derived using the OE technique. We also demonstrate that AIRS OE CO results are much more realistic than AIRS V5 operational CO, especially in the lower troposphere and in the Southern Hemisphere (SH). These products are validated with in situ profiles obtained by the Differential Absorption Carbon Monoxide Measurements (DACOM), which took place as part of NASA's Intercontinental Chemical Transport Experiment (INTEX-B) field mission that was conducted over the northern Pacific in Spring 2006. To demonstrate the differences existing in the current operational products we first show a detailed direct comparison between AIRS V5 and TES operational V3 CO for the global datasets from December 2005 to July 2008. We then present global CO comparisons between AIRS OE, TES V3, and MOPITT V4 at selected pressure levels as well as for the total column amounts. We conclude that the tropospheric CO retrievals from AIRS OE and TES V3 agree to within 5-10 ppbv or 5% on average globally and throughout the free troposphere. The agreements in total column CO amounts between AIRS OE and MOPITT V4 have improved significantly compared to AIRS V5 with global relative RMS differences now being 12.7%. C1 [Warner, J. X.; Wei, Z.; Strow, L. L.; Sparling, L. C.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Barnet, C. D.] NOAA NESDIS ORA, Camp Springs, MD USA. [Diskin, G.; Sachse, G.] NASA, Langley Res Ctr, Hampton, VA 23693 USA. RP Warner, JX (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, 5523 Res Pk Dr,Suite 320, Baltimore, MD 21228 USA. EM juying@umbc.edu RI Barnet, Christopher/F-5573-2010 FU NASA [NNX07AM45G, NNG06GB04G] FX This study was supported by the NASA Atmospheric Composition Program (NNX07AM45G) and the Global Tropospheric Chemistry Program (NNG06GB04G). We acknowledge the AIRS, TES, and MOPITT Science Teams for the satellite products used in this study. We also acknowledge the INTEX-B Science Team for providing high quality in situ measurements. NR 40 TC 22 Z9 22 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 19 BP 9521 EP 9533 DI 10.5194/acp-10-9521-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 665WG UT WOS:000283066300019 ER PT J AU Zinner, T Wind, G Platnick, S Ackerman, AS AF Zinner, T. Wind, G. Platnick, S. Ackerman, A. S. TI Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SOLAR-RADIATION MEASUREMENTS; DROPLET EFFECTIVE RADIUS; OPTICAL-THICKNESS; SATELLITE RETRIEVALS; STRATOCUMULUS; MODIS; UNCERTAINTIES; SCATTERING; EXAMPLES AB Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation. For three cloud cases the possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES) with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics. We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1) a typical daytime stratocumulus deck at two times in the diurnal cycle and (2) one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three effective radius retrievals is noticed for both cloud scene types for different reasons. For our, presumably typical, overcast stratocumulus scenes with an optical thickness of 8 to 9 and rain rates at cloud bottom up to 0.05 mm/h clear drizzle impact on the retrievals can be excluded. The cumulus scene does not show much drizzle sensitivity either despite extended drizzle areas being directly visible from above (locally >1 mm/h), which is mainly due to technical characteristics of the standard retrieval approach. 3-D effects, on the other hand, produce large discrepancies between the 1.6 and 2.1 mu m channel observations compared to 3.7 mu m retrievals in the latter case. A general sensitivity of MODIS particle size data to drizzle formation is not corroborated by our case studies. C1 [Zinner, T.] Deutsch Zentrum Luft & Raumfahrt DLR, Oberpfaffenhofen, Germany. [Wind, G.; Platnick, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ackerman, A. S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Zinner, T (reprint author), Univ Munich, Munich, Germany. EM tobias.zinner@lmu.de RI Ackerman, Andrew/D-4433-2012; Platnick, Steven/J-9982-2014; Zinner, Tobias/B-8991-2013 OI Ackerman, Andrew/0000-0003-0254-6253; Platnick, Steven/0000-0003-3964-3567; FU German Research Foundation (DFG); NASA FX T. Zinner was supported by a German Research Foundation (DFG) Fellowship and the NASA visiting scientists program. We thank M. Hagen for his helpful comments and two anonymous reviewers for their critical reviews which helped to improve the final manuscript. NR 30 TC 17 Z9 17 U1 2 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 19 BP 9535 EP 9549 DI 10.5194/acp-10-9535-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 665WG UT WOS:000283066300020 ER PT J AU Alvarado, MJ Logan, JA Mao, J Apel, E Riemer, D Blake, D Cohen, RC Min, KE Perring, AE Browne, EC Wooldridge, PJ Diskin, GS Sachse, GW Fuelberg, H Sessions, WR Harrigan, DL Huey, G Liao, J Case-Hanks, A Jimenez, JL Cubison, MJ Vay, SA Weinheimer, AJ Knapp, DJ Montzka, DD Flocke, FM Pollack, IB Wennberg, PO Kurten, A Crounse, J St Clair, JM Wisthaler, A Mikoviny, T Yantosca, RM Carouge, CC Le Sager, P AF Alvarado, M. J. Logan, J. A. Mao, J. Apel, E. Riemer, D. Blake, D. Cohen, R. C. Min, K-E Perring, A. E. Browne, E. C. Wooldridge, P. J. Diskin, G. S. Sachse, G. W. Fuelberg, H. Sessions, W. R. Harrigan, D. L. Huey, G. Liao, J. Case-Hanks, A. Jimenez, J. L. Cubison, M. J. Vay, S. A. Weinheimer, A. J. Knapp, D. J. Montzka, D. D. Flocke, F. M. Pollack, I. B. Wennberg, P. O. Kurten, A. Crounse, J. St Clair, J. M. Wisthaler, A. Mikoviny, T. Yantosca, R. M. Carouge, C. C. Le Sager, P. TI Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID IONIZATION MASS-SPECTROMETRY; BIOMASS BURNING EMISSIONS; HIGH NORTHERN LATITUDES; LONG-RANGE TRANSPORT; CARBON-MONOXIDE; INTERANNUAL VARIABILITY; ATMOSPHERIC CHEMISTRY; CONTINENTAL OUTFLOW; ACCURATE SIMULATION; TROPOSPHERIC OZONE AB We determine enhancement ratios for NOx, PAN, and other NOy species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NOx of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NOx emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Of the 22 plumes observed by TES, only 4 showed ozone increasing within the smoke plumes, and even in those cases it was unclear that the increase was caused by fire emissions. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES. C1 [Alvarado, M. J.; Logan, J. A.; Mao, J.; Yantosca, R. M.; Carouge, C. C.; Le Sager, P.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Apel, E.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Pollack, I. B.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Riemer, D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Blake, D.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA USA. [Cohen, R. C.; Min, K-E; Perring, A. E.; Browne, E. C.; Wooldridge, P. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Diskin, G. S.; Sachse, G. W.; Vay, S. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Fuelberg, H.; Sessions, W. R.; Harrigan, D. L.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Huey, G.; Liao, J.; Case-Hanks, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Jimenez, J. L.; Cubison, M. J.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Jimenez, J. L.; Cubison, M. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Wennberg, P. O.; Kurten, A.; Crounse, J.; St Clair, J. M.] CALTECH, Pasadena, CA 91125 USA. [Wisthaler, A.; Mikoviny, T.] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. RP Alvarado, MJ (reprint author), Atmospher & Environm Res Inc, Lexington, MA USA. EM matthew.alvarado@aer.com RI Browne, Eleanor/J-4517-2015; Crounse, John/C-3700-2014; Perring, Anne/G-4597-2013; Liao, Jin/H-4865-2013; Min, Kyung-Eun/I-2839-2013; Cohen, Ronald/A-8842-2011; Yantosca, Robert/F-7920-2014; Mao, Jingqiu/F-2511-2010; Jimenez, Jose/A-5294-2008; Crounse, John/E-4622-2011; Carouge, Claire/A-4755-2012; Sessions, Walter/O-8096-2014; Wennberg, Paul/A-5460-2012; Pollack, Ilana/F-9875-2012; Chem, GEOS/C-5595-2014 OI Browne, Eleanor/0000-0002-8076-9455; Crounse, John/0000-0001-5443-729X; Kurten, Andreas/0000-0002-8955-4450; Perring, Anne/0000-0003-2231-7503; Cohen, Ronald/0000-0001-6617-7691; Yantosca, Robert/0000-0003-3781-1870; Mao, Jingqiu/0000-0002-4774-9751; Jimenez, Jose/0000-0001-6203-1847; Carouge, Claire/0000-0002-0313-8385; Sessions, Walter/0000-0002-5376-4894; FU NASA [NNX09AC51G, NBNX08AD39G]; Austrian Research Promotion Agency; Tiroler Zukunftstiftung FX We thank all of the members of the ARCTAS Science Team and the TES Science Team for their work. We thank D. J. Jacob, J. A. Fisher, and Q. Wang of Harvard and the anonymous reviewers for their helpful comments. This research was supported by NASA grant NNX09AC51G to Harvard University (MJA and JAL) and NASA grant NBNX08AD39G to the University of Colorado (MJC and JLJ). PTR-MS measurements were supported by the Austrian Research Promotion Agency (FFG), the Tiroler Zukunftstiftung and the research groups led by A. Hansel and T. D. Mark. NR 62 TC 85 Z9 85 U1 1 U2 35 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 20 BP 9739 EP 9760 DI 10.5194/acp-10-9739-2010 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673LH UT WOS:000283663000002 ER PT J AU Randles, CA Ramaswamy, V AF Randles, C. A. Ramaswamy, V. TI Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BLACK CARBON AEROSOLS; OPTICAL DEPTH; SAFARI 2000; TROPOSPHERIC AEROSOL; MARINE STRATOCUMULUS; SIMULATION; ANOMALIES; AERONET; MODELS; CLOUDS AB Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere. C1 [Randles, C. A.; Ramaswamy, V.] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA. [Ramaswamy, V.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Randles, CA (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Code 613-3, Greenbelt, MD USA. EM crandles@umbc.edu RI Randles, Cynthia/B-6972-2013 FU Department of Energy (DOE); Princeton AOS program FX The authors thank Paul Ginoux and Hiram Levy II for thoughtful comments on the manuscript. We thank Omar Torres for providing daily EP-TOMS retrievals of AOD and SSA for 2000 and the AERONET investigators and their staff for establishing and maintaining the 18 sites used in this investigation. We also thank the four anonymous reviewers for their constructive comments that have improved this work. CAR acknowledges funding from the Department of Energy (DOE) Graduate Research Environmental Fellowship (GREF) and the Princeton AOS program. NR 44 TC 15 Z9 15 U1 3 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 20 BP 9819 EP 9831 DI 10.5194/acp-10-9819-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673LH UT WOS:000283663000007 ER PT J AU Boxe, CS Worden, JR Bowman, KW Kulawik, SS Neu, JL Ford, WC Osterman, GB Herman, RL Eldering, A Tarasick, DW Thompson, AM Doughty, DC Hoffmann, MR Oltmans, SJ AF Boxe, C. S. Worden, J. R. Bowman, K. W. Kulawik, S. S. Neu, J. L. Ford, W. C. Osterman, G. B. Herman, R. L. Eldering, A. Tarasick, D. W. Thompson, A. M. Doughty, D. C. Hoffmann, M. R. Oltmans, S. J. TI Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TOMS MEASUREMENTS; AURA MISSION; SATELLITE; RETRIEVAL; TES; CONVECTION; MODEL; SCALE AB We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadirstare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/) during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44 degrees N to 71 degrees N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70 degrees) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (similar to 1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44 degrees N and 71 degrees N there is variability in the mean biases (from -14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%). C1 [Boxe, C. S.; Ford, W. C.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91125 USA. [Thompson, A. M.; Doughty, D. C.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Tarasick, D. W.] Environm Canada, Air Qual Res Div, Downsview, ON, Canada. [Oltmans, S. J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Boxe, CS (reprint author), CALTECH, Jet Prop Lab, Div Earth & Space Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM christopher.boxe@jpl.nasa.gov RI Herman, Robert/H-9389-2012; Thompson, Anne /C-3649-2014; OI Herman, Robert/0000-0001-7063-6424; Thompson, Anne /0000-0002-7829-0920; Tarasick, David/0000-0001-9869-0692 FU National Aeronautics and Space Administration FX The work described here is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the National Aeronautics and Space Administration. NR 44 TC 29 Z9 29 U1 0 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 20 BP 9901 EP 9914 DI 10.5194/acp-10-9901-2010 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673LH UT WOS:000283663000012 ER PT J AU Zander, R Duchatelet, P Mahieu, E Demoulin, P Roland, G Servais, C Auwera, JV Perrin, A Rinsland, CP Crutzen, PJ AF Zander, R. Duchatelet, P. Mahieu, E. Demoulin, P. Roland, G. Servais, C. Auwera, J. V. Perrin, A. Rinsland, C. P. Crutzen, P. J. TI Formic acid above the Jungfraujoch during 1985-2007: observed variability, seasonality, but no long-term background evolution SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MOLECULAR SPECTROSCOPIC DATABASE; ALPINE SITE JUNGFRAUJOCH; WESTERN PACIFIC-OCEAN; ACETIC-ACIDS; UPPER TROPOSPHERE; CARBOXYLIC-ACIDS; CHEMICAL CHARACTERISTICS; CONTINENTAL OUTFLOW; BOUNDARY-LAYER; PEM-WEST AB This paper reports on daytime total vertical column abundances of formic acid (HCOOH) above the Northern mid-latitude, high altitude Jungfraujoch station (Switzerland; 46.5 degrees N, 8.0 degrees E, 3580 m alt.). The columns were derived from the analysis of infrared solar observations regularly performed with high spectral resolution Fourier transform spectrometers during over 1500 days between September 1985 and September 2007. The investigation was based on the spectrometric fitting of five spectral intervals, one encompassing the HCOOH nu(6) band Q branch at 1105 cm(-1), and four additional ones allowing to optimally account for critical temperature-sensitive or time-evolving interferences by other atmospheric gases, in particular HDO, CCl2F2 and CHClF2. The main results derived from the 22 years long database indicate that the free tropospheric burden of HCOOH above the Jungfraujoch undergoes important short-term daytime variability, diurnal and seasonal modulations, inter-annual anomalies, but no significant long-term background change. A major progress in the remote determination of the atmospheric HCOOH columns reported here has resulted from the adoption of new, improved absolute spectral line intensities for the infrared nu(6) band of trans-formic acid, resulting in retrieved free tropospheric loadings being about a factor two smaller than if derived with previous spectroscopic parameters. Implications of this significant change with regard to earlier remote measurements of atmospheric formic acid and comparison with relevant Northern mid-latitude findings, both in situ and remote, will be assessed critically. Sparse HCOOH model predictions will also be evoked and assessed with respect to findings reported here. C1 [Zander, R.; Duchatelet, P.; Mahieu, E.; Demoulin, P.; Roland, G.; Servais, C.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Auwera, J. V.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, B-1050 Brussels, Belgium. [Perrin, A.] Univ Paris Est Creteil & Paris 7, CNRS, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Rinsland, C. P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Crutzen, P. J.] Max Planck Inst Chem, Airchem Div, D-55128 Mainz, Germany. RP Duchatelet, P (reprint author), Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. EM p.duchatelet@ulg.ac.be RI Crutzen, Paul/F-6044-2012; OI Mahieu, Emmanuel/0000-0002-5251-0286 FU Belgian Federal Science Policy Office, Brussels; Belgian Fonds National de la Recherche Scientifique, Brussels; Belgian Communaute Francaise, Brussels; European Commission, Brussels; Belgian Fonds de la Recherche Scientifique; Actions de Recherches Concertees of the Communaute Francaise de Belgique; INSU-CNRS (Institut National des Sciences de l'Univers); NASA FX This work is part of an overall atmospheric monitoring effort conducted at the University of Liege and primarily financed by the Belgian Federal Science Policy Office, the Belgian Fonds National de la Recherche Scientifique, the Belgian Communaute Francaise, and the European Commission, all in Brussels. We thank all colleagues and collaborators who have contributed to the decades long production of the database used here, and to the operation and upgrading of the Liege laboratory at the Jungfraujoch. Thanks are also extended to colleagues from the Royal Observatory of Belgium and from the Belgian Institute for Space Aeronomy for their participation to intensive observational campaigns. Acknowledgements further go to the Swiss Jungfraubahnen for their continuous maintenance of and year-round access to the Jungfraujoch Station, as well as to the HFSJG Directorate for the logistic management of the numerous researches conducted at the Jungfraujoch site. The affiliation of the Jungfraujoch site to the International Network for the Detection of Atmospheric Composition Change (NDSCC) since 1989 has significantly boosted the implication of the University of Liege group in monitoring Earth's atmospheric composition changes, while further providing overall international visibility of various research activities performed at that site. J. VDA acknowledges financial support from the Belgian Fonds de la Recherche Scientifique (contracts FRFC and IISN), and the Actions de Recherches Concertees of the Communaute Francaise de Belgique. A. P. gratefully acknowledges financial support from INSU-CNRS (Institut National des Sciences de l'Univers). Analysis at the NASA Langley Research Center was supported by NASA's Upper Atmospheric Chemistry and Modeling Program (ACMAP) and Upper Atmospheric Research Program (UARP). We finally thank two designated referees whose remarks and suggestions have allowed clarifying various aspects raised in this research. NR 81 TC 9 Z9 9 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 20 BP 10047 EP 10065 DI 10.5194/acp-10-10047-2010 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673LH UT WOS:000283663000024 ER PT J AU Damiani, A Storini, M Santee, ML Wang, S AF Damiani, A. Storini, M. Santee, M. L. Wang, S. TI Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MIDDLE ATMOSPHERE; PARTICLE-PRECIPITATION; POLAR WINTERS; AURA-MLS; STRATOSPHERE; SATELLITE; ENHANCEMENTS; TEMPERATURE; CHEMISTRY; EMISSION AB Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS) in winters of 2005-2009, have shown medium- (weeks) and short- (days) term variability of the nighttime OH layer. Because of the exceptional descent of air from the mesosphere-lower thermosphere (MLT) region, medium-term variability occurred during February 2006 and February/ March 2009. The layer normally situated at about 82 km descended by about 5-7 km, and its density increased to more than twice January values. In these periods and location the abundance of the lowered OH layer is comparable to the OH values induced by Solar Energetic Particle (SEP) forcing (e. g., SEP events of January 2005) at the same altitudes. In both years, the descent of the OH layer was coupled with increased mesospheric temperatures, elevated carbon monoxide and an almost complete disappearance of ozone at the altitude of the descended layer (which was not observed in other years). Moreover, under these exceptional atmospheric conditions, the third ozone peak, normally at about 72 km, is shown to descend about 5 km to lower altitude and increase in magnitude, with maximum values recorded during February 2009. Short-term variability occurred during Sudden Stratospheric Warming (SSW) events, in particular in January 2006, February 2008 and January 2009, when dynamics led to a smaller abundance of the OH layer at its typical altitude. During these periods, there was an upward displacement of the OH layer coupled to changes in ozone and carbon monoxide. These perturbations were the strongest during the SSW of January 2009; coincident upper mesospheric temperatures were the lowest recorded over the late winters of 2005-2009. Finally, the series of SSW events that occurred in late January/February 2008 induced noticeable short-term variability in ozone at altitudes of both the ozone minimum and the third ozone peak. These phenomena, confined inside the polar vortex, are an additional tool that can be used to investigate mesospheric vortex dynamics. C1 [Damiani, A.; Storini, M.] INAF, Inst Interplanetary Space Phys, Rome, Italy. [Santee, M. L.; Wang, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Damiani, A (reprint author), Univ Santiago Chile, Dept Phys, Santiago, Chile. EM alessandro.damiani@ifsi-roma.inaf.it FU ASI [I/015/07/0]; PNRA of Italy; Spanish CSIC [200950I081]; National Aeronautics and Space Administration FX This work was supported by ASI contract I/015/07/0 (ESS2 Project) and PNRA of Italy. A. D. also acknowledges support from project 200950I081 of the Spanish CSIC. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with the National Aeronautics and Space Administration. NR 50 TC 19 Z9 19 U1 0 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 21 BP 10291 EP 10303 DI 10.5194/acp-10-10291-2010 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680CQ UT WOS:000284210400009 ER PT J AU Levy, RC Remer, LA Kleidman, RG Mattoo, S Ichoku, C Kahn, R Eck, TF AF Levy, R. C. Remer, L. A. Kleidman, R. G. Mattoo, S. Ichoku, C. Kahn, R. Eck, T. F. TI Global evaluation of the Collection 5 MODIS dark-target aerosol products over land SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID UNIFIED SATELLITE CLIMATOLOGY; OPTICAL DEPTH; CLOUD; REFLECTANCE; RETRIEVAL; VALIDATION; ALGORITHM; AERONET; CALIBRATION; INSTRUMENT AB NASA's MODIS sensors have been observing the Earth from polar orbit, from Terra since early 2000 and from Aqua since mid 2002. We have applied a consistent retrieval and processing algorithm to both sensors to derive the Collection 5 (C005) dark-target aerosol products over land. Here, we validate the MODIS along-orbit Level 2 products by comparing to quality assured Level 2 AERONET sunphotometer measurements at over 300 sites. From 85 463 collocations, representing mutually cloud-free conditions, we find that >66% (one standard deviation) of MODIS-retrieved aerosol optical depth (AOD) values compare to AERONET-observed values within an expected error (EE) envelope of +/-(0.05 + 15%), with high correlation (R = 0.9). Thus, the MODIS AOD product is validated and quantitative. However, even though we can define EEs for MODIS-reported Angstrom exponent and fine AOD over land, these products do not have similar physical validity. Although validated globally, MODIS-retrieved AOD does not fall within the EE envelope everywhere. We characterize some of the residual biases that are related to specific aerosol conditions, observation geometry, and/or surface properties, and relate them to situations where particular MODIS algorithm assumptions are violated. Both Terra's and Aqua's-retrieved AOD are similarly comparable to AERONET, however, Terra's global AOD bias changes with time, overestimating (by similar to 0.005) before 2004, and underestimating by similar magnitude after. This suggests how small calibration uncertainties of <2% can lead to spurious conclusions about long-term aerosol trends. C1 [Levy, R. C.; Kleidman, R. G.; Mattoo, S.] Sci Syst & Applicat Inc, Lanham, MD USA. [Levy, R. C.; Remer, L. A.; Kleidman, R. G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eck, T. F.] Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. RP Levy, RC (reprint author), Sci Syst & Applicat Inc, Lanham, MD USA. EM robert.c.levy@nasa.gov RI ECK, THOMAS/D-7407-2012; Ichoku, Charles/E-1857-2012; Levy, Robert/M-7764-2013; Kahn, Ralph/D-5371-2012 OI Ichoku, Charles/0000-0003-3244-4549; Levy, Robert/0000-0002-8933-5303; Kahn, Ralph/0000-0002-5234-6359 FU NASA [NNH06ZDA001N-EOS] FX We are deeply grateful to the many AERONET Principal Investigators and site managers; without their attention to detail, this study would not exist. This work has been funded by NASA research announcement NNH06ZDA001N-EOS, managed by Hal Maring. NR 65 TC 398 Z9 411 U1 14 U2 72 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 21 BP 10399 EP 10420 DI 10.5194/acp-10-10399-2010 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680CQ UT WOS:000284210400016 ER PT J AU van Gijsel, JAE Swart, DPJ Baray, JL Bencherif, H Claude, H Fehr, T Godin-Beekmann, S Hansen, GH Keckhut, P Leblanc, T McDermid, IS Meijer, YJ Nakane, H Quel, EJ Stebel, K Steinbrecht, W Strawbridge, KB Tatarov, BI Wolfram, EA AF van Gijsel, J. A. E. Swart, D. P. J. Baray, J. -L. Bencherif, H. Claude, H. Fehr, T. Godin-Beekmann, S. Hansen, G. H. Keckhut, P. Leblanc, T. McDermid, I. S. Meijer, Y. J. Nakane, H. Quel, E. J. Stebel, K. Steinbrecht, W. Strawbridge, K. B. Tatarov, B. I. Wolfram, E. A. TI GOMOS ozone profile validation using ground-based and balloon sonde measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ULTRAVIOLET-B RADIATION; STRATOSPHERIC CHANGE; ENVISAT-GOMOS; TEMPERATURE; CLIMATOLOGY; OZONESONDES; SCIAMACHY; NETWORK; MIPAS; INSTRUMENTS AB The validation of ozone profiles retrieved by satellite instruments through comparison with data from ground-based instruments is important to monitor the evolution of the satellite instrument, to assist algorithm development and to allow multi-mission trend analyses. In this study we compare ozone profiles derived from GO-MOS night-time observations with measurements from lidar, microwave radiometer and balloon sonde. Collocated pairs are analysed for dependence on several geophysical and instrument observational parameters. Validation results are presented for the operational ESA level 2 data (GOMOS version 5.00) obtained during nearly seven years of observations and a comparison using a smaller dataset from the previous processor (version 4.02) is also included. The profiles obtained from dark limb measurements (solar zenith angle >107 degrees) when the provided processing flag is properly considered match the ground-based measurements within +/- 2 percent over the altitude range 20 to 40 km. Outside this range, the pairs start to deviate more and there is a latitudinal dependence: in the polar region where there is a higher amount of straylight contamination, differences start to occur lower in the mesosphere than in the tropics, whereas for the lower part of the stratosphere the opposite happens: the profiles in the tropics reach less far down as the signal reduces faster because of the higher altitude at which the maximum ozone concentration is found compared to the mid and polar latitudes. Also the bias is shifting from mostly negative in the polar region to more positive in the tropics Profiles measured under "twilight" conditions are often matching the ground-based measurements very well, but care has to be taken in all cases when dealing with "straylight" contaminated profiles. For the selection criteria applied here (data within 800 km, 3 degrees in equivalent latitude, 20 h (5 h above 50 km) and a relative ozone error in the GOMOS data of 20% or less), no dependence was found on stellar magnitude, star temperature, nor the azimuth angle of the line of sight. No evidence of a temporal trend was seen either in the bias or frequency of outliers, but a comparison applying less strict data selection criteria might show differently. C1 [van Gijsel, J. A. E.; Swart, D. P. J.] Natl Inst Publ Hlth & Environm RIVM, Ctr Environm Monitoring, Bilthoven, Netherlands. [Baray, J. -L.; Bencherif, H.] Univ La Reunion, St Denis, France. [Claude, H.; Steinbrecht, W.] German Weather Serv DWD, Hohenpeissenberg, Germany. [Fehr, T.; Meijer, Y. J.] European Space Agcy ESA ESRIN, Frascati, Italy. [Godin-Beekmann, S.] CNRS UPMC UVSQ, Paris, France. [Hansen, G. H.; Stebel, K.] Norwegian Air Res Inst NILU, Tromso, Norway. [Keckhut, P.] Lab Atmospheres Milieux Observat Spatiales LATMOS, Verrieres Le Buisson, France. [Leblanc, T.; McDermid, I. S.] Table Mt Facil, CALTECH, Jet Prop Lab, Wrightwood, CA USA. [Nakane, H.] Natl Inst Environm Studies, Asian Environm Res Grp, Tsukuba, Ibaraki, Japan. [Quel, E. J.; Wolfram, E. A.] CITEFA CONICET, Laser & Applicat Res Ctr CEILAP, Villa Martelli, Argentina. [Tatarov, B. I.] Natl Inst Environm Studies, Atmospher Remote Sensing Sect, Tsukuba, Ibaraki, Japan. RP van Gijsel, JAE (reprint author), Natl Inst Publ Hlth & Environm RIVM, Ctr Environm Monitoring, Bilthoven, Netherlands. EM anne.van.gijsel@rivm.nl RI van Gijsel, Joanna/F-8087-2010; Steinbrecht, Wolfgang/G-6113-2010; Stebel, Kerstin/F-6465-2013 OI Nakane, Hideaki/0000-0002-9032-6105; Steinbrecht, Wolfgang/0000-0003-0680-6729; Stebel, Kerstin/0000-0002-6935-7564 NR 50 TC 18 Z9 18 U1 0 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 21 BP 10473 EP 10488 DI 10.5194/acp-10-10473-2010 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680CQ UT WOS:000284210400020 ER PT J AU Pommier, M Law, KS Clerbaux, C Turquety, S Hurtmans, D Hadji-Lazaro, J Coheur, PF Schlager, H Ancellet, G Paris, JD Nedelec, P Diskin, GS Podolske, JR Holloway, JS Bernath, P AF Pommier, M. Law, K. S. Clerbaux, C. Turquety, S. Hurtmans, D. Hadji-Lazaro, J. Coheur, P-F Schlager, H. Ancellet, G. Paris, J-D Nedelec, P. Diskin, G. S. Podolske, J. R. Holloway, J. S. Bernath, P. TI IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ACE-FTS; AIRCRAFT OBSERVATIONS; AIRBORNE MEASUREMENTS; TROPOSPHERIC OZONE; CO; IASI/METOP; SATELLITE; TRANSPORT; POLLUTION; RETRIEVALS AB In this paper, we provide a detailed comparison between carbon monoxide (CO) data measured by the Infrared Atmospheric Sounding Interferometer (IASI)/MetOp and aircraft observations over the Arctic. The CO measurements were obtained during North American (NASA ARCTAS and NOAA ARCPAC) and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB) as part of the International Polar Year (IPY) POLARCAT activity in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. The paper illustrates that CO-rich plumes following different transport pathways were well captured by the IASI instrument, in particular due to the high spatial coverage of IASI. The comparison between IASI CO total columns, 0-5 km partial columns and profiles with collocated aircraft data was achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of information content and surface properties at the location of the observations. For profiles, the data were found to be in good agreement in spring with differences lower than 17%, whereas in summer the difference can reach 20% for IASI profiles below 8 km for polluted cases. For total columns the correlation coefficients ranged from 0.15 to 0.74 (from 0.47 to 0.77 for partial columns) in spring and from 0.26 to 0.84 (from 0.66 to 0.88 for partial columns) in summer. A better agreement is seen over the sea in spring (0.73 for total column and 0.78 for partial column) and over the land in summer (0.69 for total columns and 0.81 for partial columns). The IASI vertical sensitivity was better over land than over sea, and better over land than over sea ice and snow allowing a higher potential to detect CO vertical distribution during summer. C1 [Pommier, M.; Law, K. S.; Clerbaux, C.; Hadji-Lazaro, J.; Ancellet, G.] Univ Versailles St Quentin, UPMC Univ Paris 06, CNRS, INSU,LATMOS IPSL,UMR 8190, Paris, France. [Turquety, S.] UPMC Univ Paris 06, Ecole Polytech, CNRS, LMD IPSL,UMR 8539, Palaiseau, France. [Clerbaux, C.; Hurtmans, D.; Coheur, P-F] Free Univ Brussels, Brussels, Belgium. [Schlager, H.] DLR, Inst Phys & Atmosphare, Oberpfaffenhofen, Germany. [Paris, J-D] CEA CNRS UVSQ, LSCE IPSL, Saclay, France. [Nedelec, P.] Univ Toulouse, UPS, LA, CNRS,UMR 5560, Toulouse, France. [Diskin, G. S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Podolske, J. R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Holloway, J. S.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Holloway, J. S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Bernath, P.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Bernath, P.] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. RP Pommier, M (reprint author), Univ Versailles St Quentin, UPMC Univ Paris 06, CNRS, INSU,LATMOS IPSL,UMR 8190, Paris, France. EM matthieu.pommier@latmos.ipsl.fr RI Bernath, Peter/B-6567-2012; Holloway, John/F-9911-2012; clerbaux, cathy/I-5478-2013; Manager, CSD Publications/B-2789-2015 OI Bernath, Peter/0000-0002-1255-396X; Holloway, John/0000-0002-4585-9594; FU CNES (Centre national d'Etudes Spatiales); NOVELTIS; "Actions de Recherche Concertees" (Communaute Francaise); Fonds National de la Recherche Scientifique [FRS-FNRS F.4511.08]; Belgian State Federal Office for Scientific, Technical and Cultural Affairs; European Space Agency [ESA-Prodex C90-327]; French ANR; CNES; CNRS-INSU (LEFE-CHAT); IPEV; EUFAR; DLR; CNRS-DRI (France); French Ministry of Foreign Affairs; CEA (France); POLARCAT France/Norway; RAS (Russia); RFBR (Russia); Canadian Space Agency; UK Natural Environment Research Council (NERC) FX M. Pommier was supported by a grant from CNES (Centre national d'Etudes Spatiales) and by NOVELTIS. IASI was developed and built under the responsibility of CNES and flies onboard the MetOp satellite as part of the Eumetsat Polar system. The IASI L1 data are received through the Eumetcast near real time data distribution service. IASI L1 and L2 data are stored in the Ether French atmospheric database (http://ether.ipsl.jussieu.fr). We thank Raphael Adam de Villiers for his contribution to this work. The research in Belgium was funded by the "Actions de Recherche Concertees" (Communaute Francaise), the Fonds National de la Recherche Scientifique (FRS-FNRS F.4511.08), the Belgian State Federal Office for Scientific, Technical and Cultural Affairs and the European Space Agency (ESA-Prodex C90-327). POLARCAT-France was funded by French ANR, CNES, CNRS-INSU (LEFE-CHAT), IPEV and also EUFAR. POLARCAT-GRACE was funded by DLR. The YAK-AEROSIB campaigns were funded by the CNRS-DRI (France), the French Ministry of Foreign Affairs, CEA (France), POLARCAT France/Norway, RAS (Russia) and RFBR (Russia), and operated in collaboration with IAO-SB-RAS, Tomsk, Russia. The ACE mission is supported primarily by the Canadian Space Agency and the UK Natural Environment Research Council (NERC). The authors are grateful to CNRS-INSU for publication support. NR 50 TC 29 Z9 31 U1 2 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 21 BP 10655 EP 10678 DI 10.5194/acp-10-10655-2010 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680CQ UT WOS:000284210400029 ER PT J AU Lihavainen, H Kerminen, VM Remer, LA AF Lihavainen, H. Kerminen, V. -M. Remer, L. A. TI Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ARCTIC BACKGROUND SITE; EXPERIMENT 2ND PACE; DROPLET ACTIVATION; PARTICLE FORMATION; SIZE; FINLAND; REGIONS; REGIMES; MODELS; NUMBER AB The first aerosol indirect effect over a clean, northern high-latitude site was investigated by determining the aerosol cloud interaction (ACI) using three different approaches; ground-based in situ measurements, combined ground-based in situ measurements and satellite retrievals and using only satellite retrievals. The obtained values of ACI were highest for in situ ground-based data, clearly lower for combined ground-based and satellite data, and lowest for data relying solely on satellite retrievals. One of the key findings of this study was the high sensitivity of ACI to the definition of the aerosol burden. We showed that at least a part of the variability in ACI can be explained by how different investigators have related different cloud properties to "aerosol burden". C1 [Lihavainen, H.; Kerminen, V. -M.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Remer, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lihavainen, H (reprint author), Finnish Meteorol Inst, POB 503, FIN-00101 Helsinki, Finland. EM heikki.lihavainen@fmi.fi RI Kerminen, Veli-Matti/M-9026-2014; Lihavainen, Heikki/N-4840-2014 FU Academy of Finland Center of Excellence [1118615]; European Commission [036833-2]; Academy of Finland [126276] FX Authors would like to thank you Academy of Finland Center of Excellence program (project number 1118615), Academy of Finland Researcher training and research abroad program (project number 126276) and European Commissions 6th Framework project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality Interactions, No. 036833-2) for financial support. NR 37 TC 14 Z9 14 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 22 BP 10987 EP 10995 DI 10.5194/acp-10-10987-2010 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 687EG UT WOS:000284759500018 ER PT J AU Morris, GA Thompson, AM Pickering, KE Chen, S Bucsela, EJ Kucera, PA AF Morris, G. A. Thompson, A. M. Pickering, K. E. Chen, S. Bucsela, E. J. Kucera, P. A. TI Observations of ozone production in a dissipating tropical convective cell during TC4 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LIGHTNING-PRODUCED NOX; TROPOSPHERIC OZONE; MONITORING INSTRUMENT; NITROGEN-FIXATION; ELECTRICAL DISCHARGES; DEEP CONVECTION; AIR-POLLUTANTS; MEXICO-CITY; TRANSPORT; THUNDERSTORMS AB From 13 July-9 August 2007, 25 ozonesondes were launched from Las Tablas, Panama as part of the Tropical Composition, Cloud, and Climate Coupling (TC4) mission. On 5 August, a strong convective cell formed in the Gulf of Panama. World Wide Lightning Location Network (WWLLN) data indicated 563 flashes (09: 00-17: 00 UTC) in the Gulf. NO2 data from the Ozone Monitoring Instrument (OMI) show enhancements, suggesting lightning production of NOx. At 15: 05 UTC, an ozonesonde ascended into the southern edge of the now dissipating convective cell as it moved west across the Azuero Peninsula. The balloon oscillated from 2.5-5.1 km five times (15: 12-17: 00 UTC), providing a unique examination of ozone (O-3) photochemistry on the edge of a convective cell. Ozone increased at a rate of similar to 1.6-4.6 ppbv/hr between the first and last ascent, resulting cell wide in an increase of similar to(2.1-2.5) x 10(6) moles of O-3. This estimate agrees to within a factor of two of our estimates of photochemical lightning O-3 production from the WWLLN flashes, from the radar-inferred lightning flash data, and from the OMI NO2 data (similar to 1.2, similar to 1.0, and similar to 1.7 x 10(6) moles, respectively), though all estimates have large uncertainties. Examination of DC-8 in situ and lidar O-3 data gathered around the Gulf that day suggests 70-97% of the O-3 change occurred in 2.5-5.1 km layer. A photochemical box model initialized with nearby TC4 aircraft trace gas data suggests these O-3 production rates are possible with our present understanding of photochemistry. C1 [Morris, G. A.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Thompson, A. M.; Chen, S.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Pickering, K. E.] NASA, Atmospher Chem & Dynam Branch, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bucsela, E. J.] SRI Int, Menlo Pk, CA 94025 USA. [Kucera, P. A.] NCAR, Appl Res Lab, Boulder, CO USA. RP Morris, GA (reprint author), Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. EM gary.morris@valpo.edu RI Pickering, Kenneth/E-6274-2012; Thompson, Anne /C-3649-2014 OI Thompson, Anne /0000-0002-7829-0920 FU NASA FX Funding for this work was provided by NASA's Upper Air Research Program (M. J. Kurylo and K. W. Jucks, program managers). Thanks to the OMI team for the total column ozone data; to Robert Holzworth for the WWLLN lightning data; to William Brune (Penn State University) for the chemical box model; to Ron Cohen, Paul Wooldridge, and Anne Perring (Univ. of California, Berkeley) for the DC-8 NO and NO2 data; and to undergraduate students Kelsey Obenour and Danielle Slotke for helpful calculations. Special thanks to Alex Bryan and David Lutz for spending a month in the field launching our ozonesondes and to Brett Taubman (Appalatian State University) for leading the deployment of the NATIVE trailer. We also would like to thank the reviewers for their helpful comments for improving our manuscript. Finally, the authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.php). NR 90 TC 6 Z9 6 U1 2 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 22 BP 11189 EP 11208 DI 10.5194/acp-10-11189-2010 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 687EG UT WOS:000284759500026 ER PT J AU Chiu, JC Marshak, A Knyazikhin, Y Wiscombe, WJ AF Chiu, J. C. Marshak, A. Knyazikhin, Y. Wiscombe, W. J. TI Spectrally-invariant behavior of zenith radiance around cloud edges simulated by radiative transfer SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SMALL CUMULUS CLOUDS; DROPLET SPECTRA; EVOLUTION; HUMIDITY AB In a previous paper, we discovered a surprising spectrally-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM) program. The relationship suggests that the shortwave spectrum near cloud edges can be determined by a linear combination of zenith radiance spectra of the cloudy and clear regions. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV) of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud phase function, thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorbing and scattering properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectrally-invariant relationship can be used to infer cloud properties near cloud edges even with insufficient or no knowledge about spectral surface albedo and aerosol properties. C1 [Chiu, J. C.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Marshak, A.; Wiscombe, W. J.] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD USA. [Knyazikhin, Y.] Boston Univ, Dept Geog, Boston, MA USA. [Wiscombe, W. J.] Brookhaven Natl Lab, Atmos Sci Div, New York, NY USA. RP Chiu, JC (reprint author), Univ Reading, Dept Meteorol, Reading, Berks, England. EM c.j.chiu@reading.ac.uk RI Chiu, Christine/E-5649-2013 OI Chiu, Christine/0000-0002-8951-6913 FU Office of Science [DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564] FX This research was supported by the Office of Science (BER, US Department of Energy, Interagency Agreement No. DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564) as part of the ARM program. NR 23 TC 6 Z9 6 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 22 BP 11295 EP 11303 DI 10.5194/acp-10-11295-2010 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 687EG UT WOS:000284759500032 ER PT J AU van der Werf, GR Randerson, JT Giglio, L Collatz, GJ Mu, M Kasibhatla, PS Morton, DC DeFries, RS Jin, Y van Leeuwen, TT AF van der Werf, G. R. Randerson, J. T. Giglio, L. Collatz, G. J. Mu, M. Kasibhatla, P. S. Morton, D. C. DeFries, R. S. Jin, Y. van Leeuwen, T. T. TI Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BIOMASS-BURNING EMISSIONS; DIRECT CARBON EMISSIONS; BURNED-AREA; INTERANNUAL VARIABILITY; BRAZILIAN AMAZONIA; SATELLITE DATA; BOREAL FOREST; NORTHERN AUSTRALIA; SOUTHERN AFRICA; EQUATORIAL ASIA AB New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5 degrees spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year(-1) with significant interannual variability during 1997-2001 (2.8 Pg C year(-1) in 1998 and 1.6 PgC year(-1) in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year(-1)) before declining in 2008 (1.7 Pg C year(-1)) and 2009 (1.5 Pg C year(-1)) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e. g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year(-1). The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. C1 [van der Werf, G. R.; van Leeuwen, T. T.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Randerson, J. T.; Mu, M.; Jin, Y.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Giglio, L.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Giglio, L.; Collatz, G. J.; Morton, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kasibhatla, P. S.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [DeFries, R. S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA. RP van der Werf, GR (reprint author), Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. EM guido.van.der.werf@falw.vu.nl RI collatz, george/D-5381-2012; Morton, Douglas/D-5044-2012; van der Werf, Guido/M-8260-2016; OI van der Werf, Guido/0000-0001-9042-8630; Kasibhatla, Prasad/0000-0003-3562-3737 FU EU [218793]; NASA [NNX08AF64G, NNX08AE97A, NNX08AL03G] FX This research was supported by the EU Seventh Research Framework Programme (MACC project, contract number 218793), and NASA grants NNX08AF64G, NNX08AE97A, and NNX08AL03G. NR 117 TC 924 Z9 932 U1 65 U2 360 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 23 BP 11707 EP 11735 DI 10.5194/acp-10-11707-2010 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694XJ UT WOS:000285334900025 ER PT J AU Remsberg, E Lingenfelser, G AF Remsberg, E. Lingenfelser, G. TI Analysis of SAGE II ozone of the middle and upper stratosphere for its response to a decadal-scale forcing SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SOLAR-CYCLE; TRENDS; WINTERS; HALOE; 1990S; MODEL AB Stratospheric Aerosol and Gas Experiment (SAGE II) Version 6.2 ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere from September 1991 to August 2005. The profile data are averaged within twelve, 20 degrees-wide latitude bins from 55 degrees S to 55 degrees N and at twelve altitudes from 27.5 to 55.0 km. The separate, 14-yr data time series are analyzed using multiple linear regression (MLR) models that include seasonal, 28 and 21-month, 11-yr sinusoid, and linear trend terms. Proxies are not used for the 28-mo (QBO-like), 11-yr solar uv-flux, or reactive chlorine terms. Instead, the present analysis focuses on the periodic 11-yr terms to see whether they are in-phase with that of a direct, uv-flux forcing or are dominated by some other decadal-scale influence. It is shown that they are in-phase over most of the latitude/altitude domain and that they have max minus min variations between 25 degrees S and 25 degrees N that peak near 4% between 30 and 40 km. Model simulations of the direct effects of uv-flux forcings agree with this finding. The shape of the 11-yr ozone response profile from SAGE II also agrees with that diagnosed for the stratosphere over the same time period from the HALOE data. Ozone in the middle stratosphere of the northern subtropics is perturbed during 1991-1992 following the eruption of Pinatubo, and there are pronounced decadal-scale variations in the ozone of the upper stratosphere for the northern middle latitudes presumably due to dynamical forcings. The 11-yr ozone responses of the Southern Hemisphere appear to be free of those extra influences. The associated linear trend terms from the SAGE II analyses are slightly negative (-2 to -4%/decade) between 35 and 45 km and nearly constant across latitude. This finding is consistent with the fact that ozone is estimated to have decreased by no more than 1.5% due to the increasing chlorine from mid-1992 to about 2000 but with little change thereafter. It is concluded that a satellite, solar occultation measurement provides both the signal sensitivity and the vertical resolution to record the stratospheric ozone response to the forcing from the solar uv-flux, as well as those due to any other long-term changes. C1 [Remsberg, E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Lingenfelser, G.] SSAI, Hampton, VA 23681 USA. RP Remsberg, E (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 401B, Hampton, VA 23681 USA. EM ellis.e.remsberg@nasa.gov FU NASA FX The SAGE II Version 6.2 data were generated by personnel of the Radiation and Aerosols Branch of NASA Langley. We thank Randy Moore (SSAI) for his assistance with the download of the data and for providing software for reading the archived data. This research was supported by funds from Jack Kaye of NASA Headquarters and administered by Joe Zawodny within his Solar Occultation Satellite Science Team (SOSST) study activity. Funds were also provided from a proposal of the NASA MAP Program administered by David Considine. EER completed this manuscript while serving as a Distinguished Research Associate at NASA Langley under the sponsorship of Malcolm Ko. NR 35 TC 7 Z9 7 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 23 BP 11779 EP 11790 DI 10.5194/acp-10-11779-2010 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694XJ UT WOS:000285334900029 ER PT J AU Riedi, J Marchant, B Platnick, S Baum, BA Thieuleux, F Oudard, C Parol, F Nicolas, JM Dubuisson, P AF Riedi, J. Marchant, B. Platnick, S. Baum, B. A. Thieuleux, F. Oudard, C. Parol, F. Nicolas, J. -M. Dubuisson, P. TI Cloud thermodynamic phase inferred from merged POLDER and MODIS data SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BULK SCATTERING PROPERTIES; RADIATIVE-TRANSFER; EFFECTIVE RADIUS; ICE CLOUDS; AVHRR; RETRIEVALS; PRODUCTS; IMAGERY; MODELS; VIIRS AB The global spatial and diurnal distribution of cloud properties is a key issue for understanding the hydrological cycle, and critical for advancing efforts to improve numerical weather models and general circulation models. Satellite data provides the best way of gaining insight into global cloud properties. In particular, the determination of cloud thermodynamic phase is a critical first step in the process of inferring cloud optical and microphysical properties from satellite measurements. It is important that cloud phase be derived together with an estimate of the confidence of this determination, so that this information can be included with subsequent retrievals (optical thickness, effective particle radius, and ice/liquid water content). In this study, we combine three different and well documented approaches for inferring cloud phase into a single algorithm. The algorithm is applied to data obtained by the MODIS (MODerate resolution Imaging Spectroradiometer) and POLDER3 (Polarization and Directionality of the Earth Reflectance) instruments. It is shown that this synergistic algorithm can be used routinely to derive cloud phase along with an index that helps to discriminate ambiguous phase from confident phase cases. The resulting product provides a semi-continuous index ranging from confident liquid to confident ice instead of the usual discrete classification of liquid phase, ice phase, mixed phase (potential combination of ice and liquid particles), or simply unknown phase clouds. The index value provides simultaneously information on the phase and the associated confidence. This approach is expected to be useful for cloud assimilation and modeling efforts while providing more insight into the global cloud properties derived from satellite data. C1 [Riedi, J.; Marchant, B.; Thieuleux, F.; Oudard, C.; Parol, F.; Dubuisson, P.] Univ Lille 1 Sci & Technol, Opt Atmospher Lab, CNRS, UMR 8518, Lille, France. [Platnick, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Baum, B. A.] Univ Wisconsin Madison, SSEC, Madison, WI 53706 USA. [Nicolas, J. -M.] Univ Sci & Technol Lille, ICARE Data & Serv Ctr, Lille, France. RP Riedi, J (reprint author), Univ Lille 1 Sci & Technol, Opt Atmospher Lab, CNRS, UMR 8518, Lille, France. EM jerome.riedi@univ-lille1.fr RI Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014 OI Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567 FU University of Lille; region Nord-Pas-de-Calais; CNRS; CNES; Programme National de Teledetection Spatial FX The authors are very grateful to CNES and NASA for providing the POLDER and MODIS data. Cecile Oudard and Francois Thieuleux were supported by University of Lille, region Nord-Pas-de-Calais, CNRS and CNES, in the framework of the ICARE project. This research project was supported by CNES and the Programme National de Teledetection Spatial. Finally, the authors would like to acknowledge the two reviewers for their numerous comments and help in improving the manuscript. NR 36 TC 18 Z9 18 U1 2 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 23 BP 11851 EP 11865 DI 10.5194/acp-10-11851-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694XJ UT WOS:000285334900034 ER PT J AU Cachorro, VE Toledano, C Anton, M Berjon, A de Frutos, A Vilaplana, JM Arola, A Krotkov, NA AF Cachorro, V. E. Toledano, C. Anton, M. Berjon, A. de Frutos, A. Vilaplana, J. M. Arola, A. Krotkov, N. A. TI Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) - Part 2: Analysis of site aerosol influence SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GROUND-BASED MEASUREMENTS; OPTICAL DEPTH MEASUREMENTS; SINGLE SCATTERING ALBEDO; TROPOSPHERIC AEROSOLS; SUN-PHOTOMETER; OZONE; RETRIEVAL; ABSORPTION; THICKNESS; URBAN AB Several validation studies have shown a notable overestimation of the clear sky ultraviolet (UV) irradiance at the Earth's surface derived from satellite sensors such as the Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring Instrument (OMI) with respect to ground-based UV data at many locations. Most of this positive bias is attributed to boundary layer aerosol absorption that is not accounted for in the TOMS/OMI operational UV algorithm. Therefore, the main objective of this study is to analyse the aerosol effect on the bias between OMI erythemal UV irradiance (UVER) and spectral UV (305 nm, 310 nm and 324 nm) surface irradiances and ground-based Brewer spectroradiometer measurements from October 2004 to December 2008 at El Arenosillo station (37.1 degrees N, 6.7 degrees W, 20ma.s.l.), with meteorological conditions representative of the South-West of Spain. The effects of other factors as clouds, ozone and the solar elevation over this intercomparison were analysed in detail in a companion paper (Anton et al., 2010). In that paper the aerosol effects were studied making only a rough evaluation based on aerosol optical depth (AOD) information at 440 nm wavelength (visible range) without applying any correction. We have used the precise information given by single scattering albedo (SSA) from AERONET for the determination of absorbing aerosols which has allowed the correction of the OMI UV data. An aerosol correction expression was applied to the OMI operational UV data using two approaches to estimate the UV absorption aerosol optical depth, AAOD. The first approach was based on an assumption of constant SSA value of 0.91. This approach reduces the OMI UVER bias against the reference Brewer data from 13.4% to 8.4%. Second approach uses daily AERONET SSA values reducing the bias only to 11.6%. Therefore we have obtained a 37% and 12% of improvement respectively. For the spectral irradiance at 324 nm, the OMI bias is reduced from 10.5% to 6.98% for constant SSA and to 9.03% for variable SSA. Similar results were obtained for spectral irradiances at 305 nm, and 310 nm. Contrary to what was expected, the constant SSA approach has a greater bias reduction than variable SSA, but this is a reasonable result according to the discussion about the reliability of SSA values. Our results reflect the level of accuracy that may be reached at the present time in this type of comparison, which may be considered as satisfactory taking into account the remaining dependence on other factors. Nevertheless, improvements must be accomplished to determine reliable absorbing aerosol properties, which appear as a limiting factor for improving OMI retrievals. C1 [Cachorro, V. E.; Toledano, C.; Berjon, A.; de Frutos, A.] Univ Valladolid GOA UVA, Grp Opt Atmosfer, Valladolid, Spain. [Anton, M.] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain. [Vilaplana, J. M.] INTA, ESAt El Arenosillo, Huelva, Spain. [Arola, A.] Finnish Meteorol Inst FMI, Kuopio, Finland. [Krotkov, N. A.] Univ Maryland Baltimore Cty, GEST Ctr, Baltimore, MD 21228 USA. [Krotkov, N. A.] NASA, Goddard Space Flight Ctr, Lab Atmosphere, Greenbelt, MD 20771 USA. RP Cachorro, VE (reprint author), Univ Valladolid GOA UVA, Grp Opt Atmosfer, Valladolid, Spain. EM chiqui@goa.uva.es RI Toledano, Carlos/J-3672-2012; Anton, Manuel/A-8477-2010; Berjon, Alberto/M-4203-2015; Krotkov, Nickolay/E-1541-2012 OI Toledano, Carlos/0000-0002-6890-6648; Berjon, Alberto/0000-0002-4508-7037; Anton, Manuel/0000-0002-0816-3758; Cachorro, Victoria/0000-0002-4627-9444; Arola, Antti/0000-0002-9220-0194; Krotkov, Nickolay/0000-0001-6170-6750 FU Ministerio de Ciencia e Innovacion; Fondo Social Europeo; MICIN [CGL2008-05939-C03/CLI]; Junta de Castilla y Leon FX The authors thank the OMI International Science Team for the satellite data used in this study and also to the teams of aerosol networks GSFC-NASA and PHOTONS. Also thanks to Antonio Serrano for his help in editing the manuscript. Manuel Anton thanks Ministerio de Ciencia e Innovacion and Fondo Social Europeo for the award of a postdoctoral grant (Juan de la Cierva). This work has been partially supported by MICIN under coordinated project CGL2008-05939-C03/CLI of UVA-INTA-UNEX. Also this work is financed by GR220 project of "Junta de Castilla y Leon". NR 42 TC 15 Z9 15 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 23 BP 11867 EP 11880 DI 10.5194/acp-10-11867-2010 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694XJ UT WOS:000285334900035 ER PT J AU Simpson, IJ Blake, NJ Barletta, B Diskin, GS Fuelberg, HE Gorham, K Huey, LG Meinardi, S Rowland, FS Vay, SA Weinheimer, AJ Yang, M Blake, DR AF Simpson, I. J. Blake, N. J. Barletta, B. Diskin, G. S. Fuelberg, H. E. Gorham, K. Huey, L. G. Meinardi, S. Rowland, F. S. Vay, S. A. Weinheimer, A. J. Yang, M. Blake, D. R. TI Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C-2-C-10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O-3 and SO2 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID INTERCOMPARISON EXPERIMENT NOMHICE; ATMOSPHERIC CARBONYL SULFIDE; PRINCIPAL COMPONENT ANALYSIS; UNITED-STATES; SEASONAL CYCLE; MEXICO-CITY; NONMETHANE HYDROCARBONS; ANTHROPOGENIC EMISSIONS; BIOGENIC HYDROCARBONS; AIRBORNE OBSERVATIONS AB Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C-2-C-10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O-3 and SO2, which were measured in situ aboard the DC-8. Carbon dioxide, CH4, CO, NO, NO2, NOy, SO2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397x) over the oil sands compared to local background values and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (<10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their correlations with one another, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to lower the viscosity of the extracted bitumen (i.e., C-4-C-9 alkanes, C-5-C-6 cycloalkanes, C-6-C-8 aromatics), together with CO; and (2) emissions associated with the mining effort, such as upgraders (i.e., CO2, CO, CH4, NO, NO2, NOy, SO2, C-2-C-4 alkanes, C-2-C-4 alkenes, C-9 aromatics, short-lived solvents such as C2Cl4 and C2HCl3, and longer-lived species such as HCFC-22 and HCFC-142b). Prominent in the second group, SO2 and NO were remarkably enhanced over the oil sands, with maximum mixing ratios of 38.7 ppbv and 5.0 ppbv, or 383x and 319x the local background, respectively. These SO2 levels are comparable to maximum values measured in heavily polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH4, ethane and propane suggest low levels of natural gas leakage despite its heavy use at the surface mining sites. Instead the elevated CH4 levels are attributed to methanogenic tailings pond emissions. In addition to the emission of many trace gases, the natural drawdown of OCS by vegetation was absent above the surface mining operations, presumably because of the widespread land disturbance. Unexpectedly, the mixing ratios of alpha-pinene and beta-pinene were much greater over the oil sands (up to 217 pptv and 610 pptv, respectively) than over vegetation in the background boundary layer (20 +/- 7 pptv and 84 +/- 24 pptv, respectively), and the pinenes correlated well with several industrial tracers that were elevated in the oil sands plumes. Because so few independent measurements from the oil sands mining industry exist, this study provides an important initial characterization of trace gas emissions from oil sands surface mining operations. C1 [Simpson, I. J.; Blake, N. J.; Barletta, B.; Gorham, K.; Meinardi, S.; Rowland, F. S.; Yang, M.; Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Diskin, G. S.; Vay, S. A.; Yang, M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Fuelberg, H. E.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Huey, L. G.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Weinheimer, A. J.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. RP Simpson, IJ (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM isimpson@uci.edu FU NASA [NNX09AB22G] FX We thank the ARCTAS crew and science team for their hard work throughout the mission, and we gratefully acknowledge helpful discussions with many of our colleagues, especially Jim Crawford (NASA Langley) and Joost de Gouw (NOAA/ESRL). We also thank David Spink (Fort McKay IRC) for many helpful comments on the manuscript. This research was funded by NASA grant NNX09AB22G. NR 113 TC 64 Z9 65 U1 8 U2 82 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 23 BP 11931 EP 11954 DI 10.5194/acp-10-11931-2010 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694XJ UT WOS:000285334900039 ER PT J AU Stroppiana, D Brivio, PA Gregoire, JM Liousse, C Guillaume, B Granier, C Mieville, A Chin, M Petron, G AF Stroppiana, D. Brivio, P. A. Gregoire, J. -M. Liousse, C. Guillaume, B. Granier, C. Mieville, A. Chin, M. Petron, G. TI Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VEGETATION FIRE EMISSIONS; INTERANNUAL VARIABILITY; BURNED AREA; HIGH-RESOLUTION; SATELLITE DATA; AFRICA; FOREST; CARBON; PRODUCTS; MOPITT AB We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture). Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3) and 1422 Tg CO (VGT). Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100%) and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31%) and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64-74%, 23-32% and 3-4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month) and spatial (0.5 degrees x 0.5 degrees cell) dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions. C1 [Stroppiana, D.; Brivio, P. A.] CNR IREA, Milan, Italy. [Gregoire, J. -M.] European Commiss, JRC, IES, Global Environm Monitoring Unit GEM, Ispra, VA, Italy. [Liousse, C.; Guillaume, B.] Lab Aerol, UMR 5560, Toulouse, France. [Granier, C.; Mieville, A.] CNRS, Serv Aeron, Paris, France. [Granier, C.; Chin, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Granier, C.; Petron, G.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA. [Petron, G.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Stroppiana, D (reprint author), CNR IREA, Milan, Italy. EM stroppiana.d@irea.cnr.it RI Brivio, Pietro Alessandro/B-3704-2010; Pfister, Gabriele/A-9349-2008; Granier, Claire/D-5360-2013; Manager, CSD Publications/B-2789-2015 OI Brivio, Pietro Alessandro/0000-0002-5477-3194; Granier, Claire/0000-0001-7344-7995; NR 69 TC 19 Z9 19 U1 1 U2 17 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 24 BP 12173 EP 12189 DI 10.5194/acp-10-12173-2010 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 698GC UT WOS:000285581000010 ER PT J AU Liu, JH Logan, JA Jones, DBA Livesey, NJ Megretskaia, I Carouge, C Nedelec, P AF Liu, Junhua Logan, J. A. Jones, D. B. A. Livesey, N. J. Megretskaia, I. Carouge, C. Nedelec, P. TI Analysis of CO in the tropical troposphere using Aura satellite data and the GEOS-Chem model: insights into transport characteristics of the GEOS meteorological products SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC HYDROXYL RADICALS; GENERAL-CIRCULATION MODEL; EMISSION SPECTROMETER TES; BIOMASS BURNING EMISSIONS; MICROWAVE LIMB SOUNDER; CARBON-MONOXIDE; CONVECTIVE-TRANSPORT; CUMULUS CONVECTION; MOIST CONVECTION; GLOBAL-MODEL AB We use the GEOS-Chem chemistry-transport model (CTM) to interpret the spatial and temporal variations of tropical tropospheric CO observed by the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES). In so doing, we diagnose and evaluate transport in the GEOS-4 and GEOS-5 assimilated meteorological fields that drive the model, with a particular focus on vertical mixing at the end of the dry season when convection moves over the source regions. The results indicate that over South America, deep convection in both GEOS-4 and GEOS-5 decays at too low an altitude early in the wet season, and the source of CO from isoprene in the model (MEGAN v2.1) is too large, causing a lag in the model's seasonal maximum of CO compared to MLS CO in the upper troposphere (UT). TES and MLS data reveal problems with excessive transport of CO to the eastern equatorial Pacific and lofting in the ITCZ in August and September, particularly in GEOS-4. Over southern Africa, GEOS-4 and GEOS-5 simulations match the phase of the observed CO variation from the lower troposphere (LT) to the UT fairly well, although the magnitude of the seasonal maximum is underestimated considerably due to low emissions in the model. A sensitivity run with increased emissions leads to improved agreement with observed CO in the LT and middle troposphere (MT), but the amplitude of the seasonal variation is too high in the UT in GEOS-4. Difficulty in matching CO in the LT and UT implies there may be overly vigorous vertical mixing in GEOS-4 early in the wet season. Both simulations and observations show a time lag between the peak in fire emissions (July and August) and in CO (September and October). We argue that it is caused by the prevailing subsidence in the LT until convection moves south in September, as well as the low sensitivity of TES data in the LT over the African Plateau. The MLS data suggest that too much CO has been transported from fires in northern Africa to the UT in the model during the burning season, as does MOZAIC aircraft data, perhaps as a result of the combined influence of too strong Harmattan winds in the LT and too strong vertical mixing over the Gulf of Guinea in the model. C1 [Liu, Junhua; Logan, J. A.; Megretskaia, I.; Carouge, C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Livesey, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Nedelec, P.] CNRS, Lab Aerol, Toulouse, France. RP Liu, JH (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM jliu@seas.harvard.edu RI Carouge, Claire/A-4755-2012; Jones, Dylan/O-2475-2014; Chem, GEOS/C-5595-2014 OI Carouge, Claire/0000-0002-0313-8385; Jones, Dylan/0000-0002-1935-3725; FU NASA [NNX07AB17G, NNG06GB93G, NNX09AJ41G]; European Commission; Airbus; Airlines, Lufthansa; Airlines, Austrian; Airlines, Air France; INSU-CNRS (France); Meteo-France; Forschungszentrum (FZJ, Julich, Germany) FX This work was funded by NASA grants to Harvard University, NNX07AB17G, NNG06GB93G, and NNX09AJ41G. Work at the Jet Propulsion Laboratory, California Institute of Technology, was performed under contract with NASA. We thank Michael Barkley for his work on the implementation of MEGAN v2.1 in the GEOS-Chem model, and we thank M. Kopacz for providing emissions scaling factors. J. Liu would like to thank H. Liu, J. Jiang, L. Zhang, J. Fisher, and J. Mao for helpful discussions. The authors acknowledge the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Austrian, Air France) who carry free of charge the MOZAIC equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, and Forschungszentrum (FZJ, Julich, Germany). The MOZAIC database is supported by ETHER (CNES and INSU-CNRS). NR 98 TC 34 Z9 34 U1 1 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 24 BP 12207 EP 12232 DI 10.5194/acp-10-12207-2010 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 698GC UT WOS:000285581000012 ER PT J AU Kar, J Deeter, MN Fishman, J Liu, Z Omar, A Creilson, JK Trepte, CR Vaughan, MA Winker, DM AF Kar, J. Deeter, M. N. Fishman, J. Liu, Z. Omar, A. Creilson, J. K. Trepte, C. R. Vaughan, M. A. Winker, D. M. TI Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SATELLITE-OBSERVATIONS; SBUV MEASUREMENTS; ART.; VARIABILITY; ASIA; SIMULATION; AEROSOLS; OUTFLOW; BASIN AB A large wintertime increase in pollutants has been observed over the eastern parts of the Indo Gangetic Plains. We use improved version 4 carbon monoxide (CO) retrievals from the Measurements of Pollution in the Troposphere (MOPITT) along with latest version 3 aerosol data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar instrument and the tropospheric ozone residual products to characterize this pollution pool. The feature is seen primarily in the lower troposphere from about November to February with strong concomitant increases in CO and aerosol optical depth (AOD). The signature of the feature is also observed in tropospheric ozone column data. The height resolved aerosol data from CALIPSO confirm the trapping of the pollution pool at the lowest altitudes. The observations indicate that MOPITT can capture this low altitude phenomenon even in winter conditions as indicated by the averaging kernels. C1 [Kar, J.; Creilson, J. K.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Deeter, M. N.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Fishman, J.; Liu, Z.; Omar, A.; Creilson, J. K.; Trepte, C. R.; Vaughan, M. A.; Winker, D. M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Liu, Z.] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Kar, J (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM jayanta.kar@nasa.gov RI Liu, Zhaoyan/B-1783-2010; Deeter, Merritt/O-6078-2016; Omar, Ali/D-7102-2017 OI Liu, Zhaoyan/0000-0003-4996-5738; Deeter, Merritt/0000-0002-3555-0518; Omar, Ali/0000-0003-1871-9235 NR 41 TC 28 Z9 28 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2010 VL 10 IS 24 BP 12273 EP 12283 DI 10.5194/acp-10-12273-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 698GC UT WOS:000285581000016 ER PT J AU Lin, CY Chang, CC Chan, CY Kuo, CH Chen, WC Chu, DA Liu, SC AF Lin, Chuan-Yao Chang, C. -C. Chan, C. Y. Kuo, C. H. Chen, W. -C. Chu, D. Allen Liu, Shaw C. TI Characteristics of springtime profiles and sources of ozone in the low troposphere over northern Taiwan SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Ozone sounding; Low troposphere; Boundary layer ID LONG-RANGE TRANSPORT; AIR-QUALITY; POTENTIAL VORTICITY; ASIAN DUST; POLLUTION; PACIFIC; TREND; CHINA; POLLUTANTS; PATHWAYS AB To quantify the possible sources of the high ambient ozone concentration in the low troposphere over Taiwan, ozone sounding data from a two-year intensive field measurement program conducted in April and early May of 2004 and 2005 in northern Taiwan has been examined. We found that the vertical ozone distributions and occurrence of enhanced ozone in the lower troposphere (below 6 km) mainly resulted from (1)Type NE: the long-range transport of ozone controlled by the prevailing northeasterly winds below 2 km, (2)Type LO: the local photochemical ozone production process, and (3)Type SW: the strong southwest/westerly winds aloft (2-6 km). In the boundary layer (BL), where Asian continental outflow prevails, the average profile for type NE is characterized by a peak ozone concentration of nearly 65 ppb at about 1500 m altitude. For type LO, high ozone concentration with an average ozone concentration greater than 80 ppb was also found in the BL in the case of stagnant atmospheric and sunny weather conditions dominated. For type SW, significant ozone enhancement with average ozone concentration of 70-85 ppb was found at around 4 km altitude. It is about 10 ppb greater than that of the types NE and LO at the same troposphere layer owing to the contribution of the biomass burning over Indochina. Due to Taiwan's unique geographic location, the complex interaction of these ozone features in the BL and aloft, especially features associated with northeasterly and south/southwesterly winds, have resulted in complex characteristics of ozone distributions in the lower troposphere over northern Taiwan. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Lin, Chuan-Yao; Chang, C. -C.; Chen, W. -C.; Liu, Shaw C.] Acad Sinica, Res Ctr Environm Changes, Taipei 115, Taiwan. [Chan, C. Y.] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Kuo, C. H.] Chinese Culture Univ, Dept Geol, Taipei, Taiwan. [Chu, D. Allen] NASA, Goddard Earth Sci & Technol Ctr, Washington, DC USA. RP Lin, CY (reprint author), Acad Sinica, Res Ctr Environm Changes, 128 Sec 2,Acad Rd, Taipei 115, Taiwan. EM yao435@rcec.sinica.edu.tw RI 杨, 宇栋/F-6250-2012; Lin, CY/K-6503-2014 FU [NSC-2111-M-001-004-MY3] FX The authors would like to thank Mr. J.C. Shang and MS. R.H., Lo (Atmospheric physics and chemistry section, Central Weather Bureau, Taiwan) for their contribution in the ozone sounding observation. The authors thank Google Maps for providing the Figure I in this publication. This work was supported by NSC-2111-M-001-004-MY3. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.htmi) used in this publication. NR 42 TC 10 Z9 11 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JAN PY 2010 VL 44 IS 2 BP 182 EP 193 DI 10.1016/j.atmosenv.2009.10.020 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 555JW UT WOS:000274507800006 ER PT J AU Batchelor, RL Kolonjari, F Lindenmaier, R Mittermeier, RL Daffer, W Fast, H Manney, G Strong, K Walker, KA AF Batchelor, R. L. Kolonjari, F. Lindenmaier, R. Mittermeier, R. L. Daffer, W. Fast, H. Manney, G. Strong, K. Walker, K. A. TI Four Fourier transform spectrometers and the Arctic polar vortex: instrument intercomparison and ACE-FTS validation at Eureka during the IPY springs of 2007 and 2008 SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID CHEMISTRY EXPERIMENT ACE; SOLAR FTIR MEASUREMENTS; GROUND-BASED FTIR; ATMOSPHERIC GASES; OZONE; CANADA; N2O; TEMPERATURE; HNO3; HCL AB The Canadian Arctic Atmospheric Chemistry Experiment Validation Campaigns have been carried out at Eureka, Nunavut (80.05 degrees N, 86.42 degrees W) during the polar sunrise period since 2004. During the International Polar Year (IPY) springs of 2007 and 2008, three ground- based Fourier transform infrared (FTIR) spectrometers were operated simultaneously. This paper presents a comparison of trace gas measurements of stratospherically important species involved in ozone depletion, namely O-3, HCl, ClONO2, HNO3 and HF, recorded with these three spectrometers. Total column densities of the gases measured with the new Canadian Network for the Detection of Atmospheric Change (CANDAC) Bruker 125HR are shown to agree to within 3.5% with the existing Environment Canada Bomem DA8 measurements. After smoothing both of these sets of measurements to account for the lower spectral resolution of the University of Waterloo Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the measurements were likewise shown to agree with PARIS-IR to within 7%. Concurrent measurements of these gases were also made with the satellite-based Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) during overpasses of Eureka during these time periods. While one of the mandates of the ACE satellite mission is to study ozone depletion in the polar spring, previous validation exercises have identified the highly variable polar vortex conditions of the spring period to be a challenge for validation efforts. In this work, comparisons between the CANDAC Bruker 125HR and ACE-FTS have been used to develop strict criteria that allow the ground- and satellite-based instruments to be confidently compared. When these criteria are taken into consideration, the observed biases between the ACE-FTS and ground- based FTIR spectrometer are not persistent for both years and are generally insignificant, though small positive biases of similar to 5%, comparable in magnitude to those seen in previous validation exercises, are observed for HCl and HF in 2007, and negative biases of -15.3%, -4.8% and -1.5% are seen for ClONO2, HNO3 and O-3 in 2008. C1 [Batchelor, R. L.; Kolonjari, F.; Lindenmaier, R.; Strong, K.; Walker, K. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Mittermeier, R. L.; Fast, H.] Environm Canada, Downsview, ON, Canada. [Daffer, W.; Manney, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Manney, G.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Walker, K. A.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. RP Batchelor, RL (reprint author), Univ Toronto, Dept Phys, Toronto, ON, Canada. EM rbatchelor@atmosp.physics.utoronto.ca RI Strong, Kimberly/D-2563-2012 FU Canadian Space Agency (CSA); Environment Canada (EC) Eureka Weather Station; Canadian Network for the Detection of Atmospheric Change (CANDAC); Natural Sciences and Engineering Research Council (NSERC); Northern Scientific Training Program; Atlantic Innovation Fund/Nova Scotia Research Innovation Trust; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Canadian Foundation for Innovation; Government of Canada IPY; Ontario Innovation Trust; Ontario Research Fund; Polar Continental Shelf Program; National Aeronautics and Space Administration FX This work would not have been possible without the support of the Canadian Space Agency (CSA), the Environment Canada (EC) Eureka Weather Station, and the Canadian Network for the Detection of Atmospheric Change (CANDAC). We particularly acknowledge the assistance of the CANDAC Operations Team, James Drummond (Principal Investigator), Pierre Fogal (PEARL Facilities Manager), Ashley Harrett, Alexei Khmel, Paul Loewen, Oleg Mikhailov and Matt Okraszewski for their assistance in collecting the measurements and transporting us between the lab and the station, and the EC meteorological technicians for launching many radio- and ozone-sonde balloons for us. The Canadian Arctic ACE Validation Campaigns are supported by the CSA, EC, Natural Sciences and Engineering Research Council (NSERC) and the Northern Scientific Training Program. CANDAC and PEARL are funded by the Atlantic Innovation Fund/Nova Scotia Research Innovation Trust, Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), Canadian Foundation for Innovation, CSA, EC, Government of Canada IPY funding, NSERC, Ontario Innovation Trust, Ontario Research Fund and the Polar Continental Shelf Program. Work carried out at the Jet Propulsion Laboratory, California Institute of Technology was done under contract with the National Aeronautics and Space Administration. The Atmospheric Chemistry Experiment, also known as SCISAT, is a Canadian-led mission mainly supported by the CSA and NSERC. NR 27 TC 7 Z9 7 U1 1 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 1 BP 51 EP 66 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 602DK UT WOS:000278118500004 ER PT J AU Joiner, J Vasilkov, AP Bhartia, PK Wind, G Platnick, S Menzel, WP AF Joiner, J. Vasilkov, A. P. Bhartia, P. K. Wind, G. Platnick, S. Menzel, W. P. TI Detection of multi-layer and vertically-extended clouds using A-train sensors SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ROTATIONAL RAMAN-SCATTERING; CIRRUS CLOUD; RADIATION BUDGET; SOLAR-RADIATION; SATELLITE; OVERLAP; OXYGEN; RETRIEVAL; PRESSURE; STATISTICS AB The detection of multiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud- top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud- top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (12 kmx24 km at nadir) and at the 5 kmx5 km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (similar to 20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere. C1 [Joiner, J.; Bhartia, P. K.; Platnick, S.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Vasilkov, A. P.; Wind, G.] Sci Syst & Applicat Inc, Lanham, MD USA. [Menzel, W. P.] Univ Wisconsin, Ctr Space Sci & Engn, Cooperat Inst Meteorol Satellite Studies, Madison, WI 53706 USA. RP Joiner, J (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM joanna.joiner@nasa.gov RI Menzel, W. Paul/B-8306-2011; Joiner, Joanna/D-6264-2012; Platnick, Steven/J-9982-2014; Bhartia, Pawan/A-4209-2016 OI Menzel, W. Paul/0000-0001-5690-1201; Platnick, Steven/0000-0003-3964-3567; Bhartia, Pawan/0000-0001-8307-9137 FU National Aeronautics and Space Administration (NASA) [NNG06HX18C] FX The material in this paper is based upon work supported by the National Aeronautics and Space Administration (NASA) under agreement NNG06HX18C issued through the Science Mission Directorate for the EOS Aura Science Team. The authors are grateful to the MODIS, OMI, and CloudSat data processing teams for providing data sets. The authors thank two anonymous reviewers for comments that helped to improve the paper. The lead author thanks A. da Silva for helpful discussions. NR 49 TC 23 Z9 24 U1 2 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 1 BP 233 EP 247 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 602DK UT WOS:000278118500016 ER PT J AU Wooldridge, PJ Perring, AE Bertram, TH Flocke, FM Roberts, JM Singh, HB Huey, LG Thornton, JA Wolfe, GM Murphy, JG Fry, JL Rollins, AW LaFranchi, BW Cohen, RC AF Wooldridge, P. J. Perring, A. E. Bertram, T. H. Flocke, F. M. Roberts, J. M. Singh, H. B. Huey, L. G. Thornton, J. A. Wolfe, G. M. Murphy, J. G. Fry, J. L. Rollins, A. W. LaFranchi, B. W. Cohen, R. C. TI Total Peroxy Nitrates (Sigma PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; MARINE BOUNDARY-LAYER; IN-SITU; NORTH-AMERICA; TROPOSPHERIC DEGRADATION; ALIPHATIC-ALDEHYDES; SOUTHERN OXIDANTS; REACTIVE NITROGEN; RATE COEFFICIENTS; OZONE PRODUCTION AB Peroxyacetyl nitrate (PAN) and its chemical analogues are increasingly being quantified in the ambient atmosphere by thermal dissociation (TD) followed by detection of either the peroxyacyl radical or the NO2 product. Here we present details of the technique developed at University of California, Berkeley which detects the sum of all peroxynitrates (Sigma PNs) via laser-induced fluorescence (LIF) of the NO2 product. We review the various deployments and compare the Berkeley Sigma PNs measurements with the sums of PAN and its homologue species detected individually by other instruments. The observed TD-LIF Sigma PNs usually agree to within 10% with the summed individual species, thus arguing against the presence of significant concentrations of unmeasured PAN-type compounds in the atmosphere, as suggested by some photochemical mechanisms. Examples of poorer agreement are attributed to a sampling inlet design that is shown to be inappropriate for high NOx conditions. Interferences to the TD-LIF measurements are described along with strategies to minimize their effects. C1 [Wooldridge, P. J.; Perring, A. E.; Rollins, A. W.; LaFranchi, B. W.; Cohen, R. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertram, T. H.] Univ San Diego, Dept Chem & Biochem, La Jolla, CA USA. [Flocke, F. M.] NCAR Atmospher Chem Div, Boulder, CO USA. [Roberts, J. M.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Singh, H. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huey, L. G.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Thornton, J. A.; Wolfe, G. M.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Murphy, J. G.] Univ Toronto, Dept Chem, Toronto, ON M5S 1A1, Canada. [Fry, J. L.] Reed Coll, Dept Chem, Portland, OR 97202 USA. [Cohen, R. C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Wooldridge, PJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM pjwool@berkeley.edu RI Roberts, James/A-1082-2009; Murphy, Jennifer/C-2367-2011; Wolfe, Glenn/D-5289-2011; Rollins, Andrew/G-7214-2012; Perring, Anne/G-4597-2013; Cohen, Ronald/A-8842-2011; Thornton, Joel/C-1142-2009; Manager, CSD Publications/B-2789-2015 OI Roberts, James/0000-0002-8485-8172; Perring, Anne/0000-0003-2231-7503; Cohen, Ronald/0000-0001-6617-7691; Thornton, Joel/0000-0002-5098-4867; FU NSF [ATM-1038669, ATM-0639847, ATM-0511829]; Office of Polar Programs [9907928]; NASA [NNG05GH196, NAG5-13668, NNX08AE56G]; Instrument Incubator Program [NAS1-99053]; NOAA [RA133R-04-AE-0023]; European Community [RII3-CT-2004-505968] FX The Berkeley authors gratefully acknowledge funding from NSF grants ATM-1038669, ATM-0639847, ATM-0511829, and Office of Polar Programs Grant No. 9907928; NASA grants NNG05GH196, NAG5-13668, NNX08AE56G, and Instrument Incubator Program contract NAS1-99053; and NOAA grant RA133R-04-AE-0023. The NO3-N2O5-Intercomparison campaign (2007) was supported by grant no. RII3-CT-2004-505968 of the European Community within the 6th Framework Program, Section Support for research Infrastructures - Integrated Infrastructure Initiative: EUROCHAMP 15 and Priority 1.1.6.3. Global Change and Ecosystems: ACCENT. Thanks also to S. Brown, H. Fuchs, and W. Dube for N2O5 for providing the NOAA cavity ring-down N2O5 data. NR 82 TC 35 Z9 35 U1 4 U2 29 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 3 BP 593 EP 607 DI 10.5194/amt-3-593-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618YB UT WOS:000279391000006 ER PT J AU Vasilkov, AP Joiner, J Haffner, D Bhartia, PK Spurr, RJD AF Vasilkov, A. P. Joiner, J. Haffner, D. Bhartia, P. K. Spurr, R. J. D. TI What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ROTATIONAL RAMAN-SCATTERING; MONITORING INSTRUMENT; RADIATION BUDGET; SCIAMACHY; RETRIEVAL; GOME; MISSION; SPACE; UV; ALGORITHM AB In this paper, we examine how clouds over snow and ice affect ozone absorption and how these effects may be accounted for in satellite retrieval algorithms. Over snow and ice, the Aura Ozone Monitoring Instrument (OMI) Raman cloud pressure algorithm derives an effective scene pressure. When this scene pressure differs appreciably from the surface pressure, the difference is assumed to be caused by a cloud that is shielding atmospheric absorption and scattering below cloud-top from satellite view. A pressure difference of 100 hPa is used as a crude threshold for the detection of clouds that significantly shield tropospheric ozone absorption. Combining the OMI effective scene pressure and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) cloud top pressure, we can distinguish between shielding and non-shielding clouds. To evaluate this approach, we performed radiative transfer simulations under various observing conditions. Using cloud vertical extinction profiles from the CloudSat Cloud Profiling Radar (CPR), we find that clouds over a bright surface can produce significant shielding (i.e., a reduction in the sensitivity of the top-of-the-atmosphere radiance to ozone absorption below the clouds). The amount of shielding provided by clouds depends upon the geometry (solar and satellite zenith angles) and the surface albedo as well as cloud optical thickness. We also use CloudSat observations to qualitatively evaluate our approach. The CloudSat, Aqua, and Aura satellites fly in an afternoon polar orbit constellation with ground overpass times within 15 min of each other. The current Total Ozone Mapping Spectrometer (TOMS) total column ozone algorithm (that has also been applied to the OMI) assumes no clouds over snow and ice. This assumption leads to errors in the retrieved ozone column. We show that the use of OMI effective scene pressures over snow and ice reduces these errors and leads to a more homogeneous spatial distribution of the retrieved total ozone. C1 [Vasilkov, A. P.; Haffner, D.] Sci Syst & Applicat Inc, Lanham, MD USA. [Joiner, J.; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Spurr, R. J. D.] RT Solut, Cambridge, MA USA. RP Vasilkov, AP (reprint author), Sci Syst & Applicat Inc, Lanham, MD USA. EM alexander_vassilkov@ssaihq.com RI Joiner, Joanna/D-6264-2012; Bhartia, Pawan/A-4209-2016 OI Bhartia, Pawan/0000-0001-8307-9137 FU National Aeronautics and Space Administration [NNG06HX18C] FX The authors thank the OMI, MODIS, and CloudSat science teams for the processing and distribution of data sets used here. This material is based upon work supported by the National Aeronautics and Space Administration under agreement NNG06HX18C issued through the Science Mission Directorate for the Aura Science Team. NR 44 TC 8 Z9 8 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 3 BP 619 EP 629 DI 10.5194/amt-3-619-2010 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618YB UT WOS:000279391000008 ER PT J AU Kokhanovsky, AA Deuze, JL Diner, DJ Dubovik, O Ducos, F Emde, C Garay, MJ Grainger, RG Heckel, A Herman, M Katsev, IL Keller, J Levy, R North, PRJ Prikhach, AS Rozanov, VV Sayer, AM Ota, Y Tanre, D Thomas, GE Zege, EP AF Kokhanovsky, A. A. Deuze, J. L. Diner, D. J. Dubovik, O. Ducos, F. Emde, C. Garay, M. J. Grainger, R. G. Heckel, A. Herman, M. Katsev, I. L. Keller, J. Levy, R. North, P. R. J. Prikhach, A. S. Rozanov, V. V. Sayer, A. M. Ota, Y. Tanre, D. Thomas, G. E. Zege, E. P. TI The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID IMAGING-SPECTRORADIOMETER MISR; ATMOSPHERIC RADIATIVE-TRANSFER; OPTICAL-PROPERTIES; LAND SURFACES; BIDIRECTIONAL REFLECTANCE; TRANSFER MODEL; OCEAN; SCATTERING; RADIANCE; MODIS AB Remote sensing of aerosol from space is a challenging and typically underdetermined retrieval task, requiring many assumptions to be made with respect to the aerosol and surface models. Therefore, the quality of a priori information plays a central role in any retrieval process (apart from the cloud screening procedure and the forward radiative transfer model, which to be most accurate should include the treatment of light polarization and molecular-aerosol coupling). In this paper the performance of various algorithms with respect to the of spectral aerosol optical thickness determination from optical spaceborne measurements is studied. The algorithms are based on various types of measurements (spectral, angular, polarization, or some combination of these). It is confirmed that multiangular spectropolarimetric measurements provide more powerful constraints compared to spectral intensity measurements alone, particularly those acquired at a single view angle and which rely on a priori assumptions regarding the particle phase function in the retrieval process. C1 [Kokhanovsky, A. A.; Rozanov, V. V.] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. [Deuze, J. L.; Dubovik, O.; Ducos, F.; Herman, M.; Tanre, D.] Univ Lille 1, UMR CNRS 8518, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Diner, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Emde, C.] Deutsch Zentrum Luft & Raumfahrt DLR, D-82234 Wessling, Germany. [Garay, M. J.] Raytheon Intelligence & Informat Syst, Pasadena, CA 91101 USA. [Grainger, R. G.; Sayer, A. M.; Thomas, G. E.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Heckel, A.; North, P. R. J.] Swansea Univ, Sch Environm & Soc, Swansea SA2 8PP, W Glam, Wales. [Katsev, I. L.; Prikhach, A. S.; Zege, E. P.] Natl Acad Sci Belarus, Inst Phys, Minsk 220072, Byelarus. [Keller, J.] Paul Scherrer Inst, LAC, CH-5232 Villigen, Switzerland. [Levy, R.] SSAI, Lanham, MD 20706 USA. [Ota, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. RP Kokhanovsky, AA (reprint author), Univ Bremen, Inst Environm Phys, O Hahn Allee 1, D-28334 Bremen, Germany. EM alexk@iup.physik.uni-bremen.de RI Sayer, Andrew/H-2314-2012; Levy, Robert/M-7764-2013; Dubovik, Oleg/A-8235-2009; Grainger, Roy/E-8823-2011; North, Peter/A-1616-2009; Kokhanovsky, Alexander/C-6234-2016; Emde, Claudia/B-5447-2010; Keller, Johannes/C-7732-2009 OI Sayer, Andrew/0000-0001-9149-1789; Levy, Robert/0000-0002-8933-5303; Dubovik, Oleg/0000-0003-3482-6460; Grainger, Roy/0000-0003-0709-1315; North, Peter/0000-0001-9933-6935; Kokhanovsky, Alexander/0000-0001-7370-1164; FU German Science Foundation (DFG) [BU-688/18-1]; National Aeronautics and Space Administration; Natural Environment Research Council [NE/F001452/1, NE/E011187/1]; NERC [NE/F001436/1]; CNES (Centre national d'etudes spatiales); CNRS (Centre national de la recherche scientifique) FX A. A. Kokhanovsky thanks German Science Foundation (DFG) for support of this research in the framework of the Project BU-688/18-1 Terra. The research of D. J. Diner and M. Garay was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank J. Martonchik, M. Smyth, and D. Nelson of JPL and R. Kahn of the NASA Goddard Space Flight Center for technical advice and assistance with the MISR Research Retrieval calculations. The University of Oxford work was supported by the Natural Environment Research Council (grant numbers NE/F001452/1 and NE/E011187/1). Swansea University research was supported by NERC grant NE/F001436/1. J. L. Deuze, O. Dubovik, F. Ducos, M. Herman and D. Tanre would like to thank CNES (Centre national d'etudes spatiales) and CNRS (Centre national de la recherche scientifique) for their support. The work of Yoshifumi Ota was performed as a part of greenhouse gases observing satellite (GOSAT) project of National Institute for Environmental Studies (NIES), which collaborates with GOSAT research announcement program conducted by A. Kokhanovsky. The authors are grateful to J. Lenoble and M. King for important comments related to this paper. NR 76 TC 70 Z9 70 U1 3 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 4 BP 909 EP 932 DI 10.5194/amt-3-909-2010 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 645DW UT WOS:000281432100008 ER PT J AU Deutscher, NM Griffith, DWT Bryant, GW Wennberg, PO Toon, GC Washenfelder, RA Keppel-Aleks, G Wunch, D Yavin, Y Allen, NT Blavier, JF Jimenez, R Daube, BC Bright, AV Matross, DM Wofsy, SC Park, S AF Deutscher, N. M. Griffith, D. W. T. Bryant, G. W. Wennberg, P. O. Toon, G. C. Washenfelder, R. A. Keppel-Aleks, G. Wunch, D. Yavin, Y. Allen, N. T. Blavier, J. -F. Jimenez, R. Daube, B. C. Bright, A. V. Matross, D. M. Wofsy, S. C. Park, S. TI Total column CO2 measurements at Darwin, Australia - site description and calibration against in situ aircraft profiles SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID INTEGRATED ABSORPTION INTENSITIES; EMPIRICAL AGE SPECTRA; FT-IR SPECTROSCOPY; TRANSPORT MODELS; MOLECULAR-OXYGEN; MEAN AGES; A-BAND; STRATOSPHERE; STRENGTHS; SURFACE AB An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O-2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clearsky low airmass relative precision of 0.1% is demonstrated in the CO2 and O-2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X-CO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis. C1 [Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.] Univ Wollongong, Sch Chem, Wollongong, NSW 2522, Australia. [Wennberg, P. O.; Wunch, D.; Yavin, Y.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wennberg, P. O.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Toon, G. C.; Blavier, J. -F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Allen, N. T.; Jimenez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Jimenez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Deutscher, NM (reprint author), Univ Wollongong, Sch Chem, Northfields Ave, Wollongong, NSW 2522, Australia. EM ndeutsch@uow.edu.au RI Washenfelder, Rebecca/E-7169-2010; Wennberg, Paul/A-5460-2012; JIMENEZ, Rodrigo/B-6112-2012; Keppel-Aleks, Gretchen/A-3239-2013; Deutscher, Nicholas/E-3683-2015; Manager, CSD Publications/B-2789-2015; OI Washenfelder, Rebecca/0000-0002-8106-3702; Deutscher, Nicholas/0000-0002-2906-2577; JIMENEZ, Rodrigo/0000-0002-8665-9484 FU Australian Postgraduate Industry Award; National Aeronautics and Space Administration [NNX08AI86G]; Australian Research Council [DP0879468, LP0562346] FX We thank Rex Pearson, John Glowacki, Troy Culgan, Maciej Ryczek and Krzysztof Krzton for the maintenance of the solar FTS. We also gratefully acknowledge comments on the manuscript made by Janina Messerschmidt. Nicholas Deutscher is supported by an Australian Postgraduate Industry Award. The research described in this paper was performed for the Orbiting Carbon Observatory Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. TCCON is funded by the NASA terrestrial carbon cycle program, grant NNX08AI86G. This research is also assisted by Australian Research Council Projects DP0879468 and LP0562346 with the Australian Greenhouse Office. NR 43 TC 66 Z9 67 U1 2 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 4 BP 947 EP 958 DI 10.5194/amt-3-947-2010 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 645DW UT WOS:000281432100010 ER PT J AU Immler, FJ Dykema, J Gardiner, T Whiteman, DN Thorne, PW Vomel, H AF Immler, F. J. Dykema, J. Gardiner, T. Whiteman, D. N. Thorne, P. W. Voemel, H. TI Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID RADIOSONDE AB The accurate monitoring of climate change imposes strict requirements upon observing systems, in particular regarding measurement accuracy and long-term stability. Currently available data records of the essential climate variables (temperature-T, geopotential-p, humidity-RH, wind, and cloud properties) in the upper-air generally fail to fulfil such requirements. This raises serious issues about the ability to detect, quantify and understand recent climate changes and their causes. GCOS is currently implementing a Reference Upper-Air Network (GRUAN) in order to fill this major void within the global observing system. As part of the GRUAN implementation plan we provide herein fundamental guidelines for establishing and maintaining reference quality atmospheric observations which are based on principal concepts of metrology, in particular traceability. It is argued that the detailed analysis of the uncertainty budget of a measurement technique is the critical step for achieving this goal. As we will demonstrate with an example, detailed knowledge of the calibration procedures and data processing algorithms are required for determining the uncertainty of each individual data point. Of particular importance is the careful assessment of the uncertainties introduced by correction schemes adjusting for systematic effects. C1 [Immler, F. J.; Voemel, H.] Deutsch Wetterdienst, Richard Assmann Observ, Lindenberg, Germany. [Dykema, J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Gardiner, T.] Natl Phys Lab, Environm Measurement Grp, Teddington TW11 0LW, Middx, England. [Whiteman, D. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thorne, P. W.] Met Off, Hadley Ctr, Exeter, Devon, England. [Thorne, P. W.] NOAA, Cooperat Inst Climate & Satellites, Asheville, NC USA. RP Immler, FJ (reprint author), Deutsch Wetterdienst, Richard Assmann Observ, Lindenberg, Germany. EM franz.immler@dwd.de RI Thorne, Peter/F-2225-2014 OI Thorne, Peter/0000-0003-0485-9798 FU DECC/Defra [GA01101] FX We like to thank the members of the working group for atmospheric reference observations (WG-ARO) for helpful feedback on our draft, in particular Chris Miller, John Nash, Bill Murray, Masatomo Fujiwara, Dian Seidel, Junhong Wang, and Stephan Bojinski. P. Thorne was supported by the Joint DECC and Defra Integrated Climate Programme - DECC/Defra (GA01101). NR 24 TC 57 Z9 57 U1 0 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 5 BP 1217 EP 1231 DI 10.5194/amt-3-1217-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673KW UT WOS:000283661300003 ER PT J AU Kassianov, E Ovchinnikov, M Berg, LK McFarlane, SA Flynn, C Ferrare, R Hostetler, C Alexandrov, M AF Kassianov, E. Ovchinnikov, M. Berg, L. K. McFarlane, S. A. Flynn, C. Ferrare, R. Hostetler, C. Alexandrov, M. TI Retrieval of aerosol optical depth in vicinity of broken clouds from reflectance ratios: case study SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID UNIFIED SATELLITE CLIMATOLOGY; SPECTRAL-RESOLUTION LIDAR; GROUND-BASED MEASUREMENTS; CLEAR-SKY REFLECTANCE; MFRSR DATA; ALBEDO; MODIS; MODELS; PRECIPITATION; SIMULATIONS AB A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on 12 June 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm, 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15-30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount. C1 [Kassianov, E.; Ovchinnikov, M.; Berg, L. K.; McFarlane, S. A.; Flynn, C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ferrare, R.; Hostetler, C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Alexandrov, M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM evgueni.kassianov@pnl.gov RI McFarlane, Sally/C-3944-2008; Berg, Larry/A-7468-2016 OI Berg, Larry/0000-0002-3362-9492 FU National Aeronautics and Space Administration (NASA); Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE); DOE [DE-AC06-76RLO 1830]; US DOE FX This work was supported by the National Aeronautics and Space Administration (NASA) through the Radiation Sciences Program and the Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) Program and Atmospheric Science Program (ASP). The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-AC06-76RLO 1830. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the US DOE, OBER and located at PNNL. We are grateful to James Barnard and Alexander Kokhanovsky and anonymous reviewers for thoughtful comments. NR 62 TC 6 Z9 7 U1 0 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 5 BP 1333 EP 1349 DI 10.5194/amt-3-1333-2010 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673KW UT WOS:000283661300011 ER PT J AU Wunch, D Toon, GC Wennberg, PO Wofsy, SC Stephens, BB Fischer, ML Uchino, O Abshire, JB Bernath, P Biraud, SC Blavier, JFL Boone, C Bowman, KP Browell, EV Campos, T Connor, BJ Daube, BC Deutscher, NM Diao, M Elkins, JW Gerbig, C Gottlieb, E Griffith, DWT Hurst, DF Jimenez, R Keppel-Aleks, G Kort, EA Macatangay, R Machida, T Matsueda, H Moore, F Morino, I Park, S Robinson, J Roehl, CM Sawa, Y Sherlock, V Sweeney, C Tanaka, T Zondlo, MA AF Wunch, D. Toon, G. C. Wennberg, P. O. Wofsy, S. C. Stephens, B. B. Fischer, M. L. Uchino, O. Abshire, J. B. Bernath, P. Biraud, S. C. Blavier, J. -F. L. Boone, C. Bowman, K. P. Browell, E. V. Campos, T. Connor, B. J. Daube, B. C. Deutscher, N. M. Diao, M. Elkins, J. W. Gerbig, C. Gottlieb, E. Griffith, D. W. T. Hurst, D. F. Jimenez, R. Keppel-Aleks, G. Kort, E. A. Macatangay, R. Machida, T. Matsueda, H. Moore, F. Morino, I. Park, S. Robinson, J. Roehl, C. M. Sawa, Y. Sherlock, V. Sweeney, C. Tanaka, T. Zondlo, M. A. TI Calibration of the Total Carbon Column Observing Network using aircraft profile data SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SOLAR ABSORPTION-SPECTRA; SPECTROSCOPIC DATABASE; LINE PARAMETERS; ATMOSPHERIC CO2; WATER-VAPOR; SCALE; O-2; AIR; CH4; REEVALUATION AB The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. These calibrations are compared with similar observations made in 2004 and 2006. The results indicate that a single, global calibration factor for each gas accurately captures the TCCON total column data within error. C1 [Toon, G. C.; Blavier, J. -F. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Wofsy, S. C.; Daube, B. C.; Gottlieb, E.; Jimenez, R.; Kort, E. A.; Park, S.] Harvard Univ, Cambridge, MA 02138 USA. [Stephens, B. B.; Campos, T.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Deutscher, N. M.; Griffith, D. W. T.; Macatangay, R.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Sherlock, V.] Natl Inst Water & Atmospher Res, Wellington, New Zealand. [Connor, B. J.] BC Consulting Ltd, Alexandra, South Africa. [Bernath, P.; Boone, C.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. [Bernath, P.] York Univ, York, N Yorkshire, England. [Fischer, M. L.; Biraud, S. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Browell, E. V.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Abshire, J. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bowman, K. P.] Texas A&M Univ, College Stn, TX USA. [Uchino, O.; Machida, T.; Morino, I.; Tanaka, T.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Diao, M.; Zondlo, M. A.] Princeton Univ, Princeton, NJ 08544 USA. [Gerbig, C.] Max Planck Inst Biogeochem, Jena, Germany. [Elkins, J. W.; Hurst, D. F.] Natl Ocean & Atmospher Adm, Boulder, CO USA. [Hurst, D. F.; Moore, F.; Sweeney, C.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Matsueda, H.; Sawa, Y.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. [Robinson, J.] Natl Inst Water & Atmospher Res, Lauder, New Zealand. [Jimenez, R.] Univ Nacl Colombia, Dept Chem & Enivronmental Engn, Bogota 111321, DC, Colombia. RP Wunch, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM dwunch@gps.caltech.edu RI Zondlo, Mark/R-6173-2016; Bowman, Kenneth/A-1345-2012; Wennberg, Paul/A-5460-2012; JIMENEZ, Rodrigo/B-6112-2012; Bernath, Peter/B-6567-2012; Kort, Eric/F-9942-2012; Keppel-Aleks, Gretchen/A-3239-2013; Abshire, James/I-2800-2013; Gerbig, Christoph/L-3532-2013; Biraud, Sebastien/M-5267-2013; Stephens, Britton/B-7962-2008; Morino, Isamu/K-1033-2014; Diao, Minghui/A-4437-2015; Hurst, Dale/D-1554-2016 OI Zondlo, Mark/0000-0003-2302-9554; JIMENEZ, Rodrigo/0000-0002-8665-9484; Bowman, Kenneth/0000-0002-2667-8632; Bernath, Peter/0000-0002-1255-396X; Kort, Eric/0000-0003-4940-7541; Gerbig, Christoph/0000-0002-1112-8603; Biraud, Sebastien/0000-0001-7697-933X; Stephens, Britton/0000-0002-1966-6182; Morino, Isamu/0000-0003-2720-1569; Diao, Minghui/0000-0003-0324-0897; Hurst, Dale/0000-0002-6315-2322 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research; NASA; DOE; Canadian Space Agency; LBNL-DOE [DE-AC02-05CH11231]; Australian Research Council [DP0879468, LP0562346]; Australian Greenhouse Office; National Science Foundation FX The authors wish to thank Stephanie Vay and Donald R. Blake for guidance and the use of the INTEX-NA CO2 and CH4 profiles, respectively. The INTEX-NA data were downloaded from ftp://ftp-air.larc.nasa.gov/pub/INTEXA/DC8_AIRCRAFT/ on 10 September 2010. NCEP Reanalysis data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. Data were obtained through the Atmospheric Radiation Measurement (ARM) Program sponsored by the US Department of Energy, Office of Science, Office of Biological and Environmental Research. Data were generated by the National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory (ESRL), Carbon Cycle Greenhouse Gases Group, including flask data from Andrews et al. (2009). The Meteorological Research Institute tower measurements are described by Inoue and Matsueda (1996). US funding for TCCON comes from NASA's Terrestrial Ecology Program, the Orbiting Carbon Observatory project and the DOE/ARM Program. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. ACE is funded primarily by the Canadian Space Agency. Support for the Learjet-25 measurements was provided by the NASA ASCENDS development and ESTO IIP programs. Support for the flask measurements at the SGP ARM site is from LBNL-DOE contract DE-AC02-05CH11231. We acknowledge funding for Darwin and Wollongong from the Australian Research Council, Projects DP0879468 and LP0562346 with the Australian Greenhouse Office. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 46 TC 152 Z9 154 U1 2 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 5 BP 1351 EP 1362 DI 10.5194/amt-3-1351-2010 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673KW UT WOS:000283661300012 ER PT J AU de Laat, ATJ Gloudemans, AMS Schrijver, H Aben, I Nagahama, Y Suzuki, K Mahieu, E Jones, NB Paton-Walsh, C Deutscher, NM Griffith, DWT De Maziere, M Mittermeier, RL Fast, H Notholt, J Palm, M Hawat, T Blumenstock, T Hase, F Schneider, M Rinsland, C Dzhola, AV Grechko, EI Poberovskii, AM Makarova, MV Mellqvist, J Strandberg, A Sussmann, R Borsdorff, T Rettinger, M AF de Laat, A. T. J. Gloudemans, A. M. S. Schrijver, H. Aben, I. Nagahama, Y. Suzuki, K. Mahieu, E. Jones, N. B. Paton-Walsh, C. Deutscher, N. M. Griffith, D. W. T. De Maziere, M. Mittermeier, R. L. Fast, H. Notholt, J. Palm, M. Hawat, T. Blumenstock, T. Hase, F. Schneider, M. Rinsland, C. Dzhola, A. V. Grechko, E. I. Poberovskii, A. M. Makarova, M. V. Mellqvist, J. Strandberg, A. Sussmann, R. Borsdorff, T. Rettinger, M. TI Validation of five years (2003-2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ATMOSPHERIC CARBON-MONOXIDE; FTIR MEASUREMENTS; NORTHERN JAPAN; ERROR ANALYSIS; WFM-DOAS; RETRIEVALS; METHANE; CH4; VARIABILITY; SPACE AB This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) carbon monoxide (CO) total column measurements from the Iterative Maximum Likelihood Method (IMLM) algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003-2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2 sigma precision of 0.2 x 10(18) molecules/cm(2) (similar to 10%) indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8 degrees x 8 degrees. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid-to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003-2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based measurements available for the validation of the 2003-2007 SCIAMACHY CO columns is sub-optimal for validation purposes, and that the recent and ongoing expansion of the ground-based network by carefully selecting new locations may be very beneficial for SCIAMACHY CO and other satellite trace gas measurements validation efforts. C1 [de Laat, A. T. J.] KNMI Royal Netherlands Meteorol Inst, De Bilt, Netherlands. [de Laat, A. T. J.; Gloudemans, A. M. S.; Schrijver, H.; Aben, I.] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Nagahama, Y.] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Yokohama, Kanagawa, Japan. [Suzuki, K.] Yokohama Univ, Yokohama, Kanagawa, Japan. [Mahieu, E.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Jones, N. B.; Paton-Walsh, C.; Deutscher, N. M.; Griffith, D. W. T.] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia. [De Maziere, M.] Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium. [Mittermeier, R. L.; Fast, H.] Environm Canada, Air Qual Res Div, Toronto, ON, Canada. [Notholt, J.; Palm, M.] Univ Bremen, Inst Environm Phys, D-2800 Bremen 33, Germany. [Hawat, T.] Univ Denver, Dept Phys & Astron, Denver, CO USA. [Blumenstock, T.; Hase, F.; Schneider, M.] Karlsruhe Inst Technol, IMK ASF, Karlsruhe, Germany. [Rinsland, C.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Dzhola, A. V.; Grechko, E. I.] St Petersburg State Univ, Fac Phys, St Petersburg, Russia. [Poberovskii, A. M.; Makarova, M. V.] RAS, Inst Atmospher Phys, Moscow 117901, Russia. [Mellqvist, J.; Strandberg, A.] Chalmers, S-41296 Gothenburg, Sweden. [Sussmann, R.; Borsdorff, T.; Rettinger, M.] IMK IFU, Karlsruhe Inst Technol, Garmisch Partenkirchen, Germany. RP de Laat, ATJ (reprint author), KNMI Royal Netherlands Meteorol Inst, De Bilt, Netherlands. EM laatdej@knmi.nl RI Jones, Nicholas/G-5575-2011; Notholt, Justus/P-4520-2016; Paton-Walsh, Clare/B-2774-2009; Blumenstock, Thomas/K-2263-2012; Sussmann, Ralf/K-3999-2012; Hase, Frank/A-7497-2013; Schneider, Matthias/B-1441-2013; Makarova, Maria/J-4858-2013; Garmisch-Pa, Ifu/H-9902-2014; Deutscher, Nicholas/E-3683-2015 OI Mahieu, Emmanuel/0000-0002-5251-0286; Palm, Mathias/0000-0001-7191-6911; Mellqvist, Johan/0000-0002-6578-9220; Jones, Nicholas/0000-0002-0111-2368; Notholt, Justus/0000-0002-3324-885X; Paton-Walsh, Clare/0000-0003-1156-4138; Makarova, Maria/0000-0003-2469-9250; Deutscher, Nicholas/0000-0002-2906-2577 FU German Space Agency DLR; Dutch Space Agency NSO; Belgian Space Agency; NSO; EU [036677]; DFG FX SCIAMACHY is a joint project of the German Space Agency DLR and the Dutch Space Agency NSO with contribution of the Belgian Space Agency. We thank the Netherlands SCIAMACHY Data Center and ESA for providing data. The work performed is (partly) financed by NSO. The authors also thank J. F. Meirink for providing the TM4 model data, the Network for the Detection of Atmospheric Composition Change (NDACC) for maintaining the GBS database and the various research groups for making their GBS observations available to the NDACC. The Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University, Japan, is thanked for installing and operating the GBS stations at Moshiri and Rikubetsu and for providing the spectral data. The Darwin solar measurements and TCCON are funded by NASA's terrestrial carbon cycle program, grant NNX08AI86G. Measurements at Bremen and Ny Alesund are partly financed by the EU-project HYMN and the DFG-project MESOSUB. We acknowledge the EU FP6 project GEOmon (project number 036677) for their support of the Zugspitze measurements. NR 36 TC 16 Z9 16 U1 0 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 5 BP 1457 EP 1471 DI 10.5194/amt-3-1457-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 673KW UT WOS:000283661300019 ER PT J AU Schneider, M Toon, GC Blavier, JF Hase, F Leblanc, T AF Schneider, M. Toon, G. C. Blavier, J. -F. Hase, F. Leblanc, T. TI H2O and delta D profiles remotely-sensed from ground in different spectral infrared regions SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SOLAR ABSORPTION-SPECTRA; ATMOSPHERIC WATER-VAPOR; HIGH-RESOLUTION; TECHNICAL NOTE; LINE-SHAPE; FTIR; RETRIEVAL; VALIDATION; PARAMETERS; CYCLE AB We present ground-based FTIR (Fourier Transform Infrared) water vapour analyses performed in four different spectral regions: 790-880, 1090-1330, 2650-3180, and 4560-4710 cm(-1). All four regions allow the retrieval of lower, middle, and upper tropospheric water vapour amounts with a vertical resolution of about 3, 6, and 10 km, respectively. In addition the analyses at 1090-1330 and 2650-3180 cm(-1) allow the retrieval of lower and middle/upper tropospheric delta D values with vertical resolutions of 3 and 10 km, respectively. A theoretical and empirical error assessment - taking coincident Vaisala RS92 radiosonde measurements as a reference - suggests that the H2O data retrieved at high wavenumbers are slightly more precise than those retrieved at low wavenumbers. We deduce an H2O profile precision and accuracy of generally better than 20% except for the low wavenumber retrieval at 790-880 cm(-1), where the assessed upper precision limit of middle/upper tropospheric H2O is 35%. The scatter between the H2O profiles produced by the four different retrievals is generally below 20% and the bias below 10%, except for the boundary layer, where it can reach 24%. These values well confirm the theoretical and empirical error assessment and are rather small compared to the huge tropospheric H2O variability of about one order of magnitude thereby demonstrating the large consistency between the different H2O profile retrievals. By comparing the two delta D profile versions we deduce a precision of about 8 and 17 parts per thousand for the lower and middle/upper troposphere, respectively. However, at the same time we observe a systematic difference between the two retrievals of up to 40 parts per thousand in the middle/upper troposphere which is a large value compared to the typical tropospheric delta D variability of only 80 parts per thousand. C1 [Schneider, M.; Hase, F.] IMK ASF, KIT, Karlsruhe, Germany. [Toon, G. C.; Blavier, J. -F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Schneider, M (reprint author), CIAI, Agencia Estatal Meteorol AEMET, Santa Cruz De Tenerife, Spain. EM matthias.schneider@kit.edu RI Hase, Frank/A-7497-2013; Schneider, Matthias/B-1441-2013 FU Deutsche Forschungsgemeinschaft [Geschaftszeichen SCHN 1126/1-1, 1-2]; Spanish Ministry of Science and Innovation; NASA FX M. Schneider was supported by the Deutsche Forschungsgemeinschaft via the project RISOTO (Geschaftszeichen SCHN 1126/1-1 and 1-2) and since May 2010 he has enjoyed a Ramon y Cajal Grant from the Spanish Ministry of Science and Innovation. We are grateful to the Goddard Space Flight Center for providing the temperature and pressure profiles of the National Centers for Environmental Prediction via the automailer system. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 36 TC 19 Z9 20 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 6 BP 1599 EP 1613 DI 10.5194/amt-3-1599-2010 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 698DV UT WOS:000285573200009 ER PT J AU Roscoe, HK Van Roozendael, M Fayt, C du Piesanie, A Abuhassan, N Adams, C Akrami, M Cede, A Chong, J Clemer, K Friess, U Ojeda, MG Goutail, F Graves, R Griesfeller, A Grossmann, K Hemerijckx, G Hendrick, F Herman, J Hermans, C Irie, H Johnston, PV Kanaya, Y Kreher, K Leigh, R Merlaud, A Mount, GH Navarro, M Oetjen, H Pazmino, A Perez-Camacho, M Peters, E Pinardi, G Puentedura, O Richter, A Schonhardt, A Shaiganfar, R Spinei, E Strong, K Takashima, H Vlemmix, T Vrekoussis, M Wagner, T Wittrock, F Yela, M Yilmaz, S Boersma, F Hains, J Kroon, M Piters, A Kim, YJ AF Roscoe, H. K. Van Roozendael, M. Fayt, C. du Piesanie, A. Abuhassan, N. Adams, C. Akrami, M. Cede, A. Chong, J. Clemer, K. Friess, U. Ojeda, M. Gil Goutail, F. Graves, R. Griesfeller, A. Grossmann, K. Hemerijckx, G. Hendrick, F. Herman, J. Hermans, C. Irie, H. Johnston, P. V. Kanaya, Y. Kreher, K. Leigh, R. Merlaud, A. Mount, G. H. Navarro, M. Oetjen, H. Pazmino, A. Perez-Camacho, M. Peters, E. Pinardi, G. Puentedura, O. Richter, A. Schoenhardt, A. Shaiganfar, R. Spinei, E. Strong, K. Takashima, H. Vlemmix, T. Vrekoussis, M. Wagner, T. Wittrock, F. Yela, M. Yilmaz, S. Boersma, F. Hains, J. Kroon, M. Piters, A. Kim, Y. J. TI Intercomparison of slant column measurements of NO2 and O-4 by MAX-DOAS and zenith-sky UV and visible spectrometers SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID DIFFERENTIAL OPTICAL-ABSORPTION; NITROGEN-DIOXIDE; CROSS-SECTIONS; SPECTROSCOPY; BRO; TEMPERATURE; OZONE; RANGE; NM AB In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97 degrees N, 4.93 degrees E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O-4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage. C1 [Roscoe, H. K.] British Antarctic Survey, Cambridge CB3 0ET, England. [Van Roozendael, M.; Fayt, C.; Clemer, K.; Hemerijckx, G.; Hendrick, F.; Hermans, C.; Merlaud, A.; Pinardi, G.] BIRA IASB, Brussels, Belgium. [du Piesanie, A.; Vlemmix, T.; Boersma, F.; Hains, J.; Kroon, M.; Piters, A.] KNMI, De Bilt, Netherlands. [Abuhassan, N.; Cede, A.; Herman, J.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Abuhassan, N.; Cede, A.; Herman, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Adams, C.; Akrami, M.; Strong, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A1, Canada. [Ojeda, M. Gil; Navarro, M.; Perez-Camacho, M.; Puentedura, O.; Yela, M.] INTA, Madrid, Spain. [Friess, U.; Grossmann, K.; Yilmaz, S.] Heidelberg Univ, Inst Environm Phys, Heidelberg, Germany. [Goutail, F.; Griesfeller, A.; Pazmino, A.] UPMC, UVSQ, CNRS, LATMOS, Guyancourt, France. [Graves, R.; Leigh, R.] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England. [Irie, H.; Kanaya, Y.; Takashima, H.] JAMSTEC, Res Inst Global Change, Yokohama, Kanagawa, Japan. [Johnston, P. V.; Kreher, K.] NIWA, Lauder, New Zealand. [Mount, G. H.; Spinei, E.] Washington State Univ, Lab Atmospher Res, Pullman, WA 99164 USA. [Oetjen, H.] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. [Peters, E.; Richter, A.; Schoenhardt, A.; Vrekoussis, M.; Wittrock, F.] Univ Bremen, Inst Environm Phys, Bremen, Germany. [Shaiganfar, R.; Wagner, T.] Max Planck Inst Chem, D-55128 Mainz, Germany. RP Roscoe, HK (reprint author), British Antarctic Survey, Cambridge CB3 0ET, England. EM h.roscoe@bas.ac.uk RI Puentedura, Olga/J-6884-2014; Richter, Andreas/C-4971-2008; Wittrock, Folkard/B-6959-2008; FrieSS, Udo/B-1696-2012; Kanaya, Yugo/C-7446-2012; Strong, Kimberly/D-2563-2012; Boersma, Klaas/H-4559-2012; Navarro-Comas, Monica/J-6297-2014; Oetjen, Hilke/H-3708-2016; Yela, Margarita/J-7346-2016; Vrekoussis, Mihalis/G-9424-2012 OI Puentedura, Olga/0000-0002-4286-1867; Herman, Jay/0000-0002-9146-1632; Richter, Andreas/0000-0003-3339-212X; Wittrock, Folkard/0000-0002-3024-0211; Boersma, Klaas/0000-0002-4591-7635; Navarro-Comas, Monica/0000-0002-6347-8955; Oetjen, Hilke/0000-0002-3542-1337; Yela, Margarita/0000-0003-3775-3156; Vrekoussis, Mihalis/0000-0001-8292-8352 FU ESA [22202/09/I-EC]; EU [GOCE-CT-2004-505337, FP6-2005-Global-4-036677, 2006-026140, FP/2007-2011, 212520]; British Antarctic Survey; UK's Natural Environment Research Council; Belgian Federal Science Policy Office [SD/AT/01A, SD/AT/01B]; University of Bremen; ENVIVAL-life project [50EE0839]; French Centre National d'Etudes Spatiales (CNES); Institut des Sciences de l'Univers (INSU); Korean government (MEST) through the Advanced Environmental Monitoring Research Center [2010-0000773]; Ministry of Education, Culture, Sports, Science and Technology (MEXT); Japanese Ministry of the Environment [S-7]; User Support Programme Space Research [EO-091]; Netherlands Space Organisation; Canadian Foundation for Climate and Atmospheric Science; Centre for Global Change Science at the University of Toronto; Natural Sciences and Engineering Research Council; Canadian Foundation for Innovation; Canadian Network for the Detection of Atmospheric Change (CANDAC); National Aeronautics and Space Administration [NNX09AJ28G] FX We gratefully acknowledge the KNMI staff at Cabauw for their excellent technical and infrastructure support during the campaign. The CINDI Campaign was for a large part funded by the ESA project CEOS Intercalibration of ground-based spectrometers and lidars (ESRIN contract 22202/09/I-EC) and the EU project ACCENT-AT2 (GOCE-CT-2004-505337). We further acknowledge the support of the EU via the GEOMON Integrated Project (contract FP6-2005-Global-4-036677). The participation of Roscoe is partly funded by the British Antarctic Survey's Polar Science for Planet Earth programme, which is funded by the UK's Natural Environment Research Council. The work of Clemer was supported by the Belgian Federal Science Policy Office through the AGACC project (contract SD/AT/01A and SD/AT/01B). The Bremen instruments are partly funded by the University of Bremen and the ENVIVAL-life project (50EE0839); their operation is supported by GEOMON and MULTI-TASTE. The participation of the CNRS team was supported by the French Centre National d'Etudes Spatiales (CNES) and the instruments were funded by Institut des Sciences de l'Univers (INSU). University of Heidelberg were partly funded by the EU FP6 Project EUSAAR (2006-026140). The work of GIST was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (2010-0000773) through the Advanced Environmental Monitoring Research Center. The Heidelberg team were partly funded by the EU FP6 Project EUSAAR (2006-026140). JAMSTEC were supported by the Japan EOS Promotion Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and by the Global Environment Research Fund (S-7) of the Japanese Ministry of the Environment. The work of Vlemmix and Piters is financed by the User Support Programme Space Research via the project "Atmospheric chemistry instrumentation to strengthen satellite validation of CESA" (EO-091). The work of Piters, Kroon, Hains, Boersma and du Piesanie is partly financed by the Netherlands Space Organisation via the SCIAVISIE and OMI Science projects. MPI were partly funded by EU Seventh Framework Programme FP/2007-2011 under grant 212520, and would like to thank Bastian Jacker for logistical support. The participation of the Toronto team was supported by the Canadian Foundation for Climate and Atmospheric Science and the Centre for Global Change Science at the University of Toronto; the instrument was funded by the Natural Sciences and Engineering Research Council and the Canadian Foundation for Innovation, and is usually operated at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC). Washington State University acknowledges funding support from the National Aeronautics and Space Administration, grant NNX09AJ28G. NR 20 TC 42 Z9 43 U1 1 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2010 VL 3 IS 6 BP 1629 EP 1646 DI 10.5194/amt-3-1629-2010 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 698DV UT WOS:000285573200011 ER PT J AU Cooke, MC Utembe, SR Carbajo, PG Archibald, AT Orr-Ewing, AJ Jenkin, ME Derwent, RG Lary, DJ Shallcross, DE AF Cooke, M. C. Utembe, S. R. Carbajo, P. Gorrotxategi Archibald, A. T. Orr-Ewing, A. J. Jenkin, M. E. Derwent, R. G. Lary, D. J. Shallcross, D. E. TI Impacts of formaldehyde photolysis rates on tropospheric chemistry SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE formaldehyde; photolysis; global; modelling; HO(x) ID INTERMEDIATES CRI MECHANISM; ABSORPTION CROSS-SECTIONS; CONVECTION; EMISSION; HYDROGEN; OZONE; NM AB A global chemistry transport model is employed to investigate the impact of recent laboratory determinations of photolysis parameters for formaldehyde on concentrations of tropospheric trace gases. Using the new laboratory data, the photolysis of formaldehyde is a more significant removal pathway. HO(x) levels are increased with the greatest changes towards the top of the troposphere and the poles, making formaldehyde a more significant source of upper tropospheric HO(x) than previously thought. Global totals of ozone and secondary organic aerosol increase with the rise in ozone being more significant at higher solar zenith angles. Copyright (C) 2010 Royal Meteorological Society C1 [Cooke, M. C.; Utembe, S. R.; Carbajo, P. Gorrotxategi; Archibald, A. T.; Orr-Ewing, A. J.; Jenkin, M. E.; Shallcross, D. E.] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. [Jenkin, M. E.] Atmospher Chem Serv, Okehampton EX20 1FB, Devon, England. [Derwent, R. G.] Rdscientific, Newbury, Berks, England. [Lary, D. J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Cooke, MC (reprint author), Univ Bristol, Sch Chem, Cantocks Close, Bristol BS8 1TS, Avon, England. EM chmcc@bristol.ac.uk RI Utembe, Steven/C-4713-2016; OI Utembe, Steven/0000-0002-2741-3142; Archibald, Alexander/0000-0001-9302-4180; Derwent, Richard/0000-0003-4498-645X; Orr-Ewing, Andrew/0000-0001-5551-9609 FU EPSRC [CHEM.SB1729.6525]; UK Natural Environmental Research Council (NERC) [NE/D001846/1, NER/T/S/2000/00294, NE/D001498/1]; Marie Curie EU [MEST-CT-2004-514499]; Royal Society; Wolfson Foundation; UK Defra [AQ0902] FX This work was supported by EPSRC with studentship number CHEM.SB1729.6525 for MCC; UK Natural Environmental Research Council (NERC) support for SRU is gratefully acknowledged through Grant NE/D001846/1, as part of the QUEST Deglaciation project; ATA thanks the Met. Office and GWR for funding and PGC acknowledges financial support from the Marie Curie EU project BREATHE (MEST-CT-2004-514499). AJOE thanks the Royal Society and Wolfson Foundation for a Research Merit Award. The formaldehyde photochemical data were obtained with support from NERC Grants NER/T/S/2000/00294 and NE/D001498/1. The development of STOCHEM was supported by UK Defra under their SSNIP Contract AQ0902 to RGD. NR 25 TC 16 Z9 16 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD JAN-MAR PY 2010 VL 11 IS 1 BP 33 EP 38 DI 10.1002/asl.251 PG 6 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 566TE UT WOS:000275395300006 ER PT J AU Landi, E Bhatia, AK AF Landi, E. Bhatia, A. K. TI Atomic data and spectral line intensities for Ni XIV SO ATOMIC DATA AND NUCLEAR DATA TABLES LA English DT Article ID EXTREME-ULTRAVIOLET SPECTRUM; SOLAR ACTIVE-REGION; EMISSION-LINES; TRANSITION-PROBABILITIES; RATE COEFFICIENTS; FORBIDDEN LINES; CROSS-SECTIONS; CO-XIII; WAVELENGTHS; ANGSTROM AB Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XIV. We include in the calculations all the configurations belonging to the n = 3 complex, and provide data for the lowest 143 fine-structure levels, belonging to the configurations 3s(2)3p(3), 3s3p(4), 3s(2)3p(2)3d, 3p(5), 3s3p(3)3d, and 3s(2)3p3d(2). Collision strengths are calculated at six incident energies for all transitions: 0.112, 8.07, 21.3, 43.4. 80.3, and 141.8 Ry above the threshold of each transition. Calculations have been carried out using the Flexible Atomic Code. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(8)-10(14) cm(-3) and at an electron temperature of log T(e) (K) = 6.3, corresponding to the maximum abundance of Ni XIV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This data set is available in version 6.0 of the CHIANTI database. Published by Elsevier Inc. C1 [Landi, E.; Bhatia, A. K.] USN, Res Lab, Washington, DC 20375 USA. [Landi, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Landi, E.] ARTEP Inc, Columbia, MD 21044 USA. RP Landi, E (reprint author), USN, Res Lab, Code 7662,4555 Overlook Ave SW, Washington, DC 20375 USA. EM enrico.landi@nrl.navy.mil RI Landi, Enrico/H-4493-2011 FU NASA [NNH06CD24C, NNG04ED07P] FX The work of Enrico Landi is supported by the NNH06CD24C, NNG04ED07P, and other NASA Grants. Calculations were carried out using the Discover computer of the NASA Center for Computation Science. NR 29 TC 5 Z9 5 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0092-640X J9 ATOM DATA NUCL DATA JI Atom. Data Nucl. Data Tables PD JAN PY 2010 VL 96 IS 1 BP 52 EP 84 DI 10.1016/j.adt.2009.09.002 PG 33 WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA 526GO UT WOS:000272275900003 ER PT J AU Roberts, DR Ramsey, D Johnson, K Kola, J Ricci, R Hicks, C Borckardt, JJ Bloomberg, JJ Epstein, C George, MS AF Roberts, Donna R. Ramsey, David Johnson, Kevin Kola, Jejo Ricci, Raffaella Hicks, Christian Borckardt, Jeffrey J. Bloomberg, Jacob J. Epstein, Charles George, Mark S. TI Cerebral Cortex Plasticity After 90 Days of Bed Rest: Data from TMS and fMRI SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE functional MRI (fMRI); transcranial magnetic stimulation (TMS); motor; performance ID TRANSCRANIAL MAGNETIC STIMULATION; HUMAN MOTOR CORTEX; CORTICOSPINAL EXCITABILITY; CORTICAL EXCITABILITY; LIMB IMMOBILIZATION; PARKINSONS-DISEASE; WRITERS CRAMP; MODULATION; DEAFFERENTATION; REORGANIZATION AB Introduction: Microgravity animal models have demonstrated corticospinal plasticity; however, little is understood of its functional significance. In this pilot study, we explored corticospinal plasticity in a bed rest model. We hypothesized that the lack of weight bearing would induce cortical reorganization correlating with performance. Methods: Four subjects underwent functional MRI (fMRI), transcranial magnetic stimulation (TMS), and functional mobility testing (FMT) before and after 90 d of bed rest. Recruitment curves (RC) were created by measuring motor evoked potentials over a range of TMS intensities with changes in the slope of the RC reflecting changes in corticospinal excitability. Results: Significant leg RC slope decreases were observed on post-bed rest day 1 (P1) (t(2805) = -4.14, P < 0.0001), P2 (t(2805) = -6.59, P < 0.0001), P3 (t(2805) = -6.15, P < 0.0001), P5 (t(2805) = -7.93, P < 0.0001), P8 (t(2805) = -3.30, P = 0.001), and P12 (t(2805)= -3.33, P = 0.0009), suggesting a group decrease in corticospinal excitability in the immediate post-bed rest period with recovery approaching baseline over the following 2 wk. Significant effects were observed for hand RC slopes only for P2 (t(291 6) = 1.97, P = 0.049), P3 (t(291 6) = -2.12, P = 0.034), and P12 (t(2916) = -2.19, P = 0.029); no significant effects were observed for days P0 (t(2916) = -1.32, ns), P1 (t(2916) = 1.00, ns), P5 (t(2916) = -0.21, ns), or P8 (t(2916) = -0.27, ns). fMRI showed no change in activation for the hand but an increase in activation post-bed rest for the leg. On an individual basis, a more heterogeneous response was found which showed a potential association with performance on FMT Discussion: Results of this research include a better understanding of the cortical plasticity associated with leg disuse and may lead to applications in patient and astronaut rehabilitation. C1 [Roberts, Donna R.] Med Univ S Carolina, Dept Radiol & Radiol Sci, Charleston, SC 29425 USA. [Roberts, Donna R.; Ramsey, David; Johnson, Kevin; Kola, Jejo; Ricci, Raffaella; Hicks, Christian; Borckardt, Jeffrey J.; George, Mark S.] Med Univ S Carolina, Ctr Adv Imaging Res, Charleston, SC 29425 USA. [Ramsey, David] S Carolina Res Author, Charleston, SC USA. [Ricci, Raffaella] Univ Turin, Dept Psychol, Turin, Italy. [Borckardt, Jeffrey J.; George, Mark S.] Med Univ S Carolina, Dept Psychiat & Behav Sci, Charleston, SC 29425 USA. [Bloomberg, Jacob J.] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Off, Houston, TX 77058 USA. [Epstein, Charles] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA. RP Roberts, DR (reprint author), 169 Ashley Ave,POB 250322, Charleston, SC 29425 USA. EM robertdr@musc.edu OI Ricci, Raffaella/0000-0003-3422-2552 FU NASA [NNJ04HF70G]; NIH [NNJ06HB811] FX We thank Dr. Janice V. Meck and the NASA and UTMB bed rest teams for their invaluable assistance. Supported by NASA grant number NNJ04HF70G and NIH grant number NNJ06HB811. NR 44 TC 14 Z9 15 U1 0 U2 5 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JAN PY 2010 VL 81 IS 1 BP 30 EP 40 DI 10.3357/ASEM.2532.2009 PG 11 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 539QB UT WOS:000273270900007 PM 20058735 ER PT J AU Lee, SMC Moore, AD Everett, ME Stenger, MB Platts, SH AF Lee, Stuart M. C. Moore, Alan D. Everett, Meghan E. Stenger, Michael B. Platts, Steven H. TI Aerobic Exercise Deconditioning and Countermeasures During Bed Rest SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Review DE spaceflight; aerobic endurance; maximal aerobic capacity ID BODY NEGATIVE-PRESSURE; HEAD-DOWN TILT; INDUCED BONE LOSS; MIDDLE-AGED MEN; EARLY CARDIOVASCULAR ADAPTATION; SPACE SUIT BIOENERGETICS; BLOOD-FLOW DISTRIBUTION; HUMAN SKELETAL-MUSCLE; SIMULATED MICROGRAVITY; MAXIMAL EXERCISE AB Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space. C1 [Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Lee, Stuart M. C.; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Cardiovasc Lab, Houston, TX USA. [Moore, Alan D.] Wyle Integrated Sci & Engn Grp, Exercise Physiol & Countermeasures Project, Houston, TX USA. [Everett, Meghan E.] Univ Houston, Houston, TX USA. RP Platts, SH (reprint author), NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, 2101 NASA Pkwy,Mail Code SK, Houston, TX 77058 USA. EM steven.platts-1@nasa.gov FU NASA Human Research Program FX The authors wish to thank the NASA Human Research Program for their support of this manuscript; Kim So and Janine Bolton of the Space Life Sciences Library for their assistance with obtaining reference materials; and Lesley Lee, Kirk English, and Chris Miller for their editorial comments. NR 153 TC 17 Z9 24 U1 2 U2 8 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JAN PY 2010 VL 81 IS 1 BP 52 EP 63 DI 10.3357/ASEM.2474.2010 PG 12 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 539QB UT WOS:000273270900010 PM 20058738 ER PT J AU Wong, WC Dudinsky, LA Garcia, VM Ott, CM Castro, VA AF Wong, Wing C. Dudinsky, Lynn A. Garcia, Veronica M. Ott, Charlie M. Castro, Victoria A. TI Efficacy of various chemical disinfectants on biofilms formed in spacecraft potable water system components SO BIOFOULING LA English DT Article DE international space station; water recovery system; spacecraft potable water dispesnser; hydrogen peroxide; colloidal silver; biofilms AB As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the Station. In-flight pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony-forming units (CFU) ml(-1). Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with nonsterile water and left at room temperature for more than 1 month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, including Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides, and Cupriavidus pauculus. After incubation for 5 days, the hoses were challenged with various chemical disinfectants including hydrogen peroxide (H(2)O(2)), colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. The disinfection efficacy over time was measured by collecting daily heterotrophic plate counts after exposure to the disinfectants. A single flush with either 6% H(2)O(2) solution or a mixture of 3% H(2)O(2) and 400 ppb colloidal silver effectively reduced the bacterial concentrations to 51 CFU ml(-1) for a period of up to 3 months. C1 [Wong, Wing C.; Dudinsky, Lynn A.; Garcia, Veronica M.; Castro, Victoria A.] Enterprise Advisory Serv Inc, Houston, TX USA. [Ott, Charlie M.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Wong, WC (reprint author), Enterprise Advisory Serv Inc, Houston, TX USA. EM wing.wong-1@nasa.gov OI Garcia, Veronica/0000-0002-7112-3003 NR 4 TC 6 Z9 6 U1 0 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0892-7014 J9 BIOFOULING JI Biofouling PY 2010 VL 26 IS 5 BP 583 EP 586 DI 10.1080/08927014.2010.495772 PG 4 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA 617TE UT WOS:000279303700009 PM 20544435 ER PT J AU Giglio, L Randerson, JT van der Werf, GR Kasibhatla, PS Collatz, GJ Morton, DC DeFries, RS AF Giglio, L. Randerson, J. T. van der Werf, G. R. Kasibhatla, P. S. Collatz, G. J. Morton, D. C. DeFries, R. S. TI Assessing variability and long-term trends in burned area by merging multiple satellite fire products SO BIOGEOSCIENCES LA English DT Article ID SOUTHERN AFRICA; MODIS; EMISSIONS; VIRS AB Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5 degrees spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001-2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997-2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions. C1 [Giglio, L.; Collatz, G. J.; Morton, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giglio, L.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Randerson, J. T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [van der Werf, G. R.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Kasibhatla, P. S.] Duke Univ, Nicholas Sch Environm & Earth Sci, Durham, NC USA. [DeFries, R. S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA. RP Giglio, L (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM louis.giglio@ssaihq.com RI collatz, george/D-5381-2012; Morton, Douglas/D-5044-2012; van der Werf, Guido/M-8260-2016; OI van der Werf, Guido/0000-0001-9042-8630; Kasibhatla, Prasad/0000-0003-3562-3737 FU NASA [NNX08AF64G, NNX08AE97A, NNX08AL03G, NNX08AQ04G] FX We thank Mingquan Mu for helpful technical discussions. Both the ATSR World Fire Atlas and the GLOBCARBON burned area product are made available through the European Space Agency. This work was supported by NASA grants NNX08AF64G, NNX08AE97A, NNX08AL03G, and NNX08AQ04G.ATSR World Fire Atlas and the GLOBCARBON burned area product are made available through the European Space Agency. This work was supported by NASA grants NNX08AF64G, NNX08AE97A, NNX08AL03G, and NNX08AQ04G. NR 26 TC 262 Z9 265 U1 8 U2 71 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2010 VL 7 IS 3 BP 1171 EP 1186 PG 16 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 576WJ UT WOS:000276180300026 ER PT J AU Carvalhais, N Reichstein, M Collatz, GJ Mahecha, MD Migliavacca, M Neigh, CSR Tomelleri, E Benali, AA Papale, D Seixas, J AF Carvalhais, N. Reichstein, M. Collatz, G. J. Mahecha, M. D. Migliavacca, M. Neigh, C. S. R. Tomelleri, E. Benali, A. A. Papale, D. Seixas, J. TI Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula SO BIOGEOSCIENCES LA English DT Article ID ORGANIC-MATTER DECOMPOSITION; EDDY COVARIANCE MEASUREMENTS; CARBON-DIOXIDE EXCHANGE; LIGHT-USE EFFICIENCY; TERRESTRIAL CARBON; SOIL CARBON; TEMPERATURE-DEPENDENCE; GLOBAL SATELLITE; ATMOSPHERIC CO2; PROCESS MODEL AB Quantification of ecosystem carbon pools is a fundamental requirement for estimating carbon fluxes and for addressing the dynamics and responses of the terrestrial carbon cycle to environmental drivers. The initial estimates of carbon pools in terrestrial carbon cycle models often rely on the ecosystem steady state assumption, leading to initial equilibrium conditions. In this study, we investigate how trends and inter-annual variability of net ecosystem fluxes are affected by initial non-steady state conditions. Further, we examine how modeled ecosystem responses induced exclusively by the model drivers can be separated from the initial conditions. For this, the Carnegie-Ames-Stanford Approach (CASA) model is optimized at set of European eddy covariance sites, which support the parameterization of regional simulations of ecosystem fluxes for the Iberian Peninsula, between 1982 and 2006. The presented analysis stands on a credible model performance for a set of sites, that represent generally well the plant functional types and selected descriptors of climate and phenology present in the Iberian region - except for a limited Northwestern area. The effects of initial conditions on inter-annual variability and on trends, results mostly from the recovery of pools to equilibrium conditions; which control most of the inter-annual variability (IAV) and both the magnitude and sign of most of the trends. However, by removing the time series of pure model recovery from the time series of the overall fluxes, we are able to retrieve estimates of interannual variability and trends in net ecosystem fluxes that are quasi-independent from the initial conditions. This approach reduced the sensitivity of the net fluxes to initial conditions from 47% and 174% to -3% and 7%, for strong initial sink and source conditions, respectively. With the aim to identify and improve understanding of the component fluxes that drive the observed trends, the net ecosystem production (NEP) trends are decomposed into net primary production (NPP) and heterotrophic respiration (R-H) trends. The majority (similar to 97%) of the positive trends in NEP is observed in regions where both NPP and RH fluxes show significant increases, although the magnitude of NPP trends is higher. Analogously, similar to 83% of the negative trends in NEP are also associated with negative trends in NPP. The spatial patterns of NPP trends are mainly explained by the trends in fAPAR (r = 0.79) and are only marginally explained by trends in temperature and water stress scalars (r = 0.10 and r = 0.25, respectively). Further, we observe the significant role of substrate availability (r = 0.25) and temperature (r = 0.23) in explaining the spatial patterns of trends in R-H. These results highlight the role of primary production in driving ecosystem fluxes. Overall, our study illustrates an approach for removing the confounding effects of initial conditions and emphasizes the need to decompose the ecosystem fluxes into its components and drivers for more mechanistic interpretations of modeling results. We expect that our results are not only specific for the CASA model since it incorporates concepts of ecosystem functioning and modeling assumptions common to biogeochemical models. A direct implication of these results is the ability of this approach to detect climate and phenology induced trends regardless of the initial conditions. C1 [Carvalhais, N.; Benali, A. A.; Seixas, J.] Univ Nova Lisboa, Dept Ciencias & Engn Ambiente, DCEA, Fac Ciencias & Tecnol,FCT, P-2829516 Caparica, Portugal. [Carvalhais, N.; Reichstein, M.; Mahecha, M. D.; Tomelleri, E.] Max Planck Inst Biogeochem, D-07701 Jena, Germany. [Collatz, G. J.; Neigh, C. S. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Migliavacca, M.] Commiss European Communities, Directorate Gen Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, I-21027 Ispra, VA, Italy. [Papale, D.] Univ Tuscia, DISAFRI, Dipartimento Sci Ambiente Forestale & Sue Risorse, Viterbo, Italy. RP Carvalhais, N (reprint author), Univ Nova Lisboa, Dept Ciencias & Engn Ambiente, DCEA, Fac Ciencias & Tecnol,FCT, P-2829516 Caparica, Portugal. EM ncarvalhais@gmail.com RI Mahecha, Miguel/F-2443-2010; Neigh, Christopher/D-4700-2012; collatz, george/D-5381-2012; Migliavacca, mirco/C-1260-2011; Reichstein, Markus/A-7494-2011; Seixas, Julia/K-9400-2013 OI Mahecha, Miguel/0000-0003-3031-613X; Carvalhais, Nuno/0000-0003-0465-1436; Papale, Dario/0000-0001-5170-8648; Benali, Akli/0000-0002-4325-3804; Neigh, Christopher/0000-0002-5322-6340; Reichstein, Markus/0000-0001-5736-1112; Seixas, Julia/0000-0003-0355-0465 FU CarboEurope-Integrated Project [GOCE-CT-2003-505572]; Portuguese Foundation for Science and Technology (FCT) [PTDC/AGR-CFL/69733/2006]; CARBO-Extreme project [FP7-ENV-2008-1-226701]; European Union [SFRH/BD/6517/2001]; Max-Planck-Society FX We would like to thank Nicolas Delpierre, Ivan Janssens and Leonardo Montagnani for useful comments on the manuscript, as well as to Arnaud Carrara for vivid discussions on representativeness issues. We are also deeply grateful to Ronald P. Neilson and Andrew Friend for reviewing and contributing to the clearness and discussion of this work. We thank very much Jim Tucker, Ed Pak and Jorge Pinzon for the GIMMS NDVI datasets, as well as to all the teams working at the eddy-covariance sites for setting available the site level datasets. The temperature and solar radiation data from the Global Land Data Assimilation System used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We thank the European Environmental Agency (Copenhagen) for setting available online the CORINE land cover. Research leading to flux data and scientific insight was supported by the CarboEurope-Integrated Project GOCE-CT-2003-505572. This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the MOD-NET project (contract no. PTDC/AGR-CFL/69733/2006) and by the CARBO-Extreme project (FP7-ENV-2008-1-226701). NC acknowledges the support given by the Portuguese Foundation for Science and Technology (FCT), the European Union under Operational Program "Science and Innovation" (POCI 2010), PhD grant ref. SFRH/BD/6517/2001. NC, MDM and MR are grateful to the Max-Planck-Society for supporting the Max-Planck Research Group for Biogeochemical Model-Data Integration. NR 103 TC 10 Z9 10 U1 0 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2010 VL 7 IS 11 BP 3707 EP 3729 DI 10.5194/bg-7-3707-2010 PG 23 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 687DQ UT WOS:000284756300020 ER PT J AU Fatoyinbo, TE Armstrong, AH AF Fatoyinbo, Temilola E. Armstrong, Amanda H. BE Momba, M Bux, F TI Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests SO BIOMASS LA English DT Article; Book Chapter ID RADAR BACKSCATTERING; ABOVEGROUND BIOMASS; ELEVATION DATA; ALLOMETRY; MODELS; SAR C1 [Fatoyinbo, Temilola E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Armstrong, Amanda H.] Univ Virginia, Charlottesville, VA USA. RP Fatoyinbo, TE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 36 TC 4 Z9 4 U1 0 U2 2 PU INTECH EUROPE PI RIJEKA PA JANEZA TRDINE9, RIJEKA, 51000, CROATIA BN 978-953-307-113-8 PY 2010 BP 65 EP 78 D2 10.5772/275 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA BD7YK UT WOS:000363693100004 ER PT J AU Balaraman, GS Wagner, J Mukherjee, R Jain, A Vaidehi, N AF Balaraman, Gouthaman S. Wagner, Jeff Mukherjee, Rudranarayan Jain, Abhinandan Vaidehi, Nagarajan TI GNEIMO: Constrained Molecular Dynamics Methods For Long Time Scale Simulation of Macromolecules SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract C1 [Balaraman, Gouthaman S.; Vaidehi, Nagarajan] City Hope Natl Med Ctr, Duarte, CA USA. [Wagner, Jeff; Mukherjee, Rudranarayan; Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JAN PY 2010 VL 98 IS 3 SU 1 BP 11A EP 11A PG 1 WC Biophysics SC Biophysics GA V29QD UT WOS:000208762000060 ER PT J AU Palma, E Gomez, D Galicia, E Griko, YV AF Palma, Ervin Gomez, David Galicia, Eugene Griko, Yuri V. TI Comparative Study of the Effect of UV-VS. Gamma Radiation on Human Hair SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract C1 [Palma, Ervin; Gomez, David] San Jose State Univ, San Jose, CA 95192 USA. [Galicia, Eugene] Eloret Co, Sunnyvale, CA USA. [Griko, Yuri V.] NASA, Ames Res Ctr, Mountain View, CA USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JAN PY 2010 VL 98 IS 3 SU 1 BP 46A EP 46A PG 1 WC Biophysics SC Biophysics GA V29QD UT WOS:000208762000240 ER PT B AU Andrews, RJ AF Andrews, Russell J. BE Ritsner, MS TI Neuromodulation for Neuropsychiatric Disorders: Novel Techniques - Vagus Nerve Stimulation, Transcranial Magnetic Stimulation, Transcranial Direct Current Stimulation, and Deep Brain Stimulation SO BRAIN PROTECTION IN SCHIZOPHRENIA, MOOD AND COGNITIVE DISORDERS LA English DT Article; Book Chapter ID TREATMENT-RESISTANT DEPRESSION; PSYCHIATRIC-DISORDERS; SUBTHALAMIC NUCLEUS; PARKINSONS-DISEASE; MAJOR DEPRESSION; EFFICACY; SAFETY; TRIAL; POLARIZATION; RELEASE AB The last two decades have seen the development of several neuromodulation techniques that have been applied to the problem of severe, medication-refractory depression notably vagus nerve stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. The four techniques are here reviewed from the standpoint of the hardware involved, the techniques of application, the biological effects of the stimulation on the brain (with an emphasis on neuroprotection), and the results obtained in neuropsychiatric disorders to date. Vagus nerve stimulation involves stimulation of the vagus nerve in the cervical region via an electrode encircling the nerve, with that stimulation resulting in effects on many regions in the brain. Transcranial magnetic stimulation uses a focused magnetic field to induce, through the intact skull, electrical stimulation in a specific region of the brain. Transcranial direct current stimulation induces a small current in a portion of the brain, also through the intact skull, via cathode and anode electrodes placed on the scalp. Deep brain stimulation employs a small number of electrodes (usually two one for each hemisphere) placed through hole(s) in the skull into a specific brain nucleus; the effect of deep brain stimulation as it is presently performed is to reversibly ablate the function of that nucleus or region. Given the rapid developments in the neural-electrical interface, anticipated future developments in deep brain stimulation are considered as well. C1 NASA, Ames Res Ctr, Ames Associate Smart Syst & Nanotechnol, Moffett Field, CA 94035 USA. RP Andrews, RJ (reprint author), NASA, Ames Res Ctr, Ames Associate Smart Syst & Nanotechnol, Moffett Field, CA 94035 USA. EM rja@russelljandrews.org NR 58 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-8552-8 PY 2010 BP 637 EP 657 DI 10.1007/978-90-481-8553-5_21 D2 10.1007/978-90-481-8553-5 PG 21 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA BQD33 UT WOS:000280733000021 ER PT J AU Rabier, F Bouchard, A Brun, E Doerenbecher, A Guedj, S Guidard, V Karbou, F Peuch, VH El Amraoui, L Puech, D Genthon, C Picard, G Town, M Hertzog, A Vial, F Cocquerez, P Cohn, SA Hock, T Fox, J Cole, H Parsons, D Powers, J Romberg, K VanAndel, J Deshler, T Mercer, J Haase, JS Avallone, L Kalnajs, L Mechoso, CR Tangborn, A Pellegrini, A Frenot, Y Thepaut, JN McNally, A Balsamo, G Steinle, P AF Rabier, Florence Bouchard, Aurelie Brun, Eric Doerenbecher, Alexis Guedj, Stephanie Guidard, Vincent Karbou, Fatima Peuch, Vincent-Henri El Amraoui, Laaziz Puech, Dominique Genthon, Christophe Picard, Ghislain Town, Michael Hertzog, Albert Vial, Francois Cocquerez, Philippe Cohn, Stephen A. Hock, Terry Fox, Jack Cole, Hal Parsons, David Powers, Jordan Romberg, Keith VanAndel, Joseph Deshler, Terry Mercer, Jennifer Haase, Jennifer S. Avallone, Linnea Kalnajs, Lars Mechoso, C. Roberto Tangborn, Andrew Pellegrini, Andrea Frenot, Yves Thepaut, Jean-Noel McNally, Anthony Balsamo, Gianpaolo Steinle, Peter TI THE CONCORDIASI PROJECT IN ANTARCTICA SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID LAND-SURFACE EMISSIVITIES; MICROWAVE LAND; DATA ASSIMILATION; SATELLITE-OBSERVATIONS; LOWER STRATOSPHERE; SSM/I OBSERVATIONS; SKIN TEMPERATURE; OZONE; SYSTEM; WINTER AB The Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows: 1. To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the understanding of the Earth system by examining the interactions between Antarctica and lower latitudes. 2. To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed. A major Concordiasi component is a field experiment during the austral springs of 2008-10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release drop-sondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station. C1 [Rabier, Florence; Bouchard, Aurelie; Brun, Eric; Doerenbecher, Alexis; Guedj, Stephanie; Guidard, Vincent; Karbou, Fatima; Peuch, Vincent-Henri; El Amraoui, Laaziz; Puech, Dominique] Meteo France, GAME, CNRM, F-31057 Toulouse, France. [Rabier, Florence; Bouchard, Aurelie; Brun, Eric; Doerenbecher, Alexis; Guedj, Stephanie; Guidard, Vincent; Karbou, Fatima; Peuch, Vincent-Henri; El Amraoui, Laaziz; Puech, Dominique] CNRS, Toulouse, France. [Genthon, Christophe; Picard, Ghislain; Town, Michael] LGGE, Grenoble, France. [Hertzog, Albert; Vial, Francois] LMD, Paris, France. [Cocquerez, Philippe] CNES, Toulouse, France. [Cohn, Stephen A.; Hock, Terry; Fox, Jack; Cole, Hal; Parsons, David; Powers, Jordan; Romberg, Keith; VanAndel, Joseph] NCAR, Boulder, CO USA. [Deshler, Terry; Mercer, Jennifer] Univ Wyoming, Laramie, WY 82071 USA. [Haase, Jennifer S.] Purdue Univ, W Lafayette, IN 47907 USA. [Avallone, Linnea; Kalnajs, Lars] Univ Colorado, Boulder, CO 80309 USA. [Mechoso, C. Roberto] Univ Calif Los Angeles, Los Angeles, CA USA. [Tangborn, Andrew] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD 20771 USA. [Pellegrini, Andrea] PNRA, Rome, Italy. [Frenot, Yves] IPEV, Brest, France. [Thepaut, Jean-Noel; McNally, Anthony; Balsamo, Gianpaolo] ECMWF, Reading, Berks, England. [Steinle, Peter] CAWCR, Melbourne, Vic, Australia. RP Rabier, F (reprint author), Meteo France, GAME, CNRM, 42 Av Coriolis, F-31057 Toulouse, France. EM florence.rabier@meteo.fr RI Peuch, Vincent-Henri/A-7308-2008; Hertzog, Albert/A-2899-2012; Picard, Ghislain/D-4246-2013; Balsamo, Gianpaolo/I-3362-2013; Pellegrini, Andrea/O-3094-2015 OI Picard, Ghislain/0000-0003-1475-5853; Balsamo, Gianpaolo/0000-0002-1745-3634; Pellegrini, Andrea/0000-0001-5577-7472 FU Meteo-France; CNES; IPEV; PNRA; CNRS/INSU; NSF; UCAR; University of Wyoming; Purdue University; University of Colorado; ECMWF FX Concordiasi was built by an international scientific group and is currently supported by the following agencies: Meteo-France, CNES, IPEV, PNRA, CNRS/INSU, NSF, UCAR, University of Wyoming, Purdue University, University of Colorado, and ECMWF. The two operational polar agencies PNRA and IPEV are thanked for their support at Concordia station and at the coast of Adelie Land. The NSF is thanked for its support at the McMurdo base. Concordiasi is part of the IPY-THORPEX cluster within the International Polar Year effort. (Detailed information on Concordiasi is available online at www.cnrm.meteo.fr/concordiasi/.) NR 64 TC 36 Z9 36 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JAN PY 2010 VL 91 IS 1 BP 69 EP 86 DI 10.1175/2009BAMS2764.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 567CO UT WOS:000275420100005 ER PT J AU Gamon, JA Coburn, C Flanagan, LB Huemmrich, KF Kiddle, C Sanchez-Azofeifa, GA Thayer, DR Vescovo, L Gianelle, D Sims, DA Rahman, AF Pastorello, GZ AF Gamon, J. A. Coburn, C. Flanagan, L. B. Huemmrich, K. F. Kiddle, C. Sanchez-Azofeifa, G. A. Thayer, D. R. Vescovo, L. Gianelle, D. Sims, D. A. Rahman, A. F. Pastorello, G. Z. TI SpecNet revisited: bridging flux and remote sensing communities SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article; Proceedings Paper CT 30th Canadian Symposium on Remote Sensing CY JUN 22-25, 2009 CL Lethbridge, CANADA SP Canadian Remote Sensing Soc ID LIGHT-USE EFFICIENCY; PHOTOSYNTHETICALLY ACTIVE RADIATION; PHOTOCHEMICAL REFLECTANCE INDEX; CALIFORNIA CHAPARRAL ECOSYSTEM; GROSS PRIMARY PRODUCTION; DOUGLAS-FIR FOREST; CANOPY LEAF-AREA; VEGETATION INDEXES; CARBON-DIOXIDE; SPECTRAL REFLECTANCE AB Spectral Network (SpecNet) began as a Working Group in 2003 with the goals of integrating remote sensing with biosphere-atmosphere carbon flux measurements and standardizing field optical sampling methods. SpecNet has evolved into an international network of collaborating sites and investigators, with a particular focus on matching optical sampling tools to the temporal and spatial scale of flux measurements and ecological sampling. Current emphasis within the SpecNet community is on greater automation of field optical sampling using simple cost-effective technologies, improving the light-use-efficiency (LUE) model of carbon dioxide flux, consideration of view and illumination angle to improve physiological retrievals, and incorporation of informatics and cyberinfrastructure solutions that address the increasing data dimensionality of cross-site and multiscale sampling. In this review, we summarize recent findings and current directions within the SpecNet community and provide recommendations for the larger remote sensing and flux communities. These recommendations include comparing the LUE model to other flux models driven by remote sensing, considering a wider array of biogenic trace gases in addition to carbon dioxide, adoption of standardized and automated field sensors and sampling protocols where possible, continued development of cyberinfrastructure tools to facilitate data comparison and integration, expanding the network itself so that a greater range of sites are covered by combined optical and flux measurements, and encouraging a broader communication between the flux and remote sensing communities. C1 [Gamon, J. A.; Sanchez-Azofeifa, G. A.; Thayer, D. R.; Pastorello, G. Z.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Coburn, C.] Univ Lethbridge, Dept Geog, Lethbridge, AB T1K 3M4, Canada. [Flanagan, L. B.] Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada. [Huemmrich, K. F.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kiddle, C.] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada. [Vescovo, L.; Gianelle, D.] Fondazione Edmund Mach I, Environm & Nat Resources Area, IASMA Res & Innovat Ctr, I-38100 Trento, Italy. [Sims, D. A.; Rahman, A. F.] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. RP Gamon, JA (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. EM jgamon@gmail.com RI Thayer, Donnette/D-7735-2012; Flanagan, Lawrence/B-1307-2013; Gianelle, Damiano/G-9437-2011; Pastorello, Gilberto/N-8395-2015 OI Flanagan, Lawrence/0000-0003-1748-0306; Gianelle, Damiano/0000-0001-7697-5793; Pastorello, Gilberto/0000-0002-9387-3702 NR 107 TC 26 Z9 26 U1 5 U2 26 PU CANADIAN AERONAUTICS SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PY 2010 VL 36 SU 2 SI SI BP S376 EP S390 PG 15 WC Remote Sensing SC Remote Sensing GA 713HG UT WOS:000286725700016 ER PT S AU Moisan, JR AF Moisan, John R. BE Liu, KK Atkinson, L Quinones, R TalaueMcManus, L TI Coupled Circulation/Biogeochemical Models to Estimate Carbon Flux SO CARBON AND NUTRIENT FLUXES IN CONTINENTAL MARGINS: A GLOBAL SYNTHESIS SE Global Change The IGBP Series LA English DT Article; Book Chapter C1 NASA, Ocean Sci Branch, Lab Hydrospher & Biospher Proc, Wallops Flight Facil, Wallops Isl, VA 23337 USA. RP Moisan, JR (reprint author), NASA, Ocean Sci Branch, Lab Hydrospher & Biospher Proc, Wallops Flight Facil, Wallops Isl, VA 23337 USA. EM John.R.Moisan@NASA.gov NR 0 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1619-2435 BN 978-3-540-92734-1 J9 GLOB CHANGE IGBP SER PY 2010 BP 539 EP 558 DI 10.1007/978-3-540-92735-2_12 D2 10.1007/978-3-540-92735-8 PG 20 WC Geochemistry & Geophysics; Environmental Sciences SC Geochemistry & Geophysics; Environmental Sciences & Ecology GA BNL20 UT WOS:000274846600012 ER PT J AU Kaul, AB Epp, L AF Kaul, Anupama B. Epp, Larry BE Marulanda, JM TI Suspended Carbon Nanotubes: Applications in Physical Sensors and Actuators SO CARBON NANOTUBES LA English DT Article; Book Chapter ID NANOELECTROMECHANICAL SWITCHES; ELECTRONIC-PROPERTIES; PRESSURE SENSORS; TEMPERATURE; NANOFIBER; EMISSION; GRAPHENE; SILICON C1 [Kaul, Anupama B.; Epp, Larry] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 49 TC 0 Z9 0 U1 0 U2 1 PU INTECH EUROPE PI RIJEKA PA JANEZA TRDINE9, RIJEKA, 51000, CROATIA BN 978-953-307-054-4 PY 2010 BP 375 EP 394 PG 20 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics GA BD7WE UT WOS:000363643700021 ER PT S AU Hagopian, JG Getty, SA Quijada, M Tveekrem, J Shiri, R Roman, P Butler, J Georgiev, G Livas, J Hunt, C Maldonado, A Talapatra, S Zhang, XF Papadakis, SJ Monica, AH Deglau, D AF Hagopian, John G. Getty, Stephanie A. Quijada, Manuel Tveekrem, June Shiri, Ron Roman, Patrick Butler, James Georgiev, Georgi Livas, Jeff Hunt, Cleophus Maldonado, Alejandro Talapatra, Saikat Zhang, Xianfeng Papadakis, Stergios J. Monica, Andrew H. Deglau, David BE Pribat, D Lee, YH Razeghi, M TI Multiwalled carbon nanotubes for stray light suppression in space flight instruments SO CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES III SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference On Carbon Nanotubes, Graphene, and Associated Devices III CY AUG 01-04, 2010 CL San Diego, CA SP SPIE ID ACCURACY C1 [Hagopian, John G.; Getty, Stephanie A.; Quijada, Manuel; Tveekrem, June; Shiri, Ron; Roman, Patrick; Butler, James; Georgiev, Georgi; Livas, Jeff; Hunt, Cleophus; Maldonado, Alejandro] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hagopian, JG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Livas, Jeffrey/D-2994-2012; Getty, Stephanie/D-7037-2012 NR 11 TC 6 Z9 6 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8257-0 J9 P SOC PHOTO-OPT INS PY 2010 VL 7761 AR 77610F DI 10.1117/12.864386 PG 10 WC Nanoscience & Nanotechnology; Optics; Physics, Applied SC Science & Technology - Other Topics; Optics; Physics GA BSU49 UT WOS:000285828000008 ER PT J AU Hodgson, ME Davis, BA Cheng, Y Miller, J AF Hodgson, Michael E. Davis, Bruce A. Cheng, Yang Miller, James TI Modeling Remote Sensing Satellite Collection Opportunity Likelihood for Hurricane Disaster Response SO CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE LA English DT Article DE Satellite remote sensing; disaster response; orbit; modeling AB State and local agencies involved in emergency response to natural disasters such as hurricanes have explicitly indicated they need imagery covering the disaster area within three days of the event; and more desirably within 24 hours of the event. Airborne image collections have often been used but suffer from several problems, most noticeably the collection time (days or week) required for larger areas. The use of remote sensing satellites carrying high spatial resolution sensors has often been touted as the logical response for rapidly collecting post-disaster event imagery for emergency response. Unfortunately, satellites are maintained on fixed orbits. The repeat interval for remote sensing satellites carrying high spatial resolution sensors, even with pointable sensors, is on the order of several days, depending on the latitude for the disaster event. Fortunately, more than one satellite carries high spatial resolution imagery. This combination of requirements and restrictions may results in either a relatively high (or low) likelihood of collecting imagery, within the three-day window of opportunity. This research investigated the likelihood of collecting imagery over a hurricane disaster area based on the orbital cycles of three high spatial resolution imaging satellites. Using the spatial-temporal distribution of historic hurricane landfall locations as a proxy for the probability distribution of future hurricanes by latitude, the "visibility" of each landfall location to future satellite imaging opportunities was determined. The results indicate that the likelihood of collecting imagery within one day of the event varied between 17 and 39 percent by relying on one satellite image provider. However; if either of three satellite imagery, sources (i.e., Ikonos-2, Quickbird-2, and Orbview-3) could be used, then the likelihood increased to 61 percent. By relying on three satellite imagery providers there is a likelihood of between 94 and 100 percent of collecting imagery within two or three days, respectively, after the event. C1 [Hodgson, Michael E.] Univ S Carolina, Dept Geog, Columbia, SC 29208 USA. [Davis, Bruce A.] Dept Homeland Secur, Sci & Technol Directorate, Washington, DC 20528 USA. [Cheng, Yang] CALTECH, Jet Prop Lab, Los Angeles, CA 91007 USA. [Miller, James] Kinetx Inc, Simi Valley, CA 93065 USA. RP Hodgson, ME (reprint author), Univ S Carolina, Dept Geog, Columbia, SC 29208 USA. EM hodgsonm@sc.edu; bruce.a.davis@dhs.gov; Yang.Cheng@jpl.nasa.gov; jkm1997@verison.net NR 12 TC 1 Z9 1 U1 0 U2 4 PU CARTOGRAPHY & GEOGRAPHIC INFOR SOC PI GAITHERSBURG PA 6 MONTGOMERY VILLAGE AVE, STE 403, GAITHERSBURG, MD 20879 USA SN 1523-0406 J9 CARTOGR GEOGR INF SC JI Cartogr. Geogr. Inf. Sci. PD JAN PY 2010 VL 37 IS 1 SI SI BP 7 EP 15 PG 9 WC Geography SC Geography GA 553ZW UT WOS:000274406300002 ER PT B AU de Jong, R Blaauw, M Chambers, FM Christensen, TR de Vleeschouwer, F Finsinger, W Fronzek, S Johansson, M Kokfelt, U Lamentowicz, M Le Roux, G Mauquoy, D Mitchell, EAD Nichols, JE Samaritani, E van Geel, B AF de Jong, Rixt Blaauw, Maarten Chambers, Frank M. Christensen, Torben R. de Vleeschouwer, Francois Finsinger, Walter Fronzek, Stefan Johansson, Margareta Kokfelt, Ulla Lamentowicz, Mariusz Le Roux, Gael Mauquoy, Dmitri Mitchell, Edward A. D. Nichols, Jonathan E. Samaritani, Emanuela van Geel, Bas BE Dodson, J TI Climate and Peatlands SO CHANGING CLIMATES, EARTH SYSTEMS AND SOCIETY SE International Year of Planet Earth LA English DT Article; Book Chapter DE Bog surface wetness variations; C-14 dating; Plants' responses to CO2; Stable isotopes; Methane emissions from peatlands; Palsas ID ATMOSPHERIC CO2 CONCENTRATION; TESTATE AMEBAS PROTOZOA; CONTINENTAL WESTERN CANADA; OMBROTROPHIC PEAT BOG; MODELING HYDROLOGICAL RELATIONSHIPS; STOMATAL FREQUENCY-ANALYSIS; N-ALKANE DISTRIBUTIONS; SOUTH-CENTRAL SWEDEN; SWEDISH RAISED BOG; SUB-ARCTIC SWEDEN AB Peatlands are an important natural archive for past climatic changes, primarily due to their sensitivity to changes in the water balance and the dating possibilities of peat sediments. In addition, peatlands are an important sink as well as potential source of greenhouse gases. The first part of this chapter discusses a range of well-established and novel proxies studied in peat cores (peat humification, macrofossils, testate amoebae, stomatal records from subfossil leaves, organic biomarkers and stable isotope ratios, aeolian sediment influx and geochemistry) that are used for climatic and environmental reconstructions, as well as recent developments in the dating of these sediments. The second part focuses on the role that peatland ecosystems may play as a source or sink of greenhouse gases. Emphasis is placed on the past and future development of peatlands in the discontinuous permafrost areas of northern Scandinavia, and the role of regenerating mined peatlands in north-western Europe as a carbon sink or source. C1 [de Jong, Rixt] Univ Bern, Inst Geog, CH-3012 Bern, Switzerland. [Blaauw, Maarten] Queens Univ Belfast, Sch Geog Archaeol & Palaeoecol, Belfast BT7 1NN, Antrim, North Ireland. [Chambers, Frank M.] Univ Gloucestershire, Dept Nat & Social Sci, Ctr Environm Change & Quaternary Res, Cheltenham GL50 4AZ, Glos, England. [Christensen, Torben R.; Johansson, Margareta; Kokfelt, Ulla] Lund Univ, Dept Earth & Ecosyst Sci, SE-22362 Lund, Sweden. [de Vleeschouwer, Francois] Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden. [Finsinger, Walter] Univ Montpellier 2, Ctr Bioarchaeol & Ecol, CNRS, UMR 5059, F-34090 Montpellier, France. [Fronzek, Stefan] Finnish Environm Inst, Helsinki 00251, Finland. [Lamentowicz, Mariusz] Adam Mickiewicz Univ, Dept Biogeog & Palaeoecol, Fac Geog & Geol Sci, PL-61680 Poznan, Poland. [Lamentowicz, Mariusz; Mitchell, Edward A. D.; Samaritani, Emanuela] Swiss Fed Res Inst WSL, Ecosyst Boundaries Res Unit, Wetlands Res Grp, CH-1015 Lausanne, Switzerland. [Le Roux, Gael] CNRS, UMR 5245, EcoLab, F-31326 Castanet Tolosan, France. [Mauquoy, Dmitri] Univ Aberdeen, Sch Geosci, Aberdeen AB24 3UF, Scotland. [Mitchell, Edward A. D.; Samaritani, Emanuela] Univ Neuchatel, Lab Soil Biol, Inst Biol, CH-2009 Neuchatel, Switzerland. [Nichols, Jonathan E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Samaritani, Emanuela] Ecole Polytech Fed Lausanne, Lab Syst Ecol, CH-1015 Lausanne, Switzerland. [van Geel, Bas] Univ Amsterdam, Dept Paleoecol & Landscape Ecol, Inst Biodivers & Ecosyst Dynam, NL-1098 XH Amsterdam, Netherlands. RP de Jong, R (reprint author), Univ Bern, Inst Geog, CH-3012 Bern, Switzerland. EM dejong@giub.unibe.ch; maarten.blaauw@qub.ac.uk; fchambers@glos.ac.uk; torben.christensen@nateko.lu.se; fdevleeschouwer@gmail.com; walter.finsinger@univ-montp2.fr; stefan.fronzek@ymparisto.fi; margareta.johansson@nateko.lu.se; ulla.kokfelt@geol.lu.se; mariuszl@amu.edu.pl; gael.leroux@ulg.ac.be; d.mauquoy@abdn.ac.uk; edward.mitchell@unine.ch; jnichols@giss.nasa.gov; emanuela.samaritani@gmail.com; B.vanGeel@nva.nl RI Lamentowicz, Mariusz/E-8784-2010; Finsinger, Walter/A-7937-2011; OI Lamentowicz, Mariusz/0000-0003-0429-1530; Finsinger, Walter/0000-0002-8297-0574; De Vleeschouwer, Francois/0000-0002-0979-6397; Fronzek, Stefan/0000-0003-2478-8050 NR 296 TC 21 Z9 21 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS BN 978-90-481-8715-7 J9 INT YEAR PLANET EART PY 2010 BP 85 EP 121 DI 10.1007/978-90-481-8716-4_5 D2 10.1007/978-90-481-8716-4 PG 37 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA BRI57 UT WOS:000282775600005 ER PT S AU Rubin, RH McNabb, IA Simpson, JP Dufour, RJ Pauldrach, AWA Colgan, SWJ Craven, TW Gitterman, ED Lo, CC AF Rubin, R. H. McNabb, I. A. Simpson, J. P. Dufour, R. J. Pauldrach, A. W. A. Colgan, S. W. J. Craven, T. W. Gitterman, E. D. Lo, C. C. BE Cunha, K Spite, M Barbuy, B TI Spitzer finds cosmic neon's and sulfur's sweet spot: part III, NGC 6822 SO CHEMICAL ABUNDANCES IN THE UNIVERSE: CONNECTING FIRST STARS TO PLANETS SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 265th Symposium of the International-Astronomical-Union CY AUG 10-14, 2009 CL Rio de Janeiro, BRAZIL SP Int Astron Union, Minist Ciencia & Tecnol, CNPQ, FAPESP, FAPERJ, CAPES DE ISM: abundances; H II regions; stars: atmospheres; galaxies: individual (NGC 6822) ID HII REGION CONNECTION; HOT STAR AB We observed several H II regions in the dwarf irregular galaxy NOG 6822 using the infrared spectrograph on the Spitzer Space Telescope. Our aim is twofold: first, to examine the neon to sulfur abundance ratio in order to determine how much it may vary and whether or not, it is fairly 'universal'; second, to discriminate and test the predicted ionizing spectral energy distribution between various stellar atmosphere models by comparing with our derivation of the ratio of fractional ionizations involving neon and sulfur. This work extends our previous similar studies of H II regions in M83 and M33 to lower metallicities. C1 [Rubin, R. H.; McNabb, I. A.; Simpson, J. P.; Colgan, S. W. J.; Craven, T. W.; Gitterman, E. D.; Lo, C. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Rubin, RH (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. EM rubin@cygnus.arc.nasa.gov RI Colgan, Sean/M-4742-2014 NR 6 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-0-521-76495-7 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 5 IS 265 BP 249 EP 250 DI 10.1017/S1743921310000682 PG 2 WC Astronomy & Astrophysics; Chemistry, Physical SC Astronomy & Astrophysics; Chemistry GA BQB13 UT WOS:000280548900061 ER PT J AU Bux, SK Fleurial, JP Kaner, RB AF Bux, Sabah K. Fleurial, Jean-Pierre Kaner, Richard B. TI Nanostructured materials for thermoelectric applications SO CHEMICAL COMMUNICATIONS LA English DT Article ID FIGURE-OF-MERIT; GE-SI ALLOYS; THERMAL-CONDUCTIVITY; ELECTRICAL-PROPERTIES; BISMUTH TELLURIDE; SOLVOTHERMAL SYNTHESIS; SILICON NANOPARTICLES; ENERGY-CONVERSION; BULK ALLOYS; NANOCRYSTALS AB Recent studies indicate that nanostructuring can be an effective method for increasing the dimensionless thermoelectric figure of merit (ZT) in materials. Most of the enhancement in ZT can be attributed to large reductions in the lattice thermal conductivity due to increased phonon scattering at interfaces. Although significant gains have been reported, much higher ZTs in practical, cost-effective and environmentally benign materials are needed in order for thermoelectrics to become effective for large-scale, wide-spread power and thermal management applications. This review discusses the various synthetic techniques that can be used in the production of bulk scale nanostructured materials. The advantages and disadvantages of each synthetic method are evaluated along with guidelines and goals presented for an ideal thermoelectric material. With proper optimization, some of these techniques hold promise for producing high efficiency devices. C1 [Bux, Sabah K.; Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bux, Sabah K.; Kaner, Richard B.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Bux, Sabah K.; Kaner, Richard B.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. RP Fleurial, JP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 277-207, Pasadena, CA 91109 USA. EM jean-pierre.fleurial@jpl.nasa.gov; kaner@chem.ucla.edu FU National Science Foundation [DMR 0805352]; IGERT [DGE-0114443, DGE-0654431]; NASA [NNX09AM26H]; JPL/Caltech [1308818] FX The authors thank Dr Thierry Caillat for his helpful discussions. Support from the National Science Foundation DMR 0805352 (RBK), an IGERT fellowship DGE-0114443 and DGE-0654431 (SKB), a NASA GSRP fellowship NNX09AM26H (SKB), and a JPL/Caltech subcontract 1308818 (RBK) are gratefully acknowledged. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. NR 129 TC 100 Z9 104 U1 11 U2 102 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PY 2010 VL 46 IS 44 BP 8311 EP 8324 DI 10.1039/c0cc02627a PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 673UY UT WOS:000283690400001 PM 20922257 ER PT S AU Hunter, GW Beheim, GM Ponchak, GE Scardelletti, MC Meredith, RD Dynys, FW Neudeck, PG Jordan, JL Chen, LY AF Hunter, G. W. Beheim, G. M. Ponchak, G. E. Scardelletti, M. C. Meredith, R. D. Dynys, F. W. Neudeck, P. G. Jordan, J. L. Chen, L. Y. BE Hunter, G Aguilar, Z Li, J Davidson, JL Shoji, S Sundaram, KB Hesketh, PJ Carter, M Simonian, A Longdergan, A Srinivasan, P Vanysek, P TI Development of High Temperature Wireless Sensor Technology Based on Silicon Carbide Electronics SO CHEMICAL SENSORS 9 -AND- MEMS/NEMS 9 SE ECS Transactions LA English DT Proceedings Paper CT Symposium on Chemical Sensors 9 - Chemical and Biological Sensors and Analytical Systems / Symposium on Microfabricated and Nanofabricated Systems for MEMS/NEMS 9 held during the 218th Meeting of the Electrochemical-Society (ECS) CY OCT 10-15, 2010 CL Las Vegas, NV SP Electrochem Soc, Sensor, Dielectr Sci & Technol, Phys & Analyt Electrochemistry, Elect & Photon ID SEMICONDUCTORS AB Smart Sensor Systems that can operate at high temperatures are required for a range of aerospace applications including propulsion systems. This paper discusses the development of a high temperature wireless system that includes a sensor, electronics, wireless communication, and power. In particular, a wireless pressure sensor was demonstrated at 300 degrees C, with signal transmission over one meter distance and power partially derived from scavenged energy. The circuit had a nominal oscillation frequency of near 100 MHz and used a commercial SiC metal semiconductor field effect transistor (MESFET) together with metal-insulator-metal (MIM) capacitors and a thin film inductor/antenna. With the sensor and oscillator circuit at temperatures from 25 to 300 degrees C, the oscillator frequency, detected at a distance of one meter, was found to vary repeatably as a function of pressure. This work is considered a foundation for the development of higher temperature Smart Sensor Systems for use in harsh environments. C1 [Hunter, G. W.; Beheim, G. M.; Ponchak, G. E.; Scardelletti, M. C.; Meredith, R. D.; Dynys, F. W.; Neudeck, P. G.; Jordan, J. L.] NASA, Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. RP Hunter, GW (reprint author), NASA, Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. NR 33 TC 6 Z9 6 U1 0 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-177-9; 978-1-56677-827-5 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 8 BP 269 EP 281 DI 10.1149/1.3484131 PG 13 WC Electrochemistry; Nanoscience & Nanotechnology; Remote Sensing SC Electrochemistry; Science & Technology - Other Topics; Remote Sensing GA BHG43 UT WOS:000325342000033 ER PT J AU Lin, RL Zhang, XX Liu, SQ Wang, YL Gong, JC AF Lin Rui-Lin Zhang Xiao-Xin Liu Si-Qing Wang Yong-Li Gong Jian-Cun TI Statistical analysis of the high-latitude magnetopause location and shape SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION LA Chinese DT Article DE Magnetopause location and shape; Solar wind propagation; Dipole tilt angle; Indentation ID SOLAR-WIND CONDITIONS; DAYSIDE MAGNETOPAUSE; PRESSURE BALANCE; MAGNETIC SHEAR; BOUNDARY-LAYER; FIELD; MAGNETOSHEATH; MOTION; MODELS; DIPOLE AB In this paper, we collect 1226 magnetopause crossings from Cluster, Geotail, GOES, IMP8, Interball, LANL, Polar, TC1, THEMIS and Wind. Their corresponding 5-minute average upstream solar wind parameters are determined from ACE or Wind mainly by shifting time to match the clock angle of the interplanetary magnetic field or the interplanetary plasma parameter variable profile with that of the magnetosheath. Based on the analysis of these crossings, along with 1482 Hawkeye magnetopause crossings from the website,it is concluded that: (1) the magnetopause is indented in the cup region with a large indented scope; (2) the location of the magnetopause indentation is controlled by the dipole tilt angle, which almost linearly influences the zenith angle of the magnetopause indentation vertex and whose influences on the north and the south magnetopause indentations are almost anti-symmetric; (3) the depth and the scope of the magnetopause indentation and the invariant latitude corresponding to the center of magnetopause indentation are almost not influenced by the dipole tilt angle. C1 [Lin Rui-Lin; Liu Si-Qing; Gong Jian-Cun] Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China. [Lin Rui-Lin] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Zhang Xiao-Xin] China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. [Wang Yong-Li] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lin, RL (reprint author), Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China. EM rllin04@163.com; xxzhang@cma.gov.cn NR 29 TC 0 Z9 0 U1 0 U2 2 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0001-5733 J9 CHINESE J GEOPHYS-CH JI Chinese J. Geophys.-Chinese Ed. PD JAN PY 2010 VL 53 IS 1 BP 1 EP 9 DI 10.3969/j.issn.0001-5733.2010.01.001 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 552FS UT WOS:000274274500001 ER PT J AU Lin, RL Zhang, XX Liu, SQ Wang, YL Gong, JC AF Lin RuiLin Zhang XiaoXin Liu SiQing Wang YongLi Gong JianCun TI Comparison of a new model with previous models for the low-latitude magnetopause size and shape SO CHINESE SCIENCE BULLETIN LA English DT Article DE low-latitude magnetopause size and shape; solar wind dynamic pressure; interplanetary magnetic field B(z); magnetopause model ID SOLAR-WIND CONTROL; NEAR-EARTH MAGNETOTAIL; EMPIRICAL-MODEL; FLARING ANGLE; LOCATION; MAGNETOSPHERE; POSITION; MOTION AB In this study, the advantages and the limitations of previous low-latitude magnetopause empirical models are discussed. In order to overcome their limitations and inherit their advantages, a new continuous function for the influence of the interplanetary magnetic field (IMF) B(z) on the magnetopause, the Shue model function and the 613 low-latitude magnetopause crossings are used to construct a new low-latitude magnetopause model parameterized by the solar wind dynamic pressure (D(p)) and IMF B(z). In comparison with the previous low-latitude magnetopause models, it is found that the new model improves the prediction capability and has a large range of validity for the low-latitude magnetopause. In addition, it is also demonstrated that the new model and the previous low-latitude magnetopause models are not appropriate for predicting the high-latitude magnetopause. C1 [Zhang XiaoXin] China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. [Lin RuiLin; Liu SiQing; Gong JianCun] Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China. [Lin RuiLin] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Wang YongLi] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, XX (reprint author), China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. EM xxzhang@cma.gov.cn FU National Basic Research Program of China [G2006CB806300]; National Natural Science Foundation of China [40774079, 40890160]; National High-Tech Research & Development Program of China [2007AA12Z314]; Public Welfare Industry [GYHY200806024] FX We thank the National Aeronautics and Space Administration (NASA)for the satellite data and the Center for Space Science and Applied Research, Chinese Academy of Sciences, for the TC1 data. This work was supported by the National Basic Research Program of China (Grant No. G2006CB806300), National Natural Science Foundation of China (Grant Nos. 40774079 and 40890160), National High-Tech Research & Development Program of China (Grant No. 2007AA12Z314), Special Fund for Public Welfare Industry (meteorology: GYHY200806024). NR 27 TC 1 Z9 1 U1 1 U2 2 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-6538 J9 CHINESE SCI BULL JI Chin. Sci. Bull. PD JAN PY 2010 VL 55 IS 2 BP 179 EP 187 DI 10.1007/s11434-009-05334 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 548GI UT WOS:000273947700013 ER PT J AU Hobbs, A Williamson, A Van Dongen, HPA AF Hobbs, Alan Williamson, Ann Van Dongen, Hans P. A. TI A CIRCADIAN RHYTHM IN SKILL-BASED ERRORS IN AVIATION MAINTENANCE SO CHRONOBIOLOGY INTERNATIONAL LA English DT Article DE Circadian rhythm; Skill-based error; Cognitive performance; Airline; Maintenance; Human error ID SLEEP-DEPRIVATION; HUMAN-PERFORMANCE; AIRCRAFT MAINTENANCE; ACCIDENTS; TEMPERATURE; ALERTNESS; KNOWLEDGE; FATIGUE; WORKERS; IMPACT AB In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day, and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended. (Author correspondence: alan.hobbs@nasa.gov) C1 [Hobbs, Alan] San Jose State Univ, NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Williamson, Ann] Univ New S Wales, Dept Aviat, Sydney, NSW, Australia. [Van Dongen, Hans P. A.] Washington State Univ, Sleep & Performance Res Ctr, Spokane, WA USA. RP Hobbs, A (reprint author), San Jose State Univ, NASA Ames Res Ctr, MS 262-4, Moffett Field, CA 94035 USA. EM alan.hobbs@nasa.gov OI Van Dongen, Hans/0000-0002-4678-2971 NR 47 TC 15 Z9 15 U1 4 U2 12 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0742-0528 J9 CHRONOBIOL INT JI Chronobiol. Int. PY 2010 VL 27 IS 6 BP 1304 EP 1316 DI 10.3109/07420528.2010.484890 PG 13 WC Biology; Physiology SC Life Sciences & Biomedicine - Other Topics; Physiology GA 652SR UT WOS:000282030700009 PM 20653456 ER PT J AU You, Y Rossby, T Zenk, W Ilahude, AG Fukasawa, M Davis, R Hu, D Susanto, D Richardson, PL Villanoy, C Liu, CT Lee, JH Molcard, R Pandoe, WW Koga, M Qu, T Fine, RA Gabric, A Robertson, R Masumoto, Y Riser, S Hasumi, H Sigray, P Lee, T AF You, Y. Rossby, T. Zenk, W. Ilahude, A. G. Fukasawa, M. Davis, R. Hu, D. Susanto, D. Richardson, P. L. Villanoy, C. Liu, C-T Lee, J. H. Molcard, R. Pandoe, W. W. Koga, M. Qu, T. Fine, R. A. Gabric, A. Robertson, R. Masumoto, Y. Riser, S. Hasumi, H. Sigray, P. Lee, T. BE You, Y HendersonSellers, A TI Indonesian Throughflow: PACific Source Water INvestigation (PACSWIN) An international ocean climate program SO CLIMATE ALERT: CLIMATE CHANGE MONITORING AND STRATEGY LA English DT Article; Book Chapter ID SOUTH INDIAN-OCEAN; INTERMEDIATE WATER; FRESH-WATER; MASS TRANSFORMATION; EL-NINO; CIRCULATION; SEAS; TRANSPORT; THERMOCLINE; VARIABILITY AB Our understanding of the role of the Indonesian Throughflow (ITF) in the global climate system has improved due to progress made on observations and modelling in the last decade or so. The International Nusantara Stratification and Transport (INSTANT) program from 2004-06 measured the ITF simultaneously at several of the primary straits and showed a 20-30% increase of the ITF transport under relatively weak El Nino - Southern Oscillation (ENSO) conditions. This suggests that prior ITF transports could be underestimated. Further simultaneous observations encompassing a complete ENSO cycle are required for a more accurate estimate of the ITF transport. Climate monitoring requires cost-effective long-term measurement of the ITF on decadal or even centennial time scales. Currently, no such sustainable monitoring program exists for the Indonesian seas and adjacent region. To address this need, a coordinated international program is necessary. Modelling the role of the ITF in global climate has primarily been along the line of switching the ITF on or off. The ITF has been established as affecting tropical wind stress, thermocline depth and precipitation in ocean general circulation and coupled atmosphere and ocean models. Teleconnection of the climate impact of the ITF with higher latitudes results from the westward shift of the western Pacific warm pool inducing changes in atmospheric deep convection. However, the role of the ITF in the global climate system has not been well addressed by the models, due to two distinct obstacles. First, there has been insufficient resolution of the complicated bottom topography and numerous narrow straits in the Indonesian seas. Second, the tidal mixing which blends all Pacific source waters into one Indian Ocean water-mass has been poorly resolved. As a consequence of mixing, the major ITF in the thermocline layer actually cools and freshens the eastern Indian Ocean. These observational, modelling and climate inadequacies provide the rationale for this newly proposed international ocean climate program, the Indonesian Throughflow: PACific Source Water INvestigation (PACSWIN), which will focus on the variability of the ITF passing through the Indonesian seas and straits. This new program aims to bridge the data gap in the Indonesian seas left by the current Argo program and to resolve various source waters (mainly of Pacific origin) and their teleconnections and pathways, thus supplementing the INSTANT moorings completed by the end of 2006. C1 [You, Y.] Univ Sydney, Inst Marine Sci, Sydney, NSW 2006, Australia. [Rossby, T.] Univ Rhode Isl, Kingston, RI 02881 USA. [Zenk, W.] Leibniz Inst Marine Sci IFM GEOMAR, Kiel, Germany. [Ilahude, A. G.] Indonesian Inst Sci, Oceanog Res Ctr, Jakarta, Indonesia. [Hu, D.] Chinese Acad Sci, Beijing 100864, Peoples R China. [Susanto, D.] Columbia Univ, New York, NY 10027 USA. [Susanto, D.] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA. [Richardson, P. L.] Woods Hole Oceanog Inst, Woods Hole, MA USA. [Villanoy, C.] Univ Philippines, Inst Marine Sci, Quezon City 1101, Philippines. [Liu, C-T] Natl Taiwan Univ, Taipei, Taiwan. [Molcard, R.] CNRS, F-75700 Paris, France. [Koga, M.] Univ Ryukyus, Fac Sci, Dept Phys & Earth Sci, Nishihara, Okinawa 90301, Japan. [Qu, T.] Univ Hawaii Manoa, SOEST, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Fine, R. A.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Coral Gables, FL 33124 USA. [Gabric, A.] Griffith Univ, Sch Environm, Nathan, Qld 4111, Australia. [Robertson, R.] UNSW ADFA, Sch Phys Environm & Math Sci, Canberra, ACT, Australia. [Masumoto, Y.] Univ Tokyo, Tokyo 1138654, Japan. [Masumoto, Y.] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Yokohama, Kanagawa, Japan. [Riser, S.] Univ Washington, Seattle, WA 98195 USA. [Hasumi, H.] Univ Tokyo, Ctr Climate Syst Res, Tokyo 1138654, Japan. [Sigray, P.] Stockholm Univ, Stockholm, Sweden. [Sigray, P.] Stockholm Univ, Dept Meteorol, Stockholm, Sweden. [Lee, T.] NASA, Jet Prop Lab Pasadena, Pasadena, CA USA. RP You, Y (reprint author), Univ Sydney, Inst Marine Sci, Sydney, NSW 2006, Australia. RI MASUMOTO, YUKIO/G-5021-2014 NR 77 TC 1 Z9 1 U1 0 U2 2 PU SYDNEY UNIV PRESS PI SYDNEY PA UNIV SYDNEY LIBRARY F03, SYDNEY, NSW 2006, AUSTRALIA BN 978-1-920899-41-7 PY 2010 BP 238 EP 298 PG 61 WC Environmental Sciences SC Environmental Sciences & Ecology GA BDT49 UT WOS:000314785200009 ER PT S AU Rosenzweig, C Solecki, W AF Rosenzweig, Cynthia Solecki, William GP New York City Panel on Climate Change TI Introduction to Climate Change Adaptation in New York City: Building a Risk Management Response SO CLIMATE CHANGE ADAPTATION IN NEW YORK CITY: BUILDING A RISK MANAGEMENT RESPONSE SE Annals of the New York Academy of Sciences LA English DT Editorial Material; Book Chapter C1 [Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA. [Rosenzweig, Cynthia] Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY USA. [Solecki, William] CUNY Hunter Coll, Inst Sustainable Cities, New York, NY 10021 USA. RP Rosenzweig, C (reprint author), NASA, Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA. NR 0 TC 12 Z9 12 U1 1 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN 02148, MA USA SN 0077-8923 BN 978-1-57331-800-6 J9 ANN NY ACAD SCI JI Ann.NY Acad.Sci. PY 2010 VL 1196 BP 13 EP 17 DI 10.1111/j.1749-6632.2009.05306.x PG 5 WC Engineering, Environmental; Environmental Sciences; Multidisciplinary Sciences SC Engineering; Environmental Sciences & Ecology; Science & Technology - Other Topics GA BUA67 UT WOS:000288657300004 PM 20545645 ER PT S AU Rosenzweig, C Solecki, W AF Rosenzweig, Cynthia Solecki, William GP New York City Panel on Climate Change TI New York City adaptation in context SO CLIMATE CHANGE ADAPTATION IN NEW YORK CITY: BUILDING A RISK MANAGEMENT RESPONSE SE Annals of the New York Academy of Sciences LA English DT Article; Book Chapter C1 [Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, Climate Impacts Grp, New York, NY 10025 USA. [Rosenzweig, Cynthia] Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY USA. [Solecki, William] CUNY Hunter Coll, Inst Sustainable Cities, New York, NY 10021 USA. RP Rosenzweig, C (reprint author), NASA, Goddard Inst Space Studies, Climate Impacts Grp, 2880 Broadway, New York, NY 10025 USA. EM crosenzweig@giss.nasa.gov NR 4 TC 7 Z9 7 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN 02148, MA USA SN 0077-8923 BN 978-1-57331-800-6 J9 ANN NY ACAD SCI JI Ann.NY Acad.Sci. PY 2010 VL 1196 BP 19 EP 28 DI 10.1111/j.1749-6632.2009.05308.x PG 10 WC Engineering, Environmental; Environmental Sciences; Multidisciplinary Sciences SC Engineering; Environmental Sciences & Ecology; Science & Technology - Other Topics GA BUA67 UT WOS:000288657300005 PM 20545646 ER PT S AU Horton, R Gornitz, V Bowman, M Blake, R AF Horton, Radley Gornitz, Vivien Bowman, Malcolm Blake, Reginald GP New York City Panel on Climate Change TI Climate observations and projections SO CLIMATE CHANGE ADAPTATION IN NEW YORK CITY: BUILDING A RISK MANAGEMENT RESPONSE SE Annals of the New York Academy of Sciences LA English DT Article; Book Chapter ID SEA-LEVEL RISE; GREENLAND ICE-SHEET; UNITED-STATES; RECORD; MODEL; PRECIPITATION; CIRCULATION; CORALS; RATES C1 [Horton, Radley; Gornitz, Vivien] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Bowman, Malcolm] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Blake, Reginald] New York City Coll Technol, Dept Phys, Brooklyn, NY USA. RP Horton, R (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM Rmhorton@giss.nasa.gov NR 45 TC 15 Z9 15 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN 02148, MA USA SN 0077-8923 BN 978-1-57331-800-6 J9 ANN NY ACAD SCI JI Ann.NY Acad.Sci. PY 2010 VL 1196 BP 41 EP 62 DI 10.1111/j.1749-6632.2009.05314.x PG 22 WC Engineering, Environmental; Environmental Sciences; Multidisciplinary Sciences SC Engineering; Environmental Sciences & Ecology; Science & Technology - Other Topics GA BUA67 UT WOS:000288657300007 PM 20545648 ER PT J AU Gu, GJ AF Gu, Guojun BE Simard, SW Austin, ME TI Summer-Time Rainfall Variability in the Tropical Atlantic SO CLIMATE CHANGE AND VARIABILITY LA English DT Article; Book Chapter ID SEA-SURFACE TEMPERATURE; SAHARAN WEATHER ANOMALIES; NINO-SOUTHERN-OSCILLATION; EQUATORIAL ATLANTIC; CLIMATE VARIABILITY; CIRCULATION PATTERNS; ENSO TELECONNECTION; ANNUAL CYCLE; WARM EVENTS; EVOLUTION C1 [Gu, Guojun] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Gu, Guojun] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Gu, GJ (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. NR 36 TC 0 Z9 0 U1 0 U2 0 PU INTECH EUROPE PI RIJEKA PA JANEZA TRDINE9, RIJEKA, 51000, CROATIA BN 978-953-307-144-2 PY 2010 BP 45 EP 63 D2 10.5772/1743 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA BD7YN UT WOS:000363695600004 ER PT S AU Salama, A Willis, J Srinivasan, M AF Salama, A. Willis, J. Srinivasan, M. BE Linkov, I Bridges, TS TI Mapping Sea Level from Space Precision Orbit Determination and Satellite Altimetry SO CLIMATE: GLOBAL CHANGE AND LOCAL ADAPTATION SE NATO Science for Peace and Security Series C-Environmental Security LA English DT Proceedings Paper CT NATO Advanced Research Workshop on Global Climate Change and Local Adaptation CY JUN 06-10, 2010 CL Hella, ICELAND SP NATO AB Since 1992, a series of satellite missions, beginning with TOPEX/Poseidon (T/P) and followed by Jason-1 and the Ocean Surface Topography Mission on Jason-2 (OSTM/Jason-2), have combined precision orbit determination (POD), a sophisticated method to determine precise height of spacecraft above the center of the Earth, and satellite altimetry to make precise measurements of sea surface height (SSH) and to map ocean surface topography. These missions' unprecedented continuous 18-year-long record of SSH has revolutionized oceanography. With support provided by the National Aeronautics and Space Administration (NASA), the National Oceanographic and Atmospheric Administration (NOAA), and European partners (the French space agency, also known as the Centre National d'Etudes Spatiales (CNES), and the European Organisation for the Exploitation of Meteorological Satellites (Eumetsat)), these altimetry missions continue to help us understand the effects of the changing ocean on climate and provide significant benefits to society. Their measurements are being used to map SSH, geostrophic velocity, significant wave height, and wind speed over the global oceans. Orbiting at a height of 1,336 km above Earth's surface, the satellites measure the SSH every 6 km along the ground track, with an accuracy of 3-4 cm, covering the global oceans every 10 days. These highly accurate measurements would not be possible without the ability to determine the satellite's exact position relative to the center of the Earth. This is achieved by using POD. Three of the five instruments on board the spacecraft provide critical satellite tracking information for POD. The NASA Laser Retroreflector Array (LRA) uses satellite laser ranging. The CNES Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) system uses Doppler radio data and a high-performance global positioning system (GPS) receiver that provides range, precise carrier phase, and timing signals. POD combines satellite tracking information with accurate models of the forces acting on the satellite (e.g., gravity, aerodynamic drag) that govern the satellite motion. This process provides the very-high-precision satellite orbital heights that, together with satellite altimetry, allow accurate estimation of SSH. Data from these missions have proved to be a key to understanding Earth's delicate climate balance and are a critical component of global climate studies. They provide insight on short-term climate events, such as El Nino and La Nina, as well as longer-term climate events, such as the Pacific Decadal Oscillation (PDO). Altimeter data products are currently used by hundreds of researchers and operational users over the globe to monitor ocean circulation and improve our understanding of the role of the changing ocean in climate and weather. The missions' measurement of rising sea level, a direct result of Earth's warming climate, are especially important for coastal communities and decision makers and might help save lives and property. The legacy of satellite altimetry created by TIP; Jason-1, and OSTM/Jason-2 and the important data record they have collected are being continued. To ensure continuity with these missions, a group of nations and their science organizations plan to launch Jason-3 in 2013, Jason-CS/4 by 2017, and a next-generation Surface Water and Ocean Topography (SWOT) mission by end of the decade. C1 [Salama, A.; Willis, J.; Srinivasan, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Salama, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 301-121, Pasadena, CA 91109 USA. EM ahmed.h.salama@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1871-4668 BN 978-94-007-1769-5 J9 NATO SCI PEACE SECUR JI NATO Sci. Peace Secur. Ser. C- Environ. Secur. PY 2010 BP 419 EP 431 DI 10.1007/978-94-007-1770-1_22 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA BBM95 UT WOS:000307436500022 ER PT J AU Lewis, SC LeGrande, AN Kelley, M Schmidt, GA AF Lewis, S. C. LeGrande, A. N. Kelley, M. Schmidt, G. A. TI Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events SO CLIMATE OF THE PAST LA English DT Article ID LAST GLACIAL PERIOD; ORBITAL-SCALE CHANGES; ABRUPT CLIMATE-CHANGE; EAST-ASIAN MONSOON; THERMOHALINE CIRCULATION; ATMOSPHERIC CIRCULATION; LATE PLEISTOCENE; HIGH-RESOLUTION; SUBTROPICAL BRAZIL; MILLENNIAL-SCALE AB Water isotope records such as speleothems provide extensive evidence of past tropical hydrological changes. During Heinrich events, isotopic changes in monsoon regions have been interpreted as implying a widespread drying through the Northern Hemisphere tropics and an anti-phased precipitation response in the south. Here, we examine the sources of this variability using a water isotope-enabled general circulation model, Goddard Institute for Space Studies ModelE. We incorporate a new suite of vapour source distribution tracers to help constrain the impact of precipitation source region changes on the isotopic composition of precipitation and to identify nonlocal amount effects. We simulate a collapse of the North Atlantic meridional overturning circulation with a large freshwater input to the region as an idealised analogue to iceberg discharge during Heinrich events. An increase in monsoon intensity, defined by vertical wind shear, is modelled over the South American domain, with small decreases simulated over Asia. Simulated isotopic anomalies agree well with proxy climate records, with lighter isotopic values simulated over South America and enriched values across East Asia. For this particular abrupt climate event, we identify which climatic change is most likely linked to water isotope change - changes in local precipitation amount, monsoon intensity, water vapour source distributions or precipitation seasonality. We categorise individual sites according to the climate variability that water isotope changes are most closely associated with, and find that the dominant isotopic controls are not consistent across the tropics - simple local explanations, in particular, fall short of explaining water isotope variability at all sites. Instead, the best interpretations appear to be site specific and often regional in scale. C1 [Lewis, S. C.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. [LeGrande, A. N.; Kelley, M.; Schmidt, G. A.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [LeGrande, A. N.; Kelley, M.; Schmidt, G. A.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. RP Lewis, SC (reprint author), Australian Natl Univ, Res Sch Earth Sci, GPO Box 4, Canberra, ACT 0200, Australia. EM sophie.lewis@anu.edu.au RI Schmidt, Gavin/D-4427-2012; LeGrande, Allegra/D-8920-2012; Lewis, Sophie/H-4968-2011 OI Schmidt, Gavin/0000-0002-2258-0486; LeGrande, Allegra/0000-0002-5295-0062; Lewis, Sophie/0000-0001-6416-0634 FU NASA GISS; NSF [ATM 07-53868]; Paterson Fellowship/ANU FX We thank NASA GISS for institutional support. NSF ATM 07-53868 supports ANL and travel for SCL. This study was assisted by APA/ASS/JAE Scholarships and travel funding from Paterson Fellowship/ANU Vice-Chancellor/M. Gagan to SCL. We thank the referees for their constructive comments on the monsoon indices and for the opportunity to clarify the earlier version of this paper. NR 75 TC 55 Z9 56 U1 3 U2 27 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1814-9324 EI 1814-9332 J9 CLIM PAST JI Clim. Past. PY 2010 VL 6 IS 3 BP 325 EP 343 DI 10.5194/cp-6-325-2010 PG 19 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA 618XW UT WOS:000279390500005 ER PT S AU Faden, J Asnes, A Friedel, R Taylor, M McCaffrey, S Perry, C Goldstein, ML AF Faden, J. Asnes, A. Friedel, R. Taylor, M. McCaffrey, S. Perry, C. Goldstein, M. L. BE Laakso, H Taylor, MGT Escoubet, CP TI Cluster CAA Module for PaPCo SO CLUSTER ACTIVE ARCHIVE: STUDYING THE EARTH'S SPACE PLASMA ENVIRONMENT SE Astrophysics and Space Science Proceedings LA English DT Proceedings Paper CT 15th Cluster Workshop CY MAR 09-15, 2008 CL Canary Islands, SPAIN AB A PaPCo module for visualization of data from the CAA has been developed. This module retrieves data from the CAA web interface, and allows for discovery and plotting of new datasets. PaPCo is modular, open source IDL software that uses plug-in modules to bring new datasets on to a stack of time series plots (www.papco.org). PaPCo includes modules for plotting data from Cluster/PEACE and Cluster/RAPID, CDA Web data which includes Cluster Prime Parameters, and various modules from CRRES, POLAR, GPS, and many other spacecraft. The Cluster CAA module is presented, as well as a brief description of PaPCo's use and installation procedure. C1 [Faden, J.] Cottage Syst, Iowa City, IA USA. [Asnes, A.; Taylor, M.; McCaffrey, S.] ESA, Estec, Noordwijk, Netherlands. [Friedel, R.] Los Alamos Natl Labs, Los Alamos, NM USA. [Goldstein, M. L.] Rutherford Appleton Lab, Didcot, Oxon, England. [Goldstein, M. L.] NASA, GSFC, Greenbelt, MD USA. RP Faden, J (reprint author), Cottage Syst, Iowa City, IA USA. EM faden@cottagesystems.com; arneasnes@gmail.com; Taylor@esa.int RI Goldstein, Melvyn/B-1724-2008; Friedel, Reiner/D-1410-2012 OI Friedel, Reiner/0000-0002-5228-0281 NR 0 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1570-6591 BN 978-90-481-3498-4 J9 ASTROPHYSICS SPACE PY 2010 BP 249 EP + DI 10.1007/978-90-481-3499-1_17 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTY98 UT WOS:000288478600017 ER PT S AU Taylor, MGGT Escoubet, CP Laakso, H Masson, A Goldstein, ML AF Taylor, M. G. G. T. Escoubet, C. P. Laakso, H. Masson, A. Goldstein, M. L. BE Laakso, H Taylor, MGT Escoubet, CP TI The Cluster Mission: Space Plasma in Three Dimensions SO CLUSTER ACTIVE ARCHIVE: STUDYING THE EARTH'S SPACE PLASMA ENVIRONMENT SE Astrophysics and Space Science Proceedings LA English DT Proceedings Paper CT 15th Cluster Workshop CY MAR 09-15, 2008 CL Canary Islands, SPAIN ID AURORAL KILOMETRIC RADIATION; RECONNECTION; PROPAGATION; INSTABILITY; GENERATION AB At the time of writing, Cluster is approaching 8 years of successful operation and continues to fulfill, if not exceed its scientific objectives. After a nominal mission lifetime of 2 years Cluster currently in its extended mission phase, up to June 2009, with a further extension request submitted for a further 3.5 years. The primary goals of the Cluster mission include three-dimensional studies of small-scale plasma structures and turbulence in the key plasma regions in the Earth's environment: solar wind and bow shock, magnetopause, polar cusps, magnetotail, and auroral zone. During the course of the mission, the relative distance between the four spacecraft is being varied to form a nearly perfect tetrahedral configuration at 100, 250, 600, 2,000, 5,000 and 10,000 km inter-spacecraft separation targeted to study scientifically interesting regions at different scales. In the last few years, the constellation strategy has moved towards a multi-scale concept, enabling two scale sizes to be investigated at the same time. In these cases, three spacecraft are separated by 10,000 km with the last spacecraft separated from this plane by varying distances from 16 km up to several 1,000 km. This configuration is targeted at boundaries, with the plane of the large-scale triangle parallel to the plane of the boundary and the final spacecraft separated a small distance from the main triangle in the normal direction. In this paper, we provide a brief overview of the mission concept and implementation and highlight a number of Cluster's latest science results, which include: the first observation of three dimensional (3-D) surface waves on the bow shock, the first 3-D analysis of turbulence in the magnetosheath, the discovery of magnetosonic waves accelerating electrons to MeV energies in the radiation belts, along with a number of discoveries involving magnetic reconnection. C1 [Taylor, M. G. G. T.; Escoubet, C. P.; Laakso, H.; Masson, A.] ESA ESTEC, D SRE, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. [Goldstein, M. L.] NASA, GSFC, Greenbelt, MD USA. RP Taylor, MGGT (reprint author), ESA ESTEC, D SRE, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. EM Matthew.Taylor@esa.int; Harri.Laakso@esa.int; Arnaud.Masson@esa.int RI Goldstein, Melvyn/B-1724-2008 NR 31 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1570-6591 BN 978-90-481-3498-4 J9 ASTROPHYSICS SPACE PY 2010 BP 309 EP + DI 10.1007/978-90-481-3499-1_21 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTY98 UT WOS:000288478600021 ER PT S AU Narita, Y Glassmeier, KH Gary, SP Goldstein, ML Treumann, RA AF Narita, Y. Glassmeier, K. -H. Gary, S. P. Goldstein, M. L. Treumann, R. A. BE Laakso, H Taylor, MGT Escoubet, CP TI Wave Number Spectra in the Solar Wind, the Foreshock, and the Magnetosheath SO CLUSTER ACTIVE ARCHIVE: STUDYING THE EARTH'S SPACE PLASMA ENVIRONMENT SE Astrophysics and Space Science Proceedings LA English DT Proceedings Paper CT 15th Cluster Workshop CY MAR 09-15, 2008 CL Canary Islands, SPAIN ID TURBULENCE; CLUSTER; EVOLUTION AB The three-component model of magnetic field fluctuations is applied to the analysis of the wave number spectra to study fluctuations in the solar wind, the foreshock, and the magnetosheath. The analysis exhibits a transition of the dominant fluctuation component from the solar wind to the magnetosheath, from the two-dimensional to the Alfvenic in the foreshock, and to the compressible component in the magnetosheath. C1 [Narita, Y.; Glassmeier, K. -H.] Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany. [Gary, S. P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD USA. [Treumann, R. A.] Univ Munich, Geophys Sect, Dept Geosci, Munich, Germany. RP Narita, Y (reprint author), Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany. EM y.narita@tu-bs.de RI Goldstein, Melvyn/B-1724-2008 FU Bundesministerium furWirtschaft und Technologie; Deutsches Zentrum fur Luft- und Raumfahrt, Germany [50OC0103]; Los Alamos National Laboratory LDRD Program; NASA Solar and Heliospheric SRT Program FX The work of YN and KHG in Braunschweig was supported by Bundesministerium furWirtschaft und Technologie and Deutsches Zentrum fur Luft- und Raumfahrt, Germany, under contract 50OC0103. We tha k H. Reme and I. Dandouras for providing ion data of Cluster. The work of SPG was supported by the Los Alamos National Laboratory LDRD Program and by the NASA Solar and Heliospheric SR&T Program. NR 14 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1570-6591 BN 978-90-481-3498-4 J9 ASTROPHYSICS SPACE PY 2010 BP 363 EP + DI 10.1007/978-90-481-3499-1_24 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTY98 UT WOS:000288478600024 ER PT S AU Vivian, U Sanders, DB AF Vivian, U. Sanders, D. B. CA GOALS Team BE Peterson, BM Somerville, RS StorchiBergmann, T TI Spectral Energy Distributions of LIRGs SO CO-EVOLUTION OF CENTRAL BLACK HOLES AND GALAXIES SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 267th Symposium of the International Astronomical Union CY AUG 10-14, 2009 CL Rio de Janeiro, BRAZIL DE galaxies: interactions; galaxies: fundamental parameters AB We present preliminary results from a study of the SEDs of a complete sample of 65 LIRGs from GOALS. The spectral shapes at lambda > 10 mu m are similar, while the largest variations occur in the NIR (L(1 mu m)(5 mu m)/L(circle dot) similar to 1.0-0.01) and UV (L(1 mu m)(0.12 mu m)/L(circle dot) similar to 2.0-0.005). Using stellar population synthesis models to fit the UV NIR continuum data, we derive stellar masses for the host galaxies of log (M(star)/M(circle dot)) similar to 10.2-11.4 with a mean of similar to 10.8. C1 [Vivian, U.] NASA, Washington, DC 20546 USA. RP Vivian, U (reprint author), NASA, Washington, DC 20546 USA. EM vivian@ifa.hawaii.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-0-521-76502-2 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 267 BP 143 EP 143 DI 10.1017/S1743921310006046 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BVJ71 UT WOS:000291672300055 ER PT J AU Nayagam, V AF Nayagam, Vedha TI Quasi-steady flame standoff ratios during methanol droplet combustion in microgravity SO COMBUSTION AND FLAME LA English DT Article ID BINARY DIFFUSION-COEFFICIENTS; TRANSPORT AB Recently, Aharon and Shaw developed a simplified analytical expression to predict quasi-steady flame stand-off ratios for alkane fuels. Their analysis is strictly valid only for alkane-type fuels where there is no reabsorption of flame generated species back into the droplet. In this note we show that Aharon and Shaw's analysis can be extended to methanol droplet combustion where water generated at the flame-sheet is absorbed back into the droplet. The model predictions are shown to compare well with available experimental results. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 NASA, Natl Ctr Micrograv Res, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Nayagam, V (reprint author), NASA, Natl Ctr Micrograv Res, Glenn Res Ctr, Cleveland, OH 44135 USA. EM v.nayagam@grc.nasa.gov NR 8 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2010 VL 157 IS 1 BP 204 EP 205 DI 10.1016/j.combustflame.2009.09.012 PG 2 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 532IW UT WOS:000272741900020 ER PT J AU Fregeau, M Hermanson, JC Stocker, DP Hegde, UG AF Fregeau, Mathieu Hermanson, James C. Stocker, Dennis P. Hegde, Uday G. TI TURBULENT STRUCTURE DYNAMICS OF BUOYANT AND NON-BUOYANT PULSED JET DIFFUSION FLAMES SO COMBUSTION SCIENCE AND TECHNOLOGY LA English DT Article DE Diffusion flame; Flame structure; Microgravity; Pulsed injection; Turbulent flame ID HEAT RELEASE; COMPOSITIONAL STRUCTURE; MIXING LAYERS; SHEAR-LAYER; COMBUSTOR; TEMPERATURE; ENTRAINMENT; EMISSIONS; METHANE; NUMBER AB The flame structure dynamics of strongly pulsed, turbulent diffusion flames were examined experimentally in a co-flow combustor. High-speed visual imaging and thermocouple measurements were performed to determine celerity, defined as as being the bulk velocity of a given flame puff structure in the large-scale, turbulent flame structures. Tests were conducted in normal gravity and microgravity with a fixed fuel injection velocity with a Reynolds number of 5,000 and also with a constant fueling rate where the Reynolds number ranged from 5,000 to 12,500. The celerity of strongly interacting flame puffs is as much as two times greater than for the case of isolated flame puffs. The amount of decrease in celerity at the visible flame tip due to the removal of buoyancy ranges from 7% to 11% in most cases, to as much as 36% for both fixed jet injection velocity and constant fueling rate. At the same time, the flame length is modestly affected by the removal of positive buoyancy, amounting to a decrease of as much as 20%. These observations hold for both fixed injection velocity and constant fueling rate cases. The observed increases in the flame puff celerity and the mean flame length with decreasing jet-off time, for a given injection time and gravity level, are consistent with a decreased rate of oxidizer entrainment into each flame puff structure due to increased flame puff interactions. A scaling argument accounts for the decrease of the flame puff celerity with downstream distance when both quantities are normalized by the appropriate injection conditions. The celerity, as characterized by the temperature measurement method, appears to be essentially unaffected by buoyancy at any given downstream location when appropriately scaled. The visual tracking method suggests a modest buoyancy effect at a given downstream distance, suggesting a subtle impact of buoyancy on the flame puff structures that does not impact the bulk motion. C1 [Fregeau, Mathieu; Hermanson, James C.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Stocker, Dennis P.; Hegde, Uday G.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Fregeau, M (reprint author), Univ Washington, Dept Aeronaut & Astronaut, Box 352400, Seattle, WA 98195 USA. EM mfregeau@u.washington.edu FU National Aeronautics and Space Administration under Cooperative Agreement [NNC04AA37A] FX This work was supported by the National Aeronautics and Space Administration under Cooperative Agreement NNC04AA37A. The authors acknowledge the helpful assistance of Luis Casco and Migdelio Camargo from the NASA Glenn Research Center during the drop experiments. The help of the graduate student Ying-Hao Liao in the data analysis is also appreciated. NR 51 TC 1 Z9 1 U1 0 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0010-2202 J9 COMBUST SCI TECHNOL JI Combust. Sci. Technol. PY 2010 VL 182 IS 3 BP 309 EP 330 DI 10.1080/00102200903362526 PG 22 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Energy & Fuels; Engineering GA 564EV UT WOS:000275197000004 ER PT J AU Yu, YC Sisco, JC Sankaran, V Anderson, WE AF Yu, Y. C. Sisco, J. C. Sankaran, V. Anderson, W. E. TI Effects of Mean Flow, Entropy Waves, and Boundary Conditions on Longitudinal Combustion Instability SO COMBUSTION SCIENCE AND TECHNOLOGY LA English DT Article DE Combustion instability; Linearized Euler equation; Rocket engine; Thermoacoustics ID INJECTOR AB The development of a Linearized Euler Equation (LEE) model for analyzing high frequency longitudinal combustion instability is described. The model includes mean flow effects and is generalized for multiple domains as well as natural boundary conditions that deviate from acoustically perfect conditions. These effects are systematically evaluated. Calculated spatial mode shapes and resonant frequencies are compared to experimental measurements and good agreements are obtained. Demonstrative results using a prescribed unsteady heat release model are also analyzed. Observations made from analytical results include mean flow decreases resonant frequencies and shifts the antinode locations; effects of entropy wave and mean flow property changes are location-dependent; application of natural boundary conditions produces more resonant modes and shifts the nodal locations; and the primary effect of unsteady heat release is a change in the linear growth rate. The LEE model is shown to be a useful platform for developing appropriate combustion response functions. C1 [Yu, Y. C.; Anderson, W. E.] Purdue Univ, W Lafayette, IN 47907 USA. [Sisco, J. C.] Aurora Flight Sci, Cambridge, MA USA. [Sankaran, V.] NASA Ames, Morffett, CA USA. RP Yu, YC (reprint author), 701 W Stadium Ave, W Lafayette, IN 47907 USA. EM yyu@purdue.edu FU NASA Constellation University Institutes [NCC3-989] FX The authors would like to express their gratitude toward numerous personnel and NASA. The project would not have been accomplished without the sponsorship by NASA Constellation University Institutes Project under NCC3-989, with Claudia Meyer and Jeff Rybak as the project managers; Jim Hulka of Marshall Space Flight Center, for his continuous support throughout the project; and Enrique Portillo for his technical discussions during the development of the LEE model. NR 24 TC 8 Z9 8 U1 0 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0010-2202 J9 COMBUST SCI TECHNOL JI Combust. Sci. Technol. PY 2010 VL 182 IS 7 BP 739 EP 776 AR PII 923934208 DI 10.1080/00102200903566449 PG 38 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Energy & Fuels; Engineering GA 621XO UT WOS:000279619900002 ER PT B AU Miller, SB AF Miller, Susan Burgess BE Tait, A Richardson, KA TI A TALE OF TWO ORGANIZATIONS SO COMPLEXITY AND KNOWLEDGE MANAGEMENT: UNDERSTANDING THE ROLE OF KNOWLEDGE IN THE MANAGEMENT OF SOCIAL NETWORKS SE Managing the Complex LA English DT Article; Book Chapter ID SPACE-SHUTTLE CHALLENGER; MANAGEMENT; IDENTITY C1 [Miller, Susan Burgess] Complex Culture Change Consulting LLC, Palmdale, CA USA. [Miller, Susan Burgess] NASA, Dryden Flight Res Ctr, Edwards AFB, CA USA. RP Miller, SB (reprint author), Complex Culture Change Consulting LLC, Palmdale, CA USA. NR 61 TC 0 Z9 0 U1 0 U2 0 PU INFORMATION AGE PUBLISHING-IAP PI CHARLOTTE PA PO BOX 79049, CHARLOTTE, NC 28271-7047 USA BN 978-1-60752-355-0 J9 MANAG COMPLEX PY 2010 VL 4 BP 171 EP 193 PG 23 WC Management SC Business & Economics GA BNJ18 UT WOS:000274714500012 ER PT J AU Jones, JA Casey, RC Karouia, F AF Jones, J. A. Casey, R. C. Karouia, F. BE McQueen, CA TI Ionizing Radiation as a Carcinogen SO COMPREHENSIVE TOXICOLOGY, VOL 14: CARCINOGENESIS, 2ND EDITION LA English DT Article; Book Chapter ID EPIDERMAL-GROWTH-FACTOR; INDUCED ADAPTIVE RESPONSE; POLYMERASE-CHAIN-REACTION; GENE-EXPRESSION CHANGES; HUMAN PANCREATIC-CANCER; ATOMIC-BOMB SURVIVORS; GALACTIC COSMIC-RAYS; MOUSE EMBRYO CELLS; PROTEIN-KINASE-C; BCL-X-L C1 [Jones, J. A.] Baylor Coll Med, Houston, TX 77030 USA. [Casey, R. C.] Univ Space Res Assoc, Houston, TX USA. [Karouia, F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Jones, JA (reprint author), Baylor Coll Med, Houston, TX 77030 USA. NR 350 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-046884-6 PY 2010 BP 181 EP 228 PG 48 WC Oncology; Toxicology SC Oncology; Toxicology GA BA2HF UT WOS:000333405200010 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Introduction to Computational Electronics SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Editorial Material; Book Chapter ID MOBILITY ENHANCEMENT; INVERSION-LAYERS; HOLE MOBILITY; STRAINED-SI; TRANSISTOR; DEPENDENCE; DEVICES; MOSFETS C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 37 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 1 EP 21 D2 10.1201/b13776 PG 21 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800002 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Computational Electronics Semiclassical and Quantum Device Modeling and Simulation Preface SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Editorial Material; Book Chapter C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP XIII EP XV D2 10.1201/b13776 PG 3 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800001 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Introductory Concepts SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Editorial Material; Book Chapter C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 23 EP 94 D2 10.1201/b13776 PG 72 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800003 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Semiclassical Transport Theory SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID HALL SCATTERING FACTOR; SILICON-CARBIDE; MONTE-CARLO; ELECTRON-TRANSPORT; ELASTIC-CONSTANTS; SEMICONDUCTORS; POLYTYPISM; EQUATION; ACCURATE; 4H C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 42 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 95 EP 149 D2 10.1201/b13776 PG 55 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800004 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI The Drift-Diffusion Equations and Their Numerical Solution SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID MOSFETS C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 151 EP 191 D2 10.1201/b13776 PG 41 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800005 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Hydrodynamic Modeling SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID SEMICONDUCTOR-DEVICES; ITERATIVE SCHEME; SIMULATION; TRANSPORT; ELECTRONS; DIODE; HOT C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 37 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 193 EP 240 D2 10.1201/b13776 PG 48 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800006 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Particle-Based Device Simulation Methods SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID MONTE-CARLO SIMULATION; ELECTRON-IMPURITY INTERACTIONS; SMALL SEMICONDUCTOR-DEVICES; HIGH-FIELD TRANSPORT; REAL-SPACE TREATMENT; THRESHOLD VOLTAGE; IMPACT-IONIZATION; CARRIER SCATTERING; CHARGE-TRANSPORT; BAND-STRUCTURE C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 66 TC 0 Z9 0 U1 0 U2 2 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 241 EP 334 D2 10.1201/b13776 PG 94 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800007 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Modeling Thermal Effects in Nano-Devices SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID CRYSTAL SILICON LAYERS; MEAN FREE-PATH; HEAT-CONDUCTION; SOLID-STATE; THIN-FILMS; TRANSPORT; TRANSISTORS; GENERATION; SCATTERING; ELECTRON C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 35 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 335 EP 366 D2 10.1201/b13776 PG 32 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800008 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Quantum Corrections to Semiclassical Approaches SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID FIELD-EFFECT TRANSISTORS; SPACE-CHARGE LAYERS; SI INVERSION-LAYERS; CHANNEL P-MOSFETS; INHOMOGENEOUS ELECTRON-GAS; MONTE-CARLO-SIMULATION; HOLE MOBILITY; BAND-STRUCTURE; STRAINED SIGE; PHONON-SCATTERING C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 153 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 367 EP 444 D2 10.1201/b13776 PG 78 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800009 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Quantum Transport in Semiconductor Systems SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID BALLISTIC-ELECTRON-TRANSPORT; TIGHT-BINDING MODEL; SPIN POLARIZATION; BOUNDARY-CONDITIONS; HETEROSTRUCTURES; DEVICES; DOTS; GAS C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 44 TC 0 Z9 0 U1 0 U2 1 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 445 EP 491 D2 10.1201/b13776 PG 47 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800010 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Far-From-Equilibrium Quantum Transport SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID RESONANT-TUNNELING-DIODE; 2-DIMENSIONAL ELECTRON-GAS; INTERFACE ROUGHNESS SCATTERING; SMALL SEMICONDUCTOR-DEVICES; SILICON-INVERSION-LAYERS; GREENS-FUNCTION; SURFACE-ROUGHNESS; DIAGRAM TECHNIQUE; NONEQUILIBRIUM PROCESSES; KINETIC-EQUATION C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 140 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 493 EP 598 D2 10.1201/b13776 PG 106 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800011 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Computational Electronics Semiclassical and Quantum Device Modeling and Simulation Conclusions SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Editorial Material; Book Chapter ID COULOMB-BLOCKADE; SEMICONDUCTORS; TRANSPORT; ATOM; DOTS C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 42 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 599 EP 603 D2 10.1201/b13776 PG 5 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800012 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Electronic Band Structure Calculation SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID WAVE-FUNCTIONS; SEMICONDUCTORS; CRYSTALS; DIAMOND; GE C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 28 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 605 EP 631 D2 10.1201/b13776 PG 27 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800013 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Poisson Equation Solvers SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID NONSYMMETRIC LINEAR-SYSTEMS C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 25 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 633 EP 671 D2 10.1201/b13776 PG 39 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800014 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Computational Electromagnetics SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter ID PERFECTLY MATCHED LAYER; ABSORBING BOUNDARY-CONDITIONS; TIME-DOMAIN METHOD; ADI-FDTD METHOD; MAXWELLS EQUATIONS; MEDIA; PML; WAVES; FIELD; IMPLEMENTATION C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 31 TC 0 Z9 0 U1 0 U2 0 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 673 EP 715 D2 10.1201/b13776 PG 43 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800015 ER PT B AU Vasileska, D Goodnick, SM Klimeck, G AF Vasileska, Dragica Goodnick, Stephen M. Klimeck, Gerhard BA Vasileska, D Goodnick, SM Klimeck, G BF Vasileska, D Goodnick, SM Klimeck, G TI Stationary and Time-Dependent Perturbation Theory SO COMPUTATIONAL ELECTRONICS: SEMICLASSICAL AND QUANTUM DEVICE MODELING AND SIMULATION LA English DT Article; Book Chapter C1 [Vasileska, Dragica] Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. [Vasileska, Dragica] Arizona State Univ, Ctr Solid State Elect Res, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Tech Univ Munich, D-80290 Munich, Germany. [Goodnick, Stephen M.] Univ Modena, I-41100 Modena, Italy. [Goodnick, Stephen M.] Arizona State Univ, Elect Engn, Tempe, AZ 85287 USA. [Goodnick, Stephen M.] Ira A Fulton Sch Engn, Tempe, AZ USA. [Klimeck, Gerhard] Network Computat Nanotechnol, W Lafayette, IN USA. [Klimeck, Gerhard] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] NASA, JPL, Pasadena, CA USA. RP Vasileska, D (reprint author), Arizona State Univ, Fac Elect Engn, Tempe, AZ 85287 USA. NR 2 TC 1 Z9 1 U1 1 U2 1 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-1-4200-6484-1; 978-1-4200-6483-4 PY 2010 BP 717 EP 746 D2 10.1201/b13776 PG 30 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC4ZG UT WOS:000353059800016 ER PT S AU Basir, N Denney, E Fischer, B AF Basir, Nurlida Denney, Ewen Fischer, Bernd BE Schoitsch, E TI Deriving Safety Cases for Hierarchical Structure in Model-Based Development SO COMPUTER SAFETY, RELIABILITY, AND SECURITY SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 29th International Conference on Computer Safety, Reliability and Security CY SEP 14-17, 2010 CL Vienna, AUSTRIA SP European workshop Ind Comp Syst, Techn Comm, Austrian Inst Technol, Austrian Comp Soc, Austrian Assoc Res IT, Adv Res & Technol Embedded Intelligence Syst, European Res Consortium Informat & Math, Syst Engn Assoc, Gesellschaft Informat, Int Fed Automat Control, Int Fed Informat Proc, Austrian electrotechn Assoc, City Vienna, Austrian Fed Minist Transport, Innovat & Technol DE Model-based software development; automated code generation; formal proofs; formal analysis; safety case; automated theorem proving ID VERIFICATION; SOFTWARE; CODE; SYSTEMS AB Model-based development and automated code generation are increasingly used for actual production code, in particular in mathematical and engineering domains. However, since code generators are typically not qualified, there is no guarantee that their output satisfies the system requirements, or is even safe. Here we present an approach to systematically derive safety cases that argue along the hierarchical structure in model-based development. The safety cases are constructed mechanically using a formal analysis, based on automated theorem proving, of the automatically generated code. The analysis recovers the model structure and component hierarchy from the code, providing independent assurance of both code and model. It identifies how the given system safety requirements are broken down into component requirements, and where they are ultimately established, thus establishing a hierarchy of requirements that is aligned with the hierarchical model structure. The derived safety cases reflect the results of the analysis, and provide a high-level argument that traces the requirements on the model via the inferred model structure to the code. We illustrate our approach on flight code generated from hierarchical Simulink models by Real-Time Workshop. C1 [Basir, Nurlida; Fischer, Bernd] Univ Southampton, ECS, Southampton SO17 1BJ, Hants, England. [Denney, Ewen] SGT NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Basir, N (reprint author), Univ Southampton, ECS, Southampton SO17 1BJ, Hants, England. EM nb206r@ecs.soton.ac.uk; Ewen.W.Denney@nasa.gov; b.fischer@ecs.soton.ac.uk FU NASA [NCC2-1426, NNA07BB97C]; Malaysian Government and USIM FX This material is based upon work supported by NASA under awards NCC2-1426 and NNA07BB97C. The first author is funded by the Malaysian Government and USIM. NR 20 TC 6 Z9 6 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-15650-2 J9 LECT NOTES COMPUT SC PY 2010 VL 6351 BP 68 EP + PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BUF76 UT WOS:000289187100006 ER PT S AU Fries, M Steele, A AF Fries, Marc Steele, Andrew BE Dieing, T Hollricher, O Toporski, J TI Raman Spectroscopy and Confocal Raman Imaging in Mineralogy and Petrography SO CONFOCAL RAMAN MICROSCOPY SE Springer Series in Optical Sciences LA English DT Article; Book Chapter ID CARBONACEOUS MATERIAL; FLUID INCLUSIONS; MICROPROBE SPECTROSCOPY; THERMAL METAMORPHISM; MARTIAN METEORITE; COMET 81P/WILD-2; MONAHANS 1998; HIGH-PRESSURE; IN-SITU; D-BAND AB Raman spectroscopy has long been used in geosciences and a wealth of data and publications are available. The majority of this information originates from point measurements using micro-Raman setups. With the application of confocal Raman imaging, additional analytical possibilities arise with respect to analyzing the three-dimensional spatial distribution of inorganic as well as organic phases on the centimeter to sub-micrometer scale. This chapter will highlight some of the key aspects experimenters should take into consideration when performing confocal Raman measurements as well as experimental results showing the insight gained into geological samples by the use of confocal Raman imaging. C1 [Fries, Marc] Jet Prop Lab, Pasadena, CA 91001 USA. [Steele, Andrew] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Fries, M (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91001 USA. EM marc.d.fries@jpl.nasa.gov; asteele@ciw.edu NR 75 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0342-4111 BN 978-3-642-12521-8 J9 SPRINGER SER OPT SCI PY 2010 VL 158 BP 111 EP 135 D2 10.1007/978-3-642-12522-5 PG 25 WC Microscopy; Optics; Spectroscopy SC Microscopy; Optics; Spectroscopy GA BVZ16 UT WOS:000293198200006 ER PT B AU Jordan, PM Norton, GV Chin-Bing, SA Warn-Varnas, A AF Jordan, P. M. Norton, G. V. Chin-Bing, S. A. Warn-Varnas, A. BE Sohrab, SH Catrakis, HJ Kobasko, N TI On the Propagation of Finite-Amplitude Acoustic Waves in Mono-Relaxing Media SO CONTINUUM MECHANICS, FLUIDS, HEAT SE WSEAS Mechanical Engineering Series LA English DT Proceedings Paper CT 5th IASME/WSEAS International Conference on Continuum Mechanics/7th WSEAS International Conference on Fluid Mechanics/7th WSEAS International Conference on Heat and Mass Transfer CY FEB 23-25, 2010 CL Univ Cambridge, Cambridge, ENGLAND HO Univ Cambridge DE Nonlinear acoustics; Abel's equation; Lambert W-function; kinematic-wave theory AB The propagation of finite-amplitude acoustic traveling waves in a class of mono-relaxing media is considered. The resulting associated ordinary differential equation (ODE), which is of the Abel type, is analyzed and exact, approximate, and asymptotic solutions are derived. In addition, numerical simulations are presented, special cases are discussed, and connections to other fields are noted. The analysis carried out here also serves to highlight some of the many applications of Abel's equation and the Lambert W-function, a relatively recent addition to the family of special functions, in the physical sciences. C1 [Jordan, P. M.; Norton, G. V.; Chin-Bing, S. A.; Warn-Varnas, A.] USN, Res Lab, Stennis Space Ctr, Code 7180, Stennis Space Ctr, MS 39529 USA. RP Jordan, PM (reprint author), USN, Res Lab, Stennis Space Ctr, Code 7180, Stennis Space Ctr, MS 39529 USA. EM pjordan@nrlssc.navy.mil NR 16 TC 3 Z9 3 U1 0 U2 1 PU WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC PI ATHENS PA AG LOANNOU THEOLOGOU 17-23, 15773 ZOGRAPHOU, ATHENS, GREECE BN 978-960-474-158-8 J9 WSEAS MECH ENG SER PY 2010 BP 67 EP + PG 2 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA BOK33 UT WOS:000276890300008 ER PT B AU Yoder, B AF Yoder, Brian BE Chapman, DW Cummings, WK Postiglione, GA TI Adaptation of Globally Held Ideas about Research in China's Universities SO CROSSING BORDERS IN EAST ASIAN HIGHER EDUCATION SE CERC Studies in Comparative Education LA English DT Article; Book Chapter ID HIGHER-EDUCATION; GLOBALIZATION; INTERNATIONALIZATION; REFORM; POLICY; GOVERNANCE; DYNAMICS; SYSTEMS; TAIWAN; STATE C1 [Yoder, Brian] NASA Headquarters, Off Educ, Washington, DC USA. RP Yoder, B (reprint author), NASA Headquarters, Off Educ, Washington, DC USA. NR 32 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS BN 978-94-007-0445-9 J9 CERC STUD COMP EDUC PY 2010 VL 27 BP 103 EP 126 PG 24 WC Education & Educational Research SC Education & Educational Research GA BSK08 UT WOS:000284735900005 ER PT B AU Zak, M AF Zak, Michail BE Licata, I Sakaji, A TI PHYSICS OF LIFE FROM FIRST PRINCIPLES SO CROSSING IN COMPLEXITY: INTERDISCIPLINARY APPLICATION OF PHYSICS IN BIOLOGICAL AND SOCIAL SYSTEMS LA English DT Article; Book Chapter ID TERMINAL ATTRACTORS; DYNAMICS; ENTANGLEMENT; SYSTEMS AB The objective of this work is to extend the First Principles of Newtonian mechanics to include modeling of behavior of Livings. One of the most fundamental problems associated with modeling life is to understand a mechanism of progressive evolution of complexity typical for living systems. It has been recently recognized that the evolution of living systems is progressive in a sense that it is directed to the highest levels of complexity if the complexity is measured by an irreducible number of different parts that interact in a well-regulated fashion. Such a property is not consistent with the behavior of isolated Newtonian systems that cannot increase their complexity without external forces. Indeed, the solutions to the models based upon dissipative Newtonian dynamics eventually approach attractors where the evolution stops, while these attractors dwell on the subspaces of lower dimensionality, and therefore, of the lower complexity. If thermal forces are added to mechanical ones, the Newtonian dynamics is extended to the Langevin dynamics combining both mechanics and thermodynamics effects; it is represented by stochastic differential equations that can be utilized for more advanced models in which randomness stands for multi-choice patterns of behavior typical for living systems. However, even those models do not capture the main property of living systems, i.e. their ability to evolve towards increase of complexity without external forces. Indeed, the Langevin dynamics is complemented by the corresponding diffusion equation that describes the evolution of the distribution of the probability density over the state variables; in case of an isolated system, the entropy of the probability density cannot decrease, and that expresses the second law of thermodynamics. From the viewpoint of complexity, this means that the state variables of the underlying system eventually start behaving in a uniform fashion with lesser distinguished features, i.e. with lower complexity. Reconciliation of evolution of life with the second law of thermodynamics is the central problem addressed in this paper. It is solved via introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution, i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. The unlimited capacity for increase of complexity is provided by interaction of the system with its mental images via chains of reflections: What do you think I think you think ... ?. All these specific non-Newtonian properties equip the model with the levels of complexity that match the complexity of life, and that makes the model applicable for description of behaviors of ecological, social and economics systems. "Life is to create order in the disordered environment against the second law of thermodynamics." E. Schrodinger, 1945 C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Zak, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 32 TC 0 Z9 0 U1 1 U2 2 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-61668-037-4 PY 2010 BP 57 EP 132 PG 76 WC Physics, Multidisciplinary SC Physics GA BSB71 UT WOS:000284081500004 ER PT B AU Schneck, P AF Schneck, Paul BE Ghosh, S Turrini, E TI Restricting Anti-Circumvention Devices SO CYBERCRIMES: A MULTIDISCIPLINARY ANALYSIS LA English DT Article; Book Chapter C1 [Schneck, Paul] NASA, Goddard Inst Space Studies, Washington, DC USA. NR 13 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-13546-0 PY 2010 BP 73 EP 94 DI 10.1007/978-3-642-13547-7_4 D2 10.1007/978-3-642-13547-7 PG 22 WC Computer Science, Theory & Methods; Criminology & Penology; Law SC Computer Science; Criminology & Penology; Government & Law GA BRQ02 UT WOS:000283392100004 ER PT J AU Chamoire, A Gascoin, F Estournes, C Caillat, T Tedenac, JC AF Chamoire, A. Gascoin, F. Estournes, C. Caillat, T. Tedenac, J. -C. TI High-temperature transport properties of complex antimonides with anti-Th3P4 structure SO DALTON TRANSACTIONS LA English DT Article ID THERMOELECTRIC PROPERTIES; VALENCE FLUCTUATION; YB14MN1-XALXSB11; EFFICIENCY; YB4SB3; PHASES; SYSTEM; YB4BI3; YB4AS3 AB Polycrystalline samples of R4Sb3 (R = La, Ce, Smand Yb) and Yb4-xR'Sb-x(3)(R' = Sm and La) have been quantitatively synthesized by high-temperature reaction. They crystallize in the anti-Th3P4 structure type (I (4) over bar 3d, no. 220). Structural and chemical characterizations have been performed by X-ray diffraction and electron microscopy with energy dispersive X-ray analysis. Powders have been densified by spark plasma sintering (SPS) at 1300 degrees C under 50 MPa of pressure. Transport property measurements show that these compounds are n-type with low Seebeck coefficient except for Yb4Sb3 that shows a typical metallic behavior with hole conduction. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4-xR'Sb-x(3) up to 0.75 at 1000 degrees C. C1 [Chamoire, A.; Tedenac, J. -C.] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, Equipe PMOF, CNRS,ENSCM,UM2,UM1,UMR 5253, F-34095 Montpellier, France. [Gascoin, F.; Estournes, C.] Univ Toulouse 3, MHT, PNF2, CIRIMAT, F-33062 Toulouse, France. [Caillat, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gascoin, F (reprint author), ENSICAEN CNRS, UMR 6508, Lab CRISMAT, F-14050 Caen 4, France. EM franck.gascoin@ensicaen.fr RI ESTOURNES, Claude/F-2322-2017 OI ESTOURNES, Claude/0000-0001-8381-8454 FU Agence Nationale pour la Recherche [ANR-JCJC06-1355090] FX The authors would like to thank the financial support of the "Agence Nationale pour la Recherche", project ANR-JCJC06-1355090. The help of C. Rebel for the magnetic measurements is also acknowledged. NR 25 TC 3 Z9 3 U1 0 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PY 2010 VL 39 IS 4 BP 1118 EP 1123 DI 10.1039/b914712h PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 542TK UT WOS:000273518400020 PM 20066200 ER PT B AU Cohn, SE AF Cohn, Stephen E. BE Lahoz, W Khattatov, B Menard, R TI The Principle of Energetic Consistency in Data Assimilation SO DATA ASSIMILATION: MAKING SENSE OF OBSERVATIONS LA English DT Article; Book Chapter ID ATMOSPHERIC DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; STOCHASTIC DYNAMIC PREDICTION; ERROR; MODEL; SYSTEMS; 4D-VAR C1 NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Cohn, SE (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. EM stephen.e.cohn@nasa.gov NR 39 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-540-74702-4 PY 2010 BP 137 EP 216 DI 10.1007/978-3-540-74703-1_7 D2 10.1007/978-3-540-74703-1 PG 80 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA BQU45 UT WOS:000281867600007 ER PT B AU Yudin, V Khatattov, B AF Yudin, Valery Khatattov, Boris BE Lahoz, W Khattatov, B Menard, R TI Introduction to Atmospheric Chemistry and Constituent Transport SO DATA ASSIMILATION: MAKING SENSE OF OBSERVATIONS LA English DT Article; Book Chapter ID EFFECTIVE DIFFUSIVITY; STRATOSPHERE; TROPOSPHERE; TROPOPAUSE; EXCHANGE; MODEL C1 [Yudin, Valery] NASA, Goddard Space Flight Ctr, SAIC, Global Modeling Assimilat Off, Greenbelt, MD 20771 USA. [Yudin, Valery] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Khatattov, Boris] Fus Numer Inc, Boulder, CO USA. RP Yudin, V (reprint author), NASA, Goddard Space Flight Ctr, SAIC, Global Modeling Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM vyudin@ucar.edu; boris@fusionnumerics.com NR 22 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-540-74702-4 PY 2010 BP 409 EP 430 DI 10.1007/978-3-540-74703-1_16 D2 10.1007/978-3-540-74703-1 PG 22 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA BQU45 UT WOS:000281867600016 ER PT B AU Khattatov, B Yudin, V AF Khattatov, Boris Yudin, Valery BE Lahoz, W Khattatov, B Menard, R TI Representation and Modelling of Uncertainties in Chemistry and Transport Models SO DATA ASSIMILATION: MAKING SENSE OF OBSERVATIONS LA English DT Article; Book Chapter ID KALMAN FILTER; DATA ASSIMILATION; DYNAMICS C1 [Khattatov, Boris] Fus Numer Inc, Boulder, CO USA. [Yudin, Valery] NASA, Goddard Space Flight Ctr, SAIC, Global Modeling Assimilat Off, Greenbelt, MD 20771 USA. [Yudin, Valery] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. RP Khattatov, B (reprint author), Fus Numer Inc, Boulder, CO USA. EM boris@fusionnumerics.com; vyudin@ucar.edu; boris@fusionnumerics.com NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-540-74702-4 PY 2010 BP 431 EP 448 DI 10.1007/978-3-540-74703-1_17 D2 10.1007/978-3-540-74703-1 PG 18 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA BQU45 UT WOS:000281867600017 ER PT B AU Rood, RB Bosilovich, MG AF Rood, Richard B. Bosilovich, Michael G. BE Lahoz, W Khattatov, B Menard, R TI Reanalysis: Data Assimilation for Scientific Investigation of Climate SO DATA ASSIMILATION: MAKING SENSE OF OBSERVATIONS LA English DT Article; Book Chapter ID NCEP-NCAR; SPATIOTEMPORAL STRUCTURE; ANTARCTIC PRECIPITATION; GLOBAL PRECIPITATION; ENERGY BUDGETS; PART II; MODEL; ECMWF; VARIABILITY; FORECASTS C1 [Rood, Richard B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bosilovich, Michael G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rood, RB (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM rbrood@umich.edu; Michael.Bosilovich@nasa.gov RI Rood, Richard/C-5611-2008 OI Rood, Richard/0000-0002-2310-4262 NR 64 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-540-74702-4 PY 2010 BP 623 EP 646 DI 10.1007/978-3-540-74703-1_23 D2 10.1007/978-3-540-74703-1 PG 24 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA BQU45 UT WOS:000281867600023 ER PT B AU Masutani, M Schlatter, TW Errico, RM Stoffelen, A Andersson, E Lahoz, W Woollen, JS Emmitt, GD Riishojgaard, LP Lord, SJ AF Masutani, Michiko Schlatter, Thomas W. Errico, Ronald M. Stoffelen, Ad Andersson, Erik Lahoz, William Woollen, John S. Emmitt, G. David Riishojgaard, Lars-Peter Lord, Stephen J. BE Lahoz, W Khattatov, B Menard, R TI Observing System Simulation Experiments SO DATA ASSIMILATION: MAKING SENSE OF OBSERVATIONS LA English DT Article; Book Chapter ID DOPPLER WIND LIDAR; RADIATIVE-TRANSFER MODEL; DATA ASSIMILATION; IMPACT ASSESSMENT; ADJOINT; FUTURE; MISSION C1 [Masutani, Michiko; Woollen, John S.; Lord, Stephen J.] NOAA, NWS, NCEP, EMC, Camp Springs, MD USA. [Masutani, Michiko] Wyle Informat Syst, El Segundo, CA USA. [Schlatter, Thomas W.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Errico, Ronald M.; Riishojgaard, Lars-Peter] NASA, GSFC, Greenbelt, MD USA. [Errico, Ronald M.; Riishojgaard, Lars-Peter] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Stoffelen, Ad] Royal Dutch Meteorol Inst KNMI, De Bilt, Netherlands. [Andersson, Erik] European Ctr Medium Range Weather Forecasts ECMWF, Reading, Berks, England. [Lahoz, William] NILU, Norwegian Inst Air Res, Norsk Inst Luftforskning, Kjeller, Norway. [Woollen, John S.] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Emmitt, G. David] SWA, Charlottesville, VA USA. [Riishojgaard, Lars-Peter] Joint Ctr Satellite Data Assimilat, Camp Springs, MD USA. RP Masutani, M (reprint author), NOAA, NWS, NCEP, EMC, Camp Springs, MD USA. EM Michiko.Masutani@noaa.gov; Tom.Schlatter@noaa.gov; Ronald.M.Errico@nasa.gov; Ad.Stoffelen@knmi.nl; erik.andersson@ecmwf.int; wal@nilu.no; Jack.Woollen@noaa.gov; gde@swa.com; Lars.P.Riishojgaard@nasa.gov; Stephen.Lord@noaa.gov; wal@nilu.no OI Stoffelen, Ad/0000-0002-4018-4073 NR 58 TC 22 Z9 22 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-540-74702-4 PY 2010 BP 647 EP 679 DI 10.1007/978-3-540-74703-1_24 D2 10.1007/978-3-540-74703-1 PG 33 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA BQU45 UT WOS:000281867600024 ER PT S AU Gehrels, N Cannizzo, JK AF Gehrels, N. Cannizzo, J. K. BE Kawai, N Nagataki, S TI Recent Progress on GRBs with Swift SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci (JSPS), Kyoto Univ ID GAMMA-RAY BURSTS; 28 FEBRUARY 1997; HOST GALAXY; JET BREAKS; AFTERGLOW; TELESCOPE; REDSHIFT; GRB-050709; DISCOVERY; SUPERNOVA AB We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. In addition, rapid-response telescopes on the ground have new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and supernova physics. C1 [Gehrels, N.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Cannizzo, J. K.] CREST UMBC, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. RP Gehrels, N (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. RI Gehrels, Neil/D-2971-2012 FU Astroparticle Physics Division, NASA/Goddard Space Flight Genter, Greenbelt,USA [MD 20771]; GRESST/Joint Genter for Astrophysics, Univ. of Maryland, Baltimore Gounty, Baltimore,USA [MD 21250] FX Astroparticle Physics Division, NASA/Goddard Space Flight Genter, Greenbelt, MD 20771,USA; GRESST/Joint Genter for Astrophysics, Univ. of Maryland, Baltimore Gounty, Baltimore, MD 21250, USA NR 33 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 1 EP + DI 10.1063/1.3509262 PG 2 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000001 ER PT S AU Sakamoto, T Barthelmy, S Baumgartner, W Cummings, J Fenimore, E Gehrels, N Krimm, H Markwardt, C Palmer, D Parsons, A Sato, G Stamatikos, M Tueller, J Ukwatta, T AF Sakamoto, T. Barthelmy, S. Baumgartner, W. Cummings, J. Fenimore, E. Gehrels, N. Krimm, H. Markwardt, C. Palmer, D. Parsons, A. Sato, G. Stamatikos, M. Tueller, J. Ukwatta, T. BE Kawai, N Nagataki, S TI BAT2 GRB Catalog - Prompt Emission Properties of Swift GRBs SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci (JSPS), Kyoto Univ DE gamma ray: bursts ID GAMMA-RAY BURSTS; ALERT TELESCOPE; MISSION; FLASHES AB We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. The BAT T-90 duration peaks at 70 s. We confirm that the spectra of the BAT short-duration GRBs are generally harder than those of the long-duration GRBs. The observed durations of the BAT high redshift GRBs are not systematically longer than those of the moderate redshift GRBs. Furthermore, the observed spectra of the BAT high redshift GRBs are similar to or harder than the moderate redshift GRBs. C1 [Sakamoto, T.; Baumgartner, W.; Cummings, J.; Krimm, H.; Markwardt, C.] CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.; Baumgartner, W.; Cummings, J.] Univ Maryland, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Sakamoto, T.; Barthelmy, S.; Baumgartner, W.; Gehrels, N.; Markwardt, C.; Parsons, A.; Tueller, J.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Fenimore, E.; Palmer, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, H.] Univ Space Res Associat, Columbia, MD 21044 USA. [Markwardt, C.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Sato, G.] JAXA Kanagawa, Inst Space & Astronut, Sagamihara, Kanagawa 2298510, Japan. [Stamatikos, M.] Ohio State Univ, Ctr Conmol & Astro Particle Phys, Dept Phys, Columbus, OH 43210 USA. [Ukwatta, T.] George Washington Univ, Ctr Nuclear Studies, Dept Phys, Washington, DC 20052 USA. RP Sakamoto, T (reprint author), CRESST, Greenbelt, MD 20771 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Parsons, Ann/I-6604-2012 NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 20 EP + DI 10.1063/1.3509266 PG 2 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000004 ER PT S AU Troja, E Rosswog, S Gehrels, N AF Troja, E. Rosswog, S. Gehrels, N. BE Kawai, N Nagataki, S TI Precursors of short GRBs SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci (JSPS), Kyoto Univ DE gamma-ray bursts; neutron stars ID GAMMA-RAY BURSTS; COALESCING NEUTRON-STARS; PHYSICAL MODELS; JETS; STEP AB We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that similar to 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former similar to 13 s and the latter similar to 0.5 s before the GRB. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. C1 [Troja, E.; Gehrels, N.] NASA GSFC, Huntsville, AL 35808 USA. [Rosswog, S.] NASA, Huntsville, AL 35808 USA. [Gehrels, N.] Jacobs Univ Bremen, Bremen, Germany. RP Troja, E (reprint author), NASA GSFC, Huntsville, AL 35808 USA. RI Gehrels, Neil/D-2971-2012 FU NASA Postdoctoral Program at the Goddard Space Flight Center FX We thank G. Skinner and C. Markwardt for discussions and useful suggestions on the Swift/BAT data analysis. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 16 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 132 EP + DI 10.1063/1.3509249 PG 2 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000023 ER PT S AU Racusin, JL AF Racusin, Judith L. BE Kawai, N Nagataki, S TI Afterglow Populations Studies from Swift Follow-up of Fermi-LAT GRBs SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci, Kyoto Univ DE gamma-ray sources; gamma-ray bursts ID GAMMA-RAY BURST; TELESCOPE; SAMPLE AB The small population of Fermi LAT detected GRBs discovered over the last two years has been providing interesting and unexpected clues into ORB prompt and afterglow emission mechanisms. Over the last 5 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into other components of ORB emission structure. We explore the new ability to utilize both of these observatories to study the same GRBs over 10 orders of magnitude in energy, although not always concurrently. Almost all LAT GRBs that have been followed-up by Swift within 1-day have been clearly detected and carefully observed. We will present the context of the lower-energy afterglows of this special subset of GRBs that has > 100 MeV emission compared to the hundreds in the Swift database that may or may not have been observed by LAT, and theorize upon the relationship between these properties and the origin of the high energy gamma-ray emission. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Racusin, JL (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 661, Greenbelt, MD 20771 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 152 EP 155 DI 10.1063/1.3509254 PG 4 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000027 ER PT S AU Nishikawa, KI Niemiec, J Medvedev, M Zhang, B Hardee, P Mizuno, Y Nordlund, A Frederiksen, J Sol, H Pohl, M Hartmann, DH Fishman, GJ AF Nishikawa, K. -I. Niemiec, J. Medvedev, M. Zhang, B. Hardee, P. Mizuno, Y. Nordlund, A. Frederiksen, J. Sol, H. Pohl, M. Hartmann, D. H. Fishman, G. J. BE Kawai, N Nagataki, S TI Simulation of Relativistic Shocks and Associated Self-consistent Radiation SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci (JSPS), Kyoto Univ DE Particle-in-cell method (plasma simulation); Synchrotron radiation by moving charges ID COLLISIONLESS SHOCKS; MAGNETIC-FIELDS; PROMPT EMISSION; PLASMA AB We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify our technique. We also used our new technique to calculate emission from electrons in small simulation systems with three different Lorentz factors and ambient parallel magnetic fields. We obtained spectra which are consistent with those generated by electrons propagating in turbulent magnetic fields, that are generated at an early nonlinear stage of the Weibel instability. C1 [Nishikawa, K. -I.; Mizuno, Y.] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Niemiec, J.] Inst Nucl Phys, P-31342 Krakow, Poland. [Medvedev, M.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Zhang, B.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Hardee, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Nordlund, A.; Frederiksen, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Pohl, M.] DESY, D-15738 Zeuthen, Germany. [Hartmann, D. H.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Fishman, G. J.] NASA, MSFC, Huntsville, AL 35805 USA. Observ Paris, Meudon Sect, LUTH, F-92195 Meudon, France. RP Nishikawa, KI (reprint author), Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. RI Frederiksen, Jacob Trier/P-6757-2015; Mizuno, Yosuke/D-5656-2017 OI Frederiksen, Jacob Trier/0000-0002-3560-0044; Mizuno, Yosuke/0000-0002-8131-6730 FU NSF [AST-0506719]; AST [0506666, 0908040, 0908010]; NASA [NNG05GK73G, NNX07AJ88G, NNX08AG83G, NNX08AL39G, NNX09AD16G]; MNi-SW research projects [1 P03D 003 29, N N203 393034]; Foundation for Polish Science through the HOMING program; EEA Financial Mechanism; Danish Natural Science Research Council; National Science Foundation [PHY05-51164] FX This work is supported by NSF-AST-0506719, AST-0506666, AST-0908040, AST- 0908010, NASA-NNG05GK73G, NNX07AJ88G, NNX08AG83G, NNX08AL39G, and NNX09AD16G. JN was supported by MNi-SW research projects 1 P03D 003 29 and N N203 393034, and The Foundation for Polish Science through the HOMING program, which is supported through the EEA Financial Mechanism. Simulations were performed at the Columbia facility at the NASA Advanced Supercomputing (NAS). and SGI Altix (obalt) at the National Center for Supercomputing Applications (NCSA) which is supported by the NSF. Part of this work was done while K.-I. N. was visiting the Niels Bohr Institute. Support from the Danish Natural Science Research Council is gratefully acknowledged. This report was finalized during the program Particle Acceleration in Astrophysical Plasmas at the Kavli Institute for Theoretical Physics which is supported by the National Science Foundation under Grant No. PHY05-51164. NR 18 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 261 EP + DI 10.1063/1.3509279 PG 2 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000048 ER PT S AU Hosokawa, T Omukai, K Yorke, HW AF Hosokawa, Takashi Omukai, Kazuyuki Yorke, Harold W. BE Kawai, N Nagataki, S TI Mass Accretion Process to the Forming First Star SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci (JSPS), Kyoto Univ DE First stars; Mass Accretion; Circumstellar Disk ID PROTOSTARS AB The final mass of the first star is fixed when mass accretion to a protostar ceases. We report our recent 2-dimensional radiation-hydrodynamic simulations of the mass accretion process to the primordial protostar. The protostellar evolution is also simultaneously calculated by solving the stellar interior structure. Our preliminary calculation shows that a circumstellar disk forms around the primordial protostar. The disk is almost fully molecular, and surrounded by warmer neutral envelope. Mass accretion to the star takes place via this accretion disk at high rates exceeding several x 10(-3) M-circle dot yr(-1). With such high accretion rates, total luminosity of the protostar approaches the Eddington luminosity before the protostar reaches the zero-age main sequence stage. Radiation pressure exerted on gas accretion envelope should regulate the mass accretion when the protostellar mass exceeds 80 M-circle dot, which is before the stellar UV radiation influences the accretion flow. C1 [Hosokawa, Takashi; Omukai, Kazuyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hosokawa, T (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. FU Research Fellowships of the Japan Society for the Promotion of Science (JSPS); Jet Propulsion Laboratory, California; Institute of Technology; National Aeronautics and Space Administration (NASA) FX This study is supported in part by Research Fellowships of the Japan Society for the Promotion of Science (JSPS). Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 327 EP + DI 10.1063/1.3509299 PG 2 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000067 ER PT S AU Hurley, K Golenetskii, S Aptekar, R Mazets, E Pal'shin, V Frederiks, D Mitrofanov, IG Golovin, D Litvak, ML Sanin, AB Boynton, W Fellows, C Harshman, K Starr, R Smith, DM Wigger, C Hajdas, W von Kienlin, A Rau, A Yamaoka, K Ohno, M Takahashi, T Fukazawa, Y Tashiro, M Terada, Y Murakami, T Makishima, K Barthelmy, S Cline, T Cummings, J Gehrels, N Krimm, H Goldsten, J Del Monte, E Feroci, M Marisaldi, M Briggs, M Connaughton, V Meegan, C AF Hurley, K. Golenetskii, S. Aptekar, R. Mazets, E. Pal'shin, V. Frederiks, D. Mitrofanov, I. G. Golovin, D. Litvak, M. L. Sanin, A. B. Boynton, W. Fellows, C. Harshman, K. Starr, R. Smith, D. M. Wigger, C. Hajdas, W. von Kienlin, A. Rau, A. Yamaoka, K. Ohno, M. Takahashi, T. Fukazawa, Y. Tashiro, M. Terada, Y. Murakami, T. Makishima, K. Barthelmy, S. Cline, T. Cummings, J. Gehrels, N. Krimm, H. Goldsten, J. Del Monte, E. Feroci, M. Marisaldi, M. Briggs, M. Connaughton, V. Meegan, C. BE Kawai, N Nagataki, S TI The Third Interplanetary Network SO DECIPHERING THE ANCIENT UNIVERSE WITH GAMMA-RAY BURSTS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Deciphering the Ancient Universe with Gamma-Ray Bursts CY APR 19-23, 2010 CL Kyoto, JAPAN SP Minist Educ Culture Sports Sci & Technol, Japan Soc Promotion Sci (JSPS), Kyoto Univ DE gamma-rays: bursts; instrumentation AB The 3rd interplanetary network (IPN), which has been in operation since 1990, presently consists of 9 spacecraft: AGILE, Fermi, RHESSI, Suzaku, and Swift, in low Earth orbit; INTEGRAL, in eccentric Earth orbit with apogee 0.5 light-seconds; Wind, up to similar to 7 light-seconds from Earth; MESSENGER, en route to Mercury; and Mars Odyssey, in orbit around Mars. The IPN operates as a full-time, all-sky monitor for transients down to a threshold of about 6 x 10(-7) erg cm(-2) or 1 photon cm(-2) s(-1). It detects similar to 346 cosmic gamma-ray bursts per year. These events are generally not the same ones detected by narrower field of view instruments such as Swift, INTEGRAL IBIS, and SuperAGILE; the localization accuracy is in the several arcminute and above range. The uses of the IPN data are described. C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Golenetskii, S.; Aptekar, R.; Mazets, E.; Pal'shin, V.; Frederiks, D.] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg, Russia. [Golovin, D.; Litvak, M. L.; Sanin, A. B.] Space Res Inst, Moscow, Russia. [Boynton, W.; Fellows, C.; Harshman, K.; Starr, R.] Univ Arizona, Dept Planetary Sci, Tucson, AZ USA. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA USA. [Wigger, C.; Hajdas, W.] Paul Scherrer Inst, CH-5232 Villigen PSI, Switzerland. [von Kienlin, A.; Rau, A.] Max Planck Inst Extraterrestrische Phys, Garching, Germany. [Yamaoka, K.] Gakuin Univ, Dept Phys & Math, Kanagawa, Japan. [Ohno, M.; Takahashi, T.] Inst Space & Astronaut Sci ISAS JAXA, Kanagawa, Japan. [Fukazawa, Y.] Hiroshima Univ, Dept Phys, Hiroshima, Japan. [Tashiro, M.; Terada, Y.] Saitama Univ, Dept Phys, Saitama, Japan. [Murakami, T.] Kanazawa Univ, Dept Phys, Ishikawa, Japan. [Makishima, K.] RIKEN, Inst Phys & Chem Res, Makishima Cosm Radiat Lab, Saitama, Japan. [Barthelmy, S.; Cline, T.; Cummings, J.; Gehrels, N.; Krimm, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Cline, T.] Johns Hopkins Univ, Applied Phys Lab, Laurel, MD USA. [Goldsten, J.] IASF INAF, Rome, Italy. [Del Monte, E.; Feroci, M.] IASF INAF, Bologna, Italy. [Marisaldi, M.] Univ Alabama Huntsville, CSPAR, Huntsville, AL USA. [Briggs, M.; Connaughton, V.] Univ Space Res Associat, Huntsville, AL USA. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Frederiks, Dmitry/C-7612-2014; Pal'shin, Valentin/F-3973-2014; Aptekar, Raphail/B-3456-2015; Golenetskii, Sergey/B-3818-2015; OI Frederiks, Dmitry/0000-0002-1153-6340; Feroci, Marco/0000-0002-7617-3421; Marisaldi, Martino/0000-0002-4000-3789 FU Suzaku Guest Investigator program through NASA [NNX09AV61G, NNX08AZ85G]; Russian Space Agency; RFBR [09-02-12080] FX KH is grateful for support under the Suzaku Guest Investigator program through NASA grants NNX09AV61G and NNX08AZ85G. The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grant 09-02-12080 ofi_m. NR 0 TC 10 Z9 10 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0829-6 J9 AIP CONF PROC PY 2010 VL 1279 BP 330 EP + DI 10.1063/1.3509301 PG 2 WC Astronomy & Astrophysics; Physics, Mathematical SC Astronomy & Astrophysics; Physics GA BTJ80 UT WOS:000287125000068 ER PT S AU Bhatt, RT Cosgriff, LM Fox, DS AF Bhatt, Ramakrishna T. Cosgriff, Laura M. Fox, Dennis S. BE Singh, D Zhu, DM Zhou, M TI INFLUENCE OF FIBER ARCHITECTURE ON IMPACT RESISTANCE OF UNCOATED SIC/SIC COMPOSITES SO DESIGN, DEVELOPMENT, AND APPLICATIONS OF ENGINEERING CERAMICS AND COMPOSITES SE Ceramic Transactions LA English DT Proceedings Paper CT 8th Pacific Rim Conference on Ceramic and Glass Technology CY MAY 31-JUN 05, 2009 CL Vancouver, CANADA SP Amer Ceram Soc ID ENVIRONMENTAL BARRIER COATINGS; DAMAGE AB 2-D and 2.5D woven SiC/SiC composites fabricated by melt infiltration (MI) method were impact tested at ambient temperature and at 1316 degrees C in air Using 1.59-mm diameter steel-ball projectiles at velocities ranging from 115 m/s to 300 m/s. The extent of substrate damage with increasing projectile velocity was imaged and analyzed using optical microscopy, pulsed thermography, and computed tomography. Results indicate that both types of composites impact tested at ambient temperature and at 1316 degrees C showed increased surface or internal damage with increased projectile velocity. At a fixed projectile velocity, the extant of impact damage caused at ambient temperature is nearly the same as that at 1316 degrees C. Predominant impact damage mechanisms in 2-D SiC/SiC composites are fiber ply delamination, fiber fracture and matrix shearing, and in 2.5D SiC/SiC composites are fiber fracture and matrix shearing with no evidence of delamination cracks. Under similar testing conditions, the depth of projectile penetration into 2.5D SiC/SiC composites is significantly, lower than that in 2D SiC/SiC composites. C1 [Bhatt, Ramakrishna T.] NASA, Glenn Res Ctr, USA, Vehicle Technol Directorate, 21000 Brookpk Rd, Cleveland, OH 44135 USA. RP Bhatt, RT (reprint author), NASA, Glenn Res Ctr, USA, Vehicle Technol Directorate, 21000 Brookpk Rd, Cleveland, OH 44135 USA. NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER CERAMIC SOC PI WESTERVILLE PA 735 CERAMIC PLACE, WESTERVILLE, OH 43081-8720 USA SN 1042-1122 BN 978-0-470-88936-7 J9 CERAM TRANS PY 2010 VL 215 BP 97 EP + PG 2 WC Materials Science, Ceramics; Materials Science, Composites SC Materials Science GA BTM12 UT WOS:000287268800010 ER PT S AU Roth, DJ Rauser, RW Jacobson, NS Wincheski, RA Walker, JL Cosgriff, LA AF Roth, Don J. Rauser, Richard W. Jacobson, Nathan S. Wincheski, Russell A. Walker, James L. Cosgriff, Laura A. BE Singh, D Zhu, DM Zhou, M TI NDE FOR CHARACTERIZING OXIDATION DAMAGE IN REINFORCED CARBON-CARBON SO DESIGN, DEVELOPMENT, AND APPLICATIONS OF ENGINEERING CERAMICS AND COMPOSITES SE Ceramic Transactions LA English DT Proceedings Paper CT 8th Pacific Rim Conference on Ceramic and Glass Technology CY MAY 31-JUN 05, 2009 CL Vancouver, CANADA SP Amer Ceram Soc AB In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 degrees C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately I to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided. C1 [Roth, Don J.; Jacobson, Nathan S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Roth, DJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM donald.j.roth@nasa.gov NR 11 TC 0 Z9 0 U1 0 U2 2 PU AMER CERAMIC SOC PI WESTERVILLE PA 735 CERAMIC PLACE, WESTERVILLE, OH 43081-8720 USA SN 1042-1122 BN 978-0-470-88936-7 J9 CERAM TRANS PY 2010 VL 215 BP 167 EP + PG 3 WC Materials Science, Ceramics; Materials Science, Composites SC Materials Science GA BTM12 UT WOS:000287268800016 ER PT S AU Hoglund, L Soibel, A Hill, CJ Ting, DZ Khoshakhlagh, A Liao, A Keo, S Lee, MC Jean, N Mumolo, JM Gunapala, SD AF Hoglund, Linda Soibel, Alexander Hill, Cory J. Ting, David Z. Khoshakhlagh, Arezou Liao, Anna Keo, Sam Lee, Michael C. Jean Nguyen Mumolo, Jason M. Gunapala, Sarath D. BE Dereniak, EL Hartke, JP LeVan, PD Longshore, RE Sood, AK Razeghi, M Sudharsanam, R TI Optical studies on antimonide superlattice infrared detector material SO DETECTORS AND IMAGING DEVICES: INFRARED, FOCAL PLANE, SINGLE PHOTON SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Detectors and Imaging Devices - Infrared, Focal Plane, Single Photon CY AUG 04-05, 2010 CL San Diego, CA SP SPIE DE photoluminescence; heterostructure; infrared; photodetector; superlattice ID QUANTUM DOTS; CARRIER AB In this study the material quality and optical properties of type II InAs/GaSb superlattices are investigated using transmission and photoluminescence (PL) spectroscopy. The influence of the material quality on the intensity of the luminescence and on the electrical properties of the detectors is studied and a good correlation between the photodetector current-voltage (IV) characteristics and the PL intensity is observed. Studies of the temperature dependence of the PL reveal that Shockley-Read-Hall processes are limiting the minority carrier lifetime in both the mid-IR wavelength and the long-IR wavelength detector material studied. These results demonstrate that PL spectroscopy is a valuable tool for optimization of infrared detectors. C1 [Hoglund, Linda; Soibel, Alexander; Hill, Cory J.; Ting, David Z.; Khoshakhlagh, Arezou; Liao, Anna; Keo, Sam; Lee, Michael C.; Jean Nguyen; Mumolo, Jason M.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hoglund, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 12 TC 11 Z9 11 U1 1 U2 10 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8276-1 J9 P SOC PHOTO-OPT INS PY 2010 VL 7780 AR 77800D DI 10.1117/12.866082 PG 7 WC Optics; Physics, Applied; Imaging Science & Photographic Technology SC Optics; Physics; Imaging Science & Photographic Technology GA BTS05 UT WOS:000287928300008 ER PT S AU Krainak, MA Yang, GN Lu, W Sun, XL AF Krainak, Michael A. Yang, Guangning Lu, Wei Sun, Xiaoli BE Dereniak, EL Hartke, JP LeVan, PD Longshore, RE Sood, AK Razeghi, M Sudharsanam, R TI Photon-counting detectors for space-based applications SO DETECTORS AND IMAGING DEVICES: INFRARED, FOCAL PLANE, SINGLE PHOTON SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Detectors and Imaging Devices - Infrared, Focal Plane, Single Photon CY AUG 04-05, 2010 CL San Diego, CA SP SPIE DE Photon-counting; detectors; satellite; lasers; avalanche-photodiodes; photomultipliers; optical communication ID HYBRID PHOTOMULTIPLIER; PERFORMANCE; MODULES; SYSTEM AB Photon-counting detectors are required for numerous NASA future space-based applications including science instruments and free-space optical communication terminals. We discuss the baseline and alternative photon counting detectors that are under evaluation for deployment on the Ice, Cloud and land Elevation Satellite-2 (ICESat2) Advance Topographic Laser Altimeter System (ATLAS). Future NASA science instruments and free space laser communication terminal receiver performance can be improved by using single-photon-sensitive detectors. Photomultipliers and avalanche photodiodes are the primary candidates. Single-photon-sensitive detectors provide efficient receivers that minimize the required space-based resources (size, weight, power and cost). C1 [Krainak, Michael A.; Yang, Guangning; Lu, Wei] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Krainak, MA (reprint author), NASA, Goddard Space Flight Ctr, Code 554, Greenbelt, MD 20771 USA. RI Sun, Xiaoli/B-5120-2013 NR 17 TC 1 Z9 1 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8276-1 J9 PROC SPIE PY 2010 VL 7780 AR 77801J DI 10.1117/12.864025 PG 5 WC Optics; Physics, Applied; Imaging Science & Photographic Technology SC Optics; Physics; Imaging Science & Photographic Technology GA BTS05 UT WOS:000287928300040 ER PT B AU Kohli, R AF Kohli, Rajiv BE Kohli, R Mittal, KL TI Strippable Coatings for Removal of Surface Contaminants SO DEVELOPMENTS IN SURFACE CONTAMINATION AND CLEANING, VOL 2: PARTICLE DEPOSITION, CONTROL AND REMOVAL SE Developments in Surface Contamination and Cleaning LA English DT Article; Book Chapter ID OPTICAL-SURFACES; ADHESIVE TAPE; DECONTAMINATION; ULTRAVIOLET; PARTICLES; DITHRANOL; POLYMER; FABRICS; MIRRORS; VACUUM C1 Aerosp Corp, NASA Johnson Space Ctr, Houston, TX 77058 USA. RP Kohli, R (reprint author), Aerosp Corp, NASA Johnson Space Ctr, Houston, TX 77058 USA. NR 173 TC 1 Z9 1 U1 0 U2 1 PU WILLIAM ANDREW INC PI NORWICH PA 13 EATON AVE, NORWICH, NY 13815 USA BN 978-1-4377-7831-1; 978-1-4377-7830-4 J9 DEV SURF CONTAM CL PY 2010 VL 2 BP 177 EP 224 PG 48 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFD90 UT WOS:000319315900006 ER PT J AU Voronov, OA Street, KW AF Voronov, O. A. Street, K. W., Jr. TI Raman scattering in a new carbon material SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Carbon material; Diamond; Raman spectra; Vickers hardness ID PRESSURE AB Samples of a new carbon material, Diamonite-B, were fabricated under high pressure from a commercial carbon black - identified as mixed fullerenes The new material is neither graphite-like nor diamond-like, but exhibits electrical properties close to graphite and mechanical properties close to diamond The use of Raman spectroscopy to investigate the vibrational dynamics of this new carbon material and to provide structural characterization of its short-, medium- and long-range order is reported. We also provide the results of investigations of these samples by high resolution electron microscopy and X-ray diffraction Hardness. electrical conductivity, thermal conductivity and other properties of this new material are compared with synthetic graphite-like and diamond-like materials. two other phases of synthetic bulk carbon (C) 2009 Elsevier B.V. All rights reserved C1 [Voronov, O. A.] Diamond Mat Inc, Piscataway, NJ 08854 USA. [Street, K. W., Jr.] NASA, GRC, Cleveland, OH 44135 USA. RP Voronov, OA (reprint author), Diamond Mat Inc, 120 Centennial Ave, Piscataway, NJ 08854 USA. NR 19 TC 8 Z9 8 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD JAN PY 2010 VL 19 IS 1 BP 31 EP 39 DI 10.1016/j.diamond.2009.10.018 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 551TZ UT WOS:000274234500007 ER PT J AU Chevalley, E Bangerter, A AF Chevalley, Eric Bangerter, Adrian TI Suspending and Reinstating Joint Activities With Dialogue SO DISCOURSE PROCESSES LA English DT Article ID ENDING SOCIAL ENCOUNTERS; INTERRUPTION; CONVERSATION; PROJECTS; WORK; TASK AB Interruptions are common in joint activities like conversations. Typically, interrupted participants suspend the activity, address the interruption, and then reinstate the activity. In conversation, people jointly commit to interact and to talk about a topic, establishing these commitments sequentially. When a commitment is suspended, face is threatened and grounding disrupted. This article proposes and tests a model for suspending and reinstating joint activities, using evidence from naturally occurring suspensions in the Switchboard corpus (Study 1) and from a laboratory experiment (Study 2). Results showed that long suspensions led to more politeness and more collaborative effort in reinstatement than short suspensions. Also, listeners were more polite than speakers in suspending joint activities. Overall, suspending and reinstating a joint activity was shown to be a collaborative task that requires coordination of both the topic and the participants' face needs. C1 [Chevalley, Eric; Bangerter, Adrian] Univ Neuchatel, Dept Ind & Org Psychol, CH-2000 Neuchatel, Switzerland. RP Chevalley, E (reprint author), NASA, Ames Res Ctr, MS 262-4, Moffett Field, CA 94035 USA. EM eric.chevalley@nasa.gov NR 42 TC 1 Z9 1 U1 1 U2 3 PU LAWRENCE ERLBAUM ASSOC INC-TAYLOR & FRANCIS PI PHILADELPHIA PA 325 CHESTNUT STREET, STE 800, PHILADELPHIA, PA 19106 USA SN 0163-853X J9 DISCOURSE PROCESS JI Discl. Process. PY 2010 VL 47 IS 4 BP 263 EP 291 AR PII 922042403 DI 10.1080/01638530902959935 PG 29 WC Psychology, Educational; Psychology, Experimental SC Psychology GA 594AI UT WOS:000277504700001 ER PT S AU Barnes, RA Brown, SW Lykke, KR Guenther, B Xiong, XX Butler, JJ AF Barnes, Robert A. Brown, Steven W. Lykke, Keith R. Guenther, Bruce Xiong, Xiaoxiong (Jack) Butler, James J. BE Xiong, X Kim, C Shimoda, H TI Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization CY OCT 13-14, 2010 CL Incheon, SOUTH KOREA SP SPIE, Korea Ocean Res & Dev Inst, Korea Ocean satellite Ctr, Incheon Tourism Org, Natl Aeronaut & Space Adm, Natl Inst Informat & Commun Technol, Sci Technol Corp, Indian Space Res Org, Indian Natl Ctr Ocean Informat Serv DE NPP VIIRS; radiance; prelaunch calibration ID SPECTRAL IRRADIANCE AB Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such as a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed. Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor. C1 [Barnes, Robert A.] NASA, Ocean Biol Proc Grp, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Barnes, RA (reprint author), NASA, Ocean Biol Proc Grp, Goddard Space Flight Ctr, Mail Code 614-8, Greenbelt, MD 20771 USA. EM Robert.A.Barnes@nasa.gov RI Xiong, Xiaoxiong (Jack)/J-9869-2012; Butler, James/D-4188-2013 NR 10 TC 5 Z9 5 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8392-8 J9 PROC SPIE PY 2010 VL 7862 AR 78620C DI 10.1117/12.868356 PG 19 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BTO93 UT WOS:000287661700007 ER PT S AU Butler, JJ Georgiev, GT Tveekrem, JL Quijada, M Getty, S Hagopian, JG AF Butler, James J. Georgiev, Georgi T. Tveekrem, June L. Quijada, Manuel Getty, Stephanie Hagopian, John G. BE Xiong, X Kim, C Shimoda, H TI Initial Studies of the Bidirectional Reflectance Distribution Function of Carbon Nanotube Structures for Stray Light Control Applications SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization CY OCT 13-14, 2010 CL Incheon, SOUTH KOREA SP SPIE, Korea Ocean Res & Dev Inst, Korea Ocean satellite Ctr, Incheon Tourism Org, Natl Aeronaut & Space Adm, Natl Inst Informat & Commun Technol, Sci Technol Corp, Indian Space Res Org, Indian Natl Ctr Ocean Informat Serv DE multiwalled carbon nanotubes; bidirectional reflectance distribution function; 8(o) directional/hemispherical reflectance; silicon ID OPTICAL-BLACK COATINGS; SURFACES; IR AB The Bidirectional Reflectance Distribution Function (BRDF) at visible and near-infrared wavelengths of Multi-Wall Carbon NanoTubes (MWCNTs) grown on substrate materials are reported. The BRDF measurements were performed in the Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center, and results at 500nm and 900nm are reported here. In addition, the 8(o) Directional/Hemispherical Reflectance of the samples is reported from the ultraviolet to shortwave infrared. The 8(o) Directional/Hemispherical Reflectance was measured in the Optics Branch at NASA's Goddard Space Flight Center. The BRDF was measured at 0(o) and 45(o) incident angles and from -80(o) to + 80(o) scatter angles using a monochromatic source. The optical scatter properties of the samples as represented by their BRDF were found to be strongly influenced by the choice of substrate. As a reference, the optical scattering properties of the carbon nanotubes are compared to the BRDF of Aeroglaze Z306 (TM) and Rippey Ultrapol IV (TM), a well-known black paint and black applique, respectively. The possibility, promise, and challenges of employing carefully engineered carbon nanotubes in straylight control applications particularly for spaceflight instrumentation is also discussed. C1 [Butler, James J.; Tveekrem, June L.; Quijada, Manuel; Getty, Stephanie; Hagopian, John G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Butler, JJ (reprint author), NASA, Goddard Space Flight Ctr, Code 614-4 Biospher Sci Branch, Greenbelt, MD 20771 USA. RI Getty, Stephanie/D-7037-2012; Butler, James/D-4188-2013 NR 32 TC 0 Z9 0 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8392-8 J9 PROC SPIE PY 2010 VL 7862 AR 78620D DI 10.1117/12.869569 PG 16 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BTO93 UT WOS:000287661700008 ER PT S AU Doelling, DR Hong, G Morstad, D Bhatt, R Gopalan, A Xiong, XX AF Doelling, David R. Hong, Gang Morstad, Dan Bhatt, Rajendra Gopalan, Arun Xiong, Xiaoxiong BE Xiong, X Kim, C Shimoda, H TI The characterization of deep convective cloud albedo as a calibration target using MODIS reflectances SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization CY OCT 13-14, 2010 CL Incheon, SOUTH KOREA SP SPIE, Korea Ocean Res & Dev Inst, Korea Ocean satellite Ctr, Incheon Tourism Org, Natl Aeronaut & Space Adm, Natl Inst Informat & Commun Technol, Sci Technol Corp, Indian Space Res Org, Indian Natl Ctr Ocean Informat Serv DE Calibration; MODIS; Deep Convective Clouds ID PART I; SATELLITE AB There are over 25 years of historical satellite data available for climate analysis. The historical satellite data needs to be properly calibrated, especially in the visible, for sensors with no onboard calibration. Accurate vicarious calibration of historical satellites relies on invariant targets, such as the moon, Dome C, and deserts. Deep convective clouds (DCC) also show promise of being a stable or predictable target viewable by all satellites, since they behave as solar diffusers. However DCC have not been well characterized for calibration. Ten years of well-calibrated MODIS radiances are now available. DCC can easily be identified using IR thresholds, where the IR calibration can be traced to the onboard blackbodies. The natural variability of the DCC radiance will be analyzed geographically, seasonally, and for differences of convection initiated over land and ocean. Functionality between particle size and ozone absorption with DCC albedo will be examined theoretically. Although DCC clouds are nearly Lambertian, the angular distribution of reflectances will be sampled and compared with theoretical models. Both Aqua and Terra MODIS DCC angular models were compared for consistency. The DCC method was able to identify two calibration coefficient discontinuities in the Terra-MODIS Collection 5 10-year record and validated the calibration stability of MODIS to within 0.1% per decade. The DCC method needs to take into account the functionality of the 0.65 mu m DCC radiance with the 11 mu m brightness temperature threshold and the DCC 0.65 mu m radiance difference observed over the tropical western pacific and the afternoon generated DCC over land. Both of these cases cause a bias on the order of 5%. These improvements are the first steps towards successful use of DCC as an absolute calibration target. C1 [Doelling, David R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Doelling, DR (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd MS 420, Hampton, VA 23681 USA. EM d.r.doelling@larc.nasa.gov RI Xiong, Xiaoxiong (Jack)/J-9869-2012 NR 5 TC 17 Z9 17 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8392-8 J9 P SOC PHOTO-OPT INS PY 2010 VL 7862 AR 78620I DI 10.1117/12.869577 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BTO93 UT WOS:000287661700011 ER PT S AU Xiong, XX Choi, TY Che, NZ Wang, ZP Dodd, J Xie, Y Barnes, W AF Xiong, Xiaoxiong (Jack) Choi, Taeyoung Che, Nianzeng Wang, Zhipeng Dodd, Jennifer Xie, Yong Barnes, William BE Xiong, X Kim, C Shimoda, H TI Results and Lessons from a Decade of Terra MODIS On-orbit Spectral Characterization SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization CY OCT 13-14, 2010 CL Incheon, SOUTH KOREA SP SPIE, Korea Ocean Res & Dev Inst, Korea Ocean satellite Ctr, Incheon Tourism Org, Natl Aeronaut & Space Adm, Natl Inst Informat & Commun Technol, Sci Technol Corp, Indian Space Res Org, Indian Natl Ctr Ocean Informat Serv DE Terra; MODIS; on-board calibrators; spectral calibration ID PERFORMANCE; CALIBRATION; BANDS AB Since launch in 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS acquires data in 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR) and at three nadir spatial resolutions: 250m for 2 bands, 500m for 5 bands, and 1km for 29 bands. In addition to its on-board calibrators (OBC), designed for sensor radiometric calibration and characterization, MODIS was built with a unique device called the spectro-radiometric calibration assembly (SRCA), which can be configured into three different modes: radiometric, spatial, and spectral. When it is operated in the spectral mode, the SRCA can monitor changes in sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operations have continued to provide valuable information for Terra MODIS on-orbit spectral performance. This paper briefly describes Terra MODIS SRCA on-orbit operations and calibration activities and presents results derived from its decade-long spectral characterization, including changes in the VIS and NIR spectral bands center wavelengths (CW) and bandwidths (BW). It demonstrates that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 nm and 1.0 nm, respectively. As expected, results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit the operation and calibration of its successor, Aqua MODIS, and the development of future missions and sensors, which have stringent requirements on sensor spectral performance. C1 [Xiong, Xiaoxiong (Jack)] NASA, Sci & Explorat Directorate, GSFC, Greenbelt, MD 20771 USA. RP Xiong, XX (reprint author), NASA, Sci & Explorat Directorate, GSFC, Greenbelt, MD 20771 USA. RI Xiong, Xiaoxiong (Jack)/J-9869-2012; Choi, Taeyoung/E-4437-2016 OI Choi, Taeyoung/0000-0002-4596-989X NR 11 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8392-8 J9 P SOC PHOTO-OPT INS PY 2010 VL 7862 AR 78620M DI 10.1117/12.868930 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BTO93 UT WOS:000287661700014 ER PT S AU Aumann, HH Strow, LL AF Aumann, Hartmut H. Strow, L. Larrabee BE Butler, JJ Xiong, X Gu, X TI Analysis of AIRS and IASI System Performance under Clear and Cloudy Conditions SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Infrared temperature sounder hyperspectral climate radiometric calibration AB The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 mu m window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data. C1 [Aumann, Hartmut H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Aumann, HH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 PROC SPIE PY 2010 VL 7807 AR 78070K DI 10.1117/12.859930 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600016 ER PT S AU Elliott, DA Aumann, HH Broberg, SE AF Elliott, Denis A. Aumann, H. H. Broberg, Steven E. BE Butler, JJ Xiong, X Gu, X TI Comparison of AIRS and IASI co-located radiances for cold scenes SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Infrared; temperature sounder; hyperspectral; climate; radiometric calibration AB Calibration of infrared radiometers at cold scene temperatures is very difficult. But high accuracy even at cold temperatures is critical for establishing a climate-quality data record. This paper describes the comparison of radiances from two sensors-the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS) for cold scenes. We compare thirty-two months of IASI and AIRS data for Dome Concordia, which is on a high plateau in Antarctica and thus provides a source of nearly uniform dry scenes with a temperature range from about 190 K to about 250 K. Located on this plateau is a research station, an operational automated weather station that provides ground truth. The AIRS L1B and IASI L1C radiometric calibrations agree for large spatial and temporal averages of data taken over 32 months at Dome Concordia at the 200 mK level, in spite of large differences in the instrument implementations. However, both AIRS L1B and IASI L1C data show scene-temperature-dependent differences as large as 1K, which appear to be calibration artifacts that are only partially understood. In the case of AIRS L1B spectra, some of the effects will be corrected in the forthcoming release of the L1C data. In addition, the IASI quality flag identifies a disproportionate number of spectra in the 240-250 K brightness temperature range as "low quality". Uncorrected calibration artifacts and quality flag related issues are likely to be of significance for climate applications, where 100 mK absolute accuracy is required. Both effects create sampling biases, which cannot be decreased by massive data averaging. The effects are small compared to the absolute radiometric calibration accuracy requirements of AIRS or IASI, but both will need to be accounted for in the radiometric accuracy analysis of future instruments specifically designed for climate research. C1 [Elliott, Denis A.; Aumann, H. H.; Broberg, Steven E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Elliott, DA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM denis.a.elliott@jpl.nasa.gov NR 6 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 PROC SPIE PY 2010 VL 7807 AR 78070J DI 10.1117/12.860964 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600015 ER PT S AU Pagano, TS McClain, CR AF Pagano, Thomas S. McClain, Charles R. BE Butler, JJ Xiong, X Gu, X TI Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Imager; Sounder; Remote Sensing; Hyperspectral ID AIRS AB Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System. C1 [Pagano, Thomas S.] NASA JPL, CALTECH, Pasadena, CA 91109 USA. RP Pagano, TS (reprint author), NASA JPL, CALTECH, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM thomas.s.pagano@jpl.nasa.gov NR 20 TC 1 Z9 1 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 P SOC PHOTO-OPT INS PY 2010 VL 7807 AR 78070L DI 10.1117/12.859047 PG 10 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600017 ER PT S AU Priestley, KJ Loeb, NG Thomas, SS Smith, GL AF Priestley, Kory J. Loeb, Norman G. Thomas, Susan S. Smith, G. Lou BE Butler, JJ Xiong, X Gu, X TI CERES FM5 and FM6: continuity of observations to support a multi-decadal earth radiation budget climate data record SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE CERES; NPP; Earth radiation budget ID INSTRUMENT; CLOUDS AB The goal of the Clouds and the Earth's Radiant Energy System (CERES) project is to provide a long-term record of radiation budget at the top-of-atmosphere (TOA), within the atmosphere, and at the surface with consistent cloud and aerosol properties at climate accuracy (Wielicki et al., 1996). CERES consists of an integrated instrument-algorithm-validation science team that provides development of higher-level products (Levels 1-3) and investigations. It involves a high level of data fusion, merging inputs from 25 unique input data sources to produce 18 CERES data products. Over 90% of the CERES data product volume involves two or more instruments. C1 [Priestley, Kory J.; Loeb, Norman G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Priestley, KJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. NR 9 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 P SOC PHOTO-OPT INS PY 2010 VL 7807 AR 78070N DI 10.1117/12.862387 PG 4 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600019 ER PT S AU Waluschka, E AF Waluschka, Eugene BE Butler, JJ Xiong, X Gu, X TI Sensitivity of VIIRS polarization measurements SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE VIIRS; polarization; ray; trace; polarizers; Bolder Vision; MOXTEK AB The design of an optical system typically involves a sensitivity analysis where the various lens parameters, such as lens spacing and curvatures, to name two parameters, are (slightly) varied to see what, if any, effect this has on the performance and to establish manufacturing tolerances. A similar analysis was performed for the VIIRS instruments polarization measurements to see how real world departures from perfectly linearly polarized light entering VIIRS effects the polarization measurement. The methodology and a few of the results of this polarization sensitivity analysis are presented and applied to the construction of a single polarizer which will cover the VIIRS VIS/NIR spectral range. C1 NASA, Goddard Space Flight Ctr 551 0, Greenbelt, MD 20771 USA. RP Waluschka, E (reprint author), NASA, Goddard Space Flight Ctr 551 0, Greenbelt, MD 20771 USA. NR 5 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 PROC SPIE PY 2010 VL 7807 AR 780704 DI 10.1117/12.861433 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600003 ER PT S AU Xiong, XX AF Xiong, Xiaoxiong (Jack) BE Butler, JJ Xiong, X Gu, X TI Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Terra; MODIS; calibration; blackbody; Moon ID ON-ORBIT CALIBRATION; REFLECTIVE SOLAR BANDS; MOON; PERFORMANCE AB MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues. C1 NASA GSFC, Earth Sci Directorate, Greenbelt, MD 20771 USA. RP Xiong, XX (reprint author), NASA GSFC, Earth Sci Directorate, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov RI Xiong, Xiaoxiong (Jack)/J-9869-2012 NR 14 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 P SOC PHOTO-OPT INS PY 2010 VL 7807 AR 78070I DI 10.1117/12.859088 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600014 ER PT S AU Xiong, XX Madhavan, S AF Xiong, Xiaoxiong (Jack) Madhavan, Sriharsha BE Butler, JJ Xiong, X Gu, X TI Characterization of Terra MODIS Blackbody Uniformity and Stability SO EARTH OBSERVING SYSTEMS XV SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Earth Observing Systems XV CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Terra; MODIS; calibration; blackbody; thermistors; uniformity; stability ID ON-ORBIT CALIBRATION AB MODIS thermal emissive bands (TEB) are calibrated on-orbit via its on-board blackbody (BB) and observations through its space view (SV) port. For Terra MODIS, the BB temperature is nominally controlled at 290K. Periodically, a BB warm-up and cool-down (WUCD) process is scheduled and executed, during which the BB temperatures vary from approximately 272K, the instrument ambient temperature, to 315K. The on-board BB temperatures are monitored, on a scan-by-scan basis, using a set of 12 thermistors uniformly embedded in the BB panel. These thermistors were characterized pre-launch and are traceable to the NIST temperature standards. Using more than 10 years of on-orbit measurements, this paper reports Terra MODIS BB performance in terms of its temperature uniformity and stability. On-orbit characterization is made when the BB is operated under the same or different configurations and conditions. In this study, the variations of BB temperatures from its 12 individual thermistors are analyzed scan-by-scan in order to assess its short-term stability and uniformity. To illustrate the long-term stability over the entire mission, only the granule averaged BB temperatures are used. Results from this study will provide useful information for future missions and sensors, such as NPP VIIRS and LDCM TIRS, in support of their on-board BB design, operation, and performance assessments. C1 [Xiong, Xiaoxiong (Jack)] NASA GSFC, Earth Sci Directorate, Greenbelt, MD 20771 USA. RP Xiong, XX (reprint author), NASA GSFC, Earth Sci Directorate, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov RI Xiong, Xiaoxiong (Jack)/J-9869-2012 NR 7 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8303-4 J9 P SOC PHOTO-OPT INS PY 2010 VL 7807 AR 78071E DI 10.1117/12.860611 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU85 UT WOS:000285840600033 ER PT J AU Olsen, N Mandea, M Sabaka, TJ Toffner-Clausen, L AF Olsen, Nils Mandea, Mioara Sabaka, Terence J. Toffner-Clausen, Lars TI The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF SO EARTH PLANETS AND SPACE LA English DT Article DE Geomagnetic reference model; IGRF/DGRF; spherical harmonic analysis ID EARTHS MAGNETIC-FIELD; SATELLITE DATA; CHAMP AB As a part of the 11th generation IGRF defined by IAGA, we propose a candidate model for the DGRF 2005, a candidate model for IGRF 2010 and a candidate model for the mean secular variation between 2010 and 2015. These candidate models, the derivation of which is described in the following, are based on the latest model in the CHAOS model series, called "CHAOS-3". This model is derived from more than 10 years of satellite and ground observatory data. Maximum spherical harmonic degree of the static field is n = 60. The core field time changes are expressed by spherical harmonic expansion coefficients up to n = 20, described by order 6 splines (with 6-month knot spacing) spanning the time interval 1997.0-2010.0. The third time derivative of the squared magnetic field intensity is regularized at the core-mantle boundary. No spatial regularization is applied. C1 [Olsen, Nils; Toffner-Clausen, Lars] DTU Space, DK-2100 Copenhagen, Denmark. [Mandea, Mioara] Univ Paris Diderot, IPG Paris, F-75013 Paris, France. [Sabaka, Terence J.] NASA, Goddard Space Flight Ctr, Geodynam Branch, Greenbelt, MD 20771 USA. RP Olsen, N (reprint author), DTU Space, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. EM nio@space.dtu.dk RI Olsen, Nils/H-1822-2011; Sabaka, Terence/D-5618-2012; MANDEA, Mioara/E-4892-2012; OI Olsen, Nils/0000-0003-1132-6113; Toffner-Clausen, Lars/0000-0003-4314-3776 FU Danish Government; NASA; ESA; CNES; DARA; Thomas B. Thriges Foundation; German Aerospace Center (DLR); Federal Ministry of Education and Research FX The Orsted Project was made possible by extensive support from the Danish Government, NASA, ESA, CNES, DARA and the Thomas B. Thriges Foundation. The support of the CHAMP mission by the German Aerospace Center (DLR) and the Federal Ministry of Education and Research is gratefully acknowledged. We would like to thank the staff of the geomagnetic observatories and INTERMAGNET for supplying high-quality observatory data, and Susan MacMillan for providing us with preliminary observatory hourly mean values for 2009. The work by MM is considered as IPGP contribution 3071. NR 11 TC 42 Z9 44 U1 2 U2 8 PU TERRA SCIENTIFIC PUBL CO PI TOKYO PA 2003 SANSEI JIYUGAOKA HAIMU, 5-27-19 OKUSAWA, SETAGAYA-KU, TOKYO, 158-0083, JAPAN SN 1343-8832 J9 EARTH PLANETS SPACE JI Earth Planets Space PY 2010 VL 62 IS 10 BP 719 EP 727 DI 10.5047/eps.2010.07.003 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 723AP UT WOS:000287478500002 ER PT J AU Kuang, WJ Wei, ZG Holme, R Tangborn, A AF Kuang, Weijia Wei, Zigang Holme, Richard Tangborn, Andrew TI Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11 SO EARTH PLANETS AND SPACE LA English DT Article DE Geodynamo; geomagnetism; data assimilation; secular variation; IGRF ID EARTHS MAGNETIC-FIELD; HISTORICAL RECORDS; 4 CENTURIES; GENERATION; SPECTRUM; CORE AB Data assimilation has been used in meteorology and oceanography to combine dynamical models and observations to predict changes in state variables. Along similar lines of development, we have created a geomagnetic data assimilation system, MoSST-DAS, which includes a numerical geodynamo model, a suite of geomagnetic and paleomagnetic field models dating back to 5000 BCE, and a data assimilation component using a sequential assimilation algorithm. To reduce systematic errors arising from the geodynamo model, a prediction-correction iterative algorithm is applied for more accurate forecasts. This system and the new algorithm are tested with 7-year geomagnetic forecasts. The results are compared independently with CHAOS and IGRF field models, and they agree very well. Utilizing the geomagnetic field models up to 2009, we provide our prediction of 5-year mean secular variation (SV) for the period 2010-2015 up to degree L = 8. Our prediction is submitted to IGRF-11 as a candidate SV model. C1 [Kuang, Weijia] NASA, Planetary Geodynam Lab, GSFC, Washington, DC USA. [Wei, Zigang; Tangborn, Andrew] UMBC, Joint Ctr Earth Syst Technol, Catonsville, MD USA. [Holme, Richard] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England. RP Kuang, WJ (reprint author), NASA, Planetary Geodynam Lab, GSFC, Washington, DC USA. EM Weijia.Kuang-1@nasa.gov RI Kuang, Weijia/K-5141-2012 OI Kuang, Weijia/0000-0001-7786-6425 FU NASA; NSF [EAR-0327875, EAR-0757880]; NERC [NER/O/S/2003/00675] FX This work is supported by NASA Earth Surface and Interior Program (W. Kuang and Z. Wei), NSF Collaborative Mathematical Geophysics program under the grant EAR-0327875 and NSF Mathematical Geosciences program under the grant EAR-0757880 (W. Kuang and A. Tangborn), NERC grant NER/O/S/2003/00675 (R. Holme). We thank A. Jackson, C. Finlay, C. Constable, M. Korte, T. Sabaka and N. Olsen to provide past global geomagnetic and paleomagnetic field models used in this research. We also thank NASA Advanced Supercomputing (NAS) division for computing resources. NR 34 TC 11 Z9 11 U1 0 U2 7 PU TERRA SCIENTIFIC PUBL CO PI TOKYO PA 2003 SANSEI JIYUGAOKA HAIMU, 5-27-19 OKUSAWA, SETAGAYA-KU, TOKYO, 158-0083, JAPAN SN 1343-8832 J9 EARTH PLANETS SPACE JI Earth Planets Space PY 2010 VL 62 IS 10 BP 775 EP 785 DI 10.5047/eps.2010.07.008 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 723AP UT WOS:000287478500008 ER PT J AU Conover, H Berthiau, G Botts, M Goodman, HM Li, X Lu, Y Maskey, M Regner, K Zavodsky, B AF Conover, Helen Berthiau, Gregoire Botts, Mike Goodman, H. Michael Li, Xiang Lu, Yue Maskey, Manil Regner, Kathryn Zavodsky, Bradley TI Using sensor web protocols for environmental data acquisition and management SO ECOLOGICAL INFORMATICS LA English DT Article DE Sensor web; Standards; Geospatial data; Near-real time AB Standard interfaces for data and information access facilitate data management and usability by minimizing the effort required to acquire, catalog and integrate data from a variety of sources. The authors have prototyped several data management and analysis applications using Sensor Web Enablement Services, a Suite of service protocols being developed by the Open Geospatial Consortium specifically for handling sensor data in near-real time This paper provides a brief overview of some of the service protocols and describes how they are used in various sensor web projects involving near-real-time management of sensor data (C) 2009 Elsevier B V All rights reserved C1 [Conover, Helen; Berthiau, Gregoire; Botts, Mike; Li, Xiang; Lu, Yue; Maskey, Manil; Regner, Kathryn] Univ Alabama, Huntsville, AL 35899 USA. [Goodman, H. Michael; Zavodsky, Bradley] NASA, George C Marshall Space Flight Ctr, Washington, DC USA. RP Conover, H (reprint author), Univ Alabama, Huntsville, AL 35899 USA. FU NASA's Earth Science Technology Office; NOAA; National Science Foundation (NSF); National Geospatial-Intelligence Agency (NGA) FX The primary support for this research is the Advanced Information Systems Technology Program, sponsored by NASA's Earth Science Technology Office. This work builds Oil previous and concurrent research sponsored by other NOAA and NASA programs, the National Science Foundation (NSF) and National Geospatial-Intelligence Agency (NGA). NR 27 TC 17 Z9 17 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-9541 J9 ECOL INFORM JI Ecol. Inform. PD JAN PY 2010 VL 5 IS 1 SI SI BP 32 EP 41 DI 10.1016/j.ecoinf.2009.08.009 PG 10 WC Ecology SC Environmental Sciences & Ecology GA 569LC UT WOS:000275597300006 ER PT S AU Bar-Cohen, Y AF Bar-Cohen, Yoseph BE BarCohen, Y TI Refreshable Braille displays using EAP actuators SO ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Electroactive Polymer Actuators and Devices (EAPAD) 2010 CY MAR 08-11, 2010 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE Braille; Refreshable Braille Displays; EAP; Electroactive Polymers; Biomimetics; Tactile Interfaces AB Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bar-Cohen, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yosi@jpl.nasa.gov NR 24 TC 6 Z9 6 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8057-6 J9 PROC SPIE PY 2010 VL 7642 AR 764206 DI 10.1117/12.844698 PG 5 WC Materials Science, Multidisciplinary; Optics; Polymer Science SC Materials Science; Optics; Polymer Science GA BSS22 UT WOS:000285622200003 ER PT S AU Sirk, AHC Sadoway, DR Sibille, L AF Sirk, A. H. C. Sadoway, D. R. Sibille, L. BE Doyle, FM Woods, R Kelsall, GH TI Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon SO ELECTROCHEMISTRY IN MINERAL AND METAL PROCESSING 8 (EMMP 8) SE ECS Transactions LA English DT Proceedings Paper CT 8th International Symposium on Electrochemistry in Mineral and Metal Processing (EMMP) Held During the 217th Meeting of the Electrochemical-Society CY APR 26-28, 2010 CL Vancouver, CANADA SP Electrochem Soc, Ind Electrolysis & Electrochem Engn Div, Ind Electrochem & Electrochem Engn AB The feasibility of producing oxygen by direct electrolysis of molten lunar regolith at 1600 degrees C was investigated. Oxygen gas at the anode was generated concomitantly with production of iron and silicon at the cathode from the tightly bound oxide mix. Current efficiencies for oxygen evolution from different melt compositions were determined during the course of electrolysis by on-stream analysis of oxygen gas. Scale-up from thin wire (ca. 0.3 cm(2)) electrodes to plate and disc electrodes (ca. 10 cm(2)) was achieved. C1 [Sirk, A. H. C.; Sadoway, D. R.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Sibille, L.] NASA Kennedy Space Ctr, ASRC Aerosp Corp, Kennedy Space Ctr, FL 32899 USA. RP Sirk, AHC (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. NR 8 TC 10 Z9 10 U1 3 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-146-5 J9 ECS TRANSACTIONS PY 2010 VL 28 IS 6 BP 367 EP 373 DI 10.1149/1.3367929 PG 7 WC Electrochemistry SC Electrochemistry GA BCY20 UT WOS:000311967900032 ER PT S AU Crippen, RE AF Crippen, Robert E. BE Fleming, C Marsh, SH Giles, JRA TI Global topographical exploration and analysis with the SRTM and ASTER elevation models SO ELEVATION MODELS FOR GEOSCIENCE SE Geological Society Special Publication LA English DT Article; Book Chapter ID IMAGE; PATAGONIA AB One of the most fundamental geophysical measurements of the Earth is that which describes the shape of its land surface. Topographical data are required by virtually all Earth science disciplines engaged in studies at or near the land surface. Topography is also civilization's most heavily used non-atmospheric geophysical measurement. NASA's Shuttle Radar Topography Mission (SRTM) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) projects have each completed independent near-global digital elevation measurements at comparable resolutions that approach 30 m spatially and 10 m vertically. Exploration of these datasets provides a new perspective of our planet. Fusion of these datasets will produce a more complete global elevation database, and differentiation of these datasets can be used to quantify select geomorphic processes. C1 CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP Crippen, RE (reprint author), CALTECH, NASA Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.E.Crippen@jpl.nasa.gov NR 17 TC 3 Z9 3 U1 2 U2 3 PU GEOLOGICAL SOC PUBLISHING HOUSE PI BATH PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON, ENGLAND SN 0305-8719 BN 978-1-86239-313-4 J9 GEOL SOC SPEC PUBL JI Geol. Soc. Spec. Publ. PY 2010 VL 345 BP 5 EP 15 DI 10.1144/SP345.2 PG 11 WC Geology; Geosciences, Multidisciplinary SC Geology GA BUB81 UT WOS:000288751000002 ER PT J AU English, SA Arakere, NK Allen, PA AF English, Shawn A. Arakere, Nagaraj K. Allen, Phillip A. TI J-T characterized stress fields of surface-cracked metallic liners bonded to a structural backing - I. Uniaxial tension SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Constraint effects; Finite element analysis; Ductile fracture; J-integral; Pressurized components ID TIP FIELDS; PARAMETER AB Surface crack-tip stress fields in a tensile loaded metallic liner bonded to a structural backing are developed using a two-parameter J-T characterization and elastic-plastic modified boundary layer (MBL) finite element solutions. The Ramberg-Osgood power law hardening material model with deformation plasticity theory is implemented for the metallic liner. In addition to an elastic plate backed surface crack liner model, elastic-plastic homogeneous surface crack models of various thicknesses were tested. The constraint effects that arise from the elastic backing on the thin metallic liner and the extent to which J-T two parameter solutions characterize the crack-tip fields are explored in detail. The increased elastic constraint imposed by the backing on the liner results in an enhanced range of validity of J-T characterization. The higher accuracy of MBL solutions in predicting the surface crack-tip fields in the bonded model is partially attributed to an increase in crack-tip triaxiality and a consequent increase in the effective liner thickness from a fracture standpoint. After isolating the effects of thickness, the constraint imposed by the continued elastic linearity of the backing significantly enhanced stress field characterization. In fact, J and T along with MBL solutions predicted stresses with remarkable accuracy for loads beyond full yielding. The effects of backing stiffness variation were also investigated and results indicate that the backing to liner modulus ratio does not significantly influence the crack tip constraint. Indeed, the most significant effect of the backing is its ability to impose an elastic constraint on the liner. Results from this study will facilitate the implementation of geometric limits in testing standards for surface cracked tension specimens bonded to a structural backing. (C) 2009 Elsevier Ltd. All rights reserved. C1 [English, Shawn A.; Arakere, Nagaraj K.] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32610 USA. [Allen, Phillip A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Arakere, NK (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32610 USA. EM shawn350@ufl.edu; nagaraj@ufl.edu; phillip.a.allen@nasa.gov FU NASA Marshall Space Flight Center (MSFC) FX The authors express their appreciation for the support provided by the NASA Marshall Space Flight Center (MSFC). Ongoing, unpublished research at MSFC concerning the deformation limits for surface crack testing laid the foundation for many of the analytical tools and techniques used in this study. The authors also thank the NASA Langley Research Center (LARC) for providing, us with specimen data. NR 17 TC 6 Z9 6 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD JAN PY 2010 VL 77 IS 1 BP 170 EP 181 DI 10.1016/j.engfracmech.2009.09.012 PG 12 WC Mechanics SC Mechanics GA 556AO UT WOS:000274559100012 ER PT S AU Arthur, JJ Bailey, RE Jackson, EB Barnes, JR Williams, SP Kramer, LJ AF Arthur, Jarvis (Trey) J., III Bailey, Randall E. Jackson, E. Bruce Barnes, James R. Williams, Steven P. Kramer, Lynda J. BE Guell, JJ Bernier, KL TI Part-task simulation of synthetic and enhanced vision concepts for lunar landing SO ENHANCED AND SYNTHETIC VISION 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Enhanced and Synthetic Vision 2010 CY APR 06, 2010 CL Orlando, FL SP SPIE DE Head-worn display; Synthetic Vision; Enhanced Vision; Cockpit; Moon; Spacecraft; Simulation AB During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were "a major problem." Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot's workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays. C1 [Arthur, Jarvis (Trey) J., III; Bailey, Randall E.; Jackson, E. Bruce; Williams, Steven P.; Kramer, Lynda J.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Arthur, JJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Trey.Arthur@nasa.gov NR 27 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8153-5 J9 PROC SPIE PY 2010 VL 7689 AR 768904 DI 10.1117/12.852917 PG 13 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BSM45 UT WOS:000284933500003 ER PT S AU Bailey, RE Kramer, LJ Williams, SP AF Bailey, Randall E. Kramer, Lynda J. Williams, Steven P. BE Guell, JJ Bernier, KL TI Enhanced Vision for All-Weather Operations under NextGen SO ENHANCED AND SYNTHETIC VISION 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Enhanced and Synthetic Vision 2010 CY APR 06, 2010 CL Orlando, FL SP SPIE DE Synthetic Vision; Enhanced Vision; Enhanced Flight Vision System; Head-Up Display; Aviation Safety; Flight Deck Systems; All Weather Operations ID HEAD-UP DISPLAY; SYNTHETIC VISION; PERFORMANCE; SYMBOLOGY; HUD AB Recent research in Synthetic/Enhanced Vision technology is analyzed with respect to existing Category II/III performance and certification guidance. The goal is to start the development of performance-based vision systems technology requirements to support future all-weather operations and the NextGen goal of Equivalent Visual Operations. This work shows that existing criteria to operate in Category III weather and visibility are not directly applicable since, unlike today, the primary reference for maneuvering the airplane is based on what the pilot sees visually through the "vision system." New criteria are consequently needed. Several possible criteria are discussed, but more importantly, the factors associated with landing system performance using automatic and manual landings are delineated. C1 [Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Bailey, RE (reprint author), NASA, Langley Res Ctr, Mail Stop 152, Hampton, VA 23681 USA. EM randall.e.bailey@nasa.gov NR 47 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8153-5 J9 PROC SPIE PY 2010 VL 7689 AR 768903 DI 10.1117/12.852667 PG 18 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BSM45 UT WOS:000284933500002 ER PT S AU Kharuk, VI Ranson, KJ Dvinskaya, ML AF Kharuk, V. I. Ranson, K. J. Dvinskaya, M. L. BE Balzter, H TI Evidence of Evergreen Conifers Invasion into Larch Dominated Forests During Recent Decades SO ENVIRONMENTAL CHANGE IN SIBERIA: EARTH OBSERVATION, FIELD STUDIES AND MODELLING SE Advances in Global Change Research LA English DT Article; Book Chapter DE Larch communities; Climate-induced species migration; Burns; Permafrost AB Dark needle coniferous (DNC: Siberian pine, spruce, fir) expansion into larch dominated area was investigated along transects, oriented from the west and south borders of the larch dominated communities to its centre. The expected invasion of DNC into larch habitat was quantified as an increase of the proportion of those species both in the overstory and regeneration. Abundance and invasion potential was expressed using the following variables: (1) N-i and n(i) - the proportion of a given species in the overstory and regeneration, respectively, and (2) K-i - "the normalized propagation coefficient" defined as K-i = (n(i) - N-i)/(n(i) + N-i). The results show that Siberian pine and spruce have high K-i values both along the margin and in the centre of zones of absolute larch dominance, where their presence in the overstory is <1%. There is a tendency of K-i to increase for DNC and birch from south to north and from west to east. The age structure of the regeneration showed that it was formed mainly during the last 2-3 decades. Regeneration number con-elates with winter temperature increase, showing winter temperatures importance for regeneration survive. The DNC invasion into larch habitat is wildfire dependant. Fires promote an invasion of DNC due to better ecological conditions on the burns. On the other hand observed climate-induced fire retune interval reduction may complicate DNC invasion into larch habitat, because larch regenerates better after fire than DNC since larger seed-trees amount. The results obtained indicate DNC and birch invasion into the larch habitat and its relation to the climatic changes for the last 3 decades. At the same time larch stand crown closure and larch invasion into tundra observed in the northern forest-tundra ecotone. C1 [Kharuk, V. I.; Dvinskaya, M. L.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. [Ranson, K. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kharuk, VI (reprint author), SB RAS, VN Sukachev Inst Forest, Academgorodok 50, Krasnoyarsk 660036, Russia. EM kharuk@ksc.krasn.ru; jon.ranson@nasa.gov; mary_dvi@ksc.krasn.ru RI Balzter, Heiko/B-5976-2008 OI Balzter, Heiko/0000-0002-9053-4684 NR 13 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1574-0919 BN 978-90-481-8640-2 J9 ADV GLOB CHANGE RES JI Adv. Glob. Change Res. PY 2010 VL 40 BP 53 EP 65 DI 10.1007/978-90-481-8641-9_4 D2 10.1007/978-90-481-8641-9 PG 13 WC Environmental Sciences; Environmental Studies; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BPI68 UT WOS:000278931700004 ER PT S AU Tchebakova, NM Parfenova, EI Soja, AJ AF Tchebakova, N. M. Parfenova, E. I. Soja, A. J. BE Balzter, H TI Potential Climate-Induced Vegetation Change in Siberia in the Twenty-First Century SO ENVIRONMENTAL CHANGE IN SIBERIA: EARTH OBSERVATION, FIELD STUDIES AND MODELLING SE Advances in Global Change Research LA English DT Article; Book Chapter DE Climate warming; Twenty-first century; Siberia; Vegetation change AB Siberian climate change investigations had already registered climate warming by the end of the twentieth century, especially over the decade of 1991-2000. Our goal is to model hot spots of potential climate-induced vegetation change across central Siberia for three time periods: from 1960 to 1990, from 1990 to 2020 and from 1990 to 2080. January and July temperature and annual precipitation anomalies between climatic means before 1960 and for the 1960-1990 period are calculated from the observed data across central Siberia. Anomalies for 2020 and 2080 are derived from two climate change scenarios HADCM3 A1F1 and B1 of the Hadley Centre. Our Siberian bioclimatic model operates using three climate indices (degree-days above 5 degrees C, degree-days below 0 degrees C, annual moisture index) and permafrost active layer depth. These are mapped for 1990,2020 and 2080 and then coupled with our bioclimatic models to predict vegetation distributions and "hot spots" of vegetation change for indicated time slices. Our analyses demonstrate the far-reaching effects of a changing climate on vegetation cover. Hot spots of potential Siberian vegetation change are predicted for 1990. Observations of vegetation change in Siberia have already been documented in the literature. Vegetation habitats should be significantly perturbed by 2020, and markedly perturbed by 2080. Because of a dryer climate, forest-steppe and steppe ecosystems, rather than forests, are predicted to dominate central Siberian landscapes. Despite the predicted increase in warming, permafrost is not predicted to thaw deep enough to support dark taiga over the Siberian plain, where the larch taiga will continue to be the dominant zonobiome. On the contrary, in the southern mountains in the absence of permafrost, dark taiga is predicted to remain the dominant orobiome. C1 [Tchebakova, N. M.; Parfenova, E. I.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. [Soja, A. J.] NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA. RP Tchebakova, NM (reprint author), SB RAS, VN Sukachev Inst Forest, 50 Akademgorodok, Krasnoyarsk 660036, Russia. EM ncheby@ksc.krasn.ru; 02611@rambler.ru; Amber.J.Soja@nasa.gov RI Balzter, Heiko/B-5976-2008 OI Balzter, Heiko/0000-0002-9053-4684 NR 33 TC 6 Z9 7 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1574-0919 BN 978-90-481-8640-2 J9 ADV GLOB CHANGE RES JI Adv. Glob. Change Res. PY 2010 VL 40 BP 67 EP 82 DI 10.1007/978-90-481-8641-9_5 D2 10.1007/978-90-481-8641-9 PG 16 WC Environmental Sciences; Environmental Studies; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BPI68 UT WOS:000278931700005 ER PT S AU Kharuk, VI Ranson, KJ Dvinskaya, ML AF Kharuk, V. I. Ranson, K. J. Dvinskaya, M. L. BE Balzter, H TI Wildfire Dynamics in Mid-Siberian Larch Dominated Forests SO ENVIRONMENTAL CHANGE IN SIBERIA: EARTH OBSERVATION, FIELD STUDIES AND MODELLING SE Advances in Global Change Research LA English DT Article; Book Chapter DE Wildfires; Fire return interval; Topography; Climate; Larch forests ID FIRE REGIMES; BOREAL FOREST; NATIONAL-PARK; USA; WILDERNESS; LANDSCAPE; HISTORY; RUSSIA; ISLAND AB The long-term wildfire dynamics, including fire return interval (FRI), in the zone of larch dominance and the "larch-mixed taiga" ecotone were examined. A wildfire chronology encompassing the fifteenth through the twentieth centuries was developed by analyzing tree stem fire scars. Average FRI determined from stem fire scar dating was 82 +/- 7 years in the zone of larch dominance. FRI was found to be dependent on site topography. FRI on north-east facing slopes in the zone of larch dominance was 86 +/- 11 years. FRI was significantly less on south-west facing slopes at 61 +/- 8 years and flat terrain at 68 +/- 14 years. For bogs FRI was found to be much longer at 139 +/- 17 years. The FRI decreased from 101 years in the nineteenth century to 65 years in the twentieth century. Connection of this phenomenon with natural and anthropogenic factors was analyzed. The relationship of extreme fire events with summer air temperature deviations at the regional and sub-continental levels was presented. Wildfire impact on permafrost thawing depth was analyzed. The implications of the observed trends on the larch community are discussed. C1 [Kharuk, V. I.; Dvinskaya, M. L.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. [Ranson, K. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kharuk, VI (reprint author), SB RAS, VN Sukachev Inst Forest, 50 Academgorodok, Krasnoyarsk 660036, Russia. EM kharuk@ksc.krasn.ru; jon.ranson@nasa.gov; mary_dvi@ksc.krasn.ru RI Balzter, Heiko/B-5976-2008 OI Balzter, Heiko/0000-0002-9053-4684 NR 39 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1574-0919 BN 978-90-481-8640-2 J9 ADV GLOB CHANGE RES JI Adv. Glob. Change Res. PY 2010 VL 40 BP 83 EP 100 DI 10.1007/978-90-481-8641-9_6 D2 10.1007/978-90-481-8641-9 PG 18 WC Environmental Sciences; Environmental Studies; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BPI68 UT WOS:000278931700006 ER PT S AU Kharuk, VI Ranson, KJ Dyinskaya, ML Im, ST AF Kharuk, V. I. Ranson, K. J. Dyinskaya, M. L. Im, S. T. BE Balzter, H TI Siberian Pine and Larch Response to Climate Warming in the Southern Siberian Mountain Forest: Tundra Ecotone SO ENVIRONMENTAL CHANGE IN SIBERIA: EARTH OBSERVATION, FIELD STUDIES AND MODELLING SE Advances in Global Change Research LA English DT Article; Book Chapter DE Climate trends; Mountain forest-tundra ecotone; Pinus sibirica; Larix sibirica; Upward plant migration ID SWEDISH SCANDES; EXPANSION; STANDS; ALASKA; TREE AB The tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature limits tree growth. Here we show that trees in the forest-tundra ecotone of the mid of the south Siberian Mountains responded strongly to warmer temperatures during the past two decades. There was a growth increment increase, stand densification, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine, larch and fir into arboreal forms. A temperature increase of 1 C allows regeneration to occupy areas similar to 40-100 m higher in elevation, depending on the site. Siberian pine and larch regeneration and arboreal forms now occur at elevations up to 200 m higher in comparison with the known location of the former tree line. These species surpass their upper historical boundary of 10-80 m elevation. Regeneration is propagating into the alpine tundra with the rate of 0.5-2.0 m/year. The observed winter temperature increase is significant for regeneration survival. Measurements of the radial and apical growth increments indicates an acceleration of krummholz transforming into arboreal forms in the mid-1980s. Larch surpasses Siberian pine in cold resistance, and has an arboreal growth form where Siberian pine is in krummholz form. Improving climate provides competitive advantages to Siberian pine in the areas with sufficient precipitation amount. Larch, as a leader in harsh environment resistance, received an advantage at the upper front tree line, and in the areas with low precipitation. Observed tree migration into the alpine stony tundra will decrease albedo, providing a positive feedback to global warming at the regional level. C1 [Kharuk, V. I.; Dyinskaya, M. L.; Im, S. T.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. [Ranson, K. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kharuk, VI (reprint author), SB RAS, VN Sukachev Inst Forest, 50 Akademgorodok, Krasnoyarsk 660036, Russia. EM kharuk@ksc.krasn.ru; jon.ranson@nasa.gov; mary_dvi@ksc.krasn.ru; stim@ksc.krasn.ru RI Balzter, Heiko/B-5976-2008; Im, Sergei/J-2736-2016 OI Balzter, Heiko/0000-0002-9053-4684; Im, Sergei/0000-0002-5794-7938 NR 15 TC 1 Z9 1 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1574-0919 BN 978-90-481-8640-2 J9 ADV GLOB CHANGE RES JI Adv. Glob. Change Res. PY 2010 VL 40 BP 115 EP 132 DI 10.1007/978-90-481-8641-9_8 D2 10.1007/978-90-481-8641-9 PG 18 WC Environmental Sciences; Environmental Studies; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BPI68 UT WOS:000278931700008 ER PT J AU Slaten, S Fields, KA Santos, S Barton, A Rectanus, HV Bhargava, M AF Slaten, Steve Fields, Keith A. Santos, Susan Barton, Andrew Rectanus, Heather V. Bhargava, Mohit TI Integrated Environmental Forensics Approach for Evaluating the Extent of Dissolved Perchlorate Originating from Multiple Sources SO ENVIRONMENTAL FORENSICS LA English DT Article DE perchlorate; groundwater modeling; isotopic fingerprinting; geochemical evaluation ID NATURAL PERCHLORATE; DRINKING-WATER; UNITED-STATES; GROUNDWATER; CALIFORNIA; IDENTIFICATION; CLASSIFICATION; FRACTIONATION; CONTAMINATION; CHEMISTRY AB Three environmental forensic methods were used as part of an integrated evaluation to determine the extent of dissolved perchlorate in groundwater originating from a former rocket propellant testing site in Southern California. The methods included the evaluation of groundwater modeling, subsurface environmental conditions, and isotopic fingerprinting. While these methods have been used independently in environmental forensics, this study is the first to document the combined use of the methods to evaluate the extent of dissolved perchlorate in groundwater. Taken together, the results of this study indicated that the perchlorate originating from a former rocket propellant testing site is under hydraulic control and that multiple sources of perchlorate exist within the same hydrogeologic basin. C1 [Slaten, Steve] NASA, Jet Prop Lab, Management Off, Pasadena, CA 91109 USA. [Fields, Keith A.; Barton, Andrew; Rectanus, Heather V.; Bhargava, Mohit] Battelle Mem Inst, Columbus, OH USA. [Santos, Susan] Focus Grp, Medford, MA USA. RP Slaten, S (reprint author), NASA, Jet Prop Lab, Management Off, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sslaten@nasa.gov NR 59 TC 2 Z9 3 U1 2 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1527-5922 J9 ENVIRON FORENSICS JI Environ. Forensics PY 2010 VL 11 IS 1-2 BP 72 EP 93 AR PII 919980182 DI 10.1080/15275920903530124 PG 22 WC Environmental Sciences SC Environmental Sciences & Ecology GA 570QC UT WOS:000275691900006 ER PT J AU Ivanova, GA Ivanov, VA Kukavskaya, EA Soja, AJ AF Ivanova, G. A. Ivanov, V. A. Kukavskaya, E. A. Soja, A. J. TI The frequency of forest fires in Scots pine stands of Tuva, Russia SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE dendrochronology; forest fires; Scots pine (Pinus sylvestris); Tuva; Siberia; Russia ID BOREAL FORESTS; CARBON; HISTORY AB Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine ( Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region. C1 [Ivanova, G. A.; Kukavskaya, E. A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. [Ivanov, V. A.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia. [Soja, A. J.] NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA. RP Ivanova, GA (reprint author), Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia. EM GAIvanova@ksc.krasn.ru RI Kukavskaya, Elena/I-8155-2014 FU National Aeronautics and Space Administration (NASA); Land Cover Land Use Change (LCLUC) Science Program; Russian Academy of Sciences, Siberian Branch; Russian Fund of Fundamental Investigation FX The authors gratefully acknowledge financial support for this research from the National Aeronautics and Space Administration (NASA), the Land Cover Land Use Change (LCLUC) Science Program, the Russian Academy of Sciences, Siberian Branch, and the Russian Fund of Fundamental Investigation. We would also like to acknowledge the skillful scientific translation services provided by Irina Savkina. NR 35 TC 10 Z9 10 U1 2 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2010 VL 5 IS 1 AR 015002 DI 10.1088/1748-9326/5/1/015002 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 575VR UT WOS:000276097900025 ER PT J AU Menon, S Akbari, H Mahanama, S Sednev, I Levinson, R AF Menon, Surabi Akbari, Hashem Mahanama, Sarith Sednev, Igor Levinson, Ronnen TI Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE radiative forcing; urban albedo; CO2 offsets ID LAND-SURFACE; HEAT-ISLAND AB The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing ( outgoing shortwave + longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 W m(-2), and temperature decreased by similar to 0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental US the total outgoing radiation increased by 2.3 W m(-2), and land surface temperature decreased by similar to 0.03 K for an average 0.01 increase in surface albedo. Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be similar to 57 Gt CO2. A more meaningful evaluation of the impacts of urban albedo increases on global climate and the expected CO2 offsets would require simulations which better characterize urban surfaces and represent the full annual cycle. C1 [Menon, Surabi; Akbari, Hashem; Sednev, Igor; Levinson, Ronnen] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mahanama, Sarith] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Menon, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU California Energy Commission (CEC); Assistant Secretary for Energy Efficiency and Renewable Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; NASA GSFC FX This work was supported by the California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER), and by the Assistant Secretary for Energy Efficiency and Renewable Energy at Lawrence Berkeley National Laboratory under Contract No DE-AC02-05CH11231. The authors wish to acknowledge the support and guidance from staff of the California Energy Commission Project manager, Guido Franco; and PIER Energy-Related Environmental Research manager, Linda Spiegel. Commissioner Arthur Rosenfeld of the California Energy Commission helped with problem formulation and analysis. We especially acknowledge support from Randy Koster of NASA GSFC, for advice and help with the simulations performed in this work. NR 16 TC 50 Z9 51 U1 1 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2010 VL 5 IS 1 AR 014005 DI 10.1088/1748-9326/5/1/014005 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 575VR UT WOS:000276097900006 ER PT J AU Schroeder, R Rawlins, MA McDonald, KC Podest, E Zimmermann, R Kueppers, M AF Schroeder, R. Rawlins, M. A. McDonald, K. C. Podest, E. Zimmermann, R. Kueppers, M. TI Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE inundation; dynamics; wetland; extent; Eurasia; microwave; AMSR-E; QuikSCAT; ALOS PALSAR ID AMSR-E; LAKES; PRECIPITATION; TEMPERATURES; RETRIEVAL; BOREAL; CARBON; AREA AB Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data. C1 [Schroeder, R.; Rawlins, M. A.; McDonald, K. C.; Podest, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zimmermann, R.; Kueppers, M.] Univ Hohenheim, D-70593 Stuttgart, Germany. RP Schroeder, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ronny.schroeder@jpl.nasa.gov NR 36 TC 22 Z9 24 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JAN-MAR PY 2010 VL 5 IS 1 AR 015003 DI 10.1088/1748-9326/5/1/015003 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 575VR UT WOS:000276097900026 ER PT S AU James, M Springer, P Zima, H AF James, Mark Springer, Paul Zima, Hans BE DAmbra, P Guarracino, M Talia, D TI Adaptive Fault Tolerance for Many-Core Based Space-Borne Computing SO EURO-PAR 2010 - PARALLEL PROCESSING, PART II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th International Euro-Par Conference on Parallel Processing CY AUG 31-SEP 03, 2010 CL Ischia, ITALY AB This paper describes an approach to providing software fault tolerance for future deep-space robotic NASA missions, which will require a high degree of autonomy supported by an enhanced on-board computational capability. Such systems have become possible as a result of the emerging many-core technology, which is expected to offer 1024-core chips by 2015. We discuss the challenges and opportunities of this new technology, focusing on introspection-based adaptive fault tolerance that takes into account the specific requirements of applications, guided by a fault model. Introspection supports runtime monitoring of the program execution with the goal of identifying, locating, and analyzing errors. Fault tolerance assertions for the introspection system can be provided by the user, domain-specific knowledge, or via the results of static or dynamic program analysis. This work is part of an on-going project at the Jet Propulsion Laboratory in Pasadena, California. C1 [James, Mark; Springer, Paul; Zima, Hans] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP James, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM mjames@jpl.nasa.gov; pls@jpl.nasa.gov; zima@jpl.nasa.gov NR 23 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-15290-0 J9 LECT NOTES COMPUT SC PY 2010 VL 6272 BP 260 EP 274 PN II PG 15 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods SC Computer Science GA BRM57 UT WOS:000283106500025 ER PT J AU Thomassen, HA Buermann, W Mila, B Graham, CH Cameron, SE Schneider, CJ Pollinger, JP Saatchi, S Wayne, RK Smith, TB AF Thomassen, Henri A. Buermann, Wolfgang Mila, Borja Graham, Catherine H. Cameron, Susan E. Schneider, Christopher J. Pollinger, John P. Saatchi, Sassan Wayne, Robert K. Smith, Thomas B. TI Modeling environmentally associated morphological and genetic variation in a rainforest bird, and its application to conservation prioritization SO EVOLUTIONARY APPLICATIONS LA English DT Article DE Andes; biodiversity; conservation prioritization; environmental gradients; evolutionary process; generalized dissimilarity modeling; landscape genetics; niche modeling ID BIODIVERSITY HOTSPOTS; EVOLUTIONARY PROCESSES; SPECIES DISTRIBUTIONS; RAPID DIVERSIFICATION; POPULATION-GENETICS; MODIS DATA; LEAF-AREA; DIVERSITY; SPECIATION; BIOLOGY AB To better understand how environment shapes phenotypic and genetic variation, we explore the relationship between environmental variables across Ecuador and genetic and morphological variation in the wedge-billed woodcreeper (Glyphorynchus spirurus), a common Neotropical rainforest bird species. Generalized dissimilarity models show that variation in amplified fragment length polymorphism markers was strongly associated with environmental variables on both sides of the Andes, but could also partially be explained by geographic distance on the western side of the Andes. Tarsus, wing, tail, and bill lengths and bill depth were well explained by environmental variables on the western side of the Andes, whereas only tarsus length was well explained on the eastern side. Regions that comprise the highest rates of genetic and phenotypic change occur along steep elevation gradients in the Andes. Such environmental gradients are likely to be particularly important for maximizing adaptive diversity to minimize the impacts of climate change. Using a framework for conservation prioritization based on preserving ecological and evolutionary processes, we found little overlap between currently protected areas in Ecuador and regions we predicted to be important in maximizing adaptive variation. C1 [Thomassen, Henri A.; Buermann, Wolfgang; Mila, Borja; Pollinger, John P.; Saatchi, Sassan; Wayne, Robert K.; Smith, Thomas B.] Univ Calif Los Angeles, Ctr Trop Res, Inst Environm, Los Angeles, CA 90095 USA. [Mila, Borja] CSIC, Museo Nacl Ciencias Nat, Dept Biodivers & Evolutionary Biol, E-28006 Madrid, Spain. [Graham, Catherine H.] SUNY Stony Brook, Dept Ecol & Evolut, New York, NY USA. [Cameron, Susan E.] Harvard Univ, Museum Comparat Zool, Cambridge, MA 02138 USA. [Cameron, Susan E.] Harvard Univ, Ctr Environm, Cambridge, MA 02138 USA. [Schneider, Christopher J.] Boston Univ, Dept Biol, Boston, MA 02215 USA. [Pollinger, John P.; Wayne, Robert K.; Smith, Thomas B.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Thomassen, HA (reprint author), Univ Calif Los Angeles, Ctr Trop Res, Inst Environm, La Kretz Hall,Suite 300,619 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM hathomassen@ucla.edu RI Graham, Catherine/A-9560-2011; Cameron Devitt, Susan/E-2659-2013; OI Mila, Borja/0000-0002-6446-0079 FU NSF [IRCEB9977072]; NASA [IDS/03-0169-0347, NNG05GB37G] FX For help in the field, the authors thank Juan Fernando Freile, Tatiana Santander, Jaime Chaves, Gabriela Castaneda, Brandt T. Ryder, Daniela Gross, Juan Diego Ortiz, Orfa Rodriguez, Maria Fernanda Salazar, Suzanne Tomassi, John McCormack, Brenda Larison, Luis Carrasco, Marcelo Tobar, Jordan Karubian, and the Timpe family. For assistance in the laboratory, the authors thank Navi Timber, and Daniel Greenfield. The authors also thank two anonymous reviewers for valuable comments that improved this manuscript. Funding was provided by grants from NSF (IRCEB9977072 to T. B. S. and R. K. W) and NASA (IDS/03-0169-0347 to T. B. S.; NNG05GB37G to C. H. G.). NR 82 TC 26 Z9 27 U1 3 U2 38 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1752-4571 J9 EVOL APPL JI Evol. Appl. PD JAN PY 2010 VL 3 IS 1 BP 1 EP 16 DI 10.1111/j.1752-4571.2009.00093.x PG 16 WC Evolutionary Biology SC Evolutionary Biology GA 534GP UT WOS:000272884700001 PM 25567899 ER PT J AU Tayon, W Crooks, R Domack, M Wagner, J Elmustafa, AA AF Tayon, W. Crooks, R. Domack, M. Wagner, J. Elmustafa, A. A. TI EBSD Study of Delamination Fracture in Al-Li Alloy 2090 SO EXPERIMENTAL MECHANICS LA English DT Article DE Delamination; Al-Li alloy; EBSD; Kernel average misorientation; KAM; Taylor factor; Twin-related variants ID ELECTRON BACKSCATTER DIFFRACTION; ALUMINUM-LITHIUM ALLOYS; SPECIMEN PREPARATION; DEFORMATION; TOUGHNESS; BEHAVIOR; MICROSTRUCTURE; DUCTILITY; METALS AB Aluminum-lithium (Al-Li) alloys offer attractive combinations of high strength and low density for aerospace structural applications. However, a tendency for delamination fracture has limited their use. Identification of the metallurgical mechanisms controlling delamination may suggest processing modifications to minimize the occurrence of this mode of fracture. In the current study of Al-Li alloy 2090 plate, high quality electron backscattered diffraction (EBSD) information has been used to evaluate grain boundary types exhibiting delamination fracture and characterize microtexture variations between surrounding grains. Delamination was frequently observed to occur between variants of the brass texture component, along near-I 3 pound, incoherent twin boundaries. EBSD analyses indicated a tendency for intense deformation along one side of the fractured boundary. A through-thickness plot of grain-specific Taylor factors showed that delaminations occurred along boundaries with the greatest difference in Taylor factors. Together, these suggest a lack of slip accommodation across the boundary, which promotes significantly higher deformation in one grain, and stress concentrations that result in delamination fracture. C1 [Tayon, W.; Elmustafa, A. A.] Old Dominion Univ, Dept Mech Engn, Appl Res Ctr, Norfolk, VA 23529 USA. [Crooks, R.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Domack, M.; Wagner, J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Tayon, W (reprint author), Old Dominion Univ, Dept Mech Engn, Appl Res Ctr, Norfolk, VA 23529 USA. EM wtayo001@odu.edu FU National Institute of Aerospace (NIA); NASA Langley Research Center (LaRC), Hampton, Virginia [2603] FX This research is supported by the National Institute of Aerospace (NIA) and NASA Langley Research Center (LaRC), Hampton, Virginia (NIA Activity Number: 2603). The authors are grateful to James Baughman for his assistance with surface preparation procedures. The authors would also like to thank Dr. Stephen Hales for his technical review. NR 26 TC 12 Z9 12 U1 2 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD JAN PY 2010 VL 50 IS 1 BP 135 EP 143 DI 10.1007/s11340-008-9202-9 PG 9 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 542FW UT WOS:000273479400015 ER PT S AU Serabyn, E AF Serabyn, E. BE Gozdziewski, K Niedzielski, A Schneider, J TI HIGH-CONTRAST CORONAGRAPHIC TECHNIQUES SO EXTRASOLAR PLANETS IN MULTI-BODY SYSTEMS: THEORY AND OBSERVATIONS SE EAS Publications Series LA English DT Proceedings Paper CT International Conference on Extrasolar Planets in Multi-Body Systems: Theory and Observations CY AUG 25-29, 2008 CL Torun Ctr Contemporary Art, Torun, POLAND SP European Lab Astronomie Pologne France, Polish Minist Sci & Higher Educ, European Sci Fdn, European Network Computat Astrophys, Paris Meudon Observ, Torun Ctr Astron HO Torun Ctr Contemporary Art ID PHASE-MASK CORONAGRAPH; EARTH-LIKE PLANETS; EXTRASOLAR PLANET; ADAPTIVE OPTICS; APODIZATION; LIMITS AB The direct detection of very faint companions to bright stars requires the development of effective high-contrast detection techniques, and the past decade has seen remarkable conceptual and instrumental progress in this area. New coronagraphic and interferometric techniques are regularly being deployed for on-sky tests and observations, and extreme adaptive optics (ExAO) systems will soon enable the exploitation of novel coronagraphic approaches. This paper provides an overview of coronagraphic high-contrast techniques, as well as a brief summary of the current state of affairs and future possibilities. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Serabyn, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 171-113, Pasadena, CA 91109 USA. NR 23 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 1633-4760 BN 978-2-7598-0532-7 J9 EAS PUBLICATIONS PY 2010 VL 42 BP 79 EP 90 DI 10.1051/eas/1042005 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUB45 UT WOS:000288723400005 ER PT S AU Traub, WA Beichman, C Boden, AF Boss, AP Casertano, S Catanzarite, J Fischer, D Ford, EB Gould, A Halverson, S Howard, A Ida, S Kasdin, NJ Laughlin, GP Levison, HF Lin, D Makarov, V Marr, J Muterspaugh, M Raymond, SN Savransky, D Shao, M Sozzetti, A Zhai, C AF Traub, W. A. Beichman, C. Boden, A. F. Boss, A. P. Casertano, S. Catanzarite, J. Fischer, D. Ford, E. B. Gould, A. Halverson, S. Howard, A. Ida, S. Kasdin, N. J. Laughlin, G. P. Levison, H. F. Lin, D. Makarov, V. Marr, J. Muterspaugh, M. Raymond, S. N. Savransky, D. Shao, M. Sozzetti, A. Zhai, C. BE Gozdziewski, K Niedzielski, A Schneider, J TI DETECTABILITY OF EARTH-LIKE PLANETS IN MULTI-PLANET SYSTEMS: PRELIMINARY REPORT SO EXTRASOLAR PLANETS IN MULTI-BODY SYSTEMS: THEORY AND OBSERVATIONS SE EAS Publications Series LA English DT Proceedings Paper CT International Conference on Extrasolar Planets in Multi-Body Systems: Theory and Observations CY AUG 25-29, 2008 CL Torun Ctr Contemporary Art, Torun, POLAND SP European Lab Astronomie Pologne France, Polish Minist Sci & Higher Educ, European Sci Fundat, European Network Computat Astrophys, Paris Meudon Observ, Torun Ctr Astron HO Torun Ctr Contemporary Art AB We ask if Earth-like planets (terrestrial mass and habitablezone orbit) can be detected in multi-planet systems, using astrometric and radial velocity observations. We report here the preliminary results of double-blind calculations designed to answer this question. C1 [Traub, W. A.; Catanzarite, J.; Marr, J.; Shao, M.; Zhai, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Traub, WA (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RI Levison, Harold/C-6061-2013; Savransky, Dmitry/M-1298-2014; OI Levison, Harold/0000-0001-5847-8099; Savransky, Dmitry/0000-0002-8711-7206; Sozzetti, Alessandro/0000-0002-7504-365X; Makarov, Valeri/0000-0003-2336-7887; Fischer, Debra/0000-0003-2221-0861 NR 3 TC 15 Z9 15 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 1633-4760 BN 978-2-7598-0532-7 J9 EAS PUBLICATIONS PY 2010 VL 42 BP 191 EP 199 DI 10.1051/eas/1042022 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUB45 UT WOS:000288723400022 ER PT J AU Nixon, CA Achterberg, RK Teanby, NA Irwin, PGJ Flaud, JM Kleiner, I Dehayem-Kamadjeu, A Brown, LR Sams, RL Bezard, B Coustenis, A Ansty, TM Mamoutkine, A Vinatier, S Bjoraker, GL Jennings, DE Romani, PN Flasar, FM AF Nixon, Conor A. Achterberg, Richard K. Teanby, Nicholas A. Irwin, Patrick G. J. Flaud, Jean-Marie Kleiner, Isabelle Dehayem-Kamadjeu, Alix Brown, Linda R. Sams, Robert L. Bezard, Bruno Coustenis, Athena Ansty, Todd M. Mamoutkine, Andrei Vinatier, Sandrine Bjoraker, Gordon L. Jennings, Donald E. Romani, Paul. N. Flasar, F. Michael TI Upper limits for undetected trace species in the stratosphere of Titan SO FARADAY DISCUSSIONS LA English DT Article; Proceedings Paper CT Conference on Chemistry of the Planets CY JUN 14-16, 2010 CL Brittany, FRANCE ID COMPOSITE INFRARED SPECTROMETER; CASSINI CIRS; UPPER-ATMOSPHERE; ISOTOPIC-RATIOS; METHYL CYANIDE; MU-M; SPECTRA; HC3N; HCN; INTENSITIES AB In this paper we describe the first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which has been observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25 degrees S and 75 degrees N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal. C1 [Nixon, Conor A.; Achterberg, Richard K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nixon, Conor A.; Achterberg, Richard K.; Vinatier, Sandrine; Bjoraker, Gordon L.; Jennings, Donald E.; Romani, Paul. N.; Flasar, F. Michael] NASA, Planetary Syst Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Teanby, Nicholas A.; Irwin, Patrick G. J.] Univ Oxford, Oxford OX1 3PU, England. [Flaud, Jean-Marie; Kleiner, Isabelle; Dehayem-Kamadjeu, Alix] Univ Paris 07, LISA, CNRS, UMR 7583, F-94010 Creteil, France. [Flaud, Jean-Marie; Kleiner, Isabelle; Dehayem-Kamadjeu, Alix] Univ Paris Est, LISA, CNRS, UMR 7583, F-94010 Creteil, France. [Dehayem-Kamadjeu, Alix] Univ Nairobi, Dept Phys, Coll Biol & Phys Sci, Nairobi, Kenya. [Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sams, Robert L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bezard, Bruno; Coustenis, Athena] LESIA, Observ Paris Meudon, F-92195 Meudon, France. [Ansty, Todd M.] Cornell Univ, Dept Space Sci, Ithaca, NY 14853 USA. [Mamoutkine, Andrei] Adnet Syst Inc, Rockville, MD 20852 USA. RP Nixon, CA (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM conor.a.nixon@nasa.gov RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Romani, Paul/D-2729-2012; Bjoraker, Gordon/D-5032-2012; Jennings, Donald/D-7978-2012; OI Nixon, Conor/0000-0001-9540-9121; Teanby, Nicholas/0000-0003-3108-5775; Irwin, Patrick/0000-0002-6772-384X NR 59 TC 14 Z9 14 U1 0 U2 16 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-6640 EI 1364-5498 J9 FARADAY DISCUSS JI Faraday Discuss. PY 2010 VL 147 BP 65 EP 81 DI 10.1039/c003771k PG 17 WC Chemistry, Physical SC Chemistry GA 685DR UT WOS:000284608900004 PM 21302543 ER PT J AU Coates, AJ Wellbrock, A Lewis, GR Jones, GH Young, DT Crary, FJ Waite, JH Johnson, RE Hill, TW Sittler, EC AF Coates, Andrew J. Wellbrock, Anne Lewis, Gethyn R. Jones, Geraint H. Young, David T. Crary, Frank J. Waite, J. Hunter Johnson, Robert E. Hill, Thomas W. Sittler, Edward C., Jr. TI Negative ions at Titan and Enceladus: recent results SO FARADAY DISCUSSIONS LA English DT Article; Proceedings Paper CT Conference on Chemistry of the Planets CY JUN 14-16, 2010 CL Brittany, FRANCE ID SPECTROMETER; ATMOSPHERE; IONOSPHERE; PLASMA AB The detection of heavy negative ions (up to 13 800 amu) in Titan's ionosphere is one of the tantalizing new results from the Cassini mission. These heavy ions indicate for the first time the existence of heavy hydrocarbon and nitrile molecules in this primitive Earth-like atmosphere. These ions were suggested to be precursors of aerosols in Titan's atmosphere and may precipitate to the surface as tholins. We present the evidence for and the analysis of these heavy negative ions at Titan. In addition we examine the variation of the maximum mass of the Titan negative ions with altitude and latitude for the relevant encounters so far, and we discuss the implications for the negative ion formation process. We present data from a recent set of encounters where the latitude was varied between encounters, with other parameters fixed. Models are beginning to explain the low mass negative ions, but the formation process for the higher mass ions is still not understood. It is possible that the structures may be chains, rings or even fullerenes. Negative ions, mainly water clusters in this case, were seen during Cassini's recent close flybys of Enceladus. We present mass spectra from the Enceladus plume, showing water clusters and additional species. As at Titan, the negative ions indicate chemical complexities which were unknown before the Cassini encounters, and are indicative of a complex balance between neutrals and positively and negatively charged ions. C1 [Coates, Andrew J.; Wellbrock, Anne; Lewis, Gethyn R.; Jones, Geraint H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Coates, Andrew J.; Wellbrock, Anne; Lewis, Gethyn R.; Jones, Geraint H.] UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Young, David T.; Crary, Frank J.; Waite, J. Hunter] SW Res Inst, Div Space Sci & Engn, San Antonio, TX 78228 USA. [Johnson, Robert E.] Univ Virginia, Charlottesville, VA 22904 USA. [Hill, Thomas W.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Sittler, Edward C., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Coates, AJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. RI Coates, Andrew/C-2396-2008; Jones, Geraint/C-1682-2008; OI Coates, Andrew/0000-0002-6185-3125; Jones, Geraint/0000-0002-5859-1136 NR 24 TC 26 Z9 26 U1 0 U2 7 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-6640 EI 1364-5498 J9 FARADAY DISCUSS JI Faraday Discuss. PY 2010 VL 147 BP 293 EP 305 DI 10.1039/c004700g PG 13 WC Chemistry, Physical SC Chemistry GA 685DR UT WOS:000284608900015 PM 21302552 ER PT J AU Tinetti, G Griffith, CA Swain, MR Deroo, P Beaulieu, JP Vasisht, G Kipping, D Waldmann, I Tennyson, J Barber, RJ Bouwman, J Allard, N Brown, LR AF Tinetti, Giovanna Griffith, Caitlin A. Swain, Mark R. Deroo, Pieter Beaulieu, Jean Philippe Vasisht, Gautam Kipping, David Waldmann, Ingo Tennyson, Jonathan Barber, Robert J. Bouwman, Jeroen Allard, Nicole Brown, Linda R. TI Exploring extrasolar worlds: from gas giants to terrestrial habitable planets SO FARADAY DISCUSSIONS LA English DT Article; Proceedings Paper CT Conference on Chemistry of the Planets CY JUN 14-16, 2010 CL Brittany, FRANCE ID EXOPLANET HD 209458B; MOLECULAR SPECTROSCOPIC DATABASE; TRANSMISSION SPECTRUM; EMISSION-SPECTRUM; THERMAL EMISSION; DAYSIDE SPECTRUM; PRIMARY TRANSIT; HOT JUPITERS; LINE LIST; MU-M AB Almost 500 extrasolar planets have been found since the discovery of 51 Peg b by Mayor and Queloz in 1995. The traditional field of planetology has thus expanded its frontiers to include planetary environments not represented in our Solar System. We expect that in the next five years space missions (Corot, Kepler and GAIA) or ground-based detection techniques will both increase exponentially the number of new planets discovered and lower the present limit of a similar to 1.9 Earth-mass object [e.g. Mayor et al., Astron. Astrophys., 2009, 507, 487]. While the search for an Earth-twin orbiting a Sun-twin has been one of the major goals pursued by the exoplanet community in the past years, the possibility of sounding the atmospheric composition and structure of an increasing sample of exoplanets with current telescopes has opened new opportunities, unthinkable just a few years ago. As a result, it is possible now not only to determine the orbital characteristics of the new bodies, but moreover to study the exotic environments that lie tens of parsecs away from us. The analysis of the starlight not intercepted by the thin atmospheric limb of its planetary companion (transit spectroscopy), or of the light emitted/reflected by the exoplanet itself, will guide our understanding of the atmospheres and the surfaces of these extrasolar worlds in the next few years. Preliminary results obtained by interpreting current atmospheric observations of transiting gas giants and Neptunes are presented. While the full characterisation of an Earth-twin might requires a technological leap, our understanding of large terrestrial planets (so called super-Earths) orbiting bright, later-type stars is within reach by current space and ground telescopes. C1 [Tinetti, Giovanna; Beaulieu, Jean Philippe; Kipping, David; Waldmann, Ingo; Tennyson, Jonathan; Barber, Robert J.] UCL, Dept Phys & Astron, London WC1 E6BT, England. [Griffith, Caitlin A.] Univ Arizona, LPL, Tucson, AZ 85721 USA. [Swain, Mark R.; Deroo, Pieter; Vasisht, Gautam; Brown, Linda R.] Jet Prop Lab, Pasadena, CA 91109 USA. [Beaulieu, Jean Philippe; Allard, Nicole] Inst Astrophys Paris, Paris, France. [Kipping, David] Harvard Smithsonian Ctr Astrophys CfA, Cambridge, MA 02144 USA. [Bouwman, Jeroen] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Tinetti, G (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1 E6BT, England. EM g.tinetti@ucl.ac.uk RI Tennyson, Jonathan/I-2222-2012; OI Tennyson, Jonathan/0000-0002-4994-5238; Tinetti, Giovanna/0000-0001-6058-6654 NR 44 TC 12 Z9 12 U1 0 U2 8 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-6640 J9 FARADAY DISCUSS JI Faraday Discuss. PY 2010 VL 147 BP 369 EP 377 DI 10.1039/c005126h PG 9 WC Chemistry, Physical SC Chemistry GA 685DR UT WOS:000284608900020 PM 21302557 ER PT S AU Meras, P Poberezhskiy, IY Chang, DH Spiers, GD AF Meras, Patrick Poberezhskiy, Ilya Y. Chang, Daniel H. Spiers, Gary D. BE Mendez, A Du, HH Wang, A Udd, E Mihailov, SJ TI Frequency Stabilization of a 2.05 mu m Laser Using Hollow-Core Fiber CO(2) Frequency Reference Cell SO FIBER OPTIC SENSORS AND APPLICATIONS VII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Fiber Optic Sensors and Applications VII CY APR 07-08, 2010 CL Orlando, FL SP SPIE DE Hollow-Core Photonic Chrystal Fiber; Laser Frequency Stabilization; Lidar; Gas Reference Cell; Tm:Ho:YLF laser ID PHOTONIC BANDGAP FIBERS AB We have designed and built a hollow-core fiber frequency reference cell, filled it with CO(2), and used it to demonstrate frequency stabilization of a 2.05 mu m Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to <2.4MHz (stabilized). The 2.05 mu m laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO(2) and H(2)0 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO(2) profile. C1 [Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Meras, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Patrick.Meras@jpl.nasa.gov NR 8 TC 1 Z9 1 U1 1 U2 12 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8141-2 J9 P SOC PHOTO-OPT INS PY 2010 VL 7677 AR 767713 DI 10.1117/12.852665 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BSS30 UT WOS:000285624300033 ER PT S AU Smith, RN Chao, Y Jones, BH Caron, DA Li, PP Sukhatme, GS AF Smith, Ryan N. Chao, Yi Jones, Burton H. Caron, David A. Li, Peggy P. Sukhatme, Gaurav S. BE Howard, A Iagnemma, K Kelly, A TI Trajectory Design for Autonomous Underwater Vehicles Based on Ocean Model Predictions for Feature Tracking SO FIELD AND SERVICE ROBOTICS SE Springer Tracts in Advanced Robotics LA English DT Proceedings Paper CT 7th International Conference on Field and Service Robotics CY JUL 14-16, 2009 CL MIT, Cambridge, MA SP US Army Res Off, iRobot Corp, US Army TARDEC, US Army ERDC HO MIT ID SYSTEM AB Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles. C1 [Smith, Ryan N.; Sukhatme, Gaurav S.] Univ Southern Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA. [Chao, Yi; Li, Peggy P.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Jones, Burton H.; Caron, David A.] Univ Southern Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Smith, RN (reprint author), Univ Southern Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA. EM ryannsmi@usc.edu; yi.chao@jpl.nasa.gov; p.p.li@jpl.nasa.gov; gaurav@usc.edu FU NOAA [NA05NOS4781228]; NSF,Center for Embedded Networked Sensing (CENS) [CCR-0120778]; NSF [CNS-0520305, CNS-0540420]; ONR MURI [N00014-08-1-0693]; Jet Propulsion Laboratory (JPL), California Institute of Technology, under National Aeronautics and Space Administration (NASA) FX This work was supported in part by the NOAA MERHAB program under grant NA05NOS4781228, by NSF as part of the Center for Embedded Networked Sensing (CENS) under grant CCR-0120778, by NSF grants CNS-0520305 and CNS-0540420, by the ONR MURI program under grant N00014-08-1-0693, and a gift from the Okawa Foundation. The ROMS ocean modeling research described in this publication was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 10 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1610-7438 BN 978-3-642-13407-4 J9 SPRINGER TRAC ADV RO PY 2010 VL 62 BP 263 EP + PG 3 WC Automation & Control Systems; Robotics SC Automation & Control Systems; Robotics GA BUR74 UT WOS:000290175900024 ER PT S AU Vona, M Mittman, D Norris, JS Rus, D AF Vona, Marsette Mittman, David Norris, Jeffrey S. Rus, Daniela BE Howard, A Iagnemma, K Kelly, A TI Using Virtual Articulations to Operate High-DoF Inspection and Manipulation Motions SO FIELD AND SERVICE ROBOTICS SE Springer Tracts in Advanced Robotics LA English DT Proceedings Paper CT 7th International Conference on Field and Service Robotics CY JUL 14-16, 2009 CL MIT, Cambridge, MA SP US Army Res Off, iRobot Corp, US Army TARDEC, US Army ERDC HO MIT AB We have developed a new operator interface system for high-DoF articulated robots based on the idea of allowing the operator to extend the robot's actual kinematics with virtual articulations. These virtual links and joints can model both primary task DoF and constraints on whole-robot coordinated motion. Unlike other methods, our approach can be applied to robots and tasks of arbitrary kinematic topology, and allows specifying motion with a scalable level of detail. We present hardware results where NASA/JPL's All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) executes previously challenging inspection and manipulation motions involving coordinated motion of all 36 of the robot's joints. C1 [Vona, Marsette; Rus, Daniela] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Mittman, David; Norris, Jeffrey S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Vona, M (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. FU Director's Research and Development Fund; NSF EFRI FX ATHLETE VRML model provided by RSVP team, NASA/JPL/ Caltech. Work with ATHLETE hardware was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA and funded through the Directors Research and Development Fund. Additional funding came from the NSF EFRI program. NR 13 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1610-7438 BN 978-3-642-13407-4 J9 SPRINGER TRAC ADV RO PY 2010 VL 62 BP 355 EP + PG 2 WC Automation & Control Systems; Robotics SC Automation & Control Systems; Robotics GA BUR74 UT WOS:000290175900032 ER PT S AU Mather, JC AF Mather, John C. BE Whalen, D Bromm, V Yoshida, N TI The James Webb Space Telescope Mission SO FIRST STARS AND GALAXIES: CHALLENGES FOR THE NEXT DECADE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 1st International Conference on Stars and Galaxies: Challenges for the Next Decade CY MAR 08-11, 2010 CL Austin, TX SP UT Austin, Dept Astronomy Board Visitors Excellence Funds, UT Austin, McDonald Observ, Texas Cosmol Ctr, Los Alamos Natl Lab, Tokyo Univ, Inst Phys & Math Universe, Texas Adv Comp Ctr DE Space telescopes; infrared; James Webb; JWST; cosmology; galaxies; stars AB The James Webb Space Telescope, planned to extend the scientific discoveries of the Hubble Space Telescope, will be a powerful observational tool for the investigation of the first stars and galaxies. With a 6.5-m hexagonal mirror cooled to similar to 40 K, and an instrument package covering 0.6 to 28 mu m with imaging, spectroscopy with R up to similar to 3000, and coronography, it will be capable of observing predicted primeval objects down to flux levels of a few nJy (10 sigma) at 2 mu m. Operated like the Hubble telescope from the Space Telescope Science Institute in Baltimore, it will be available for general observers by proposals, to be solicited a year before launch. It has a required lifetime of 5 years and fuel for 10. C1 NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Mather, JC (reprint author), NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Mail Code 665, Greenbelt, MD 20771 USA. NR 4 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0849-4 J9 AIP CONF PROC PY 2010 VL 1294 BP 1 EP 8 PG 8 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BTZ41 UT WOS:000288517300001 ER PT S AU Dwek, E Cherchneff, I AF Dwek, Eli Cherchneff, Isabelle BE Whalen, D Bromm, V Yoshida, N TI The Origin of Dust in High-Redshift Quasars: The Case of J1148+5251 SO FIRST STARS AND GALAXIES: CHALLENGES FOR THE NEXT DECADE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 1st International Conference on Stars and Galaxies: Challenges for the Next Decade CY MAR 08-11, 2010 CL Austin, TX SP UT Austin, Dept Astronomy Board Visitors Excellence Funds, UT Austin, McDonald Observ, Texas Cosmol Ctr, Los Alamos Natl Lab, Tokyo Univ, Inst Phys & Math Universe, Texas Adv Comp Ctr DE Early universe; galaxy formation; dust formation/evolution; quasars; starburst galaxies ID EARLY UNIVERSE; Z-SIMILAR-TO-6 QUASARS; INTERSTELLAR DUST; GALAXY; EVOLUTION; STARS; GAS AB Two distinct scenarios have been proposed to explain the origin of dust observed in the high-redshift (z = 6.4) quasar J1148+5251. The first scenario suggests that because of the relatively young age of the universe (similar to 890 Myr), only massive stars could have produced the large amount of dust observed in this object. The second scenario assumes a significantly older galactic age, so that most of the dust could have formed in lower-mass AGB stars that would have sufficient time to evolve off the main sequence. In this contribution we offer a critical analysis of both scenarios, and briefly discuss alternative suggestions for the origin of dust in this object. C1 [Dwek, Eli] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. [Cherchneff, Isabelle] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. RP Dwek, E (reprint author), NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM eli.dwek@nasa.gov; isabelle.cherchneff@unibas.ch RI Dwek, Eli/C-3995-2012 NR 21 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0849-4 J9 AIP CONF PROC PY 2010 VL 1294 BP 142 EP + PG 3 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BTZ41 UT WOS:000288517300024 ER PT J AU Keller, AA Simon, V Chan, F Wakefield, WW Clarke, ME Barth, JA Kamikawa, D Fruh, EL AF Keller, Aimee A. Simon, Victor Chan, Francis Wakefield, W. W. Clarke, M. E. Barth, John A. Kamikawa, Dan Fruh, Erica L. TI Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast SO FISHERIES OCEANOGRAPHY LA English DT Article DE benthic invertebrates; bottom dissolved oxygen; coastal Oregon; condition factors; demersal fish biomass; hypoxia; net mounted sensors; Northeast Pacific; species diversity ID GULF-OF-MEXICO; CALIFORNIA CURRENT; MICROSTOMUS-PACIFICUS; FISHERIES MANAGEMENT; DISSOLVED-OXYGEN; DOVER SOLE; ECOSYSTEM; SHRIMP; WATER; CONSEQUENCES AB In August 2007, as part of the NOAA National Marine Fisheries Service (NMFS) West Coast Groundfish Bottom Trawl Survey, we examined the biomass of demersal organisms in a known hypoxic area off the Oregon coast. Although observed each summer, the intensity of hypoxia has varied annually (2002-2007) with the greatest temporal and spatial extent noted in 2006. In 2007 we identified the geographic extent of the hypoxic zone and sampled 17 stations along two depth contours (50 and 70 m) within the area. A Sea-Bird SBE 19plus equipped with a dissolved oxygen (DO) sensor was attached to the bottom trawl to monitor oxygen concentration during each tow. Bottom DO concentrations at all stations were hypoxic with means along the tow tracts ranging from 0.43 to 1.27 mL L-1. Total catch per unit effort (ln CPUE, kg hectare-1) and species diversity (number of species, N) were significantly and positively related to oxygen concentration along the hypoxic gradient. In addition, CPUE (natural log-transformed) for eight fish species and five benthic invertebrate species were significantly and positively related to bottom oxygen concentration within the hypoxic region. Condition factors for five fish species, as well as Dungeness crab (Cancer magister) increased with increased bottom oxygen levels along the hypoxic gradient. Historical catch (2003-2006) within the hypoxic zone indicates that biomass was significantly lower in 2006, the year with the lowest bottom DO levels, relative to other years. C1 [Keller, Aimee A.; Simon, Victor; Clarke, M. E.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Seattle, WA 98112 USA. [Chan, Francis] Oregon State Univ, Dept Zool, Corvallis, OR 97331 USA. [Wakefield, W. W.; Kamikawa, Dan; Fruh, Erica L.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA. [Barth, John A.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. RP Keller, AA (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, 2725 Montlake Blvd E, Seattle, WA 98112 USA. EM aimee.keller@noaa.gov FU federal Scientific Research Permit [SRP-02-2008]; Oregon Department of Fish and Wildlife [OR2008-13311] FX The authors are indebted to Captain Mike Retherford, Sr and the crew of the chartered F/V Excalibur for providing at-sea support. John Wallace and Dr Ian Stewart assisted with experimental design. We especially thank Curt Whitmire for preparing GIS charts as needed throughout the study and Beth Horness for data management. This research has been conducted in conjunction with federal Scientific Research Permit no. SRP-02-2008, and Oregon Department of Fish and Wildlife permit no. OR2008-13311. NR 47 TC 29 Z9 29 U1 2 U2 35 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1054-6006 J9 FISH OCEANOGR JI Fish Oceanogr. PY 2010 VL 19 IS 1 BP 76 EP 87 DI 10.1111/j.1365-2419.2009.00529.x PG 12 WC Fisheries; Oceanography SC Fisheries; Oceanography GA 530ES UT WOS:000272572400005 ER PT J AU Peterson, WT Morgan, CA Fisher, JP Casillas, E AF Peterson, William T. Morgan, Cheryl A. Fisher, Joseph P. Casillas, Edmundo TI Ocean distribution and habitat associations of yearling coho (Oncorhynchus kisutch) and Chinook (O-tshawytscha) salmon in the northern California Current SO FISHERIES OCEANOGRAPHY LA English DT Article DE Chinook salmon; coho salmon; northern California Current; patchiness; pelagic habitat ID COMMUNITY STRUCTURE; CONTINENTAL-SHELF; JUVENILE SALMON; PACIFIC SALMON; COASTAL OCEAN; OREGON COAST; RIVER PLUME; WASHINGTON; SUMMER; GROWTH AB Yearling juvenile coho and Chinook salmon were sampled on 28 cruises in June and September 1981-85 and 1998-07 in continental shelf and oceanic waters off the Pacific Northwest. Oceanographic variables measured included temperature, salinity, water depth, and chlorophyll concentration (all cruises) and copepod biomass during the cruises from 1998-07. Juvenile salmonids were found almost exclusively in continental shelf waters, and showed a patchy distribution: half were collected in similar to 5% of the collections and none were collected in similar to 40% of the collections. Variance-to-mean ratios of the catches were high, also indicating patchy spatial distributions for both species. The salmon were most abundant in the vicinity of the Columbia River and the Washington coast in June; by September, both were less abundant, although still found mainly off Washington. In June, the geographic center-of-mass of the distribution for each species was located off Grays Harbor, WA, near the northern end of our sampling grid, but in September, it shifted southward and inshore. Coho salmon ranged further offshore than Chinook salmon: in June, the average median depth where they were caught was 85.6 and 55.0 m, respectively, and in September it was 65.5 and 43.7 m, respectively. Abundances of both species were significantly correlated with water depth (negatively), chlorophyll (positively) and copepod biomass (positively). Abundances of yearling Chinook salmon, but not of yearling coho salmon, were correlated with temperature (negatively). We discuss the potential role of coastal upwelling, submarine canyons and krill in determining the spatial distributions of the salmon. C1 [Peterson, William T.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Hatfield Marine Sci Ctr, Newport, OR 97370 USA. [Morgan, Cheryl A.] Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97370 USA. [Fisher, Joseph P.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Casillas, Edmundo] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. RP Peterson, WT (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Hatfield Marine Sci Ctr, 2030 S Marine Sci Dr, Newport, OR 97370 USA. EM bill.peterson@noaa.gov FU Bonneville Power Administration FX This research was supported by the Bonneville Power Administration and we are grateful for their continued support of our work. We are particularly thankful to the skippers and crew members of chartered fishing vessels (Fishing Vessels Sea Eagle, Frosti, Ocean Harvester, Pacific Fury, Piky, Predator, and Snowdrift) and the Canadian research ship, R/V Ricker. Many thanks to all of those volunteers who helped out on our cruises, including Brian Beckman, Paul Bentley, Ric Brodeur, Elizabeth Daly, Alex DeRobertis, Troy Guy, Jesse Lamb, Bill Pearcy, Todd Sandell, Robert Schabetsberger, Laurie Weitkamp, Jen Zamon, and many others. Special thanks to Cindy Bucher and Robert Emmett and to Susan Hinton, cruise mom. Discussions with Barbara Hickey as part of WTPs involvement with the NSF/Coastal Ocean Processes/RISE program (Riverine Influences on Shelf Ecosystems - OCE0239107) helped clarify thoughts on the role that canyons might play with regards to krill and salmon ecology. We would also like to thank Bob Emmett, Hongsheng Bi, Brian Beckman, and Bill Pearcy for their comments on the manuscript. NR 53 TC 31 Z9 32 U1 1 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1054-6006 J9 FISH OCEANOGR JI Fish Oceanogr. PY 2010 VL 19 IS 6 BP 508 EP 525 DI 10.1111/j.1365-2419.2010.00560.x PG 18 WC Fisheries; Oceanography SC Fisheries; Oceanography GA 665ZA UT WOS:000283075500007 ER PT B AU Mackey, JR Myers, JG Davis, BL Spiegelberg, SH Nguyen, HD AF Mackey, Jeffrey R. Myers, Jerry G. Davis, Brian L. Spiegelberg, Stephen H. Nguyen, Hung D. BE Overhaussen, PE TI Development of Three-Dimensional Stress Tensor Measurement Instrumentation for Diabetic Foot Ulcer Assessment at the Foot/Ground Interface SO FOOT ULCERS: CAUSES, DIAGNOSIS AND TREATMENT SE Endocrinology Research and Clinical Developments LA English DT Article; Book Chapter DE diabetic; ulcer; gait; sensor; birefringence; stress ID SHEAR FORCES; PRESSURE AB Foot ulceration is a potential diabetic complication that has been estimated to account for over $1 billion worth of medical expenses per year in the United States alone. This multifaceted problem involves the response of plantar soft tissue to both external forces applied to the epidermis and internal changes such as vascular supply and neuropathy. The combination of elevated external forces (pressure and shear) and altered tissue properties is key to the etiology of foot ulcers. Current generation force measurement systems do not elucidate the interplay or contribute to the further understanding between the contribution of shear and pressure to the formation of diabetic foot ulcers. Therefore, it is imperative that Instrumentation enabling the simultaneous measurement of the three-dimensional contributions of shear and pressure be developed in order to enable clinicians to measure all stress components (i.e. 3-D stress tensor) on the plantar surface of the foot and identify areas of concern. Experimental results have demonstrated that an optical approach can provide clear indication of both shear and pressure from 50kPa to 400kPa with frequency response of 100Hz and a stress measurement accuracy of 100Pa and spatial resolution of 8.0mm Initial evaluation of the system shows strong correlation between (i) applied shear and normal stress loads and (ii) the optical phase retardance computed for each stress axis of the polymer-based stress-sensing elements. These special sensing elements are designed to minimize the need for repeated calibration procedures, an issue that has plagued other attempts to develop multi-sensor shear and pressure systems. C1 [Mackey, Jeffrey R.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. [Myers, Jerry G.; Nguyen, Hung D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Davis, Brian L.] Cleveland Clin, Lerner Res Inst, Cleveland, OH 44195 USA. [Spiegelberg, Stephen H.] Cambridge Polymer Grp Inc, Boston, MA 02129 USA. RP Mackey, JR (reprint author), ASRC Aerosp Corp, 21000 Brookpk Rd,Mailstop ASRC, Cleveland, OH 44135 USA. EM Jeffrey.R.Mackey@nasa.gov NR 25 TC 0 Z9 0 U1 1 U2 2 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60741-799-6 J9 ENDOCR RES CLIN DEV PY 2010 BP 129 EP 178 PG 50 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA BPE17 UT WOS:000278668400004 ER PT S AU Birnbaum, KM Sahasrabudhe, A Farr, WH AF Birnbaum, Kevin M. Sahasrabudhe, Adit Farr, William H. BE Hemmati, H TI Separating and Tracking Multiple Beacon Sources for Deep Space Optical Communications SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE beacon tracking; orthogonal codes ID ORTHOGONAL CODES AB We propose a solution for pointing and tracking an optical terminal using one or more beacons and a slowly varying background image. The primary application is a deep space optical communication terminal, where multiple source tracking provides robustness against beacon outage. Our solution uses optical orthogonal codes modulated on each beacon to separate the signal from each source for centroiding. This technique allows calculation of the transmit pointing vector from each beacon location as well as from the background image. The latter can be used to track during beacon outages. We present a simple algorithm for performing this separation, and apply it to experimental data from a photon-counting detector illuminated by two beacons and one constant source. Our results show that the photon flux from each source can be accurately estimated even in the low signal, high background regime. We estimate the variance of the signal estimator due to Poisson fluctuations and infer the effect on a centroid estimator for tracking. C1 [Birnbaum, Kevin M.; Sahasrabudhe, Adit; Farr, William H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Birnbaum, KM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 6 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870Q DI 10.1117/12.843268 PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700022 ER PT S AU Birnbaum, KM Chen, YJ Hemmati, H AF Birnbaum, Kevin M. Chen, Yijiang Hemmati, Hamid BE Hemmati, H TI Precision optical ranging by paired one-way time of flight SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE laser ranging ID GENERAL-RELATIVITY; LASER; OPERATION AB Precision ranging between planetary bodies would provide valuable scientific information, including tests of fundamental physics. Current ranging techniques based on retroreflectors, however, are limited to the Earth-Moon distance due to an inverse fourth power scaling. We present methods for interplanetary distances based on paired one-way ranging, which scales with a more favorable inverse square power. Corrections for clock offset, frequency error, and the Doppler effect are shown. We present the results of tabletop experiments demonstrating sub-millimeter ranging accuracy. C1 [Birnbaum, Kevin M.; Chen, Yijiang; Hemmati, Hamid] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Birnbaum, KM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 15 TC 1 Z9 1 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870A DI 10.1117/12.843315 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700008 ER PT S AU Biswas, A Kovalik, J Wright, M Regehr, M AF Biswas, Abhijit Kovalik, Joseph Wright, Malcolm Regehr, Martin BE Hemmati, H TI Low complexity transceivers and autonomous concept of operations for optical planetary access links SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE planetary optical access; low-complexity transceivers; free-space laser communication ID MARS EXPLORATION AB Optical access links can be used for relaying data from the surface of Mars to spacecraft orbiting Mars. In this paper considerations related to the concept of operations, link analysis and low-complexity transceiver design required for future implementation are discussed, along with the description of some prototype transceiver development that has been completed. C1 [Biswas, Abhijit; Kovalik, Joseph; Wright, Malcolm; Regehr, Martin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Biswas, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM abiswas@jpl.nasa.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 PROC SPIE PY 2010 VL 7587 AR 75870H DI 10.1117/12.846643 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700015 ER PT S AU Biswas, A Kovalik, J Regehr, MW Wright, M AF Biswas, Abhijit Kovalik, Joseph Regehr, Martin W. Wright, Malcolm BE Hemmati, H TI Emulating an Optical Planetary Access Link with an Aircraft SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE Ground-to-aircraft; streaming video; free-space laser communication AB Video imagery was streamed from the ground to an aircraft using a free-space laser communication link. The link operated at 270 Mb/s over slant ranges of 5-9 km in day and night time background conditions. The experiment was designed to demonstrate autonomous link acquisition and served as a first proof-of-concept for a planetary access link between a surface asset and an orbiter at Mars. System parameters monitored during the link demonstration including acquisition and tracking and communication performance are discussed. C1 [Biswas, Abhijit; Kovalik, Joseph; Regehr, Martin W.; Wright, Malcolm] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Biswas, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM abiswas@jpl.nasa.gov NR 7 TC 1 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870B DI 10.1117/12.845225 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700009 ER PT S AU Erkmen, BI Moision, BE Birnbaum, KM AF Erkmen, Baris I. Moision, Bruce E. Birnbaum, Kevin M. BE Hemmati, H TI A review of the information capacity of single-mode free-space optical communication SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE optical communication; classical capacity; quantum limit; quantum information theory ID 2-PHOTON COHERENT STATES; CLASSICAL INFORMATION; CHANNEL CAPACITY; QUANTUM CHANNEL; NOISE; SYSTEMS AB We provide a summary of the classical information capacity of single-mode free-space optical communication for pure-loss channels. We compare the capacities afforded by structured transmitters and receivers to that of the ultimate communication capacity dictated by the quantum nature of light, and we draw the following conclusions. The ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light), but the capacity-achieving receiver (measurement) is yet to be determined. In photon-starved pure-loss channels, binary phase modulation in combination with the optimal receiver is near-capacity achieving, and more importantly, it is superior to on-off keying with either the optimal receiver (as yet to be determined) or with a photon-counter. Heterodyne detection approaches the ultimate capacity at high mean photon numbers. C1 [Erkmen, Baris I.; Moision, Bruce E.; Birnbaum, Kevin M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Erkmen, BI (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM baris.i.erkmen@jpl.nasa.gov NR 33 TC 4 Z9 4 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870N DI 10.1117/12.843542 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700019 ER PT S AU Kovalik, J Biswas, A Wilson, K Wright, M Roberts, WT AF Kovalik, J. Biswas, A. Wilson, K. Wright, M. Roberts, W. T. BE Hemmati, H TI Data Products for the OCTL to OICETS Optical Link Experiment SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE OICETS; optical communications; data products AB JPL has developed a series of software and hardware tools to analyze and record data from a 50Mb/s down and 2 Mb/s up bi-directional optical link with the LUCE terminal onboard the LEO OICETS satellite. This paper presents the data products for this experiment including the system architecture and analysis of the actual data received. C1 [Kovalik, J.; Biswas, A.; Wilson, K.; Wright, M.; Roberts, W. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kovalik, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Joseph.M.Kovalik@jpl.nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870C DI 10.1117/12.845623 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700010 ER PT S AU Roberts, WT AF Roberts, W. Thomas BE Hemmati, H TI Stray light modeling and performance of the 15 cm deep space optical communications transceiver (DSOCT) SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE Optical communications; stray-light modeling; stray-light measurements; deep-space optical communications AB The Deep Space Optical Communications Transceiver (DSOCT) was developed as a small demonstrator testbed for evaluating optical components and systems for a deep space optical communications system. The need for a low-scatter optical system derives from the requirement for the transceiver to operate to within 2 degree solar elongation angles. An experiment in which the terminal was set up on Earth and pointed near the Sun demonstrated the terminal's ability to achieve Earth-background limited operation somewhere between 2 and 5 degrees of the edge of the solar disk, depending on the Earth-radiance background assumed as the lower bound for background light and the sky radiance conditions during the experiment. Stray light analysis matches the measured scatter to within a factor of 3, and identifies the system's secondary mirror as the main source of concern. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Roberts, WT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870V DI 10.1117/12.840784 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700027 ER PT S AU Roberts, WT Wright, MW Kovalik, J Garkanian, V Wilson, KE AF Roberts, W. Thomas Wright, Malcolm W. Kovalik, Joseph Garkanian, Vachik Wilson, Keith E. BE Hemmati, H TI OCTL to OICETS optical link experiment (OTOOLE) electrooptical systems SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE Optical communications; laser communications; OICETS; OCTL; space-based laser communications; optical communications systems; beam transmission systems AB The OCTL to OICETS Optical Link Experiment (OTOOLE) project demonstrated bi-directional optical communications between the JAXA Optical Inter-orbit Communications Engineering Test Satellite (OICETS) spacecraft and the NASA Optical Communications Telescope Laboratory (OCTL) ground station. This paper provides a detailed description of the experiment design for the uplink optical channel, in which 4 beacon lasers and 3 modulated communication lasers were combined and projected through the F/76 OCTL main telescope. The paper also describes the reimaging optical design employed on the acquisition telescope for receiving the OICETS-transmitted signal and the design of the receiver channel. Performance tests and alignment techniques of both systems are described. C1 [Roberts, W. Thomas; Wright, Malcolm W.; Kovalik, Joseph; Garkanian, Vachik; Wilson, Keith E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Roberts, WT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 6 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870Y DI 10.1117/12.855137 PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700030 ER PT S AU Soibel, A Wright, M Farr, W Keo, S Hill, C Yang, RQ Liu, HC AF Soibel, A. Wright, M. Farr, W. Keo, S. Hill, C. Yang, R. Q. Liu, H. C. BE Hemmati, H TI Free space optical communication utilizing mid-infrared interband cascade laser SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE semiconductor lasers; infrared sources; optical communication ID INTERSUBBAND TRANSITIONS; QUANTUM-WELLS AB A Free Space Optical (FSO) link utilizing mid-IR Interband Cascade lasers has been demonstrated in the 3-5 mu m atmospheric transmission window with data rates up to 70 Mb/s and bit-error-rate (BER) less than 10(-8). The performance of the mid-IR FSO link has been compared with the performance of a near-IR link under various fog conditions using an indoor communication testbed. These experiments demonstrated the lower attenuation and scintillation advantages of a mid-IR FSO link through fog than a 1550 nm FSO link. C1 [Soibel, A.; Wright, M.; Farr, W.; Keo, S.; Hill, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Soibel, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Soibel@jpl.nasa.gov NR 10 TC 5 Z9 5 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 75870S DI 10.1117/12.845788 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700024 ER PT S AU Wilson, KE Kovalik, J Biswas, A Wright, M Roberts, WT Takayama, Y Yamakawa, S AF Wilson, Keith E. Kovalik, Joseph Biswas, Abhijit Wright, Malcolm Roberts, William T. Takayama, Yoshihisa Yamakawa, Shiro BE Hemmati, H TI Preliminary results of the OCTL to OICETS optical link experiment (OTOOLE) SO FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Free-Space Laser Communication Technologies XXII CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE Lasercom; Table Mountain; OICETS; OCTL; optical communications AB JPL in collaboration with JAXA and NICT demonstrated a 50Mb/s downlink and 2Mb/s uplink bi-directional link with the LEO OICETS satellite. The experiments were conducted in May and June over a variety of atmospheric conditions. Bit error rates of 10(-1) to less than 10(-6) were measured on the downlink. This paper describes the preparations, precursor experiments, and operations for the link. It also presents the analyzed downlink data results. C1 [Wilson, Keith E.; Kovalik, Joseph; Biswas, Abhijit; Wright, Malcolm; Roberts, William T.] CALTECH, Jet Prop Lab, Pasadena, CA 91001 USA. RP Wilson, KE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91001 USA. EM kwilson@jpl.nasa.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7983-9 J9 P SOC PHOTO-OPT INS PY 2010 VL 7587 AR 758703 DI 10.1117/12.845063 PG 13 WC Optics; Physics, Applied SC Optics; Physics GA BSN22 UT WOS:000284997700002 ER PT S AU Regehr, MW Biswas, A Kovalik, JM Wright, MW AF Regehr, Martin W. Biswas, Abhijit Kovalik, Joseph M. Wright, Malcolm W. BE Majumdar, AK Davis, CC TI Pointing Performance of an Aircraft-to-Ground Optical Communications Link SO FREE-SPACE LASER COMMUNICATIONS X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Free-Space Laser Communications X CY AUG 02-03, 2010 CL San Diego, CA SP SPIE DE Optical communications; air-to-ground communications; precision pointing AB We present results of the acquisition and pointing system from successful aircraft-to-ground optical communication demonstrations performed at JPL and nearby at the Table Mountain Facility. Pointing acquisition was accomplished by first using a GPS/INS system to point the aircraft transceiver's beam at the ground station which was equipped with a wide-field camera for acquisition, then locking the ground station pointing to the aircraft's beam. Finally, the aircraft transceiver pointing was locked to the return beam from the ground. Before we began the design and construction of the pointing control system we obtained flight data of typical pointing disturbances on the target aircraft. We then used these data in simulations of the acquisition process and of closed-loop operation. These simulations were used to make design decisions. Excellent pointing performance was achieved in spite of the large disturbances on the aircraft by using a direct-drive brushless DC motor gimbal which provided both passive disturbance isolation and high pointing control loop bandwidth. C1 [Regehr, Martin W.; Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Regehr, MW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. NR 3 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-310-2 J9 PROC SPIE PY 2010 VL 7814 AR 781403 DI 10.1117/12.858632 PG 10 WC Optics; Telecommunications SC Optics; Telecommunications GA BSU50 UT WOS:000285828200003 ER PT B AU Walker, LM Johnson, KE Gallagher, SC Hibbard, JE Hornschemeier, AE Charlton, JC Jarrett, TH AF Walker, Lisa May Johnson, Kelsey E. Gallagher, Sarah C. Hibbard, John E. Hornschemeier, Ann E. Charlton, Jane C. Jarrett, Thomas H. BE Smith, BJ Bastian, N Higdon, SJU Higdon, JL TI Mid-Infrared Evidence for Accelerated Evolution in Compact Group Galaxies SO GALAXY WARS: STELLAR POPULATIONS AND STAR FORMATION IN INTERACTING GALAXIES SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT Conference on Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies CY JUL 19-22, 2009 CL E Tennessee State Univ, Johnson City, TN SP ETSU Off Res & Sponsored Projects, ETSU Friends Astron HO E Tennessee State Univ AB We find evidence for accelerated evolution in compact group galaxies from the distribution in mid-infrared colorspace of 42 galaxies from 12 Hickson Compact Groups (HCGs) compared to the distributions of several other samples including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are not uniformly distributed in colorspace, as well as quantitative evidence for a gap. Galaxies in the infall region of the Coma cluster also exhibit a non-uniform distribution and a less well defined gap, which may reflect a similarity with the compact group environment. Neither the Coma Center or interacting samples show evidence of a gap, leading us to speculate that the gap is unique to the environment of high galaxy density where gas has not been fully processed or stripped. C1 [Walker, Lisa May; Johnson, Kelsey E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Gallagher, Sarah C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Hibbard, John E.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Hornschemeier, Ann E.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Charlton, Jane C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Jarrett, Thomas H.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Walker, LM (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-726-1 J9 ASTR SOC P PY 2010 VL 423 BP 88 EP + PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BSM97 UT WOS:000284979300016 ER PT B AU Mullan, B Charlton, JC Konstantopoulos, IS Bastian, N Chandar, R Durrell, PR Elmegreen, DM English, J Gallagher, SC Gronwall, C Hibbard, JE Hunsberger, S Johnson, KE Kepley, A Knierman, KA Koribalski, B Lee, KH Maybhate, A Palma, C Vacca, WD AF Mullan, B. Charlton, J. C. Konstantopoulos, I. S. Bastian, N. Chandar, R. Durrell, P. R. Elmegreen, D. M. English, J. Gallagher, S. C. Gronwall, C. Hibbard, J. E. Hunsberger, S. Johnson, K. E. Kepley, A. Knierman, K. A. Koribalski, B. Lee, K. H. Maybhate, A. Palma, C. Vacca, W. D. BE Smith, BJ Bastian, N Higdon, SJU Higdon, JL TI Tidal Tails in Interacting Galaxies: Formation of Compact Stellar Structures SO GALAXY WARS: STELLAR POPULATIONS AND STAR FORMATION IN INTERACTING GALAXIES SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT Conference on Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies CY JUL 19-22, 2009 CL E Tennessee State Univ, Johnson City, TN SP ETSU Off Res & Sponsored Projects, ETSU Friends Astron HO E Tennessee State Univ ID YOUNG STAR-CLUSTERS; GLOBULAR-CLUSTERS; ANTENNAE GALAXIES; MASS FUNCTION; POPULATIONS; EVOLUTION; COLORS AB We have used F606W (V-606)- and F814W (I-814)- band images from the Hubble Space Telescope (HST) to identify compact stellar clusters within the tidal tails of twelve different interacting galaxies. The seventeen tails within our sample span a physical parameter space of HI/stellar masses, tail pressure and density through their diversity of tail lengths, optical brightnesses, mass ratios, HI column densities, stage on the Toomre sequence, and tail kinematics. Our preliminary findings in this study indicate that star cluster demographics of the tidal tail environment are compatible with the current understanding of star cluster formation in quiescent systems, possibly only needing changes in certain parameters or normalization of the Schechter cluster initial mass function (CIMF) to replicate what we observe in color-magnitude diagrams and a Brightest M-V - log N plot. C1 [Mullan, B.; Charlton, J. C.; Konstantopoulos, I. S.; Gronwall, C.; Hunsberger, S.; Lee, K. H.; Palma, C.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16803 USA. [Bastian, N.] Univ Cambridge, Astron Inst, Cambridge CB3 OHA, England. [Chandar, R.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Durrell, P. R.] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. [Elmegreen, D. M.] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [English, J.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Gallagher, S. C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Hibbard, J. E.] Natl Radio Astron Observ, Dept Phys & Astron, Charlottesville, VA 22903 USA. [Johnson, K. E.; Kepley, A.] Univ Virginia, Charlottesville, VA 22904 USA. [Knierman, K. A.] Arizona State Univ, Sch Earth & Space Explorat, Batcman Phys Sci Ctr, Tempe, AZ 85287 USA. [Maybhate, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Vacca, W. D.] Univ Space Res Assoc, NASA, Ames Res Ctr, Stratospher Obersb Infrared Astron, Moffett Field, CA 94035 USA. RP Mullan, B (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16803 USA. EM mullan@astro.psu.edu NR 24 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-726-1 J9 ASTR SOC P PY 2010 VL 423 BP 129 EP + PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BSM97 UT WOS:000284979300024 ER PT S AU Johnson, TV AF Johnson, Torrence V. BE Barbieri, C Chakrabarti, S Coradini, M Lazzarin, M TI Modern exploration of Galileo's new worlds SO GALILEO'S MEDICEAN MOONS: THEIR IMPACT ON 400 YEARS OF DISCOVERY SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 269th Symposium of the International Astronomical Union CY JAN 06-09, 2010 CL Padova, ITALY SP Int Astronom Union, European Space Agcy, Comm Space Res COSPAR, Univ Padua, Assoc Friends, Comune Padova, Univ Padua, Dept Astron, Parco Scientifico Tecnico Galileo Padova, Accademia Galileiana Sci & Lett Arti, Camera Commercio Padova, Salmoiraghi & Vigano DE History and philosophy of astronomy; space vehicles; planets and satellites: individual (Callisto, Europa, Ganymede, Io, Jupiter) AB Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new 'stars', following Jupiter in the sky but changing their positions with respect; to the giant planet every night. Galileo showed that these 'Medicean stars', as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Johnson, TV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Torrence.V.Johnson@jpl.nasa.gov NR 7 TC 0 Z9 0 U1 1 U2 5 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-0-521-19556-0 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 269 BP 49 EP 57 DI 10.1017/S174392131000726X PG 9 WC Astronomy & Astrophysics; History & Philosophy Of Science SC Astronomy & Astrophysics; History & Philosophy of Science GA BUQ39 UT WOS:000290064700008 ER PT S AU Pappalardo, RT AF Pappalardo, Robert T. BE Barbieri, C Chakrabarti, S Coradini, M Lazzarin, M TI Seeking Europa's Ocean SO GALILEO'S MEDICEAN MOONS: THEIR IMPACT ON 400 YEARS OF DISCOVERY SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 269th Symposium of the International Astronomical Union CY JAN 06-09, 2010 CL Padova, ITALY SP Int Astronom Union, European Space Agcy, Comm Space Res COSPAR, Univ Padua, Assoc Friends, Comune Padova, Univ Padua, Dept Astron, Parco Scientifico Tecnico Galileo Padova, Accademia Galileiana Sci & Lett Arti, Camera Commercio Padova, Salmoiraghi & Vigano DE Europa; habitability; ocean; convection; ice ID ICE SHELL; GALILEAN SATELLITES; IMPACT FEATURES; SURFACE; CONSTRAINTS; SEPARATION; THICKNESS; CALLISTO; MISSION; STATE AB Galileo spacecraft data suggest that a global ocean exists beneath the frozen ice surface Jupiter's moon Europa. Since the early 1970s, planetary scientists have used theoretical and observational arguments to deliberate the existence of an ocean within Europa and other large icy satellites. Galileo magnetometry data indicates an induced magnetic field at Europa, implying a salt water ocean. A paucity of large craters argues for a surface on average only similar to 40-90 Myr old. Two multi-ring structures suggest that impacts punched through an ice shell similar to 20 km thick. Europa's ocean and surface are inherently linked through tidal deformation of the floating ice shell, and tidal flexing and nonsynchronous rotation generate stresses that fracture and deform the surface to create ridges and bands. Dark spots, domes, and chaos terrain are probably related to tidally driven ice convection along with partial melting within the ice shell. Europa's geological activity and probable mantle contact permit the chemical ingredients necessary for life to be present within the satellite's ocean. Astonishing geology and high astrobiological potential make Europa a top priority for future spacecraft exploration, with a primary goal of assessing its habitability. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Pappalardo, RT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM robert.pappalardo@jpl.nasa.gov NR 65 TC 5 Z9 5 U1 2 U2 14 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-0-521-19556-0 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 269 BP 101 EP 114 DI 10.1017/S1743921310007325 PG 14 WC Astronomy & Astrophysics; History & Philosophy Of Science SC Astronomy & Astrophysics; History & Philosophy of Science GA BUQ39 UT WOS:000290064700014 ER PT S AU Hand, KP McKay, CP Pilcher, CB AF Hand, Kevin P. McKay, Christopher P. Pilcher, Carl B. BE Barbieri, C Chakrabarti, S Coradini, M Lazzarin, M TI Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds SO GALILEO'S MEDICEAN MOONS: THEIR IMPACT ON 400 YEARS OF DISCOVERY SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 269th Symposium of the International Astronomical Union CY JAN 06-09, 2010 CL Padova, ITALY SP Int Astronom Union, European Space Agcy, Comm Space Res COSPAR, Univ Padua, Assoc Friends, Comune Padova, Univ Padua, Dept Astron, Parco Scientifico Tecnico Galileo Padova, Accademia Galileiana Sci & Lett Arti, Camera Commercio Padova, Salmoiraghi & Vigano DE Astrobiology; Europa; Moons; Biosignatures; Exobiology; Spectroscopy ID GALILEAN SATELLITES; SPECTRAL SIGNATURES; EUROPA; LIFE; BIOSIGNATURES; CONSTRAINTS; ORGANISMS; SURFACE; ENERGY; PHOTOSYNTHESIS AB The ability to differentiate abiotic organic material from material of a biological origin is a critical task for astrobiology. Mass spectrometry and spectroscopy provide key tools for advancing this task and are two techniques that provide useful and highly complementary compositional information independent of a specific biochemical pathway. Here we address some of the utility and limitations of applying these techniques to both orbital and in situ exploration of icy moons of the outer solar system. C1 [Hand, Kevin P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hand, KP (reprint author), CALTECH, Jet Prop Lab, MS 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM khand@jpl.nasa.gov; chris.mckay@nasa.gov; carl.b.pilcher@nasa.gov NR 49 TC 2 Z9 2 U1 0 U2 6 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-0-521-19556-0 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 269 BP 165 EP 176 DI 10.1017/S1743921310007374 PG 12 WC Astronomy & Astrophysics; History & Philosophy Of Science SC Astronomy & Astrophysics; History & Philosophy of Science GA BUQ39 UT WOS:000290064700019 ER PT B AU Mora, EM Mangala, SL Lopez-Berestein, G Sood, AK AF Mora, Edna M. Mangala, Selanere L. Lopez-Berestein, Gabriel Sood, Anil K. BE Roth, JA TI RNAi: A New Paradigm in Cancer Gene Therapy SO GENE-BASED THERAPIES FOR CANCER SE Current Cancer Research LA English DT Article; Book Chapter DE RNAi; Delivery systems; Clinical applications; RNAi formulations ID SMALL INTERFERING RNA; IN-VIVO; SIRNA DELIVERY; ANTISENSE OLIGONUCLEOTIDES; OVARIAN-CANCER; CELL; EXPRESSION; DICER; DRUG; NANOPARTICLES AB RNA interference (RNAi) has revolutionized the field of gene therapy and opened up new opportunities for personalized treatments However, several challenges remain for gene therapy. Therefore, new approaches for gene regulatory therapies are needed to overcome these challenges In this chapter, we discuss the clinical significance of the RNAi machinery, clinical applications, delivery systems, oil-target effects, imaging, and clinical trials The remarkable advances in the design, delivery, and understanding of RNAi-based therapeutics predict a bright future for their development as therapeutic agents. It is well established that once a gene is identified as an important player in tumor progression or metastasis, siRNA is a feasible alternative to modulate its expression Moreover, the development of new delivery systems will further advance the efficiency and localization of siRNA delivery to specific tissues and organs Concurrently, the development of "intelligent probes" to identify siRNA function in addition to localization will further advance the evaluation of new formulations using imaging techniques C1 [Sood, Anil K.] Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, Houston, TX 77030 USA. [Lopez-Berestein, Gabriel] Univ Texas MD Anderson Canc Ctr, Ctr RNA Interference & Noncoding RNA, Dept Expt Therapeut, Dept Canc Biol, Houston, TX 77030 USA. [Sood, Anil K.] Univ Texas MD Anderson Canc Ctr, Dept Canc Biol, Houston, TX 77030 USA. [Mangala, Selanere L.] NASA, USRA, Div Life Sci, Johnson Space Ctr, Houston, TX USA. [Mora, Edna M.] Univ Puerto Rico, Sch Med, Dept Surg, San Juan, PR 00936 USA. [Mora, Edna M.] Univ Puerto Rico, Ctr Comprehens Canc, San Juan, PR 00936 USA. [Mora, Edna M.] Univ Texas MD Anderson Canc Ctr, Dept Surg Oncol, Houston, TX 77030 USA. RP Sood, AK (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, 1155 Herman Pressler,Unit 1362, Houston, TX 77030 USA. NR 57 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-1-4419-6101-3 J9 CURR CANCER RES PY 2010 BP 1 EP 15 DI 10.1007/978-1-4419-6102-0_1 D2 10.1007/978-1-4419-6102-0 PG 15 WC Oncology SC Oncology GA BQG96 UT WOS:000280962600001 ER PT S AU Anderson, JD Lan, EL AF Anderson, John D. Lan, Eunice L. BE Ciufolini, I Matzner, RA TI Measurements of Space Curvature by Solar Mass SO GENERAL RELATIVITY AND JOHN ARCHIBALD WHEELER SE Astrophysics and Space Science Library LA English DT Article; Book Chapter ID GENERAL-RELATIVITY; GRAVITATIONAL DEFLECTION; DOPPLER MEASUREMENTS; LIGHT DEFLECTION; FOURTH TEST; ECLIPSE; GRAVITY AB Unlike Newtonian mechanics, Einstein's General Theory of Relativity predicts that the Sun causes the space around it to curve. As a result, a light ray passing near the solar limb will be deflected by twice the amount predicted by Newtonian theory. As John Archibald Wheeler put it, "space-time geometry tells mass-energy how to move and mass-energy tells space-time geometry how to curve." This chapter reviews the experimental verification of light deflection, from an early eclipse expedition in 1919 to more recent measurements using interplanetary spacecraft and very long baseline interferometry (VLBI). It turns out that the Einstein prediction is correct to within a realistic standard error of about 26 parts per million. C1 [Anderson, John D.; Lan, Eunice L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Anderson, JD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jdandy@earthlink.net; eunice.l.lau@jpl.nasa.gov NR 39 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0067-0057 BN 978-90-481-3734-3 J9 ASTROPHYS SPACE SC L PY 2010 VL 367 BP 95 EP 108 DI 10.1007/978-90-481-3735-0_7 D2 10.1007/978-90-481-3735-0 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BPW42 UT WOS:000280150900007 ER PT J AU Banks, ED Taylor, NM Gulley, J Lubbers, BR Giarrizo, JG Bullen, HA Hoehler, TM Barton, HA AF Banks, Eric D. Taylor, Nicholas M. Gulley, Jason Lubbers, Brad R. Giarrizo, Juan G. Bullen, Heather A. Hoehler, Tori M. Barton, Hazel A. TI Bacterial Calcium Carbonate Precipitation in Cave Environments: A Function of Calcium Homeostasis SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE calcite; calcium caves; coralloids; homeostasis; speleothems ID ESCHERICHIA-COLI; ANHYDRASE; GROWTH; COMMUNITY; GENE; CALCIFICATION; CYANOBACTERIA; SPELEOTHEMS; INVOLVEMENT; KINETICS AB To determine if microbial species play an active role in the development of calcium carbonate (CaCO3) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO3. The majority of these isolates could precipitate CaCO3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C13O2 to determine whether atmospheric CO2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca2+-rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO3 deposits within caves. C1 [Banks, Eric D.; Taylor, Nicholas M.; Gulley, Jason; Lubbers, Brad R.; Giarrizo, Juan G.; Barton, Hazel A.] No Kentucky Univ, Dept Biol Sci, Highland Hts, KY 41099 USA. [Bullen, Heather A.] No Kentucky Univ, Dept Chem, Highland Hts, KY 41099 USA. [Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Barton, HA (reprint author), No Kentucky Univ, Dept Biol Sci, SC 204D Nunn Dr, Highland Hts, KY 41099 USA. EM bartonh@nku.edu FU ASM; NKU; NSF MIP/CAREER [NSF0643462]; Kentucky NSF [NSF0814194]; NIH Kentucky (NIH) [5P20RR01648-05]; NSF [MRI-0520921] FX The authors would like to thank the landowners and cavers in the collection of the coralloid samples and strains, Dr. Dave Bunnell for the image used in Figure 1, Dr. John Roth and Dr. Eric Kofoid for the Salmonella strains and Mr. Michael D. Kubo for his assistance with the isotopic analyses and IRMS work. EDB was supported by a SURF Fellowship from the ASM and a SURCA Award from NKU. HAB is supported in part by the Kentucky NSF EPSCoR Program (NSF0814194) and an NSF MIP/CAREER grant (NSF0643462), with infrastructure support by the NIH Kentucky INBRE program (NIH 5P20RR01648-05) and NSF Major Research Instrumentation award (MRI-0520921). NR 47 TC 34 Z9 36 U1 4 U2 34 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-0451 EI 1521-0529 J9 GEOMICROBIOL J JI Geomicrobiol. J. PY 2010 VL 27 IS 5 BP 444 EP 454 AR PII 922886445 DI 10.1080/01490450903485136 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 609NL UT WOS:000278663400008 ER PT B AU Xu, HF AF Xu, Huifang BE Barton, LL Mandl, M Loy, A TI Synergistic Roles of Microorganisms in Mineral Precipitates Associated with Deep Sea Methane Seeps SO GEOMICROBIOLOGY: MOLECULAR AND ENVIRONMENTAL PERSPECTIVE LA English DT Article; Book Chapter ID MID-ATLANTIC RIDGE; AUTHIGENIC CARBONATE FORMATION; CONTINENTAL-MARGIN SEDIMENTS; CITY HYDROTHERMAL FIELD; GULF-OF-MEXICO; 125 DEGREES-C; ANAEROBIC OXIDATION; MARINE-SEDIMENTS; GAS-HYDRATE; SULFATE REDUCTION C1 [Xu, Huifang] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Xu, Huifang] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Xu, HF (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu NR 87 TC 11 Z9 11 U1 0 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-90-481-9203-8 PY 2010 BP 325 EP 346 DI 10.1007/978-90-481-9204-5_15 D2 10.1007/978-90-481-9204-5 PG 22 WC Microbiology SC Microbiology GA BQH04 UT WOS:000280965000015 ER PT J AU Roberts, PH Glatzmaier, GA Clune, TL AF Roberts, Paul H. Glatzmaier, Gary A. Clune, Thomas L. TI Numerical simulation of a spherical dynamo excited by a flow of von Karman type SO GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS LA English DT Article DE Homogeneous dynamos; von Karman Sodium experiment; Thin-wall approximation ID DRIVEN; MODEL AB In a celebrated recent experiment, Monchaux, et al. (Phys. Rev. Lett. 2007, 98, 044502) created a self-excited dynamo in a cylindrical container of liquid sodium by a turbulent flow created by counter-rotating impellers at the plane ends of the container. A strange feature of the experiment was its failure to generate magnetic field when the impellers were made of stainless steel; success required the impellers to be made of soft iron. The results reported here were generated by numerical simulations of an idealization of the experiment. The container is a sphere and the impellers are replaced by a differential zonal motion of its surface, the northern and southern hemispheres turning about the symmetry axis in opposite senses, the whole system being contained in a thin shell with which it is in perfect electrical contact. This shell has generally a finite electrical conductance and a magnetic permeability that can greatly exceed that of the fluid. The electrodynamic effect of the shell is represented by a thin-wall boundary condition, similar but not identical to that used in MHD duct flow theory. Eleven cases were considered, in four of which the surface shell is an electrical insulator; in the others it is made of a conducting material which, like soft iron, might have a large permeability. In eight cases, a seed field decays away but in three it is amplified and becomes a turbulent self-excited dynamo. Through four cases of the same surface motion and shell permeability, it is inferred that an increase in the shell conductance assists the regeneration of magnetic field. It is also shown that enhancing the shell permeability assists the field creation. C1 [Glatzmaier, Gary A.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Roberts, Paul H.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Clune, Thomas L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Glatzmaier, GA (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM glatz@es.ucsc.edu FU NSF [EAR-0652370, EAR-0439922, PHY05-51164]; NASA [NNG06GD44G, NNX09AD89G] FX We thank the NSF for support under grants EAR-0652370 and EAR-0439922 and NASA for support via grants NNG06GD44G and NNX09AD89G. Computing resources were provided by NASA (Ames) and NSF ( TACC). This research was begun in the Spring of 2008 during the Workshop on Dynamo Theory held at the Kavli Institute for Theoretical Physics at UC Santa Barbara, supported in part by the National Science Foundation under Grant No. PHY05-51164. We are grateful to Jean-Francois Pinton and to two referees for helpful comments on an earlier version of this article. Jean-Francois suggested the possible usefulness of the decay rates computed in section 4. NR 20 TC 8 Z9 8 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0309-1929 EI 1029-0419 J9 GEOPHYS ASTRO FLUID JI Geophys. Astrophys. Fluid Dyn. PY 2010 VL 104 IS 2-3 BP 207 EP 220 AR PII 920458263 DI 10.1080/03091920903439753 PG 14 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics SC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics GA 594AL UT WOS:000277505000008 ER PT J AU Lary, DJ AF Lary, David John BE Imperatore, P Riccio, D TI Artificial Intelligence in Geoscience and Remote Sensing SO GEOSCIENCE AND REMOTE SENSING, NEW ACHIEVEMENTS LA English DT Article; Book Chapter ID HALOGEN OCCULTATION EXPERIMENT; SUPPORT VECTOR MACHINES; NDVI TIME-SERIES; STRATOSPHERIC CHLORINE; NEURAL-NETWORKS; VEGETATION; BUDGET; REGRESSION; CACAO; AVHRR C1 [Lary, David John] NASA GSFC, Joint Ctr Earth Syst Technol JCET UMBC, Greenbelt, MD 20771 USA. RP Lary, DJ (reprint author), NASA GSFC, Joint Ctr Earth Syst Technol JCET UMBC, Greenbelt, MD 20771 USA. NR 68 TC 1 Z9 1 U1 0 U2 0 PU INTECH EUROPE PI RIJEKA PA JANEZA TRDINE9, RIJEKA, 51000, CROATIA BN 978-953-7619-97-8 PY 2010 BP 105 EP 128 D2 10.5772/214 PG 24 WC Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Geology; Remote Sensing; Imaging Science & Photographic Technology GA BD7YM UT WOS:000363695000008 ER PT J AU Haywood, AM Dowsett, HJ Otto-Bliesner, B Chandler, MA Dolan, AM Hill, DJ Lunt, DJ Robinson, MM Rosenbloom, N Salzmann, U Sohl, LE AF Haywood, A. M. Dowsett, H. J. Otto-Bliesner, B. Chandler, M. A. Dolan, A. M. Hill, D. J. Lunt, D. J. Robinson, M. M. Rosenbloom, N. Salzmann, U. Sohl, L. E. TI Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1) SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID NORTH-ATLANTIC OCEAN; LAST GLACIAL MAXIMUM; PMIP2 COUPLED SIMULATIONS; SEA-SURFACE TEMPERATURES; MID-PLIOCENE; EQUATORIAL PACIFIC; SCALE FEATURES; COASTAL-PLAIN; ARCTIC-OCEAN; CLIMATE AB In 2008 the temporal focus of the Palaeoclimate Modelling Intercomparison Project was expanded to include a model intercomparison for the mid-Pliocene warm period (3.29-2.97 million years ago). This project is referred to as PlioMIP (Pliocene Model Intercomparison Project). Two experiments have been agreed upon and comprise phase 1 of PlioMIP. The first (Experiment 1) will be performed with atmosphere-only climate models. The second (Experiment 2) will utilise fully coupled ocean-atmosphere climate models. The aim of this paper is to provide a detailed model intercomparison project description which documents the experimental design in a more detailed way than has previously been done in the literature. Specifically, this paper describes the experimental design and boundary conditions that will be utilised for Experiment 1 of PlioMIP. C1 [Haywood, A. M.; Dolan, A. M.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Dowsett, H. J.; Robinson, M. M.] US Geol Survey, Eastern Geol & Paleoclimate Sci Ctr, Reston, VA 20192 USA. [Otto-Bliesner, B.; Rosenbloom, N.] CGD NCAR, CCR, Boulder, CO 80307 USA. [Chandler, M. A.; Sohl, L. E.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Chandler, M. A.; Sohl, L. E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Hill, D. J.] British Geol Survey, Keyworth NG12 5GG, Notts, England. [Lunt, D. J.] Univ Bristol, Sch Geol Sci, Bristol BS8 1SS, Avon, England. [Lunt, D. J.] British Antarctic Survey, Cambridge CB3 0ET, Cambs, England. [Salzmann, U.] Northumbria Univ, Sch Appl Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. RP Haywood, AM (reprint author), Univ Leeds, Sch Earth & Environm, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England. EM earamh@leeds.ac.uk RI Lunt, Daniel/G-9451-2011; Dolan, Aisling/D-2625-2012; OI Lunt, Daniel/0000-0003-3585-6928; Hill, Daniel/0000-0001-5492-3925; Dolan, Aisling/0000-0002-9585-9648; Dowsett, Harry/0000-0003-1983-7524 FU USGS Office of Global Change; UK Natural Environment Research Council (NERC) [NE/G009112/1]; Leverhulme Trust FX This work is a product of the US Geological Survey PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project and the Pliocene Model Intercomparison Project (PlioMIP), which is part of the international Palaeoclimate Modelling Intercomparison Project (PMIP). HD and MR thank the USGS Office of Global Change for their support. AH and DL acknowledge the UK Natural Environment Research Council for funding the UK contribution to PlioMIP (NERC Grant NE/G009112/1). AH acknowledges the Leverhulme Trust for their support through the award of a Philip Leverhulme Prize. NR 78 TC 75 Z9 77 U1 2 U2 17 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2010 VL 3 IS 1 BP 227 EP 242 DI 10.5194/gmd-3-227-2010 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 703FW UT WOS:000285964800012 ER PT J AU Nassar, R Jones, DBA Suntharalingam, P Chen, JM Andres, RJ Wecht, KJ Yantosca, RM Kulawik, SS Bowman, KW Worden, JR Machida, T Matsueda, H AF Nassar, R. Jones, D. B. A. Suntharalingam, P. Chen, J. M. Andres, R. J. Wecht, K. J. Yantosca, R. M. Kulawik, S. S. Bowman, K. W. Worden, J. R. Machida, T. Matsueda, H. TI Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID REGIONAL-SCALE FLUXES; LATITUDINAL DISTRIBUTION; SATELLITE-OBSERVATIONS; ECOSYSTEM PRODUCTION; UPDATED EMISSIONS; SOURCE INVERSIONS; FUEL CONSUMPTION; HIGH-RESOLUTION; DIOXIDE; SURFACE AB The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth's carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (similar to 0.19 Pg C yr(-1)), 3-D spatially-distributed emissions from aviation (similar to 0.16 Pg C yr-1), and 3-D chemical production of CO2 (similar to 1.05 Pg C yr-1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (similar to 3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (similar to 10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes. C1 [Nassar, R.; Chen, J. M.] Univ Toronto, Dept Geog, Toronto, ON M5S 2E5, Canada. [Suntharalingam, P.] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England. [Andres, R. J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wecht, K. J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Yantosca, R. M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kulawik, S. S.; Bowman, K. W.; Worden, J. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Machida, T.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Matsueda, H.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Nassar, R.; Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Nassar, R (reprint author), Environm Canada, Div Climate Res, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada. EM ray.nassar@ec.gc.ca RI ANDRES, ROBERT/B-9786-2012; Yantosca, Robert/F-7920-2014; Jones, Dylan/O-2475-2014; Chem, GEOS/C-5595-2014; OI Yantosca, Robert/0000-0003-3781-1870; Jones, Dylan/0000-0002-1935-3725; Nassar, Ray/0000-0001-6282-1611 FU Natural Sciences and Engineering Research Council (NSERC) of Canada FX Work at the University of Toronto was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Work at the Jet Propulsion Laboratory California Institute of Technology was carried out under contract to NASA. We thank all those who have contributed measurements to GLOBALVIEW-CO2 and thank NOAA-ESRL for making GLOBALVIEW as well as their direct measurement datasets publicly available. NR 96 TC 38 Z9 41 U1 2 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2010 VL 3 IS 2 BP 689 EP 716 DI 10.5194/gmd-3-689-2010 PG 28 WC Geosciences, Multidisciplinary SC Geology GA 703FZ UT WOS:000285965100021 ER PT S AU Tran, T Rosiek, MR Beyer, RA Mattson, S Howington-Kraus, E Robinson, MS Archinal, BA Edmundson, K Harbour, D Anderson, E AF Tran, T. Rosiek, M. R. Beyer, Ross A. Mattson, S. Howington-Kraus, E. Robinson, M. S. Archinal, B. A. Edmundson, K. Harbour, D. Anderson, E. CA LROC Sci Team GP ISPRS TI GENERATING DIGITAL TERRAIN MODELS USING LROC NAC IMAGES SO GEOSPATIAL DATA AND GEOVISUALIZATION: ENVIRONMENT, SECURITY, AND SOCIETY SE International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences LA English DT Proceedings Paper CT Joint Symposium of ISPRS Commission IV / AutoCarto Annual Conference CY NOV 15-19, 2010 CL Orlando, FL SP Int Soc Photogrammetry & Remote Sensing DE DTM; LROC; topography; Moon; mapping ID LUNAR; MISSION AB The Lunar Reconnaissance Orbiter Camera (LROC) consists of one Wide Angle Camera (WAC) for synoptic multispectral imaging and two Narrow Angle Cameras (NAC) to provide high-resolution images (0.5 to 2.0 m pixel scale) of key targets. LROC was not designed as a stereo system, but can obtain stereo pairs through images acquired from two orbits (with at least one off-nadir slew). Off-nadir rolls interfere with the data collection of the other instruments, so during the nominal mission LROC slew opportunities are limited to three per day. This work describes a methodology of DTM generation from LROC stereo pairs and provides a preliminary error analysis of those results. DTMs are important data products that can be used to analyze the terrain and surface of the Moon for scientific and engineering purposes. As of 12 September 2010, we have processed 30 NAC stereo pairs to DTMs with absolute control to the Lunar Orbiter Laser Altimeter (LOLA) dataset. For the high-resolution stereo images (similar to 0.5 mpp) from the primary phase, the DTM vertical precision error and the elevation fitting error to the LOLA data is expected to be less than 1 meter. For the lower resolution stereo images (similar to 1.5 mpp) from the commissioning phase, the vertical precision error and elevation fitting error is expected to be 3 meters. This does not include an estimate of absolute error at this time. This will be included when the final LOLA data is available. There are six independent groups generating DTMs (ASU, DLR/TUB, UA, USGS, OSU, and Ames), and collaboration will result in a detailed error analysis that will allow us to fully understand the capabilities of the DTMs made from LROC datasets. C1 [Tran, T.; Robinson, M. S.; Anderson, E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Rosiek, M. R.; Howington-Kraus, E.; Archinal, B. A.; Edmundson, K.; Harbour, D.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Beyer, Ross A.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Beyer, Ross A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Mattson, S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Tran, T (reprint author), Arizona State Univ, Sch Earth & Space Explorat, 1100 S Cady, Tempe, AZ 85287 USA. EM thanh.n.tran@asu.edu; mrosiek@usgs.gov; Ross.A.Beyer@nasa.gov; ahowington@usgs.gov; barchinal@usgs.gov; kedmundson@usgs.gov NR 17 TC 0 Z9 0 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLE 1E, GOTTINGEN, 37081, GERMANY SN 2194-9034 J9 INT ARCH PHOTOGRAMM PY 2010 VL 38 PN 4 PG 7 WC Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA BE1RS UT WOS:000368436900081 ER PT B AU Brown, ME Funk, CC AF Brown, Molly E. Funk, Christopher C. BE Showalter, PS Lu, Y TI Early Warning of Food Security Crises in Urban Areas: The Case of Harare, Zimbabwe, 2007 SO GEOSPATIAL TECHNIQUES IN URBAN HAZARD AND DISASTER ANALYSIS SE Geotechnologies and the Environment LA English DT Article; Book Chapter DE Food security; MODIS; NDVI; Crop models; Zimbabwe; Early warning systems ID VEGETATION; RAINFALL; AFRICA; EVAPOTRANSPIRATION AB In 2007, the citizens of Harare, Zimbabwe began experiencing an intense food security crisis. Due to a complex mix of poor government policies, high inflation rates and production declines due to drought, the crisis produced a massive increase in the number of food-insecure people in the capital city. The international humanitarian aid response to this crisis was largely successful due to early agreement among donors and humanitarian aid officials as to the size and nature of the problem. This paper summarizes an analysis of MODIS NDVI which provided highly accurate estimates of corn production in Zimbabwe in 2007. The estimates enabled an early and decisive movement of resources, supporting the timely delivery of food aid to food insecure residents in Harare. Remote sensing data provided a clear and compelling assessment of significant crop production shortfalls, which gave donors of humanitarian assistance a single number around which they could come to agreement. This use of satellite data typifies how remote sensing may be used in early warning systems to identify food security crises in Africa. C1 [Brown, Molly E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Funk, Christopher C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Brown, ME (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM molly.brown@nasa.gov; chris@geog.ucsb.edu RI Brown, Molly/E-2724-2010 OI Brown, Molly/0000-0001-7384-3314 NR 27 TC 1 Z9 1 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-2237-0 J9 GEOTECH ENVIRON PY 2010 VL 2 BP 229 EP 241 DI 10.1007/978-90-481-2238-7_11 D2 10.1007/978-90-481-2238-7 PG 13 WC Environmental Sciences; Geography; Geosciences, Multidisciplinary; Urban Studies SC Environmental Sciences & Ecology; Geography; Geology; Urban Studies GA BMM11 UT WOS:000272785600011 ER PT J AU Vernikos, J Schneider, VS AF Vernikos, Joan Schneider, Victor S. TI Space, Gravity and the Physiology of Aging: Parallel or Convergent Disciplines? A Mini-Review SO GERONTOLOGY LA English DT Article DE Gravitational physiology; Mechanotransduction; Accelerated aging models; Rehabilitation ID SHORT-DURATION SPACEFLIGHT; BONE-MINERAL LOSS; BED-REST; PHYSICAL-ACTIVITY; TRABECULAR BONE; WHOLE-BODY; FOLLOW-UP; EXERCISE; FLIGHT; MICROGRAVITY AB The abnormal physiology that manifests itself in healthy humans during their adaptation to the microgravity of space has all the features of accelerated aging. The mechano-skeletal and vestibulo-neuromuscular stimuli which are below threshold in space, result in an overall greater than 10-fold more rapid onset and time course of muscle and bone atrophy in space and the development of balance and coordination problems on return to Earth than occur with aging. Similarly, the loss of functional capacity of the cardiovascular system that results in space and continuous bed rest is over 10 times faster than in the course of aging. Deconditioning in space from gravity deprivation has brought attention to the medical hazards of deconditioning on Earth from gravity withdrawal as in sedentary aging. Though seemingly reversible after periods of 6 months in space or its ground analog of bed rest, it remains to be seen whether that will be so after longer exposures. Both adaptation to space and aging do not merely parallel but converge as disorders of mechanotransduction. Like spaceflight, its analog bed rest telescopes the changes observed with aging and serves as a useful clinical model for the study of age-related deconditioning. The convergence of the disciplines of aging, along with gravitational and space physiology is advancing the understanding and prevention of modern lifestyle medical disorders. Copyright (C) 2009 S. Karger AG, Basel C1 [Vernikos, Joan] Thirdage Llc, Culpeper, VA 22701 USA. [Vernikos, Joan] NASA, Culpeper, VA USA. [Schneider, Victor S.] NASA, Off Chief Hlth & Med Officer, Washington, DC 20546 USA. [Schneider, Victor S.] NASA, Explorat Syst Mission Directorate, Washington, DC 20546 USA. [Schneider, Victor S.] Uniformed Serv Univ Hlth Sci, Bethesda, MD USA. RP Vernikos, J (reprint author), Thirdage Llc, 2028 Golf Dr, Culpeper, VA 22701 USA. EM dr.joan@joanvernikos.com NR 77 TC 39 Z9 40 U1 0 U2 14 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 0304-324X J9 GERONTOLOGY JI Gerontology PY 2010 VL 56 IS 2 BP 157 EP 166 DI 10.1159/000252852 PG 10 WC Geriatrics & Gerontology SC Geriatrics & Gerontology GA 570LR UT WOS:000275680200006 PM 19851058 ER PT J AU Hashimoto, H Melton, F Ichii, K Milesi, C Wang, WL Nemani, RR AF Hashimoto, Hirofumi Melton, Forrest Ichii, Kazuhito Milesi, Cristina Wang, Weile Nemani, Ramakrishna R. TI Evaluating the impacts of climate and elevated carbon dioxide on tropical rainforests of the western Amazon basin using ecosystem models and satellite data SO GLOBAL CHANGE BIOLOGY LA English DT Article DE Amazon; ecosystem model; NDVI; NPP ID NET PRIMARY PRODUCTIVITY; DIFFERENCE VEGETATION INDEX; SURFACE AIR-TEMPERATURE; COMPARING GLOBAL-MODELS; LIGHT-USE EFFICIENCY; SPATIAL VARIABILITY; BRAZILIAN AMAZON; SOLAR-RADIATION; CO2; DYNAMICS AB Forest inventories from the intact rainforests of the Amazon indicate increasing rates of carbon gain over the past three decades. However, such estimates have been questioned because of the poor spatial representation of the sampling plots and the incomplete understanding of purported mechanisms behind the increases in biomass. Ecosystem models, when used in conjunction with satellite data, are useful in examining the carbon budgets in regions where the observations of carbon flows are sparse. The purpose of this study is to explain observed trends in normalized difference vegetation index (NDVI) using climate observations and ecosystem models of varying complexity in the western Amazon basin for the period of 1984-2002. We first investigated trends in NDVI and found a positive trend during the study period, but the positive trend in NDVI was observed only in the months from August to December. Then, trends in various climate parameters were calculated, and of the climate variables considered, only shortwave radiation was found to have a corresponding significant positive trend. To compare the impact of each climate component, as well as increasing carbon dioxide (CO2) concentrations, on evergreen forests in the Amazon, we ran three ecosystem models (CASA, Biome-BGC, and LPJ), and calculated monthly net primary production by changing a climate component selected from the available climate datasets. As expected, CO2 fertilization effects showed positive trends throughout the year and cannot explain the positive trend in NDVI, which was observed only for the months of August to December. Through these simulations, we demonstrated that the positive trend in shortwave radiation can explain the positive trend in NDVI observed for the period from August to December. We conclude that the positive trend in shortwave radiation is the most likely driver of the increasing trend in NDVI and the corresponding observed increases in forest biomass. C1 [Hashimoto, Hirofumi; Melton, Forrest; Milesi, Cristina; Wang, Weile] Calif State Univ, Seaside, CA 93955 USA. [Hashimoto, Hirofumi; Melton, Forrest; Milesi, Cristina; Wang, Weile; Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ichii, Kazuhito] Fukushima Univ, Fac Symbiot Syst Sci, Fukushima, Japan. RP Hashimoto, H (reprint author), Calif State Univ, Seaside, CA 93955 USA. EM hirofumi.hashimoto@gmail.com RI Ichii, Kazuhito/D-2392-2010 OI Ichii, Kazuhito/0000-0002-8696-8084 FU NASA FX This research was funded by grants from NASA Earth Sciences program. NR 72 TC 10 Z9 11 U1 6 U2 45 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JAN PY 2010 VL 16 IS 1 BP 255 EP 271 DI 10.1111/j.1365-2486.2009.01921.x PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 554EV UT WOS:000274419200021 ER PT J AU Dick, SJ AF Dick, Steven J. BE Launius, RD Fleming, JR DeVorkin, DH TI Geodesy, Time, and the Markowitz Moon Camera Program: An Interwoven International Geophysical Year Story SO GLOBALIZING POLAR SCIENCE: RECONSIDERING THE INTERNATIONAL POLAR AND GEOPHYSICAL YEARS SE Palgrave Studies in the History of Science and Technology LA English DT Article; Book Chapter C1 NASA, Washington, DC 20546 USA. RP Dick, SJ (reprint author), NASA, Washington, DC 20546 USA. NR 54 TC 1 Z9 1 U1 0 U2 0 PU PALGRAVE PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, ENGLAND BN 978-0-230-11465-4 J9 PALGR STUD HIST SCI PY 2010 BP 307 EP 328 D2 10.1057/9780230114654 PG 22 WC History & Philosophy Of Science SC History & Philosophy of Science GA BVM13 UT WOS:000291858200017 ER PT B AU Conway, EM AF Conway, Erik M. BE Launius, RD Fleming, JR DeVorkin, DH TI The International Geophysical Year and Planetary Science SO GLOBALIZING POLAR SCIENCE: RECONSIDERING THE INTERNATIONAL POLAR AND GEOPHYSICAL YEARS SE Palgrave Studies in the History of Science and Technology LA English DT Article; Book Chapter C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Conway, EM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 38 TC 0 Z9 0 U1 0 U2 0 PU PALGRAVE PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, ENGLAND BN 978-0-230-11465-4 J9 PALGR STUD HIST SCI PY 2010 BP 331 EP 342 D2 10.1057/9780230114654 PG 12 WC History & Philosophy Of Science SC History & Philosophy of Science GA BVM13 UT WOS:000291858200018 ER PT S AU Turyshev, SG AF Turyshev, Slava G. BE MoralesTecotl, HA UrenaLopez, LA LinaresRomero, R GarciaCompean, HH TI Testing General Relativity in the Solar System: Present Status and Possible Future Developments SO GRAVITATIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO COSMIC SCALE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 8th Mexican School on Gravitation and Mathematical Physics CY DEC 06-12, 2009 CL Playa del Carmen, MEXICO SP Mexican Natl Sci & Technol Council (CONACyT), Royal Soc, Mexican Phys Soc, Ctr Res & Adv Studies, Iztapalapa Metropolitan Autonomous Univ (UAM-I), Univ Guanajuato (UG), Mexican Natl Autonomous Univ (UNAM) DE Tests of general theory of relativity; gravitational experiments in space ID PROBE WMAP OBSERVATIONS; ANGULAR POWER SPECTRUM; INVERSE-SQUARE LAW; COSMOLOGICAL CONSTANT; EQUIVALENCE PRINCIPLE; ACCELERATING UNIVERSE; MASSIVE BODIES; GRAVITY; SUPERNOVAE; SPACE AB Series of recent experiments have successfully tested Einstein's general theory of relativity to a remarkable precision. Various experimental techniques were used to test relativistic gravity in the solar system namely spacecraft Doppler tracking, planetary ranging, lunar laser ranging, dedicated gravity experiments in space and many ground-based efforts. Here we review the foundations of general relativity, present recent progress in the tests of relativistic gravity, and discuss the advances in our understanding of fundamental physics that are anticipated in the near future. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 84 TC 2 Z9 2 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0805-0 J9 AIP CONF PROC PY 2010 VL 1256 BP 3 EP 26 DI 10.1063/1.3473878 PG 24 WC Physics, Applied; Physics, Mathematical SC Physics GA BRL48 UT WOS:000283042900001 ER PT S AU Gross, RS Chao, BF AF Gross, R. S. Chao, B. F. BE Mertikas, SP TI A Unified Approach to Modeling the Effects of Earthquakes on the Three Pillars of Geodesy SO GRAVITY, GEOID AND EARTH OBSERVATION SE International Association of Geodesy Symposia LA English DT Proceedings Paper CT IAG International Symposium on Gravity, Geoid and Earth Observation 2008 CY JUN 23-27, 2008 CL Khania, GREECE SP Tech Univ Crete, Lab Geodesy & Geomat Engn, Int Assoc Geodesy, European Space Agcy, Tech Chamber Greece, Div W Crete, Hellen Natl Cedestre, Chania Chamber Commerce & Ind, Agro Land SA, Natl Aeronaut & Space Adm (NASA) ID 2004 SUMATRA EARTHQUAKE; DECEMBER; ROTATION; GRAVITY AB Besides generating seismic waves that eventually dissipate an earthquake also generates a static displacement field everywhere within the Earth, causing the geometrical shape of both the Earth's outer surface and of internal boundaries such as the core-mantle boundary to change. By rearranging the Earth's mass earthquakes also cause the Earth's rotation and gravitational field to change. Earthquakes therefore affect all three pillars of geodesy, namely, the Earth's geometrical shape, rotation, and gravity. These effects of earthquakes are usually modeled separately, with flat Earth models typically being used to compute changes in site positions and spherical Earth models being used to compute changes in the Earth's rotation and global gravitational field. Here, a unified approach to computing changes in the three pillars of geodesy is described. As an example of this approach it is applied to the 2004 Sumatran earthquake. A preliminary comparison of predicted and SLR-observed degree-2 zonal gravitational field coefficients does not reveal the expected step-like change at the epoch of the earthquake. C1 [Gross, R. S.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Gross, RS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Richard.Gross@jpl.nasa.gov; bfchao@ncu.edu.tw RI Symposia, IAG/K-2857-2012 FU Earth Surface and Interior Focus Area of NASA's Science Mission Directora FX The MINOS computer code was supplied to us by G. Masters whom we thank. The work of one of the authors (RSG) described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support for this work was provided by the Earth Surface and Interior Focus Area of NASAs Science Mission Directora NR 21 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0939-9585 BN 978-3-642-10633-0; 978-3-642-10634-7 J9 IAG SYMP PY 2010 VL 135 BP 643 EP 649 DI 10.1007/978-3-642-10634-7_85 PG 7 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA BUY81 UT WOS:000290722800085 ER PT S AU Mennesson, B Hanot, C Serabyn, E Martin, SR Liewer, K Loya, F Mawet, D AF Mennesson, B. Hanot, C. Serabyn, E. Martin, S. R. Liewer, K. Loya, F. Mawet, D. BE McLean, IS Ramsay, SK Takami, H TI High Contrast Stellar Observations within the Diffraction Limit at the Palomar Hale Telescope SO GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-based and Airborne Instrumentation for Astronomy III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE infrared: stars; instrumentation: coronagraphs; interferometers, stars: circumstellar matter; stars: individual (alpha Boo, Vega, rho Per) ID STARS; INTERFEROMETRY; AURIGAE; GIANTS; LIGHT; VEGA AB We report on high-accuracy, high-resolution (< 20mas) stellar measurements obtained in the near infrared (similar or equal to 2.2 microns) at the Palomar 200 inch telescope using two elliptical (3m x 1.5m) sub-apertures located 3.4m apart. Our interferometric coronagraph, known as the "Palomar Fiber Nuller" (PFN), is located downstream of the Palomar adaptive optics (AO) system and recombines the two separate beams into a common single-mode fiber. The AO system acts as a "fringe tracker", maintaining the optical path difference (OPD) between the beams around an adjustable value, which is set to the central dark interference fringe. AO correction ensures high efficiency and stable injection of the beams into the single-mode fiber. A chopper wheel and a fast photometer are used to record short (< 50ms per beam) interleaved sequences of background, individual beam and interferometric signals. In order to analyze these chopped null data sequences, we developed a new statistical method, baptized "Null Self-Calibration" (NSC), which provides astrophysical null measurements at the 0.001 level, with 1 sigma uncertainties as low as 0.0003. Such accuracy translates into a dynamic range greater than 1000:1 within the diffraction limit, demonstrating that the approach effectively bridges the traditional gap between regular coronagraphs, limited in angular resolution, and long baseline visibility interferometers, whose dynamic range is restricted to similar or equal to 100:1. As our measurements are extremely sensitive to the brightness distribution very close to the optical axis, we were able to constrain the stellar diameters and amounts of circumstellar emission for a sample of very bright stars. With the improvement expected when the PALM-3000 extreme AO system comes on-line at Palomar, the same instrument now equipped with a state of the art low noise fast read-out near IR camera, will yield 10(-4) to 10(-3) contrast as close as 30 mas for stars with K magnitude brighter than 6. Such a system will provide a unique and ideal tool for the detection of young (< 100 Myr) self-luminous planets and hot debris disks in the immediate vicinity (0.1 to a few AUs) of nearby (< 50pc) stars. C1 [Mennesson, B.; Serabyn, E.; Martin, S. R.; Liewer, K.; Loya, F.; Mawet, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mennesson, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bertrand.mennesson@jpl.nasa.gov NR 26 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-225-9 J9 PROC SPIE PY 2010 VL 7735 AR 773511 DI 10.1117/12.857633 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BSU66 UT WOS:000285832400035 ER PT S AU Lampater, U Herter, T Keas, P Harms, F Engfer, C Salewsky, P Jakob, H Roeser, HP AF Lampater, Ulrich Herter, Terry Keas, Paul Harms, Franziska Engfer, Christian Salewsky, Peter Jakob, Holger Roeser, Hans-Peter BE Stepp, LM Gilmozzi, R Hall, HJ TI Preparation of the Pointing and Control System of the SOFIA Airborne Telescope for Early Science Missions SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Airborne Astronomy; SOFIA; Structural Dynamics; Control Engineering; Pointing Stability; Experimental Modal Analysis; Operational Modal Analysis AB During observation flights the telescope structure of the Stratospheric Observatory for Infrared Astronomy (SOFIA) is subject to disturbance excitations over a wide frequency band. The sources can be separated into two groups: inertial excitation caused by vibration of the airborne platform, and aerodynamic excitation that acts on the telescope assembly (TA) through an open port cavity. These disturbance sources constitute a major difference of SOFIA to other ground based and space observatories and achieving the required pointing accuracy of 1 arcsecond cumulative rms or better below 70 Hz in this environment is driving the design of the TA pointing and control system. In the current design it consists of two parts, the rigid body attitude control system and a feed forward based compensator of flexible TA deformation. This paper discusses the characterization and control system tuning of the as-built system. It is a process that integrates the study of the structural dynamic behavior of the TA, the resulting image motion in the focal plane, and the design and implementation of active control systems. Ground tests, which are performed under controlled experimental conditions, and in-flight characterization tests, both leading up to the early science performance capabilities of the observatory, are addressed. C1 [Lampater, Ulrich; Engfer, Christian; Jakob, Holger] MS DAOF S231, NASA Dryden Flight Res Ctr, SOFIA Airborne Syst Operat Ctr, Edwards AFB, CA 93523 USA. RP Lampater, U (reprint author), MS DAOF S231, NASA Dryden Flight Res Ctr, SOFIA Airborne Syst Operat Ctr, Edwards AFB, CA 93523 USA. EM lampater@dsi.uni-stuttgart.de NR 7 TC 1 Z9 3 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 77330S DI 10.1117/12.856562 PG 13 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700023 ER PT S AU Lou, JZ Kissil, A Redding, DC Bradford, MC Padin, S Woody, D AF Lou, John Z. Kissil, Andy Redding, Dave C. Bradford, Matt C. Padin, Steve Woody, David BE Stepp, LM Gilmozzi, R Hall, HJ TI Modeling a Large Submillimeter-Wave Observatory SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE AB The 25 meter aperture Cornell Caltech Atacama Telescope (CCAT) will provide an enormous increase in sensitivity in the submillimeter bands compared to existing observatories, provided it can establish and maintain excellent image quality. To accomplish this at a very low cost, it is necessary to conduct accurate engineering trades, including the most effective segment and wavefront sensing and control approach, to determine the best method for continuously maintaining wavefront quality in the operational environment. We describe an integrated structural/optical/controls model that provides accurate performance prediction. We also detail the analysis methods used to quantify critical design trades. C1 [Lou, John Z.; Kissil, Andy; Redding, Dave C.; Bradford, Matt C.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Lou, JZ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 773326 DI 10.1117/12.856493 PG 13 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700065 ER PT S AU Redding, D Lou, JZ Kissil, A Bradford, M Padin, S Woody, D AF Redding, David Lou, John Z. Kissil, Andy Bradford, Matt Padin, Steve Woody, David BE Stepp, LM Gilmozzi, R Hall, HJ TI Wavefront Controls for a Large Submillimeter-Wave Observatory SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Segmented mirror; wavefront control; edge sensors; Kalman filter AB The 25-m aperture Cornell Caltech Atacama Telescope (CCAT) will have a primary mirror that is divided into 162 individual segments, each of which is equipped with 3 positioning actuators. This paper presents a mathematical description of the telescope, its actuators and sensors, and uses it to derive control laws for figure maintenance. A Kalman Filter-based Optical State Estimator is used to continuously estimate the aberrations of the telescope; these are used in a state-feedback controller to maintain image quality. This approach provides the means to correct for the optical effects of errors that occur in un-actuated degrees of freedom, such as lateral translations of the segments. The control laws are exercised in Monte Carlo and simulation analysis, to bound the closed-loop performance of the telescope and to conduct control design trades. C1 [Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Redding, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 773329 DI 10.1117/12.858097 PG 11 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700068 ER PT S AU Regehr, MW Thompson, PM Colavita, MM Moore, JD Sirota, M Williams, EC AF Regehr, Martin W. Thompson, Peter M. Colavita, M. Mark Moore, James D. Sirota, Mark Williams, Eric C. BE Stepp, LM Gilmozzi, R Hall, HJ TI Dynamic Characterization of a Prototype of the Thirty Meter Telescope Primary Segment Assembly SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Segmented telescope; finite element models; control-structure interaction AB Finite element models (FEMs) are being used extensively in the design of the Thirty Meter Telescope (TMT). One such use is in the design and analysis of the Primary Segment Assembly (PSA). Each PSA supports one primary mirror segment on the mirror cell, as well as three actuators, which are used to control three degrees of freedom - tip, tilt, and piston - of the mirror segment. The dynamic response of the PSA is important for two reasons: it affects the response of the mirror to fluctuating wind forces, and high-Q modes limit the bandwidth of the control loops which drive the actuators, and impact vibration transmissivity, thereby degrading image quality. We have completed a series of tests on a prototype PSA, in which the dynamic response was tested. We report on the test methods used to measure the dynamic response of the PSA alone and with candidate actuators installed, and we present comparisons between the measured response and FEM predictions. There is good agreement between FEM predictions and measured response over the frequency range within which the dynamic response is critical to control system design. C1 [Regehr, Martin W.; Colavita, M. Mark; Moore, James D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Regehr, MW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. NR 7 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 77332G DI 10.1117/12.858155 PG 14 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700074 ER PT S AU Roellig, TL Yuen, L Sisson, D Meyer, A AF Roellig, Thomas L. Yuen, Lunming Sisson, David Meyer, Allan BE Stepp, LM Gilmozzi, R Hall, HJ TI Measuring the water vapor above the SOFIA observatory SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Airborne astronomy; water vapor; infrared; sub-millimeter; SOFIA AB The SOFIA airborne observatory flies in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument operating at 183 GHz will be used to measure the integrated water vapor overburden in flight. The accuracy of the measured precipitable water vapor must be 2 microns or better, 3 sigma, and measured at least once a minute. This presentation will cover the design and the measured laboratory performance of this instrument, and will discuss other options for determining the water vapor overburden during the SOFIA Early Science shared-risk period. C1 [Roellig, Thomas L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Roellig, TL (reprint author), NASA, Ames Res Ctr, MS 245-6,POB 1, Moffett Field, CA 94035 USA. NR 2 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 773339 DI 10.1117/12.856506 PG 9 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700102 ER PT S AU Troy, M Chanan, G Roberts, J AF Troy, Mitchell Chanan, Gary Roberts, Jennifer BE Stepp, LM Gilmozzi, R Hall, HJ TI Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Telescopes; Segmented Mirrors; Optical Alignment; Phasing ID MIRROR SEGMENTS; KECK TELESCOPES; ALGORITHM AB The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with subapertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations. C1 [Troy, Mitchell; Roberts, Jennifer] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Troy, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 7 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 77332C DI 10.1117/12.857669 PG 10 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700070 ER PT S AU Young, ET Becklin, E Marcum, P Krabbe, A Hall, H AF Young, Erick T. Becklin, Eric Marcum, Pam Krabbe, Alfred Hall, Helen BE Stepp, LM Gilmozzi, R Hall, HJ TI SOFIA: Progress to Initial Science Flights SO GROUND-BASED AND AIRBORNE TELESCOPES III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes III CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE SOFIA; Infrared Astronomy; Airborne Astronomy AB SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a specially modified Boeing 747SP aircraft with a 2.7-m telescope. Flying above more than 99% of the water vapor in the Earth's atmosphere, SOFIA will enable observations of large regions of the infrared and submillimeter that are normally opaque to terrestrial observatories. A joint project of NASA and DLR, SOFIA has completed a series of major flight tests leading up to the Initial Science Flights this year. In particular, SOFIA has recently completed its first observations through the telescope. This paper gives an overview of the facility and reports on the recent progress in the development of this major astronomical facility including the First Light observations with the FORCAST infrared camera. C1 [Young, Erick T.; Becklin, Eric; Hall, Helen] NASA, Ames Res Ctr, SOFIA Sci Mission Operat, Moffett Field, CA 94035 USA. RP Young, ET (reprint author), NASA, Ames Res Ctr, SOFIA Sci Mission Operat, Moffett Field, CA 94035 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-223-5 J9 PROC SPIE PY 2010 VL 7733 AR 77330M DI 10.1117/12.858428 PG 8 WC Instruments & Instrumentation; Optics SC Instruments & Instrumentation; Optics GA BSQ90 UT WOS:000285506700019 ER PT S AU Johnson, NL AF Johnson, Nicholas L. BE McQuerry, SC TI ORBITAL DEBRIS: THE GROWING THREAT TO SPACE OPERATIONS SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures. C1 NASA, Orbital Debris Program Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Johnson, NL (reprint author), NASA, Orbital Debris Program Off, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. NR 22 TC 1 Z9 1 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 3 EP 11 PG 9 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800001 ER PT S AU Stansbery, G Liou, JC Mulrooney, M Horstman, M AF Stansbery, Gene Liou, J. -C. Mulrooney, M. Horstman, M. BE McQuerry, SC TI CURRENT AND NEAR-TERM FUTURE MEASUREMENTS OF THE ORBITAL DEBRIS ENVIRONMENT AT NASA SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2-4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2, which was exposed to space for 16 years and was recently returned to Earth during the STS-125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future. C1 [Stansbery, Gene; Liou, J. -C.] NASA, Orbital Debris Program Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Stansbery, G (reprint author), NASA, Orbital Debris Program Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 7 TC 0 Z9 0 U1 1 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 21 EP 30 PG 10 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800003 ER PT S AU Matney, M AF Matney, Mark BE McQuerry, SC TI AN OVERVIEW OF NASA'S ORBITAL DEBRIS ENVIRONMENT MODEL SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB Using updated measurement data, analysis tools, and modeling techniques, the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis. C1 NASA, Orbital Debris Program Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Matney, M (reprint author), NASA, Orbital Debris Program Off, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 31 EP 36 PG 6 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800004 ER PT S AU Gavin, RT AF Gavin, Richard T. BE McQuerry, SC TI NASA'S ORBITAL DEBRIS CONJUNCTION ASSESSMENT AND COLLISION AVOIDANCE STRATEGY SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB Avoiding collisions with orbital debris has become an increasingly important part of NASA's spaceflight operations. The process began as part of the Shuttle Program return to flight effort after the Challenger accident. The initial process was developed using parametric data and involved using maneuver threshold boxes around the Shuttle. As the Space Station Program was being developed it was realized that using the box method would result in an unacceptably high maneuver rate. Therefore, a new approach for Space Station was developed collaboratively by NASA Johnson Space Center (JSC) & United States Strategic Command (USSTRATCOM)(dagger) using event specific probability calculations based on the covariances of the Space Station and debris object. The Space Shuttle Program also adopted this new approach. This methodology was later picked up by the NASA Goddard Space Flight Center (GSFC) to develop a process to protect NASA's unmanned (robotic) assets. This new event specific approach dramatically reduced the maneuver rate compared to using a threshold box, while still providing a high level of safety for NASA's spacecraft. C1 NASA, Flight Dynam Div, Mission Operat Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Gavin, RT (reprint author), NASA, Flight Dynam Div, Mission Operat Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 11 TC 0 Z9 0 U1 1 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 37 EP 46 PG 10 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800005 ER PT S AU Kessler, DJ Johnson, NL Liou, JC Matney, M AF Kessler, Donald J. Johnson, Nicholas L. Liou, J. -C. Matney, Mark BE McQuerry, SC TI THE KESSLER SYNDROME: IMPLICATIONS TO FUTURE SPACE OPERATIONS SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO ID DEBRIS; MODEL AB The term "Kessler Syndrome" is an orbital debris term that has become popular outside the professional orbital debris community without ever having a strict definition. The intended definition grew out of a 1978 JGR paper predicting that fragments from random collisions between catalogued objects in low Earth orbit would become an important source of small debris beginning in about the year 2000, and that afterwards, " ... the debris flux will increase exponentially with time, even though a zero net input may be maintained". The purpose of this paper is to clarify the intended definition of the term, to put the implications into perspective after 30 years of research by the international scientific community, and to discuss what this research may mean to future space operations. The conclusion is reached that while popular use of the term may have exaggerated and distorted the conclusions of the 1978 paper, the result of all research to date confirms that we are now entering a time when the orbital debris environment will increasingly be controlled by random collisions. Without adequate collision avoidance capabilities, control of the future environment requires that we fully implement current mitigation guidelines by not leaving future payloads and rocket bodies in orbit after their useful life. In addition, we will likely be required to return some objects already in orbit. C1 [Kessler, Donald J.] NASA JSC, Asheville, NC 28803 USA. RP Kessler, DJ (reprint author), NASA JSC, 25 Gardenwood Lane, Asheville, NC 28803 USA. NR 15 TC 5 Z9 5 U1 4 U2 12 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 47 EP 61 PG 15 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800006 ER PT S AU Crain, TP Bishop, RH Brady, T AF Crain, Timothy P., II Bishop, Robert H. Brady, Tye BE McQuerry, SC TI SHIFTING THE INERTIAL NAVIGATION PARADIGM WITH MEMS TECHNOLOGY SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB "Why don't you use MEMS?" is of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors in several key metrics. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the scaled error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary application to an Orion lunar skip atmospheric entry trajectory will be explored. C1 [Crain, Timothy P., II] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Crain, TP (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 18 TC 2 Z9 2 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 269 EP 288 PG 20 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800019 ER PT S AU Hanak, C Crain, T Bishop, R AF Hanak, Chad Crain, Tim Bishop, Robert BE McQuerry, SC TI CRATER IDENTIFICATION ALGORITHM FOR THE LOST IN LOW LUNAR ORBIT SCENARIO SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB Recent emphasis by NASA on returning astronauts to the Moon has placed attention on the subject of lunar surface feature tracking. Although many algorithms have been proposed for lunar surface feature tracking navigation, much less attention has been paid to the issue of navigational state initialization from lunar craters in a lost in low lunar orbit (LLO) scenario. That is, a scenario in which lunar surface feature tracking must begin, but current navigation state knowledge is either unavailable or too poor to initiate a tracking algorithm. The situation is analogous to the lost in space scenario for star trackers. A new crater identification algorithm is developed herein that allows for navigation state initialization from as few as one image of the lunar surface with no a priori state knowledge. The algorithm takes as inputs the locations and diameters of craters that have been detected in an image, and uses the information to match the craters to entries in the USGS lunar crater catalog via non-dimensional crater triangle parameters. Due to the large number of uncataloged craters that exist on the lunar surface, a probability-based check was developed to reject false identifications. The algorithm was tested on craters detected in four revolutions of Apollo 16 LLO images, and shown to perform well. C1 [Hanak, Chad; Crain, Tim] NASA, GN&C Autonomous Flight Syst Branch EG6, Aerosci & Flight Mech Div, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Hanak, C (reprint author), NASA, GN&C Autonomous Flight Syst Branch EG6, Aerosci & Flight Mech Div, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM chad.hanak-1@nasa.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 363 EP 385 PG 23 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800024 ER PT S AU Weiss, JP Bertiger, W Desai, SD Haines, BJ Lane, CM AF Weiss, Jan P. Bertiger, Willy Desai, Shailen D. Haines, Bruce J. Lane, Christopher M. BE McQuerry, SC TI NEAR REAL TIME GIPS ORBIT DETERMINATION: STRATEGIES, PERFORMANCE, AND APPLICATIONS TO OSTM/JASON-2 SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO ID IGS; SERVICE AB We present strategies and results for near real-time (NRT) precise orbit determination (POD) of the Global Positioning System (GPS) constellation. The POD for the GPS constellation is performed using a global network of 40 ground stations. The resulting products are available with a latency of about one hour, and include orbit and clock estimates for the GPS satellites, as well as widelane phase bias information from the global solution. The widelane information, when used with the orbit and clock estimates, enables singlereceiver, ambiguity resolved GPS-based positioning. Comparisons to definitive final products from the Jet Propulsion Laboratory and International GNSS Service show that NRT orbit accuracies of 5 cm RMS (3D) and clock accuracies of 5 cm RMS are achieved. Daily point positioning of a variety of static ground station receivers using these products yields repeatabilities of I cm. An additional NRT process, in turn, utilizes the GP S orbit, clock, and widelane products to perform POD for the Ocean Surface Topography Mission (OSTM)/Jason-2 satellite, which carries an advanced dual-frequency "Black-jack" GPS receiver. The radial accuracy of the resulting 0 STM/Jason-2 orbits is typically I cm (RMS) with a latency of 2 hours. These new orbit solutions provide the basis for computing accurate sea-surface height information for operational oceanographic and low-latency scientific applications of satellite altimeter data. C1 [Weiss, Jan P.; Bertiger, Willy; Desai, Shailen D.; Haines, Bruce J.; Lane, Christopher M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Weiss, JP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 238-600, Pasadena, CA 91109 USA. NR 16 TC 1 Z9 1 U1 0 U2 1 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 439 EP 451 PG 13 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800028 ER PT S AU Lemoine, FG Cerri, L Zelensky, NP Ries, JC Bertiger, WI AF Lemoine, Frank G. Cerri, Luca Zelensky, Nikita P. Ries, John C. Bertiger, William I. BE McQuerry, SC TI MODERN RADAR ALTIMETRY CHALLENGES TO PRECISE ORBIT DETERMINATION SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO ID TERRESTRIAL REFERENCE FRAME; TOPEX/POSEIDON; JASON-1; SERVICE; SPACECRAFT; SERIES; TOPEX AB From the launch of the first spaceborne altimeters, Precision Orbit Determination (POD) has been driven by the science goals of the geodetic altimeter missions. The accurate knowledge of the spacecraft ephemeris in an accurate conventional reference frame is essential to the successful science derived from radar altimetry, particularly for global ocean circulation and Mean Sea Level (MSL) studies. It was with the launch of TOPEX/Poseidon (TP) in 1992 and the breakthrough in POD which ushered in the age of modem satellite altimetry. Although radial accuracies of 1.5 cm for TP, and 1-cm for the follow-on missions Jason-1 and Jason-2, have been currently achieved, growing interest in using altimeter data to recover small ocean signals, such as the mean sea level trends, places increasingly stringent requirements on orbit accuracy and the reference frame definition. With Jason-1 and Jason-2, there is now an increasing need for delivery of short latency precise orbit products to support the needs of operational oceanography. Meeting mission POD accuracy requirements has depended on advances in satellite force modeling, tracking technology, measurement modeling, measurement processing and improvements in the terrestrial reference frame. This paper presents advances in modeling and tracking technology which have been vital to achieving the current orbit accuracies for TP, Jason-1, and Jason-2, illustrating the reduction of orbit error due to improvements in modeling static gravity, tides, time varying gravity, and the terrestrial reference frame. The current challenges to POD, the impact on altimetry, and prospects for future improvements are discussed. We review the orbit products, their current accuracies and latencies that are now routinely delivered for Jason-1 and Jason-2. C1 [Lemoine, Frank G.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Lemoine, FG (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Code 698, Greenbelt, MD 20771 USA. RI Lemoine, Frank/D-1215-2013 NR 38 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 575 EP 592 PG 18 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800035 ER PT S AU Desai, SD Bertiger, W Dorsey, A Haines, BJ Lane, C Weiss, JP AF Desai, Shailen D. Bertiger, Willy Dorsey, Angela Haines, Bruce J. Lane, Christopher Weiss, Jan P. BE McQuerry, SC TI GPS-BASED PRECISE ORBIT DETERMINATION IN NEAR REAL TIME FOR OPERATIONAL ALTIMETRY SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB We describe a near-real-time (NRT) precise orbit determination (POD) system for the Ocean Surface Topography Mission/Jason-2 satellite altimeter mission that processes tracking data from the onboard "BlackJack" Global Positioning System (GPS) receiver. The NRT POD system is now operational, and the resulting orbit solutions are being used to generate a value-added NRT sea surface height product for operational altimetry applications. The NRT GPS-based orbit solution features radial orbit accuracies of 1 cm (RMS) with a latency of < 4 hours. These orbit accuracies are achieved through the use of Ultra-Rapid solutions for the orbits and clocks of the GPS constellation of satellites. We use satellite laser ranging tracking data and sea surface height crossover residuals as external metrics for evaluating orbit accuracy. We also provide comparisons to other orbit solutions of varying latencies to illustrate the trade between accuracy and timeliness. C1 [Desai, Shailen D.; Bertiger, Willy; Dorsey, Angela; Haines, Bruce J.; Lane, Christopher; Weiss, Jan P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Desai, SD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 238-600, Pasadena, CA 91109 USA. NR 18 TC 2 Z9 2 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 593 EP 604 PG 12 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800036 ER PT S AU Dennehy, CJ Yuchnovicz, DE Lanzi, RJ Ward, PR Shreves, CM AF Dennehy, Cornelius (Neil) J. Yuchnovicz, Daniel E. Lanzi, Raymond J. (Jim) Ward, Philip R. Shreves, Christopher M. BE McQuerry, SC TI DESIGN EXPERIENCES AND FLIGHT TEST RESULTS FROM NASA'S MAX LAUNCH ABORT SYSTEM (MLAS): A FLIGHT MECHANICS PERSPECTIVE SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB At the request of the NASA's Exploration System Mission Directorate, the NASA Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft LAS already in development. The NESC was tasked with both formulating a conceptual Objective System (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on 8 July 2009. The entire flight test duration was 88 seconds during which multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the distributed MLAS project organization, management practices and technical approaches employed on this rapid prototyping activity. This paper describes, from the combined perspectives of both the Flight Mechanics and Landing & Recovery System teams, the methodology used to design the MLAS flight test vehicle. The inter-related driving technical issues and challenges faced by both teams will also be described. Lessons that were learned during the MLAS rapid prototyping project are also summarized. C1 [Dennehy, Cornelius (Neil) J.] NASA Goddard Space Flight Ctr, NASA Engn & Safety Ctr NESC, Greenbelt, MD 20771 USA. RP Dennehy, CJ (reprint author), NASA Goddard Space Flight Ctr, NASA Engn & Safety Ctr NESC, Mail Code 590, Greenbelt, MD 20771 USA. NR 6 TC 0 Z9 0 U1 1 U2 2 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 675 EP 701 PG 27 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800042 ER PT S AU Shah, N Calhoun, P Garrick, J Hsu, O Simpson, J AF Shah, Neerav Calhoun, Philip Garrick, Joseph Hsu, Oscar Simpson, James BE McQuerry, SC TI LAUNCH AND COMMISSIONING OF THE LUNAR RECONNAISSANCE ORBITER (LRO) SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB The Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station. LRO, designed, built, and operated by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. To date, the Guidance, Navigation and Control (GN&C) subsystem has operated nominally and met all requirements. However, during the early phase of the mission, the GN&C Team encountered some anomalies. For example, during the Solar Array and High Gain Antenna deployments, one of the safing action points tripped, which was not expected. Also, the spacecraft transitioned to its safe hold mode, Sun Safe, due to encountering an end of file for an ephemeris table. During the five-day lunar acquisition, one of the star trackers triggered the spacecraft to transition into a safe hold configuration, the cause of which was determined. These events offered invaluable insight to better understand the performance of the system they designed. An overview of the GN&C subsystem will be followed by a mission timeline. Then, interesting flight performance as well as anomalies encountered by the GN&C Team will be discussed in chronological order. C1 [Shah, Neerav; Calhoun, Philip; Garrick, Joseph; Hsu, Oscar] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. RP Shah, N (reprint author), NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Code 591, Greenbelt, MD 20771 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 703 EP 722 PG 20 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800043 ER PT S AU Naasz, BJ Van Eepoel, J Queen, SZ Southward, CM Hannah, J AF Naasz, Bo J. Van Eepoel, John Queen, Steven Z. Southward, C. Michael, II Hannah, Joel BE McQuerry, SC TI FLIGHT RESULTS FROM THE HST SM4 RELATIVE NAVIGATION SENSOR SYSTEM SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as Space Cube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms. C1 [Naasz, Bo J.; Van Eepoel, John; Queen, Steven Z.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Naasz, BJ (reprint author), NASA, Goddard Space Flight Ctr, Code 595, Greenbelt, MD 20771 USA. NR 9 TC 1 Z9 1 U1 0 U2 2 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 723 EP 744 PG 22 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800044 ER PT S AU Vanelli, CA Smith, B Swenka, E Collins, S AF Vanelli, C. Anthony Smith, Brett Swenka, Edward Collins, Steve BE McQuerry, SC TI STRAIGHT ON 'TIL MORNING: GUIDANCE AND CONTROL FLIGHT EXPERIENCE FROM THE DAWN SPACECRAFT SO GUIDANCE AND CONTROL 2010 SE Advances in the Astronautical Sciences LA English DT Proceedings Paper CT 33rd Annual AAS Rocky Mountain Guidance and Control Conference CY FEB 05-10, 2010 CL Breckenridge, CO AB NASA's Dawn spacecraft, a low-thrust mission leveraging the prior experience of NASA's Deep Space 1 spacecraft, was launched in September 2007 on a mission to investigate the large asteroids Vesta and Ceres. This paper provides a brief overview of the Dawn attitude control subsystem, describes the challenges faced by the small flight team during the mission so far, and offers a few lessons learned. Special attention will be given to experiences realized from flying a low-thrust mission under tight margins for missed thrust, reaction wheel momentum management while operating under solar-electric propulsion, the recent Mars Gravity Assist, and planning for the upcoming encounter with Vesta in 2011. C1 [Vanelli, C. Anthony; Smith, Brett; Swenka, Edward; Collins, Steve] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vanelli, CA (reprint author), CALTECH, Jet Prop Lab, M-S 264-854,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tony.vanelli@jpl.nasa.gov NR 7 TC 1 Z9 1 U1 0 U2 2 PU UNIVELT INC PI SAN DIEGO PA PO BOX 28130, SAN DIEGO, CA 92128 USA SN 1081-6003 BN 978-0-87703-561-9 J9 ADV ASTRONAUT SCI PY 2010 VL 137 BP 745 EP 760 PG 16 WC Automation & Control Systems; Engineering, Aerospace SC Automation & Control Systems; Engineering GA BUT40 UT WOS:000290281800045 ER PT S AU Abdul-Aziz, A Woike, M Oza, N Matthews, B Baakilini, G AF Abdul-Aziz, Ali Woike, Mark Oza, Nikunj Matthews, Bryan Baakilini, George BE Kundu, T TI Propulsion Health Monitoring Of a Turbine Engine Disk Using Spin Test Data SO HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2010, PTS 1 AND 2 SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Health Monitoring of Structural and Biological Systems 2010 CY MAR 08-11, 2010 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers ID SUPPORT AB On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications [1-5]. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques [11-15] to identify anomalies in the disk. This study is expected to present a select evaluation of online health monitoring of a rotating disk using these high caliber sensors and test the capability of the in-house spin system. C1 [Abdul-Aziz, Ali] Cleveland State Univ, NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Abdul-Aziz, A (reprint author), Cleveland State Univ, NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 13 TC 0 Z9 0 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8065-1 J9 P SOC PHOTO-OPT INS PY 2010 VL 7650 AR 76501B DI 10.1117/12.847574 PG 10 WC Optics; Radiology, Nuclear Medicine & Medical Imaging SC Optics; Radiology, Nuclear Medicine & Medical Imaging GA BSR53 UT WOS:000285545600042 ER PT S AU Bar-Cohen, Y Lih, SS Badescu, M Bao, XQ Sherrit, S Widholm, S Scott, J Blosiu, J AF Bar-Cohen, Yoseph Lih, Shyh-Shiuh Badescu, Mircea Bao, Xiaoqi Sherrit, Stewart Widholm, Scott Scott, Jim Blosiu, Julian BE Kundu, T TI In-service monitoring of steam pipe systems at high temperatures SO HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2010, PTS 1 AND 2 SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Health Monitoring of Structural and Biological Systems 2010 CY MAR 08-11, 2010 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE High Temperature; HT piezoelectric transducers; health monitoring; NDE; monitoring steam condensation AB An effective in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water in real-time at high temperatures. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 degrees C. The system needs to be able to make time measurements while accounting for the effects of water flow and cavitation. For this purpose, ultrasonic waves were used to perform data acquisition of reflected signals in pulse-echo and via autocorrelation the data was processed to determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers. There are transducers with Curie temperatures that are significantly higher than the required for this task offering the potential to sustain the conditions of the pipe over extended operation periods. This paper reports the progress of the current feasibility study that is intended to establish the foundations for such health monitoring systems. C1 [Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Scott, Jim; Blosiu, Julian] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bar-Cohen, Y (reprint author), CALTECH, Jet Prop Lab, MS 67-119,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yosi@jpl.nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8065-1 J9 P SOC PHOTO-OPT INS PY 2010 VL 7650 AR 76500S DI 10.1117/12.846702 PG 8 WC Optics; Radiology, Nuclear Medicine & Medical Imaging SC Optics; Radiology, Nuclear Medicine & Medical Imaging GA BSR53 UT WOS:000285545600025 ER PT S AU Gopalswamy, N AF Gopalswamy, Natchimuthukonar BE Gopalswamy, N Hasan, SS Ambastha, A TI Large-Scale Solar Eruptions SO HELIOPHYSICAL PROCESSES SE Astrophysics and Space Science Proceedings LA English DT Proceedings Paper CT 1st Asia-Pacific Regional School of the International Heliophysical Year CY DEC 10-22, 2007 CL Indian Inst Astrophys, Kodaikanal Observatory, Bangalore, INDIA SP IHY Program, Asian Off Aerosp Res, AF Off Sci Res HO Indian Inst Astrophys, Kodaikanal Observatory ID CORONAL MASS EJECTIONS; SHOCK-WAVES; FLARES; SUN; BURSTS AB This chapter provides an over view of coronal mass ejections (CMEs) and the associated flares including statistical properties, associated phenomena (solar energetic particles, interplanetary shocks, geomagnetic storms), and their heliospheric consequences. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM nat.gopalswamy@nasa.gov RI Gopalswamy, Nat/D-3659-2012 NR 33 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1570-6591 BN 978-3-642-11340-6 J9 ASTROPHYSICS SPACE PY 2010 BP 53 EP 71 DI 10.1007/978-3-642-11341-3_4 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BPU04 UT WOS:000279931500004 ER PT S AU Moore, TE AF Moore, Thomas Earle BE Gopalswamy, N Hasan, SS Ambastha, A TI Planetary Magnetospheres SO HELIOPHYSICAL PROCESSES SE Astrophysics and Space Science Proceedings LA English DT Proceedings Paper CT 1st Asia-Pacific Regional School of the International Heliophysical Year CY DEC 10-22, 2007 CL Indian Inst Astrophys, Kodaikanal Observatory, Bangalore, INDIA SP IHY Program, Asian Off Aerospace Res, AF Off Sci Res HO Indian Inst Astrophys, Kodaikanal Observatory AB This is a brief, equation-free introduction to the physics of planetary magnetospheres, emphasizing their relationship to the heliosphere at large, over the life of our solar system. It will focus on unifying principles, rather than providing a taxonomy of the many different magnetospheres in our own solar system. A planetary magnetosphere is a closed cell of plasma bound together by a permeating magnetic field, which may originate from any combination of internal or external currents. The essential features are thus an ionized atmosphere (ionosphere or plasmasphere), created by intrinsic and/or extrinsic sources of energy, and a magnetic field. At planetary scales, parcels of plasma sharing a common magnetic flux tube must move together as a unit distributed along that flux tube. The magnetic field thus plays the role of a connective tissue threading plasmas and binding them together via Maxwell stresses analogous to those of surface tension, but distributed throughout the volume. More powerfully than surface tension acts to confine water in droplets, magnetic fields confine plasmas in magnetic cells, or magnetospheres. Rotation and relative motion are important factors in the character of magnetospheres, while magnetic linkages within and between them exert strong control over their interactions via the process known as reconnexion, which acts as a plasma pump and energizer. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Moore, TE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM thomas.e.moore@nasa.gov RI Gopalswamy, Nat/D-3659-2012; Moore, Thomas/D-4675-2012 OI Moore, Thomas/0000-0002-3150-1137 NR 4 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1570-6591 BN 978-3-642-11340-6 J9 ASTROPHYSICS SPACE PY 2010 BP 215 EP 231 DI 10.1007/978-3-642-11341-3_13 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BPU04 UT WOS:000279931500013 ER PT S AU Jacquot, BC Monacos, SP Jones, TJ Blacksberg, J Hoenk, ME Nikzad, S AF Jacquot, Blake C. Monacos, Steve P. Jones, Todd J. Blacksberg, Jordana Hoenk, Michael E. Nikzad, Shouleh BE Holland, AD Dorn, DA TI Characterization and Absolute QE Measurements of Delta-Doped N-Channel and P-Channel CCDs SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy IV CY JUN 27-30, 2010 CL San Diego, CA SP SPIE DE Delta doping; CCD; QE ID ULTRAVIOLET QUANTUM EFFICIENCY; CHARGE-COUPLED-DEVICE; PRESSURE; UV AB In this paper we present the methodology for making absolute quantum efficiency (QE) measurements from the vacuum ultraviolet (VUV) through the near infrared (NIR) on delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, and good camera vacuum to prevent chip condensation, and more stringent handling requirements. The system used for these measurements was originally designed for deep UV characterization of CCDs for the WF/PC instrument on Hubble and later for Cassini CCDs. C1 [Jacquot, Blake C.; Monacos, Steve P.; Jones, Todd J.; Blacksberg, Jordana; Hoenk, Michael E.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Jacquot, BC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bjacquot@jpl.nasa.gov NR 16 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-232-7 J9 PROC SPIE PY 2010 VL 7742 AR 77420I DI 10.1117/12.857694 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU75 UT WOS:000285834500014 ER PT S AU Kolodziejczak, JJ Caldwell, DA Van Cleve, JE Clarke, BD Jenkins, JM Cote, MT Klaus, TC Argabright, VS AF Kolodziejczak, Jeffery J. Caldwell, Douglas A. Van Cleve, Jeffrey E. Clarke, Bruce D. Jenkins, Jon M. Cote, Miles T. Klaus, Todd C. Argabright, Vic S. BE Holland, AD Dorn, DA TI Flagging and Correction of Pattern Noise in the Kepler Focal Plane Array SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy IV CY JUN 27-30, 2010 CL San Diego, CA SP SPIE DE Kepler; photometer; CCD; noise; pattern noise; CCD readout; crosstalk; image analysis; photometry ID SCIENCE; PERFORMANCE AB In order for Kepler to achieve its required <20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on <40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in <10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moire pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels. C1 [Kolodziejczak, Jeffery J.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Kolodziejczak, JJ (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. EM kolodz@nasa.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 NR 9 TC 4 Z9 4 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-232-7 J9 PROC SPIE PY 2010 VL 7742 AR 77421G DI 10.1117/12.857637 PG 17 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU75 UT WOS:000285834500039 ER PT S AU Moseley, SH Arendt, RG Fixsen, DJ Lindler, D Loose, M Rauscher, BJ AF Moseley, S. H. Arendt, Richard G. Fixsen, D. J. Lindler, Don Loose, Markus Rauscher, Bernard J. BE Holland, AD Dorn, DA TI Reducing the Read Noise of H2RG detector arrays: Eliminating Correlated Noise with Efficient Use of Reference Signals SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy IV CY JUN 27-30, 2010 CL San Diego, CA SP SPIE DE JWST; detector; HgCdTe; NIRSpec; correlated noise ID WEBB-SPACE-TELESCOPE AB We present a process for characterizing the correlation properties of the noise in large two-dimensional detector arrays, and describe an efficient process for its removal. In the case of the 2k x 2k HAWAII-2RG detectors (H2RG) detectors from Teledyne which are being used on the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), we find that we can reduce the read noise by thirty percent. Noise on large spatial scales is dramatically reduced. With this relatively simple process, we provide a performance improvement that is equivalent to a significant increase in telescope collecting area for high resolution spectroscopy with NIRSpec. C1 [Moseley, S. H.; Rauscher, Bernard J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Moseley, SH (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD USA. EM Harvey.Moseley@nasa.gov OI Arendt, Richard/0000-0001-8403-8548 NR 8 TC 7 Z9 7 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-232-7 J9 PROC SPIE PY 2010 VL 7742 AR 77421B DI 10.1117/12.866773 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU75 UT WOS:000285834500037 ER PT B AU Skilton, JL Hinton, JA Brucker, J Pandey-Pommier, M Cheung, CC Aharonian, FA Dubus, G Fiasson, A Funk, S Gallant, Y Marcowith, A Reimer, O AF Skilton, J. L. Hinton, J. A. Brucker, J. Pandey-Pommier, M. Cheung, C. C. Aharonian, F. A. Dubus, G. Fiasson, A. Funk, S. Gallant, Y. Marcowith, A. Reimer, O. BE Marti, J LuqueEscamilla, PL Combi, JA TI Radio and X-ray Observations of the Possible New Gamma-ray binary HESS J0632+057 SO HIGH ENERGY PHENOMENA IN MASSIVE STARS SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT International Meeting on High Energy Phenomena in Massive Stars CY FEB 02-05, 2009 CL Univ Jaen, Jaen, SPAIN SP Universitas Giennensis, Escuela Politecn Superior Jaen, Junta Andalucia, Universe Yours Discover HO Univ Jaen ID DISCOVERY; STARS AB HESS J0632+057 is one of the only point-like, unidentified TeV sources in our galaxy. The association of this source with the massive B0pe star MWC 148 has led to the suggestion that HESS J0632+057 could be a new gamma-ray binary system. Our recent X-ray observations with XMM-Newton have revealed a non-thermal, point-like source coincident with this star, further strengthening the identification of HESS J0632+057 as a high mass X-ray binary system. Here we present new Very Large Array (VLA) and Giant Metre-wave Radio Telescope (GMRT) observations towards HESS J0632+057 which reveal point-like variable emission at the location of MWC 148. C1 [Skilton, J. L.; Hinton, J. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Brucker, J.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Pandey-Pommier, M.] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Cheung, C. C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Aharonian, F. A.] Dublin Inst Adv Studies, Dublin, Ireland. [Dubus, G.] Univ Grenoble 1, Astrophys Lab, INSU, CNRS, F-38041 Grenoble, France. [Fiasson, A.; Gallant, Y.; Marcowith, A.] Univ Montpellier 2, Lab Phys Theoret Astroparticules, CNRS, IN2P3, F-34095 Montpellier, France. [Fiasson, A.] Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Funk, S.; Reimer, O.] Kavali Inst Particle Astrpphys & Cosmol, SLAC, Menlo Pk, CA 94025 USA. [Reimer, O.] Univ Innsbruck, Inst Phys Astron & Particle Phys, Innsbruck, Austria. RP Skilton, JL (reprint author), Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. RI Reimer, Olaf/A-3117-2013 OI Reimer, Olaf/0000-0001-6953-1385 NR 14 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-724-7 J9 ASTR SOC P PY 2010 VL 422 BP 128 EP + PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUE39 UT WOS:000289008000014 ER PT B AU Coe, MJ Corbet, RHD McGowan, KE McBride, VA Schurch, MPE Townsend, LJ Galache, JL Negueruela, I Buckley, D AF Coe, M. J. Corbet, R. H. D. McGowan, K. E. McBride, V. A. Schurch, M. P. E. Townsend, L. J. Galache, J. L. Negueruela, I. Buckley, D. BE Marti, J LuqueEscamilla, PL Combi, JA TI The Population of High-Mass X-Ray Binaries in the Small Magellanic Cloud SO HIGH ENERGY PHENOMENA IN MASSIVE STARS SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT International Meeting on High Energy Phenomena in Massive Stars CY FEB 02-05, 2009 CL Univ Jaen, Jaen, SPAIN SP Universitas Giennensis, Escuela Politecn Superior Jaen, Junta Andalucia, Universe Yours Discover HO Univ Jaen ID STARS AB The Small Magellanic Cloud (SMC) represents an exciting opportunity to observe the direct results of tidal interactions on star birth and stellar evolution. One of the best indicators of recent star birth activity is the presence of significant numbers of High-Mass X-ray Binaries (HMXBs)-and the SMC has them in abundance! Here we present results from nearly 10 years of monitoring these systems plus ground-based optical data. Together they permit us to build a picture of a galaxy with a mass of only similar to 1 percent of the Milky Way but with a more extensive HMXB population. However, as often happens, new discoveries lead to some challenging puzzles: where are the other X-ray binaries (eg black hole and low mass systems) in the SMC? and why do virtually all the SMC HMXBs have Be star companions and, rarely, a supergiant companion? The evidence arising from these extensive observations for this apparently unusual stellar evolution are discussed. C1 [Coe, M. J.; McGowan, K. E.; McBride, V. A.; Schurch, M. P. E.; Townsend, L. J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Galache, J. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Negueruela, I.] Univ Alicante, Dept Fis, Ingenieria Sistemas Teoria Serial, E-03080 Alicante, Spain. [Buckley, D.] South African Astron Observ, Cape Town 7935, South Africa. RP Coe, MJ (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RI Negueruela, Ignacio/L-5483-2014 OI Negueruela, Ignacio/0000-0003-1952-3680 NR 11 TC 6 Z9 6 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-724-7 J9 ASTR SOC P PY 2010 VL 422 BP 224 EP + PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUE39 UT WOS:000289008000024 ER PT B AU Schmid, S Kutemeyer, M Lutz, T Kramer, E AF Schmid, Sven Kuetemeyer, Marius Lutz, Thorsten Kraemer, Ewald BE Wagner, S Steinmetz, M Bode, A Muller, MM TI Characterization of the Aeroacoustic Properties of the SOFIA Cavity and its Passive Control SO HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCHING/MUNICH 2009: TRANSACTIONS OF THE FOURTH JOINT HLRB AND KONWIHR REVIEW AND RESULTS WORKSHOP LA English DT Proceedings Paper CT 4th Joint HLRB and KONWIHR Review and Results Workshop CY DEC 08-09, 2009 CL Leibniz Supercomputing Ctr, Garching, GERMANY SP State Bavaria, German Res Fdn (DFG), German Fed Minist Educ & Res (BMBF) HO Leibniz Supercomputing Ctr ID INFRARED ASTRONOMY; FLOW AB The American and the German Aerospace centers NASA and DLR are working together to build and operate the Stratospheric Observatory For Infrared Astronomy - SOFIA, a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747 aircraft. The observatory operates in the stratosphere at an altitude above 13 km to observe astronomical objects in the infrared region of the electromagnetic spectrum. The flow over the open telescope port during the observation presents some challenging aerodynamic and aeroacoustic problems. Pressure fluctuations inside the cavity excite structural vibrations and deteriorate the image stability. NASA successfully optimized the shape of the cavity aperture by means of extensive wind-tunnel studies to mitigate the flow unsteadiness in the cavity. The simulations performed within the present project focus on different aeroacoustic aspects of the SOFIA cavity. Several URANS (Unsteady Reynolds Averaged Navier Stokes) simulations were carried out to study the impact of the cavity door position during opening and closing on the unsteady flow. The impact of the misalignment between the SOFIA telescope assembly and the aperture assembly was investigated with separately conducted Detached Eddy Simulations (DES). Moreover the remaining potential to improve the aeroacoustic characteristics by optimizing the aperture aft ramp geometry and installing a porous fence upstream of the cavity was analyzed with URANS and DES simulations as well. C1 [Schmid, Sven; Kuetemeyer, Marius] NASA, Ames Res Ctr, SOFIA Sci Ctr, Mail Stop N211-3, Moffett Field, CA 94035 USA. [Lutz, Thorsten; Kraemer, Ewald] Inst Aerodynam & Gasdynam, D-70569 Stuttgart, Germany. RP Schmid, S (reprint author), NASA, Ames Res Ctr, SOFIA Sci Ctr, Mail Stop N211-3, Moffett Field, CA 94035 USA. EM Schmid@dsi.uni-stuttgart.de; mkuetemyer@sofia.usra.edu; Lutz@iag.uni-stuttgart.de; Kraemer@iag.uni-stuttgart.de FU SOFIA, the "Stratospheric Observatory for Infrared Astronomy" project of the Deutsches Zentrum fur Luft - und Raumfahrt e.V. (DLR; German Aerospace Centre) [50OK0901]; National Aeronautics and Space Administration (NASA); Federal Ministry of Economics and Technology; German Parliament; Baden-Wurttemberg; Universitat Stuttgart FX SOFIA, the "Stratospheric Observatory for Infrared Astronomy" is a joint project of the Deutsches Zentrum fur Luft - und Raumfahrt e.V. (DLR; German Aerospace Centre, grant: 50OK0901) and the National Aeronautics and Space Administration (NASA). It is funded on behalf of DLR by the Federal Ministry of Economics and Technology based on legislation by the German Parliament, the state of Baden-Wurttemberg and the Universitat Stuttgart. Scientific operation for Germany is coordinated by the German SOFIA-Institute (DSI) of the Universitat Stuttgart, in the USA by the Universities Space Research Association (USRA). NR 17 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-13871-3 PY 2010 BP 207 EP + DI 10.1007/978-3-642-13872-0_18 PG 3 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications SC Computer Science; Mathematics GA BXN18 UT WOS:000296478100018 ER PT S AU Gross, RS AF Gross, Richard S. BE Corbett, IF TI Impact of Geophysical Fluids on UT1 SO HIGHLIGHTS OF ASTRONOMY, VOL 15 SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 27th IAU General Assembly CY AUG 03-14, 2009 CL Ctr Convencoes SulAmerica, Rio de Janeiro, BRAZIL HO Ctr Convencoes SulAmerica DE Earth; time ID EARTHS ROTATION AB Geophysical fluids have a major impact on the Earth's rotation. Tidal variations within the oceans are the predominant cause of subdaily length-of-day (lod) variations while those within the solid body of the Earth are a major source of longer period variations; tidal dissipation within the solid Earth and oceans cause a secular change in loci. Fluctuations of the atmospheric winds are the predominant cause of nontidal lod variations on sub-decadal time scales while decadal variations are caused by interactions between the fluid core and mantle. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gross, RS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Richard.Gross@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 2 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-00533-4 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 15 BP 213 EP 214 DI 10.1017/S1743921310008835 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUR92 UT WOS:000290186900069 ER PT S AU Gull, TR Damineli, A AF Gull, Theodore R. Damineli, Augusto BE Corbett, IF TI JD13-Eta Carinae in the Context of the Most Massive Stars SO HIGHLIGHTS OF ASTRONOMY, VOL 15 SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 27th IAU General Assembly CY AUG 03-14, 2009 CL Ctr Convencoes SulAmerica, Rio de Janeiro, BRAZIL HO Ctr Convencoes SulAmerica C1 [Gull, Theodore R.] NASA, Goddard Space Flight Ctr, Lab Extraterr Planets & Stellar Astrophys, Greenbelt, MD 20771 USA. RP Gull, TR (reprint author), NASA, Goddard Space Flight Ctr, Lab Extraterr Planets & Stellar Astrophys, Code 667, Greenbelt, MD 20771 USA. EM Theodore.R.Gull@nasa.gov; damineli@astro.iag.usp.br RI Damineli, Augusto/D-8210-2012; Gull, Theodore/D-2753-2012 OI Damineli, Augusto/0000-0002-7978-2994; Gull, Theodore/0000-0002-6851-5380 NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-00533-4 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 15 BP 373 EP 373 DI 10.1017/S1743921310009890 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUR92 UT WOS:000290186900203 ER PT S AU Rubin, RH AF Rubin, Robert H. BE Corbett, IF TI Spitzer reveals what's behind Orion's Bar SO HIGHLIGHTS OF ASTRONOMY, VOL 15 SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 27th IAU General Assembly CY AUG 03-14, 2009 CL Ctr Convencoes SulAmerica, Rio de Janeiro, BRAZIL HO Ctr Convencoes SulAmerica DE ISM: abundances; H II regions; individual (Orion Nebula) AB We present Spitzer Space Telescope observations of 11 regions in the Orion Nebula all southeast of the Bright Bar. Our Cycle 5 program obtained deep spectra with both the IRS short-high (SH) and long-high (LH) modules with aperture grid patterns chosen to very closely match the same area in the nebula. Previous IR missions observed only the inner few arcmin (the 'Huygens' region). The extreme sensitivity of Spitzer in the 10-37 mu m spectral range permitted us to measure many lines of interest to much larger distances from the exciting star theta(1) On C. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Rubin, RH (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. EM rubin@cygnus.arc.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-00533-4 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 15 BP 402 EP 402 DI 10.1017/S1743921310009920 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUR92 UT WOS:000290186900259 ER PT S AU Sterling, AC AF Sterling, Alphonse C. BE Corbett, IF TI Eruptive Signatures in the Solar Atmosphere During the WHI Campaign (20 March-16 April 2008) SO HIGHLIGHTS OF ASTRONOMY, VOL 15 SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 27th IAU General Assembly CY AUG 03-14, 2009 CL Ctr Convencoes SulAmerica, Rio de Janeiro, BRAZIL HO Ctr Convencoes SulAmerica DE Sun: activity; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: UV radiation ID CORONAL MASS EJECTION; FLARES AB We examined EUV movies of the Sun during the period of the Whole Heliospheric Interval (WHI) campaign of 20 March-16 April 2008, searching for indications of eruptive events. Our data set was obtained from EIT on SOHO, using its 195 A filter, and from EUVI on the two STEREO satellites, using their 171 angstrom, 195 angstrom, 284 angstrom, and 304 angstrom filters. Here we present a table showing results from our preliminary search. C1 NASA, Space Sci Off, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Sterling, AC (reprint author), NASA, Space Sci Off, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM alphonse.sterling@nasa.gov NR 10 TC 0 Z9 0 U1 1 U2 2 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-00533-4 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 15 BP 498 EP 500 DI 10.1017/S1743921310010380 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUR92 UT WOS:000290186900305 ER PT S AU Rothschild, LJ AF Rothschild, Lynn J. BE Corbett, IF TI Defining the envelope for the search for life in the Universe SO HIGHLIGHTS OF ASTRONOMY, VOL 15 SE IAU Symposium Proceedings Series LA English DT Meeting Abstract CT 27th IAU General Assembly CY AUG 03-14, 2009 CL Ctr Convencoes SulAmerica, Rio de Janeiro, BRAZIL HO Ctr Convencoes SulAmerica C1 [Rothschild, Lynn J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM lynn.j.rothschild@nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-00533-4 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 15 BP 697 EP 698 DI 10.1017/S1743921310011026 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUR92 UT WOS:000290186900438 ER PT S AU Pan, XP Shao, M Goullioud, R AF Pan, Xiaopei Shao, Michael Goullioud, Renaud BE Corbett, IF TI SIM Lite astrometric observatory for detection of Earth-like planets SO HIGHLIGHTS OF ASTRONOMY, VOL 15 SE IAU Symposium Proceedings Series LA English DT Meeting Abstract CT 27th IAU General Assembly CY AUG 03-14, 2009 CL Ctr Convencoes SulAmerica, Rio de Janeiro, BRAZIL HO Ctr Convencoes SulAmerica C1 [Pan, Xiaopei; Shao, Michael; Goullioud, Renaud] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM xiaopei.pan@jpl.nasa.gov; michael.shao@jpl.nasa.gov; renaud.goullioud@jpl.nasa.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-1-107-00533-4 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 15 BP 714 EP 715 DI 10.1017/S1743921310011130 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BUR92 UT WOS:000290186900449 ER PT S AU Guirado, JC Marti-Vidal, I Marcaide, JM Close, LM Lestrade, JF Jauncey, DL Jimenez-Monferrer, S Jones, DL Preston, RA Reynolds, JE AF Guirado, J. C. Marti-Vidal, I. Marcaide, J. M. Close, L. M. Lestrade, J. -F. Jauncey, D. L. Jimenez-Monferrer, S. Jones, D. L. Preston, R. A. Reynolds, J. E. BE Diego, JM Goicoechea, LJ GonzalezSerrano, JI Gorgas, J TI The AB Doradus System Revisited: The Dynamical Mass of AB Dor A SO HIGHLIGHTS OF SPANISH ASTROPHYSICS V SE Astrophysics and Space Science Proceedings LA English DT Proceedings Paper CT 8th Scientific Meeting of the Spanish-Astronomical-Society (SEA) CY JUL 07-11, 2008 CL Univ Cantabria, Inst Fisica Cantabria, Santander, SPAIN SP Spanish Astronom Soc HO Univ Cantabria, Inst Fisica Cantabria ID EVOLUTIONARY MODELS; AGE; CONSTRAINTS; TRACKS; STARS AB We report new radio interferometric observations of the quadruple pre-main-sequence (PMS) system AB Doradus. From these observations, combined with existing VLT near-infrared relative astrometry, we have refined the estimates of the dynamical masses of the system. In particular, we find component masses of 0.86 +/- 0.09M(circle dot) and 0.090 +/- 0.003 M-circle dot for AB Dor A and AB Dor C, respectively. These dynamical masses, coupled with temperatures and luminosities, allow for comparison with theoretical stellar models. The case of AB Dor C, in terms of calibration of evolutionary models of low-mass young stars has been widely reported in previous studies. In this contribution, we compare the measured properties of AB Dor A with several solar-composition models for PMS stars. The models used in this comparison predict the dynamical mass to within the quoted uncertainties. C1 [Guirado, J. C.; Marti-Vidal, I.; Marcaide, J. M.; Jimenez-Monferrer, S.] Univ Valencia, Dr Moliner 50, E-46100 Valencia, Spain. [Marti-Vidal, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Close, L. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Lestrade, J. -F.] Observ Paris, LERMA, F-75014 Paris, France. [Jauncey, D. L.; Reynolds, J. E.] Australia Telescope Natl Facil, Epping, NSW 2121, Australia. [Jones, D. L.; Preston, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Guirado, JC (reprint author), Univ Valencia, Dr Moliner 50, E-46100 Valencia, Spain. EM Jose.C.Guirado@uv.es; imartiv@mpifr-bonn.mpg.de; J.M.Marcaide@uv.es; lclose@as.arizona.edu; jean-francois.lestrade@obspm.fr; David.Jauncey@atnf.csiro.au; sergio.jimenez@uv.es; dayton.jones@jpl.nasa.gov; rap@sgra.jpl.nasa.gov; John.Reynolds@atnf.csiro.au RI Marti-Vidal, Ivan/A-8799-2017 OI Marti-Vidal, Ivan/0000-0003-3708-9611 FU Spanish DGICYT [AYA2006-14986-CO2-02]; Commonwealth of Australia for operation as a National Facility managed by CSIRO; National Aeronautics and Space Administration FX This work has been partially founded by grant AYA2006-14986-CO2-02 of the Spanish DGICYT. The Long Baseline Array is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of TEchnology,under contract with the National Aeronautics and Space Administration. IMV is a fellow of the Alexander von Humboldt-Stiftung. NR 15 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1570-6591 BN 978-3-642-11249-2 J9 ASTROPHYSICS SPACE PY 2010 BP 139 EP + DI 10.1007/978-3-642-11250-8_13 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BZU25 UT WOS:000302967500013 ER PT S AU Ciancone, ML Lasser, A AF Ciancone, Michael L. Lasser, Amelia Mimi BE Ciancone, ML TI David Lasser An American Spaceflight Pioneer (1902-1996) SO HISTORY OF ROCKETRY AND ASTRONAUTICS SE AAS History Series LA English DT Proceedings Paper CT 36th International-Academy-of-Astronautics History Symposium CY OCT 10-19, 2002 CL Houston, TX AB David Lasser was one of the founders of the American Interplanetary Society (later known as the American Rocket Society) and author of the first English-language book (in 1931) on the use of rockets for human spaceflight. His involvement in the fledgling spaceflight movement was short-lived as he moved on to pursue a distinguished, if turbulent, career in the labor movement. In lieu of an oral history, Mr. Lasser provided his recollections on the pioneering days of rocketry and his thoughts on mankind's destiny in space. This article provides an overview of Mr. Lasser's life and accomplishments as an American spaceflight visionary, along with a compilation of the information that he graciously provided. C1 [Ciancone, Michael L.] NASA Johnson Space Ctr, Houston, TX USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER ASTRONAUTICAL SOC PI SAN DIEGO PA PUBLICATIONS OFFICE PO BOX 28130, SAN DIEGO, CA 92128 USA SN 0730-3564 BN 978-0-87703-559-6 J9 AAS HIST SER PY 2010 VL 33 BP 121 EP 140 PG 20 WC Engineering, Aerospace; History & Philosophy Of Science SC Engineering; History & Philosophy of Science GA BVS01 UT WOS:000292619400008 ER PT S AU Finger, HB AF Finger, Harold B. BE Ciancone, ML TI The AEC-NASA Nuclear Rocket Program SO HISTORY OF ROCKETRY AND ASTRONAUTICS SE AAS History Series LA English DT Proceedings Paper CT 36th International-Academy-of-Astronautics History Symposium CY OCT 10-19, 2002 CL Houston, TX AB The joint Atomic Energy Commission (AEC)-National Aeronautics and Space Administration (NASA) nuclear rocket program (generally referred to as the Rover program) developed the technologies, high temperatures, long engine operating times and recyclability, that are essential for accomplishment of human missions to Mars and other deep space missions that have been discussed as potential space program objectives for decades and they are now restimulated by NASA's revived nuclear enabled mission interest. The organization of the AEC NASA nuclear rocket program, including its truly joint interagency management and its diverse and very strong government and industry science and technology research and development capability, serve as a model of the requirements for achieving the technology advances for future mission applications. Responsibility for the nuclear rocket propulsion system and rocket vehicle was transferred from the Army Air Corps to NASA by Executive Order when NASA was established on October 1, 1958. Then, after significant congressional, interagency, political interactions and with the strong persistence of the NASA Administrator, Dr. T. Keith Glennan, a joint AEC-NASA Space Nuclear Propulsion Office (SNPO) was established in 1960 with the author as Manager, Milton Klein of the AEC as Deputy Manager, and with an outstanding team from the AEC, NASA, and the U.S. Air Force (USAF). The reactor development for the nuclear rocket, which had been initiated by the AEC's Los Alamos Scientific Laboratory (LASL) in 1955, remained the responsibility of the AEC. NASA was responsible for development of the non-nuclear components of the engine-for example, liquid hydrogen pumps and hydrogen cooled jet nozzles-and integration of the reactor and those components into a full engine named NERVA (Nuclear Engine for Rocket Vehicle Application) and then into flight vehicles for mission application. Safety assurance was a major responsibility of both. The industry contractors selected for the NERVA development were Aerojet-General for the overall engine with Westinghouse as the subcontractor for the NERVA reactor. Rocketdyne Division of North American Aviation had developed the hydrogen pump and jet nozzle for use in the Los Alamos KIWI reactor tests. Many other companies, NASA and AEC laboratory personnel, and USAF officers were involved in achieving the program's proven capability of nuclear rocket propulsion. All of us in the program and our nation benefited greatly from its achievements. And now, all of us together can and should commit to moving application of that nuclear propulsion forward to enable the significant, long anticipated, future space missions including human exploration of Mars. C1 NASA, Washington, DC USA. NR 10 TC 0 Z9 0 U1 0 U2 2 PU AMER ASTRONAUTICAL SOC PI SAN DIEGO PA PUBLICATIONS OFFICE PO BOX 28130, SAN DIEGO, CA 92128 USA SN 0730-3564 BN 978-0-87703-559-6 J9 AAS HIST SER PY 2010 VL 33 BP 327 EP 347 PG 21 WC Engineering, Aerospace; History & Philosophy Of Science SC Engineering; History & Philosophy of Science GA BVS01 UT WOS:000292619400016 ER PT S AU Pickering, WH AF Pickering, William H. BE Ciancone, ML TI Early Solar System Exploration SO HISTORY OF ROCKETRY AND ASTRONAUTICS SE AAS History Series LA English DT Proceedings Paper CT 36th International-Academy-of-Astronautics History Symposium CY OCT 10-19, 2002 CL Houston, TX AB Shortly after the Soviet Union and the United States had demonstrated near-Earth satellite devices, both countries realized that spacecraft could be made to travel to the Moon and the planets. The Soviet Union sent the first lunar mission past the Moon in January 1959. The third Luna, in October 1959, took some photographs of the backside of the Moon. The U.S. Mariner spacecraft, in December 1962, was the first spacecraft to fly close to another planet, Venus. Both countries continued to send increasingly complex missions to the planets of the solar system. The Soviet Union concentrated on Mars and Venus. The United States sent spacecraft to all the planets, except Pluto. Neptune was visited in August 1989. Forty years ago, Mariner 2 became the first manmade spacecraft, to fly past the planet Venus, 20,000 mi above the surface, on 14 December 1962. This event took place only a little more than five years after the first Sputnik circled Earth. Remembering that those years saw many failures to place objects in orbit around Earth, and to send spacecraft to the Moon, the success of Mariner 2 marked a real accomplishment toward a program of solar system exploration. [GRAPHICS] . C1 [Pickering, William H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER ASTRONAUTICAL SOC PI SAN DIEGO PA PUBLICATIONS OFFICE PO BOX 28130, SAN DIEGO, CA 92128 USA SN 0730-3564 BN 978-0-87703-559-6 J9 AAS HIST SER PY 2010 VL 33 BP 349 EP 361 PG 13 WC Engineering, Aerospace; History & Philosophy Of Science SC Engineering; History & Philosophy of Science GA BVS01 UT WOS:000292619400017 ER PT S AU Ciancone, ML Rubagotti, DM AF Ciancone, Michael L. Rubagotti, Diana Motta BE Ciancone, ML TI Luigi Gussalli: Italian Spaceflight Visionary (1885-1950) SO HISTORY OF ROCKETRY AND ASTRONAUTICS SE AAS History Series LA English DT Proceedings Paper CT 36th International-Academy-of-Astronautics History Symposium CY OCT 10-19, 2002 CL Houston, TX AB The purpose of this article is to heighten awareness within the space history community of the contributions of Luigi Gussalli, an Italian inventor and spaceflight visionary. C1 [Ciancone, Michael L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER ASTRONAUTICAL SOC PI SAN DIEGO PA PUBLICATIONS OFFICE PO BOX 28130, SAN DIEGO, CA 92128 USA SN 0730-3564 BN 978-0-87703-559-6 J9 AAS HIST SER PY 2010 VL 33 BP 519 EP 530 PG 12 WC Engineering, Aerospace; History & Philosophy Of Science SC Engineering; History & Philosophy of Science GA BVS01 UT WOS:000292619400027 ER PT S AU Larsen, WA Carter, KC Kelly, SH AF Larsen, William A. Carter, Kent C. Kelly, Shelly H. BE Ciancone, ML TI "For All Mankind ... ": Public Access to Historical Resources SO HISTORY OF ROCKETRY AND ASTRONAUTICS SE AAS History Series LA English DT Proceedings Paper CT 36th International-Academy-of-Astronautics History Symposium CY OCT 10-19, 2002 CL Houston, TX AB With its inception in 1962, the NASA Johnson Space Center in Houston, Texas, has been the source of a great deal of historically significant information concerning the efforts of the United States to put humans into space. While many of the activities from the Mercury, Gemini, and Apollo eras have been widely published by NASA and others, a broad range of resource materials from that period and succeeding programs continues to be needed by authors, researchers, journalists, and others. Through the combined efforts of the NASA Johnson Space Center, the National Archives and Records Administration, and the University of Houston Clear Lake, public access to such material is now easily accessible. C1 [Larsen, William A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASTRONAUTICAL SOC PI SAN DIEGO PA PUBLICATIONS OFFICE PO BOX 28130, SAN DIEGO, CA 92128 USA SN 0730-3564 BN 978-0-87703-559-6 J9 AAS HIST SER PY 2010 VL 33 BP 543 EP 546 PG 4 WC Engineering, Aerospace; History & Philosophy Of Science SC Engineering; History & Philosophy of Science GA BVS01 UT WOS:000292619400030 ER PT S AU Starr, SO AF Starr, Stanley O. BE Rothmund, C TI The Launch of Bumper 8 from the Cape: The End of an Era and the Beginning of Another SO HISTORY OF ROCKETRY AND ASTRONAUTICS SE AAS History Series LA English DT Proceedings Paper CT 35th History Symposium of the International Academy of Astronautics CY OCT, 2001 CL Toulouse, FRANCE AB On 24 July 1950, Bumper 8 was launched from a small concrete launch pad north of the Cape Canaveral lighthouse, becoming the first launch from the Long Range Proving Ground (LRPG) Combining a German V-2 first stage and a WAC (Without Attitude Control) Corporal second stage, Bumper was built to shatter speed and altitude records and gather much needed design data The Bumper launches, from White Sands, New Mexico, and Cape Canaveral, Florida, achieved these goals, demonstrated the first successful ignition of a second-stage liquid rocket, and expanded the boundaries of knowledge in missile aerodynamic heating and control systems The Bumper project strongly challenged the talents of the existing U S missile experts of the Army, General Electric (GE) Company, and the Jet Propulsion Laboratory (JPL), and fostered collaboration with the German missile engineer emigres Bumper publicity actively engaged public interest during a time when weapons developments were largely secret but behind-the-scenes competition for budgets was particularly keen The fledgling LRPG, which had just embarked on a multiyear program to build a 1,000-mile missile range, supported the complex launching and tracking requirements of the last two Bumper launches with a quickly assembled team, temporary facilities, and under harsh conditions Although announced to the press and widely remembered as successful, the two Bumper launches did not meet their technical objectives and are frequently misrepresented in historical reviews The Bumper launches in many ways represent the last major launches of World War II era legacy technology, which soon gave way to better funded and advanced missiles, such as the Redstone C1 [Starr, Stanley O.] NASA Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA. NR 31 TC 0 Z9 0 U1 1 U2 1 PU AMER ASTRONAUTICAL SOC PI SAN DIEGO PA PUBLICATIONS OFFICE PO BOX 28130, SAN DIEGO, CA 92128 USA SN 0730-3564 BN 978-0-87703-556-5 J9 AAS HIST S PY 2010 VL 32 BP 75 EP 97 PG 23 WC History & Philosophy Of Science SC History & Philosophy of Science GA BSK51 UT WOS:000284750100005 ER PT J AU Dismukes, RK AF Dismukes, R. Key BE Salas, E Maurino, D TI Understanding and Analyzing Human Error in Real-World Operations SO HUMAN FACTORS IN AVIATION, 2ND EDITION LA English DT Article; Book Chapter ID CRITICAL DECISION METHOD; KNOWLEDGE ELICITATION; FLIGHT EXPERIENCE; ACCIDENTS; AGE; PILOTS C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Dismukes, RK (reprint author), NASA, Ames Res Ctr, Mail Stop 262-2, Moffett Field, CA 94035 USA. NR 48 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-092302-4 PY 2010 BP 335 EP 374 DI 10.1016/B978-0-12-374518-7.00011-0 PG 40 WC Psychology, Applied; Transportation SC Psychology; Transportation GA BEM53 UT WOS:000317362000011 ER PT J AU Hobbs, A AF Hobbs, Alan BE Salas, E Maurino, D TI Unmanned Aircraft Systems SO HUMAN FACTORS IN AVIATION, 2ND EDITION LA English DT Article; Book Chapter ID REMOTELY PILOTED AIRCRAFT; VEHICLES; MISHAPS C1 San Jose State Univ, Human Syst Integrat Div, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hobbs, A (reprint author), San Jose State Univ, Human Syst Integrat Div, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 44 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-092302-4 PY 2010 BP 505 EP 531 DI 10.1016/B978-0-12-374518-7.00016-X PG 27 WC Psychology, Applied; Transportation SC Psychology; Transportation GA BEM53 UT WOS:000317362000016 ER PT J AU Casner, SM AF Casner, Stephen M. BE Salas, E Maurino, D TI General Aviation SO HUMAN FACTORS IN AVIATION, 2ND EDITION LA English DT Article; Book Chapter ID DECISION-MAKING; FLIGHT EXPERIENCE; PILOTS; AGE; PERFORMANCE; AUTOMATION; EXPERTISE; ADVICE; RISK; PERCEPTION C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Casner, SM (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 87 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-092302-4 PY 2010 BP 595 EP 628 DI 10.1016/B978-0-12-374518-7.00019-5 PG 34 WC Psychology, Applied; Transportation SC Psychology; Transportation GA BEM53 UT WOS:000317362000019 ER PT J AU Kanki, BG AF Kanki, Barbara G. BE Salas, E Maurino, D TI Maintenance Human Factors: A Brief History SO HUMAN FACTORS IN AVIATION, 2ND EDITION LA English DT Article; Book Chapter ID SAFETY MANAGEMENT C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kanki, BG (reprint author), NASA, Ames Res Ctr, MS 262-4, Moffett Field, CA 94035 USA. NR 50 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-092302-4 PY 2010 BP 659 EP 697 DI 10.1016/B978-0-12-374518-7.00021-3 PG 39 WC Psychology, Applied; Transportation SC Psychology; Transportation GA BEM53 UT WOS:000317362000021 ER PT J AU Gruhier, C de Rosnay, P Hasenauer, S Holmes, T de Jeu, R Kerr, Y Mougin, E Njoku, E Timouk, F Wagner, W Zribi, M AF Gruhier, C. de Rosnay, P. Hasenauer, S. Holmes, T. de Jeu, R. Kerr, Y. Mougin, E. Njoku, E. Timouk, F. Wagner, W. Zribi, M. TI Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID AFRICAN MONSOON; PRECIPITATION; RETRIEVAL; SURFACE; SPACE AB This paper presents a comparison and an evaluation of five soil moisture products based on satellite-based passive and active microwave measurements. Products are evaluated for 2005-2006 against ground measurements obtained from the soil moisture network deployed in Mali (Sahel) in the framework of the African Monsoon Multidisciplinary Analysis project. It is shown that the accuracy of the soil moisture products is sensitive to the retrieval approach as well as to the sensor type (active or passive) and to the signal frequency (from 5.6 GHz to 18.8 GHz). The spatial patterns of surface soil moisture are compared between the different products at meso-scale (14.5 degrees N-17.5 degrees N and 2 degrees W-1 degrees W). A general good consistency between the different satellite soil moisture products is shown in terms of meso-scale spatial distribution, in particular after convective rainfall occurrences. Comparison to ground measurement shows that although soil moisture products obtained from satellite generally over-estimate soil moisture values during the dry season, most of them capture soil moisture temporal variations in good agreement with ground station measurements. C1 [Gruhier, C.; Kerr, Y.; Mougin, E.; Timouk, F.; Zribi, M.] UPS, IRD, CNES, CNRS,Ctr Etud Spatiales BIOsphere,UMR 5126, Toulouse, France. [de Rosnay, P.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Hasenauer, S.; Wagner, W.] Vienna Univ Technol, Inst Photogrammetry & Remote Sensing, A-1040 Vienna, Austria. [Holmes, T.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA. [de Jeu, R.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Njoku, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Gruhier, C (reprint author), UPS, IRD, CNES, CNRS,Ctr Etud Spatiales BIOsphere,UMR 5126, Toulouse, France. EM claire.gruhier@cesbio.cnes.fr RI de Rosnay, Patricia/M-8203-2013; Holmes, Thomas/F-4512-2010; OI de Rosnay, Patricia/0000-0002-7374-3820; Holmes, Thomas/0000-0002-4651-0079; Wagner, Wolfgang/0000-0001-7704-6857 FU European Community Sixth Framework Research Program FX The ground validation data set was obtained in the framework of the AMMA (African Monsoon Multidisciplinary Analysis) Program. Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, UK, US and Africa. It has been the beneficiary of a major financial contribution from the European Community Sixth Framework Research Program. Detailed information on scientific coordination and funding is available on the AMMA International web site http://www.amma-international.org. NR 33 TC 97 Z9 100 U1 1 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2010 VL 14 IS 1 BP 141 EP 156 DI 10.5194/hess-14-141-2010 PG 16 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 549NR UT WOS:000274058900010 ER PT J AU Krakauer, NY Cook, BI Puma, MJ AF Krakauer, N. Y. Cook, B. I. Puma, M. J. TI Contribution of soil moisture feedback to hydroclimatic variability SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID SURFACE EVAPORATION VARIABILITY; LAND-SURFACE; PRECIPITATION VARIABILITY; GISS MODELE; CLIMATE PREDICTABILITY; SIMULATED CLIMATE; SUMMER CLIMATE; DROUGHT; ATMOSPHERE; TEMPERATURE AB While a variety of model experiments and analyses of observations have explored the impact of soil moisture variation on climate, it is not yet clear how large or detectable soil moisture feedback is across spatial and temporal scales. Here, we study the impact of dynamic versus climatological soil moisture in the GISS GCM ModelE (with prescribed sea-surface temperatures) on the variance and on the spatial and temporal correlation scale of hydrologically relevant climate variables (evaporation, precipitation, temperature, cloud cover) over the land surface. We also confirm that synoptic variations in soil moisture have a substantial impact on the mean climate state, because of the nonlinearity of the dependence of evapotranspiration on soil moisture. We find that including dynamic soil moisture increases the interannual variability of seasonal (summer and fall) and annual temperature, precipitation, and cloudiness. Dynamic soil moisture tends to decrease the correlation length scale of seasonal (warm-season) to annual land temperature fluctuations and increase that of precipitation. Dynamic soil moisture increases the persistence of temperature anomalies from spring to summer and from summer to fall, and makes the correlation between land precipitation and temperature fluctuations substantially more negative. Global observation sets that allow determination of the spacetime correlation of variables such as temperature, precipitation, and cloud cover could provide empirical measures of the strength of soil moisture feedback, given that the feedback strength varies widely among models. C1 [Krakauer, N. Y.] CUNY, Dept Civil Engn, New York, NY 10021 USA. [Cook, B. I.; Puma, M. J.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Krakauer, NY (reprint author), CUNY, Dept Civil Engn, New York, NY 10021 USA. EM nkrakauer@ccny.cuny.edu RI Cook, Benjamin/H-2265-2012 FU National Oceanic and Atmospheric Administration (NOAA) [NA06OAR4810162] FX This study was supported by the National Oceanic and Atmospheric Administration (NOAA) under Grant Number NA06OAR4810162. The statements contained in this article are not the opinions of the funding agency or the US government, but reflect the views of the authors. NR 57 TC 11 Z9 11 U1 1 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2010 VL 14 IS 3 BP 505 EP 520 PG 16 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 576VQ UT WOS:000276178100009 ER PT J AU McEwen, AS Banks, ME Baugh, N Becker, K Boyd, A Bergstrom, JW Beyer, RA Bortolini, E Bridges, NT Byrne, S Castalia, B Chuang, FC Crumpler, LS Daubar, I Davatzes, AK Deardorff, DG DeJong, A Delamere, WA Dobrea, EN Dundas, CM Eliason, EM Espinoza, Y Fennema, A Fishbaugh, KE Forrester, T Geissler, PE Grant, JA Griffes, JL Grotzinger, JP Gulick, VC Hansen, CJ Herkenhoff, KE Heyd, R Jaeger, WL Jones, D Kanefsky, B Keszthelyi, L King, R Kirk, RL Kolb, KJ Lasco, J Lefort, A Leis, R Lewis, KW Martinez-Alonso, S Mattson, S McArthur, G Mellon, MT Metz, JM Milazzo, MP Milliken, RE Motazedian, T Okubo, CH Ortiz, A Philippoff, AJ Plassmann, J Polit, A Russell, PS Schaller, C Searls, ML Spriggs, T Squyres, SW Tarr, S Thomas, N Thomson, BJ Tornabene, LL Van Houten, C Verba, C Weitz, CM Wray, JJ AF McEwen, Alfred S. Banks, Maria E. Baugh, Nicole Becker, Kris Boyd, Aaron Bergstrom, James W. Beyer, Ross A. Bortolini, Edward Bridges, Nathan T. Byrne, Shane Castalia, Bradford Chuang, Frank C. Crumpler, Larry S. Daubar, Ingrid Davatzes, Alix K. Deardorff, Donald G. DeJong, Alaina Delamere, W. Alan Dobrea, Eldar Noe Dundas, Colin M. Eliason, Eric M. Espinoza, Yisrael Fennema, Audrie Fishbaugh, Kathryn E. Forrester, Terry Geissler, Paul E. Grant, John A. Griffes, Jennifer L. Grotzinger, John P. Gulick, Virginia C. Hansen, Candice J. Herkenhoff, Kenneth E. Heyd, Rodney Jaeger, Windy L. Jones, Dean Kanefsky, Bob Keszthelyi, Laszlo King, Robert Kirk, Randolph L. Kolb, Kelly J. Lasco, Jeffrey Lefort, Alexandra Leis, Richard Lewis, Kevin W. Martinez-Alonso, Sara Mattson, Sarah McArthur, Guy Mellon, Michael T. Metz, Joannah M. Milazzo, Moses P. Milliken, Ralph E. Motazedian, Tahirih Okubo, Chris H. Ortiz, Albert Philippoff, Andrea J. Plassmann, Joseph Polit, Anjani Russell, Patrick S. Schaller, Christian Searls, Mindi L. Spriggs, Timothy Squyres, Steven W. Tarr, Steven Thomas, Nicolas Thomson, Bradley J. Tornabene, Livio L. Van Houten, Charlie Verba, Circe Weitz, Catherine M. Wray, James J. TI The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP) SO ICARUS LA English DT Review DE Mars; surface; Mars; climate; Mars; polar geology; Image processing ID MARS ORBITER CAMERA; NORTH POLAR-REGION; GROUND ICE; ATHABASCA VALLES; MARTIAN CLIMATE; NEAR-SURFACE; FLUID-FLOW; WATER ICE; DEPOSITS; EVOLUTION AB The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering similar to 0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits columnar jointing in lava flows,, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering Studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. (C) 2009 Elsevier Inc. All rights reserved. C1 [McEwen, Alfred S.; Banks, Maria E.; Baugh, Nicole; Boyd, Aaron; Byrne, Shane; Castalia, Bradford; Daubar, Ingrid; DeJong, Alaina; Dundas, Colin M.; Eliason, Eric M.; Espinoza, Yisrael; Fennema, Audrie; Forrester, Terry; Heyd, Rodney; Jones, Dean; King, Robert; Kolb, Kelly J.; Leis, Richard; Mattson, Sarah; McArthur, Guy; Motazedian, Tahirih; Ortiz, Albert; Philippoff, Andrea J.; Plassmann, Joseph; Polit, Anjani; Schaller, Christian; Spriggs, Timothy; Tornabene, Livio L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Becker, Kris; Geissler, Paul E.; Herkenhoff, Kenneth E.; Jaeger, Windy L.; Keszthelyi, Laszlo; Kirk, Randolph L.; Milazzo, Moses P.; Okubo, Chris H.; Verba, Circe] US Geol Survey, Flagstaff, AZ 86001 USA. [Bergstrom, James W.; Bortolini, Edward; Lasco, Jeffrey; Tarr, Steven; Van Houten, Charlie] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Beyer, Ross A.; Deardorff, Donald G.; Gulick, Virginia C.; Kanefsky, Bob] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Beyer, Ross A.; Deardorff, Donald G.; Gulick, Virginia C.; Kanefsky, Bob] SETI Inst, Moffett Field, CA 94035 USA. [Bridges, Nathan T.; Dobrea, Eldar Noe; Hansen, Candice J.; Milliken, Ralph E.; Thomson, Bradley J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chuang, Frank C.; Weitz, Catherine M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Crumpler, Larry S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. [Davatzes, Alix K.] Temple Univ, Dept Earth & Environm Sci, Philadelphia, PA 19122 USA. [Delamere, W. Alan] Delamere Support Syst, Boulder, CO 80304 USA. [Fishbaugh, Kathryn E.; Grant, John A.] Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA. [Griffes, Jennifer L.; Grotzinger, John P.; Lewis, Kevin W.; Metz, Joannah M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Lefort, Alexandra; Russell, Patrick S.; Thomas, Nicolas] Univ Bern, CH-3012 Bern, Switzerland. [Martinez-Alonso, Sara; Mellon, Michael T.; Searls, Mindi L.] Univ Colorado, Boulder, CO 80309 USA. [Squyres, Steven W.; Wray, James J.] Cornell Univ, Ithaca, NY 14853 USA. [Thomson, Bradley J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP McEwen, AS (reprint author), Univ Arizona, Lunar & Planetary Lab, 1541 E Univ Blvd, Tucson, AZ 85721 USA. EM mcewen@lpl.arizona.edu RI Wray, James/B-8457-2008; Davatzes, Alexandra/B-1479-2012; Byrne, Shane/B-8104-2012; Lewis, Kevin/E-5557-2012; Daubar, Ingrid/N-1408-2013; Martinez-Alonso, Sara/D-8594-2011; Mellon, Michael/C-3456-2016; Bridges, Nathan/D-6341-2016; OI Dundas, Colin/0000-0003-2343-7224; Beyer, Ross/0000-0003-4503-3335; Wray, James/0000-0001-5559-2179; Martinez-Alonso, Sara/0000-0001-5185-8670; Thomson, Bradley/0000-0001-8635-8932 FU NASA/JPL FX We thank everyone who has made HiRISE possible, including those at NASA, JPL, Lockheed-Martin, BATC and subcontractors, and the University of Arizona. A.S.M. especially thanks Larry Soderblom (USGS) and the late Gene Shoemaker for providing examples of doing what's best for the science community. For constructive reviews we thank E. Hauber, J. Johnson, L. Soderblom, and an undisclosed reviewer. This work was supported by the NASA/JPL MRO project. NR 192 TC 64 Z9 64 U1 3 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 2 EP 37 DI 10.1016/j.icarus.2009.04.023 PG 36 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800002 ER PT J AU Delamere, WA Tornabene, LL McEwen, AS Becker, K Bergstrom, JW Bridges, NT Eliason, EM Gallagher, D Herkenhoff, KE Keszthelyi, L Mattson, S McArthur, GK Mellon, MT Milazzo, M Russell, PS Thomas, N AF Delamere, W. Alan Tornabene, Livio L. McEwen, Alfred S. Becker, Kris Bergstrom, James W. Bridges, Nathan T. Eliason, Eric M. Gallagher, Dennis Herkenhoff, Kenneth E. Keszthelyi, Laszlo Mattson, Sarah McArthur, Guy K. Mellon, Michael T. Milazzo, Moses Russell, Patrick S. Thomas, Nicolas TI Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE) SO ICARUS LA English DT Article DE Mars, Surface; Mars; Instrumentation; Image processing ID OLIVINE; REGION AB HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE. (C) 2009 Elsevier Inc. All rights reserved. C1 [Delamere, W. Alan] Delamere Support Syst, Boulder, CO 80304 USA. [Tornabene, Livio L.; McEwen, Alfred S.; Eliason, Eric M.; Mattson, Sarah; McArthur, Guy K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Becker, Kris; Herkenhoff, Kenneth E.; Keszthelyi, Laszlo; Milazzo, Moses] US Geol Survey, Flagstaff, AZ 86001 USA. [Bergstrom, James W.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Bridges, Nathan T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gallagher, Dennis] CDM Opt, Boulder, CO 80303 USA. [Mellon, Michael T.] Univ Colorado, Boulder, CO 80309 USA. [Russell, Patrick S.; Thomas, Nicolas] Univ Bern, CH-3012 Bern, Switzerland. RP Delamere, WA (reprint author), Delamere Support Syst, 525 Mapleton Ave, Boulder, CO 80304 USA. EM alan@delamere.biz RI Mellon, Michael/C-3456-2016; Bridges, Nathan/D-6341-2016 FU NASA/JPL FX We thank everyone who has made HiRISE possible, from NASA, JPL, Lockheed-Martin Corp., BATC and subcontractors, and the University of Arizona. We particularly want to thank Charlie Hamp whose conservative power supply design ensured that the color CCDs were not deleted from the HiRISE design during moments of programmatic stress. This work supported by the NASA/JPL MRO Project. NR 32 TC 31 Z9 31 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 38 EP 52 DI 10.1016/j.icarus.2009.03.012 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800003 ER PT J AU Grant, JA Wilson, SA Dobrea, EN Fergason, RL Griffes, JL Moore, JM Howard, AD AF Grant, John A. Wilson, Sharon A. Dobrea, Eldar Noe Fergason, Robin L. Griffes, Jennifer L. Moore, Jeffery M. Howard, Alan D. TI HiRISE views enigmatic deposits in the Sirenum Fossae region of Mars SO ICARUS LA English DT Article DE Mars; Geological processes ID THERMAL EMISSION SPECTROMETER; SURFACE GROUND ICE; VOLCANOS; BASIN AB HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100-200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the "Electris deposits," include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are similar to 200 J m(-2) K-1 s(-1/2) and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely. Published by Elsevier Inc. C1 [Grant, John A.; Wilson, Sharon A.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. [Dobrea, Eldar Noe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fergason, Robin L.] US Geol Survey, Flagstaff, AZ 86001 USA. [Griffes, Jennifer L.] CALTECH, Pasadena, CA 91125 USA. [Moore, Jeffery M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Howard, Alan D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. RP Grant, JA (reprint author), Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. EM grantj@si.edu; purdys@si.edu; eldar@caltech.edu; rfergason@usgs.gov; griffes@gps.caltech.edu; jeff.moore@nasa.gov; ah6p@virginia.edu OI Howard, Alan/0000-0002-5423-1600 FU NASA FX We thank the people at the University of Arizona, Ball Aerospace, the jet Propulsion Laboratory, and Lockheed Martin that built and operate the HiRISE camera and the Mars Reconnaissance Orbiter Spacecraft. Reviews by Kevin Williams, Ken Herkenhoff, and an anonymous reviewer improved the manuscript. This work was supported by NASA. NR 50 TC 10 Z9 10 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 53 EP 63 DI 10.1016/j.icarus.2009.04.009 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800004 ER PT J AU Newsom, HE Lanza, NL Ollila, AM Wiseman, SM Roush, TL Marzo, GA Tornabene, LL Okubo, CH Osterloo, MM Hamilton, VE Crumpler, LS AF Newsom, Horton E. Lanza, Nina L. Ollila, Ann M. Wiseman, Sandra M. Roush, Ted L. Marzo, Giuseppe A. Tornabene, Livio L. Okubo, Chris H. Osterloo, Mikki M. Hamilton, Victoria E. Crumpler, Larry S. TI Inverted channel deposits on the floor of Miyamoto crater, Mars SO ICARUS LA English DT Article DE Mars; Mars, surface; Geologic processes; Cratering ID MERIDIANI-PLANUM; SEDIMENTARY-ROCKS; ORIGIN; INVERSION; RELIEF AB Morphological features on the western floor of Miyamoto crater in southwestern Meridiani Planum, Mars, are suggestive of past fluvial activity. Imagery from the High Resolution Imaging Science Experiment (HiRISE) gives a detailed view of raised curvilinear features that appear to represent inverted paleochannel deposits. The inverted terrain appears to be capped with a resistant, dark-toned deposit that is partially covered by unconsolidated surficial materials. Subsequent to deposition of the capping layer, erosion of the surrounding material has left the capping materials perched on pedestals of uneroded basal unit material. Neither the capping material nor the surrounding terrains show any unambiguous morphological evidence of volcanism or glaciation. The capping deposit may include unconsolidated or cemented stream deposits analogous to terrestrial inverted channels in the Cedar Mountain Formation near Green River, Utah. In addition to this morphological evidence for fluvial activity, phyllosilicates have been identified in the basal material on the floor of Miyamoto crater by orbital spectroscopy, providing mineralogical evidence of past aqueous activity. Based on both the morphological and mineralogical evidence, Miyamoto crater represents an excellent site for in situ examination and sampling of a potentially habitable environment. (C) 2009 Elsevier Inc. All rights reserved. C1 [Newsom, Horton E.; Lanza, Nina L.; Ollila, Ann M.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Newsom, Horton E.; Lanza, Nina L.; Ollila, Ann M.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Wiseman, Sandra M.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Tornabene, Livio L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Okubo, Chris H.] US Geol Survey, Flagstaff, AZ 86001 USA. [Osterloo, Mikki M.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Hamilton, Victoria E.] SW Res Inst, Boulder, CO 80302 USA. [Crumpler, Larry S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. [Roush, Ted L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Newsom, HE (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, MSC03 2050,1 Univ New Mexico, Albuquerque, NM 87131 USA. EM newsom@unm.edu RI Marzo, Giuseppe/A-9765-2015; OI Lanza, Nina/0000-0003-4445-7996 FU NASA [NNG 05GJ42G, NNX 08AL74G] FX Supported by NASA Planetary Geology and Geophysics Program grants NNG 05GJ42G and NNX 08AL74G (H. Newsom) and the NASA/JPL/Los Alamos National Laboratory, Mars Science Laboratory ChemCam instrument project (R. Wiens, P.I., H. Newsom, Co-I.). NASA supports participation of T.L.R via MRO/CRISM. We also thank Eldar Noe Dobrea, John Grant, and Matt Golombek for helpful comments and information oil the MSL landing sites, and the CRISM, HiRISE and THEMIS teams for making data available for this project. We thank Ross Irwin for reviews throughout the editorial process, and Ken Edgett for comments on an earlier draft of this paper. NR 47 TC 16 Z9 16 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 64 EP 72 DI 10.1016/j.icarus.2009.03.030 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800005 ER PT J AU Weitz, CM Milliken, RE Grant, JA McEwen, AS Williams, RME Bishop, JL Thomson, BJ AF Weitz, C. M. Milliken, R. E. Grant, J. A. McEwen, A. S. Williams, R. M. E. Bishop, J. L. Thomson, B. J. TI Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris SO ICARUS LA English DT Article DE Mars; Mars, surface; Mineralogy ID ART. NO. 5111; CHANNELS; ORIGIN; STRATIGRAPHY; EVOLUTION; VOLCANISM; NETWORKS; HISTORY AB We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) South Of Ius Chasma, (2) South of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma and (5), west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, Mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for Sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls. (C) 2009 Elsevier Inc. All rights reserved. C1 [Weitz, C. M.; Williams, R. M. E.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Milliken, R. E.; Thomson, B. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grant, J. A.] Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA. [McEwen, A. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Bishop, J. L.] SETI Inst, Mountain View, CA 94043 USA. RP Weitz, CM (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM weitz@psi.edu OI Thomson, Bradley/0000-0001-8635-8932 NR 79 TC 40 Z9 40 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 73 EP 102 DI 10.1016/j.icarus.2009.04.017 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800006 ER PT J AU Chuang, FC Beyer, RA Bridges, NT AF Chuang, Frank C. Beyer, Ross A. Bridges, Nathan T. TI Modification of Martian slope streaks by eolian processes SO ICARUS LA English DT Article DE Mars, Surface; Geological processes ID WIND-RELATED FEATURES; MARS ORBITER CAMERA; SURFACE-PROPERTIES; GUSEV CRATER; MISSION; VIKING; DUNES; DUST AB Recent images from the High Resolution Imaging Science Experiment (HiRISE) camera have shown that slope streaks have relief on the order of a meter or less. This study presents observations of transverse bedforms and infill deposits within slope streak beds that were not previously identified or were uncommon from earlier analyses of HiRISE images. Transverse bedforms are linear to slightly arcuate features oriented transverse to the slope streak bed which may be analogous to terrestrial splash or coarse-grained ripples based on their morphology, wavelength, and amplitude. In addition to the bedforms, there is also evidence that slope streak beds gradually shallow over time by infilling of material. The presence of ripples within slope streaks implies that saltation-capable material is available on the surface today and/or was available in the recent past. Although airfall dust is not a capable saltation source material, aggregates of electrostatically-bound dust that are possibly later cemented by salts may serve as a source. From the results of this study, we hypothesize a sequence of events in a slope streak formation and modification cycle where grains saltate to form ripples along the bed of a slope streak, airfall dust mantling causes gradual fading of the streak, and infill material buries the ripples, eventually reaching the pre-avalanche surface that removes all traces of relief. (C) 2009 Elsevier Inc. All rights reserved. C1 [Chuang, Frank C.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Beyer, Ross A.] NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Bridges, Nathan T.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Chuang, FC (reprint author), 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM chuang@psi.edu RI Bridges, Nathan/D-6341-2016; OI Beyer, Ross/0000-0003-4503-3335 FU NASA [Y432800]; MRO Participating Scientist Program FX We appreciate the reviews by Kelly Kolb and Kevin Lewis which improved this manuscript in several areas. We are indebted to the HiRISE Team, MRO Project, and Ball Aerospace and Technologies Corp. for their efforts in producing and releasing high quality images for Study. We thank Brad Thomson and James Wray for their early reviews of this manuscript. Image credits: NASA/JPL/University of Arizona (HiRISE), NASA/JPL/MSSS (MOC), NASA/JPL/USGS (Viking). This work has made use of the NASA Astrophysics Data System and the USGS Integrated Software for Imagers and Spectrometers (ISIS; Becker et al., 2007). This work was supported by NASA under Subcontract No. Y432800 issued through the University of Arizona and the MRO Participating Scientist Program issued through the Science Mission Directorate. This manuscript is PSI contribution 463. NR 43 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 154 EP 164 DI 10.1016/j.icarus.2009.07.035 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800010 ER PT J AU Bridges, NT Banks, ME Beyer, RA Chuang, FC Dobrea, EZN Herkenhoff, KE Keszthelyi, LP Fishbaugh, KE McEwen, AS Michaels, TI Thomson, BJ Wray, JJ AF Bridges, N. T. Banks, M. E. Beyer, R. A. Chuang, F. C. Dobrea, E. Z. Noe Herkenhoff, K. E. Keszthelyi, L. P. Fishbaugh, K. E. McEwen, A. S. Michaels, T. I. Thomson, B. J. Wray, J. J. TI Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates SO ICARUS LA English DT Article DE Mars; Mars, Surface ID MARS GLOBAL SURVEYOR; THERMAL EMISSION SPECTROMETER; X-RAY SPECTROMETER; CONDUCTIVITY MEASUREMENTS; PARTICULATE MATERIALS; CHEMICAL-COMPOSITION; PHYSICAL-PROPERTIES; PARTICLE-SIZE; WIND STREAKS; SLOPE WINDS AB HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honey-comb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold Curve, Such that they become stabilized and Subsequently undergo cementation. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bridges, N. T.; Dobrea, E. Z. Noe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Banks, M. E.; McEwen, A. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Beyer, R. A.] SETI Inst, Mountain View, CA 94043 USA. [Chuang, F. C.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Herkenhoff, K. E.; Keszthelyi, L. P.] US Geol Survey, Flagstaff, AZ 86001 USA. [Fishbaugh, K. E.] Smithsonian Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Michaels, T. I.] SW Res Inst, Boulder, CO 80302 USA. [Thomson, B. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Wray, J. J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Bridges, NT (reprint author), CALTECH, Jet Prop Lab, MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM nathan.bridges@jpl.nasa.gov RI Wray, James/B-8457-2008; Bridges, Nathan/D-6341-2016; OI Wray, James/0000-0001-5559-2179; Thomson, Bradley/0000-0001-8635-8932; Beyer, Ross/0000-0003-4503-3335 FU MRO Participating Scientist Program FX This research was supported by a grant from the MRO Participating Scientist Program. Emily Gorbaty, an intern from Stanford University, measured the dimensions of many reticulate ridges and made Fig. 3. Discussions with S. Karunatillake improved our understanding of GRS measurements of the Tharsis region. The comments of two anonymous reviewers are gratefully acknowledged. The research described in this paper was carried out at the jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 59 TC 28 Z9 29 U1 2 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 165 EP 182 DI 10.1016/j.icarus.2009.05.017 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800011 ER PT J AU Hansen, CJ Thomas, N Portyankina, G McEwen, A Becker, T Byrne, S Herkenhoff, K Kieffer, H Mellon, M AF Hansen, C. J. Thomas, N. Portyankina, G. McEwen, A. Becker, T. Byrne, S. Herkenhoff, K. Kieffer, H. Mellon, M. TI HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: I. Erosion of the surface SO ICARUS LA English DT Article DE Mars, Polar caps ID THERMAL MAPPER OBSERVATIONS; GLOBAL SURVEYOR; CARBON-DIOXIDE; ORBITER CAMERA; ICE; CAP; WATER AB The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) has imaged the sublimation of Mars' seasonal CO(2) polar cap with unprecedented detail for one complete martian southern spring. In some areas of the surface, beneath the conformal coating of seasonal ice, radially-organized channels are connected in spidery patterns. The process of formation of this terrain, erosion by gas from subliming seasonal ice, has no earthly analog. The new capabilities (high resolution, color, and stereo images) of HiRISE enable detailed study of this enigmatic terrain. Two sites are analyzed in detail, one within all area expected to have translucent seasonal CO(2) ice, and the other site outside that region. Stereo anaglyphs show that some channels grow larger as they go uphill - implicating gas rather than liquid as the erosive agent. Dark fans of material from the substrate are observed draped over the seasonal ice, and this material collects in thin to thick layers in the channels, possibly choking off gas flow ill Subsequent years, resulting in inactive crisscrossing shallow channels. In some areas there are very dense networks of channels with similar width and depth. and fewer fans emerging later in the season are observed. Subtle variations in topography affect the channel morphology. A new terminology is proposed for the wide variety of erosional features observed. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hansen, C. J.; Thomas, N.; Portyankina, G.; McEwen, A.; Becker, T.; Byrne, S.; Herkenhoff, K.; Kieffer, H.; Mellon, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hansen, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Candice.j.Hansen@jpl.nasa.gov RI Byrne, Shane/B-8104-2012; Mellon, Michael/C-3456-2016 FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX This work was partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Helpful comments and discussion came from Chris Okubo, Nathan Bridges, Laszlo Keszthelyi, Moses Milazzo, and James Wray and two anonymous reviewers. NR 34 TC 26 Z9 26 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 283 EP 295 DI 10.1016/j.icarus.2009.07.021 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800019 ER PT J AU Thomas, N Hansen, CJ Portyankina, G Russell, PS AF Thomas, N. Hansen, C. J. Portyankina, G. Russell, P. S. TI HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: II. Surficial deposits and their origins SO ICARUS LA English DT Article DE Mars; Mars, Polar Geology; Mars, Surface ID ICE CAP; BEHAVIOR AB The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO2 ice. In this work, we mostly concentrate on observations of the Inca City (81 degrees S. 296 degrees E) and Manhattan (86 degrees S, 99 degrees E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour Of CO2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174 degrees at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s(-1) from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210 degrees. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection from the vents is at low velocity (<10 m s(-1)) and that a ground-hugging flow process (a sort of "cryo-fumarole") may be occurring. The failure up to this point to obtain a clear detection of outgassing though stereo imaging is consistent with low level transport. The downslope orientation of the deposits may result from the geometry of the vent or from catabatic winds. At many sites, more than one ejection event appears to have occurred suggesting re-charging of the sources. Around Ls = 230 degrees, the brightness of the surface begins to drop rapidly on north-facing slopes and the contrast between the dark deposits and the surrounding surface reduces. This indicates that the CO2 ice slab is being lost completely in some areas at around this time. By Ls = 280 degrees, at Inca City, the ice slab has effectively gone. CRISM band ratios and THEMIS brightness temperature measurements are consistent with this interpretation. (C) 2009 Elsevier Inc. All rights reserved. C1 [Thomas, N.; Portyankina, G.; Russell, P. S.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Hansen, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Thomas, N (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM nicolas.thomas@space.unibe.ch; candicej.han-sen@jpl.nasa.gov; portyankina@space.unibe.ch; patrick.russell@space.unibe.ch FU Swiss National Science Foundation FX The comments of two anonymous referees led to a significant improvement in the manuscript as did further comments from the Editor. Thanks to Alexandra Lefort for reduction of the THEMIS data seen in Fig. 20. Also thanks to the HiRISE science ops team for their efforts to implement the observing plan. This work has been supported in part by the Swiss National Science Foundation. NR 26 TC 22 Z9 22 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 296 EP 310 DI 10.1016/j.icarus.2009.05.030 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800020 ER PT J AU Portyankina, G Markiewicz, WJ Thomas, N Hansen, CJ Milazzo, M AF Portyankina, Ganna Markiewicz, Wojciech J. Thomas, Nicolas Hansen, Candice J. Milazzo, Moses TI HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: III. Models of processes involving translucent ice SO ICARUS LA English DT Article DE Mars; Mars, Polar caps; Ices; Mars, Surface ID LABORATORY SIMULATION; CO2 ICE; PATHFINDER; BEHAVIOR; SPIDERS; IMAGER; WATER; DUST; CAP; TES AB Enigmatic surface features, known as 'spiders', found at high southern martian latitudes, are probably caused by sublimation-driven erosion under the seasonal carbon dioxide ice cap. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has imaged this terrain in unprecedented details throughout Southern spring. It has been postulated [Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R., 2000. J. Geophys. Res. 105, 9653-9700] that translucent CO(2) slab ice traps gas sublimating at the ice surface boundary. Wherever the pressure is released the escaping gas jet entrains loose Surface material and carries it to the top of the ice where it is carried downslope and/or downwind and deposited in a fan shape. Here we model two stages of this scenario: first, the cleaning Of CO(2) slab ice from dust, and then, the breaking of the slab ice plate under the pressure built below it by subliming ice. Our modeling results and analysis of HiRISE images support the gas jet hypothesis and show that Outbursts happen very early in spring. (C) 2009 Elsevier Inc. All rights reserved. C1 [Portyankina, Ganna; Thomas, Nicolas] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Markiewicz, Wojciech J.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Hansen, Candice J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Milazzo, Moses] US Geol Survey, Flagstaff, AZ 86001 USA. RP Portyankina, G (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM portyankina@space.unibe.ch FU German Research Foundation (DFG); Swiss National Science Foundation FX This research was in part supported by the German Research Foundation (DFG) and in part by the Swiss National Science Foundation. NR 27 TC 18 Z9 18 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JAN PY 2010 VL 205 IS 1 SI SI BP 311 EP 320 DI 10.1016/j.icarus.2009.08.029 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547CA UT WOS:000273861800021 ER PT B AU Huang, JS Lu, H Su, H He, XG Thai, P Zendejaz, R Peral, E Pan, M Lomeli, M Chin, H Lei, C AF Huang, Jia-Sheng Lu, Hanh Su, Hui He, Xiaoguang Thai, Phong Zendejaz, Ruby Peral, Eva Pan, Ming Lomeli, Matt Chin, Heng Lei, Chun BE Baralt, J Callaos, N Chu, HW Ferrer, J Tremante, A TI Ultra-high Power (180mW), Linearly Polarized DFB Lasers with Narrow Spectral Linewidth (100kHz) for 1550nm WDM+100km Long-haul Transmission SO ICEME 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND META-ENGINEERING (POST-CONFERENCE EDITION) LA English DT Proceedings Paper CT International Conference on Engineering and Meta-Engineering CY APR 06-09, 2010 CL Orlando, FL SP Int Inst Informat & Syst DE Distributed feedback (DFB) lasers; 1550nm WDM; high power lasers; relative intensity noise (RIN); polarization extinct ratio (PER); BH lasers; reliability ID HETEROSTRUCTURE SEMICONDUCTOR-LASERS; RELIABILITY; 1.55-MU-M AB C-band 1550nm DWDM lasers with ultra-high optical power (180mW) operated at 600mA continuous wave (CW) have been successfully developed. The lasers showed linear light vs. current (LI) with little rollover up to 750mA at room temperature. The lasers also showed excellent relative intensity noise (RIN <= - 170dB/Hz), narrow linewidth (<=100kHz) as well as excellent polarization extinct ratio (>=21dB) which made it suitable for +100km long-haul transmission. Robust long-term reliability (8800hr) was demonstrated. C1 [Huang, Jia-Sheng; Su, Hui; He, Xiaoguang; Thai, Phong; Zendejaz, Ruby; Pan, Ming; Lomeli, Matt; Chin, Heng; Lei, Chun] Emcore, Broadband Div, 2015 W Chestnut St, Alhambra, CA 91803 USA. [Peral, Eva] Jet Prop Labs, Pasadena, CA USA. RP Huang, JS (reprint author), Emcore, Broadband Div, 2015 W Chestnut St, Alhambra, CA 91803 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU INT INST INFORMATICS & SYSTEMICS PI ORLANDO PA 14269 LORD BARCLAY DR, ORLANDO, FL 32837 USA BN 978-1-934272-84-8 PY 2010 BP 31 EP 35 PG 5 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BG7KW UT WOS:000391415300007 ER PT S AU Hendrix, AR Hansen, CJ AF Hendrix, Amanda R. Hansen, Candice J. BE Fernandez, JA Lazzaro, D Prialnik, D Schulz, R TI The surface composition of Enceladus: clues from the Ultraviolet SO ICY BODIES OF THE SOLAR SYSTEM SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 263rd Symposium of the International-Astronomical-Union on Icy Bodies of the Solar System CY AUG 03-07, 2006 CL Rio de Janeiro, BRAZIL SP Int Astron Union DE planets and satellites: general; planets and satellites: Enceladus ID NEAR-INFRARED SPECTRA; H2O ICE; SATELLITES; SATURN; WATER; TETHYS; PLUME; RHEA; IDENTIFICATION; SPECTROSCOPY AB The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultra Violet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H(2)O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH(3) and a small amount of a tholin in addition to H(2)O ice on the surface. C1 [Hendrix, Amanda R.; Hansen, Candice J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hendrix, AR (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 26 TC 0 Z9 0 U1 2 U2 2 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 BN 978-0-521-76488-9 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2010 VL 5 IS 263 BP 126 EP 130 DI 10.1017/S1743921310001626 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BPT89 UT WOS:000279920700021 ER PT J AU Rengarajan, SR AF Rengarajan, Sembiam R. TI Scanning and Defocusing Characteristics of Microstrip Reflectarrays SO IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS LA English DT Article DE Beam scanning; defocusing; feed displacement; method of moments; microstrip patch array; reflectarray ID ELEMENTS; ANTENNAS; DESIGN AB Results of an investigation on beam scanning by lateral displacement of the feed of a microstrip reflectarray are presented. Radiation pattern characteristics such as gain loss and side-lobe level degradation as a function of scan angle are discussed for different reflectarray geometries. Scanning of reflectarrays is limited to a few beamwidths, and their radiation pattern performance is found to be poorer than that of a comparable parabolic reflector antenna. C1 [Rengarajan, Sembiam R.] Calif State Univ Northridge, Northridge, CA 91330 USA. [Rengarajan, Sembiam R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rengarajan, SR (reprint author), Calif State Univ Northridge, Northridge, CA 91330 USA. EM srengarajan@csun.edu FU Earth Science Technology Office of NASA FX This work was supported by the Earth Science Technology Office of NASA. NR 9 TC 13 Z9 15 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-1225 J9 IEEE ANTENN WIREL PR JI IEEE Antennas Wirel. Propag. Lett. PY 2010 VL 9 BP 163 EP 166 DI 10.1109/LAWP.2010.2045217 PG 4 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 575UC UT WOS:000276093300001 ER PT J AU Shahriar, AZM Atiquzzaman, M Ivancic, W AF Shahriar, Abu Zafar M. Atiquzzaman, Mohammed Ivancic, William TI Route Optimization in Network Mobility: Solutions, Classification, Comparison, and Future Research Directions SO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS LA English DT Article DE Network Mobility; Basic Support Protocol; Inefficient Route; Route Optimization ID NEMO; IP AB NEtwork MObility (NEMO) handles mobility of a set of mobile nodes in an aggregate way using one or more mobile routers. NEMO introduces several advantages, such as reduced signaling, increased manageability, reduced power consumption and conservation of bandwidth when compared to individual host mobility. NEMO Basic Support Protocol (BSP), the IETF standard for NEMO, suffers from a number of limitations, like inefficient route and increased handoff latency. Most of the recent research efforts on NEMO have concentrated on solving the problem of inefficient route resulting in several route optimization schemes to solve the problem. To choose a route optimization scheme, it is very important to have a quantitative comparison of the available route optimization schemes. The objective of this article is to survey, classify and compare the route optimization schemes proposed in the literature over the last five years. We classify the schemes based on the basic approach for route optimization, and compare the schemes based on protocol overhead, such as header overhead, amount of signalling, and memory requirements. We conclude that performance of the classes of schemes has to be evaluated under criteria such as available bandwidth, topology of the mobile network and mobility type. C1 [Shahriar, Abu Zafar M.; Atiquzzaman, Mohammed] Univ Oklahoma, Telecommun & Networks Res Lab, Sch Comp Sci, Norman, OK 73019 USA. [Ivancic, William] NASA, Glenn Res Ctr, Satellite Networks & Architectures Branch, Cleveland, OH 44135 USA. RP Shahriar, AZM (reprint author), Univ Oklahoma, Telecommun & Networks Res Lab, Sch Comp Sci, Norman, OK 73019 USA. EM shahriar@ou.edu; atiq@ou.edu; wivan-cic@grc.nasa.gov FU NASA [NNX06AE44G] FX The research reported in this article was funded by NASA Grant NNX06AE44G. NR 66 TC 13 Z9 16 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1553-877X J9 IEEE COMMUN SURV TUT JI IEEE Commun. Surv. Tutor. PY 2010 VL 12 IS 1 BP 24 EP 38 DI 10.1109/SURV.2010.020110.00087 PG 15 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 558JE UT WOS:000274736700003 ER PT J AU Josset, D Pelon, J Hu, YX AF Josset, Damien Pelon, Jacques Hu, Yongxiang TI Multi-Instrument Calibration Method Based on a Multiwavelength Ocean Surface Model SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Aerosols; laser radar; radar; remote sensing; sea surface electromagnetic scattering ID RADAR MEASUREMENTS; BACKSCATTER; AIRBORNE; ROUGHNESS; AEROSOL; SLOPE; LIDAR AB A-Train platforms offer the possibility of measuring the same physical parameters using active and passive instruments, to improve our understanding of geophysical processes in the Earth system. In this letter, a new calibration approach is developed using active [Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and CloudSat radar] and passive [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)] instruments. The parameters of an existing oceanic surface model are first adjusted to give consistent sea surface scattering properties for CALIPSO and CloudSat observations. Revisiting the lidar/radar data analysis procedure using this model, as well as sea surface wind speed, the temperature and water vapor products of the microwave radiometer (AMSR-E) allowed one to refine the calibration factors for both lidar and radar observations in a coherent approach. This study also improves other applications such as the retrieval of atmospheric attenuation from aerosols at optical wavelengths. C1 [Josset, Damien; Pelon, Jacques] UPMC, CNRS, Inst Pierre Simon Laplace, Lab Atmospheres, F-75252 Paris, France. [Hu, Yongxiang] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Josset, D (reprint author), UPMC, CNRS, Inst Pierre Simon Laplace, Lab Atmospheres, F-75252 Paris, France. EM damien.josset@aero.jussieu.fr; jacques.pelon@aero.jussieu.fr; yongxiang.hu-1@nasa.gov RI Hu, Yongxiang/K-4426-2012 FU Centre National D'Etudes Spatiales (CNES); Thales Alenia Space; Centre National de la Recherche Scientifique (CNRS); Universite Pierre et Marie Curie (UPMC) FX This work was supported in part by the Centre National D'Etudes Spatiales (CNES), by Thales Alenia Space, by the Centre National de la Recherche Scientifique (CNRS), and by the Universite Pierre et Marie Curie (UPMC). NR 26 TC 10 Z9 11 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD JAN PY 2010 VL 7 IS 1 BP 195 EP 199 DI 10.1109/LGRS.2009.2030906 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 575PI UT WOS:000276079000040 ER PT J AU Hooke, A AF Hooke, Adrian TI Interplanetary Internetworking SO IEEE INTERNET COMPUTING LA English DT Editorial Material C1 NASA Headquarters, Washington, DC USA. RP Hooke, A (reprint author), NASA Headquarters, Washington, DC USA. EM adrian.j.hooke@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1089-7801 J9 IEEE INTERNET COMPUT JI IEEE Internet Comput. PD JAN-FEB PY 2010 VL 14 IS 1 BP 37 EP 39 PG 3 WC Computer Science, Software Engineering SC Computer Science GA 540NS UT WOS:000273340500016 ER PT S AU Rankin, A Matthies, L AF Rankin, Arturo Matthies, Larry GP IEEE TI Daytime Water Detection Based on Color Variation SO IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010) SE IEEE International Conference on Intelligent Robots and Systems LA English DT Proceedings Paper CT IEEE/RSJ International Conference on Intelligent Robots and Systems CY OCT 18-22, 2010 CL Taipei, TAIWAN ID OFF-ROAD NAVIGATION AB Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies ( such as ponds). At far range, reflections of the sky provide a strong cue for water. But at close range, the color coming out of a water body dominates sky reflections and the water cue from sky reflections is of marginal use. We model this behavior by using water body intensity data from multiple frames of RGB imagery to estimate the total reflection coefficient contribution from surface reflections and the combination of all other factors. We then describe an algorithm that uses one of the color cameras in a forward-looking, UGV-mounted stereo-vision perception system to detect water bodies in wide open areas. This detector exploits the knowledge that the change in saturation-to-brightness ratio across a water body from the leading to trailing edge is uniform and distinct from other terrain types. In test sequences approaching a pond under clear, overcast, and cloudy sky conditions, the true positive and false negative water detection rates were (95.76%, 96.71%, 98.77%) and (0.45%, 0.60%, 0.62%), respectively. This software has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA. C1 [Rankin, Arturo; Matthies, Larry] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rankin, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Arturo.Rankin@jpl.nasa.gov NR 14 TC 7 Z9 7 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-0858 BN 978-1-4244-6675-7 J9 IEEE INT C INT ROBOT PY 2010 BP 215 EP 221 DI 10.1109/IROS.2010.5650402 PG 7 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Robotics SC Computer Science; Robotics GA BTO97 UT WOS:000287672004132 ER PT J AU Mims, SR Kahn, RA Moroney, CM Gaitley, BJ Nelson, DL Garay, MJ AF Mims, Shirley R. Kahn, Ralph A. Moroney, Catherine M. Gaitley, Barbara J. Nelson, David L. Garay, Michael J. TI MISR Stereo Heights of Grassland Fire Smoke Plumes in Australia SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Aerosol transport; grassland fires; Multiangle Imaging SpectroRadiometer (MISR); remote sensing; smoke plume; stereo heights ID LOWER STRATOSPHERE; INJECTION AB Plume heights from wildfires are used in climate modeling to predict and understand trends in aerosol transport. This paper examines whether smoke from grassland fires in the desert regions of western and central Australia ever rises above the atmospheric boundary layer. Three methods for deriving plume heights from the Multi-angle Imaging SpectroRadiometer (MISR) instrument were utilized: 1) the MISR standard stereo-height algorithm; 2) the MISR enhanced stereo product; and 3) the MISR INteractive eXplorer (MINX) v. 1 tool. To provide context and to search for correlative factors, stereo heights were combined with fire radiant energy flux from the Moderate Resolution Imaging Spectroradiometer instrument, atmospheric structure information from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis project model, surface cover from the Australia National Vegetation Information System, and forward and backward trajectories from the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory model. Although most smoke plumes concentrate in the near-surface boundary layer as expected, some appear to rise higher. Smoke that gets above the boundary layer will travel farther, remain in the atmosphere longer, and therefore have a larger environmental impact. It was previously thought unlikely for grassland fires to inject smoke above the boundary layer. Our findings suggest that climate modelers should reevaluate common assumptions about the heights of smoke plumes when producing aerosol transport models involving grassland fires. A closer examination of grassland fire energetics may also be warranted. C1 [Mims, Shirley R.; Moroney, Catherine M.; Gaitley, Barbara J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mims, Shirley R.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Nelson, David L.; Garay, Michael J.] Raytheon Intelligence & Informat Syst, Pasadena, CA 91101 USA. RP Mims, SR (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM Shirley.R.Mims@jpl.nasa.gov; ralph.kahn@nasa.gov; catherine.m.moroney@jpl.nasa.gov; barbara.gaitley@jpl.nasa.gov; David.L.Nelson@jpl.nasa.gov; Michael.J.Garay@jpl.nasa.gov RI Kahn, Ralph/D-5371-2012 OI Kahn, Ralph/0000-0002-5234-6359 FU NASA; EOS-MISR FX This work was supported in part by the NASA Climate and Radiation Research and Analysis Program, under H. Maring, and in part by the EOS-MISR instrument project. NR 34 TC 15 Z9 15 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2010 VL 48 IS 1 BP 25 EP 35 DI 10.1109/TGRS.2009.2027114 PN 1 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 535UU UT WOS:000272998200003 ER PT J AU Yang, YK Marshak, A Varnai, T Wiscombe, W Yang, P AF Yang, Yuekui Marshak, Alexander Varnai, Tamas Wiscombe, Warren Yang, Ping TI Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmospheric path delay; Ice; Cloud; land Elevation Satellite (ICESat)-II; lidar altimetry; polar cloud; radiative transfer ID PART II; SCATTERING PROPERTIES; GLAS ALTIMETRY; RETRIEVAL; PARTICLES; CRYSTALS; RETURNS; MODELS AB In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus-cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 mu rad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated. C1 [Yang, Yuekui] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Marshak, Alexander; Varnai, Tamas; Wiscombe, Warren] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Varnai, Tamas] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Yang, YK (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM yuekui.yang@nasa.gov; Alexander.marshak@nasa.gov; tamas.varnai@nasa.gov; warren.j.wiscombe@nasa.gov; pyang@ariel.met.tamu.edu RI Yang, Ping/B-4590-2011; Wiscombe, Warren/D-4665-2012; Marshak, Alexander/D-5671-2012; Yang, Yuekui/B-4326-2015 OI Wiscombe, Warren/0000-0001-6844-9849; FU National Aeronautics and Space Administration FX This work was supported by National Aeronautics and Space Administration under the ICESat II Science Definition Project. NR 26 TC 8 Z9 8 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2010 VL 48 IS 1 BP 250 EP 259 DI 10.1109/TGRS.2009.2028335 PN 1 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 535UU UT WOS:000272998200021 ER PT J AU Liu, DW Sun, GQ Guo, ZF Ranson, KJ Du, Y AF Liu, Dawei Sun, Guoqing Guo, Zhifeng Ranson, K. Jon Du, Yang TI Three-Dimensional Coherent Radar Backscatter Model and Simulations of Scattering Phase Center of Forest Canopies SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Backscatter model; forest canopy; interferometric synthetic aperture radar (InSAR); scattering phase center ID INTERFEROMETRIC RADAR; SURFACES; HEIGHT AB A 3-D coherent radar backscatter model for forest canopies was developed and used to improve the understanding of synthetic aperture radar (SAR) interferometric data. The model was based on a realistic 3-D spatial structure of a forest stand, in which every scatterer has its deterministic location. A backscattering signal from a scatterer was mapped into a pixel according to its range or signal time delay. The range or the time delay also determines the phase of the scattered field. All scattering matrices within a pixel were coherently added to yield the total backscattering field of the pixel. The coherent radar backscatter model takes into account not only the scattering contribution from the scatterers in the forest canopy but also the direct backscattering of the ground surface. Forest stands with three different spatial structures were simulated using L-system and field measurements. The number and sizes of trees in these forest stands were identical, but the 2-D arrangements of the trees were different. The interferometric SAR (InSAR) signals of these scenes were simulated using the 3-D coherent SAR model, and the heights of scattering phase centers were estimated from the simulated InSAR data. The results reported in this paper show that the spatial structures of vegetation play an important role in the location of the scattering phase center. The height of scattering phase center depends on canopy height, attenuation of canopy, and the gaps within the canopy. This paper shows that the spatial structure needs to be considered when the InSAR data are used for the estimation of forest structural parameters. C1 [Liu, Dawei; Guo, Zhifeng] State Key Lab Remote Sensing Sci, Beijing 10049, Peoples R China. [Sun, Guoqing] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Sun, Guoqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Ranson, K. Jon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Du, Yang] Zhejiang Univ, Electromagnet Acad, Hangzhou 310058, Zhejiang, Peoples R China. RP Liu, DW (reprint author), State Key Lab Remote Sensing Sci, Beijing 10049, Peoples R China. EM dawliu@gmail.com; Guoqing.Sun@nasa.gov RI Ranson, Kenneth/G-2446-2012 OI Ranson, Kenneth/0000-0003-3806-7270 FU 973 Program of China [2007CB714404]; National Natural Science Foundation of China [40571112]; 863 Program of China [2006AA12Z114]; National Aeronautics and Space Administration [NNG06G133G] FX The work of D. Liu and Z. Guo was supported in part by the 973 Program of China under Research Grant 2007CB714404, by the National Natural Science Foundation of China under Research Grant 40571112, and by the 863 Program of China under Research Grant 2006AA12Z114. The work of G. Sun and K. J. Ranson was supported by the National Aeronautics and Space Administration under Grant NNG06G133G. NR 23 TC 19 Z9 24 U1 5 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2010 VL 48 IS 1 BP 349 EP 357 DI 10.1109/TGRS.2009.2024301 PN 2 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 535UV UT WOS:000272998300005 ER PT J AU Xiong, XX Sun, JQ Xie, XB Barnes, WL Salomonson, VV AF Xiong, Xiaoxiong Sun, Junqiang Xie, Xiaobo Barnes, William L. Salomonson, Vincent V. TI On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Aqua; calibration; Moderate Resolution Imaging Spectroradiometer (MODIS); reflective solar band (RSB); signal-to-noise ratio (SNR); solar diffuser (SD); solar diffuser degradation; solar diffuser stability monitor (SDSM) ID IMAGING SPECTRORADIOMETER MODIS; WATER AB Aqua MODIS has successfully operated on-orbit for more than six years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. Twenty of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 mu m, are the reflective solar bands (RSBs). They are calibrated on-orbit using an onboard solar diffuser (SD) and an SD stability monitor. In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this paper are characterizations of detector signal-to-noise ratio, short-term stability, and long-term response change. Spectral-wavelength-dependent degradation of the SD bidirectional reflectance factor and scan mirror reflectance, which also varies with the angle of incidence, is examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B production and assuring high-quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, i.e., Terra MODIS, launched in December 1999, the Aqua MODIS visible spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 mu m, 2.3% for band 9 at 0.443 mu m, 1.6% for band 3 at 0.469 mu m, and 1.2% for band 10 at 0.488 mu m. For other RSB bands with wavelengths greater than 0.5 mu m, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS, and the mirror-side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than that of Terra MODIS. C1 [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci Explorat Directorate, Greenbelt, MD 20771 USA. [Sun, Junqiang; Xie, Xiaobo] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Barnes, William L.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Salomonson, Vincent V.] Univ Utah, Salt Lake City, UT 84112 USA. RP Xiong, XX (reprint author), NASA, Goddard Space Flight Ctr, Sci Explorat Directorate, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov NR 24 TC 99 Z9 100 U1 4 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2010 VL 48 IS 1 BP 535 EP 546 DI 10.1109/TGRS.2009.2024307 PN 2 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 535UV UT WOS:000272998300022 ER PT J AU Chander, G Haque, MO Micijevic, E Barsi, JA AF Chander, Gyanesh Haque, Md. Obaidul Micijevic, Esad Barsi, Julia A. TI A Procedure for Radiometric Recalibration of Landsat 5 TM Reflective-Band Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Bias; calibration; gain; internal calibrator (IC); Landsat; Landsat 5 (L5) Thematic Mapper (TM); Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM plus ); lookup table (LUT); National Landsat Archive Production System (NLAPS); recalibration; US Geological Survey (USGS) ID THEMATIC MAPPER; CALIBRATION; SENSORS; ETM+ AB From the Landsat program's inception in 1972 to the present, the Earth science user community has been benefiting from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for the L5 TM imagery used the detectors' response to the internal calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time, causing radiometric calibration errors up to 20%. In May 2003, the L5 TM data processed and distributed by the U. S. Geological Survey (USGS) Earth Resources Observation and Science Center through the National Landsat Archive Production System (NLAPS) were updated to use a lifetime lookup-table (LUT) gain model to radiometrically calibrate TM data instead of using scene-specific IC gains. Further modification of the gain model was performed in 2007. The L5 TM data processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing level-1 products. The best recalibration results are obtained if the work-order report that was included in the original standard data product delivery is available. However, if users do not have the original work-order report, the IC trends can be used for recalibration. The IC trends were generated using the radiometric gain trends recorded in the NLAPS database. This paper provides the details of the recalibration procedure for the following: 1) data processed using IC where users have the work-order file; 2) data processed using IC where users do not have the work-order file; 3) data processed using prelaunch calibration parameters; and 4) data processed using the previous version of the LUT (e.g., LUT03) that was released before April 2, 2007. C1 [Chander, Gyanesh; Haque, Md. Obaidul; Micijevic, Esad] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. [Barsi, Julia A.] NASA, Sci Syst & Applicat Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chander, G (reprint author), Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. EM gchander@usgs.gov FU U.S. Geological Survey (USGS) [08HQCN0005] FX This work was performed under U.S. Geological Survey (USGS) contract 08HQCN0005. NR 16 TC 7 Z9 8 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2010 VL 48 IS 1 BP 556 EP 574 DI 10.1109/TGRS.2009.2026166 PG 19 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 535UV UT WOS:000272998300024 ER PT J AU Sakuma, F Bruegge, CJ Rider, D Brown, D Geier, S Kawakami, S Kuze, A AF Sakuma, Fumihiro Bruegge, Carol J. Rider, David Brown, David Geier, Sven Kawakami, Shuji Kuze, Akihiko TI OCO/GOSAT Preflight Cross-Calibration Experiment SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Carbon dioxide (CO(2)); Greenhouse gases Observing SATellite (GOSAT); Orbiting Carbon Observatory (OCO); radiometric calibration ID INTEGRATING SPHERE AB The Orbiting Carbon Observatory (OCO) by NASA's Jet Propulsion Laboratory (JPL) and Greenhouse gases Observing SATellite (GOSAT) by JAXA were built to provide independent measures of the global distributions of carbon dioxide (CO(2)) from space. GOSAT achieved a successful orbit on January 23, 2009, and OCO failed its launch attempt on February 24, 2009. Both sensors detect absorptions at the 0.76-mu m oxygen band and at the weak and strong CO(2) bands at 1.6 and 2.0 mu m, respectively. In order to establish the uncertainties and biases between the respective data products, the OCO and GOSAT teams have planned a number of cross-comparison studies. The first of these, discussed here, is the validation of the prelaunch absolute radiometric calibrations, specified at +/-5%. The cross-comparison campaign to validate this OCO approach was performed at NASA's JPL in April 2008. In this paper, the OCO reference detectors and three GOSAT radiometers viewed the OCO sphere and radiometric standard. The overall agreements between the OCO calibration and GOSAT measurement of the OCO integrating sphere were 1.5% at 0.76 mu m, 2.7% +/- 1.1% at 1.6 mu m, and 0.2% +/- 4.1% at 2.0 mu m. To validate the GOSAT preflight calibration, the cross-calibration experiment continued at JAXA's Tsukuba Space Center in December 2008, where the same radiometers measured the two GOSAT spheres. Agreements are better than 1.8% at 0.76 mu m, 1.6% at 1.6 mu m, and 1.4% at 2 mu m. These studies give confirmation that the flight instruments have been calibrated to within their uncertainty requirements. C1 [Sakuma, Fumihiro] Natl Inst Adv Ind Sci & Technol, Radiat Thermometry Sect, Temp & Humid Div, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058563, Japan. [Bruegge, Carol J.; Rider, David; Brown, David; Geier, Sven] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kawakami, Shuji; Kuze, Akihiko] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki 3058505, Japan. RP Sakuma, F (reprint author), Natl Inst Adv Ind Sci & Technol, Radiat Thermometry Sect, Temp & Humid Div, Natl Metrol Inst Japan, Tsukuba Cent 3, Tsukuba, Ibaraki 3058563, Japan. EM f-sakuma@aist.go.jp; Carol.J.Bruegge@Jpl.Nasa.Gov; kuze.akihiko@jaxa.jp RI KUZE, AKIHIKO/J-2074-2016 OI KUZE, AKIHIKO/0000-0001-5415-3377 FU National Aeronautics and Space Administration FX The Japanese authors would like to thank K. Suzuki of NEC Toshiba Space Systems, Ltd., and N. Goto and Y. Yamamoto of JAXA for helping with the measurements. The authors would also like to thank the JPL and JAXA staffs for their kind treatment. The OCO contribution to this paper was carried out at the California Institute of Technology, and at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 12 TC 14 Z9 15 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2010 VL 48 IS 1 BP 585 EP 599 DI 10.1109/TGRS.2009.2026050 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 535UV UT WOS:000272998300026 ER PT J AU Cholewiak, SA Kim, K Tan, HZ Adelstein, BD AF Cholewiak, Steven A. Kim, Kwangtaek Tan, Hong Z. Adelstein, Bernard D. TI A Frequency-Domain Analysis of Haptic Gratings SO IEEE TRANSACTIONS ON HAPTICS LA English DT Article DE Detection; discrimination; frequency-domain analysis; haptic gratings; complex-waveform discrimination ID PERCEIVED INSTABILITY; TEXTURE; DISCRIMINATION; TOUCH; INFORMATION; THRESHOLDS; AMPLITUDE; CHANNELS; MODEL AB The detectability and discriminability of virtual haptic gratings were analyzed in the frequency domain. Detection (Exp. 1) and discrimination (Exp. 2) thresholds for virtual haptic gratings were estimated using a force-feedback device that simulated sinusoidal and square-wave gratings with spatial periods from 0.2 to 38.4 mm. The detection threshold results indicated that for spatial periods up to 6.4 mm (i.e., spatial frequencies >0.156 cycle/mm), the detectability of square-wave gratings could be predicted quantitatively from the detection thresholds of their corresponding fundamental components. The discrimination experiment confirmed that at higher spatial frequencies, the square-wave gratings were initially indistinguishable from the corresponding fundamental components until the third harmonics were detectable. At lower spatial frequencies, the third harmonic components of square-wave gratings had lower detection thresholds than the corresponding fundamental components. Therefore, the square-wave gratings were detectable as soon as the third harmonic components were detectable. Results from a third experiment where gratings consisting of two superimposed sinusoidal components were compared (Exp. 3) showed that people were insensitive to the relative phase between the two components. Our results have important implications for engineering applications, where complex haptic signals are transmitted at high update rates over networks with limited bandwidths. C1 [Cholewiak, Steven A.] Rutgers State Univ, Dept Psychol, Piscataway, NJ 08854 USA. [Kim, Kwangtaek; Tan, Hong Z.] Purdue Univ, Hapt Interface Res Lab, W Lafayette, IN 47907 USA. [Adelstein, Bernard D.] NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. RP Cholewiak, SA (reprint author), Rutgers State Univ, Dept Psychol, Piscataway, NJ 08854 USA. EM scholewi@eden.rutgers.edu; samuelkim@purdue.edu; hongtan@purdue.edu; Bernard.D.Adelstein@nasa.gov RI Cholewiak, Steven/N-6426-2013 OI Cholewiak, Steven/0000-0003-0605-4395 FU US National Science Foundation (NSF) [0328984, 0533908]; NASA [NCC 2-1363] FX The authors thank Dr. Roger Cholewiak for many useful discussions on the present study and commenting on earlier versions of the manuscript. They also thank Patrick Kalita for the data shown in Fig. 7. Dr. Daniel Leaird at Purdue University suggested and provided the stepper motor stage. The thoughtful comments from the reviewers are greatly appreciated. This research was partly supported by the US National Science Foundation (NSF) under grant nos. 0328984 and 0533908, and by a NASA award under grant no. NCC 2-1363. Partial results from Exp. 1 were presented at the World Haptics Conference 2007 [29]. NR 29 TC 18 Z9 20 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1412 EI 2329-4051 J9 IEEE T HAPTICS JI IEEE Trans. Haptics PD JAN-MAR PY 2010 VL 3 IS 1 BP 3 EP 14 DI 10.1109/ToH.2009.36 PG 12 WC Computer Science, Cybernetics SC Computer Science GA 749LT UT WOS:000289469300002 PM 27788085 ER PT S AU Bender, HA Mouroulis, P Green, RO Wilson, DW AF Bender, Holly A. Mouroulis, Pantazis Green, Robert O. Wilson, Daniel W. BE Shen, SS Lewis, PE TI Optical design, performance and tolerancing of next-generation airborne imaging spectrometers SO IMAGING SPECTROMETRY XV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XV CY AUG 02-03, 2010 CL San Diego, CA SP SPIE DE imaging spectroscopy; optical tolerancing; Offner spectrometer AB We describe the optical design and performance of the Next-Generation airborne Imaging Spectrometer (NGIS) currently being constructed at Caltech's Jet Propulsion Laboratory. The new, high-resolution instrument incorporates a number of design advantages including a two-mirror anastigmatic telescope for simplified alignment and high throughput, as well as a concentric, multi-blazed grating for tailored broadband efficiency. A detailed tolerancing and sensitivity approach reveals tight requirements that must be satisfied for spectral calibration and boresight stability. This improved spectral and pointing stability, combined with high uniformity and high signal-to-noise ratio allows us to generate spectrometry measurements capable of answering challenging science questions. C1 [Bender, Holly A.; Mouroulis, Pantazis; Green, Robert O.; Wilson, Daniel W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Bender, HA (reprint author), 4800 Oak Grove Dr,MS 306-392, Pasadena, CA 91109 USA. EM holly.a.bender@jpl.nasa.gov NR 11 TC 4 Z9 4 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-308-9 J9 PROC SPIE PY 2010 VL 7812 AR 78120P DI 10.1117/12.861331 PG 12 WC Optics; Imaging Science & Photographic Technology; Spectroscopy SC Optics; Imaging Science & Photographic Technology; Spectroscopy GA BSU56 UT WOS:000285829200021 ER PT S AU Johnson, WR Wilson, DW Diaz, A AF Johnson, William R. Wilson, Daniel W. Diaz, Alejandro BE Shen, SS Lewis, PE TI Short wave infrared imaging spectrometer with simultaneous thermal imaging SO IMAGING SPECTROMETRY XV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XV CY AUG 02-03, 2010 CL San Diego, CA SP SPIE DE imaging; spectroscopy; CTIS; thermal imaging; InSb AB A computed tomographic imaging spectrometer (CTIS) has been developed to allow simultaneous shortwave infrared (SWIR: 1-1.4 mu m) spectral imaging and mid-wave infrared (MWIR: 3-5 mu m) thermal imaging. The instrument utilizes a mechanically cooled indium antimonide focal plane array which is optically coupled using an Offner relay to a state-of the-art two-dimensional grating. The grating is a computer-generated hologram design fabricated by electron-beam lithography on a convex substrate. The system performs shapshot capture of the spatial and spectral information in a scene, enabling transient events to be characterized. The shortwave spectral information in the higher diffraction orders was reconstructed using existing expectation maximization methodologies while a co-registered thermal image from the zeroth-order was analyzed. A co-registered contour map of the shortwave information was displayed superimposed on the thermal image and processed for accurate retrieval of scene knowledge. Spectral accuracy and radiometric test and evaluation results such as noise equivalence temperature difference (NEDT) and minimum resolvable temperature difference (MRTD) are presented for this new spectral imager and a general explanation is given for the theory of its tomographic operation. C1 [Johnson, William R.; Wilson, Daniel W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnson, WR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM William.R.Johnson@jpl.nasa.gov NR 19 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-308-9 J9 PROC SPIE PY 2010 VL 7812 AR 781202 DI 10.1117/12.860789 PG 8 WC Optics; Imaging Science & Photographic Technology; Spectroscopy SC Optics; Imaging Science & Photographic Technology; Spectroscopy GA BSU56 UT WOS:000285829200001 ER PT S AU Van Gorp, B Mouroulis, P Wilson, D Balasubramanian, K AF Van Gorp, B. Mouroulis, P. Wilson, D. Balasubramanian, K. BE Shen, SS Lewis, PE TI Polarization and stray light considerations for the Portable Remote Imaging Spectrometer (PRISM) SO IMAGING SPECTROMETRY XV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XV CY AUG 02-03, 2010 CL San Diego, CA SP SPIE DE Imaging spectroscopy; Dyson spectrometer ID DESIGN AB The Portable Remote Imaging Spectrometer (PRISM) is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. The distinguishing characteristics of the design are high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The optical design is based on the Dyson spectrometer. We discuss here design refinements that are critical for stray light control and for reducing the polarization sensitivity of the entire instrument to below 2%. C1 [Van Gorp, B.; Mouroulis, P.; Wilson, D.; Balasubramanian, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Van Gorp, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM byron.vangorp@jpl.nasa.gov NR 5 TC 3 Z9 3 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-308-9 J9 PROC SPIE PY 2010 VL 7812 AR 78120R DI 10.1117/12.859952 PG 11 WC Optics; Imaging Science & Photographic Technology; Spectroscopy SC Optics; Imaging Science & Photographic Technology; Spectroscopy GA BSU56 UT WOS:000285829200022 ER PT S AU Kateb, B Yamamoto, V Alizadeh, D Zhang, LY Manohara, HM Bronikowski, MJ Badie, B AF Kateb, Babak Yamamoto, Vicky Alizadeh, Darya Zhang, Leying Manohara, Harish M. Bronikowski, Michael J. Badie, Behnam BE Yotnda, P TI Multi-walled Carbon Nanotube (MWCNT) Synthesis, Preparation, Labeling, and Functionalization SO IMMUNOTHERAPY OF CANCER: METHODS AND PROTOCOLS SE Methods in Molecular Biology LA English DT Article; Book Chapter DE cancer immunotherapy; microglia; macrophage; glioma; nanotechnology; nanomedicine; MWCNT application; brain tumor; nano-vector; carbon nanotube ID GLIOMA-ASSOCIATED ANTIGEN; CENTRAL-NERVOUS-SYSTEM; BRAIN-TUMORS; DRUG-DELIVERY; IN-VIVO; BUNDLE ARRAYS; MICROGLIA; GROWTH; MICE; BIODISTRIBUTION AB Nanomedicine is a growing field with a great potential for introducing new generation of targeted and personalized drug. Amongst new generation of nano-vectors are carbon nanotubes (CNTs), which can be produced as single or multi-walled. Multi-walled carbon nanotubes (MWCNTs) can be fabricated as biocompatible nanostructures (cylindrical bulky tubes). These structures are currently under investigation for their application in nanomedicine as viable and safe nanovectors for gene and drug delivery. In this chapter, we will provide you with the necessary information to understand the synthesis of MWCNTs, functionalization, PKH26 labeling, RNAi, and DNA loading for in vitro experimentation and in vivo implantation of labeled MWCNT in mice as well as materials used in this experimentation. We used this technique to manipulate microglia as parr of a novel application for the brain cancer immunotherapy. Our published data show this is a promising technique for labeling, and gene and drug delivery into microglia. C1 [Kateb, Babak] Brain Mapping Fdn, W Hollywood, CA USA. [Kateb, Babak] IBMISPS, W Hollywood, CA USA. [Yamamoto, Vicky] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA. [Alizadeh, Darya; Zhang, Leying; Badie, Behnam] City Hope Med Ctr, Div Neurosurg, Duarte, CA USA. [Manohara, Harish M.; Bronikowski, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kateb, B (reprint author), Brain Mapping Fdn, W Hollywood, CA USA. NR 37 TC 13 Z9 14 U1 0 U2 5 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-60761-785-3 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2010 VL 651 BP 307 EP 317 DI 10.1007/978-1-60761-786-0_18 D2 10.1007/978-1-60761-786-0 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BQP37 UT WOS:000281471500018 PM 20686974 ER PT B AU Newman, JS Wander, SM AF Newman, J. Steven Wander, Stephen M. BE Green, A Stankosky, M Vandergriff, L TI NASA's Pioneering PBMA Knowledge Management System SO IN SEARCH OF KNOWLEDGE MANAGEMENT: PURSUING PRIMARY PRINCIPLES LA English DT Article; Book Chapter AB Process-based mission assurance (PBMA) is an idea that grew to maturity during the mid-1990s reinvention of government initiatives in which many agencies including NASA were abandoning detailed policy and procedural requirements in lieu of performance-based contracts that proscribed only high-level assurance process requirements if any at all. The government oversight management emphasis was on sharing and using "industry best practices" and voluntary standards. PBMA grew up as a systematic attempt to codify and share those best practices across the aerospace industry "learning organization." (Newman, 1997) Thus the PBMA vision grew from formally documented case study reports into a multifunctional Web-based resource with the confluence of the strategic vision incorporated in the four-pillars framework (concepts evolving under Professor Michael Stankosky, in the graduate systems engineering curriculum at George Washington University) (Baldanza & Stankosky, 2000; Calabrese) and advances and evolution of Internet technology. Other important philosophical underpinnings are derived from Professor Marc Adleson, at George Mason University who emphasized that "work takes place in conversations." The authors extended the notion to "learning takes place in conversations," and "cultural change takes place in conversations." The PBMA-knowledge management system (KMS) intent has and continues to be the facilitation of "conversations"-communication and learning. C1 [Newman, J. Steven] ARES Corp, Arlington, VA 22209 USA. [Wander, Stephen M.] George Washington Univ, Washington, DC USA. [Wander, Stephen M.] NASA, Sch Engn, Washington, DC USA. RP Newman, JS (reprint author), ARES Corp, Arlington, VA 22209 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU EMERALD GROUP PUBLISHING LIMITED PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND BN 978-1-84950-673-1 PY 2010 BP 367 EP 386 PG 20 WC Management SC Business & Economics GA BUW60 UT WOS:000290523500026 ER PT S AU Greene, WN Zhang, YH Lu, TT Chao, TH AF Greene, W. Nicholas Zhang, Yuhan Lu, Thomas T. Chao, Tien-Hsin BE Szu, HH Agee, FJ TI Feature extraction and selection strategies for automated target recognition SO INDEPENDENT COMPONENT ANALYSES, WAVELETS, NEURAL NETWORKS, BIOSYSTEMS, AND NANOENGINEERING VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering VIII CY APR 07-09, 2010 CL Orlando, FL SP SPIE DE feature extraction; feature selection; PCA; ICA; GOC; OT-MACH; pattern recognition; computer vision ID INDEPENDENT COMPONENT ANALYSIS AB Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier. C1 [Greene, W. Nicholas] Princeton Univ, Princeton, NJ 08544 USA. RP Lu, TT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM T.Lu@jpl.nasa.gov NR 14 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8167-2 J9 PROC SPIE PY 2010 VL 7703 AR 77030B DI 10.1117/12.848007 PG 11 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Mathematical & Computational Biology; Nanoscience & Nanotechnology; Optics SC Computer Science; Engineering; Mathematical & Computational Biology; Science & Technology - Other Topics; Optics GA BSS75 UT WOS:000285715600010 ER PT J AU Zalk, DM Kamerzell, R Paik, S Kapp, J Harrington, D Swuste, P AF Zalk, David M. Kamerzell, Ryan Paik, Samuel Kapp, Jennifer Harrington, Diana Swuste, Paul TI Risk Level Based Management System: A Control Banding Model for Occupational Health and Safety Risk Management in a Highly Regulated Environment SO INDUSTRIAL HEALTH LA English DT Article DE Control banding; Qualitative risk assessment; Occupational risk management; Occupational health and safety management system; Risk level approach; Toolbox; Participatory ID PERFORMANCE-MEASUREMENT TOOL; FEATURES AB The Risk Level Based Management System (RLBMS) is an occupational risk management (ORM) model that focuses occupational safety, hygiene, and health (OSHH) resources on the highest risk procedures at work. This article demonstrates the model's simplicity through an implementation within a heavily regulated research institution. The model utilizes control banding strategies with a stratification of four risk levels (RLs) for many commonly performed maintenance and support activities, characterizing risk consistently for comparable tasks. RLBMS creates an auditable tracking of activities, maximizes OSHH professional field time, and standardizes documentation and control commensurate to a given task's RL. Validation of RLs and their exposure control effectiveness is collected in a traditional quantitative collection regime for regulatory auditing. However, qualitative risk assessment methods are also used within this validation process. Participatory approaches are used throughout the RLBMS process. Workers are involved in all phases of building, maintaining, and improving this model. This worker participation also improves the implementation of established controls. C1 [Zalk, David M.; Kamerzell, Ryan; Paik, Samuel; Kapp, Jennifer] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Harrington, Diana] NASA, Ames Res Ctr, Consolidated Safety Serv, Moffett Field, CA 94035 USA. [Swuste, Paul] Delft Univ Technol, Safety Sci Grp, NL-2600 GA Delft, Netherlands. RP Zalk, DM (reprint author), Lawrence Livermore Natl Lab, POB 808,L-871, Livermore, CA 94551 USA. EM zalk1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-413441] FX This work performed, in part, under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-413441. NR 38 TC 7 Z9 8 U1 0 U2 18 PU NATL INST OCCUPATIONAL SAFETY & HEALTH, JAPAN PI KAWASAKI KANAGAWA PA 21-1 NAGAO 6-CHOME TAMA-KU, KAWASAKI KANAGAWA, 214, JAPAN SN 0019-8366 J9 IND HEALTH JI Ind. Health PD JAN PY 2010 VL 48 IS 1 BP 18 EP 28 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 550HQ UT WOS:000274119300004 PM 20160404 ER PT S AU Abedin, MN Mlynczak, MG Refaat, TF AF Abedin, M. Nurul Mlynczak, Martin G. Refaat, Tamer F. BE Strojnik, M Paez, G TI INFRARED DETECTORS OVERVIEW IN THE SHORT WAVE INFRARED TO FAR INFRARED FOR CLARREO MISSION SO INFRARED REMOTE SENSING AND INSTRUMENTATION XVIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Remote Sensing and Instrumentation XVIII CY AUG 01-03, 2010 CL San Diego, CA SP SPIE DE Broadband; detectors; short wave; mid wave; long wave; very long wave; far-infrared; Pyroelectric; Si bolometer; CLARREO ID THERMAL EMISSION SPECTROMETER; ARRAY; PERFORMANCE; TECHNOLOGY AB There exists a considerable interest in the broadband detectors for CLARREO Mission, which can be used to detect CO2, O-3, H2O, CH4, and other gases. Detection of these species is critical for understanding the Earth's atmosphere, atmospheric chemistry, and systemic force driving climatic changes. Discussions are focused on current and the most recent detectors developed in SWIR-to-Far infrared range for CLARREO space-based instrument to measure the above-mentioned species. These detector components will make instruments designed for these critical detections more efficient while reducing complexity and associated electronics and weight. We will review the on-going detector technology efforts in the SWIR to Far-IR regions at different organizations in this study. C1 [Abedin, M. Nurul; Mlynczak, Martin G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Abedin, MN (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. RI Richards, Amber/K-8203-2015 NR 20 TC 1 Z9 1 U1 3 U2 10 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8304-1 J9 PROC SPIE PY 2010 VL 7808 AR 78080V DI 10.1117/12.863125 PG 13 WC Instruments & Instrumentation; Remote Sensing; Optics SC Instruments & Instrumentation; Remote Sensing; Optics GA BSU80 UT WOS:000285836500022 ER PT S AU Bauer, RA Komar, GJ Larkin, PM Murray, KE Pasciuto, MP Walton, AL AF Bauer, Robert A. Komar, George J. Larkin, Philip M. Murray, Keith E. Pasciuto, Michael P. Walton, Amy L. BE Strojnik, M Paez, G TI Technologies Supporting Radiative Science SO INFRARED REMOTE SENSING AND INSTRUMENTATION XVIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Remote Sensing and Instrumentation XVIII CY AUG 01-03, 2010 CL San Diego, CA SP SPIE AB Technology investments made over the past decade by the NASA Earth Science Technology Office (ESTO) have enabled the current mission concept of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Early investments include the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument, which today is being used as a testbed to demonstrate new detectors under development. Current investments, aimed at the CLARREO goals of high absolute accuracy and on-orbit international measurement standards traceability, include a prototype hyperspectral imager, extended blocked impurity band detectors for far-infrared detection, and a high-accuracy blackbody. C1 [Bauer, Robert A.; Komar, George J.; Larkin, Philip M.; Murray, Keith E.; Pasciuto, Michael P.; Walton, Amy L.] NASA, Earth Sci Technol Off, Washington, DC 20546 USA. RP Bauer, RA (reprint author), NASA, Earth Sci Technol Off, Washington, DC 20546 USA. RI Richards, Amber/K-8203-2015 NR 18 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8304-1 J9 PROC SPIE PY 2010 VL 7808 AR 78080R DI 10.1117/12.862936 PG 8 WC Instruments & Instrumentation; Remote Sensing; Optics SC Instruments & Instrumentation; Remote Sensing; Optics GA BSU80 UT WOS:000285836500020 ER PT S AU Cageao, RP Alford, JA Johnson, DG Kratz, DP Mlynczak, MG AF Cageao, Richard P. Alford, J. Ashley Johnson, David G. Kratz, David P. Mlynczak, Martin G. BE Strojnik, M Paez, G TI Far-IR Measurements at Cerro Toco, Chile: FIRST, REFIR, and AERI SO INFRARED REMOTE SENSING AND INSTRUMENTATION XVIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Remote Sensing and Instrumentation XVIII CY AUG 01-03, 2010 CL San Diego, CA SP SPIE ID EMITTED RADIANCE INTERFEROMETER; MICHELSON INTERFEROMETER AB In mid-2009, the Radiative Heating in the Underexplored Bands Campaign II (RHUBC-II) was conducted from Cerro Toco, Chile, a high, dry, remote mountain plateau, 23 degrees S, 67.8 degrees W at 5.4km, in the Atacama Desert of Northern Chile. From this site, dominant IR water vapor absorption bands and continuum, saturated when viewed from the surface at lower altitudes, or in less dry locales, were investigated in detail, elucidating infrared (IR) absorption and emission in the atmosphere. Three Fourier Transform InfraRed (FTIR) instruments were at the site, the Far-Infrared Spectroscopy of the Troposphere (FIRST), the Radiation Explorer in the Far Infrared (REFIR), and the Atmospheric Emitted Radiance Interferometer (AERI). In a side-by-side comparison, these measured atmospheric downwelling radiation, with overlapping spectral coverage from 5 to 100 mu m (2000 to 100cm(-1)), and instrument spectral resolutions from 0.5 to 0.643cm(-1), unapodized. In addition to the FTIR and other ground-based IR and microwave instrumentation, pressure/temperature/relative humidity measuring sondes, for atmospheric profiles to 18km, were launched from the site several times a day. The derived water vapor profiles, determined at times matching the FTIR measurement times, were used to model atmospheric radiative transfer. Comparison of instrument data, all at the same spectral resolution, and model calculations, are presented along with a technique for determining adjustments to line-by-line calculation continuum models. This was a major objective of the campaign. C1 [Cageao, Richard P.; Alford, J. Ashley; Johnson, David G.; Kratz, David P.; Mlynczak, Martin G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Cageao, RP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. RI Johnson, David/F-2376-2015; Richards, Amber/K-8203-2015 OI Johnson, David/0000-0003-4399-5653; NR 20 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8304-1 J9 PROC SPIE PY 2010 VL 7808 AR 78080T DI 10.1117/12.862601 PG 10 WC Instruments & Instrumentation; Remote Sensing; Optics SC Instruments & Instrumentation; Remote Sensing; Optics GA BSU80 UT WOS:000285836500021 ER PT S AU Gunapala, SD Ting, DZ Hill, CJ Nguyen, J Soibel, A Rafol, SB Keo, SA Mumolo, JM Lee, MC Liu, JK Yang, B Liao, A AF Gunapala, S. D. Ting, D. Z. Hill, C. J. Nguyen, J. Soibel, A. Rafol, S. B. Keo, S. A. Mumolo, J. M. Lee, M. C. Liu, J. K. Yang, B. Liao, A. BE Strojnik, M Paez, G TI Demonstration of 1Kx1K Long-wave and Mid-wave Superlattice Infrared Focal Plane Arrays SO INFRARED REMOTE SENSING AND INSTRUMENTATION XVIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Remote Sensing and Instrumentation XVIII CY AUG 01-03, 2010 CL San Diego, CA SP SPIE DE Infrared; focal planes; superlattice; long-wave IR; mid-wave IR ID PERFORMANCE AB Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for remote sensing and imaging applications. Currently, we are working on Superlattice detectors, multi-band Quantum Well Infrared Photodetectors (QWIPs), and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper, we will discuss the demonstration of long-wavelength 1Kx1K QDIP FPA, 1Kx1K QWIP FPA, the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP FPA, and demonstration of the first mid-wave and long-wave 1Kx1K superlattice FPA. In addition, we will discuss the advantages of III-V material system in the context of large format infrared FPAs. C1 [Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Soibel, A.; Rafol, S. B.; Keo, S. A.; Mumolo, J. M.; Lee, M. C.; Liu, J. K.; Yang, B.; Liao, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gunapala, SD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 9 TC 14 Z9 14 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8304-1 J9 PROC SPIE PY 2010 VL 7808 AR 780802 DI 10.1117/12.863989 PG 6 WC Instruments & Instrumentation; Remote Sensing; Optics SC Instruments & Instrumentation; Remote Sensing; Optics GA BSU80 UT WOS:000285836500002 ER PT S AU Krainak, MA Sun, XL Yang, GN Lu, W AF Krainak, Michael A. Sun, Xiaoli Yang, Guangning Lu, Wei BE Strojnik, M Paez, G TI Infrared detectors for spaceborne laser receivers SO INFRARED REMOTE SENSING AND INSTRUMENTATION XVIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Remote Sensing and Instrumentation XVIII CY AUG 01-03, 2010 CL San Diego, CA SP SPIE DE Avalanche photodiodes; lidar; photodetectors ID AVALANCHE-PHOTODIODE AB NASA Goddard Space Flight Center is developing high-speed optical detectors that are sensitive in the near-infrared wavelength region. Applications include global 3D mapping, atmospheric gas measurements (e.g. carbon dioxide and methane) and laser communication and ranging. C1 [Krainak, Michael A.; Yang, Guangning] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Krainak, MA (reprint author), NASA, Goddard Space Flight Ctr, Code 554, Greenbelt, MD 20771 USA. RI Sun, Xiaoli/B-5120-2013 NR 11 TC 1 Z9 1 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8304-1 J9 PROC SPIE PY 2010 VL 7808 AR 78080B DI 10.1117/12.861574 PG 6 WC Instruments & Instrumentation; Remote Sensing; Optics SC Instruments & Instrumentation; Remote Sensing; Optics GA BSU80 UT WOS:000285836500009 ER PT S AU Yu, AW Li, SX Stephen, MA Martino, AJ Chen, JR Krainak, MA Wu, S Riris, H Abshire, JB Harding, DJ Allan, GR Numata, K AF Yu, Anthony W. Li, Steven X. Stephen, Mark A. Martino, Anthony J. Chen, Jeffrey R. Krainak, Michael A. Wu, Stewart Riris, Haris Abshire, James B. Harding, David J. Allan, Graham R. Numata, Kenji BE Strojnik, M Paez, G TI Spaceborne Laser Transmitters for Remote Sensing Applications SO INFRARED REMOTE SENSING AND INSTRUMENTATION XVIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Remote Sensing and Instrumentation XVIII CY AUG 01-03, 2010 CL San Diego, CA SP SPIE DE Topography; LIDAR; Remote Sensing; Space Laser Systems; Laser Altimeter; Space Qualified Lasers ID MESSENGER MISSION; MERCURY; ALTIMETER; MARS; SYSTEM AB NASA Goddard Space Flight Center (GSFC) has been engaging in Earth and planetary science remote sensing instruments development for many years. The latest instrument was launched in 2008 to the moon providing the most detailed topographic map of the lunar surface to-date. NASA GSFC is preparing for several future missions, which for the first time will perform active spectroscopic measurements from space. In this paper we will review the past, present and future of space-qualified lasers for remote sensing applications at GSFC. C1 [Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Martino, Anthony J.; Chen, Jeffrey R.; Krainak, Michael A.; Wu, Stewart] NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. RP Yu, AW (reprint author), NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. RI Riris, Haris/D-1004-2013; Abshire, James/I-2800-2013; Allan, Graham/D-3905-2013; Harding, David/F-5913-2012 NR 40 TC 4 Z9 4 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8304-1 J9 PROC SPIE PY 2010 VL 7808 AR 780817 DI 10.1117/12.861536 PG 12 WC Instruments & Instrumentation; Remote Sensing; Optics SC Instruments & Instrumentation; Remote Sensing; Optics GA BSU80 UT WOS:000285836500033 ER PT S AU Gunapala, SD Bandara, SV Liu, JK Mumolo, JM Ting, DZ Hill, CJ Nguyen, J Rafol, SB AF Gunapala, S. D. Bandara, S. V. Liu, J. K. Mumolo, J. M. Ting, D. Z. Hill, C. J. Nguyen, J. Rafol, S. B. BE Andresen, BF Fulop, GF Norton, PR TI Demonstration of 1024x1024 Pixel Dual-band QWIP Focal Plane Array SO INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2 SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Infrared Technology and Applications XXXVI CY APR 05-09, 2010 CL Orlando, FL SP SPIE DE QWIPs; Dualband; Focal Plane Arrays AB QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 mu m and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 mu m. Dual-band QWIP detector arrays were hybridized with direct injection 30 mu m pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE Delta T of 27 and 40 mK for MWIR and LWIR bands respectively. C1 [Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gunapala, SD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 7 TC 1 Z9 1 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8124-5 J9 P SOC PHOTO-OPT INS PY 2010 VL 7660 AR 76603L DI 10.1117/12.851175 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSR52 UT WOS:000285545300121 ER PT S AU Hill, CJ Soibel, A Keo, SA Lee, MC Mumolo, JM Nguyen, J Rafol, SB Ting, DZ Yang, BH Gunapala, SD AF Hill, Cory J. Soibel, Alexander Keo, Sam A. Lee, Michael C. Mumolo, Jason. M. Nguyen, Jean Rafol, Sir B. Ting, David Z. Yang, Baohua Gunapala, Sarath. D. BE Andresen, BF Fulop, GF Norton, PR TI Growth and performance of superlattice-based long wavelength Complementary Barrier Infrared Detectors (CBIRDs) SO INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2 SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Infrared Technology and Applications XXXVI CY APR 05-09, 2010 CL Orlando, FL SP SPIE AB We have demonstrated the use of bulk antimonide based materials and type-II antimonide based superlattices in the development large area long wavelength infrared (LWIR) focal plane arrays (FPAs). Barrier infrared photodetectors (BIRDS) and superlattice-based infrared photodetectors are expected to outperform traditional III-V MWIR and LWIR imaging technologies and are expected to offer significant advantages over II-VI material based FPAs. Our group has developed a novel complementary barrier infrared detector (CBIRD) which utilizes properties unique to the antimonide material system to incorporate unipolar barriers on either side of a superlattice absorber region. We have used molecular beam epitaxy (MBE) technology to grow InAs/GaSb CBIRD structures on large area 100mm GaSb substrates with excellent results. Furthermore, we have fabricated initial 1024x1024 pixels superlattice imaging FPAs based on the CBIRD concept. C1 [Hill, Cory J.; Soibel, Alexander; Keo, Sam A.; Lee, Michael C.; Mumolo, Jason. M.; Nguyen, Jean; Rafol, Sir B.; Ting, David Z.; Yang, Baohua; Gunapala, Sarath. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hill, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 12 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8124-5 J9 P SOC PHOTO-OPT INS PY 2010 VL 7660 AR 76601S DI 10.1117/12.855206 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSR52 UT WOS:000285545300059 ER PT S AU Jhabvala, M Reuter, D Choi, K Sundaram, M Jhabvala, C La, A Waczynski, A Bundas, J AF Jhabvala, M. Reuter, D. Choi, K. Sundaram, M. Jhabvala, C. La, A. Waczynski, A. Bundas, J. BE Andresen, BF Fulop, GF Norton, PR TI The QWIP focal plane assembly for NASA's Landsat Data Continuity Mission SO INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2 SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Infrared Technology and Applications XXXVI CY APR 05-09, 2010 CL Orlando, FL SP SPIE DE QWIPs; quantum well detectors; infrared focal planes; IR detector arrays; GaAs detectors AB The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM) [1]. The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8 mu m and 12.0 mu m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed. C1 [Jhabvala, M.; Reuter, D.; Jhabvala, C.; La, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jhabvala, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 8 TC 2 Z9 2 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8124-5 J9 P SOC PHOTO-OPT INS PY 2010 VL 7660 AR 76603J DI 10.1117/12.849305 PG 13 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSR52 UT WOS:000285545300119 ER PT S AU Ting, DZ Hill, CJ Soibel, A Nguyen, J Keo, SA Lee, MC Mumolo, JM Liu, JK Gunapala, SD AF Ting, David Z. Hill, Cory J. Soibel, Alexander Nguyen, Jean Keo, Sam A. Lee, Michael C. Mumolo, Jason M. Liu, John K. Gunapala, Sarath D. BE Andresen, BF Fulop, GF Norton, PR TI Antimonide-based barrier infrared detectors SO INFRARED TECHNOLOGY AND APPLICATIONS XXXVI, PTS 1 AND 2 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Technology and Applications XXXVI CY APR 05-09, 2010 CL Orlando, FL SP SPIE DE unipolar barrier; heterostructure; infrared; photodetector; superlattice ID II SUPERLATTICES; INAS/GA1-XINXSB SUPERLATTICE; SUPER-LATTICE; DEVICES; HGCDTE; PHOTODIODES; PERFORMANCE; SEMICONDUCTORS; PROPOSAL; DIODES AB The nearly lattice-matched InAs/GaSb/AlSb (antimonide) material system offers tremendous flexibility in realizing high-performance infrared detectors. Antimonide-based alloy and superlattice infrared absorbers can be customized to have cutoff wavelengths ranging from the short wave infrared (SWIR) to the very long wave infrared (VLWIR). They can be used in constructing sophisticated heterostructures to enable advanced infrared photodetector designs. In particular, they facilitate the construction of unipolar barriers, which can block one carrier type but allow the un-impeded flow of the other. Unipolar barriers are used to implement the barrier infra-red detector (BIRD) design for increasing the collection efficiency of photo-generated carriers, and reducing dark current generation without impeding photocurrent flow. We report our recent efforts in achieving state-of-the-art performance in antimonide alloy and superlattice based infrared photodetectors using the BIRD architecture. Specifically, we report a 10 mu m cutoff superlattice device based on a complementary barrier infrared detector (CBIRD) design. The detector, without antireflection coating or passivation, exhibits a responsivity of 1.5 A/W and a dark current density of 1 x 10(-5) A/cm(2) at 77K under 0.2 V bias. It reaches 300 K background limited infrared photodetection (BLIP) operation at 87 K, with a black-body BLIP D* value of 1.1 x 10(11) cm-Hz(1/2)/W for f/2 optics under 0.2 V bias. C1 [Ting, David Z.; Hill, Cory J.; Soibel, Alexander; Nguyen, Jean; Keo, Sam A.; Lee, Michael C.; Mumolo, Jason M.; Liu, John K.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ting, DZ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM David.Z.Ting@jpl.nasa.gov NR 64 TC 5 Z9 6 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8124-5 J9 PROC SPIE PY 2010 VL 7660 AR 76601R DI 10.1117/12.851383 PG 14 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSR52 UT WOS:000285545300058 ER PT S AU Hoover, RB AF Hoover, Richard B. BE Hoover, RB Levin, GV Rozanov, AY Davies, PCW TI Chiral biomarkers and microfossils in carbonaceous meteorites SO INSTRUMENTS, METHODS, AND MISSIONS FOR ASTROBIOLOGY XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Instruments, Methods, and Missions for Astrobiology XIII CY AUG 03-05, 2010 CL San Diego, CA SP SPIE DE Biomarkers; chirality; carbonaceous meteorites; Orgueil; Murchison; microfossils; EDS; protein amino acids ID MURCHISON METEORITE; AMINO-ACIDS; HETEROCYCLIC COMPOUNDS; ORGANIC-MATTER; SP NOV.; CYANOBACTERIUM; CHONDRITES; PORPHYRINS; CALIFORNIA; DEAMINASE AB Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as "bio-discriminators" that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites. C1 NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Hoover, RB (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, Mail Code 62, Huntsville, AL 35812 USA. EM Richard.Hoover@NASA.GOV; Richard.Hoover@NASA.GOV NR 54 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8315-7 J9 P SOC PHOTO-OPT INS PY 2010 VL 7819 AR 781903 DI 10.1117/12.863372 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary; Optics SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology; Optics GA BSU44 UT WOS:000285826700002 ER PT S AU Vaishampayan, PA Fox, GE Venkateswaran, K AF Vaishampayan, Parag A. Fox, George E. Venkateswaran, Kasthuri BE Hoover, RB Levin, GV Rozanov, AY Davies, PCW TI Survival of Bacillus pumilus SAFR-032 in simulated Mars atmosphere in real space conditions. SO INSTRUMENTS, METHODS, AND MISSIONS FOR ASTROBIOLOGY XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Instruments, Methods, and Missions for Astrobiology XIII CY AUG 03-05, 2010 CL San Diego, CA SP SPIE DE Bacillus pumilus; International space station; Mars atmosphere; UV radiation; spores; space conditions ID ASSEMBLY FACILITY; BACTERIAL-SPORES; SUBTILIS SPORES; UV-IRRADIATION; ENVIRONMENTS; RADIATION; PROTECTION; ENDOSPORES; RESISTANCE AB To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV-radiation and peroxide treatment. Subsequently, Bacillus pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions using the European Technology Exposure Platform and Experiment Facility (EuTEF). After 18 months exposure in the EuTEF facility under dark space conditions, SAFR-032 spores showed 10 to 40% survivability, whereas a survival rate of 85 to 100% was observed when these spores were kept aboard the ISS under dark simulated-Mars atmospheric conditions. In contrast, when UV (>110nm) was exerted on SAFR-032 spores for the same time period and conditions using the EuTEF, a similar to 7-log reduction in viability was noticed. However, the UV exposure still did not inactivate all the spores as 19 CFUs were later isolated via cultivation. A parallel experiment was conducted on Earth with identical samples but under simulated conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (similar to 3-log reduction in viability for Mars UV, and similar to 4-log reduction in viability for Space UV). The data generated is important to assess the probability and mechanisms of microbial survival, microbial contaminants of risk for forward contamination, in situ life detection, and to safeguard the integrity of sample return missions. C1 [Vaishampayan, Parag A.; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89-2,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov NR 28 TC 0 Z9 0 U1 2 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8315-7 J9 P SOC PHOTO-OPT INS PY 2010 VL 7819 AR 78190Q DI 10.1117/12.862231 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary; Optics SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology; Optics GA BSU44 UT WOS:000285826700021 ER PT S AU Joshi, R AF Joshi, Rajeev BE Mery, D Merz, S TI Programming with Miracles SO INTEGRATED FORMAL METHODS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 8th International Conference on Integrated Formal Methods CY OCT 11-14, 2010 CL INRIA Res Ctr, Nancy, FRANCE SP INRIA, Ctr Rech, Nancy Univ, Univ Henri Poincare Nancy, Inst Natl Polytechnique Lorraine, CNRS, GDR GPL, GIS 3SGS, Surveillance, Surete & Securite Grands Syst, Communaute Urbaine Grand Nancy, Region Lorraine HO INRIA Res Ctr AB In his seminal book, A Discipline of Programming [EWD 76], Dijkstra proposed that all sequential programs satisfy four laws for their weakest preconditions. By far the catchiest name was reserved for the Law of the Excluded Miracle, which captured the intuition that, started in a given state, a program execution must either terminate or loop forever. In the late 1980s, both Nelson [GN 89] and Morgan [CCM 90] noted that the law was unnecessarily restrictive when writing programs to be used as specifications. In the years since, "miracles" have become a standard feature in specification languages (for instance, the assume statement in JML [LLP+00] and BoogiePL [DL 05]). What is perhaps surprising is that miracles are not as commonly used in programs written as implementations. This is surprising because for many everyday tasks, programming in a language with miracles is often far superior to the popular scripting languages that are used instead. In this talk, we build upon pioneering work by Burrows and Nelson [CN 05] who designed the language LIM ("Language of the Included Miracle"). We describe a language LIMe ("LIM with extensions"), and discuss its application in the context of flight software testing, including the analysis of spacecraft telemetry logs. C1 [Joshi, Rajeev] NASA, Jet Prop Lab, Lab Reliable Software, Pasadena, CA USA. RP Joshi, R (reprint author), NASA, Jet Prop Lab, Lab Reliable Software, Pasadena, CA USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-16264-0 J9 LECT NOTES COMPUT SC PY 2010 VL 6396 BP 27 EP 27 PG 1 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BUB40 UT WOS:000288720100003 ER PT S AU Stahl, HP Alongi, C Arneson, A Bernier, R Brown, B Chaney, D Cole, G Daniel, J Dettmann, L Eng, R Gallagher, B Garfield, R Hadaway, J Johnson, P Lee, A Leviton, D Magruder, A Messerly, M Patel, A Reardon, P Schwenker, J Seilonen, M Smith, K Smith, WS AF Stahl, H. Philip Alongi, Chris Arneson, Andrea Bernier, Rob Brown, Bob Chaney, Dave Cole, Glen Daniel, Jay Dettmann, Lee Eng, Ron Gallagher, Ben Garfield, Robert Hadaway, James Johnson, Patrick Lee, Allen Leviton, Doug Magruder, Adam Messerly, Michael Patel, Ankit Reardon, Pat Schwenker, John Seilonen, Martin Smith, Koby Smith, W. Scott BE Towers, CE Schmit, J Creath, K TI Survey of interferometric techniques used to test JWST optical components SO INTERFEROMETRY XV: TECHNIQUES AND ANALYSIS SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Interferometry XV - Techniques and Analysis CY AUG 02-04, 2010 CL San Diego, CA SP SPIE DE Optical Testing; Optical Metrology; Astronomical Telescope; Optical Engineering; JWST ID TEST ERROR BUDGET AB JWST optical component in-process optical testing and cryogenic requirement compliance certification, verification & validation is probably the most difficult metrology job of our generation in astronomical optics. But, the challenge has been met: by the hard work of dozens of optical metrologists; the development and qualification of multiple custom test setups; and several new inventions, including 4D PhaseCam and Leica Absolute Distance Meter. This paper summarizes the metrology tools, test setups and processes used to characterize the JWST optical components. C1 [Stahl, H. Philip; Eng, Ron; Smith, W. Scott] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 10 TC 6 Z9 6 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8286-0 J9 PROC SPIE PY 2010 VL 7790 AR 779002 DI 10.1117/12.862234 PG 13 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA BXG28 UT WOS:000296025400002 ER PT S AU Agresti, DG Fleischer, I Klingelhofer, G Morris, RV AF Agresti, David G. Fleischer, Iris Klingelhoefer, Goestar Morris, Richard V. BE Muller, H Reissner, M Steiner, W Wiesinger, G TI On simfitting MER Mossbauer data to characterize Martian hematite SO INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF THE MOSSBAUER EFFECT (ICAME 2009) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on the Applications of the Mossbauer Effect CY JUL 19-24, 2009 CL Vienna Univ Technol, Vienna, AUSTRIA HO Vienna Univ Technol ID SPECTROMETER AB Mossbauer spectra of Eagle Crater outcrop rocks in Meridiani Planum were acquired by the Mars Exploration Rover (MER) Opportunity. Sixty spectra, containing 20 to 60% hematite by area, were simultultaneously fit (simfit) in a self-consistent manner to a single chi-squared minimum, where relations among parameters from different spectra were defined for both sol (Martian day) and acquisition temperature (200-280 K). Different spectral models were compared, hematite being modeled optimally with two sextets. Sextet Si (similar to 35% of total sextet area) has narrower linewidths, a larger magnetic hyperfine field, and a quadrupole shift that changes smoothly from positive to negative values as the temperature increases through the bulk Morin transition temperature. Sextet S2 has broader linewidths, a likely skewed line shape, a smaller hyperfine field, and a quadrupole shift that remains negative at all temperatures, implying the S2 phase is weakly ferromagnetic at all temperatures. C1 [Agresti, David G.] Univ Alabama Birmingham, Birmingham, AL 35294 USA. [Fleischer, Iris; Klingelhoefer, Goestar] Johannes Gutenberg Univ Mainz, Inst Anorgan & Anal Chemie, Mainz, Germany. [Morris, Richard V.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Agresti, DG (reprint author), Univ Alabama Birmingham, Birmingham, AL 35294 USA. EM agresti@uab.edu; fleischi@uni-mainz.de FU NASA [NNX06AD93G]; German Space Agency (DLR); University of Mainz; NASA Mars Exploration Program FX MERFit development was supported by NASA grant NNX06AD93G to DGA, who has benefited from discussions on hematite with R. Vandenberghe. IF and GK acknowledge support from the German Space Agency (DLR) and the University of Mainz. RVM acknowledges support from the NASA Mars Exploration Program. NR 11 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2010 VL 217 AR 012063 DI 10.1088/1742-6596/217/1/012063 PG 4 WC Physics, Applied; Spectroscopy SC Physics; Spectroscopy GA BTK80 UT WOS:000287181700063 ER PT J AU Henderson, B AF Henderson, Brenda TI Fifty years of fluidic injection for jet noise reduction SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID MIXING ENHANCEMENT; WATER INJECTION; MICROJETS; TURBULENCE AB The paper reviews 50 years of research investigating jet noise reduction through fluidic injection. Both aqueous and gaseous injection concepts for supersonic and subsonic jet exhausts are discussed. Aqueous injection reduces jet noise by reducing main jet temperature through evaporation and main jet velocity through momentum transfer between water droplets and the main jet. In the launch vehicle environment where large quantities of fluid do not have to be carried with the vehicle, water injection is very effective at reducing excess overpressures. For in-flight use, aqueous injection is problematic as most studies show that either large quantities of water or high injection pressures are required to achieve noise reduction. The most effective noise reduction injection systems require water pressures above 2000 kPa (290 psi) and water-to-main-jet mass flow rates above 10% to achieve overall sound pressure level reductions of roughly 6 dB in the peak jet noise direction. Injection at lower pressure (roughly 1034 kPa or 150 psi) has resulted in a 1.6 EPNdb reduction in effective perceived noise level. Gaseous injection reduces noise through jet plume modifications resulting from the introduction of streamwise vorticity in the main jet. In subsonic single-stream jets, air injection usually produces the largest overall sound pressure level reductions (roughly 2 dB) in the peak jet noise direction. In dual-stream jets, properly designed injection systems can reduce overall sound pressure levels and effective perceived noise levels but care must be taken to choose injector designs that limit sound pressure level increases at high frequencies. A reduction of 1.0 EPNdB has been achieved with injection into the fan and core streams. However, air injection into dual-stream subsonic jets has received little attention and the potential for noise reduction is uncertain at this time. For dual-stream supersonic jets, additional research needs to be conducted to determine if reductions can be achieved with injection pressures available from current aircraft engines. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Henderson, B (reprint author), NASA, Glenn Res Ctr, MS 54-3,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Brenda.S.Henderson@nasa.gov NR 80 TC 20 Z9 20 U1 2 U2 12 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PY 2010 VL 9 IS 1-2 BP 91 EP 122 PG 32 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA 628FK UT WOS:000280099800004 ER PT J AU Goldstein, ME AF Goldstein, M. E. TI Relation between the generalized acoustic analogy and Lilley's contributions to aeroacoustics SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID PREDICTING JET NOISE; FLOW AB This paper reviews Lilley's reformulation of Lighthill's equation and shows that it can be obtained as a special case of a much more general acoustic analogy. It also shows how this generalized analogy can be used to eliminate some of the difficulties that arise when more conventional parallel flow analogies are applied to high speed jets. And, finally, some recent applications of these ideas are discussed. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Goldstein, ME (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM marvin.e.goldstein@nasa.gov FU NASA FX This work was supported by NASA's supersonic fixed wing project. NR 36 TC 3 Z9 3 U1 0 U2 6 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PY 2010 VL 9 IS 4-5 SI SI BP 401 EP 418 PG 18 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA 628FO UT WOS:000280100200004 ER PT J AU Khavaran, A Kenzakowski, DC Mielke-Fagan, AF AF Khavaran, Abbas Kenzakowski, Donald C. Mielke-Fagan, Amy F. TI Hot jets and sources of jet noise SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID LILLEYS EQUATION; ACOUSTIC ANALOGY; MIXING NOISE; AEROACOUSTICS; PREDICTION; TURBULENCE; FLOWS; MODEL; FORM AB A prediction method based on the generalized acoustic analogy is presented and used to evaluate aerodynamic noise radiated from high-speed hot jets. The set of Euler equations are divided into two sets of equations that govern what may be considered as a non-radiating base flow plus its residual components. Under certain conditions, the residual equations are rearranged to form a wave equation. This equation consists of a third-order wave operator, plus a number of non-linear terms that are regarded as the equivalent sources of sound and their statistical characteristics are modeled. A specialized RANS solver provides the base flow as well as the variance in both velocity and thermal fluctuations that determine the source strength. The main objective here is to evaluate the relative contribution from various source components to the far-field spectra and to show the significance of temperature fluctuations as a potential source of aerodynamic noise in hot jets. C1 [Khavaran, Abbas] NASA, Glenn Res Ctr, ASRC Aerosp, Cleveland, OH USA. [Kenzakowski, Donald C.] Combust Res & Flow Technol Inc CRAFT Tech, Pipersville, PA USA. RP Khavaran, A (reprint author), NASA, Glenn Res Ctr, ASRC Aerosp, Cleveland, OH USA. EM Abbas.Khavaran-1@nasa.gov FU NASA Glenn Research Center FX This work was sponsored by the Fundamental Aeronautics Program at the NASA Glenn Research Center. The authors are grateful to Dr. James E. Bridges, Acoustics Branch, for providing the narrow-band jet noise measurements shown in the comparisons, and Dr. L. S. Hultgren for his insightful comments and technical suggestions. NR 38 TC 2 Z9 2 U1 0 U2 8 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PY 2010 VL 9 IS 4-5 SI SI BP 491 EP 532 PG 42 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA 628FO UT WOS:000280100200007 ER PT J AU McLaughlin, DK Bridges, J Kuo, CW AF McLaughlin, Dennis K. Bridges, James Kuo, Ching-Wen TI On the scaling of small, heat simulated jet noise measurements to moderate size exhaust jets SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article AB Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions. C1 [McLaughlin, Dennis K.; Kuo, Ching-Wen] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA. [Bridges, James] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP McLaughlin, DK (reprint author), Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA. EM dkm2@psu.edu FU Strategic Environmental Research and Development Program [WP-1583] FX This work was performed under funding from the Strategic Environmental Research and Development Program, Project Number WP-1583. The Penn State authors take pleasure in acknowledging the direct assistance of Dr. Jeremy Veltin with the experiments and the data interpretation, and helpful discussions with Prof. Philip Morris of Penn State and Dr. Steven Martens of GE. Dr. Brenda Henderson of NASA also made significant contributions to the manuscript during final preparation. The NASA experiments were conducted under the Fundamental Aeronautics Program, Supersonics Project. Model hardware was lent to NASA by the General Electric Company. NR 18 TC 10 Z9 10 U1 0 U2 3 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PY 2010 VL 9 IS 4-5 SI SI BP 627 EP 654 PG 28 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA 628FO UT WOS:000280100200011 ER PT J AU Khorrami, MR Lockard, DP AF Khorrami, Mehdi R. Lockard, David P. TI Effects of geometric details on slat noise generation and propagation SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID TRAILING-EDGE; FLOW; COMPUTATIONS AB The relevance of geometric details to the generation and propagation of noise from leading-edge slats is considered. Typically, such details are omitted in computational simulations and modelscale experiments thereby creating ambiguities in comparisons with acoustic results from flight tests. The current study uses two-dimensional, computational simulations in conjunction with a Ffowcs Williams-Hawkings (FW-H) solver to investigate the effects of previously neglected slat "bulb" and "blade" seals on the local flow field and the associated acoustic radiation. The computations show that the presence of the "blade" seal at the cusp in the simulated geometry significantly changes the slat cove flow dynamics, reduces the amplitudes of the radiated sound, and to a lesser extent, alters the directivity beneath the airfoil. Furthermore, the computations suggest that a modest extension of the baseline "blade" seal further enhances the suppression of slat noise. As a side issue, the utility and equivalence of FW-H methodology for calculating farfield noise as opposed to a more direct approach is examined and demonstrated. C1 [Khorrami, Mehdi R.; Lockard, David P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Mehdi.R.Khorrami@nasa.gov NR 33 TC 1 Z9 2 U1 3 U2 5 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PY 2010 VL 9 IS 4-5 SI SI BP 655 EP 678 PG 24 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA 628FO UT WOS:000280100200012 ER PT J AU Zaman, KBMQ AF Zaman, K. B. M. Q. TI Subsonic jet noise reduction by microjets - a parametric study SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article AB The effect of injecting tiny secondary jets ('mu jets') on the radiated noise from a subsonic primary jet is studied experimentally. The Wets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear reduction in the overall sound pressure level in the direction of peak noise radiation is observed that improves with increasing Wet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that the OASPL reduction, as monitored at a shallow angle, correlates with the ratio of Wet to primary jet driving pressures normalized by the ratio of corresponding diameters (p(mu)d/p(j)D). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. The amplitude 'crossover' is thought to be at least partly due to shock-associated noise from the underexpanded Wets themselves. Such crossover is not seen with water injection apparently because the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of the noise reduction on p(mu)d/p(j)D remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zaman, KBMQ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM KhairulBZaman@nasa.gov FU NASA FX The author would like to thank Prof. Anjaneyulu Krothapalli of Florida State University and colleagues, John Abbott and Nicholas Georgiadis for helpful comments. Support from the Subsonic Fixed Wing Project and the Supersonics Project, under NASA Fundamental Aeronautics Program, is gratefully acknowledged. NR 20 TC 3 Z9 3 U1 1 U2 5 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PY 2010 VL 9 IS 6 BP 705 EP 732 PG 28 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA 630LM UT WOS:000280274600001 ER PT J AU Morscher, GN DiCarlo, JA Kiser, JD Yun, HM AF Morscher, Gregory N. DiCarlo, James A. Kiser, James D. Yun, Hee Mann TI Effects of Fiber Architecture on Matrix Cracking for Melt-Infiltrated SiC/SiC Composites SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID 2D WOVEN; SIC COMPOSITES; STRENGTH; BEHAVIOR; DESIGN AB The matrix cracking behavior of slurry cast melt-infiltrated SiC matrix composites consisting of Sylramic-iBN fibers with a wide variety of fiber architectures were compared. The fiber architectures included 2D woven, braided, 3D orthogonal, and angle interlock architectures. Acoustic emission was used to monitor in-plane matrix cracking during unload-reload tensile tests. Two key parameters were found to control matrix-cracking behavior: the fiber volume fraction in the loading direction and the area of the weakest portion of the structure, that is, the largest tow in the architecture perpendicular to the loading direction. Empirical models that support these results are presented and discussed. C1 [Morscher, Gregory N.] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [DiCarlo, James A.; Kiser, James D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Yun, Hee Mann] Matech GSM, Westlake Village, CA 91362 USA. RP Morscher, GN (reprint author), Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA. EM gregory.n.morscher@nasa.gov NR 18 TC 12 Z9 12 U1 0 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PY 2010 VL 7 IS 3 BP 276 EP 290 DI 10.1111/j.1744-7402.2009.02422.x PG 15 WC Materials Science, Ceramics SC Materials Science GA 591HW UT WOS:000277291900002 ER PT J AU Roth, DJ Jacobson, NS Rauser, RW Wincheski, RA Walker, JL Cosgriff, LA AF Roth, Don J. Jacobson, Nathan S. Rauser, Richard W. Wincheski, Russell A. Walker, James L. Cosgriff, Laura A. TI Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID CARBON/CARBON AB In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 degrees C and 1200 degrees C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. C1 [Roth, Don J.; Jacobson, Nathan S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Rauser, Richard W.] Univ Toledo, Toledo, OH 43606 USA. [Wincheski, Russell A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Walker, James L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cosgriff, Laura A.] Cleveland State Univ, Cleveland, OH 44115 USA. RP Roth, DJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM donald.j.roth@nasa.gov NR 9 TC 0 Z9 1 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PY 2010 VL 7 IS 5 BP 652 EP 661 DI 10.1111/j.1744-7402.2009.02372.x PG 10 WC Materials Science, Ceramics SC Materials Science GA 656GP UT WOS:000282316500011 ER PT J AU Pavlov, AK Shelegedin, VN Vdovina, MA Pavlov, AA AF Pavlov, A. K. Shelegedin, V. N. Vdovina, M. A. Pavlov, A. A. TI Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article ID LIQUID WATER; MARS ODYSSEY; NEAR-SURFACE; ICE; LATITUDES; STABILITY; HYDROGEN AB Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we Studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01-0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith. C1 [Pavlov, A. K.; Vdovina, M. A.] Russian Acad Sci, AF Ioffe Physicotech Inst, Lab Mass Spectrometry, St Petersburg 196140, Russia. [Shelegedin, V. N.] St Petersburg Polytech State Univ, Dept Biophys, St Petersburg, Russia. [Pavlov, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pavlov, AK (reprint author), Russian Acad Sci, AF Ioffe Physicotech Inst, Lab Mass Spectrometry, St Petersburg 196140, Russia. EM Alexander.Pavlov@nasa.gov RI Pavlov, Alexander/F-3779-2012 OI Pavlov, Alexander/0000-0001-8771-1646 NR 30 TC 6 Z9 6 U1 0 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD JAN PY 2010 VL 9 IS 1 BP 51 EP 58 DI 10.1017/S1473550409990371 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 541DV UT WOS:000273394700006 ER PT J AU Liu, D Goodrich, K Peak, B AF Liu, Dahai Goodrich, Kenneth Peak, Bob TI Effects of a Velocity-Vector-Based Command Augmentation System and Synthetic Vision System Terrain Portrayal and Guidance Symbology Concepts on Single-Pilot Performance SO INTERNATIONAL JOURNAL OF AVIATION PSYCHOLOGY LA English DT Article ID DISPLAYS; AWARENESS AB This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on the performance of pilots flying a light, single-engine general-aviation airplane. We evaluated the effects and interactions of 2 levels of terrain portrayal, guidance symbology, and flight control response type on pilot performance during the conduct of a relatively complex instrument approach procedure. The terrain and guidance presentations were evaluated as elements of an integrated primary flight display system. The approach procedure used in the study included a steeply descending, curved segment as might be encountered in emerging, required-navigation-performance-based procedures. Pilot performance measures consisted of flight technical performance, perceived workload, perceived situational awareness, and subjective preference. The results revealed that an elevation-based generic terrain portrayal significantly improved perceived situation awareness without adversely affecting flight technical performance or workload. Other factors (pilot instrument rating, control response type, and guidance symbology) were not found to significantly affect the performance measures. C1 [Liu, Dahai] Embry Riddle Aeronaut Univ, Human Factors & Syst Dept, Daytona Beach, FL 32114 USA. [Goodrich, Kenneth] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Peak, Bob] Cogent Corp Int, Steilacoom, WA USA. RP Liu, D (reprint author), Embry Riddle Aeronaut Univ, Human Factors & Syst Dept, 600 S Clyde Morris Blvd, Daytona Beach, FL 32114 USA. EM dahai.liu@erau.edu NR 25 TC 0 Z9 0 U1 1 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1050-8414 J9 INT J AVIAT PSYCHOL JI Int. J. Aviat. Psychol. PY 2010 VL 20 IS 2 BP 160 EP 182 AR PII 920761232 DI 10.1080/10508411003617854 PG 23 WC Psychology, Applied SC Psychology GA 597JD UT WOS:000277752100004 ER PT J AU Gawron, VJ McMillan, GR Bailey, RE AF Gawron, Valerie J. McMillan, Grant R. Bailey, Randall E. TI The Effects of Time Delay and Physical Motion on Manual Flight Control: An In-Flight and Ground-Based Simulation Experiment SO INTERNATIONAL JOURNAL OF AVIATION PSYCHOLOGY LA English DT Article AB An experiment addressed the effects of time delay and physical motion on manual flight control and flying qualities ratings. Flight tasks were presented on a head-up display in a variable-stability NT-33A aircraft. Specified maneuvers were performed under simulated instrument meteorological conditions with variable signal delays added to the flight control system. To assess the effects of physical motion, the same experiment was replicated with the airplane parked on the ground using a digital aerodynamic simulation. Increasing time delay degraded tracking performance more in the no-motion ground-based simulation than in the full-motion in-flight simulation. Similar results occurred for flying qualities ratings. C1 [Gawron, Valerie J.] Mitre Corp, Mclean, VA 22102 USA. [McMillan, Grant R.] USAF, Res Lab, Dayton, OH USA. [Bailey, Randall E.] NASA, Washington, DC 20546 USA. RP Gawron, VJ (reprint author), Mitre Corp, 7515 Colshire Dr M-S N420, Mclean, VA 22102 USA. EM vgawron@mitre.org NR 9 TC 1 Z9 1 U1 2 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1050-8414 J9 INT J AVIAT PSYCHOL JI Int. J. Aviat. Psychol. PY 2010 VL 20 IS 3 BP 221 EP 248 AR PII 923935165 DI 10.1080/10508410105084142010487008 PG 28 WC Psychology, Applied SC Psychology GA 622BP UT WOS:000279633800001 ER PT J AU Casner, SM AF Casner, Stephen M. TI Why Don't Pilots Submit More Pilot Weather Reports (PIREPs)? SO INTERNATIONAL JOURNAL OF AVIATION PSYCHOLOGY LA English DT Article AB Pilot weather reports (PIREPs) are voluntary reports of actual weather conditions encountered by pilots during flight. Pilot weather reports are an ideal complement to observational and forecast weather products when they are submitted in sufficient quantity and detail. To determine the extent to which the pilot weather reporting system is being utilized, an archive containing all pilot weather reports submitted during the period from 2003 to 2008 was analyzed to assess the volume and content of PIREPs submitted. A total of 189 general aviation pilots were then asked to complete a survey designed to test the influence of 15 factors on the number of PIREPs they had submitted over the previous 12 months. The results help explain why pilots submit the number of PIREPs they do, and suggest steps that might help increase the volume of pilot weather reporting. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Casner, SM (reprint author), NASA, Ames Res Ctr, Mail Stop 262-4, Moffett Field, CA 94035 USA. EM stephen.casner@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1050-8414 J9 INT J AVIAT PSYCHOL JI Int. J. Aviat. Psychol. PY 2010 VL 20 IS 4 BP 347 EP 374 AR PII 927471855 DI 10.1080/10508410105084142010487015 PG 28 WC Psychology, Applied SC Psychology GA 659PS UT WOS:000282580000003 ER PT J AU Horta, LG Mason, BH Lyle, KH AF Horta, Lucas G. Mason, Brian H. Lyle, Karen H. TI A computational approach for probabilistic analysis of water impact simulations SO INTERNATIONAL JOURNAL OF CRASHWORTHINESS LA English DT Article DE water landing; LS-DYNA; surrogates; impact analysis; uncertainty ID GLOBAL SENSITIVITY-ANALYSIS; RADIAL BASIS FUNCTIONS AB NASA's development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the 1960s during the Apollo programme. However, with improved modelling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time-consuming and computationally intensive simulations. Because of the computational cost, these tools are often used to evaluate specific conditions and are rarely used for statistical analysis. This paper discusses an approach to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. In this approach, response surface models are used to predict the system time responses to a water landing as a function of capsule speed, direction, attitude, water speed and water direction. Furthermore, these models can also be used to ascertain the adequacy of the design in terms of probability measures. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries and concluding remarks. C1 [Horta, Lucas G.; Mason, Brian H.; Lyle, Karen H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Horta, LG (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM lucas.g.horta@nasa.gov NR 35 TC 1 Z9 1 U1 2 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1358-8265 J9 INT J CRASHWORTHINES JI Int. J. Crashworthiness PY 2010 VL 15 IS 6 BP 649 EP 665 AR PII 931181832 DI 10.1080/13588265.2010.497020 PG 17 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA 695FF UT WOS:000285355300007 ER PT J AU Xu, Y Mahmood, M Fejleh, A Li, ZR Watanabe, F Trigwell, S Little, RB Kunets, VP Dervishi, E Biris, AR Salamo, GJ Biris, AS AF Xu, Yang Mahmood, Meena Fejleh, Ashley Li, Zhongrui Watanabe, Fumiya Trigwell, Steve Little, Reginald B. Kunets, Vasyl P. Dervishi, Enkeleda Biris, Alexandru R. Salamo, Gregory J. Biris, Alexandru S. TI Carbon-covered magnetic nanomaterials and their application for the thermolysis of cancer cells SO INTERNATIONAL JOURNAL OF NANOMEDICINE LA English DT Article DE graphitic shelled; magnetic nanoparticles; radio frequency; thermal ablation; HeLa cells ID COBALT FERRITE NANOCRYSTALS; FLUID HYPERTHERMIA; NANOPARTICLES; FIELD; AGENTS; PENETRATION; RELAXATION; FE AB Three types of graphitic shelled-magnetic core (Fe, Fe/Co, and Co) nanoparticles (named as C-Fe, C-Fe/Co, and C-Co NPs) were synthesized by radio frequency-catalytic chemical vapor deposition (RF-cCVD). X-ray diffraction and X-ray photoelectron spectroscopy analysis revealed that the cores inside the carbon shells of these NPs were preserved in their metallic states. Fluorescence microscopy images indicated effective penetrations of the NPs through the cellular membranes of cultured cancer HeLa cells, both inside the cytoplasm and the nucleus. Low RF radiation of 350 kHz induced localized heating of the magnetic NPs, which triggered cell death. Apoptosis inducement was found to be dependent on the RF irradiation time and NP concentration. It was showed that the Fe-C NPs had a much higher ability of killing the cancer cells (over 99%) compared with the other types of NPs (C-Co or C-Fe/Co), even at a very low concentration of 0.83 mu g/mL. The localized heating of NPs inside the cancer cells comes from the hysteresis heating and resistive heating through eddy currents generated under the RF radiation. The RF thermal ablation properties of the magnetic NPs were correlated with the analysis provided by a superconducting quantum interference device (SQUID). C1 [Xu, Yang; Mahmood, Meena; Fejleh, Ashley; Li, Zhongrui; Watanabe, Fumiya; Dervishi, Enkeleda; Biris, Alexandru S.] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA. [Xu, Yang; Mahmood, Meena; Fejleh, Ashley; Li, Zhongrui; Watanabe, Fumiya; Dervishi, Enkeleda; Biris, Alexandru S.] Univ Arkansas, Nanotechnol Ctr, Little Rock, AR 72204 USA. [Trigwell, Steve] NASA, ASRC Aerosp, Kennedy Space Ctr, FL USA. [Little, Reginald B.] Elizabeth City State Univ, Dept Chem, Elizabeth City, NC USA. [Kunets, Vasyl P.; Salamo, Gregory J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Biris, Alexandru R.] Natl Inst Res & Dev Isotop & Mol Technol, Cluj Napoca, Romania. RP Xu, Y (reprint author), Univ Arkansas, Nanotechnol Ctr, Little Rock, AR 72204 USA. EM yxxu@ualr.edu; asbiris@ualr.edu RI Biris, Alexandru/A-8507-2010; Biris, Alexandru /C-4517-2011; Dom, Rekha/B-7113-2012 FU Arkansas Science and Technology Authority (ASTA) [08-CAT-03] FX This research was financial support from Arkansas Science and Technology Authority (ASTA) grant # 08-CAT-03 is highly appreciated. Technical support from Carl J Plumley is also acknowledged. The authors report no conflicts of interest in this work. NR 28 TC 27 Z9 27 U1 0 U2 8 PU DOVE MEDICAL PRESS LTD PI ALBANY PA PO BOX 300-008, ALBANY, AUCKLAND 0752, NEW ZEALAND SN 1176-9114 J9 INT J NANOMED JI Int. J. Nanomed. PY 2010 VL 5 BP 167 EP 176 PG 10 WC Nanoscience & Nanotechnology; Pharmacology & Pharmacy SC Science & Technology - Other Topics; Pharmacology & Pharmacy GA 674DW UT WOS:000283715300016 PM 20463932 ER PT J AU Majumdar, AK Ravindran, SS AF Majumdar, Alok K. Ravindran, S. S. TI Fast, nonlinear network flow solvers for fluid and thermal transient analysis SO INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW LA English DT Article DE Flow; Heat transfer; Fluids AB Purpose - The purpose of this paper is to present a fast nonlinear solver for the prediction of transients in network flows. Design/methodology/approach - Broyden method-based nonlinear solvers are developed to solve the system of conservation equation for fluids by judiciously exploiting physical coupling among the equations. Findings - To demonstrate the feasibility and robustness of the solvers, two test cases of practical engineering interest were solved. The results obtained by the solvers were verified against analytical results for a simplified case. The performance of the solvers was found to be comparable or better than existing solvers. Originality/value - The proposed solver enables predictions of fluid and thermal transients in complex flow networks feasible in reduced computational time. C1 [Ravindran, S. S.] Univ Alabama, Dept Math Sci, Shelby Ctr Sci & Technol, Huntsville, AL 35899 USA. [Majumdar, Alok K.] NASA, Thermal Anal Branch, Prop Syst Dept, Engn Directorate,Marshall Space Flight Ctr, Huntsville, AL USA. RP Ravindran, SS (reprint author), Univ Alabama, Dept Math Sci, Shelby Ctr Sci & Technol, Huntsville, AL 35899 USA. EM ravinds@uah.edu FU NASA Emerald Group Publishing Limited [NNM05AA22A] FX The authors are grateful to the Marshall Space Flight Center and the financial support of NASA Emerald Group Publishing Limited Grant NNM05AA22A. NR 20 TC 1 Z9 1 U1 1 U2 7 PU EMERALD GROUP PUBLISHING LIMITED PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0961-5539 J9 INT J NUMER METHOD H JI Int. J. Numer. Methods Heat Fluid Flow PY 2010 VL 20 IS 6-7 BP 617 EP 637 DI 10.1108/09615531011056791 PG 21 WC Thermodynamics; Mathematics, Interdisciplinary Applications; Mechanics SC Thermodynamics; Mathematics; Mechanics GA 673XS UT WOS:000283698100001 ER PT J AU Emmons, MC Karnani, S Trono, S Mohanchandra, KP Richards, WL Carman, GP AF Emmons, Michael C. Karnani, Sunny Trono, Stefano Mohanchandra, Kotekar P. Richards, W. Lance Carman, Gregory P. TI STRAIN MEASUREMENT VALIDATION OF EMBEDDED FIBER BRAGG GRATINGS SO INTERNATIONAL JOURNAL OF OPTOMECHATRONICS LA English DT Article DE composite; embedded; fiber Bragg grating; finite element; strain sensor ID OPTIC SENSORS; BIREFRINGENCE AB This study investigates the influence of strain state distribution on the accuracy of embedded optical fiber Bragg gratings (FBGs) used as strain sensors. An optical fiber embedded parallel to adjacent structural fibers in a graphite epoxy quasi-isotropic [(90/+/- 45/0)(S)](3) lay-up is evaluated with mechanical loading parallel to the fiber optic direction. Finite element analysis (FEA) is used to evaluate the fiber optic sensors' responses both in the far field and near field regions of the mechanical grips. Comparison between experimental fiber optic strains, strain gauges, and FEA provides good correlation in the far field with differences of less than 1%. However, in the near field region, some discrepancies are found and attributed to birefringence arising from complex strain states. C1 [Emmons, Michael C.; Karnani, Sunny; Mohanchandra, Kotekar P.; Carman, Gregory P.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA USA. [Trono, Stefano] Swiss Inst Technol, Dept Engn Mech, Lausanne, Switzerland. [Richards, W. Lance] NASA, Dryden Flight Res Ctr, Edwards AFB, CA USA. RP Emmons, MC (reprint author), UCLA MAE, 420 Westwood Plaza 32-135, Los Angeles, CA 90095 USA. EM MCEmmons@gmail.com NR 21 TC 6 Z9 6 U1 0 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1559-9612 J9 INT J OPTOMECHATRONI JI Int. J. Optomechatronics PY 2010 VL 4 IS 1 BP 22 EP 33 DI 10.1080/15599611003649984 PG 12 WC Engineering, Electrical & Electronic; Engineering, Mechanical; Optics SC Engineering; Optics GA 582BV UT WOS:000276571200002 ER PT J AU Bogucki, D Carr, ME Drennan, WM Woiceshyn, P Hara, T Schmeltz, M AF Bogucki, Darek Carr, Mary-Elena Drennan, William M. Woiceshyn, Peter Hara, Tetsu Schmeltz, Marjorie TI Preliminary and novel estimates of CO2 gas transfer using a satellite scatterometer during the 2001GasEx experiment SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID WATER-VAPOR; WIND-WAVES; SEA; SURFACE; OCEAN; BREAKING; MODEL; PARAMETERIZATION; EXCHANGE; LAYER AB The ocean takes up approximately 30% of the annual anthropogenic emissions of CO2. However, the air-sea exchange of carbon dioxide varies by a factor of 2 depending on the formulation of the exchange process. This considerable uncertainty is due in part to the difficulty in parameterizing the gas transfer velocity, k(660), usually given as a function of wind speed. Recent field data showed that parametrization using the mean square slope of small scale surface waves provides a more robust strategy to estimate gas transfer (Frew et al. 2004). Here we present a preliminary estimation of the gas transfer velocity as a function of upwind Normalized Radar Cross-Section (NRCS) as measured by the scatterometer QuikSCAT. The gas transfer velocity calculated from upwind NRCS exhibits a quadratic-like dependence at low and intermediate wind speeds (similar or equal to 6 ms(-1)). This approach represents a promising new tool to obtain global quasi-synoptic estimates of oceanic uptake of CO2. C1 [Bogucki, Darek; Drennan, William M.] Univ Miami, RSMAS, Miami, FL 33149 USA. [Carr, Mary-Elena; Woiceshyn, Peter; Schmeltz, Marjorie] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hara, Tetsu] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. RP Bogucki, D (reprint author), Univ Miami, RSMAS, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM DBogucki@rsmas.miami.edu RI Hara, Tetsu/G-9779-2011 FU NOAA-OGP [NA17RJ1223]; NASA Ocean Biogeochemistry program; NOAA CPO/GCC. FX We are grateful to Mark Donelan for his helpful comments. We thank anonymous reviewers for thorough comments on a previous version of this manuscript. WD acknowledges support from NOAA-OGP, grant number NA17RJ1223 and the assistance of Mike Rebozo, Joe Gabriele, and numerous GasEx investigators. DB, MEC, PW, and MS acknowledge the support of the NASA Ocean Biogeochemistry program. Part of this work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. TH acknowledges the support of NOAA CPO/GCC. NR 36 TC 10 Z9 10 U1 0 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 1 BP 75 EP 92 DI 10.1080/01431160902882546 PG 18 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 544HI UT WOS:000273644800005 ER PT J AU Wong, MS Nichol, J Holben, B AF Wong, Man Sing Nichol, Janet Holben, Brent TI Desert dust aerosols observed in a tropical humid city: a case study over Hong Kong SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID LONG-RANGE TRANSPORT; ASIAN DUST; YELLOW SAND; NETWORK AB Observations from the AErosol RObotic NETwork (AERONET) sunphotometers, MODerate resolution Imaging Spectroradiometer (MODIS) satellite images, back-trajectory modelling and 'in-situ' PM10 measurements in Hong Kong confirmed that two dust storms on 16-17 April 2006 and 27-30 April 2009, with source areas in northwest China, affected the city. The impacts of the dust on the air quality of Hong Kong were quantified using aerosol optical properties from AERONET data and local PM10 (particle size less than 10 mu m) concentrations. Combined analysis of back trajectories and the microphysical properties of the dust aerosols from AERONET inversion data suggest that the dust particulates are sometimes associated with industrial chemicals on arrival in Hong Kong. This is the first remote-sensing study to observe the presence and characteristics of Asian dust carried into the humid tropical region of south China. C1 [Wong, Man Sing; Nichol, Janet] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R China. [Holben, Brent] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Nichol, J (reprint author), Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R China. EM lsjanet@polyu.edu.hk RI Nichol, Janet/A-1442-2014; Wong, Man Sing/A-2718-2014 OI Nichol, Janet/0000-0003-4015-893X; Wong, Man Sing/0000-0002-6439-6775 FU CERG [PolyU 5253/07E] FX The authors would like to acknowledge the NASA Goddard Earth Science Distributed Active Archive Center for the MODIS level IB and level 2 data, the National Oceanic and Atmospheric Administration (NOAA) for the HYSPLIT model, and we thank Hong-bin Chen and Philippe Goloub (PIs of Beijing AERONET) and Po-Hsiung Lin (PI of Taipei_CWB AERONET) for the AERONET data. Grant PolyU 5253/07E from the CERG is acknowledged. NR 13 TC 7 Z9 7 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 4 BP 1043 EP 1051 DI 10.1080/01431160903154325 PG 9 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 572ZO UT WOS:000275877800014 ER PT J AU Nelson, R AF Nelson, Ross TI Model effects on GLAS-based regional estimates of forest biomass and carbon SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID ICESAT/GLAS; AIRBORNE; CANADA; QUEBEC; MODIS AB Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27 x 10(6) km(2) study area in the Province of Quebec, Canada, below the tree line. The same input datasets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include non-stratified and stratified versions of a multiple linear model where either biomass or (biomass)(0.5) serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial dry biomass estimates of up to 0.35 G, with a range of 4.94 +/- 0.28 Gt to 5.29 +/- 0.36 Gt. The differences among model estimates are statistically non-significant, however, and the results demonstrate the degree to which carbon estimates vary strictly as a function of the model used to estimate regional biomass. Results also indicate that GLAS measurements become problematic with respect to height and biomass retrievals in the boreal forest when biomass values fall below 20 t ha(-1) and when GLAS 75th percentile heights fall below 7 m. C1 NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Nelson, R (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 614-4, Greenbelt, MD 20771 USA. EM Ross.F.Nelson@nasa.gov RI Nelson, Ross/H-8266-2014 NR 21 TC 28 Z9 30 U1 1 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 5 SI SI BP 1359 EP 1372 DI 10.1080/01431160903380557 PG 14 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 592ON UT WOS:000277389000014 ER PT J AU Turk, J Miller, S Castello, C AF Turk, J. Miller, S. Castello, C. TI A dynamic global cloud layer for virtual globes SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article AB We describe a technique to merge multiple environmental satellite data sets for an hourly updated, near real-time global depiction of cloud cover for virtual globe applications. A global thermal infrared composite obtained from merged geostationary- (GEO) and low-Earth-orbiting (LEO) satellite data is processed to depict clear and cloudy areas in a visually intuitive fashion. This GEO-plus-LEO imagery merging is complicated by the fact that each individual satellite observes a single 'snapshot' of the cloud patterns, each taken at different times, whereas the underlying clouds themselves are constantly moving and evolving. For the cloudy areas, the brightness and transparency are approximated based upon the cloud top temperature relative to the local radiometric surface temperatures (corrected for surface emissivity variations) at the time of the satellite observation. The technique clearly defines and represents mid-to high-level clouds over both land and ocean. Due to their proximity to the Earth's surface, low-level clouds such as stratocumulus and stratus clouds will be poorly represented with the current technique, since warmer temperatures in this case do not correspond to higher cloud transparency. Overcoming this problem requires the introduction of multispectral channel combinations. C1 [Turk, J.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Miller, S.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Castello, C.] Google Inc, Mountain View, CA USA. RP Turk, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM joe.turk@nrlmry.navy.mil FU Google Earth GIS team at Google, Inc. FX The first two authors would like to acknowledge the support of the Google Earth GIS team at Google, Inc. The MODIS data are provided courtesy of the National Aeronautics and Space Administration (NASA) Near Realtime Processing Effort (NRTPE). We would like to acknowledge Dr Ben Ruston of the Naval Research Laboratory for the use of the surface emissivity database and for advice and guidance on its use in this application. NR 8 TC 2 Z9 2 U1 0 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 7 BP 1897 EP 1914 DI 10.1080/01431160902926657 PG 18 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 592OP UT WOS:000277389200013 ER PT J AU Peddle, DR Boon, S Glover, AP Hall, FG AF Peddle, Derek R. Boon, Sarah Glover, Aaron P. Hall, Forrest G. TI Forest structure without ground data: Adaptive Full-Blind Multiple Forward-Mode reflectance model inversion in a mountain pine beetle damaged forest SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID CANOPY; CLASSIFICATION AB A new approach for using canopy reflectance models (CRMs) is presented that requires no field data or knowledge about the study area or imagery. Multiple Forward-Mode Adaptive Full-Blind (MFM-AFB) modelling provides forest biophysical structural information (BSI), and can also be used for classification and spectral mixture analysis at sub-pixel scales without user-specified model inputs, training data or endmember spectra, as these are instead automatically derived. In an example application using 2007 Landsat imagery of forest damaged by a mountain pine beetle (MPB) epidemic in British Columbia, Canada, overall BSI accuracy was within +/- 1000 stems ha(-1) for stand density, +/- 0.5 m for crown radius and perpendicular to 1m tree height for healthy and MPB stands. MFM-AFB software is suitable for regional, multi-temporal and unknown imagery and areas. By not requiring user-specified a priori model inputs to infer BSI, the MFM-AFB approach may help enable mainstream use of diverse and advanced CRMs for image analysis. C1 [Peddle, Derek R.; Boon, Sarah; Glover, Aaron P.] Univ Lethbridge, Dept Geog, Lethbridge, AB T1K 3M4, Canada. [Hall, Forrest G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hall, Forrest G.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. RP Peddle, DR (reprint author), Univ Lethbridge, Dept Geog, 4401 Univ Dr W, Lethbridge, AB T1K 3M4, Canada. EM derek.peddle@uleth.ca NR 15 TC 6 Z9 6 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 8 BP 2123 EP 2128 DI 10.1080/01431160903401361 PG 6 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 592OQ UT WOS:000277389300012 ER PT J AU Huang, SL Crabtree, RL Swanson, AK Halligan, KQ Harmsen, JA AF Huang, Shengli Crabtree, R. L. Swanson, A. K. Halligan, K. Q. Harmsen, J. A. TI Error analysis and correction for extracting the forest height from airborne C-band interferometric SAR and national elevation datasets SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID SYNTHETIC-APERTURE RADARS; LASER SCANNER DATA; TREE HEIGHT; INDIVIDUAL TREE; LIDAR; RETRIEVAL; TERRAIN; TOPSAR; AREAS; PLANTATIONS AB The Interferometric Synthetic Aperture Radar (InSAR) signal is returned from the canopy of the obscuring trees instead of bare ground when land is covered by forests. Therefore, the difference between an InSAR elevation and a bare earth model might contain information on forest height. The objective of this paper was to investigate if the difference between an airborne C-band InSAR from the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) and a bare earth model of 1/3 arcsecond National Elevation Datasets can be used for regional forest height estimation. The error sources of vertical offset, uncompensated roll angle, residual vertical bias, and scattering phase centre height conversion were analysed and corrected in this estimation. The results were validated by the least-square linear regression analysis between Light Detection and Ranging (LiDAR) and the estimated height at different forest stand sizes within different slope categories. In areas with slopes less than 5 degrees, the correlation coefficients increased when forest stand sizes increased. In the area of slope ranging from 5 to 10 degrees, a similar trend of increasing correlation coefficients with increasing stand size could also be observed, but with smaller corresponding correlation coefficients than those of slope 0-5 degrees. In areas with slopes larger than 10 degrees, the correlation coefficients were very poor. These results indicate the difference between airborne C-band InSAR and the accurate bare earth model has the potential for regional forest height estimation in flat areas with a minimum unit of 3750-5000 m(2). However, to accurately estimate forest height in a mountainous terrain a solution must be found to correct the significant amount of noise caused by the terrain in these areas. C1 [Huang, Shengli; Crabtree, R. L.; Swanson, A. K.; Halligan, K. Q.; Harmsen, J. A.] Yellowstone Ecol Res Ctr, Bozeman, MT 59718 USA. [Huang, Shengli] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Huang, SL (reprint author), Yellowstone Ecol Res Ctr, 2048 Anal Dr,Suite B, Bozeman, MT 59718 USA. EM huang@yellowstoneresearch.org FU Air Force Research Laboratory [F33615-03-C-1432]; NASA [NNA07CN19A] FX This work was done under financial support from Air Force Research Laboratory (no. F33615-03-C-1432) and NASA (no. NNA07CN19A). The authors give special thanks to James Leonard and Olga Mendoza for their advice and support. NR 36 TC 2 Z9 2 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 9 BP 2493 EP 2512 DI 10.1080/01431160903085602 PG 20 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 600PL UT WOS:000277999100017 ER PT J AU Singh, RP Mehdi, W Gautam, R Kumar, JS Zlotnicki, J Kafatos, M AF Singh, Ramesh P. Mehdi, Waseem Gautam, Ritesh Kumar, J. Senthil Zlotnicki, Jacques Kafatos, Menas TI Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008 SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID GUJARAT EARTHQUAKE; PHYSICAL-PROPERTIES; SUMATRA EARTHQUAKE; CHINA EARTHQUAKE; KOBE EARTHQUAKE; ELECTRIC-FIELD; RADON; AIRS/AMSU/HSB; PARAMETERS; MAGNITUDE AB Multi-satellite sensor and ground observation data were analysed soon after the Wenchuan Earthquake of magnitude 7.9 (according to the USGS) or 8.0 (according to Xinhua, the Chinese News Agency) that occurred on 12 May 2008. This earthquake was felt by millions of people living in a number of countries; it took 65000 lives and made millions of people homeless, damaged small and large infrastructure, and large surface manifestations were observed on the surface. Soon after the earthquake multi-satellite sensor and ground observatory data were analysed to study changes in ground, meteorological and atmospheric parameters. A detailed analysis of these data shows pronounced anomalous changes prior to the Wenchuan Earthquake event. Analysis of Atmospheric InfraRed Sounder (AIRS) data at different pressure levels clearly shows characteristic behaviour of the air temperature and relative humidity compared to other days. Such changes are observed up to 500 hPa, with maximal change at the lower levels. Changes in the surface, atmosphere, meteorological and ionospheric parameters prior to the Wenchuan Earthquake are complementary to one another and show the existence of a strong coupling between land, atmosphere and ionosphere, associated with the Wenchuan Earthquake. C1 [Singh, Ramesh P.; Mehdi, Waseem; Kafatos, Menas] Chapman Univ, Schmid Coll Sci, Sch Earth & Environm Sci, Orange, CA 92866 USA. [Singh, Ramesh P.; Mehdi, Waseem] Sharda Univ, Sch Engn & Technol, Res & Technol Dev Ctr, Greater Noida 201306, UP, India. [Gautam, Ritesh] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD 20771 USA. [Gautam, Ritesh] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. [Kumar, J. Senthil; Zlotnicki, Jacques] Observ Phys Globe Clermont Ferrand, CNRS, UMR6524, Clermont Ferrand, France. RP Singh, RP (reprint author), Chapman Univ, Schmid Coll Sci, Sch Earth & Environm Sci, 1 Univ Dr, Orange, CA 92866 USA. EM rsingh@chapman.edu RI Gautam, Ritesh/E-9776-2010; Singh, Ramesh/G-7240-2012 OI Gautam, Ritesh/0000-0002-2177-9346; FU Indo-French Centre for the Promotion of Advanced Research (IFCPAR) FX The authors are grateful to the NASA GIOVANNI team. RPS and JZ are grateful to the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) for financial support in the form of a research project. Senthil Kumar J. was supported by IFCPRA. The efforts of Rachita Singh in carrying out detailed analysis of multiple parameters available through AIRS satellite, and generating numerous plots for understanding the nature of various parameters associated with the Wenchuan Earthquake are highly appreciated. RPS is grateful to Professor Arthur Cracknell for his interest and his critical reading of the manuscript which have helped the authors to improve the manuscript. Our sincere thanks to the referees for their comments/suggestions, which helped us to improve an earlier version of the paper. NR 65 TC 19 Z9 24 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 13 BP 3341 EP 3354 AR PII 924663201 DI 10.1080/01431161.2010.487503 PG 14 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 630OD UT WOS:000280282000002 ER PT J AU Akyurek, Z Hall, DK Riggs, GA Sensoy, A AF Akyurek, Zuhal Hall, Dorothy K. Riggs, George A. Sensoy, Aynur TI Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article; Proceedings Paper CT Annual Fall American-Geophysical-Union Meeting CY DEC 13-14, 2008 CL San Francisco, CA SP Amer Geophys Union, Mineralog Soc Amer, Dept Energy ID MODIS; RUNOFF; VALIDATION; ALGORITHM; ACCURACY; AREA; PART AB Snow-covered area depletion curves represent a key input for snow run-off melting models, e.g. the snowmelt run-off model (SRM). SRM is a degree-day-based model for daily run-off simulations and forecasts in mountainous areas in which snowmelt is the major run-off contributor. Satellite images and aerial photographs are valuable sources for retrieving snow-covered area. The accuracy of snow cover mapping studies in the optical wavebands is highly dependent upon the algorithm's ability to detect clouds. On very cloudy days it is not possible to map snow cover using only optical sensors; however, microwave sensors can be used to obtain snow information on cloudy days. The snow-water equivalent (SWE) of a dry snowpack can be estimated with passive-microwave sensors such as Special Sensor Microwave/Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E). Development of snow cover products based on multi-sensor data sources is needed for continuous regional and global snow cover mapping for climate, hydrological and weather applications. A preliminary blended snow product has been developed jointly by the US Air Force Weather Agency (AFWA) and NASA/Goddard Space Flight Center. The AFWA-NASA Snow Algorithm, or ANSA, blended snow product is an all-weather product that utilizes both visible and near-infrared (Moderate Resolution Imaging Spectroradiometer, MODIS) and microwave (Advanced Microwave Scanning Radiometer-Earth, AMSR-E) data. In this study the validation of the ANSA blended snow cover product, having 25 and 5 km resolution, respectively, was performed for the eastern part of Turkey for five months in the winter of 2007-2008. This is the first time that the ANSA snow cover product has been evaluated in a mountainous area, where the elevation ranges between 850 and 3000 m. Daily snow data collected at 36 meteorological stations were used in the analysis. Use of the ANSA snow products was found to improve the mapping of snow cover extent relative to using either MODIS or AMSR-E products alone, for the 2007-2008 winter in the eastern part of Turkey. 91% agreement was obtained between the ANSA snow maps and in situ observations for February. The lowest agreement percentage of 68% was obtained for March due to shallow snow depth and wetness of the snow. Change in the spatial resolution of the ANSA product from 25 km to 5 km increased the agreement percentages from 68% to 74% for March. ANSA prototype maps of 5 km resolution from February and March 2008 were used to derive snow cover depletion curves for the upper Euphrates basin located in the eastern part of Turkey. The results were compared with the curves obtained from MODIS daily snow products, and found to provide an improvement over using MODIS daily maps alone. This is because the ability of the microwave sensors to map snow through clouds provides snow cover information on cloudy days when the MODIS maps cannot, though at a coarser spatial resolution than can be obtained using MODIS. C1 [Akyurek, Zuhal] Middle E Tech Univ, Dept Civil Engn, Water Resources Lab, TR-06531 Ankara, Turkey. [Akyurek, Zuhal; Hall, Dorothy K.] NASA, Cryospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Riggs, George A.] NASA, SSAI Cryospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sensoy, Aynur] Anadolu Univ, Dept Civil Engn, TR-26555 Eskisehir, Turkey. RP Akyurek, Z (reprint author), Middle E Tech Univ, Dept Civil Engn, Water Resources Lab, TR-06531 Ankara, Turkey. EM zakyurek@metu.edu.tr RI Hall, Dorothy/D-5562-2012; AKYUREK, Zuhal/Q-4297-2016 NR 22 TC 5 Z9 6 U1 1 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 14 BP 3727 EP 3744 AR PII 925187527 DI 10.1080/01431161.2010.483484 PG 18 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 634XC UT WOS:000280618500005 ER PT J AU Yilmaz, KK Adler, RF Tian, YD Hong, Y Pierce, HF AF Yilmaz, Koray K. Adler, Robert F. Tian, Yudong Hong, Yang Pierce, Harold F. TI Evaluation of a satellite-based global flood monitoring system SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article; Proceedings Paper CT Annual Fall American-Geophysical-Union Meeting CY DEC 13-14, 2008 CL San Francisco, CA SP Amer Geophys Union, Mineralog Soc Amer, Dept Energy ID PRECIPITATION ANALYSIS TMPA; RIVER NETWORKS; RAIN-GAUGE; RADAR; PREDICTION; RESOLUTION; MICROWAVE; SCALE AB This study provides an initial evaluation of a global flood monitoring system (GFMS) using satellite-based precipitation and readily available geospatial datasets. The GFMS developed by our group uses a relatively simple hydrologic model, based on the run-off curve number method, to transform precipitation into run-off. A grid-to-grid routing scheme moves run-off downstream. Precipitation estimates are from the TRMM Multi-satellite Precipitation Analysis (TMPA). We first evaluated the TMPA algorithm using a radar/gauge merged precipitation product (Stage IV) over south-east USA. This analysis indicated that the spatial scale (and hence the basin size) as well as regional and seasonal considerations are important in using the TMPA to drive hydrologic models. GFMS-based run-off simulations were evaluated using observed streamflow data at the outlet of two US basins and also using a global flood archive. Basin-scale analysis showed that the GFMS was able to simulate the onset of flood events produced by heavy precipitation; however, the simulation performance deteriorated in the later stages. This result points out the need for an improved routing component. Global-scale analysis indicated that the GFMS is able to detect 38% of the observed floods; however, it suffers from region-dependent bias. C1 [Yilmaz, Koray K.; Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Yilmaz, Koray K.; Adler, Robert F.; Tian, Yudong; Pierce, Harold F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tian, Yudong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21250 USA. [Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Pierce, Harold F.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Yilmaz, KK (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM yilmaz@agnes.gsfc.nasa.gov RI Hong, Yang/D-5132-2009; Yilmaz, Koray/A-6053-2010; Measurement, Global/C-4698-2015 OI Hong, Yang/0000-0001-8720-242X; Yilmaz, Koray/0000-0002-6244-8826; NR 23 TC 26 Z9 26 U1 0 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 14 BP 3763 EP 3782 AR PII 925192272 DI 10.1080/01431161.2010.483489 PG 20 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 634XC UT WOS:000280618500007 ER PT J AU Krogh, PE Andersen, OB Michailovsky, CIB Bauer-Gottwein, P Rowlands, DD Luthcke, SB Chinn, DS AF Krogh, Pernille E. Andersen, Ole B. Michailovsky, Claire I. B. Bauer-Gottwein, Peter Rowlands, David D. Luthcke, Scott B. Chinn, Douglas S. TI Evaluating terrestrial water storage variations from regionally constrained GRACE mascon data and hydrological models over Southern Africa - preliminary results SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article; Proceedings Paper CT Annual Fall American-Geophysical-Union Meeting CY DEC 13-14, 2008 CL San Francisco, CA SP Amer Geophys Union, Mineralog Soc Amer, Dept Energy ID SYSTEM AB A concentration of surface mass has a distinct, localized signature in Gravity Recovery and Climate Experiment (GRACE) K-band range rate (KBRR) data. This fact is exploited in the regional solutions for mass concentration parameters (mascons) made at the Goddard Space Flight Center (GSFC). In this paper we explore an experimental set of regionally constrained mascon blocks over Southern Africa where a system of 1.25 degrees x 1.5 degrees and 1.5 degrees x 1.5 degrees blocks has been designed. The blocks are divided into hydrological regions based on drainage patterns of the largest river basins, and are constrained in different ways. We show that the use of regional constraints, when solving mascon parameters of different hydrological regions independently, yields more detail and variation than comparable spherical harmonic solutions and mascon solutions using isotropic constraints. We validate our results over Lake Malawi with water level from altimetry. Results show that weak constraints across regions in addition to intra-regional constraints are necessary, to reach reasonable mass variations. C1 [Krogh, Pernille E.; Andersen, Ole B.] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen O, Denmark. [Michailovsky, Claire I. B.; Bauer-Gottwein, Peter] Tech Univ Denmark, Dept Environm Engn, DK-2800 Lyngby, Denmark. [Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.] NASA, Planetary Geodynam Lab, GSFC, Greenbelt, MD 20771 USA. RP Krogh, PE (reprint author), Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen O, Denmark. EM pernille@space.dtu.dk RI Luthcke, Scott/D-6283-2012; Rowlands, David/D-2751-2012; Bauer-Gottwein, Peter/G-8725-2011; Andersen, Ole /H-7481-2016 OI Bauer-Gottwein, Peter/0000-0002-9861-4240; Andersen, Ole /0000-0002-6685-3415 NR 20 TC 4 Z9 5 U1 2 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 14 BP 3899 EP 3912 AR PII 925189185 DI 10.1080/01431161.2010.483483 PG 14 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 634XC UT WOS:000280618500013 ER PT J AU Huang, CQ Thomas, N Goward, SN Masek, JG Zhu, ZL Townshend, JRG Vogelmann, JE AF Huang, Chengquan Thomas, Nancy Goward, Samuel N. Masek, Jeffrey G. Zhu, Zhiliang Townshend, John R. G. Vogelmann, James E. TI Automated masking of cloud and cloud shadow for forest change analysis using Landsat images SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID MODIS SNOW-COVER; SPATIAL-RESOLUTION; CLEAR-SKY; CLASSIFICATION; RADIOMETER; ALGORITHM; ACCURACY; RECORD; MODEL; BAND AB Accurate masking of cloud and cloud shadow is a prerequisite for reliable mapping of land surface attributes. Cloud contamination is particularly a problem for land cover change analysis, because unflagged clouds may be mapped as false changes, and the level of such false changes can be comparable to or many times more than that of actual changes, even for images with small percentages of cloud cover. Here we develop an algorithm for automatically flagging clouds and their shadows in Landsat images. This algorithm uses clear view forest pixels as a reference to define cloud boundaries for separating cloud from clear view surfaces in a spectral-temperature space. Shadow locations are predicted according to cloud height estimates and sun illumination geometry, and actual shadow pixels are identified by searching the darkest pixels surrounding the predicted shadow locations. This algorithm produced omission errors of around 1% for the cloud class, although the errors were higher for an image that had very low cloud cover and one acquired in a semiarid environment. While higher values were reported for other error measures, most of the errors were found around the edges of detected clouds and shadows, and many were due to difficulties in flagging thin clouds and the shadow cast by them, both by the developed algorithm and by the image analyst in deriving the reference data. We concluded that this algorithm is especially suitable for forest change analysis, because the commission and omission errors of the derived masks are not likely to significantly bias change analysis results. C1 [Huang, Chengquan; Thomas, Nancy; Goward, Samuel N.; Townshend, John R. G.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Zhu, Zhiliang] US Geol Survey, Reston, VA USA. [Vogelmann, James E.] USGS Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA. RP Huang, CQ (reprint author), Univ Maryland, Dept Geog, College Pk, MD 20742 USA. EM cqhuang@umd.edu RI Masek, Jeffrey/D-7673-2012; OI Huang, Chengquan/0000-0003-0055-9798; Vogelmann, James/0000-0002-0804-5823 FU NASA [NNH06ZDA001N-EOS, NNH06ZDA001N-MEASURES]; US Geological Survey FX This study was supported by grants from NASA's Terrestrial Ecology, Carbon Cycle Science, Applied Sciences, and Land Cover and Land Use Change Programs, by NASA's funding opportunity NNH06ZDA001N-EOS and NNH06ZDA001N-MEASURES, and by funding from the US Geological Survey. NR 35 TC 57 Z9 61 U1 6 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 20 BP 5449 EP 5464 AR PII 928447781 DI 10.1080/01431160903369642 PG 16 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 668YU UT WOS:000283313500010 ER PT J AU Chrysoulakis, N Abrams, M Feidas, H Arai, K AF Chrysoulakis, Nektarios Abrams, Michael Feidas, Haralambos Arai, Korei TI Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID SPACEBORNE THERMAL EMISSION; REFLECTION RADIOMETER ASTER; LANDSAT TM DATA; THEMATIC MAPPER DATA; REMOTELY-SENSED DATA; CORRECTION ALGORITHM; RADIATIVE-TRANSFER; SATELLITE IMAGERY; CLASSIFICATION ACCURACY; HAZE REMOVAL AB The purpose of atmospheric correction is to produce more accurate surface reflectance and to potentially improve the extraction of surface parameters from satellite images. To achieve this goal the influences of the atmosphere, solar illumination, sensor viewing geometry and terrain information have to be taken into account. Although a lot of information from satellite imagery can be extracted without atmospheric correction, the physically based approach offers advantages, especially when dealing with multitemporal data and/or when a comparison of data provided by different sensors is required. The use of atmospheric correction models is limited by the need to supply data related to the condition of the atmosphere at the time of imaging. Such data are not always available and the cost of their collection is considerable, hence atmospheric correction is performed with the use of standard atmospheric profiles. The use of these profiles results in a loss of accuracy. Therefore, site-dependent databases of atmospheric parameters are needed to calibrate and to adjust atmospheric correction methods for local level applications. In this article, the methodology and results of the project Adjustment of Atmospheric Correction Methods for Local Studies: Application in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (ATMOSAT) for the area of Crete are presented. ATMOSAT aimed at comparing several atmospheric correction methods for the area of Crete, as well as investigating the effects of atmospheric correction on land cover classification and change detection. Databases of spatio-temporal distributions of all required input parameters (atmospheric humidity, aerosols, spectral signatures, land cover and elevation) were developed and four atmospheric correction methods were applied and compared. The baseline for this comparison is the spatial distribution of surface reflectance, emitted radiance and brightness temperature as derived by ASTER Higher Level Products (HLPs). The comparison showed that a simple image based method, which was adjusted for the study area, provided satisfactory results for visible, near infrared and short-wave infrared spectral areas; therefore it can be used for local level applications. Finally, the effects of atmospheric correction on land cover classification and change detection were assessed using a time series of ASTER multispectral images acquired in 2000, 2002, 2004 and 2006. Results are in agreement with past studies, indicating that for this type of application, where a common radiometric scale is assumed among the multitemporal images, atmospheric correction should be taken into consideration in pre-processing. C1 [Chrysoulakis, Nektarios] Inst Appl & Computat Math, Fdn Res & Technol Hellas, GR-71110 Iraklion, Crete, Greece. [Abrams, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Feidas, Haralambos] Aristotle Univ Thessaloniki, Sch Geol, Dept Meteorol & Climatol, GR-54006 Thessaloniki, Greece. [Arai, Korei] Saga Univ, Saga 8408502, Japan. RP Chrysoulakis, N (reprint author), Inst Appl & Computat Math, Fdn Res & Technol Hellas, POB 1385, GR-71110 Iraklion, Crete, Greece. EM zedd2@iacm.forth.gr FU General Secretary of Research and Technology of the Ministry of Development of Greece; National Aeronautics and Space Administration FX This work was conducted as part of the ATMOSAT project funded by the 'Competitiveness' Programme, Action 4.3.6.1d 'Cooperation with R&T Institutions in non-European countries' of the General Secretary of Research and Technology of the Ministry of Development of Greece. Work by Michael Abrams was performed at the Jet Propulsion Laboratory/California Institute of Technology under contract by the National Aeronautics and Space Administration. NR 68 TC 17 Z9 17 U1 2 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 24 BP 6347 EP 6385 AR PII 931194725 DI 10.1080/01431160903413697 PG 39 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 695CA UT WOS:000285347000002 ER PT J AU Lin, B Minnis, P Fan, TF Hu, YX Sun, WB AF Lin, Bing Minnis, Patrick Fan, Tai-Fang Hu, Yongxiang Sun, Wenbo TI Radiation characteristics of low and high clouds in different oceanic regions observed by CERES and MODIS SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID LIQUID WATER PATH; 1998 EL-NINO; TROPICAL WESTERN PACIFIC; ADAPTIVE INFRARED IRIS; STATISTICAL-ANALYSES; OBJECT DATA; ENVIRONMENTAL-CONDITIONS; VISIBLE MEASUREMENTS; SATELLITE MICROWAVE; CONVECTIVE SYSTEMS AB Radiative properties measured by the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua spacecraft are evaluated for the same types of clouds in selected areas. Individual measurements are analysed statistically to take advantage of both gridded and individual cloud characteristics. The seasonal variations of radiative fluxes for the same types of clouds from different areas are remarkably similar. Although cloud liquid water paths (LWPs) or ice water paths (IWPs) vary considerably for the same types of clouds, their statistical distributions are very stable for different periods and areas, suggesting that the regional differences in dynamics and thermodynamics primarily cause changes in the cloud frequency or coverage and only secondarily in the cloud macrophysical characteristics such as IWPs or LWPs. These results establish a systematic approach of observations for testing modelled cloud statistics and for improving cloud model parameterizations. C1 [Lin, Bing; Minnis, Patrick; Hu, Yongxiang] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Fan, Tai-Fang; Sun, Wenbo] SSAI, Hampton, VA 23666 USA. RP Lin, B (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM bing.lin@nasa.gov RI Hu, Yongxiang/K-4426-2012; Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA's CERES mission; NASA FX We thank B. Wielicki, G. Gibson, K.-M. Xu, D. Young and D. Garber for their invaluable comments and suggestions. This research was supported by NASA's CERES mission and the NASA Energy and Water cycle Studies (NEWS) program. The CERES products were obtained NR 45 TC 6 Z9 7 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2010 VL 31 IS 24 BP 6473 EP 6492 AR PII 931179231 DI 10.1080/01431160903548005 PG 20 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 695CA UT WOS:000285347000009 ER PT J AU Simon, D Simon, DL AF Simon, Dan Simon, Donald L. TI Constrained Kalman filtering via density function truncation for turbofan engine health estimation SO INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE LA English DT Article DE Kalman filter; state constraints; estimation; probability density function; gas turbine engines; health monitoring; optimal filtering; constrained filtering ID INEQUALITY CONSTRAINTS; STATE ESTIMATION; JET ENGINES; SYSTEMS; DIAGNOSTICS AB Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This article develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the probability density function (PDF) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but also improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. It is also shown that the truncated Kalman filter may provide a more accurate way of incorporating inequality constraints than other constrained filters (e.g. the projection approach to constrained filtering). C1 [Simon, Dan] Cleveland State Univ, Dept Elect Engn, Cleveland, OH 44115 USA. [Simon, Donald L.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Simon, D (reprint author), Cleveland State Univ, Dept Elect Engn, 2121 Euclid Ave, Cleveland, OH 44115 USA. EM d.j.simon@csuohio.edu FU NASA FX This work was supported by the NASA Aviation Safety and Security Program at NASA Glenn Research Center. NR 31 TC 35 Z9 39 U1 0 U2 11 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0020-7721 J9 INT J SYST SCI JI Int. J. Syst. Sci. PY 2010 VL 41 IS 2 BP 159 EP 171 DI 10.1080/00207720903042970 PG 13 WC Automation & Control Systems; Computer Science, Theory & Methods; Operations Research & Management Science SC Automation & Control Systems; Computer Science; Operations Research & Management Science GA 546RS UT WOS:000273829100003 ER PT J AU James, JT AF James, John T. TI History of Spaceflight Toxicology SO INTERNATIONAL JOURNAL OF TOXICOLOGY LA English DT Meeting Abstract CT 30th Annual Meeting of the American-College-of-Toxicology CY NOV 01-04, 2009 CL Palm Springs, CA SP Amer Coll Toxicol DE Human Health; Space Operations; Pulmonary Toxicity; Exposure Limits C1 [James, John T.] NASA, Space Tox Office Space Life Sci, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1091-5818 J9 INT J TOXICOL JI Int. J. Toxicol. PD JAN PY 2010 VL 29 IS 1 BP 132 EP 132 PG 1 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 552AF UT WOS:000274255600139 ER PT J AU Khan-Mayberry, NN AF Khan-Mayberry, Noreen Nicole TI Risk-Based Monitoring of Spacecraft Pollutant SO INTERNATIONAL JOURNAL OF TOXICOLOGY LA English DT Meeting Abstract CT 30th Annual Meeting of the American-College-of-Toxicology CY NOV 01-04, 2009 CL Palm Springs, CA SP Amer Coll Toxicol DE Human Health; Space Operations; Pulmonary Toxicity Exposure Limits C1 [Khan-Mayberry, Noreen Nicole] NASA, Houston, TX USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1091-5818 J9 INT J TOXICOL JI Int. J. Toxicol. PD JAN PY 2010 VL 29 IS 1 BP 132 EP 132 PG 1 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 552AF UT WOS:000274255600142 ER PT J AU Henderson, SB Ichoku, C Burkholder, BJ Brauer, M Jackson, PL AF Henderson, Sarah B. Ichoku, Charles Burkholder, Benjamin J. Brauer, Michael Jackson, Peter L. TI The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events SO INTERNATIONAL JOURNAL OF WILDLAND FIRE LA English DT Article ID FIRE RADIATIVE ENERGY; CLIMATE-CHANGE; FOREST-FIRES; AIR-QUALITY; EXPOSURE ASSESSMENT; PARTICLE EMISSIONS; SMOKE; MORTALITY; POLLUTION; PRODUCTS AB Wildfire emissions are challenging to measure and model, but simple and realistic estimates can benefit multiple disciplines. We evaluate the potential of MODIS (Moderate Resolution Imaging Spectroradiometer) data to address this objective. A total of 11 004 fire pixels detected over 92 days were clustered into 242 discrete fire events in a mountainous region of North America. Burned areas were estimated with spatial buffers around the MODIS detections, and all events were matched and compared with administrative fire records based on their location and duration. Linear regression between recorded and estimated burned areas showed excellent agreement (slope = 0.93 and R-2 = 0.96). Aerosol emission rates were estimated for each MODIS detection using its fire radiative power measurement. Results were compared with estimates from the Canadian Fire Behaviour (CANFB) prediction system in Canada and the US Emissions Production Model (USEPM) for detections in the US. Median emission rates were similar for the MODIS and CANFB methods (600 and 579 g s(-1) respectively) but not for the MODIS and USEPM methods (575 and 382 g s(-1) respectively). The MODIS rates were much more variable in both comparisons. Linear regression on emission rates summed daily across the study area shows that the MODIS method is more consistent with CANFB (slope = 0.71, R-2 = 0.71) than with USEPM (slope = 0.24, R-2 = 0.68). We conclude that simple calculations based on remote sensing data can yield results that are comparable with those obtained with more complex methods. C1 [Henderson, Sarah B.; Burkholder, Benjamin J.; Brauer, Michael] Univ British Columbia, Sch Environm Hlth, Vancouver, BC V6T 1Z3, Canada. [Ichoku, Charles] NASA, Climate & Radiat Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jackson, Peter L.] Univ No British Columbia, Prince George, BC V2N 4Z9, Canada. RP Henderson, SB (reprint author), Univ British Columbia, Sch Environm Hlth, 3rd Floor,2206 E Mall, Vancouver, BC V6T 1Z3, Canada. EM sarah.henderson@ubc.ca RI Ichoku, Charles/E-1857-2012; OI Ichoku, Charles/0000-0003-3244-4549; Brauer, Michael/0000-0002-9103-9343 FU BC Lung Association; Canadian Institutes of Health Research; Michael Smith Foundation for Health Research FX We acknowledge the moral and technical support provided by our colleagues at the BC Ministry of Forests, BC Ministry of Environment and the US Forest Service. Many thanks also to our reviewers for helping to focus, clarify and strengthen this work. Funding for this project is provided by the BC Lung Association, the Canadian Institutes of Health Research, and the Michael Smith Foundation for Health Research. NR 46 TC 8 Z9 8 U1 0 U2 8 PU CSIRO PUBLISHING PI COLLINGWOOD PA 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA SN 1049-8001 J9 INT J WILDLAND FIRE JI Int. J. Wildland Fire PY 2010 VL 19 IS 7 BP 844 EP 852 DI 10.1071/WF09027 PG 9 WC Forestry SC Forestry GA 706AJ UT WOS:000286183100004 ER PT S AU Howard, JM Stone, BD AF Howard, Joseph M. Stone, Bryan D. BE Bentley, J Gupta, A Youngworth, RN TI Anamorphic imaging with three mirrors: a survey SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on International Optical Design CY JUN 13-17, 2010 CL Jackson Hole, WY SP Opt Soc Amer (OSA), SPIE, CDGM Glass Co, Univ Arizona, Coll Opt Sci, CREOLE, Coll Opt & Photon, Univ Cent Florida, Inst Opt, Univ Rochester, Opt Res Assoc, Schott N Amer Inc, OSA Fdn ID SPHERICAL MIRRORS; ASYMMETRIC SYSTEMS; 1ST-ORDER LAYOUT; FOUNDATIONS AB Design methods are described for unobstructed, plane-symmetric, anamorphic systems composed of three mirrors. Low order imaging constraints are used to reduce the dimensionality of the configuration space. Examples are presented from a specific class of systems with fixed packaging constraints. C1 [Howard, Joseph M.] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. RP Howard, JM (reprint author), NASA, Goddard Space Flight Ctr, Opt Branch, Code 551, Greenbelt, MD 20771 USA. EM Joseph.M.Howard@nasa.gov; bryans@opticalres.com NR 13 TC 1 Z9 1 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-082-8 J9 PROC SPIE PY 2010 VL 7652 AR 76520K DI 10.1117/12.878972 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSU93 UT WOS:000285843900020 ER PT S AU Manhart, PK Ellis, KS AF Manhart, Paul K. Ellis, K. Scott BE Bentley, J Gupta, A Youngworth, RN TI SWEPT CONICS: Single Mirror Transformers SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on International Optical Design CY JUN 13-17, 2010 CL Jackson Hole, WY SP Opt Soc Amer (OSA), SPIE, CDGM Glass Co, Univ Arizona, Coll Opt Sci, CREOLE, Coll Opt & Photon, Univ Cent Florida, Inst Opt, Univ Rochester, Opt Res Assoc, Schott N Amer Inc, OSA Fdn DE Optical design; swept conics; rotational symmetry; conical spheroids; single mirror transformers; conics of rotation AB A class of optical surfaces called 'Swept Conics' or 'Conical Spheroids' can be used to transform wavefronts from point sources to diffraction limited line or arc images, and vice versa. C1 [Manhart, Paul K.] NASA, Langley Res Ctr, Remote Sensing Flight Syst Branch D204, Hampton, VA 23681 USA. RP Manhart, PK (reprint author), NASA, Langley Res Ctr, Remote Sensing Flight Syst Branch D204, Mail Stop 468,Bldg 1202A,Room 241A,5 N Dryden St, Hampton, VA 23681 USA. EM paul.k.manhart@nasa.gov; scotte@photonengr.com NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-082-8 J9 PROC SPIE PY 2010 VL 7652 AR 76521Y DI 10.1117/12.870957 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSU93 UT WOS:000285843900070 ER PT S AU Pasquale, BA Stahl, P Feinberg, L Howard, J Gong, QA Aronstein, D AF Pasquale, Bert A. Stahl, Philip Feinberg, Lee Howard, Joseph Gong, Qian Aronstein, David BE Bentley, J Gupta, A Youngworth, RN TI Optical Design Process and Comparison for ATLAST Concepts SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on International Optical Design CY JUN 13-17, 2010 CL Jackson Hole, WY SP Opt Soc Amer (OSA), SPIE, CDGM Glass Co, Univ Arizona, Coll Opt Sci, CREOLE, Coll Opt & Photon, Univ Cent Florida, Inst Opt, Univ Rochester, Opt Res Assoc, Schott N Amer Inc, OSA Fdn DE Optical Design; Space Telescope; Large Aperture; Segmented Mirror; Monolithic; Off-Axis Design; Three Mirror Anastigmat; TMA AB The ATALST (Advanced Technology for Large Aperture Space Telescopes) effort has presented several design incarnations. Here we will discus the design process in detail and compare the design and performance of the 9.2m segmented, the 8m monolithic on-axis and 8m x 6m off-axis concepts. C1 [Pasquale, Bert A.; Feinberg, Lee; Howard, Joseph; Gong, Qian; Aronstein, David] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pasquale, BA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 1 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-082-8 J9 PROC SPIE PY 2010 VL 7652 AR 76520H DI 10.1117/12.879040 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSU93 UT WOS:000285843900017 ER PT S AU Pasquale, BA Moseley, SH Benford, D Voellmer, G Steigner, P AF Pasquale, Bert A. Moseley, S. Harvey Benford, Dominic Voellmer, George Steigner, Peter BE Bentley, J Gupta, A Youngworth, RN TI Optical Design for the Submillimeter and Far InfraRed Experiment (SAFIRE) SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on International Optical Design CY JUN 13-17, 2010 CL Jackson Hole, WY SP Opt Soc Amer (OSA), SPIE, CDGM Glass Co, Univ Arizona, Coll Opt Sci, CREOLE, Coll Opt & Photon, Univ Cent Florida, Inst Opt, Univ Rochester, Opt Res Assoc, Schott N Amer Inc, OSA Fdn DE Optical Design; Instrumentation; Spectroscopy; High-resolution; SOFIA; Far-Infrared AB The SAFIRE, the Submillimeter and Far InfraRed Experiment, was designed for interstellar physics in the airborne Observatory SOFIA. SAFIRE is a cryogenic Echelle Grating spectrograph for covering 27 to 470 microns, with R ranging from 2-6,000. Here we will discuss the details of the optical design, the design process, and the performance of the instrument. C1 [Pasquale, Bert A.; Moseley, S. Harvey; Benford, Dominic; Voellmer, George] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pasquale, BA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 2 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-082-8 J9 PROC SPIE PY 2010 VL 7652 AR 76520P DI 10.1117/12.879046 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSU93 UT WOS:000285843900025 ER PT S AU Pasquale, BA Brasunas, J Hagopian, J Gong, QA Mamakos, W Edgerton, M Bly, V AF Pasquale, Bert A. Brasunas, John Hagopian, John Gong, Qian Mamakos, William Edgerton, Melissa Bly, Vincent BE Bentley, J Gupta, A Youngworth, RN TI Optical Design for the Composite InfraRed Spectrometer Lite (CIRS-Lite) SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2010 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on International Optical Design CY JUN 13-17, 2010 CL Jackson Hole, WY SP Opt Soc Amer (OSA), SPIE, CDGM Glass Co, Univ Arizona, Coll Opt Sci, CREOLE, Coll Opt & Photon, Univ Cent Florida, Inst Opt, Univ Rochester, Opt Res Assoc, Schott N Amer Inc, OSA Fdn DE Optical Design; Optical Fabrication; Instruments; Spectroscopy; Fourier Transform; Silicon Optics; Planetary Science; Infrared AB Following up on Cassini/CIRS, we are building the next-generation Composite InfraRed Spectrometer for deep-space planetary exploration. CIRS-Lite combines Mid & Far-IR channels into a single instrument with 4x the spectral sensitivity of CIRS. Here we discuss the instrument optical design, the design process, and the system performance. C1 [Pasquale, Bert A.; Brasunas, John; Hagopian, John; Gong, Qian; Edgerton, Melissa; Bly, Vincent] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pasquale, BA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI brasunas, john/I-2798-2013 NR 3 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-082-8 J9 PROC SPIE PY 2010 VL 7652 AR 76520Q DI 10.1117/12.879044 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BSU93 UT WOS:000285843900026 ER PT J AU Banks, HT Boudreaux, B Criner, AK Foster, K Uttal, C Vogel, T Winfree, WP AF Banks, H. T. Boudreaux, Brittany Criner, Amanda Keck Foster, Krista Uttal, Cerena Vogel, Thomas Winfree, William P. TI Thermal-based damage detection in porous materials SO INVERSE PROBLEMS IN SCIENCE AND ENGINEERING LA English DT Article DE thermal interrogation; material with porosity; random porosity; damage detection; computational methods ID PERIODIC UNFOLDING METHOD; HOMOGENIZATION; DOMAINS; IDENTIFICATION AB We report here on the use of the heat equation to simulate a thermal interrogation method for detecting damage in a heterogeneous porous material. We first use probability schemes to randomly generate pores in a sample material; then we simulate flash heating of the compartment along one of its boundaries. Temperature data along the source and back boundaries are recorded and then analysed to distinguish differences between the undamaged and damaged materials. These results suggest that it is possible to detect damage of a certain size within a porous medium using thermal interrogation. C1 [Banks, H. T.; Boudreaux, Brittany; Criner, Amanda Keck] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA. [Foster, Krista] Youngstown State Univ, Dept Math, Youngstown, OH 44555 USA. [Uttal, Cerena] Mt Holyoke Coll, Dept Math, S Hadley, MA 01075 USA. [Vogel, Thomas] Univ St Andrews, Dept Math, St Andrews, Fife, Scotland. [Winfree, William P.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA. RP Banks, HT (reprint author), N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Box 8205, Raleigh, NC 27695 USA. EM htbanks@ncsu.edu FU National Science Foundation (NSF) [DMS-0552571, DMS-0636590]; National Security Agency [H98230-08-1-0094]; NASA [NIA/NCSU-03-01-2536-NC] FX This research, which was begun as part of an REU project at North Carolina State University for co-authors BB, KF, CU and TV, was supported in part by the National Science Foundation (NSF) under grant DMS-0552571, and in part by the National Security Agency under grant H98230-08-1-0094. It was also supported in part (AKC) by the National Science Foundation (NSF) under grant DMS-0636590, and in part (HTB and AKC) by NASA under grant NIA/NCSU-03-01-2536-NC. The authors are grateful to Prof. George Dulikravich for several helpful suggestions after reading an earlier version of this manuscript. They are also grateful to referees for a number of comments and questions which resulted in an improved manuscript. NR 24 TC 1 Z9 1 U1 0 U2 1 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1741-5977 J9 INVERSE PROBL SCI EN JI Inverse Probl. Sci. Eng. PY 2010 VL 18 IS 6 BP 835 EP 851 AR PII 925482267 DI 10.1080/17415977.2010.498912 PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 636WO UT WOS:000280774700005 ER PT J AU Parsons-Wingerter, P Radhakrishnan, K Vickerman, MB Kaiser, PK AF Parsons-Wingerter, Patricia Radhakrishnan, Krishnan Vickerman, Mary B. Kaiser, Peter K. TI Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN) SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Article ID MORPHOMETRY; TREE; VEGF; INHIBITION; TGF-BETA-1; SURVIVAL; DIAMETER; DECREASE; GROWTH; SYSTEM AB PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(v)), number density (N(v)), and diameter (D(v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(1) ... G(8) or G(9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(v) and L(v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(v) and L(v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(v) and L(v) of smaller vessels (G(>= 6)) increased from VRS1 to VRS2 by 2.4x and 1.6x, decreased from VRS2 to VRS3 by 0.4x and 0.6x, and increased from VRS3 to VRS4 by 1.7x and 1.5x (P < 0.01). Throughout DR progression, the density of larger vessels (G(1-5)) remained essentially unchanged, and D(v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins. (Invest Ophthalmol Vis Sci. 2010;51:498-507) DOI:10.1167/iovs.09-3968 C1 [Parsons-Wingerter, Patricia; Vickerman, Mary B.] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. [Radhakrishnan, Krishnan] Univ New Mexico, Sch Med, Dept Pathol, Albuquerque, NM 87131 USA. [Radhakrishnan, Krishnan] Univ New Mexico, Sch Med, Ctr Canc, Albuquerque, NM 87131 USA. [Kaiser, Peter K.] Cleveland Clin Fdn, Cole Eye Inst, Cleveland, OH 44195 USA. RP Parsons-Wingerter, P (reprint author), NASA, John H Glenn Res Ctr, MS 110-3, Cleveland, OH 44135 USA. EM patricia.a.parsons-wingerter@nasa.gov; pkkaiser@aol.com FU National Eye Institute [R01EY17529, R01EY17528]; NASA [IRD04-54] FX Supported by National Eye Institute Grants R01EY17529 (PP-W) and R01EY17528 (PKK) and NASA Glenn Internal Research and Development Award IRD04-54 (PP-W). NR 23 TC 9 Z9 9 U1 0 U2 1 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD JAN PY 2010 VL 51 IS 1 BP 498 EP 507 DI 10.1167/iovs.09-3968 PG 10 WC Ophthalmology SC Ophthalmology GA 539OI UT WOS:000273264200067 PM 19797226 ER PT B AU Whittington, KV AF Whittington, Katherine V. GP ASM Int TI Counterfeit Parts Recognition and Detection for Failure Analysts SO ISTFA 2010: CONFERENCE PROCEEDINGS FROM THE 36TH INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS LA English DT Proceedings Paper CT 36th International Symposium for Testing and Failure Analysis (ISTFA 2010) CY NOV 14-18, 2010 CL Dallas, TX SP Elect Device Failure Anal Soc, ASM Int C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Whittington, KV (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM kvwhittington@jpl.nasa.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-041-5 PY 2010 BP 364 EP 368 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Materials Science GA BGD90 UT WOS:000322498700067 ER PT B AU Hartgerink, DP AF Hartgerink, Daniel P. GP ASM Int TI Case Studies of Counterfeit Part Detection in Assembled Products SO ISTFA 2010: CONFERENCE PROCEEDINGS FROM THE 36TH INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS LA English DT Proceedings Paper CT 36th International Symposium for Testing and Failure Analysis (ISTFA 2010) CY NOV 14-18, 2010 CL Dallas, TX SP Elect Device Failure Anal Soc, ASM Int C1 NASA, Houston, TX USA. RP Hartgerink, DP (reprint author), NASA, Houston, TX USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU ASM INTERNATIONAL PI MATERIALS PARK PA 9503 KINSMAN RD, MATERIALS PARK, OH 44073 USA BN 978-1-61503-041-5 PY 2010 BP 369 EP 372 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Materials Science GA BGD90 UT WOS:000322498700068 ER PT S AU Lockard, DP AF Lockard, David P. BE Astley, RJ Gabard, G TI In search of grid converged solutions SO IUTAM SYMPOSIUM ON COMPUTATIONAL AERO-ACOUSTICS FOR AIRCRAFT NOISE PREDICTION SE Procedia Engineering LA English DT Proceedings Paper CT IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction CY MAR 29-31, 2010 CL Southampton, ENGLAND DE Aero-Acoustics; Convergence ID VERIFICATION; ACCURACY; FLOWS AB Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy. (C) 2010 Published by Elsevier Ltd. C1 NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Lockard, DP (reprint author), NASA Langley Res Ctr, Mail Stop 128, Hampton, VA 23681 USA. EM d.p.lockard@nasa.gov NR 22 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7058 J9 PROCEDIA ENGINEER PY 2010 VL 6 BP 224 EP 233 DI 10.1016/j.proeng.2010.09.024 PG 10 WC Acoustics; Engineering, Aerospace; Mathematics, Applied; Mechanics SC Acoustics; Engineering; Mathematics; Mechanics GA BTK25 UT WOS:000287141600024 ER PT S AU Khorrami, MR AF Khorrami, Mehdi R. BE Astley, RJ Gabard, G TI Toward Establishing a Realistic Benchmark for Airframe Noise Research: Issues and Challenges SO IUTAM SYMPOSIUM ON COMPUTATIONAL AERO-ACOUSTICS FOR AIRCRAFT NOISE PREDICTION SE Procedia Engineering LA English DT Proceedings Paper CT IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction CY MAR 29-31, 2010 CL Southampton, ENGLAND DE Airframe noise; Benchmark configuration; Nose landing gear; CAA validation ID LANDING GEAR AB The availability of realistic benchmark configurations is essential to enable the validation of current Computational Aeroacoustic (CAA) methodologies and to further the development of new ideas and concepts that will foster the technologies of the next generation of CAA tools. The selection of a real-world configuration, the subsequent design and fabrication of an appropriate model for testing, and the acquisition of the necessarily comprehensive aeroacoustic data base are critical steps that demand great care and attention. In this paper, a brief account of the nose landing-gear configuration, being proposed jointly by NASA and the Gulfstream Aerospace Company as an airframe noise benchmark, is provided. The underlying thought processes and the resulting building block steps that were taken during the development of this benchmark case are given. Resolution of critical, yet conflicting issues is discussed the desire to maintain geometric fidelity versus model modifications required to accommodate instrumentation; balancing model scale size versus Reynolds number effects; and time, cost, and facility availability versus important parameters like surface finish and installation effects. The decisions taken during the experimental phase of a study can significantly affect the ability of a CAA calculation to reproduce the prevalent flow conditions and associated measurements. For the nose landing gear, the most critical of such issues are highlighted and the compromises made to resolve them are discussed. The results of these compromises will be summarized by examining the positive attributes and shortcomings of this particular benchmark case. C1 NASA Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. RP Khorrami, MR (reprint author), NASA Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. EM mehdi.r.khorrami@nasa.gov NR 13 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7058 J9 PROCEDIA ENGINEER PY 2010 VL 6 BP 264 EP 273 DI 10.1016/j.proeng.2010.09.028 PG 10 WC Acoustics; Engineering, Aerospace; Mathematics, Applied; Mechanics SC Acoustics; Engineering; Mathematics; Mechanics GA BTK25 UT WOS:000287141600028 ER PT J AU Cancro, GJ AF Cancro, George J. TI APL Spacecraft Autonomy: Then, Now, and Tomorrow SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article ID SYSTEM AB Spacecraft autonomy has a long and interesting history at APL. From humble beginnings, APL has developed and gradually increased the capability of a flexible and expressive autonomy system over three generations covering 10 years and seven spacecraft programs. Now APL is embarking on the development of a new set of autonomy systems that will meet the critical challenges of our National Security Space customers today and in the future. Development of this new set of autonomy systems will draw on lessons learned from the past, new technologies being developed today, and a four-pronged vision of what future APL autonomy systems need to achieve for National Security Space customers. C1 [Cancro, George J.] NASA, Jet Prop Lab, Washington, DC USA. [Cancro, George J.] NASA, Langley Res Ctr, Washington, DC USA. [Cancro, George J.] NASA, SmallSat Project, Washington, DC USA. RP Cancro, GJ (reprint author), NASA, Constellat Program, Washington, DC 20546 USA. EM george.cancro@jhuapl.edu NR 10 TC 0 Z9 1 U1 0 U2 0 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 29 IS 3 BP 226 EP 233 PG 8 WC Engineering, Multidisciplinary SC Engineering GA 699WI UT WOS:000285693200004 ER PT J AU Stadter, PA Reed, CLB Finnegan, EJ AF Stadter, Patrick A. Reed, Cheryl L. B. Finnegan, Eric J. TI Effectively Integrating Laboratory, Government, and Industry to Develop and Acquire National Security Space Systems SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article AB The Integrated Systems Engineering Team (ISET) is a pragmatic means to integrate government, industry, and laboratory/academic organizations to develop national security space (NSS) systems. To ensure that the government can be an intelligent buyer and industry can be an informed provider of future operational production, including an ISET as part of the technical approach is highly effective for acquisition programs that require concept definition and operational prototyping. A core challenge within the NSS community is developing complex operational systems with utility across various organizational entities; the ISET provides the ability to allocate organizational capability to manage risk during program development and acquisition. The ISET approach also allows technical interactions among participants, without conflict of interest, ensuring the efficacy of future competition for operational space, weapon, or intelligence system development. It is necessary to incorporate various institutional entities because typical operational systems require extensive risk reduction during development; typical systems also require infusing technology, demonstrating prototype capability, following acquisition processes, and evolving initial operating capability to a fully sustained operational system integrated with other supporting systems. The ISET is a means to leverage the strengths of the various entities during all phases of system development and acquisition by providing an open, technical forum for the exchange of knowledge, linking prior and current development efforts to reduce risks in future phases of system acquisition. The particular instantiation of the ISET described in this article was applied to a responsive, prototype operational system with tactical functionality. C1 [Reed, Cheryl L. B.] NASA, GRAIL Mission, Washington, DC USA. EM patrick.stadter@jhuapl.edu NR 7 TC 0 Z9 0 U1 0 U2 0 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 29 IS 3 BP 234 EP 246 PG 13 WC Engineering, Multidisciplinary SC Engineering GA 699WI UT WOS:000285693200005 ER PT J AU Cancro, GJ Birrane, EJ Reid, MW Reid, JD Balon, KG Bauer, BA AF Cancro, George J. Birrane, Edward J., III Reid, Mark W. Reid, J. Douglas Balon, Kevin G. Bauer, Brian A. TI Flight Software for the Entire Operationally Responsive Space Vision SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article AB Development of flight software for Operationally Responsive Space (ORS) is not simply the rapid development and testing of software in time schedules as short as 1 week. By examining the requirements from the original vision for tactical satellites and the plan for ORS, one can glean a set of software requirements that describes the needs of ORS in a more expansive manner. The ORS software solution needs to encompass capabilities that enable modification to meet future needs, to support rapid assembly of a system from existing component parts, and to provide the flexibility to add new capabilities to a system without compromising the existing development and testing. This software solution must also cover the entire life cycle from requirements development, to the time the spacecraft goes operational, and finally to the maintenance phase in the event that an on-orbit asset must be modified to meet a new need. A better understanding of the requirements for ORS software has led APL to define a new concept architecture made up of five key properties, which are described in this article. APL is pursuing the development of this architecture across multiple programs. This pursuit is a practical attempt to achieve our new architecture by coordinating multiple achievable steps en route to the ultimate goal of software enabling the entire ORS vision. C1 [Cancro, George J.] NASA, Jet Prop Lab, Washington, DC USA. [Cancro, George J.] NASA, Langley Res Ctr, Washington, DC USA. [Reid, Mark W.] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Cancro, GJ (reprint author), NASA, Constellat Program, Washington, DC 20546 USA. EM george.cancro@jhuapl.edu NR 8 TC 0 Z9 0 U1 0 U2 2 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 29 IS 3 BP 263 EP 272 PG 10 WC Engineering, Multidisciplinary SC Engineering GA 699WI UT WOS:000285693200008 ER PT J AU Bernasconi, PN Neufeld, D Walker, C Hollenbach, D Kawamura, J Stuzki, J AF Bernasconi, P. N. Neufeld, D. Walker, C. Hollenbach, D. Kawamura, J. Stuzki, J. TI The Stratospheric Terahertz Observatory SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article C1 [Bernasconi, P. N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Walker, C.] Univ Arizona, Tucson, AZ USA. [Hollenbach, D.] SETI Inst, Mountain View, CA USA. [Kawamura, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Stuzki, J.] Univ Cologne, Cologne, Germany. RP Bernasconi, PN (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. EM pietro.bernasconi@jhuapl.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 28 IS 3 BP 238 EP 239 PG 2 WC Engineering, Multidisciplinary SC Engineering GA 589OG UT WOS:000277159400016 ER PT J AU Zhu, X Oman, LD Waugh, DW Lloyd, SA AF Zhu, X. Oman, L. D. Waugh, D. W. Lloyd, S. A. TI Equatorial Superrotation on Earth Induced by Optically Thick Dust Clouds SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article ID IN-SITU; TITAN; VENUS C1 [Zhu, X.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. [Oman, L. D.; Waugh, D. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Lloyd, S. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhu, X (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. EM xun.zhu@jhuapl.edu RI Oman, Luke/C-2778-2009; Zhu, Xun/C-2097-2016; Waugh, Darryn/K-3688-2016 OI Oman, Luke/0000-0002-5487-2598; Zhu, Xun/0000-0001-7860-6430; Waugh, Darryn/0000-0001-7692-2798 FU National Science Foundation [ATM-0730158] FX This research was supported by National Science Foundation Grant ATM-0730158. NR 6 TC 0 Z9 0 U1 0 U2 1 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 28 IS 3 BP 240 EP 241 PG 2 WC Engineering, Multidisciplinary SC Engineering GA 589OG UT WOS:000277159400017 ER PT J AU Cornish, T Demirev, P Antoine, M Ecelberger, S Brinckerhoff, W Becker, L DiRuggiero, J Sowers, K AF Cornish, T. Demirev, P. Antoine, M. Ecelberger, S. Brinckerhoff, W. Becker, L. DiRuggiero, J. Sowers, K. TI Mass Spectral Signatures of Intact Microorganisms in the Search for Life on Mars Using Mass Spectrometry SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article C1 [Demirev, P.; Antoine, M.; Ecelberger, S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. [Cornish, T.] C&E Res Inc, Columbia, MD USA. [Brinckerhoff, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Becker, L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [DiRuggiero, J.] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. [Sowers, K.] Univ Maryland, Ctr Marine Biotechnol, Inst Biotechnol, Baltimore, MD 21202 USA. RP Demirev, P (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. EM plamen.demirev@jhuapl.edu RI Brinckerhoff, William/F-3453-2012 OI Brinckerhoff, William/0000-0001-5121-2634 NR 3 TC 1 Z9 1 U1 0 U2 3 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 28 IS 3 BP 244 EP 245 PG 2 WC Engineering, Multidisciplinary SC Engineering GA 589OG UT WOS:000277159400019 ER PT J AU McNutt, RL Horsewood, J Fiehler, DI AF McNutt, Ralph L., Jr. Horsewood, Jerry Fiehler, Douglas I. TI Human Missions Throughout the Outer Solar System: Requirements and Implementations SO JOHNS HOPKINS APL TECHNICAL DIGEST LA English DT Article ID RADIATION; PROPULSION AB Distance scales and mission times set the top-level engineering requirements for in situ space exploration. To date, the implementation of various planetary gravity assists and long-term mission operations has made for a better cost-trade than technology development to decrease flight times. Similarly, crewed missions to date have not had mission time limits per se as drivers to implementation. However, unconstrained cruise times to the outer solar system are not acceptable for either robotic sample returns or human crews. Galactic cosmic ray fluxes likely provide a human limit for total mission times of similar to 5 years, and more restrictive limits may be driven by lack of gravity. We consider the implications for taking humans to the Neptune system and back, and, using this example, we deduce the minimum-cost path to realizing human exploration of the entire solar system by 2100. C1 [McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. [McNutt, Ralph L., Jr.] MIT, Visidyne Inc, Cambridge, MA 02139 USA. [McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Sandia Natl Labs, Laurel, MD 20703 USA. [Horsewood, Jerry] Boeing Co, Chicago, IL USA. [Fiehler, Douglas I.] NASA, Glenn Res Ctr, Washington, DC USA. RP McNutt, RL (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20703 USA. EM ralph.mcnutt@jhuapl.edu RI McNutt, Ralph/E-8006-2010 OI McNutt, Ralph/0000-0002-4722-9166 NR 70 TC 2 Z9 2 U1 0 U2 3 PU JOHNS HOPKINS UNIV PI LAUREL PA APPLIED PHYSICS LABORATORY ATTN: TECHNICAL DIGEST JOHN HOPKINS RD, BLDG 1W-131, LAUREL, MD 20723-6099 USA SN 0270-5214 J9 J HOPKINS APL TECH D JI Johns Hopkins APL Tech. Dig. PY 2010 VL 28 IS 4 BP 373 EP 388 PG 16 WC Engineering, Multidisciplinary SC Engineering GA 589OH UT WOS:000277159500007 ER PT J AU Gabb, T AF Gabb, Tim TI The Next Generation of High Temperature Alloys SO JOM LA English DT Editorial Material C1 NASA, Glenn Res Ctr, Cleveland, OH USA. RP Gabb, T (reprint author), NASA, Glenn Res Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2010 VL 62 IS 1 BP 47 EP 47 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 542ZJ UT WOS:000273538000009 ER PT J AU MacKay, RA Gabb, TP Smialek, JL Nathal, MV AF MacKay, R. A. Gabb, T. P. Smialek, J. L. Nathal, M. V. TI A New Approach of Designing Superalloys for Low Density SO JOM LA English DT Article AB New low-density single-crystal (LDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust-to-weight ratio over current production superalloys. An innovative alloying strategy was used to achieve alloy density reductions, high-temperature creep resistance, microstructural stability, and cyclic oxidation resistance. The alloy design relies on molybdenum as a potent, lower-density solid-solution strengthener in the nickel-based superalloy. Low alloy density was also achieved with modest rhenium levels and the absence of tungsten. Microstructural, physical, mechanical, and environmental testing demonstrated the feasibility of this new LDS superalloy design. C1 [MacKay, R. A.; Gabb, T. P.; Smialek, J. L.; Nathal, M. V.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP MacKay, RA (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM rebecca.a.mackay@nasa.gov NR 25 TC 13 Z9 13 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JAN PY 2010 VL 62 IS 1 BP 48 EP 54 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 542ZJ UT WOS:000273538000010 ER PT J AU Batki, SL Canfield, KM Smyth, E Ploutz-Snyder, R Levine, RA AF Batki, Steven L. Canfield, Kelly M. Smyth, Emily Ploutz-Snyder, Robert Levine, Robert A. TI Hepatitis C Treatment Eligibility and Comorbid Medical Illness in Methadone Maintenance (MMT) and Non-MMT Patients: A Case-Control Study SO JOURNAL OF ADDICTIVE DISEASES LA English DT Article DE Hepatitis C; treatment; methadone; opioid; substance abuse; comorbidity; psychiatry ID INJECTION-DRUG USERS; QUALITY-OF-LIFE; VIRUS-INFECTION; RATING-SCALE; HUMAN-IMMUNODEFICIENCY; ANTIVIRAL TREATMENT; UNITED-STATES; RISK-FACTORS; RIBAVIRIN; HIV AB Comorbid medical illness is common in patients with chronic hepatitis C (HCV) infection and in methadone treatment (MMT) patients, yet little is known about the impact of medical illness on HCV treatment eligibility. Medical illness and HCV treatment eligibility were compared in a case-control study of 80 MMT patients entering an HCV treatment trial and 80 matched non-MMT patients entering HCV treatment in a gastroenterology clinic. 91% of MMT and 85% of non-MMT patients had chronic medical conditions. Despite similar medical severity ratings, a significantly higher proportion (77%) of non-MMT patients were eligible for HCV treatment than were MMT patients (56%) (p .01). Specific comorbid medical and psychiatric illness led to ineligibility in only 18% of MMT and 16% of non-MMT patients. However, failure to complete the medical evaluation process was significantly (p .001) more likely to cause ineligibility among MMT patients (19%) than non-MMT patients (0%). C1 [Batki, Steven L.] San Francisco VA Med Ctr, San Francisco, CA USA. [Canfield, Kelly M.; Smyth, Emily; Levine, Robert A.] SUNY Upstate Med Univ, Syracuse, NY USA. [Ploutz-Snyder, Robert] Univ Space Res Assoc, NASA JSC, Houston, TX USA. [Batki, Steven L.] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94121 USA. [Batki, Steven L.] San Francisco VA Med Ctr, San Francisco, CA USA. [Canfield, Kelly M.; Smyth, Emily; Levine, Robert A.] SUNY Upstate Med Univ, Syracuse, NY USA. [Ploutz-Snyder, Robert] NASA JSC, Univ Space Res Assoc, Houston, TX USA. RP Batki, SL (reprint author), Univ Calif San Francisco, Dept Psychiat, 4150 Clement St, San Francisco, CA 94121 USA. EM steven.batki@ucsf.edu FU NIDA NIH HHS [R01 DA016764-06, R01 DA 016764, R01 DA016764] NR 52 TC 2 Z9 2 U1 0 U2 3 PU HAWORTH PRESS INC PI BINGHAMTON PA 10 ALICE ST, BINGHAMTON, NY 13904-1580 USA SN 1055-0887 J9 J ADDICT DIS JI J. Addict. Dis. PY 2010 VL 29 IS 3 BP 359 EP 369 AR PII 924377213 DI 10.1080/10550887.2010.489449 PG 11 WC Substance Abuse SC Substance Abuse GA 626JY UT WOS:000279963500011 PM 20635285 ER PT J AU Cheng, AN Xu, KM Stevens, B AF Cheng, Anning Xu, Kuan-Man Stevens, Bjorn TI Effects of Resolution on the Simulation of Boundary-layer Clouds and the Partition of Kinetic Energy to Subgrid Scales SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article AB Seven boundary-layer cloud cases are simulated with UCLA-LES (The University of California, Los Angeles - large eddy simulation) model with different horizontal and vertical gridspacing to investigate how the results depend on gridspacing. Some variables are more sensitive to horizontal gridspacing, while others are more sensitive to vertical gridspacing, and still others are sensitive to both horizontal and vertical gridspacings with similar or opposite trends. For cloud-related variables having the opposite dependence on horizontal and vertical gridspacings, changing the gridspacing proportionally in both directions gives the appearance of convergence. In this study, we mainly discuss the impact of subgrid-scale (SGS) kinetic energy (KE) on the simulations with coarsening of horizontal and vertical gridspacings. A running-mean operator is used to separate the KE of the high-resolution benchmark simulations into that of resolved scales of coarse-resolution simulations and that of SGSs. The diagnosed SGS KE is compared with that parameterized by the Smagorinsky-Lilly SGS scheme at various gridspacings. It is found that the parameterized SGS KE for the coarse-resolution simulations is usually underestimated but the resolved KE is unrealistically large, compared to benchmark simulations. However, the sum of resolved and SGS KEs is about the same for simulations with various gridspacings. The partitioning of SGS and resolved heat and moisture transports is consistent with that of SGS and resolved KE, which means that the parameterized transports are underestimated but resolved-scale transports are overestimated. On the whole, energy shifts to large-scales as the horizontal gridspacing becomes coarse, hence the size of clouds and the resolved circulation increase, the clouds become more stratiform-like with an increase in cloud fraction, cloud liquid-water path and surface precipitation; when coarse vertical gridspacing is used, cloud sizes do not change, but clouds are produced less frequently. Cloud fraction and liquid water path C1 [Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA. [Xu, Kuan-Man] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA USA. [Stevens, Bjorn] Max Planck Inst Meteorol, Hamburg, Germany. [Stevens, Bjorn] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. RP Cheng, AN (reprint author), 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM anning_cheng@ssaihq.com RI Stevens, Bjorn/A-1757-2013; Xu, Kuan-Man/B-7557-2013 OI Stevens, Bjorn/0000-0003-3795-0475; Xu, Kuan-Man/0000-0001-7851-2629 FU National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes FX This work has been supported by the National Science Foundation Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement No. ATM-0425247. Dr. Zachary Eitzen is thanked for reading drafts of this paper. Two NR 20 TC 18 Z9 18 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PY 2010 VL 2 AR 3 DI 10.3894/JAMES.2010.2.3 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V22UG UT WOS:000208299500003 ER PT J AU Strawa, AW Kirchstetter, TW Puxbaum, H AF Strawa, A. W. Kirchstetter, T. W. Puxbaum, H. TI Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere SO JOURNAL OF AEROSOL SCIENCE LA English DT Editorial Material ID ORGANIC AEROSOLS; CLIMATE; QUANTIFICATION; HEALTH C1 [Strawa, A. W.] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Kirchstetter, T. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Puxbaum, H.] Vienna Univ Technol, A-1040 Vienna, Austria. RP Strawa, AW (reprint author), NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. EM Anthony.W.Strawa@nasa.gov NR 41 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD JAN PY 2010 VL 41 IS 1 SI SI BP 1 EP 4 DI 10.1016/j.jaerosci.2009.09.006 PG 4 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 559XZ UT WOS:000274866800001 ER PT J AU Strawa, AW Kirchstetter, TW Hallar, AG Ban-Weiss, GA McLaughlin, JP Harley, RA Lunden, MM AF Strawa, A. W. Kirchstetter, T. W. Hallar, A. G. Ban-Weiss, G. A. McLaughlin, J. P. Harley, R. A. Lunden, M. M. TI Optical and physical properties of primary on-road vehicle particle emissions and their implications for climate change SO JOURNAL OF AEROSOL SCIENCE LA English DT Article; Proceedings Paper CT 9th International Conference on Carbonaceous Particles in the Atmosphere CY 2009 CL Berkeley, CA DE Aerosol optical properties; Vehicle; Tunnel; Size distribution ID NUMBER SIZE DISTRIBUTIONS; BLACK CARBON PARTICLES; LABORATORY EVALUATION; COMBUSTION AEROSOLS; LIGHT-ABSORPTION; SOOT PARTICLES; MOTOR-VEHICLES; DIESEL; GASOLINE; EXHAUST AB During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h(-1). The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 +/- 0.79 m(2) kg(-1)) was 22 times larger than for light-duty gasoline vehicles (0.20 +/- 0.05 m(2) kg(-1)). The single scattering albedo of particles-which represents the fraction of incident light that is scattered as opposed to absorbed-was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 +/- 0.88 m(2) g(PM)(-1) and 2.9 +/- 1.07 m(2) g(PM)(-1), respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic. Published by Elsevier Ltd. C1 [Strawa, A. W.; Hallar, A. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kirchstetter, T. W.; Lunden, M. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. [Ban-Weiss, G. A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [McLaughlin, J. P.; Harley, R. A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Strawa, AW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Anthony.W.Strawa@nasa.gov RI Hallar, Anna Gannet/I-9104-2012; Harley, Robert/C-9177-2016; OI Hallar, Anna Gannet/0000-0001-9972-0056; Harley, Robert/0000-0002-0559-1917; Ban-Weiss, George/0000-0001-8211-2628 NR 63 TC 18 Z9 19 U1 2 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD JAN PY 2010 VL 41 IS 1 SI SI BP 36 EP 50 DI 10.1016/j.jaerosci.2009.08.010 PG 15 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 559XZ UT WOS:000274866800005 ER PT J AU Rios, J Ross, K AF Rios, Joseph Ross, Kevin TI Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling SO JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION LA English DT Article ID MANAGEMENT PROBLEM; ALGORITHM; OPTIMIZATION; PROGRAMS; MODEL AB Optimal scheduling of traffic over the National Airspace System is computationally difficult. To speed computation, Dantzig-Wolfe decomposition is applied to a linear integer programming approach for assigning delays to flights. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their sizes decrease) for a given problem, the solution quality, convergence, and runtime improve. A demonstration of this is provided by using the finest possible decomposition: one flight per subproblem. This massively parallel approach is compared with one with few threads and with non-decomposed approaches in terms of solution quality and runtime. Since this method generally provides a relaxed solution to the original integer optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than the standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high-fidelity, optimal traffic flow scheduling is achievable for (at least) 3-h planning horizons. C1 [Rios, Joseph] NASA, Ames Res Ctr, Automat Concepts Res Branch, Moffett Field, CA 94035 USA. [Ross, Kevin] Univ Calif Santa Cruz, Sch Engn, Santa Cruz, CA 95064 USA. RP Rios, J (reprint author), NASA, Ames Res Ctr, Automat Concepts Res Branch, Mail Stop 210-10, Moffett Field, CA 94035 USA. EM joseph.1.rios@nasa.gov; kross@soe.ucsc.edu NR 32 TC 14 Z9 14 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 J9 J AEROSP COMPUT IN C JI J. Aerosp. Comput. Inf. Commun. PY 2010 VL 7 IS 1 BP 32 EP 45 DI 10.2514/1.45606 PG 14 WC Engineering, Aerospace SC Engineering GA 550EV UT WOS:000274112000002 ER PT J AU Sindiy, OV Ezra, KL DeLaurentis, DA Caldwell, BS McVittie, TI Simpson, KA AF Sindiy, Oleg V. Ezra, Kristopher L. DeLaurentis, Daniel A. Caldwell, Barrett S. McVittie, Thomas I. Simpson, Kimberly A. TI Analogs Supporting Design of Lunar Command, Control, Communication, and Information Architectures SO JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION LA English DT Article AB This paper demonstrates how a survey of carefully selected analogs can be employed to map the multi-dimensional trade space for the design of information exchange oriented services in a system-of-systems context. Pursuant to this idea, a survey was conducted across historical and contemporary analogs for crewed and robotic lunar surface operation missions. Survey results were used to generate a list of key design variables and options available for the design of Lunar Command, Control, Communication, and Information architectures for such missions. Organization of these variables and options yielded a broad design trade space. However, some portion of the trade space covered design considerations not presented in the analogs; these unique considerations were characterized and added to the trade space by subject matter experts in the relevant application domains. The survey also provided insights into useful combinations of design options within the trade space as determined by successes across several analogs (even though the operational conditions were varied). As an overarching result, combining the system-of-systems trade space and insights extracted from the analog survey with those of application problem specific design experts is shown to be most effective method for formulating prospective architectural design solutions for further investigation via model-based engineering or in-field testing. C1 [Sindiy, Oleg V.; Ezra, Kristopher L.; DeLaurentis, Daniel A.; Caldwell, Barrett S.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Caldwell, Barrett S.] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA. [McVittie, Thomas I.; Simpson, Kimberly A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sindiy, OV (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47907 USA. EM osindiy@purdue.edu; kezra@purdue.edu FU NASA's CxP Software and Avionics Integration Office [1326038] FX The authors are grateful for the sponsorship of this work by NASA's CxP Software and Avionics Integration Office (JPL FY' 08 Contract # 1326038), under the direction of Montgomery Goforth, Donald Monell, and Steven Rader. The authors also wish to acknowledge the data collection efforts of Purdue graduate students: Jeffrey Onken, Hadi Ali, and Aaron Sengstaken. Our gratitude extends to Stephen Strinka and Zohar Aliya, undergraduate students at Purdue University, for their editing of the manuscript. NR 45 TC 0 Z9 0 U1 0 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 J9 J AEROS COMP INF COM JI J. Aerosp. Comput. Inf. Commun. PY 2010 VL 7 IS 5 BP 151 EP 176 DI 10.2514/1.47542 PG 26 WC Engineering, Aerospace SC Engineering GA 614NG UT WOS:000279065600001 ER PT J AU Bennett, M Borgen, R Havelund, K Ingham, M Wagner, D AF Bennett, Matthew Borgen, Richard Havelund, Klaus Ingham, Michel Wagner, David TI Prototyping a Domain-Specific Language for Monitor and Control Systems SO JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION LA English DT Article AB This paper describes a domain-specific language prototype developed for the NASA Constellation launch control system project. A key element of the launch control system architecture, the domain-specific language prototype is a specialized monitor and control language composed of constructs for specifying and programming test, checkout, and launch processing applications for flight and ground systems. The principal objectives of the prototyping activity were to perform a proof-of-concept of an approach to ultimately lower the lifecycle costs of application software for the launch control system, and to explore mitigations for a number of development risks perceived by the project. The language has been implemented as a library that extends the dynamically-typed Python scripting language, and validated in a demonstration of capability required for Constellation. A study of the statically typed Scala programming language as an alternative domain-specific language implementation language is also presented. C1 [Bennett, Matthew; Borgen, Richard; Havelund, Klaus; Ingham, Michel; Wagner, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bennett, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM matthew.b.bennett@jpl.nasa.gov; richard.l.borgen@jpl.nasa.gov; klaus.havelund@jpl.nasa.gov; michel.d.ingham@jpl.nasa.gov; david.a.wagner@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors would like to acknowledge the contributions of the rest of the LCS Proof-of-Concept team at NASA Kennedy Space Center. NR 6 TC 1 Z9 1 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 J9 J AEROS COMP INF COM JI J. Aerosp. Comput. Inf. Commun. PY 2010 VL 7 IS 11 BP 338 EP 364 DI 10.2514/1.40331 PG 27 WC Engineering, Aerospace SC Engineering GA 687DD UT WOS:000284753900001 ER PT J AU Barringer, H Groce, A Havelund, K Smith, M AF Barringer, Howard Groce, Alex Havelund, Klaus Smith, Margaret TI Formal Analysis of Log Files SO JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION LA English DT Article ID RUNTIME VERIFICATION; RULE SYSTEMS; CHECKING; LANGUAGE; EAGLE AB Runtime verification as a field faces several challenges. One key challenge is howto keep the overheads associated with its application low. This is especially important in real-time critical embedded applications, where memory and CPU resources are limited. Another challenge is that of devising expressive and yet user-friendly specification languages that can attract software engineers. In this paper, it is shown that for many systems, in-place logging provides a satisfactory basis for postmortem "runtime" verification of logs, where the overhead is already included in system design. Although this approach prevents an online reaction to detected errors, possible with traditional runtime verification, it provides a powerful tool for test automation and debugging-in this case, analysis of spacecraft telemetry by ground operations teams at NASA's Jet Propulsion Laboratory. The second challenge is addressed in the presented work through a temporal specification language, designed in collaboration with Jet Propulsion Laboratory test engineers. The specification language allows for descriptions of relationships between data-rich events (records) common in logs, and is translated into a form of automata supporting data-parameterized states. The automaton language is inspired by the rule-based language of the RULER runtime verification system. A case study is presented illustrating the use of our LOGSCOPE tool by software test engineers for the 2011 Mars Science Laboratory mission. C1 [Barringer, Howard] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England. [Groce, Alex] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [Havelund, Klaus] CALTECH, Jet Prop Lab, Lab Reliable Software, Pasadena, CA USA. RP Barringer, H (reprint author), Univ Manchester, Sch Comp Sci, Manchester, Lancs, England. EM howard.barringer@manchester.ac.uk; alex@eecs.oregonstate.edu; klaus.havelund@jpl.nasa.gov; margaret.h.smith@jpl.nasa.gov FU National Aeronautics and Space Administration; Britain's Royal Academy of Engineering FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Britain's Royal Academy of Engineering, furthermore, provided an award to support this work. We would finally like to thank members of the MSL team: Chris Delp, Dave Hecox, Gerard Holzmann, Rajeev Joshi, Cin-Young Lee, Alex Moncada, Cindy Oda, Glenn Reeves, Lisa Tatge, Hui Ying Wen, Jesse Wright, and Hyejung Yun. NR 38 TC 16 Z9 16 U1 0 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 J9 J AEROS COMP INF COM JI J. Aerosp. Comput. Inf. Commun. PY 2010 VL 7 IS 11 BP 365 EP 390 DI 10.2514/1.49356 PG 26 WC Engineering, Aerospace SC Engineering GA 687DD UT WOS:000284753900002 ER PT J AU Ratvasky, TP Barnhart, BP Lee, S AF Ratvasky, Thomas P. Barnhart, Billy P. Lee, Sam TI Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT AIAA Atmospheric Flight Mechanics Conference CY AUG 18-21, 2008 CL Honolulu, HI SP AIAA AB Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, binge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design. C1 [Ratvasky, Thomas P.] NASA, John H Glenn Res Ctr Lewis Field, Icing Branch, Cleveland, OH 44135 USA. [Barnhart, Billy P.] Bihrle Appl Res Inc, Hampton, VA 23666 USA. [Lee, Sam] ASRC Aerosp Corp, Icing Branch, Cleveland, OH 44135 USA. RP Ratvasky, TP (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Icing Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. NR 28 TC 5 Z9 6 U1 1 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD JAN-FEB PY 2010 VL 47 IS 1 BP 201 EP 211 DI 10.2514/1.44650 PG 11 WC Engineering, Aerospace SC Engineering GA 555AP UT WOS:000274479500020 ER EF