FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Nikola, T Herter, TL Vacca, WD Adams, JD De Buizer, JM Gull, GE Henderson, CP Keller, LD Morris, MR Schoenwald, J Stacey, G Tielens, A AF Nikola, T. Herter, T. L. Vacca, W. D. Adams, J. D. De Buizer, J. M. Gull, G. E. Henderson, C. P. Keller, L. D. Morris, M. R. Schoenwald, J. Stacey, G. Tielens, A. TI MID-IR FORCAST/SOFIA OBSERVATIONS OF M82 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (M82); galaxies: ISM; galaxies: starburst; infrared: ISM ID STARBURST GALAXY M82; STAR-FORMATION; INTERSTELLAR-MEDIUM; MOLECULAR GAS; DUST; SPECTROSCOPY; BAR; DISTRIBUTIONS; SUPERBUBBLE; CLUSTERS AB We present 75 '' x 75 '' size maps of M82 at 6.4 mu m, 6.6 mu m, 7.7 mu m, 31.5 mu m, and 37.1 mu m with a resolution of similar to 4 '' that we have obtained with the mid-IR camera FORCAST on SOFIA. We find strong emission from the inner 60 '' (similar to 1 kpc) along the major axis, with the main peak 5 '' west-southwest of the nucleus and a secondary peak 4 '' east-northeast of the nucleus. The detailed morphology of the emission differs among the bands, which is likely due to different dust components dominating the continuum emission at short mid-IR wavelengths and long mid-IR wavelengths. We include Spitzer-IRS and Herschel/PACS 70 mu m data to fit spectral energy distribution templates at both emission peaks. The best-fitting templates have extinctions of A(V) = 18 and A(V) = 9 toward the main and secondary emission peak and we estimated a color temperature of 68 K at both peaks from the 31 mu m and 37 mu m measurement. At the emission peaks the estimated dust masses are on the order of 10(4) M-circle dot. C1 [Nikola, T.; Herter, T. L.; Adams, J. D.; Gull, G. E.; Henderson, C. P.; Schoenwald, J.; Stacey, G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Vacca, W. D.; De Buizer, J. M.] NASA, Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Keller, L. D.] Ithaca Coll, Dept Phys, Ithaca, NY 14850 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Tielens, A.] Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Nikola, T (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. FU NASA [8500-98-014] FX We thank the SOFIA telescope engineering and operations team, as well as the SOFIA flight crews and mission operations team for their support. This work is based on observations made with FORCAST on the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided to Cornell by NASA through award 8500-98-014 issued by USRA. This work is based in part on observations made with the Spitzer Space Telescope, obtained from the NASA/IPAC Infrared Science Archive, both of which are operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System Abstract Service. NR 31 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L19 DI 10.1088/2041-8205/749/2/L19 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300003 ER PT J AU Salgado, F Berne, O Adams, JD Herter, TL Gull, G Schoenwald, J Keller, LD De Buizer, JM Vacca, WD Becklin, EE Shuping, RY Tielens, AGGM Zinnecker, H AF Salgado, F. Berne, O. Adams, J. D. Herter, T. L. Gull, G. Schoenwald, J. Keller, L. D. De Buizer, J. M. Vacca, W. D. Becklin, E. E. Shuping, R. Y. Tielens, A. G. G. M. Zinnecker, H. TI FIRST SCIENCE RESULTS FROM SOFIA/FORCAST: THE MID-INFRARED VIEW OF THE COMPACT H II REGION W3A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; H II regions; ISM: individual objects (W3A); photon-dominated region (PDR) ID POLYCYCLIC AROMATIC-HYDROCARBON; ULTRACOMPACT HII-REGIONS; MOLECULAR CLOUDS; DUST GRAINS; EMISSION; SPECTROSCOPY; CALIBRATION; EVOLUTION; CATALOG; MODELS AB The massive star-forming region W3 was observed with the faint object infrared camera for the SOFIA telescope as part of the Short Science program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5, and 37.1 mu m bandpasses were used to observe the emission of polycyclic aromatic hydrocarbon (PAH) molecules, very small grains, and big grains. Optical depth and color temperature maps of W3A show that IRS2 has blown a bubble devoid of gas and dust of similar to 0.05 pc radius. It is embedded in a dusty shell of ionized gas that contributes 40% of the total 24 mu m emission of W3A. This dust component is mostly heated by far-ultraviolet, rather than trapped Ly alpha photons. This shell is itself surrounded by a thin (similar to 0.01 pc) photodissociation region where PAHs show intense emission. The infrared spectral energy distribution (SED) of three different zones located at 8 '', 20 '', and 25 '' from IRS2 shows that the peak of the SED shifts toward longer wavelengths, when moving away from the star. Adopting the stellar radiation field for these three positions, DUSTEM model fits to these SEDs yield a dust-to-gas mass ratio in the ionized gas similar to that in the diffuse interstellar medium (ISM). However, the ratio of the IR-to-UV opacity of the dust in the ionized shell is increased by a factor of similar or equal to 3 compared to the diffuse ISM. C1 [Salgado, F.; Berne, O.; Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Adams, J. D.; Herter, T. L.; Gull, G.; Schoenwald, J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Keller, L. D.] Ithaca Coll, Dept Phys, Ithaca, NY 14850 USA. [De Buizer, J. M.; Vacca, W. D.; Becklin, E. E.; Shuping, R. Y.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zinnecker, H.] NASA, SOFIA Sci Ctr, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-7000 Stuttgart, Germany. RP Salgado, F (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. FU NASA [8500-98-014]; advanced-ERC from the European Research Council [246976]; Dutch Astrochemistry Network; Dutch Science Organization, NWO FX This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association (USRA), Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided to Cornell University by NASA through award 8500-98-014 issued by USRA. Studies of interstellar PAHs at Leiden Observatory are supported through advanced-ERC grant 246976 from the European Research Council and through the Dutch Astrochemistry Network funded by the Dutch Science Organization, NWO. NR 37 TC 12 Z9 12 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L21 DI 10.1088/2041-8205/749/2/L21 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300005 ER PT J AU Shuping, RY Morris, MR Herter, TL Adams, JD Gull, GE Schoenwald, J Henderson, CP Becklin, EE De Buizer, JM Vacca, WD Zinnecker, H Megeath, ST AF Shuping, R. Y. Morris, Mark R. Herter, Terry L. Adams, Joseph D. Gull, G. E. Schoenwald, J. Henderson, C. P. Becklin, E. E. De Buizer, James M. Vacca, William D. Zinnecker, Hans Megeath, S. Thomas TI FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: 6-37 mu m IMAGING OF THE CENTRAL ORION NEBULA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE infrared: ISM; infrared: stars; ISM: individual objects (Orion Nebula [M42, NGC 1976]) ID KLEINMANN-LOW NEBULA; INFRARED-EMISSION; TRAPEZIUM REGION; DISKS; OBJECTS; DISCOVERY; OUTFLOW; SHOCKS; STARS; M42 AB We present new mid-infrared images of the central region of the Orion Nebula using the newly commissioned Stratospheric Observatory For Infrared Astronomy airborne telescope and its 5-40 mu m camera FORCAST. The 37.1 mu m images represent the highest resolution observations (less than or similar to 4 '') ever obtained of this region at these wavelengths. After BN/KL (which is described in a separate paper in this issue), the dominant source at all wavelengths except 37.1 mu m is the Ney-Allen Nebula, a crescent-shaped extended source associated with theta(1) D Ori. The morphology of the Ney-Allen nebula in our images is consistent with the interpretation that it is ambient dust swept up by the stellar wind from theta(1) D Ori, as suggested by Smith et al. in 2005. Our observations also reveal emission from two "proplyds" (proto-planetary disks), and a few embedded young stellar objects (YSOs; IRc 9, and OMC1-S IRS1, 2, and 10). The spectral energy distribution for IRc 9 is presented and fitted with standard YSO models from Robitaille et al. in 2007 to constrain the total luminosity, disk size, and envelope size. The diffuse, nebular emission we observe at all FORCAST wavelengths is most likely from the background photodissociation region (PDR) and shows structure that coincides roughly with H alpha and [N II] emission. We conclude that the spatial variations in the diffuse emission are likely due to undulations in the surface of the background PDR. C1 [Shuping, R. Y.] Space Sci Inst, Boulder, CO 80301 USA. [Shuping, R. Y.; Becklin, E. E.; De Buizer, James M.; Vacca, William D.; Zinnecker, Hans] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Morris, Mark R.; Becklin, E. E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Herter, Terry L.; Adams, Joseph D.; Gull, G. E.; Schoenwald, J.; Henderson, C. P.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Megeath, S. Thomas] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. RP Shuping, RY (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. EM rshuping@spacescience.org FU NASA through SSI [01-830.0]; NASA [8500-98-014] FX We thank R. Grashius, S. Adams, H. Jakob, A. Reinacher, and U. Lampater for their SOFIA telescope engineering and operations support. We also thank the SOFIA flight crews and mission operations team (A. Meyer, N. McKown, C. Kaminski) for their SOFIA flight planning and flight support. Based on observations made with the FORCAST instrument on the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for R.Y.S. was provided by NASA through SSI award 01-830.0 issued by USRA. Financial support for T. H. and J.A. was provided by NASA through award 8500-98-014 issued by USRA for the development of the FORCAST instrument. NR 32 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L22 DI 10.1088/2041-8205/749/2/L22 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300006 ER PT J AU Young, ET Becklin, EE Marcum, PM Roellig, TL De Buizer, JM Herter, TL Gusten, R Dunham, EW Temi, P Andersson, BG Backman, D Burgdorf, M Caroff, LJ Casey, SC Davidson, JA Erickson, EF Gehrz, RD Harper, DA Harvey, PM Helton, LA Horner, SD Howard, CD Klein, R Krabbe, A McLean, IS Meyer, AW Miles, JW Morris, MR Reach, WT Rho, J Richter, MJ Roeser, HP Sandell, G Sankrit, R Savage, ML Smith, EC Shuping, RY Vacca, WD Vaillancourt, JE Wolf, J Zinnecker, H AF Young, E. T. Becklin, E. E. Marcum, P. M. Roellig, T. L. De Buizer, J. M. Herter, T. L. Guesten, R. Dunham, E. W. Temi, P. Andersson, B. -G. Backman, D. Burgdorf, M. Caroff, L. J. Casey, S. C. Davidson, J. A. Erickson, E. F. Gehrz, R. D. Harper, D. A. Harvey, P. M. Helton, L. A. Horner, S. D. Howard, C. D. Klein, R. Krabbe, A. McLean, I. S. Meyer, A. W. Miles, J. W. Morris, M. R. Reach, W. T. Rho, J. Richter, M. J. Roeser, H. -P. Sandell, G. Sankrit, R. Savage, M. L. Smith, E. C. Shuping, R. Y. Vacca, W. D. Vaillancourt, J. E. Wolf, J. Zinnecker, H. TI EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE infrared: general; instrumentation: miscellaneous; telescopes AB The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 mu m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid- infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance. C1 [Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B. -G.; Casey, S. C.; Helton, L. A.; Howard, C. D.; Klein, R.; Meyer, A. W.; Miles, J. W.; Reach, W. T.; Sandell, G.; Sankrit, R.; Savage, M. L.; Shuping, R. Y.; Vacca, W. D.; Vaillancourt, J. E.] NASA, SOFIA Sci Ctr, Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Becklin, E. E.; McLean, I. S.; Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Herter, T. L.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Guesten, R.] Max Planck Inst Radioastron, Bonn, Germany. [Dunham, E. W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Backman, D.; Rho, J.] SETI Inst, Mountain View, CA 94043 USA. [Burgdorf, M.; Krabbe, A.; Wolf, J.; Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Davidson, J. A.] Univ Western Australia M013, Sch Phys, Crawley, WA 6009, Australia. [Gehrz, R. D.] Univ Minnesota, Minnesota Inst Astrophys, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Harper, D. A.] Univ Chicago, Yerkes Observ, Williams Bay, WI 53191 USA. [Harvey, P. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Richter, M. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Roeser, H. -P.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. [Shuping, R. Y.] Space Sci Inst, Boulder, CO 80301 USA. RP Young, ET (reprint author), NASA, SOFIA Sci Ctr, Univ Space Res Assoc, Ames Res Ctr, MS 232, Moffett Field, CA 94035 USA. OI Klein, Randolf/0000-0002-7187-9126; Andersson, B-G/0000-0001-6717-0686; Reach, William/0000-0001-8362-4094 FU NASA; United States Air Force FX SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. R.D.G. was supported by NASA and the United States Air Force. NR 15 TC 72 Z9 72 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L17 DI 10.1088/2041-8205/749/2/L17 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300001 ER PT J AU Lipatov, AS AF Lipatov, Alexander S. TI Merging for Particle-Mesh Complex Particle Kinetic modeling of the multiple plasma beams SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Finite-size particles; Particle-in-cell method; Complex Particle Kinetic method; Aggressive fragmentation and merging of the particles; Collisionless shocks; Particle acceleration; Beams ID QUASI-PERPENDICULAR SHOCKS; INTERSTELLAR PICKUP IONS; TERMINATION SHOCK; SIZE PARTICLES; ACCELERATION; SIMULATION; INJECTION; ALGORITHM; DYNAMICS AB We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc. (C) 2011 Elsevier Inc. All rights reserved. C1 [Lipatov, Alexander S.] Univ Maryland Baltimore Cty, Goddard Planetary & Heliophys Inst, NASA GSFC, Greenbelt, MD 20771 USA. [Lipatov, Alexander S.] Russian Acad Sci, AA Dorodnitsyn Comp Ctr, Moscow 119991, Russia. [Lipatov, Alexander S.] Moscow Inst Phys & Technol, Fac Problems Phys & Power Engn, Moscow, Russia. RP Lipatov, AS (reprint author), Univ Maryland Baltimore Cty, Goddard Planetary & Heliophys Inst, NASA GSFC, Code 673, Greenbelt, MD 20771 USA. EM alexander.lipatov-1@nasa.gov NR 41 TC 5 Z9 5 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD APR 20 PY 2012 VL 231 IS 8 BP 3101 EP 3118 DI 10.1016/j.jcp.2011.12.020 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 913TZ UT WOS:000301901600006 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Buitink, S Caballero-Mora, KS Carson, M Casier, M Chirkin, D Christy, B Clevermann, F Cohen, S Colnard, C Cowen, DF Silva, AHC D'Agostino, MV Danninger, M Daughhetee, J Davis, JC DeClercq, C Degner, T Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Dunkman, M Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Han, K Hanson, K Heereman, D Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, B Homeier, A Hoshina, K Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, S Johansson, H Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lunemann, J Madsen, J Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Nowicki, SC Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L de los Heros, CP Piegsa, A Pieloth, D Posselt, J Price, PB Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rizzo, A Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Smith, MWE Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Stuer, M Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Buitink, S. Caballero-Mora, K. S. Carson, M. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. Silva, A. H. Cruz D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. DeClercq, C. Degner, T. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Dunkman, M. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Han, K. Hanson, K. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, B. Homeier, A. Hoshina, K. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, S. Johansson, H. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Luenemann, J. Madsen, J. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Nowicki, S. C. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Perez de los Heros, C. Piegsa, A. Pieloth, D. Posselt, J. Price, P. B. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rizzo, A. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Smith, M. W. E. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Stroem, R. Stueer, M. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. CA IceCube Collaboration TI An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts SO NATURE LA English DT Article ID HIGH-ENERGY NEUTRINOS; ICECUBE; FLUX; TELESCOPE; SEARCH AB Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted. C1 [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Brown, A. M.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; Merck, M.; Morse, R.; O'Murchadha, A.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Han, K.; Jacobi, E.; Kislat, F.; Lauer, R.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Tosi, D.; Walter, M.; Wischnewski, R.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Altmann, D.; Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heinen, D.; Hoffmann, B.; Huelss, J. -P.; Laihem, K.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. [Bai, X.; Berghaus, P.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Berghaus, P.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Heereman, D.; Marotta, A.; Meures, T.] Univ Libre Brussels, B-1050 Brussels, Belgium. [Becker, J. K.; DeYoung, T.; Dreyer, J.; Fedynitch, A.; Olivo, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bell, M.; Caballero-Mora, K. S.; Cowen, D. F.; Dunkman, M.; Koskinen, D. J.; Larson, M. J.; Meszaros, P.; Rutledge, D.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Berley, D.; Blaufuss, E.; Buitink, S.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bose, D.; Brayeur, L.; Casier, M.; DeClercq, C.; Kunnen, J.; Labare, M.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Degner, T.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stueer, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Perez de los Heros, C.; Stroem, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] So Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.; Nowicki, S. C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Hill, G. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ishihara, A.; Kolanoski, H.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Japaridze, S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kappes, A.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Kiryluk, J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Resconi, E.; Schulz, O.] Tech Univ Munich, D-85748 Garching, Germany. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Whitehorn, N (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM nwhitehorn@icecube.wisc.edu RI Taavola, Henric/B-4497-2011; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Przybylski, Grzegorz/F-7474-2015 OI Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; FU US NSF; Office of Polar Programs; US NSF, Physics Division; University of Wisconsin Alumni Research Foundation; GLOW; OSG grids; US DOE, NERSCC; LONI grid; NSERC, Canada; Swedish Research Council; Swedish Polar Research Secretariat; SNIC; K. and A. Wallenberg Foundation, Sweden; German Ministry for Education and Research, Deutsche Forschungsgemeinschaft; Research Department of Plasmas; Complex Interactions (Bochum), Germany; FSR; FWO Odysseus; IWT; BELSPO, Belgium; University of Oxford, UK; Marsden Fund, New Zealand; Australian Research Council; JSPS, Japan; SNSF, Switzerland; Capes Foundation, Brazil; NSF GRFP FX We acknowledge support from the following agencies: US NSF, Office of Polar Programs, and US NSF, Physics Division; University of Wisconsin Alumni Research Foundation; the GLOW and OSG grids; US DOE, NERSCC; the LONI grid; NSERC, Canada; Swedish Research Council, Swedish Polar Research Secretariat, SNIC, K. and A. Wallenberg Foundation, Sweden; German Ministry for Education and Research, Deutsche Forschungsgemeinschaft; Research Department of Plasmas with Complex Interactions (Bochum), Germany; FSR, FWO Odysseus, IWT, BELSPO, Belgium; University of Oxford, UK; Marsden Fund, New Zealand; Australian Research Council; JSPS, Japan; SNSF, Switzerland. J.P.R was supported by the Capes Foundation, Brazil; N.W. by the NSF GRFP. We thank S. Hummer, E. Waxman and W. Winter for discussions. NR 20 TC 160 Z9 163 U1 6 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 19 PY 2012 VL 484 IS 7394 BP 351 EP 354 DI 10.1038/nature11068 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 927YM UT WOS:000302946500027 ER PT J AU Som, SM Catling, DC Harnmeijer, JP Polivka, PM Buick, R AF Som, Sanjoy M. Catling, David C. Harnmeijer, Jelte P. Polivka, Peter M. Buick, Roger TI Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints SO NATURE LA English DT Article ID ATMOSPHERIC OXYGEN; SOUTH-AFRICA; EARLY EARTH; GREENHOUSE; CYCLE; TEMPERATURE; SUPERGROUP; CLIMATE; DROPS; RISE AB According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate(1). Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening(1) or enhanced greenhouse gas concentrations(2). Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen(2-7). But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3 kg m(-3), compared to today's 1.2 kg m(-3), but because such drops rarely occur, air density was more probably below 1.3 kg m(-3). The upper estimate for air density renders the pressure broadening explanation(1) possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO2 levels required for hot Archaean climates(8). C1 [Som, Sanjoy M.; Catling, David C.; Harnmeijer, Jelte P.; Polivka, Peter M.; Buick, Roger] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Som, Sanjoy M.; Catling, David C.; Harnmeijer, Jelte P.; Polivka, Peter M.; Buick, Roger] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. [Som, Sanjoy M.] Blue Marble Space Inst Sci, Seattle, WA 98145 USA. [Harnmeijer, Jelte P.] Edinburgh Ctr Low Carbon Innovat, Sustainable Community Energy Network, Edinburgh EH8 9AA, Midlothian, Scotland. [Polivka, Peter M.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. RP Som, SM (reprint author), NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. EM sanjoy.m.som@nasa.gov OI Catling, David/0000-0001-5646-120X; Buick, Roger/0000-0003-0139-1659 FU NASA [NNX08AP56G, NNX10AQ90G]; Coordination Action for Research Activities on life in Extreme Environments (CAREX); European Commission; University of Washington Department of Earth and Space Sciences, and its Geoclub FX This work was supported by NASA Exobiology/Astrobiology grant NNX08AP56G. We thank W. Van der Westhuizen of the University of the Free State in South Africa, and E. and D. Jackson of Omdraaivlei for their assistance when sampling in the field. We also thank E. Stueken, A. Chen and K. Huntington at the University of Washington for laboratory assistance, and the staff at Metron Corporation for data acquisition. XRF measurements were performed by the Washington State University Geoanalytical Laboratory. Funding and field logistics for the Iceland fieldwork was supported by the Coordination Action for Research Activities on life in Extreme Environments (CAREX), a project supported by the European Commission Seventh Framework Programme. Funding and field logistics for the Hawaiian fieldwork was supported by the University of Washington Department of Earth and Space Sciences, and its Geoclub. D. C. C. was also supported by NASA Exobiology/Astrobiology grant NNX10AQ90G. NR 31 TC 56 Z9 58 U1 5 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 19 PY 2012 VL 484 IS 7394 BP 359 EP 362 DI 10.1038/nature10890 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 927YM UT WOS:000302946500029 PM 22456703 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Ajith, P Allen, B Allen, GS Ceron, EA Amariutei, D Amin, RS Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Behnke, B Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Brummit, A Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Chiummo, A Cho, H Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Degallaix, J Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A DiGuglielmo, J Donovan, F Dooley, KL Dorsher, S Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Farr, W Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, PJ Fyffe, M Galimberti, M Gammaitoni, L Ganija, MR Garcia, J Garofoli, JA Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hage, B Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Hardt, A Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M Jang, H Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kamaretsos, I Kandhasamy, S Kang, G Kanner, JB Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, B Kim, C Kim, D Kim, H Kim, K Kim, N Kim, YM King, PJ Kinsey, M Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lang, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HM Leindecker, N Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, D Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Moesta, P Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Nawrodt, R Necula, V Nelson, J Newton, G Nishizawa, A Nocera, F Nolting, D Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Phelps, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, CR Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Ryll, H Sainathan, P Sakosky, M Salemi, F Samblowski, A Sammut, L de la Jordana, LS Sandberg, V Sankar, S Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schlamminger, S Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Smith, RJE Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Tseng, K Tucker, E Ugolini, D Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Waldman, SJ Wallace, L Wan, Y Wang, X Wang, Z Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, D Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Ajith, P. Allen, B. Allen, G. S. Ceron, E. Amador Amariutei, D. Amin, R. S. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Behnke, B. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Brummit, A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Degallaix, J. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. DiGuglielmo, J. Donovan, F. Dooley, K. L. Dorsher, S. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Farr, W. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. J. Fyffe, M. Galimberti, M. Gammaitoni, L. Ganija, M. R. Garcia, J. Garofoli, J. A. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Hardt, A. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. Jang, H. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kamaretsos, I. Kandhasamy, S. Kang, G. Kanner, J. B. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. Kim, C. Kim, D. Kim, H. Kim, K. Kim, N. Kim, Y. -M. King, P. J. Kinsey, M. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. M. Leindecker, N. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Moesta, P. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Nawrodt, R. Necula, V. Nelson, J. Newton, G. Nishizawa, A. Nocera, F. Nolting, D. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Phelps, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. R. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Ryll, H. Sainathan, P. Sakosky, M. Salemi, F. Samblowski, A. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sankar, S. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schlamminger, S. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Smith, R. J. E. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Tseng, K. Tucker, E. Ugolini, D. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Waldman, S. J. Wallace, L. Wan, Y. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 SO PHYSICAL REVIEW D LA English DT Article ID RADIATION; CATALOG; SIGNALS; EVENTS AB We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M(circle dot); this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(-4), 3.1 x 10(-5), and 6.4 x 10(-6) Mpc(-3) yr(-1), respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Santamaria, L.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] USAUniv Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C. R.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wen, S.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; DiGuglielmo, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Ryll, H.; Salemi, F.; Samblowski, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; DiGuglielmo, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Ryll, H.; Salemi, F.; Samblowski, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G. S.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Leindecker, N.; Marandi, A.; Markosyan, A.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Aston, S. M.; Aylott, B. E.; Chalkley, E.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Page, A.; Smith, R. J. E.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Moesta, P.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] European Gravitat Observ, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Garofoli, J. A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barriga, P.; Blair, D.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Kim, D.; Miao, H.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Sankar, S.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Soto, J.; Stein, A. J.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, Observ Paris, APC, CNRS,IN2P3,CEA Irfu, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Redwine, K.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] ESPCI, CNRS, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Kinsey, M.; Kopparapu, R.; Lang, M.; Lundgren, A. P.; Menendez, D.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, Milan, Italy. [Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Geng, R.; Li, J.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Christensen, N.; Coughlin, M.; Edwards, M.; Hardt, A.; Isogai, T.; Tucker, E.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Dent, T.; Fairhurst, S.; Harry, I. W.; Jones, G.; Kamaretsos, I.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] INFN, Sez Roma Tor Vergata, Milan, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Daw, E. J.; White, D.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] INFN, Grp Collegato Trento, Milan, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.] Univ Trent, I-38050 Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] INFN, Sez Padova, Milan, Italy. Univ Padua, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411, Maharashtra, India. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Farr, B. F.; Farr, W.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Ganija, M. R.; Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Gretarsson, A. M.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Jang, H.; Kang, G.; Kim, B.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Schlamminger, S.] Univ Washington, Seattle, WA 98195 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Lee, Chang-Hwan/B-3096-2015; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Barker, David/A-5671-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Vocca, Helios/F-1444-2010; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Marchesoni, Fabio/A-1920-2008; Khalili, Farit/D-8113-2012; Prato, Mirko/D-8531-2012; Bell, Angus/E-7312-2011; Hild, Stefan/A-3864-2010; OI Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Rover, Christian/0000-0002-6911-698X; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Vicere, Andrea/0000-0003-0624-6231; Ciani, Giacomo/0000-0003-4258-9338; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Vocca, Helios/0000-0002-1200-3917; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Marchesoni, Fabio/0000-0001-9240-6793; Prato, Mirko/0000-0002-2188-8059; Bell, Angus/0000-0003-1523-0821; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Gray, Norman/0000-0002-1941-9202; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610 FU Australian Research Council; Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 37 TC 149 Z9 150 U1 9 U2 85 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 19 PY 2012 VL 85 IS 8 AR 082002 DI 10.1103/PhysRevD.85.082002 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 928PV UT WOS:000302996100002 ER PT J AU Anderson, JD Morris, JR AF Anderson, John D. Morris, J. R. TI Chameleon effect and the Pioneer anomaly SO PHYSICAL REVIEW D LA English DT Article AB The possibility that the apparent anomalous acceleration of the Pioneer 10 and 11 spacecrafts may be due, at least in part, to a chameleon field effect is examined. A small spacecraft, with no thin shell, can have a more pronounced anomalous acceleration than a large compact body, such as a planet, having a thin shell. The chameleon effect seems to present a natural way to explain the differences seen in deviations from pure Newtonian gravity for a spacecraft and for a planet, and it appears to be compatible with the basic features of the Pioneer anomaly, including the appearance of a jerk term. However, estimates of the size of the chameleon effect indicate that its contribution to the anomalous acceleration is negligible. We conclude that any inverse square component in the anomalous acceleration is more likely caused by an unmodeled reaction force from solar radiation pressure rather than a chameleon field effect. C1 [Anderson, John D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morris, J. R.] Indiana Univ NW, Dept Phys, Gary, IN 46408 USA. EM jdandy@earthlink.net; jmorris@iun.edu NR 13 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 19 PY 2012 VL 85 IS 8 AR 084017 DI 10.1103/PhysRevD.85.084017 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 928PV UT WOS:000302996100012 ER PT J AU Reale, O Lau, KM Susskind, J Rosenberg, R AF Reale, O. Lau, K. M. Susskind, J. Rosenberg, R. TI AIRS impact on analysis and forecast of an extreme rainfall event (Indus River Valley, Pakistan, 2010) with a global data assimilation and forecast system SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PARAMETERS; CLOUDS AB A set of data assimilation and forecast experiments is performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches toward assimilation of Atmospheric Infrared Sounder (AIRS) data. The impact is first assessed globally on a sample of more than forty forecasts per experiment, through the standard 500 hPa anomaly correlation metrics. Next, the focus is on precipitation analysis and precipitation forecast skill relative to one particular event: an extreme rainfall episode which occurred in late July 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that, in addition to improving the global forecast skill, the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 days is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak. C1 [Reale, O.; Lau, K. M.; Susskind, J.; Rosenberg, R.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Reale, O.] Univ Space Res Assoc, Columbia, MD USA. [Rosenberg, R.] Sci Applicat Int Corp, Beltsville, MD USA. RP Reale, O (reprint author), NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. EM oreste.reale-1@nasa.gov RI Lau, William /E-1510-2012 OI Lau, William /0000-0002-3587-3691 FU NASA HQ FX The authors thank Ramesh Kakar from NASA HQ for support through grant on Precipitation Measuring Mission, and Tsengdar Lee for allocations on NASA High-End Computing systems. Thanks are also due to three anonymous reviewers for their valuable suggestions. NR 35 TC 7 Z9 7 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 17 PY 2012 VL 117 AR D08103 DI 10.1029/2011JD017093 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 930FH UT WOS:000303122600002 ER PT J AU Tao, WK Chen, JP Li, ZQ Wang, C Zhang, CD AF Tao, Wei-Kuo Chen, Jen-Ping Li, Zhanqing Wang, Chien Zhang, Chidong TI IMPACT OF AEROSOLS ON CONVECTIVE CLOUDS AND PRECIPITATION SO REVIEWS OF GEOPHYSICS LA English DT Review ID BLACK CARBON AEROSOLS; MIXED-PHASE CLOUDS; GENERAL-CIRCULATION MODELS; SPECTRAL BIN MICROPHYSICS; DROPLET EFFECTIVE RADIUS; GLOBAL CLIMATE MODEL; LIQUID WATER PATH; HETEROGENEOUS FREEZING NUCLEATION; HOMOGENEOUS ICE NUCLEATION; COMMUNITY ATMOSPHERE MODEL AB Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud particles and by exerting persistent radiative forcing on the climate system that disturbs dynamics. However, the various mechanisms behind these effects, in particular, the ones connected to precipitation, are not yet well understood. The atmospheric and climate communities have long been working to gain a better grasp of these critical effects and hence to reduce the significant uncertainties in climate prediction resulting from such a lack of adequate knowledge. Here we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes from theoretical analysis of microphysics, observational evidence, and a range of numerical model simulations. In addition, the discrepancies between results simulated by models, as well as those between simulations and observations, are presented. Specifically, this paper addresses the following topics: (1) fundamental theories of aerosol effects on microphysics and precipitation processes, (2) observational evidence of the effect of aerosols on precipitation processes, (3) signatures of the aerosol impact on precipitation from large-scale analyses, (4) results from cloud-resolving model simulations, and (5) results from large-scale numerical model simulations. Finally, several future research directions for gaining a better understanding of aerosol-cloud-precipitation interactions are suggested. C1 [Tao, Wei-Kuo] NASA, Lab Mesoscale Atmospher Proc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chen, Jen-Ping] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10617, Taiwan. [Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Li, Zhanqing] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA. [Wang, Chien] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Zhang, Chidong] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Li, Zhanqing] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. RP Tao, WK (reprint author), NASA, Lab Mesoscale Atmospher Proc, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM wei-kuo.tao-1@nasa.gov RI Chen, Jen-Ping/F-2947-2010; Measurement, Global/C-4698-2015; Li, Zhanqing/F-4424-2010; OI Chen, Jen-Ping/0000-0003-4188-6189; Li, Zhanqing/0000-0001-6737-382X; , /0000-0002-3979-4747 FU NASA Headquarters; NASA Precipitation Measurement Mission (PMM); NASA Modeling Analysis Prediction (MAP); NSF [AGS-0944121, AGS-1118325]; Singapore NRF through the Singapore-MIT Alliance for Research and Technology; corporate and foundation sponsors of the MIT; NASA [NNX08AH71G]; DOE [DEFG0208ER64571]; Ministry of Science and Technology of China [2006CB403706, 2011CB403405]; NOAA Office of Global Programs [NA17RJ1226]; [NSC 98-2111-M-002-001]; [NSC 99-2111-M-002-009-MY3] FX W.-K. Tao appreciates the inspiring and enthusiastic support by his mentor, Joanne Simpson, over the past 25 years and is grateful to R. Kakar at NASA headquarters for his continuous support of Goddard Cumulus Ensemble (GCE) model development and applications. This work is mainly supported by the NASA Headquarters Physical Climate Program and the NASA Precipitation Measurement Mission (PMM). He also thanks David Considine for support under the NASA Modeling Analysis Prediction (MAP). C. Wang thanks the NSF (AGS-0944121), the Singapore NRF through the Singapore-MIT Alliance for Research and Technology, and the corporate and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change for supporting his research. Z. Li's aerosol-related studies have been supported by NASA's Radiation Science program managed by H. Maring (NNX08AH71G), and DOE's Atmospheric System Research program managed by A. Williamson (DEFG0208ER64571), National Science Foundation managed by C. Lu (AGS-1118325), and the Ministry of Science and Technology of China (2006CB403706, 2011CB403405). C. Zhang thanks the support of the NOAA Office of Global Programs through awards under Cooperative Agreement NA17RJ1226 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS). J.-P. Chen acknowledges the support from projects NSC 98-2111-M-002-001 and NSC 99-2111-M-002-009-MY3. We'd like to thank M. Cribb for reading and editing the manuscript; Xiaowen Li for improving Figures 28, 33, and 35; and Takamichi Iguhi for providing Figure 25. We also thank Joyce Penner and two anonymous reviewers for their constructive comments that improved this paper significantly. NR 395 TC 188 Z9 189 U1 12 U2 156 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD APR 17 PY 2012 VL 50 AR RG2001 DI 10.1029/2011RG000369 PG 62 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 930FW UT WOS:000303124100001 ER PT J AU Wang, DD Morton, D Masek, J Wu, AS Nagol, J Xiong, XX Levy, R Vermote, E Wolfe, R AF Wang, Dongdong Morton, Douglas Masek, Jeffrey Wu, Aisheng Nagol, Jyoteshwar Xiong, Xiaoxiong Levy, Robert Vermote, Eric Wolfe, Robert TI Impact of sensor degradation on the MODIS NDVI time series SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Sensor degradation; MODIS; NDVI; Time series ID ATMOSPHERIC CORRECTION; PHOTOSYNTHETIC TRENDS; VEGETATION INDEXES; NORTH-AMERICA; AEROSOL; LAND; TEMPERATURE; CALIBRATION; DISTURBANCE; VALIDATION AB Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3.470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr(-1) decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends. (C) 2011 Elsevier Inc. All rights reserved. C1 [Wang, Dongdong; Nagol, Jyoteshwar; Vermote, Eric] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Morton, Douglas; Masek, Jeffrey; Xiong, Xiaoxiong; Wolfe, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wu, Aisheng; Levy, Robert] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Wang, DD (reprint author), Univ Maryland, Dept Geog, 2181 LeFrak Hall, College Pk, MD 20742 USA. EM ddwang@umd.edu RI Masek, Jeffrey/D-7673-2012; Morton, Douglas/D-5044-2012; Wolfe, Robert/E-1485-2012; Vermote, Eric/K-3733-2012; Levy, Robert/M-7764-2013; Wang, Dongdong/M-1969-2014; Nagol, Jyoteshwar/P-2026-2015 OI Wolfe, Robert/0000-0002-0915-1855; Levy, Robert/0000-0002-8933-5303; Wang, Dongdong/0000-0002-2076-576X; Nagol, Jyoteshwar/0000-0003-0497-7874 NR 26 TC 64 Z9 65 U1 2 U2 45 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD APR 16 PY 2012 VL 119 BP 55 EP 61 DI 10.1016/j.rse.2011.12.001 PG 7 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 913QJ UT WOS:000301892200006 ER PT J AU Chierici, M Signorini, SR Mattsdotter-Bjork, M Fransson, A Olsen, A AF Chierici, Melissa Signorini, Sergio R. Mattsdotter-Bjork, My Fransson, Agneta Olsen, Are TI Surface water fCO(2) algorithms for the high-latitude Pacific sector of the Southern Ocean SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Seasonal ice zone; Oceanic CO2 uptake; Seasonal variability; Validation of satellite data; Biological CO2 drawdown; Western Antarctica; Polar Oceans ID ANTARCTIC CIRCUMPOLAR CURRENT; SEA-AIR FLUX; CARBON-DIOXIDE; NORTH-ATLANTIC; ERROR QUANTIFICATION; CHLOROPHYLL-A; WEDDELL GYRE; CO2 SINK; IN-SITU; SATELLITE AB The feasibility of using remotely sensed data jointly with shipboard measurements to estimate the carbon dioxide fugacity in the surface water (fCO(2)sw) of the Pacific sector of the Southern Polar Ocean (S>60 degrees S) is evaluated using a data set obtained during austral summer 2006. A comparison between remotely sensed chlorophyll a (chl a) and sea-surface temperature (SST) with in-situ measurements, reveals the largest bias in areas with rapid and large concentration changes such as at the ice edge, the polar front and in the Ross Sea Polynya. The correlation between fCO(2)sw and SST, chl a, biological productivity estimates and mixed layer depth (MLD) are evaluated, and single and multiple regression methods are used to develop fCO(2)sw algorithms. Single regressions between the study parameters and fCO(2)sw show that most of the fCO(2)sw variability is explained by chl a. The Multi-Parameter Linear regressions were used to create fCO(2)sw algorithms derived from field measurements, and using solely remote-sensing products. Based on the best fits from the two data sets fCO(2)sw estimates have a root means square deviation of +/- 14 mu atm and coefficient of determination of 0.82. The addition of satellite derived estimates of biological productivity in the algorithm does not significantly improve the fit. We use the algorithm with remotely sensed chl a and SST data to produce an fCO2sw map for the entire high-latitude Southern Ocean south of 55 degrees S. We analyze and discuss the seasonal and spatial robustness of the algorithm based on the remotely sensed data and compare with climatologic fCO(2)sw data. (C) 2012 Elsevier Inc. All rights reserved. C1 [Chierici, Melissa; Mattsdotter-Bjork, My] Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden. [Signorini, Sergio R.] Sci Applicat Int Corp, Beltsville, MD USA. [Signorini, Sergio R.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Fransson, Agneta] Univ Gothenburg, Dept Earth Sci, SE-40530 Gothenburg, Sweden. [Olsen, Are] Uni Bjerknes Ctr, N-5007 Bergen, Norway. [Olsen, Are] Bjerknes Ctr Climate Res, N-5007 Bergen, Norway. RP Chierici, M (reprint author), Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden. EM melissa@chem.gu.se RI Olsen, Are/A-1511-2011 OI Olsen, Are/0000-0003-1696-9142 FU Swedish National Space Board; CARBON-HEAT of the Norwegian Research Council [185093/S30]; Swedish Research Council [2009-2994]; Swedish Research Council Formas; EU IP CARBOOCEAN [GOCE511176-2]; NASA FX This is a contribution to the Remote Sensing Carbon UptakeE, RESCUE, (Dnrs: 96/05 and 100/09) projects funded by the Swedish National Space Board, CARBON-HEAT (185093/S30) of the Norwegian Research Council, Swedish Research Council (2009-2994), The Swedish Research Council Formas, and the EU IP CARBOOCEAN (GOCE511176-2). We are grateful to the NASA Ocean Biology and Biogeochemistry Program for the support provided to one of the collaborators in this project (Sergio Signorini). We thank the three reviewers for constructive comments and recommendations that significantly improved the manuscript. NR 54 TC 7 Z9 7 U1 0 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD APR 16 PY 2012 VL 119 BP 184 EP 196 DI 10.1016/j.rse.2011.12.020 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 913QJ UT WOS:000301892200017 ER PT J AU Sun, X Soulami, A Choi, KS Guzman, O Chen, W AF Sun, X. Soulami, A. Choi, K. S. Guzman, O. Chen, W. TI Effects of sample geometry and loading rate on tensile ductility of TRIP800 steel SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE TRIP steels; Strength; Ductility; Necking; Localization; Quasi-static tensile test; Dynamic tensile test ID STRAIN RATE SUPERPLASTICITY; METAL-MATRIX COMPOSITES; CONSTITUTIVE MODEL; RATE SENSITIVITY; PHASE; SHEET; DEFORMATION; BEHAVIOR; NECKING AB The effects of sample geometry and loading rate on the tensile ductility of a commercial grade Transformation Induced Plasticity (TRIP) steel are examined in this paper. Quasi-static tensile tests were performed for the 1.2 mm gauge TRIP800 steel sheets with two geometries: sub-sized ASTM E-8 and a custom designed miniature tensile sample. Sample geometry effects on post-uniform elongation are discussed together with other experimental data reported in the open literature. Further discussions on the effects of sample geometry are cast in the context of mesh-size dependent ductility in finite element-based engineering simulations. The quasi-static tensile curve for the miniature sample is then compared with the split Hopkinson bar results at the loading rates of 1700-s(-1) and 2650-s(-1) with the same sample design. In contrary to the typical strain rate sensitivity results for mild steel where the dynamic strength increase at high strain rate usually occurs at the price of ductility reduction, our results show that the TRIP800 under examination has positive strain rate sensitivity on both strength and ductility. Images of the deformation process captured by high speed camera together with scanning electron microscopy (SEM) near the fracture zone are also used to elucidate the different deformation modes at different loading rates. (C) 2012 Elsevier B.V. All rights reserved. C1 [Sun, X.; Soulami, A.; Choi, K. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Guzman, O.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Chen, W.] Purdue Univ, W Lafayette, IN 47907 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM xin.sun@pnnl.gov FU US Department of Energy [DE-AC05-76RL01830]; Department of Energy Office of FreedomCar and Vehicle Technologies FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract No. DE-AC05-76RL01830. This work was funded by the Department of Energy Office of FreedomCar and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. NR 30 TC 15 Z9 16 U1 1 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 15 PY 2012 VL 541 BP 1 EP 7 DI 10.1016/j.msea.2011.12.115 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 930XT UT WOS:000303178800001 ER PT J AU Peduzzi, A Wynne, RH Fox, TR Nelson, RF Thomas, VA AF Peduzzi, Alicia Wynne, Randolph H. Fox, Thomas R. Nelson, Ross F. Thomas, Valerie A. TI Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article DE Loblolly pine; Silviculture; Forest management; Remote sensing; Forest mensuration ID MEAN TREE HEIGHT; LOBLOLLY-PINE; BIOMASS ESTIMATION; UNDERSTORY VEGETATION; ABOVEGROUND BIOMASS; GROWTH-RESPONSES; TIMBER VOLUME; CANOPY-HEIGHT; FOREST VOLUME; BASAL AREA AB The objective of this study was to determine whether leaf area index (LAI) can be accurately estimated in intensively managed pine plantations using multiple-return airborne laser scanner (lidar) data. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 109 plots under a variety of stand conditions (i.e., stand age, nutritional regime, and stem density) in North Carolina and Virginia, USA in late summer, 2008. Distributional metrics were calculated for each plot using small footprint lidar data (average pulse density 5 pulses per square meter; up to four returns per pulse) acquired in the month preceding the field measurements. Distributional metrics were calculated for each plot using all vegetation returns, as well as using ten 1 m deep crown density slices (a new technique introduced in this study), five above and five below the mode of the vegetation returns for each plot. These metrics were used as independent variables in best subsets regressions with LAI (measured in situ) as the dependent variable. The best resulting models had an R-2 ranging from 0.61 (for a 2-variable model) to 0.83 (for a 6-variable model). The laser penetration index (LPI) was an important variable regardless of the number of variables used. Other important variables included the mean intensity value, the mean and 20th percentile of the vegetation returns, and various crown density slice metrics. These results indicate that LAI can be estimated accurately using lidar data in intensively managed pine plantations over a wide variety of stand conditions. Published by Elsevier B.V. C1 [Peduzzi, Alicia; Wynne, Randolph H.; Fox, Thomas R.; Thomas, Valerie A.] Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24061 USA. [Nelson, Ross F.] NASA GSFC, Greenbelt, MD 20771 USA. RP Peduzzi, A (reprint author), Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, 319 Cheatham Hall,Mail Code 0324, Blacksburg, VA 24061 USA. EM apeduzzi@vt.edu; wynne@vt.edu; trfox@vt.edu; ross.f.nelson@nasa.gov; thomasv@vt.edu RI Nelson, Ross/H-8266-2014 FU Forest Productivity Cooperative FX This research was possible thanks to the support from the Forest Productivity Cooperative, and the help in field data collection provided by Rupesh Shrestha, Jessica Walker, Jose Zerpa, Nilam Kayastha, Asim Banskota, Dan Evans, Omar Carrero, Lee Allen, and the personnel from the Virginia Department of Forestry. NR 68 TC 27 Z9 32 U1 2 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD APR 15 PY 2012 VL 270 BP 54 EP 65 DI 10.1016/j.foreco.2011.12.048 PG 12 WC Forestry SC Forestry GA 928MM UT WOS:000302986900007 ER PT J AU Toutanji, H Goff, CM Ethridge, E Stokes, E AF Toutanji, Houssam Goff, Christopher M. Ethridge, Edwin Stokes, Eric TI Gas permeability and flow characterization of simulated lunar regolith SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Gas permeability; Permeability; Lunar regolith; Simulant; JSC-1A; NU-LHT ID WATER; MOON AB Recent discoveries of water ice trapped within lunar topsoil (regolith) have placed a new emphasis on the recovery and utilization of water for future space exploration. Upon heating the lunar ice to sublimation, the resulting water vapor could theoretically transmit through the lunar regolith, to be captured on the surface. As the permeability of lunar regolith is essential to this process, this paper seeks to experimentally determine the permeability and flow characteristics of various gas species through simulated lunar regolith (SLR). Two different types of SLR were compacted and placed into the permeability setup to measure the flow-rate of transmitted gas through the sample. Darcy's permeability constant was calculated for each sample and gas combination, and flow characteristics were determined from the results. The results show that Darcy's permeability constant varies with SLR compaction density, and identified no major difference in permeable flow between the several tested gas species. Between the two tested SLR types, JSC-1A was shown to be more permeable than NU-LHT under similar conditions. In addition, a transition zone was identified in the flow when the gas pressure differential across the sample was less than similar to 40 kPa. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Toutanji, Houssam; Goff, Christopher M.] Univ Alabama, Dept Civil & Environm Engn, Huntsville, AL 35899 USA. [Ethridge, Edwin] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Stokes, Eric] So Res Inst, Birmingham, AL 35255 USA. RP Goff, CM (reprint author), Univ Alabama, Dept Civil & Environm Engn, Huntsville, AL 35899 USA. EM toutanji@cee.uah.edu; cmg0014@uah.edu NR 12 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2012 VL 49 IS 8 BP 1271 EP 1276 DI 10.1016/j.asr.2012.02.002 PG 6 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 924DF UT WOS:000302670400005 ER PT J AU Radhakrishnan, S Bellan, J AF Radhakrishnan, Senthilkumaran Bellan, Josette TI Influence of computational drop representation in LES of a mixing layer with evaporating drops SO COMPUTERS & FLUIDS LA English DT Article DE Large Eddy Simulation; Two-phase flows; Single-component liquid; Mixing layer; LES of evaporating sprays ID DIRECT NUMERICAL-SIMULATION; LARGE-EDDY SIMULATION; FLOWS; LADEN; TURBULENCE; PARTICLES; SPRAY AB The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provides minimal error in flow prediction. For this purpose, Large Eddy Simulation (LES) of a mixing layer with evaporating drops has been performed using the dynamic Smagorinslcy model and employing various numbers of computational drops. The LES were performed by reducing the number of physical drops by a factor varying from 8 to 128 to obtain the ensemble of computational drops, and by utilizing either a coarse or a fine grid. A set of first order and second order gas-phase statistics as well as drop statistics are extracted from LES predictions and are compared to results obtained by filtering a Direct Numerical Simulation (DNS) database. First order statistics such as Favre averaged streamwise velocity, Favre averaged vapor mass fraction, and the drop streamwise velocity are predicted accurately independent of the number of computational drops and grid spacing. Second order flow statistics depend both on the number of computational drops and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine mesh LES only when the computational drop field is reduced by a factor of no more than 32, and by the coarse mesh LES reasonably accurately for all computational drop field values. This is attributed to the fact that when the grid spacing is coarsened, the number of drops in a computational cell must not be significantly lower than that in the DNS. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Radhakrishnan, Senthilkumaran; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM josette.bellan@jpl.nasa.gov RI Radhakrishnan, Senthilkumaran/E-6101-2010 OI Radhakrishnan, Senthilkumaran/0000-0001-7595-4210 FU NASA under the LASER program in the ESMD/Advanced Capabilities Division; Fundamental Aeronautics Program FX This study was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) and sponsored by NASA jointly under the LASER program in the ESMD/Advanced Capabilities Division and the Fundamental Aeronautics Program with Drs. Dan Bulzan and Nan-Suey Liu serving as program monitors. NR 19 TC 1 Z9 1 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD APR 15 PY 2012 VL 58 BP 15 EP 26 DI 10.1016/j.compfluid.2011.11.018 PG 12 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 920TA UT WOS:000302429200002 ER PT J AU Holmden, C Papanastassiou, DA Blanchon, P Evans, S AF Holmden, C. Papanastassiou, D. A. Blanchon, P. Evans, S. TI delta Ca-44/40 variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CALCIUM ISOTOPE FRACTIONATION; FLORIDA-BAY; MASS EXTINCTION; SECULAR CURVES; EPEIRIC SEAS; RECORD; EVOLUTION; SEDIMENTS; SALINITY; PATTERNS AB Shallow water carbonates from Florida Bay, the Florida Reef Tract, and a Mexican Caribbean fringing reef at Punta Maroma were studied to determine the range of Ca-isotope variation among a cohort of modern carbonate producers and to look for local-scale Ca-cycling effects. The total range of Ca-isotope fractionation is 0.4 parts per thousand at Punta Maroma, yielding an allochem-weighted average delta Ca-44/40 value of -1.12 parts per thousand consistent with bulk sediment from the lagoon with a value of -1.09 parts per thousand. These values are virtually identical to bulk carbonate sediments from the Florida Reef Tract (-1.11 parts per thousand) and from one location in Florida Bay (-1.09 parts per thousand) near a tidal inlet in the Florida Keys. No evidence was found for the similar to 0.6 parts per thousand fractionation between calcite and aragonite which has been observed in laboratory precipitation experiments. Combining these results with carbonate production modes and delta Ca-44/40 values for pelagic carbonates taken from the literature, we calculate a weighted average value of -1.12 +/- 0.11 parts per thousand (2 sigma) for the global-scale Ca-output flux into carbonate sediments. The delta Ca-44/40 value of the input Ca-flux from rivers and hydrothermal fluids is -1.01 +/- 0.04 parts per thousand (2 sigma(mean)), calculated from literature data that have been corrected for inter-laboratory bias. Assuming that the ocean Ca cycle is in steady state, we calculate a delta Ca-44/40 value of -1.23 +/- 0.23 parts per thousand (2 sigma) for submarine groundwater discharge (SGD) on a global scale. The SGD Ca-flux rivals river flows and mid-ocean ridge hydrothermal vent inputs as a source of Ca to the oceans. It has the potential to differ significantly in its isotopic value from these traditional Ca-inputs in the geological past, and to cause small changes in the delta Ca-44/40 value of oceans through time. In the innermost water circulation restricted region of northeastern Florida Bay, sediments and waters exhibit a 0.7 parts per thousand gradient in delta Ca-44/40 values decreasing towards the Florida Everglades. This lowering of delta Ca-44/40 is predominantly caused by local-scale Ca-inputs from SGD, which has a high Ca concentration (450 mg/L) and low delta Ca-44/40 value (-0.96 parts per thousand). Mixing calculations show that Ca inputs from SGD and surface water runoff from the Florida Everglades contribute between 8% and 60% of the dissolved Ca to the studied waters with salinities between 30 and 14, respectively. Similar degrees of circulation restriction between epeiric seas and oceans in the geological past may have also led to overprinting of sedimentary carbonate delta Ca-44/40 values in nearshore regions of epeiric seas due to local-scale cycling of seawater through coastal carbonate aquifers. Local Ca-cycling effects may explain some of the scatter in delta Ca-44/40 values present in the Ca-isotope evolution curve of Phanerozoic oceans. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Holmden, C.] Univ Saskatchewan, Dept Geol Sci, Saskatchewan Isotope Lab, Saskatoon, SK S7N 5E2, Canada. [Papanastassiou, D. A.] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA 91109 USA. [Papanastassiou, D. A.] CALTECH, Div Geol Planet Sci, Pasadena, CA 91125 USA. [Evans, S.] Boise State Univ, Dept Geosci, Boise, ID 83725 USA. RP Holmden, C (reprint author), Univ Saskatchewan, Dept Geol Sci, Saskatchewan Isotope Lab, Saskatoon, SK S7N 5E2, Canada. EM chris.holmden@usask.ca FU Natural Science and Engineering Research Council of Canada FX We thank Mosa Nasreen for assistance in the clean analytical laboratory, Dinka Besic for assistance in the mass spectrometry laboratory and Jim Rosen for electronics, mechanical and computer software support on the instruments used in this study. This work was made possible through financial support to C. H. from the Natural Science and Engineering Research Council of Canada (Discovery grant). Karla Panchuk and Andy Jacobson are thanked for comments and suggestions that helped to improve the presentation. Cathrin Hagey is thanked for editorial assistance, and Matt Fantle and three anonymous reviewers are thanked for reviewing the paper for the journal. NR 81 TC 29 Z9 30 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2012 VL 83 BP 179 EP 194 DI 10.1016/j.gca.2011.12.031 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 907YP UT WOS:000301456800012 ER PT J AU van Acken, D Humayun, M Brandon, AD Peslier, AH AF van Acken, D. Humayun, M. Brandon, A. D. Peslier, A. H. TI Siderophile trace elements in metals and sulfides in enstatite achondrites record planetary differentiation in an enstatite chondritic parent body SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FE-NI-S; SILICATE MELT COMPOSITION; IRON-METEORITES; CORE FORMATION; HIGH-PRESSURE; PARTITIONING BEHAVIOR; CUMBERLAND FALLS; IGNEOUS ORIGIN; EARTHS CORE; MAYO-BELWA AB Siderophile element concentrations were measured by LA-ICP-MS in metals and sulfides from five aubrite meteorites. Siderophile element patterns in aubrites are either similar to those in metal from enstatite chondrites, or can be derived by crystallization from metallic liquids derived by partial melting of E chondrites. Some metal grains in Mt. Egerton, Cumberland Falls, and Aubres show moderate to severe depletion in compatible highly siderophile elements (Re, Os, Ir, Ru) which are consistent with solid metal/liquid metal differentiation of enstatite chondrite-like metal. Metals from chondrite inclusions in Cumberland Falls show more extremely fractionated patterns than those from the aubritic matrix, potentially hinting at fractionation and partial melting processes affecting not only the aubrite parent body, but the chondrite body from which the inclusions were derived as well. Models using experimental partition coefficients show that aubrite metal chemically corresponds to solid metal segregated during differentiation of primary metallic liquids of EH/EL composition that contained both substantial S-and C-contents. This result is consistent with a genetic link between enstatite chondrites and aubrites, but as to whether aubrites were derived from the same body(ies) as enstatite chondrites, or have their origin in multiple, and potentially separated bodies, cannot be answered unequivocally with chemical or isotopic data alone. (C) 2011 Elsevier Ltd. All rights reserved. C1 [van Acken, D.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [van Acken, D.; Brandon, A. D.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [van Acken, D.; Peslier, A. H.] NASA, JSC, MS KR, Houston, TX 77058 USA. [Humayun, M.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Humayun, M.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32310 USA. [Peslier, A. H.] Jacobs Technol, ESCG, Houston, TX 77058 USA. RP van Acken, D (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, 1-26 ESB, Edmonton, AB T6G 2E3, Canada. EM vanacken@ualberta.ca RI Peslier, Anne/F-3956-2010; OI Humayun, Munir/0000-0001-8516-9435 FU NASA [NNX09AG87G, NNX10AI37G, RTOP 344-31-72-06, NNX10AB37G]; ORAU NPP; University of Houston FX Sections used in this study were provided by the National Museum of Natural History (Smithsonian Institution: Aubres, Mayo Belwa, Cumberland Falls, Shallowater, Mount Egerton, Bishopville, Khor Temiki, Norton County) and by the Meteorite Working Group at Lyndon B. Johnson Space Center (ALH 84007, LAP 03719). This research was supported by the NASA Cosmochemistry program via grants NNX09AG87G and NNX10AI37G to M. H. and RTOP 344-31-72-06 and NNX10AB37G to A. D. B. D. v. A. was supported by a postdoctoral fellowship through the ORAU NPP program, and by internal support through the University of Houston. Reviews by A. Rubin, N. Chabot, R. Ash, and an anonymous reviewer, as well as editorial comments by R.J. Walker, greatly improved the manuscript. We acknowledge technical assistance from D. K. Ross. NR 99 TC 7 Z9 7 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2012 VL 83 BP 272 EP 291 DI 10.1016/j.gca.2011.12.025 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 907YP UT WOS:000301456800019 ER PT J AU West, WC Soler, J Ratnakumar, BV AF West, W. C. Soler, J. Ratnakumar, B. V. TI Preparation of high quality layered-layered composite Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes by a ball milling-annealing process SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion; Cathode; Ball-mill; Layered-layered composite transition metal oxide ID HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LITHIUM BATTERIES; ELECTRODES AB Cathode powders based on the layered-layered composite Li2MnO3-LiMO2 (M = Mn, Co, Ni) have been prepared by a ball milling and annealing process. In principle, this easily scalable and simple process allows for the variation of the stoichiometry, degree of intermixing, and crystallite size by varying the ratio of Li2MnO3 and LiMO2 parent compounds, milling time, and annealing time and temperature. The resultant cathode powder composition of Li1.2Mn0.54Ni0.13Co0.13O2 (M = Mn, Co, Ni) has been shown to have the same crystallographic and electrochemical features as those prepared by conventional sol-gel or co-precipitation methods, with specific discharge capacity of about 250 mAh g(-1) between 4.7 and 2V. Improvements in specific discharge capacity were demonstrated by the addition of an AlPO4 coating on the cathode powder following the mill-anneal synthesis method. In addition to providing a new means to vary the properties of this cathode system in a more controlled fashion, this synthesis approach also can be used to examine the hypothesis of electrochemical stabilization of the Li2MnO3 by the substitutional LiMO2 structural unit. (C) 2012 Published by Elsevier B.V. C1 [West, W. C.; Soler, J.; Ratnakumar, B. V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP West, WC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM william.c.west@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was carried out at the Jet Propulsion Laboratory, California institute of Technology, under contract with the National Aeronautics and Space Administration. The authors acknowledge the funding support of NASA's Exploration Technology Development Program. The authors also wish to thank James Kulleck for providing the XRD measurements. NR 18 TC 58 Z9 61 U1 11 U2 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2012 VL 204 BP 200 EP 204 DI 10.1016/j.jpowsour.2012.01.011 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 904TM UT WOS:000301220800031 ER PT J AU Townsend-Small, A Tyler, SC Pataki, DE Xu, XM Christensen, LE AF Townsend-Small, Amy Tyler, Stanley C. Pataki, Diane E. Xu, Xiaomei Christensen, Lance E. TI Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of "fugitive" fossil fuel emissions SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RATIO MASS-SPECTROMETRY; WASTE-WATER TREATMENT; CARBON-DIOXIDE; STABLE-ISOTOPE; HIGH-PRECISION; NATURAL-GAS; URBAN AREAS; CH4; AIR; HYDROGEN AB Recent studies have suggested that CH4 emissions in Los Angeles and other large cities may be underestimated. We utilized stable isotopes (C-13 and D) and radiocarbon (C-14) to investigate sources of CH4 in Los Angeles, California. First, we made measurements of delta C-13 and delta D of various CH4 sources in urban areas. Fossil fuel CH4 sources (oil refineries, power plants, traffic, and oil drilling fields) had delta C-13 values between -45 and -30 parts per thousand and dD values between -275 and -100 parts per thousand, whereas biological CH4 (cows, biofuels, landfills, sewage treatment plants, and cattle feedlots) had delta C-13 values between -65 and -45 parts per thousand and delta D values between -350 and -275 parts per thousand. We made high-altitude observations of CH4 concentration using continuous tunable laser spectroscopy measurements combined with isotope analyses (C-13, C-14, and D) of discrete samples to constrain urban CH4 sources. Our data indicate that the dominant source of CH4 in Los Angeles has a delta C-13 value of approximately -41.5 parts per thousand and a delta D value between -229 and -208 parts per thousand. Delta C-14 of CH4 in urban air samples ranged from +262 to +344 parts per thousand (127.1 to 134.9 pMC), depleted with respect to average global background CH4. We conclude that the major source of CH4 in Los Angeles is leakage of fossil fuels, such as from geologic formations, natural gas pipelines, oil refining, and/or power plants. More research is needed to constrain fluxes of CH4 from natural gas distribution and refining, as this flux may increase with greater reliance on natural gas and biogas for energy needs. C1 [Townsend-Small, Amy] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Townsend-Small, Amy] Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA. [Tyler, Stanley C.; Pataki, Diane E.; Xu, Xiaomei] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Tyler, Stanley C.] Norco Coll, Dept Chem, Norco, CA USA. [Pataki, Diane E.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA. [Christensen, Lance E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Townsend-Small, A (reprint author), Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. EM townsend-small@uc.edu FU National Research Initiative of the United States Department of Agriculture [2006-04686] FX We thank S. Trumbore, F. M. Kai, D. Zhang, A. Stills, J. Southton, D. Rosso, and K. Beverly for laboratory and field assistance and T. Phillips for Figure 1. The Los Angeles County landfill division and the University of California Cooperative Extension Service helped to coordinate sampling. We also thank the Mount Wilson Observatory (D. Jurasevich and H. McAlister) and the California Laboratory for Atmospheric Remote Sensing at JPL (S. Sander) for donating time and space for sample collection. The manuscript was aided by the comments of Euan Nisbet and two anonymous reviewers. This project was funded by the National Research Initiative of the United States Department of Agriculture, grant 2006-04686. NR 79 TC 35 Z9 35 U1 3 U2 77 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 14 PY 2012 VL 117 AR D07308 DI 10.1029/2011JD016826 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 927AL UT WOS:000302876900003 ER PT J AU Shindell, D AF Shindell, Drew TI The clean air dividend SO NEW SCIENTIST LA English DT Editorial Material C1 [Shindell, Drew] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10027 USA. [Shindell, Drew] Columbia Univ, Columbia Earth Inst, New York, NY USA. RP Shindell, D (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10027 USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU REED BUSINESS INFORMATION LTD PI SUTTON PA QUADRANT HOUSE THE QUADRANT, SUTTON SM2 5AS, SURREY, ENGLAND SN 0262-4079 J9 NEW SCI JI New Sci. PD APR 14 PY 2012 VL 214 IS 2860 BP 22 EP 23 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 929UB UT WOS:000303090100017 ER PT J AU Fry, MM Naik, V West, JJ Schwarzkopf, MD Fiore, AM Collins, WJ Dentener, FJ Shindell, DT Atherton, C Bergmann, D Duncan, BN Hess, P MacKenzie, IA Marmer, E Schultz, MG Szopa, S Wild, O Zeng, G AF Fry, Meridith M. Naik, Vaishali West, J. Jason Schwarzkopf, M. Daniel Fiore, Arlene M. Collins, William J. Dentener, Frank J. Shindell, Drew T. Atherton, Cyndi Bergmann, Daniel Duncan, Bryan N. Hess, Peter MacKenzie, Ian A. Marmer, Elina Schultz, Martin G. Szopa, Sophie Wild, Oliver Zeng, Guang TI The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AIR-QUALITY; NOX EMISSIONS; WARMING POTENTIALS; TRANSPORT MODEL; NATIONAL CENTER; SULFUR CYCLE; IMPACTS; CHEMISTRY; NITROGEN; METHANE AB Ozone (O-3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O-3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42-). We examine changes in the tropospheric composition of O-3, CH4, SO42- and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O-3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean +/- 1 standard deviation) across multiple CTMs. We evaluate steady state O-3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 +/- 0.6 to 1.7 +/- 2 mWm(-2)/TgN yr(-1)), with some variation among models. Negative net RFs result from reductions in global CH4 (-162.6 +/- 2 mWm(-2) for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (-0.4 +/- 0.2 to -0.7 +/- 0.2 mWm(-2)/Tg C yr(-1)) and CO emissions (-0.13 +/- 0.02 to -0.15 +/- 0.02 mWm(-2)/Tg CO yr(-1)). Including the effect of O-3 on CO2 uptake by vegetation likely makes these net RFs more negative by -1.9 to -5.2 mWm(-2)/Tg N yr(-1), -0.2 to -0.7 mWm(-2)/Tg C yr(-1), and -0.02 to -0.05 mWm(-2)/Tg CO yr(-1). Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42-, regionally to hemispherically by O-3, and globally by CH4. Global annual average SO42- responses to oxidant changes range from 0.4 +/- 2.6 to -1.9 +/- 1.3 Gg for NOx reductions, 0.1 +/- 1.2 to -0.9 +/- 0.8 Gg for NMVOC reductions, and -0.09 +/- 0.5 to -0.9 +/- 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP(100)) are calculated for the global CH4 reduction (20.9 +/- 3.7 without stratospheric O-3 or water vapor, 24.2 +/- 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (-18.7 +/- 25.9 to -1.9 +/- 8.7 for NOx, 4.8 +/- 1.7 to 8.3 +/- 1.9 for NMVOC, and 1.5 +/- 0.4 to 1.7 +/- 0.5 for CO). Variation in GWP(100) for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion C1 [Fry, Meridith M.; West, J. Jason] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA. [Naik, Vaishali] UCAR GFDL, Atmospher Phys Chem & Climate Grp, Princeton, NJ 08540 USA. [Schwarzkopf, M. Daniel; Fiore, Arlene M.] NOAA GFDL, Atmospher Phys Chem & Climate Grp, Princeton, NJ 08540 USA. [Collins, William J.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Dentener, Frank J.; Marmer, Elina] European Commiss, DG Joint Res Ctr, Inst Environm & Sustainabil, I-21020 Ispra, Italy. [Shindell, Drew T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Atherton, Cyndi; Bergmann, Daniel] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Duncan, Bryan N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hess, Peter] Cornell Univ, Ithaca, NY 14850 USA. [MacKenzie, Ian A.] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3JN, Midlothian, Scotland. [Schultz, Martin G.] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK 8, D-52425 Julich, Germany. [Szopa, Sophie] CNRS, Lab Sci Climat & Environm, CEA, IPSL,UVSQ, F-91191 Gif Sur Yvette, France. [Wild, Oliver] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England. [Zeng, Guang] Natl Inst Water & Atmospher Res, Lauder, New Zealand. RP Fry, MM (reprint author), Univ N Carolina, Dept Environm Sci & Engn, 146B Rosenau Hall,CB 7431, Chapel Hill, NC 27599 USA. EM jasonwest@unc.edu RI Wild, Oliver/A-4909-2009; Collins, William/A-5895-2010; Shindell, Drew/D-4636-2012; Naik, Vaishali/A-4938-2013; West, Jason/J-2322-2015; Hess, Peter/M-3145-2015; Duncan, Bryan/A-5962-2011; Bergmann, Daniel/F-9801-2011; Szopa, Sophie/F-8984-2010; Schultz, Martin/I-9512-2012; mackenzie, ian/E-9320-2013 OI Wild, Oliver/0000-0002-6227-7035; Collins, William/0000-0002-7419-0850; Naik, Vaishali/0000-0002-2254-1700; West, Jason/0000-0001-5652-4987; Hess, Peter/0000-0003-2439-3796; Bergmann, Daniel/0000-0003-4357-6301; Szopa, Sophie/0000-0002-8641-1737; Schultz, Martin/0000-0003-3455-774X; FU United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR); EPA Office of Air Quality Planning and Standards; UNC; DECC/Defra Met Office Hadley Centre [GA01101]; Defra [AQ0902] FX The research described in this paper has been funded wholly or in part by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program (to M. M. Fry), by the EPA Office of Air Quality Planning and Standards, and by a UNC Junior Faculty Development award (to J.J. West). EPA has not officially endorsed this publication, and the views expressed herein may not reflect the views of the EPA. W.J. Collins was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and Defra contract AQ0902. We thank those involved in the CTM simulations performed under the UN ECE Task Force on Hemispheric Transport of Air Pollution. The NOAA Geophysical Fluid Dynamics Laboratory provided the necessary computational resources. NR 64 TC 47 Z9 49 U1 3 U2 52 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 13 PY 2012 VL 117 AR D07306 DI 10.1029/2011JD017134 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 927AK UT WOS:000302876800002 ER PT J AU Muscari, G Cesaroni, C Fiorucci, I Smith, AK Froidevaux, L Mlynczak, MG AF Muscari, Giovanni Cesaroni, Claudio Fiorucci, Irene Smith, Anne K. Froidevaux, Lucien Mlynczak, Martin G. TI Strato-mesospheric ozone measurements using ground-based millimeter-wave spectroscopy at Thule, Greenland SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC OZONE; SOUTH-POLE; RETRIEVAL AB On January 2009 a ground-based millimeter-wave spectrometer (GBMS) was installed at Thule Air Base (76.5 degrees N, 68.8 degrees W), Greenland, for long-term winter monitoring of several stratospheric and mesospheric trace gases in the framework of the Network for the Detection of Atmospheric Composition Change. This work is aimed at characterizing the GBMS O-3 vertical profiles between 35 and 80 km altitude obtained by applying the optimal estimation method to O-3 pressure-broadened spectral line measurements carried out during three winters. In this altitude range, GBMS O-3 retrievals are highly sensitive to variations of the atmospheric state, and their accuracy is estimated to be the larger of 11% or 0.2 ppmv. Comparisons of GBMS O-3 profiles with colocated satellite-based measurements from Aura Microwave Limb Sounder (MLS) and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) show a good agreement below 65 km altitude once the known 10%-20% high bias of SABER O-3 profiles is considered, with the GBMS displaying an averaged low bias of similar to 9% and 17% with respect to MLS and SABER. In the nighttime mesosphere, the GBMS detects the ozone tertiary maximum within 0.1 ppmv (6%) on average with respect to the convolved MLS, SABER, and global 3-D ROSE model profiles but shifts its position to lower altitudes by 4-5 km compared to the height obtained by the other three data sets. In the 50-80 km altitude range, estimates of mesospheric O-3 diurnal variation obtained from the GBMS and the convolved satellite measurements agree well within the +/- 1 standard deviation (similar to 0.6 ppmv) of the GBMS mean profile. C1 [Muscari, Giovanni; Cesaroni, Claudio; Fiorucci, Irene] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy. [Smith, Anne K.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. [Froidevaux, Lucien] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mlynczak, Martin G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Muscari, G (reprint author), Ist Nazl Geofis & Vulcanol, Sez Roma 2,Via Vigna Murata 605, I-00143 Rome, Italy. EM giovanni.muscari@ingv.it RI Mlynczak, Martin/K-3396-2012 FU National Science Foundation [0936365]; NASA FX This material is based on work also supported by the National Science Foundation under grant 0936365. G. Muscari is indebted to Bob de Zafra for designing, building, and upgrading the GBMS, as well as for the economic and technical support that led to many successful GBMS field campaigns. We thank Pietro Paolo Bertagnolio, Svend Erik Ascanius, Claudia Di Biagio, and Giorgio di Sarra for their technical assistance during the GBMS field campaigns at Thule. We also thank three reviewers for their useful comments on the original manuscript. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. NR 29 TC 3 Z9 3 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 13 PY 2012 VL 117 AR D07307 DI 10.1029/2011JD016863 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 927AK UT WOS:000302876800001 ER PT J AU Larour, E Schiermeier, J Rignot, E Seroussi, H Morlighem, M Paden, J AF Larour, E. Schiermeier, J. Rignot, E. Seroussi, H. Morlighem, M. Paden, J. TI Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID BASAL SHEAR-STRESS; SHEET; GREENLAND; ANTARCTICA; MODEL; BOUNDARY; VELOCITY; STREAMS; SURFACE; SHELF AB Assessing output errors of ice flow models is a major challenge that needs to be addressed if we are to increase our confidence level in projections of mass balance in Antarctica and Greenland. Major inputs to ice flow models include geometry (ice thickness and surface elevation), constitutive laws and boundary conditions (geothermal flux, basal drag coefficient, surface temperature). These inputs can be either measured, in which case they carry errors due to instruments, or inferred using inverse methods (such as basal drag which is inverted using InSAR surface velocities) in which case they carry additional errors generated by the inversion process itself. In both cases, these input errors will result in uncertainties that propagate throughout a forward model, and that influence output diagnostics. In order to estimate the resulting error margins on diagnostics such as mass flux, we develop a new framework based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA), which we interface to the Ice Sheet System Model (ISSM). We present results on the Pine Island Glacier, West Antarctica, for which we evaluate error margins of mass flux across the whole glacier, given currently known error margins on ice thickness, basal friction and ice hardness. Our results suggest errors in these inputs propagate linearly through the ice flow model, providing a way to 1) calibrate measurement requirements for field campaigns collecting data such as bedrock or surface topography 2) quantify uncertainties in projections of mass balance and 3) assess the sensitivity of model outputs to input parameters. This new error propagation model should help quantify confidence levels that we assign to model projections for the mass balance of Antarctica and Greenland, which will ultimately improve our projections of future sea level rise in a warming climate. C1 [Larour, E.; Schiermeier, J.; Rignot, E.; Seroussi, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rignot, E.; Morlighem, M.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Paden, J.] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA. [Paden, J.] Univ Kansas, Dept EECS, Lawrence, KS 66045 USA. RP Larour, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM eric.larour@jpl.nasa.gov RI Rignot, Eric/A-4560-2014; Morlighem, Mathieu/O-9942-2014 OI Rignot, Eric/0000-0002-3366-0481; Morlighem, Mathieu/0000-0001-5219-1310 FU NSF [ANT-0424589]; NASA [NNX10AT68G]; NASA through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, at the Department of Earth System Science, University of California Irvine, and at Laboratoire MSSMat, Ecole Centrale Paris, under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program and Modeling Analysis and Prediction Program, and a contract with the Jet Propulsion Laboratory Research Technology and Development Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The authors would like to acknowledge Operation IceBridge data used in the study, as well as CReSIS data generated from NSF grant ANT-0424589 and NASA grant NNX10AT68G. They would also like to thank P. Heimbach and J. Johnson for their insightful comments during the review. NR 52 TC 19 Z9 19 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD APR 13 PY 2012 VL 117 AR F02009 DI 10.1029/2011JF002146 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 927GZ UT WOS:000302896700001 ER PT J AU Smith, DE Zuber, MT Phillips, RJ Solomon, SC Hauck, SA Lemoine, FG Mazarico, E Neumann, GA Peale, SJ Margot, JL Johnson, CL Torrence, MH Perry, ME Rowlands, DD Goossens, S Head, JW Taylor, AH AF Smith, David E. Zuber, Maria T. Phillips, Roger J. Solomon, Sean C. Hauck, Steven A., II Lemoine, Frank G. Mazarico, Erwan Neumann, Gregory A. Peale, Stanton J. Margot, Jean-Luc Johnson, Catherine L. Torrence, Mark H. Perry, Mark E. Rowlands, David D. Goossens, Sander Head, James W. Taylor, Anthony H. TI Gravity Field and Internal Structure of Mercury from MESSENGER SO SCIENCE LA English DT Article ID MOLTEN CORE; EVOLUTION; TOPOGRAPHY; MARS AB Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C-m/C = 0.452 +/- 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core. C1 [Smith, David E.; Zuber, Maria T.; Mazarico, Erwan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA. [Solomon, Sean C.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Hauck, Steven A., II] Case Western Reserve Univ, Dept Earth Environm & Planetary Sci, Cleveland, OH 44106 USA. [Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Torrence, Mark H.; Rowlands, David D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Peale, Stanton J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Margot, Jean-Luc] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Johnson, Catherine L.] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V6T 1Z4, Canada. [Johnson, Catherine L.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Torrence, Mark H.] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. [Perry, Mark E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Goossens, Sander] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Taylor, Anthony H.] KinetX Inc, Tempe, AZ 85284 USA. RP Zuber, MT (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM zuber@mit.edu RI Rowlands, David/D-2751-2012; Hauck, Steven/A-7865-2008; Margot, Jean-Luc/A-6154-2012; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; Goossens, Sander/K-2526-2015; Perry, Mark/B-8870-2016 OI Hauck, Steven/0000-0001-8245-146X; Margot, Jean-Luc/0000-0001-9798-1797; Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X; Goossens, Sander/0000-0002-7707-1128; Perry, Mark/0000-0003-1600-6856 FU NASA [NAS5-97271, NASW-00002] FX The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. We acknowledge the contributions of the MESSENGER spacecraft team and the radio science and MLA instrument teams in acquiring the observations used herein. We are also grateful to three anonymous reviewers for comments that improved the manuscript. NR 27 TC 107 Z9 107 U1 4 U2 59 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 13 PY 2012 VL 336 IS 6078 BP 214 EP 217 DI 10.1126/science.1218809 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 924PN UT WOS:000302703900046 PM 22438509 ER PT J AU Zuber, MT Smith, DE Phillips, RJ Solomon, SC Neumann, GA Hauck, SA Peale, SJ Barnouin, OS Head, JW Johnson, CL Lemoine, FG Mazarico, E Sun, XL Torrence, MH Freed, AM Klimczak, C Margot, JL Oberst, J Perry, ME McNutt, RL Balcerski, JA Michel, N Talpe, MJ Yang, D AF Zuber, Maria T. Smith, David E. Phillips, Roger J. Solomon, Sean C. Neumann, Gregory A. Hauck, Steven A., II Peale, Stanton J. Barnouin, Olivier S. Head, James W. Johnson, Catherine L. Lemoine, Frank G. Mazarico, Erwan Sun, Xiaoli Torrence, Mark H. Freed, Andrew M. Klimczak, Christian Margot, Jean-Luc Oberst, Juergen Perry, Mark E. McNutt, Ralph L., Jr. Balcerski, Jeffrey A. Michel, Nathalie Talpe, Matthieu J. Yang, Di TI Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry SO SCIENCE LA English DT Article ID LOBATE SCARPS; CALORIS BASIN; FLYBYS 1; MISSION; SURFACE; GEOLOGY; SHAPE; VIEW; MARS AB Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury's topography occurred after the earliest phases of the planet's geological history. C1 [Zuber, Maria T.; Smith, David E.; Mazarico, Erwan; Talpe, Matthieu J.; Yang, Di] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA. [Solomon, Sean C.; Klimczak, Christian] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Neumann, Gregory A.; Lemoine, Frank G.; Mazarico, Erwan; Sun, Xiaoli; Torrence, Mark H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hauck, Steven A., II; Balcerski, Jeffrey A.; Michel, Nathalie] Case Western Reserve Univ, Dept Earth Environm & Planetary Sci, Cleveland, OH 44106 USA. [Peale, Stanton J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Barnouin, Olivier S.; Perry, Mark E.; McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Johnson, Catherine L.] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V6T 1Z4, Canada. [Torrence, Mark H.] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. [Freed, Andrew M.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Margot, Jean-Luc] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Oberst, Juergen] German Aerosp Ctr, Inst Planetary Res, D-12489 Berlin, Germany. RP Zuber, MT (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM zuber@mit.edu RI Hauck, Steven/A-7865-2008; Margot, Jean-Luc/A-6154-2012; Sun, Xiaoli/B-5120-2013; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013; McNutt, Ralph/E-8006-2010; Mazarico, Erwan/N-6034-2014; Barnouin, Olivier/I-7475-2015; Perry, Mark/B-8870-2016 OI Hauck, Steven/0000-0001-8245-146X; Margot, Jean-Luc/0000-0001-9798-1797; Neumann, Gregory/0000-0003-0644-9944; McNutt, Ralph/0000-0002-4722-9166; Mazarico, Erwan/0000-0003-3456-427X; Barnouin, Olivier/0000-0002-3578-7750; Perry, Mark/0000-0003-1600-6856 FU NASA [NAS5-97271, NASW-00002] FX The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to the Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. We are grateful for the myriad contributions from the MLA instrument and MESSENGER spacecraft teams, and we appreciate three helpful reviews of an earlier version of the paper. NR 26 TC 68 Z9 69 U1 3 U2 28 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 13 PY 2012 VL 336 IS 6078 BP 217 EP 220 DI 10.1126/science.1218805 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 924PN UT WOS:000302703900047 PM 22438510 ER PT J AU Wu, DL Lee, JN AF Wu, Dong L. Lee, Jae N. TI Arctic low cloud changes as observed by MISR and CALIOP: Implication for the enhanced autumnal warming and sea ice loss SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COLD-AIR OUTBREAKS; BOUNDARY-LAYER; TOP HEIGHTS; SURFACE; OCEAN; ROLL; AMPLIFICATION; RETRIEVAL; COVER AB Retreat of Arctic sea ice extent has led to more evaporation over open water in summer and subsequent cloud changes in autumn. Studying recent satellite cloud data over the Arctic Ocean, we find that low (0.5-2 km) cloud cover in October has been increasing significantly during 2000-2010 over the Beaufort and East Siberian Sea (BESS). This change is consistent with the expected boundary layer cloud response to the increasing Arctic evaporation accumulated during summer. Because low clouds have a net warming effect at the surface, October cloud increases may be responsible for the enhanced autumnal warming in surface air temperature, which effectively prolong the melt season and lead to a positive feedback to Arctic sea ice loss. Thus, the new satellite observations provide a critical support for the hypothesized positive feedback involving interactions between boundary layer cloud, water vapor, temperature, and sea ice in the Arctic Ocean. C1 [Wu, Dong L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Lee, Jae N.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Wu, DL (reprint author), NASA, Goddard Space Flight Ctr, 33-C313, Greenbelt, MD 20770 USA. EM Dong.L.Wu@nasa.gov FU NASA FX This work was funded by NASA Terra project, part of which was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). We are grateful for constructive comments and suggestions from anonymous reviewers, which helped to improve the manuscript. The data processing by the NASA Langley Research Center Atmospheric Sciences Data Center are gratefully acknowledged. NR 49 TC 13 Z9 14 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 11 PY 2012 VL 117 AR D07107 DI 10.1029/2011JD017050 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 927AI UT WOS:000302876600002 ER PT J AU Veenadhari, B Selvakumaran, R Singh, R Maurya, AK Gopalswamy, N Kumar, S Kikuchi, T AF Veenadhari, B. Selvakumaran, R. Singh, Rajesh Maurya, Ajeet K. Gopalswamy, N. Kumar, Sushil Kikuchi, T. TI Coronal mass ejection-driven shocks and the associated sudden commencements/sudden impulses SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ENERGETIC PARTICLE EVENTS; II RADIO-BURSTS; INTERPLANETARY SHOCKS; STORM; FIELD; TIME AB Interplanetary (IP) shocks are mainly responsible for the sudden compression of the magnetosphere, causing storm sudden commencement (SC) and sudden impulses (SIs) which are detected by ground-based magnetometers. On the basis of the list of 222 IP shocks compiled by Gopalswamy et al. (2010), we have investigated the dependence of SC/SIs amplitudes on the speed of the coronal mass ejections (CMEs) that drive the shocks near the Sun as well as in the interplanetary medium. We find that about 91% of the IP shocks were associated with SC/SIs. The average speed of the SC/SI-associated CMEs is 1015 km/s, which is almost a factor of 2 higher than the general CME speed. When the shocks were grouped according to their ability to produce type II radio burst in the interplanetary medium, we find that the radio-loud (RL) shocks produce a much larger SC/SI amplitude (average similar to 32 nT) compared to the radio-quiet(RQ) shocks (average similar to 19 nT). Clearly, RL shocks are more effective in producing SC/SIs than the RQ shocks. We also divided the IP shocks according to the type of IP counterpart of interplanetary CMEs (ICMEs): magnetic clouds (MCs) and nonmagnetic clouds. We find that the MC-associated shock speeds are better correlated with SC/SI amplitudes than those associated with non-MC ejecta. The SC/SI amplitudes are also higher for MCs than ejecta. Our results show that RL and RQ type of shocks are important parameters in producing the SC/SI amplitude. C1 [Veenadhari, B.; Selvakumaran, R.; Maurya, Ajeet K.] Indian Inst Geomagnetism, Dept Sci & Technol, Navi Mumbai 410210, Maharastra, India. [Veenadhari, B.; Kikuchi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Singh, Rajesh] Indian Inst Geomagnetism, Dr KS Krishnan Geophys Res Lab, Jhunsi, India. [Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kumar, Sushil] Univ S Pacific, Sch Phys & Engn, Suva, Fiji. RP Veenadhari, B (reprint author), Indian Inst Geomagnetism, Dept Sci & Technol, Navi Mumbai 410210, Maharastra, India. EM veenaiig@gmail.com FU Nagoya University, Nagoya, Japan; NASA FX We thank the World Data Center for Geomagnetism, Kyoto, for SYM-H data. Part of the first author's work was supported by the Nagoya University, Nagoya, Japan. The work of N. Gopalswamy was supported by NASA's Living with a Star (LWS) program. NR 30 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 11 PY 2012 VL 117 AR A04210 DI 10.1029/2011JA017216 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926ZC UT WOS:000302872100002 ER PT J AU Ajello, M Alexander, DM Greiner, J Madejski, GM Gehrels, N Burlon, D AF Ajello, M. Alexander, D. M. Greiner, J. Madejski, G. M. Gehrels, N. Burlon, D. TI THE 60 MONTH ALL-SKY BURST ALERT TELESCOPE SURVEY OF ACTIVE GALACTIC NUCLEUS AND THE ANISOTROPY OF NEARBY AGNs SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: active; surveys; X-rays: diffuse background ID RAY LUMINOSITY FUNCTION; DEEP FIELD-SOUTH; SWIFT-BAT SURVEY; SUPERMASSIVE BLACK-HOLES; SEYFERT 2 GALAXIES; HARD X-RAYS; OPTICAL SPECTROSCOPY; INTEGRAL OBJECTS; LOCAL UNIVERSE; NGC 1365 AB Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of similar to 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent similar to 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to similar to 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(-2.9)(+4.1) x 10(-5) Mpc(-3) for objects with a de-absorbed luminosity larger than 2 x 10(42) erg s(-1). As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (<= 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions. C1 [Ajello, M.; Madejski, G. M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ajello, M.; Madejski, G. M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Greiner, J.; Burlon, D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ajello, M (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RI Gehrels, Neil/D-2971-2012; OI Alexander, David/0000-0002-5896-6313 NR 66 TC 43 Z9 43 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 21 DI 10.1088/0004-637X/749/1/21 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500021 ER PT J AU Buehler, R Scargle, JD Blandford, RD Baldini, L Baring, MG Belfiore, A Charles, E Chiang, J D'Ammando, F Dermer, CD Funk, S Grove, JE Harding, AK Hays, E Kerr, M Massaro, F Mazziotta, MN Romani, RW Parkinson, PMS Tennant, AF Weisskopf, MC AF Buehler, R. Scargle, J. D. Blandford, R. D. Baldini, L. Baring, M. G. Belfiore, A. Charles, E. Chiang, J. D'Ammando, F. Dermer, C. D. Funk, S. Grove, J. E. Harding, A. K. Hays, E. Kerr, M. Massaro, F. Mazziotta, M. N. Romani, R. W. Parkinson, P. M. Saz Tennant, A. F. Weisskopf, M. C. TI GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; ISM: supernova remnants; magnetic reconnection; magnetohydrodynamics (MHD); pulsars: individual (Crab); radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; FERMI-LAT OBSERVATIONS; PARTICLE-ACCELERATION; PULSAR WIND; HIGH-ENERGY; TERMINATION SHOCK; SPACE-TELESCOPE; VARIABILITY; EMISSION; SPECTRUM AB The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of approximate to 11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 +/- 6) x 10(-7) cm(-2) s(-1) above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 +/- 26) MeV at flare maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability. C1 [Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Belfiore, A.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Belfiore, A.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Belfiore, A.] Univ Pavia, I-27100 Pavia, Italy. [Belfiore, A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF IRA Bologna, I-40129 Bologna, Italy. [Dermer, C. D.; Grove, J. E.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Harding, A. K.; Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mazziotta, M. N.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Tennant, A. F.; Weisskopf, M. C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Buehler, R (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM buehler@stanford.edu; Jeffrey.D.Scargle@nasa.gov; rdb3@stanford.edu RI Harding, Alice/D-3160-2012; Hays, Elizabeth/D-3257-2012; Baldini, Luca/E-5396-2012; Saz Parkinson, Pablo Miguel/I-7980-2013; Funk, Stefan/B-7629-2015; Mazziotta, Mario /O-8867-2015; Massaro, Francesco/L-9102-2016 OI Baldini, Luca/0000-0002-9785-7726; Funk, Stefan/0000-0002-2012-0080; Mazziotta, Mario /0000-0001-9325-4672; Massaro, Francesco/0000-0002-1704-9850 FU NASA FX The Fermi LAT collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. J.D.S. is grateful for funding through the NASA Applied Information Systems Research program. NR 56 TC 60 Z9 60 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 26 DI 10.1088/0004-637X/749/1/26 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500026 ER PT J AU Burlaga, LF Ness, NF AF Burlaga, L. F. Ness, N. F. TI HELIOSHEATH MAGNETIC FIELDS BETWEEN 104 AND 113 AU IN A REGION OF DECLINING SPEEDS AND A STAGNATION REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: magnetic fields; local interstellar matter; magnetic fields; solar wind; turbulence ID VOYAGER-1 OBSERVATIONS; STRENGTH FLUCTUATIONS; INTERPLANETARY; HELIOSPHERE; HELIOPAUSE AB We examine the relationships between the magnetic field and the radial velocity component V-R observed in the heliosheath by instruments on Voyager 1 (V1). No increase in the magnetic field strength B was observed in a region where V-R decreased linearly from 70 km s(-1) to 0 km s-1 as plasma moved outward past V1. An unusually broad transition from positive to negative polarity was observed during a approximate to 26 day interval when the heliospheric current sheet (HCS) moved below the latitude of V1 and the speed of V1 was comparable to the radial speed of the heliosheath flow. When V1 moved through a region where V-R approximate to 0 (the "stagnation region"), B increased linearly with time by a factor of two, and the average of B was 0.14 nT. Nothing comparable to this was observed previously. The magnetic polarity was negative throughout the stagnation region for approximate to 580 days until 2011 DOY 235, indicating that the HCS was below the latitude of V1. The average passage times of the magnetic holes and proton boundary layers were the same during 2009 and 2011, because the plasma moved past V1 during 2009 at the same speed that V1 moved through the stagnation region during 2011. The microscale fluctuations of B in the stagnation region during 2011 are qualitatively the same as those observed in the heliosheath during 2009. These results suggest that the stagnation region is a part of the heliosheath, rather than a "transition region" associated with the heliopause. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM lburlagahsp@verizon.net; nfnudel@yahoo.com FU NASA [NASA NNX 07AW09G, NASA NNX 09AT41G] FX Daniel Berdichevsky computed the zero-level offsets for the instrument. The data were processed by T. McClanahan and S. Kramer. N. F. Ness was partially supported by NASA Grants NASA NNX 07AW09G and NASA NNX 09AT41G to the Catholic University of America. NR 23 TC 15 Z9 15 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 13 DI 10.1088/0004-637X/749/1/13 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500013 ER PT J AU Chitsazzadeh, S Houde, M Hildebrand, RH Vaillancourt, J AF Chitsazzadeh, Shadi Houde, Martin Hildebrand, Roger H. Vaillancourt, John TI CHARACTERIZATION OF TURBULENCE FROM SUBMILLIMETER DUST EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; ISM: magnetic fields; polarization; turbulence ID STAR-FORMING REGIONS; COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; MAGNETIC-FIELD STRENGTHS; PARTIALLY-IONIZED GAS; MOLECULAR CLOUDS; INTERSTELLAR TURBULENCE; POLARIZATION; DISPERSION; ANISOTROPY; CORES AB In this paper, we use our recent technique for estimating the turbulent component of the magnetic field to derive the structure functions of the unpolarized emission as well as that of the Stokes Q and U parameters of the polarized emission. The solutions for the structure functions to 350 mu m SHARP polarization data of OMC-1 allow the determination of the corresponding turbulent correlation length scales. The estimated values for these length scales are 9 ''.4 +/- 0 ''.1, 7 ''.3 +/- 0 ''.1, 12 ''.6 +/- 0 ''.2 (or 20.5 +/- 0.2, 16.0 +/- 0.2, and 27.5 +/- 0.4 mpc at 450 pc, the adopted distance for OMC-1) for the Stokes Q and U parameters, and for the unpolarized emission N, respectively. Our current results for Q and U are consistent with previous results obtained through other methods and may indicate presence of anisotropy in magnetized turbulence. We infer a weak coupling between the dust component responsible for the unpolarized emission N and the magnetic field B from the significant difference between their turbulent correlation length scales. C1 [Chitsazzadeh, Shadi] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. [Chitsazzadeh, Shadi; Houde, Martin] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Houde, Martin] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Hildebrand, Roger H.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hildebrand, Roger H.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hildebrand, Roger H.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Vaillancourt, John] Univ Space Res Assoc, Stratospher Observ Infrared Astron, NASA Ames Res Ctr, Moffett Field, CA 94035 USA. RP Chitsazzadeh, S (reprint author), Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. FU NSERC; Canada Research Chair; Canada Foundation for Innovation; Ontario Innovation Trust; Western's Academic Development Fund; NSF [AST 05-40882, AST 05-05230, AST 02-41356, AST 05-05124] FX M.H.'s research is funded through the NSERC Discovery Grant, Canada Research Chair, Canada Foundation for Innovation, Ontario Innovation Trust, and Western's Academic Development Fund programs. The CSO is funded through NSF AST 05-40882. This work has also been supported in part by NSF grants AST 05-05230, AST 02-41356, and AST 05-05124. NR 32 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 45 DI 10.1088/0004-637X/749/1/45 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500045 ER PT J AU Gautier, TN Charbonneau, D Rowe, JF Marcy, GW Isaacson, H Torres, G Fressin, F Rogers, LA Desert, JM Buchhave, LA Latham, DW Quinn, SN Ciardi, DR Fabrycky, DC Ford, EB Gilliland, RL Walkowicz, LM Bryson, ST Cochran, WD Endl, M Fischer, DA Howell, SB Horch, EP Barclay, T Batalha, N Borucki, WJ Christiansen, JL Geary, JC Henze, CE Holman, MJ Ibrahim, K Jenkins, JM Kinemuchi, K Koch, DG Lissauer, JJ Sanderfer, DT Sasselov, DD Seager, S Silverio, K Smith, JC Still, M Stumpe, MC Tenenbaum, P Van Cleve, J AF Gautier, Thomas N., III Charbonneau, David Rowe, Jason F. Marcy, Geoffrey W. Isaacson, Howard Torres, Guillermo Fressin, Francois Rogers, Leslie A. Desert, Jean-Michel Buchhave, Lars A. Latham, David W. Quinn, Samuel N. Ciardi, David R. Fabrycky, Daniel C. Ford, Eric B. Gilliland, Ronald L. Walkowicz, Lucianne M. Bryson, Stephen T. Cochran, William D. Endl, Michael Fischer, Debra A. Howell, Steve B. Horch, Elliott P. Barclay, Thomas Batalha, Natalie Borucki, William J. Christiansen, Jessie L. Geary, John C. Henze, Christopher E. Holman, Matthew J. Ibrahim, Khadeejah Jenkins, Jon M. Kinemuchi, Karen Koch, David G. Lissauer, Jack J. Sanderfer, Dwight T. Sasselov, Dimitar D. Seager, Sara Silverio, Kathryn Smith, Jeffrey C. Still, Martin Stumpe, Martin C. Tenenbaum, Peter Van Cleve, Jeffrey TI KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; planetary systems; stars: individual (Kepler-20, KIC 6850504, 2MASS J19104752+4220194) ID TRANSIT TIMING VARIATIONS; SPITZER-SPACE-TELESCOPE; 1ST 4 MONTHS; PLANET CANDIDATES; EXTRASOLAR PLANET; ADAPTIVE OPTICS; HD 189733B; PHOTOMETRIC VARIABILITY; INITIAL CHARACTERISTICS; UPSILON-ANDROMEDAE AB We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASS J19104752+4220194. From high-resolution spectroscopy of the star, we find a stellar effective temperature T-eff = 5455 +/- 100 K, a metallicity of [Fe/H] = 0.01 +/- 0.04, and a surface gravity of log g = 4.4 +/- 0.1. We combine these estimates with an estimate of the stellar density derived from the transit light curves to deduce a stellar mass of M-* = 0.912 +/- 0.034M(circle dot) and a stellar radius of R-* = 0.944(-0.095)(+0.060) R-circle dot. For three of the transit signals, we demonstrate that our results strongly disfavor the possibility that these result from astrophysical false positives. We accomplish this by first identifying the subset of stellar blends that reproduce the precise shape of the light curve and then using the constraints on the presence of additional stars from high angular resolution imaging, photometric colors, and the absence of a secondary component in our spectroscopic observations. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2x10(5) (Kepler-20b), 1x10(5) (Kepler-20c), and 1.1x10(3) (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the transit: from Spitzer data gathered at 4.5 mu m, we infer a ratio of the planetary to stellar radii of 0.075 +/- 0.015 (Kepler-20c) and 0.065 +/- 0.011 (Kepler-20d), consistent with each of the depths measured in the Kepler optical bandpass. We determine the orbital periods and physical radii of the three confirmed planets to be 3.70 days and 1.91(-0.21)(+0.12) R-circle plus for Kepler-20b, 10.85 days and 3.07(-0.31)(+0.20) R-circle plus for Kepler-20c, and 77.61 days and 2.75(-0.30)(+0.17) R-circle plus for Kepler-20d. From multi-epoch radial velocities, we determine the masses of Kepler-20b and Kepler-20c to be 8.7 +/- 2.2M(circle plus) and 16.1 +/- 3.5M(circle plus), respectively, and we place an upper limit on the mass of Kepler-20d of 20.1M(circle plus) (2 sigma). C1 [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Charbonneau, David; Torres, Guillermo; Fressin, Francois; Desert, Jean-Michel; Latham, David W.; Quinn, Samuel N.; Geary, John C.; Holman, Matthew J.; Sasselov, Dimitar D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Borucki, William J.; Christiansen, Jessie L.; Henze, Christopher E.; Ibrahim, Khadeejah; Koch, David G.; Lissauer, Jack J.; Sanderfer, Dwight T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Marcy, Geoffrey W.; Isaacson, Howard; Silverio, Kathryn] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Rogers, Leslie A.; Seager, Sara] MIT, Dept Phys, Cambridge, MA 02139 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Ctr Star & Planet Format, Nat Hist Museum Denmark, DK-1350 Copenhagen, Denmark. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32111 USA. [Gilliland, Ronald L.] Penn State Univ, Dept Astron, Davey Lab 525, University Pk, PA 16802 USA. [Walkowicz, Lucianne M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cochran, William D.; Endl, Michael] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Fischer, Debra A.] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Horch, Elliott P.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Barclay, Thomas; Kinemuchi, Karen; Still, Martin] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Batalha, Natalie] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Jenkins, Jon M.; Smith, Jeffrey C.; Stumpe, Martin C.; Tenenbaum, Peter; Van Cleve, Jeffrey] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Gautier, TN (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM thomas.n.gautier@jpl.nasa.gov OI Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; /0000-0001-6545-639X; Fischer, Debra/0000-0003-2221-0861; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; NASA through JPL/Caltech; W. M. Keck Foundation FX Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. The authors thank many people who gave so generously of their time to make this mission a success. This work is also based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We thank the Spitzer staff at IPAC and in particular Nancy Silbermann for scheduling the Spitzer observations of this program. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 96 TC 65 Z9 65 U1 6 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 15 DI 10.1088/0004-637X/749/1/15 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500015 ER PT J AU Gonzalez-Nuevo, J Lapi, A Fleuren, S Bressan, S Danese, L De Zotti, G Negrello, M Cai, ZY Fan, L Sutherland, W Baes, M Baker, AJ Clements, L Cooray, A Dannerbauer, H Dunne, L Dye, S Eales, S Frayer, DT Harris, AI Ivison, R Jarvis, MJ Michallowski, MJ Lopez-Caniego, M Rodighiero, G Rowlands, K Serjeant, S Scott, D van der Werf, P Auld, R Buttiglione, S Cava, A Dariush, A Fritz, J Hopwood, R Ibar, E Maddox, S Pascale, E Pohlen, M Rigby, E Smith, D Temi, P AF Gonzalez-Nuevo, J. Lapi, A. Fleuren, S. Bressan, S. Danese, L. De Zotti, G. Negrello, M. Cai, Z. -Y. Fan, L. Sutherland, W. Baes, M. Baker, A. J. Clements, L. Cooray, A. Dannerbauer, H. Dunne, L. Dye, S. Eales, S. Frayer, D. T. Harris, A. I. Ivison, R. Jarvis, M. J. Michallowski, M. J. Lopez-Caniego, M. Rodighiero, G. Rowlands, K. Serjeant, S. Scott, D. van der Werf, P. Auld, R. Buttiglione, S. Cava, A. Dariush, A. Fritz, J. Hopwood, R. Ibar, E. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. Smith, D. Temi, P. TI HERSCHEL-ATLAS: TOWARD A SAMPLE OF similar to 1000 STRONGLY LENSED GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; gravitational lensing: strong; submillimeter: galaxies ID SCIENCE DEMONSTRATION PHASE; SUBMILLIMETER GALAXY; HIGH-REDSHIFT; SKY SURVEY; EXTRAGALACTIC SOURCES; CANDIDATE SELECTION; VELOCITY DISPERSION; ELLIPTIC GALAXIES; SIZE EVOLUTION; STAR-FORMATION AB While the selection of strongly lensed galaxies (SLGs) with 500 mu m flux density S-500 > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of similar or equal to 1.5-2 deg(-2), i.e., a factor of about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to similar to 1000 candidate SLGs (with amplifications mu greater than or similar to 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field (similar or equal to 14.4deg(2)) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a similar or equal to 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density (similar or equal to 1.45 deg(-2)) can be reached with a similar to 70% efficiency. C1 [Gonzalez-Nuevo, J.; Lapi, A.; Bressan, S.; Danese, L.; De Zotti, G.; Cai, Z. -Y.; Fan, L.] SISSA, I-34136 Trieste, Italy. [Gonzalez-Nuevo, J.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Lapi, A.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Fleuren, S.; Sutherland, W.] Univ London, Sch Math Sci, London E1 4NS, England. [De Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Negrello, M.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Clements, L.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Baker, A. J.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dannerbauer, H.] Univ Vienna, Astron Inst, A-1180 Vienna, Austria. [Dunne, L.; Dye, S.; Rowlands, K.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Eales, S.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales. [Frayer, D. T.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Harris, A. I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Ivison, R.; Ibar, E.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Michallowski, M. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M. J.] Univ Hertfordshire, Ctr Astrophys, Hatfield AL10 9AB, Herts, England. [Jarvis, M. J.] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. [Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T1Z1, Canada. [van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Cava, A.] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain. [Dariush, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Dariush, A.] IPM, Sch Astron, Tehran, Iran. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Gonzalez-Nuevo, J (reprint author), SISSA, Via Bonomea 265, I-34136 Trieste, Italy. EM gnuevo@sissa.it RI Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Fan, Lulu/P-2168-2016; Cava, Antonio/C-5274-2017; OI Baes, Maarten/0000-0002-3930-2757; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Fan, Lulu/0000-0003-4200-4432; Cava, Antonio/0000-0002-4821-1275; De Zotti, Gianfranco/0000-0003-2868-2595; Lopez-Caniego, Marcos/0000-0003-1016-9283; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 FU ASI/INAF [I/009/10/0, I/072/09/0]; INAF; MIUR; Spanish Ministerio de Ciencia e Innovacion [AYA2010-21766-C03-01] FX We are grateful to the referee for a careful reading of the manuscript and useful comments. The work has been supported in part by ASI/INAF agreements I/009/10/0 ("Support for data analysis") and I/072/09/0 ("Planck LFI Activity of Phase E2"), by INAF through the PRIN 2009 "New light on the early Universe with submillimeter spectroscopy," and by MIUR through the PRIN 2009. J.G.N. acknowledges partial financial support from the Spanish Ministerio de Ciencia e Innovacion project AYA2010-21766-C03-01. NR 56 TC 40 Z9 40 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 65 DI 10.1088/0004-637X/749/1/65 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500065 ER PT J AU Hadasch, D Torres, DF Tanaka, T Corbet, RHD Hill, AB Dubois, R Dubus, G Glanzman, T Corbel, S Li, J Chen, YP Zhang, S Caliandro, GA Kerr, M Richards, JL Max-Moerbeck, W Readhead, A Pooley, G AF Hadasch, D. Torres, D. F. Tanaka, T. Corbet, R. H. D. Hill, A. B. Dubois, R. Dubus, G. Glanzman, T. Corbel, S. Li, J. Chen, Y. P. Zhang, S. Caliandro, G. A. Kerr, M. Richards, J. L. Max-Moerbeck, W. Readhead, A. Pooley, G. TI LONG-TERM MONITORING OF THE HIGH-ENERGY gamma-RAY EMISSION FROM LS I+61 degrees 303 AND LS 5039 SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gamma rays: general; stars: variables: general; X-rays: binaries; X-rays: individual (LS I+61 303); X-rays: individual (LS 5039) ID LARGE-AREA TELESCOPE; DEEP CHANDRA OBSERVATIONS; PSR B1259-63/LS 2883; ORBITAL MODULATION; TEV BINARY; I+61 303; VERITAS OBSERVATIONS; RADIO OBSERVATIONS; I +61-DEGREES-303; TIME-SERIES AB The Fermi Large Area Telescope (LAT) reported the first definitive GeV detections of the binaries LS I + 61 degrees 303 and LS 5039 in the first year after its launch in 2008 June. These detections were unambiguous as a consequence of the reduced positional uncertainty and the detection of modulated gamma-ray emission on the corresponding orbital periods. An analysis of new data from the LAT, comprising 30 months of observations, identifies a change in the gamma-ray behavior of LS I + 61 degrees 303. An increase in flux is detected in 2009 March and a steady decline in the orbital flux modulation is observed. Significant emission up to 30 GeV is detected by the LAT; prior data sets led to upper limits only. Contemporaneous TeV observations no longer detected the source, or found it-in one orbit-close to periastron, far from the phases at which the source previously appeared at TeV energies. The detailed numerical simulations and models that exist within the literature do not predict or explain many of these features now observed at GeV and TeV energies. New ideas and models are needed to fully explain and understand this behavior. A detailed phase-resolved analysis of the spectral characterization of LS I + 61 degrees 303 in the GeV regime ascribes a power law with an exponential cutoff spectrum along each analyzed portion of the system's orbit. The on-source exposure of LS 5039 is also substantially increased with respect to our prior publication. In this case, whereas the general gamma-ray properties remain consistent, the increased statistics of the current data set allows for a deeper investigation of its orbital and spectral evolution. C1 [Hadasch, D.; Torres, D. F.; Caliandro, G. A.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Torres, D. F.] ICREA, Barcelona 08010, Spain. [Tanaka, T.; Hill, A. B.; Dubois, R.; Glanzman, T.; Kerr, M.] Stanford Univ, WW Hansen Expt Phys Lab Kavli Inst Particle Astro, Dept Phys, Stanford, CA 94305 USA. [Tanaka, T.; Hill, A. B.; Dubois, R.; Glanzman, T.; Kerr, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Corbet, R. H. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Dubus, G.] CNRS INSU, UJF Grenoble 1, Inst Planetol & Astrophys Grenoble, F-38041 Grenoble, France. [Corbel, S.] Univ Paris 07, F-91191 Gif Sur Yvette, France. [Corbel, S.] CEA Saclay, Serv Astrophys, UMR AIM, F-91191 Gif Sur Yvette, France. [Li, J.; Chen, Y. P.; Zhang, S.] Chinese Acad Sci, Key Lab Particle Astrophys, Inst High Energy Phys, Beijing 100049, Peoples R China. [Richards, J. L.; Max-Moerbeck, W.; Readhead, A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Pooley, G.] Cavendish Lab, Cambridge CB3 0HE, England. RP Hadasch, D (reprint author), Inst Ciencies Espai IEEC CSIC, Campus UAB,Torre C5,2A Planta, Barcelona 08193, Spain. RI Torres, Diego/O-9422-2016 OI Torres, Diego/0000-0002-1522-9065 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Spanish CSIC; MICINN; Generalitat de Catalunya [AYA2009-07391, SGR2009-811]; Formosa Program [TW2010005]; National Natural Science Foundation of China [NSFC-10325313, 10521001, 10733010, 10821061, 11073021, 11133002]; 973 program [2009CB824800]; European Community [ERC-StG-200911]; EU [2010-275861]; STFC; University of Cambridge FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. This work has been additionally supported by the Spanish CSIC and MICINN and the Generalitat de Catalunya, through grants AYA2009-07391 and SGR2009-811, as well as the Formosa Program TW2010005. S.Z. acknowledges supports from National Natural Science Foundation of China (via NSFC-10325313, 10521001, 10733010, 10821061, 11073021, and 11133002), and 973 program 2009CB824800. G.D. acknowledges support from the European Community via contract ERC-StG-200911. A.B.H. acknowledges funding via an EU Marie Curie International Outgoing Fellowship under contract no. 2010-275861. The AMI arrays are supported by STFC and the University of Cambridge. NR 59 TC 33 Z9 33 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 54 DI 10.1088/0004-637X/749/1/54 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500054 ER PT J AU Hlozek, R Dunkley, J Addison, G Appel, JW Bond, JR Carvalho, CS Das, S Devlin, MJ Dunner, R Essinger-Hileman, T Fowler, JW Gallardo, P Hajian, A Halpern, M Hasselfield, M Hilton, M Hincks, AD Hughes, JP Irwin, KD Klein, J Kosowsky, A Marriage, TA Marsden, D Menanteau, F Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Rojas, F Sehgal, N Sherwin, B Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Wollack, E AF Hlozek, Renee Dunkley, Joanna Addison, Graeme Appel, John William Bond, J. Richard Sofia Carvalho, C. Das, Sudeep Devlin, Mark J. Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Gallardo, Patricio Hajian, Amir Halpern, Mark Hasselfield, Matthew Hilton, Matt Hincks, Adam D. Hughes, John P. Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Marriage, Tobias A. Marsden, Danica Menanteau, Felipe Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Rojas, Felipe Sehgal, Neelima Sherwin, Blake Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Wollack, Ed TI THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; cosmology: theory; inflation ID MICROWAVE-ANISOTROPY-PROBE; DIGITAL SKY SURVEY; BROKEN SCALE-INVARIANCE; HUBBLE-SPACE-TELESCOPE; SOUTH-POLE TELESCOPE; WMAP OBSERVATIONS; GALAXY CLUSTERS; ALPHA FOREST; 148 GHZ; CONSTRAINTS AB We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k similar or equal to 0.2 Mpc(-1). We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum. C1 [Hlozek, Renee; Dunkley, Joanna; Addison, Graeme] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Dunkley, Joanna; Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Hughes, John P.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Sherwin, Blake; Staggs, Suzanne T.; Switzer, Eric R.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Dunkley, Joanna; Das, Sudeep; Hajian, Amir; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Sofia Carvalho, C.] Acad Athens, RCAAM, Athens 11527, Greece. [Sofia Carvalho, C.] IST, IPFN, P-1049001 Lisbon, Portugal. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Klein, Jeff; Marsden, Danica; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, Rolando; Gallardo, Patricio; Rojas, Felipe] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Fowler, Joseph W.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric R.] Kavli Inst Cosmol Phys, Lab Astrophys & Space Res, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hlozek, R (reprint author), Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Carvalho, C. Sofia/0000-0002-7241-9797; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074 FU U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Rhodes Trust; RCUK; ERC [259505]; NASA [NNX08AH30G]; NSERC PGSD; NSF [AST-0546035, AST-060697]; NSF Physics Frontier Center [PHY-0114422]; SLAC [DE-AC3-76SF0051]; Berkeley Center for Cosmological Physics; Commission Nacional de Investigacin Cientifica y Tecnolgica (CONICYT) FX This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731 and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania, Rhodes Trust (R.H.), RCUK Fellowship (J.D.), ERC grant 259505 (J.D.), NASA grant NNX08AH30G (S.D., A.H., and T.M.), NSERC PGSD scholarship (A.D.H.), NSF AST-0546035 and AST-060697 (A.K.), NSF Physics Frontier Center grant PHY-0114422 (E.S.), SLAC no. DE-AC3-76SF0051 (N.S.), and the Berkeley Center for Cosmological Physics (S.D.) Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. We thank Reed Plimpton, David Jacobson, Ye Zhou, Mike Cozza, Ryan Fisher, Paula Aguirre, Omelan Stryzak, and the Astro-Norte group for assistance with the ACT observations. We also thank Jacques Lassalle and the ALMA team for assistance with observations. R.H. thanks Seshadri Nadathur for providing the best-fit power spectrum void models and Chris Gordon, David Marsh, and Joe Zuntz for useful discussions. ACT operates in the Chajnantor Science Preserve in northern Chile under the auspices of the Commission Nacional de Investigacin Cientifica y Tecnolgica (CONICYT). Data acquisition electronics were developed with assistance from the Canada Foundation for Innovation. NR 75 TC 55 Z9 55 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 90 DI 10.1088/0004-637X/749/1/90 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500090 ER PT J AU Kalapotharakos, C Kazanas, D Harding, A Contopoulos, I AF Kalapotharakos, Constantinos Kazanas, Demosthenes Harding, Alice Contopoulos, Ioannis TI TOWARD A REALISTIC PULSAR MAGNETOSPHERE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; magnetohydrodynamics (MHD); methods: numerical; pulsars: general ID GAMMA-RAY PULSARS; LARGE-AREA TELESCOPE; LIGHT CURVES; CURVATURE RADIATION; OBLIQUE ROTATORS; MAGNETIC-FIELD; NEUTRON-STARS; CRAB PULSAR; POLAR GAPS; SLOT GAPS AB We present the magnetic and electric field structures and the currents and charge densities of pulsar magnetospheres that do not obey the ideal condition, E center dot B = 0. Since the acceleration of particles and the production of radiation require the presence of an electric field component parallel to the magnetic field, E-parallel to, the structure of non-ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-ideal pulsar magnetospheres is important because their comparison (including models for the production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support non-zero values for E-parallel to and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) force-free electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that this is at most 20%-40% (depending on the non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = rho c and discuss their possible implication on the determination of the "on/off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E-parallel to locally produce oscillations, potentially observable in the data. C1 [Kalapotharakos, Constantinos] Univ Maryland, Coll Pk UMDCP CRESST, College Pk, MD 20742 USA. [Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece. RP Kalapotharakos, C (reprint author), Univ Maryland, Coll Pk UMDCP CRESST, College Pk, MD 20742 USA. EM constantinos.kalapotharakos@nasa.gov RI Harding, Alice/D-3160-2012 NR 51 TC 59 Z9 59 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 2 DI 10.1088/0004-637X/749/1/2 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500002 ER PT J AU Line, MR Zhang, X Vasisht, G Natraj, V Chen, P Yung, YL AF Line, Michael R. Zhang, Xi Vasisht, Gautam Natraj, Vijay Chen, Pin Yung, Yuk L. TI INFORMATION CONTENT OF EXOPLANETARY TRANSIT SPECTRA: AN INITIAL LOOK SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; planets and satellites: atmospheres; planets and satellites: individual (HD189733b); radiative transfer ID MOLECULAR SPECTROSCOPIC DATABASE; COLLISION-INDUCED ABSORPTION; INFRARED-EMISSION-SPECTRUM; HD 189733B; EXTRASOLAR PLANET; ATMOSPHERIC-TEMPERATURE; DAYSIDE SPECTRUM; H-2 PAIRS; 209458B; HD189733B AB It has been shown that spectroscopy of transiting extrasolar planets can potentially provide a wealth of information about their atmospheres. Herein, we set up the inverse problem in spectroscopic retrieval. We use nonlinear optimal estimation to retrieve the atmospheric state (pioneered for Earth sounding by Rodgers). The formulation quantifies the degrees of freedom and information content of the spectrum with respect to geophysical parameters; herein, we focus specifically on temperature and composition. First, we apply the technique to synthetic near-infrared spectra and explore the influence of spectral signal-to-noise ratio and resolution (the two important parameters when designing a future instrument) on the information content of the data. As expected, we find that the number of retrievable parameters increases with increasing signal-to-noise ratio and resolution, although the gains quickly level off for large values. Second, we apply the methods to the previously studied dayside near-infrared emission spectrum of HD 189733b and compare the results of our retrieval with those obtained by others. C1 [Line, Michael R.; Zhang, Xi; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Vasisht, Gautam; Natraj, Vijay; Chen, Pin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Line, MR (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM mrl@gps.caltech.edu RI Chen, Pin/B-1112-2008 OI Chen, Pin/0000-0003-1195-9666 FU JPL; PATM of NASA; Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration FX We thank Zhan Su, Aaron Wolf, Konstantin Batygin, Alejandro Soto, Run-Lie Shia, Leigh Fletcher, Kuai Le, Heather Knutson, Mimi Gerstell, Linda Brown, and the Yuk Yung group for reading the article and many useful discussions. M. Line is supported by the JPL Graduate Fellowship funded by the JPL Research and Technology Development Program. X.Z. and Y.L.Y. are supported by a grant from the PATM program of NASA to the California Institute of Technology. P. Chen and G. Vasisht are supported by the JPL Research & Technology Development Program, and contributions herein were supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 42 TC 52 Z9 53 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 93 DI 10.1088/0004-637X/749/1/93 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500093 ER PT J AU Ryan, RE McCarthy, PJ Cohen, SH Yan, H Hathi, NP Koekemoer, AM Rutkowski, MJ Mechtley, MR Windhorst, RA O'Connell, RW Balick, B Bond, HE Bushouse, H Calzetti, D Crockett, RM Disney, M Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Kaviraj, S Kimble, RA MacKenty, J Mutchler, M Paresce, F Saha, A Silk, JI Trauger, J Walker, AR Whitmore, BC Young, E AF Ryan, R. E., Jr. McCarthy, P. J. Cohen, S. H. Yan, H. Hathi, N. P. Koekemoer, A. M. Rutkowski, M. J. Mechtley, M. R. Windhorst, R. A. O'Connell, R. W. Balick, B. Bond, H. E. Bushouse, H. Calzetti, D. Crockett, R. M. Disney, M. Dopita, M. A. Frogel, J. A. Hall, D. N. B. Holtzman, J. A. Kaviraj, S. Kimble, R. A. MacKenty, J. Mutchler, M. Paresce, F. Saha, A. Silk, J. I. Trauger, J. Walker, A. R. Whitmore, B. C. Young, E. TI THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; galaxies: structure ID HUBBLE-SPACE-TELESCOPE; ORIGINS DEEP SURVEY; DIGITAL SKY SURVEY; STELLAR POPULATION SYNTHESIS; MASSIVE ELLIPTIC GALAXIES; HIGH-REDSHIFT GALAXIES; STAR-FORMATION; RED-SEQUENCE; LUMINOSITY FUNCTION; QUIESCENT GALAXIES AB We present the size evolution of passively evolving galaxies at z similar to 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than or similar to 1.5. We identify 30 galaxies in similar to 40 arcmin(2) to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 mu m less than or similar to lambda(obs) less than or similar to 1.6 mu m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of similar to 0.033(1+z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M-* similar to 10(11) M-circle dot) undergo the strongest evolution from z similar to 2 to the present. Parameterizing the size evolution as (1+z)(-alpha), we find a tentative scaling of alpha approximate to (-0.6 +/- 0.7) + (0.9 +/- 0.4) log(M-*/10(9) M-circle dot), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M-*-R-e relation for red galaxies. C1 [Ryan, R. E., Jr.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [McCarthy, P. J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Yan, H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Hathi, N. P.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Koekemoer, A. M.; Bond, H. E.; Bushouse, H.; MacKenty, J.; Mutchler, M.; Whitmore, B. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Balick, B.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, D.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Crockett, R. M.; Kaviraj, S.; Silk, J. I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Disney, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales. [Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, J. A.] Galaxies Unlimited, Lutherville Timonium, MD 21093 USA. [Frogel, J. A.] King Abdulaziz Univ, Dept Astron, Jeddah 21589, Saudi Arabia. [Hall, D. N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, J. A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kimble, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Paresce, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Saha, A.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Trauger, J.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Young, E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ryan, RE (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM rryan@physics.ucdavis.edu RI Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014; OI Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090; Mechtley, Matt/0000-0001-6462-6190; silk, joe/0000-0002-1566-8148; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [11772, NAS 5-26555]; NASA from the Space Telescope Science Institute [GO-11359.0.A]; NASA JWST from GSFC [NAG5-12469] FX Special thanks are due to D. Wittman, P. Gee, C. Peng, J. Bosch, S. Schmidt, and P. Thorman. We are grateful to the men and women who worked tirelessly for many years to make Wide-Field Camera 3 the instrument it is today, and to the STScI Director M. Mountain for the discretionary time to make this program possible. We thank the anonymous referee for their excellent comments and suggestions. R. E. R. acknowledges support from NASA through grant number 11772 and for HST program 11359 was provided by NASA through grants GO-11359.0.A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. R.A.W. acknowledges support from NASA JWST Interdisciplinary Scientist grant NAG5-12469 from GSFC. Finally, we are deeply indebted to the brave astronauts of STS-125 for upgrading and extending HST into the future. NR 73 TC 26 Z9 26 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 53 DI 10.1088/0004-637X/749/1/53 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500053 ER PT J AU Temmer, M Vrsnak, B Rollett, T Bein, B de Koning, CA Liu, Y Bosman, E Davies, JA Mostl, C Zic, T Veronig, AM Bothmer, V Harrison, R Nitta, N Bisi, M Flor, O Eastwood, J Odstrcil, D Forsyth, R AF Temmer, Manuela Vrsnak, Bojan Rollett, Tanja Bein, Bianca de Koning, Curt A. Liu, Ying Bosman, Eckhard Davies, Jackie A. Moestl, Christian Zic, Tomislav Veronig, Astrid M. Bothmer, Volker Harrison, Richard Nitta, Nariaki Bisi, Mario Flor, Olga Eastwood, Jonathan Odstrcil, Dusan Forsyth, Robert TI CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME-CME INTERACTION EVENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs) ID SOLAR ENERGETIC PARTICLES; IN-SITU OBSERVATIONS; AERODYNAMIC DRAG; INNER HELIOSPHERE; COMPLEX EJECTA; DRIVEN SHOCKS; STEREO SECCHI; WIND; PROPAGATION; SIGNATURES AB We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; similar to 1200 km s(-1)) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; similar to 700 km s(-1)). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag. C1 [Temmer, Manuela; Rollett, Tanja; Bein, Bianca; Moestl, Christian; Veronig, Astrid M.; Flor, Olga] Graz Univ, Inst Phys, Kanzelhohe Observ IGAM, A-8010 Graz, Austria. [Vrsnak, Bojan; Zic, Tomislav] Univ Zagreb, Fac Geodesy, Hvar Observ, HR-10000 Zagreb, Croatia. [de Koning, Curt A.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA. [Liu, Ying; Moestl, Christian] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Liu, Ying] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China. [Bosman, Eckhard; Moestl, Christian] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Davies, Jackie A.; Bothmer, Volker] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Harrison, Richard] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Nitta, Nariaki] Lockheed Martin Adv Technol Ctr, Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Bisi, Mario] Aberystwyth Univ, Inst Math & Phys, Aberystwyth SY23 3BZ, Dyfed, Wales. [Bisi, Mario] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Eastwood, Jonathan; Forsyth, Robert] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Odstrcil, Dusan] George Mason Univ, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Temmer, M (reprint author), Graz Univ, Inst Phys, Kanzelhohe Observ IGAM, Univ Pl 5, A-8010 Graz, Austria. EM mat@igam.uni-graz.at RI Veronig, Astrid/B-8422-2009; OI Liu, Ying/0000-0002-3483-5909; Moestl, Christian/0000-0001-6868-4152; Amerstorfer, Tanja/0000-0001-9024-6706; Temmer, Manuela/0000-0003-4867-7558 FU Austrian Science Fund (FWF) [FWF V195-N16]; European Union [218816, 263252]; Austrian Space Applications Programme [828271 3D-POC]; European Community; NASA TRT [NNX09AJ84G] FX We thank Tim Howard for constructive discussions and an anonymous referee for helpful comments. M.T. greatly acknowledges the Austrian Science Fund (FWF): FWF V195-N16. The present work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 218816 (SOTERIA) and No. 263252 (COMESEP). B.B. was funded by the Austrian Space Applications Programme (ASAP-7 project No. 828271 3D-POC). This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. C.A. de Koning was supported by NASA TR&T grant NNX09AJ84G. NR 62 TC 49 Z9 49 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2012 VL 749 IS 1 AR 57 DI 10.1088/0004-637X/749/1/57 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917KW UT WOS:000302175500057 ER PT J AU Hathaway, DH AF Hathaway, David H. TI SUPERGRANULES AS PROBES OF SOLAR CONVECTION ZONE DYNAMICS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE convection; Sun: rotation ID MICHELSON DOPPLER IMAGER; DIFFERENTIAL ROTATION; MAGNETIC-FIELDS; VELOCITY FIELDS; FLOWS; GRANULATION; ATMOSPHERE; SUN AB Supergranules are convection cells seen at the Sun's surface as a space filling pattern of horizontal flows. While typical supergranules have diameters of about 35 Mm, they exhibit a broad spectrum of sizes from similar to 10 Mm to similar to 100 Mm. Here we show that supergranules of different sizes can be used to probe the rotation rate in the Sun's outer convection zone. We find that the equatorial rotation rate as a function of depth as measured by global helioseismology matches the equatorial rotation as a function of wavelength for the supergranules. This suggests that supergranules are advected by flows at depths equal to their wavelengths and thus can be used to probe flows at those depths. The supergranule rotation profiles show that the surface shear layer, through which the rotation rate increases inward, extends to depths of similar to 50 Mm and to latitudes of at least 70 degrees. Typical supergranules are well observed at high latitudes and have a range of sizes that extend to greater depths than those typically available for measuring subsurface flows with local helioseismology. These characteristics indicate that probing the solar convection zone dynamics with supergranules can complement the results of helioseismology. C1 NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Hathaway, DH (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM david.hathaway@nasa.gov FU NASA FX The author thanks NASA for its support of this research through grants from the Heliophysics Causes and Consequences of the Minimum of Solar Cycle 23/24 Program and the Living With a Star Program to NASA Marshall Space Flight Center. He is indebted to Ron Moore, Lisa (Rightmire) Upton, and an anonymous referee whose comments greatly improved the manuscript. He also thanks the American taxpayers who support scientific research in general and this research in particular. SOHO is a project of international cooperation between ESA and NASA. NR 25 TC 9 Z9 9 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 10 PY 2012 VL 749 IS 1 AR L13 DI 10.1088/2041-8205/749/1/L13 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917AA UT WOS:000302143100013 ER PT J AU Zhao, JW Nagashima, K Bogart, RS Kosovichev, AG Duvall, TL AF Zhao, Junwei Nagashima, Kaori Bogart, R. S. Kosovichev, A. G. Duvall, T. L., Jr. TI SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: helioseismology; Sun: interior; Sun: oscillations ID DYNAMICS-OBSERVATORY SDO; UPPER CONVECTION ZONE; DISTANCE HELIOSEISMOLOGY; CIRCULATION; CYCLE; OSCILLATION; WILSON; RING; LINE; SUN AB We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s(-1) slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood. C1 [Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, A. G.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Duvall, T. L., Jr.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Zhao, JW (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. RI Zhao, Junwei/A-1177-2007; OI Nagashima, Kaori/0000-0002-6927-2392 FU NASA [NAS5-02139] FX SDO is a NASA mission, and HMI project is supported by NASA contract NAS5-02139. We thank Roger Ulrich and David Hathaway for providing us their analysis results used to make Figure 5. We also thank an anonymous referee whose suggestions helped to improve the quality of this paper. NR 32 TC 38 Z9 38 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 10 PY 2012 VL 749 IS 1 AR L5 DI 10.1088/2041-8205/749/1/L5 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 917AA UT WOS:000302143100005 ER PT J AU Chung, D Matheou, G AF Chung, D. Matheou, G. TI Direct numerical simulation of stationary homogeneous stratified sheared turbulence SO JOURNAL OF FLUID MECHANICS LA English DT Article DE ocean processes; stratified turbulence; turbulence simulation ID ATMOSPHERIC SURFACE-LAYER; LOCAL ISOTROPY; GENERATED TURBULENCE; PASSIVE SCALARS; REYNOLDS-NUMBER; INTERNAL WAVES; LENGTH SCALES; FLOWS; FLUID; ENERGY AB Using direct numerical simulation, we investigate stationary and homogeneous shear-driven turbulence in various stratifications, ranging from neutral to very stable. To attain and maintain a stationary flow, we throttle the mean shear so that the net production stays constant for all times. This results in a flow that is characterized solely by its mean shear and its mean buoyancy gradient, independent of initial conditions. The method of throttling is validated by comparison with experimental spectra in the case of neutral stratification. With increasing stratification comes the emergence of vertically sheared large-scale horizontal motions that preclude a straightforward interpretation of flow statistics. However, once these motions are excluded, simply by subtracting the horizontal average, the underlying flow appears amenable to the standard methods of turbulence analysis. It is shown that a direct acknowledgement of the confining influence of the periodic simulation box can lead to a meaningful physical interpretation of the large scales. Once an appropriate confinement scale is identified, many features, including horizontal spectra, flux-gradient relationships and length scales, of stratified sheared turbulence can be readily understood, both qualitatively and quantitatively, in terms of Monin-Obukhov similarity theory. Finally, the similarity-theory framework is used to interpret the scaling of the vertical diapycnal diffusivity in stratified turbulence. C1 [Chung, D.; Matheou, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chung, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM dchung@jpl.nasa.gov RI Chung, Daniel/F-4468-2016 OI Chung, Daniel/0000-0003-3732-364X FU NASA through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; Office of Naval Research [N0001408IP20064]; NASA MAP; NOAA MAPP/CPO; National Aeronautics and Space Administration FX We thank J. C. Isaza, Z. Warhaft and L. R. Collins for kindly sharing their experimental spectra. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The authors acknowledge the support provided by the Office of Naval Research, Marine Meteorology Program under award N0001408IP20064, by the NASA MAP Program and by the NOAA MAPP/CPO Program. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 75 TC 33 Z9 33 U1 2 U2 31 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD APR 10 PY 2012 VL 696 BP 434 EP 467 DI 10.1017/jfm.2012.59 PG 34 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 919KS UT WOS:000302325400020 ER PT J AU Richards, BC Hendrickson, J Olitzky, JD Gibson, R Gehl, M Kieu, K Khankhoje, UK Homyk, A Scherer, A Kim, JY Lee, YH Khitrova, G Gibbs, HM AF Richards, B. C. Hendrickson, J. Olitzky, J. D. Gibson, R. Gehl, M. Kieu, K. Khankhoje, U. K. Homyk, A. Scherer, A. Kim, J-Y Lee, Y-H Khitrova, G. Gibbs, H. M. TI Characterization of 1D photonic crystal nanobeam cavities using curved microfiber (vol 18, pg 20558, 2010) SO OPTICS EXPRESS LA English DT Correction AB An error was made in the calculation of the photonic crystal mode volume. Fixing this error increases our mode volumes by a factor of two and makes our claim of highest Q/V invalid. (C)2010 Optical Society of America C1 [Richards, B. C.] EMCORE Corp, Adv Concepts Team, Albuquerque, NM 87123 USA. [Hendrickson, J.] USAF, Res Lab, Sensors Directorate, Wright Patterson AFB, OH 45433 USA. [Olitzky, J. D.; Gibson, R.; Gehl, M.; Kieu, K.; Khitrova, G.; Gibbs, H. M.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Khankhoje, U. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Homyk, A.; Scherer, A.] CALTECH, Elect Engn & Kavli Nanosci Inst, Pasadena, CA 91125 USA. [Kim, J-Y; Lee, Y-H] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. RP Richards, BC (reprint author), EMCORE Corp, Adv Concepts Team, Albuquerque, NM 87123 USA. EM mgehl@optics.arizona.edu RI Lee, Yong Hee/C-2015-2011 NR 2 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 9 PY 2012 VL 20 IS 8 BP 9226 EP 9226 DI 10.1364/OE.20.009226 PG 1 WC Optics SC Optics GA 926TT UT WOS:000302855500101 ER PT J AU Crooker, NU Antiochos, SK Zhao, X Neugebauer, M AF Crooker, N. U. Antiochos, S. K. Zhao, X. Neugebauer, M. TI Global network of slow solar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID OPEN MAGNETIC-FLUX; STREAMER BELTS; CORONAL HOLES; CYCLE; FIELD; TRANSPORT; MAXIMUM; REGIONS; LOOPS; SUN AB The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum. C1 [Crooker, N. U.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhao, X.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Neugebauer, M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Crooker, NU (reprint author), Boston Univ, Ctr Space Phys, 725 Commonwealth Ave, Boston, MA 02215 USA. EM crooker@bu.edu RI Antiochos, Spiro/D-4668-2012 OI Antiochos, Spiro/0000-0003-0176-4312 FU National Science Foundation [AGS-0962645] FX The authors thank the Community Coordinated Modeling Center for providing numerous synoptic maps of the Wang-Sheeley-Arge model predictions. The authors also thank Y.-M. Wang for extensive discussions on the project and T. H. Zurbuchen for upgrading the charge-state data from the ACE spacecraft. Research for this paper was supported by the National Science Foundation under Grant AGS-0962645. NR 30 TC 27 Z9 27 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 6 PY 2012 VL 117 AR A04104 DI 10.1029/2011JA017236 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 921TI UT WOS:000302500100002 ER PT J AU Eck, TF Holben, BN Reid, JS Giles, DM Rivas, MA Singh, RP Tripathi, SN Bruegge, CJ Platnick, S Arnold, GT Krotkov, NA Carn, SA Sinyuk, A Dubovik, O Arola, A Schafer, JS Artaxo, P Smirnov, A Chen, H Goloub, P AF Eck, T. F. Holben, B. N. Reid, J. S. Giles, D. M. Rivas, M. A. Singh, R. P. Tripathi, S. N. Bruegge, C. J. Platnick, S. Arnold, G. T. Krotkov, N. A. Carn, S. A. Sinyuk, A. Dubovik, O. Arola, A. Schafer, J. S. Artaxo, P. Smirnov, A. Chen, H. Goloub, P. TI Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SKY RADIANCE MEASUREMENTS; INDO-GANGETIC BASIN; OPTICAL-PROPERTIES; PHYSICAL-PROPERTIES; PO VALLEY; ATMOSPHERIC AEROSOLS; SIZE DISTRIBUTION; CUMULUS CLOUDS; NORTHERN INDIA; BOUNDARY-LAYER AB Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often similar to 0.4-0.5 mu m radius (volume distribution); the smaller mode, typically similar to 0.12 to similar to 0.20 mu m, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction. C1 [Eck, T. F.; Holben, B. N.; Giles, D. M.; Platnick, S.; Arnold, G. T.; Krotkov, N. A.; Sinyuk, A.; Schafer, J. S.; Smirnov, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eck, T. F.] Univ Space Res Assoc, Columbia, MD USA. [Reid, J. S.] USN, Res Lab, Monterey, CA 93907 USA. [Giles, D. M.; Sinyuk, A.; Schafer, J. S.; Smirnov, A.] Sigma Space Corp, Lanham, MD USA. [Rivas, M. A.] Univ Tarapaca, Lab Radiac Solar Ultravioleta, Dept Fis, Fac Ciencias, Arica, Chile. [Singh, R. P.] Chapman Univ, Sch Earth & Environm Sci, Orange, CA 92866 USA. [Tripathi, S. N.] Indian Inst Technol, Dept Civil Engn, Kanpur 20816, Uttar Pradesh, India. [Bruegge, C. J.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Arnold, G. T.] Sci Syst Applicat Inc, Lanham, MD USA. [Carn, S. A.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Dubovik, O.; Goloub, P.] Univ Lille, Lab Opt Atmospher, CNRS, F-59655 Villeneuve Dascq, France. [Arola, A.] Finnish Meteorol Inst, FI-70211 Kuopio, Finland. [Artaxo, P.] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil. [Chen, H.] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100101, Peoples R China. RP Eck, TF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM thomas.f.eck@nasa.gov RI Platnick, Steven/J-9982-2014; Tripathi, Sachchida/J-4840-2016; Artaxo, Paulo/E-8874-2010; ECK, THOMAS/D-7407-2012; Krotkov, Nickolay/E-1541-2012; Smirnov, Alexander/C-2121-2009; Singh, Ramesh/G-7240-2012; Dubovik, Oleg/A-8235-2009; Reid, Jeffrey/B-7633-2014 OI Platnick, Steven/0000-0003-3964-3567; Artaxo, Paulo/0000-0001-7754-3036; Arola, Antti/0000-0002-9220-0194; Krotkov, Nickolay/0000-0001-6170-6750; Smirnov, Alexander/0000-0002-8208-1304; Dubovik, Oleg/0000-0003-3482-6460; Reid, Jeffrey/0000-0002-5147-7955 FU NASA EOS project office; NASA Headquarters; UTA [4721]; MOST [2010CB950804] FX The AERONET project was supported by Michael D. King, retired in 2008 from the NASA EOS project office, and by Hal B. Maring, Radiation Sciences Program, NASA Headquarters. The IIT Kanpur AERONET site was operational since January 2001 under a joint agreement between IIT Kanpur and NASA. We acknowledge the efforts of Harish Vishwakarama in the operation of this AERONET site. M. Rivas acknowledges support by UTA-Mayor grant 4721 (2011-2012). H. Chen acknowledges support by MOST grant 2010CB950804 (2010-2014). NR 80 TC 34 Z9 34 U1 0 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 5 PY 2012 VL 117 AR D07206 DI 10.1029/2011JD016839 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 922EC UT WOS:000302528600002 ER PT J AU Collinson, GA Sibeck, DG Masters, A Shane, N Slavin, JA Coates, AJ Zhang, TL Sarantos, M Boardsen, S Moore, TE Barabash, S AF Collinson, G. A. Sibeck, D. G. Masters, A. Shane, N. Slavin, J. A. Coates, A. J. Zhang, T. L. Sarantos, M. Boardsen, S. Moore, T. E. Barabash, S. TI Hot flow anomalies at Venus SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; DIAMAGNETIC CAVITIES UPSTREAM; SPACE PLASMAS; EXPRESS MISSION; SOLAR-WIND; DISCONTINUITY; ANALYZER; LOCATION; ASPERA-4 AB We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system. C1 [Collinson, G. A.; Sibeck, D. G.; Slavin, J. A.; Sarantos, M.; Boardsen, S.; Moore, T. E.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Masters, A.; Shane, N.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Holmbury RH5 6NT, England. [Slavin, J. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Zhang, T. L.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Masters, A.; Shane, N.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Sarantos, M.; Boardsen, S.] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA. [Barabash, S.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. RP Collinson, GA (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, 8080 Greenbelt Rd, Greenbelt, MD 20771 USA. EM glyn.a.collinson@nasa.gov RI Sibeck, David/D-4424-2012; Collinson, Glyn/D-5700-2012; Moore, Thomas/D-4675-2012; Coates, Andrew/C-2396-2008; Slavin, James/H-3170-2012; Sarantos, Menelaos/H-8136-2013; OI Moore, Thomas/0000-0002-3150-1137; Coates, Andrew/0000-0002-6185-3125; Slavin, James/0000-0002-9206-724X; Shane, Neville/0000-0003-1024-7739 FU NASA at NASA Goddard Spaceflight Center; NASA; UK STFC FX This work was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Spaceflight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This work was also supported by UK STFC through a rolling grant to MSSL/UCL. We would additionally like to thank Mats Holstrom for making ASPERA-NPI data available to us, even though we ultimately did not include it in this paper. We also offer thanks to Lynn Wilson III for assistance in reviewing the manuscript. NR 40 TC 14 Z9 14 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 5 PY 2012 VL 117 AR A04204 DI 10.1029/2011JA017277 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 921TG UT WOS:000302499900003 ER PT J AU Gronoff, G Wedlund, CS Mertens, CJ Lillis, RJ AF Gronoff, Guillaume Wedlund, Cyril Simon Mertens, Christopher J. Lillis, Robert J. TI Computing uncertainties in ionosphere-airglow models: I. Electron flux and species production uncertainties for Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ANALYTIC CROSS-SECTIONS; RADIATIVE-TRANSFER; IMPACT IONIZATION; UPPER-ATMOSPHERE; COLLISIONS; TRANSPORT; ENERGY; PHOTOELECTRONS; TEMPERATURE; OXYGEN AB The ionization and excitation of atoms and molecules in the upper atmospheres of the Earth and planets are computed by a number of physical models. From these calculations, quantities measurable by dedicated satellite experiments such as airglow and electron fluxes can be derived. It is then possible to compare model and observation to derive more fundamental physical properties of the upper atmospheres, for example, the density as a function of altitude. To ensure the accuracy of these retrieval techniques, it is important to have an estimation of the uncertainty of these models and to have ways to account for these uncertainties. The complexity of kinetic models for computing the secondary production of excited state species (including ions) makes it a difficult evaluation, and studies usually neglect or underestimate it. We present here a Monte-Carlo approach to the computation of model uncertainties. As an example, we studied several aspects of the model uncertainties in the upper atmosphere of Mars, including the computed secondary electron flux and the production of the main ion species. Our simulations show the importance of improving solar flux models, especially on the energy binning and on the photon impact cross sections, which are the main sources of uncertainties on the dayside. The risk of modifying cross sections on the basis of aeronomical observations is highlighted for the case of Mars, while accurate uncertainties are shown to be crucial for the interpretation of data from the particle detectors onboard Mars Global Surveyor. Finally, it shows the importance of AtMoCiad, a public database dedicated to the evaluation of aeronomy cross section uncertainties. A detailed study of the resulting emissions cross sections uncertainties is the focus of a forthcoming paper (Gronoff et al., 2012) in which the outputs discussed in the present paper are used to compute airglow uncertainty, and the overall result is compared with the data from the SPICAM UV spectrometer onboard Mars Express. C1 [Gronoff, Guillaume; Mertens, Christopher J.] NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Hampton, VA 23681 USA. [Lillis, Robert J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Wedlund, Cyril Simon] Belgian Inst Space Aeron BIRA IASB, B-1180 Brussels, Belgium. RP Gronoff, G (reprint author), NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Mail Stop 401B,21 Langley Blvd, Hampton, VA 23681 USA. EM Guillaume.P.Gronoff@nasa.gov RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Gronoff, Guillaume/0000-0002-0331-7076 FU NASA at NASA Langley Research Center; NASA [NNX09AD43G, NNX08AK94G, NNX11AI87G]; NASA Science Mission Directorate FX The authors are in debt to Jean Lilensten (IPAG, France), and Arun Gopalan (SSAI/NASA, USA) for useful discussions, and also to Ryan Norman (NASA, USA) for the long hours discussing the philosophy of the energy grid uncertainties. The authors wish to thank the anonymous referees for their numerous comments, suggestions, and corrections. The work of Guillaume Gronoff was supported by an appointment to the NASA Postdoctoral Program at NASA Langley Research Center, administered by Oak Ridge Associated University through a contract with NASA, and funded by the NASA Science Mission Directorate. The work of Rob Lillis was funded by NASA Mars Fundamental Research Program grant NNX09AD43G and the NASA Mars Data Analysis Program grants NNX08AK94G and NNX11AI87G. NR 51 TC 9 Z9 9 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 5 PY 2012 VL 117 AR A04306 DI 10.1029/2011JA016930 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 921TG UT WOS:000302499900001 ER PT J AU Hystad, P Demers, PA Johnson, KC Brook, J van Donkelaar, A Lamsal, L Martin, R Brauer, M AF Hystad, Perry Demers, Paul A. Johnson, Kenneth C. Brook, Jeff van Donkelaar, Aaron Lamsal, Lok Martin, Randall Brauer, Michael TI Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study SO ENVIRONMENTAL HEALTH LA English DT Article DE Air pollution; Canada; Exposure assessment; Lung cancer; Residential mobility; Spatiotemporal ID LONG-TERM EXPOSURE; RESIDENTIAL-MOBILITY; DRINKING-WATER; FOLLOW-UP; MORTALITY; DISEASE; RISK; LYMPHOMA; CITIES; COHORT AB Background: Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. Methods: National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2) and a chemical transport model (for O-3). The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. Results: Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R-2 = 0.51), while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R-2 = 0.38) and O-3 (R-2 = 0.56). Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O-3 exposures of 11.3 mu g/m(3) (SD = 2.6), 17.7 ppb (4.1), and 26.4 ppb (3.4) respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years) and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years). Approximately 50% of individuals were classified into a different PM2.5, NO2 and O-3 exposure quintile when using study entry postal codes and spatial pollution surfaces, in comparison to exposures derived from residential histories and spatiotemporal air pollution models. Recall bias was also present for self-reported residential histories prior to 1975, with cases recalling older residences more often than controls. Conclusions: We demonstrate a flexible exposure assessment approach for estimating historical air pollution concentrations over large geographical areas and time-periods. In addition, we highlight the importance of including residential histories in long-term exposure assessments. For submission to: Environmental Health C1 [Hystad, Perry; Brauer, Michael] Univ British Columbia, Sch Populat & Publ Hlth, Vancouver, BC V6T 1Z3, Canada. [Demers, Paul A.] Canc Care Ontario, Occupat Canc Res Ctr, Toronto, ON, Canada. [Johnson, Kenneth C.] Publ Hlth Agcy Canada, Ctr Chron Dis Prevent & Control, Sci Integrat Div, Toronto, ON, Canada. [Brook, Jeff] Air Qual Res Div, Toronto, ON, Canada. [van Donkelaar, Aaron] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Lamsal, Lok] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Martin, Randall] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. [Martin, Randall] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. RP Hystad, P (reprint author), Univ British Columbia, Sch Populat & Publ Hlth, 2206 E Mall, Vancouver, BC V6T 1Z3, Canada. EM phystad@gmail.com RI Lamsal, Lok/G-4781-2012; OI Brauer, Michael/0000-0002-9103-9343 FU UBC; Michael Smith Foundation for Health Research; Canadian Institute of Health Research FX We would like to thank: the Canadian Cancer Registries Epidemiologic Research Group for the lung cancer case-control data; the National Air Pollution Surveillance (NAPS) program for the air pollution monitoring data; and Qian Li and Ilan Levy for helping create the O3 spatial surface. PH is supported a UBC Bridge scholarship, a Michael Smith Foundation for Health Research senior graduate trainee award, and a Canadian Institute of Health Research Frederick Banting and Best research scholarship. NR 39 TC 21 Z9 22 U1 3 U2 38 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1476-069X J9 ENVIRON HEALTH-GLOB JI Environ. Health PD APR 4 PY 2012 VL 11 AR 22 DI 10.1186/1476-069X-11-22 PG 13 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 957GW UT WOS:000305149200001 PM 22475580 ER PT J AU Magin, TE Panesi, M Bourdon, A Jaffe, RL Schwenke, DW AF Magin, Thierry E. Panesi, Marco Bourdon, Anne Jaffe, Richard L. Schwenke, David W. TI Coarse-grain model for internal energy excitation and dissociation of molecular nitrogen SO CHEMICAL PHYSICS LA English DT Article DE Atmospheric entries; Rovibrational energy excitation; Dissociation; Nitrogen flows; Chemical mechanism reduction ID STRONG SHOCK-WAVE; ROTATIONAL RELAXATION; RATES; HYDROGEN AB A rovibrational collisional coarse-grain model has been developed to reduce a detailed mechanism for the internal energy excitation and dissociation processes behind a strong shockwave in a nitrogen flow. The rovibrational energy levels of the electronic ground state of the nitrogen molecule were lumped into a smaller number of bins. The reaction rate coefficients of an ab initio database developed at NASA Ames Research Center were averaged for each bin based on a uniform distribution of the energy levels within the bin. The results were obtained by coupling the Master equation for the reduced mechanism with a one-dimensional flow solver for conditions expected for reentry into Earth's atmosphere at 10 km/s. The coarse-grain collisional model developed allow us to describe accurately the internal energy relaxation and dissociation processes based on a smaller number of equations, as opposed to existing reduced models assuming thermal equilibrium between the rotational and translational energy modes. (C) 2011 Elsevier B.V. All rights reserved. C1 [Magin, Thierry E.] von Karman Inst Fluid Dynam, Aeronaut & Aerosp Dept, B-1640 Rhode St Genese, Belgium. [Panesi, Marco] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA. [Bourdon, Anne] Ecole Cent Paris, CNRS UPR 288, Lab EM2C, F-92290 Chatenay Malabry, France. [Jaffe, Richard L.; Schwenke, David W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Magin, TE (reprint author), von Karman Inst Fluid Dynam, Aeronaut & Aerosp Dept, Chaussee Waterloo 72, B-1640 Rhode St Genese, Belgium. EM magin@vki.ac.be RI schwenke, david/I-3564-2013; bourdon, anne/O-9869-2014; Magin, Thierry/A-7533-2016 OI bourdon, anne/0000-0003-3662-4651; Magin, Thierry/0000-0002-4376-1518 FU European Research Council [259354]; US Department of Energy; NASA FX The authors have benefitted from numerous discussions with Dr. G. Chaban, Dr. W. Huo, and Dr. Y. Liu at NASA Ames Research Center, that were crucial to the development of the coarse-grain model. We gratefully acknowledge Dr. K. Schulz at The University of Texas at Austin, for his help in substantially speeding up the code, and Mr. Alessandro Munafo at the von Karman Institute for Fluid Dynamics, for performing the numerical computations shown in the present paper. This work was initiated during the 2008 Summer Program at the Center for Turbulence Research at Stanford University. Research of T. E. M. is sponsored by the European Research Council Starting Grant #259354, research of M. P. by the Predictive Science Academic Alliance Program of the US Department of Energy, and research of R. J. and D. S. by the Fundamental Aeronautics Program of NASA. NR 26 TC 25 Z9 25 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD APR 4 PY 2012 VL 398 BP 90 EP 95 DI 10.1016/j.chemphys.2011.10.009 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 941XN UT WOS:000304002100013 ER PT J AU Chen, CC Gettelman, A Craig, C Minnis, P Duda, DP AF Chen, Chih-Chieh Gettelman, Andrew Craig, Cheryl Minnis, Patrick Duda, David P. TI Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; CLOUD MICROPHYSICS SCHEME; PARABOLIC METHOD PPM; AVHRR-DATA; CLIMATE; CIRRUS; AEROSOLS; SYSTEM; IMPACT; SAGE AB This paper documents the incorporation of an inventory of the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions for the year of 2006 into the National Center for Atmospheric Research Community Earth System Model (CESM) version 1. The original dataset reports aircraft emission mass of ten species on an hourly basis which is converted to monthly emission mixing ratio tendencies as the released version of the dataset. We also describe how the released aircraft emission dataset is incorporated into CESM. A contrail parameterization is implemented in the CESM in which it is assumed that persistent contrails initially form when aircraft water vapor emissions experience a favorable atmospheric environment. Both aircraft emissions and ambient humidity are attributed to the formation of contrails. The ice water content of contrails is assumed to follow an empirical function of atmospheric temperature which determines the cloud fraction associated with contrails. Our modeling study indicates that the simulated global contrail coverage is sensitive to the vertical resolution of the GCMs in the upper troposphere and lower stratosphere because of model assumptions about the vertical overlap structure of clouds. Furthermore, the extent of global contrail coverage simulated by CESM exhibits a seasonal cycle which is in broad agreement with observations. C1 [Chen, Chih-Chieh; Gettelman, Andrew; Craig, Cheryl] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Gettelman, Andrew] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Duda, David P.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Chen, CC (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM cchen@ucar.edu RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU FAA's ACCRI Program [DTRT57-10-C-10012]; U.S. National Foundation FX This work was funded by the FAA's ACCRI Program under award DTRT57-10-C-10012. Computing resources were provided by the Climate Simulation Laboratory at National Center for Atmospheric Research (NCAR) Computational and Information Systems Laboratory. NCAR is sponsored by the U.S. National Foundation. NR 41 TC 9 Z9 9 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD APR 4 PY 2012 VL 4 AR M04003 DI 10.1029/2011MS000105 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 931EW UT WOS:000303199400001 ER PT J AU Vasavada, AR Bandfield, JL Greenhagen, BT Hayne, PO Siegler, MA Williams, JP Paige, DA AF Vasavada, Ashwin R. Bandfield, Joshua L. Greenhagen, Benjamin T. Hayne, Paul O. Siegler, Matthew A. Williams, Jean-Pierre Paige, David A. TI Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID RECONNAISSANCE ORBITER MISSION; EMISSION; MOON AB The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter has measured solar reflectance and mid-infrared radiance globally, over four diurnal cycles, at unprecedented spatial and temporal resolution. These data are used to infer the radiative and bulk thermophysical properties of the near-surface regolith layer at all longitudes around the equator. Normal albedos are estimated from solar reflectance measurements. Normal spectral emissivities relative to the 8-mu m Christiansen Feature are computed from brightness temperatures and used along with albedos as inputs to a numerical thermal model. Model fits to daytime temperatures require that the albedo increase with solar incidence angle. Measured nighttime cooling is remarkably similar across longitude and major geologic units, consistent with the scarcity of rock exposures and with the widespread presence of a near-surface layer whose physical structure and thermal response are determined by pulverization through micrometeoroid impacts. Nighttime temperatures are best fit using a graded regolith model, with a similar to 40% increase in bulk density and an eightfold increase in thermal conductivity (adjusted for temperature) occurring within several centimeters of the surface. C1 [Vasavada, Ashwin R.; Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Bandfield, Joshua L.] Univ Washington, Seattle, WA 98195 USA. [Siegler, Matthew A.; Williams, Jean-Pierre; Paige, David A.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Vasavada, AR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 264-640, Pasadena, CA 91125 USA. EM ashwin@jpl.nasa.gov RI Williams, Jean-Pierre/C-3531-2009; Greenhagen, Benjamin/C-3760-2016 OI Williams, Jean-Pierre/0000-0003-4163-2760; FU National Aeronautics and Space Administration FX Two reviewers provided valuable suggestions for improving the manuscript. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 20 TC 48 Z9 49 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 4 PY 2012 VL 117 AR E00H18 DI 10.1029/2011JE003987 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 922ER UT WOS:000302530100002 ER PT J AU Sultana, J Kazanas, D AF Sultana, Joseph Kazanas, Demosthenes TI Bending of light in modified gravity at large distances SO PHYSICAL REVIEW D LA English DT Article ID LIMIT AB We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)]. We consider the static, spherically symmetric metric with cosmological constant A and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. D 76, 043006 (2007).] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. D 83, 124024 (2011)], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric. C1 [Sultana, Joseph] Univ Malta, Dept Math, Msida, Malta. [Kazanas, Demosthenes] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Sultana, J (reprint author), Univ Malta, Dept Math, Msida, Malta. EM joseph.sultana@um.edu.mt; demos.kazanas@nasa.gov FU University of Malta FX J. S. gratefully acknowledges financial support from the University of Malta during his visit at NASA-GSFC. NR 20 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 2 PY 2012 VL 85 IS 8 AR 081502 DI 10.1103/PhysRevD.85.081502 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 918GW UT WOS:000302238300002 ER PT J AU Heer, M Smith, SM Frings-Meuthen, P Zwart, SR Baecker, N AF Heer, Martina Smith, Scott M. Frings-Meuthen, Petra Zwart, Sara R. Baecker, Natalie TI High protein intake improves insulin sensitivity but exacerbates bone resorption in immobility SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Heer, Martina; Baecker, Natalie] Univ Bonn, Bonn, Germany. [Heer, Martina] Profil Inst Metab Res, Neuss, Germany. [Smith, Scott M.] NASA JSC, Houston, TX USA. [Frings-Meuthen, Petra] DLR, Inst Aerosp Med, Cologne, Germany. [Zwart, Sara R.] USRA, Houston, TX USA. NR 0 TC 0 Z9 0 U1 2 U2 5 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711307012 ER PT J AU Morgan, JLL Skulan, JL Gordon, GE Romaniello, SJ Smith, SM Anbar, AD AF Morgan, Jennifer L. L. Skulan, Joseph L. Gordon, Gwyneth E. Romaniello, Stephen J. Smith, Scott M. Anbar, Ariel D. TI Using natural stable calcium isotopes to rapidly assess changes in bone mineral balance using a bed rest model to induce bone loss SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Morgan, Jennifer L. L.] NASA, Human Adaptat & Countermeasure Div, ORAU, Houston, TX USA. [Skulan, Joseph L.; Gordon, Gwyneth E.; Romaniello, Stephen J.; Anbar, Ariel D.] ASU, SESE, Tempe, AZ USA. NR 0 TC 0 Z9 0 U1 0 U2 7 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711301786 ER PT J AU Morgan, JLL Theriot, CA Wu, HL Smith, SM Zwart, SR AF Morgan, Jennifer L. L. Theriot, Corey A. Wu, Honglu Smith, Scott M. Zwart, Sara R. TI High dietary iron and radiation exposure increase biomarkers of oxidative stress in blood and liver of rats SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Morgan, Jennifer L. L.; Theriot, Corey A.] ORAU NASA, Human Adaptat & Countermeasure Div, Houston, TX USA. [Wu, Honglu; Smith, Scott M.] NASA, Human Adaptat & Countermeasure Div, Houston, TX USA. [Zwart, Sara R.] USRA NASA, Human Adaptat & Countermeasure Div, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711301745 ER PT J AU Seawright, J Westby, CM Wu, HL AF Seawright, John Westby, Christian M. Wu, Honglu TI Induction of a radio-adaptive response by low-dose gamma irradiation in mouse cardiac myocytes SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Seawright, John] Texas A&M Univ, College Stn, TX USA. [Westby, Christian M.] Univ Space Res Assoc, Houston, TX USA. [Wu, Honglu] NASA, Human Adaptat & Countermeasures SK3, Johnson Space Ctr, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711300842 ER PT J AU Smith, SM Gibson, CR Mader, TH Ericson, K Ploutz-Snyder, R Heer, M Zwart, SR AF Smith, Scott M. Gibson, C. Robert Mader, Thomas H. Ericson, Karen Ploutz-Snyder, Robert Heer, Martina Zwart, Sara R. TI Vision Changes after Space Flight Are Related to Alterations in Folate-Dependent One-Carbon Metabolism SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Smith, Scott M.] NASA JSC, Human Adaptat & Countermeasures Div, Houston, TX USA. [Gibson, C. Robert] Wyle Labs, Houston, TX USA. [Mader, Thomas H.] Alaska Native Med Ctr, Anchorage, AK USA. [Ericson, Karen] Indiana Univ Purdue Univ, Ft Wayne, IN 46805 USA. [Ploutz-Snyder, Robert; Zwart, Sara R.] USRA NASA, Houston, TX USA. [Heer, Martina] Univ Bonn, Neuss, Germany. [Heer, Martina] Profil Inst Metab Res, Neuss, Germany. NR 0 TC 0 Z9 0 U1 0 U2 1 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711301727 ER PT J AU Westby, CM Mc Lee, S Stenger, MB Platts, SH AF Westby, Christian M. Mc Lee, Stuart Stenger, Michael B. Platts, Steven H. TI The change in lower limb venous compliance is different between women and men following 60 days of head-down bedrest but is not associated with venoconstrictor dysfunction SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Westby, Christian M.] Univ Space Res Assoc, Houston, TX USA. [Mc Lee, Stuart; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711304761 ER PT J AU Wotring, VE Peters, CP AF Wotring, Virginia E. Peters, Calvin P. TI Changes in liver metabolic gene expression after radiation exposure SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Wotring, Virginia E.] NASA, Pharmacol Discipline, Johnson Space Ctr, Houston, TX USA. [Peters, Calvin P.] Bethel Univ, St Paul, MN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711300592 ER PT J AU Yuen, E Morgan, JL Zwart, SR Gonzales, E Camp, K Macias, BR Smith, SM Bloomfield, SA AF Yuen, Evelyn Morgan, Jennifer L. Zwart, Sara R. Gonzales, Estela Camp, Kaleigh Macias, Brandon R. Smith, Scott M. Bloomfield, Susan A. TI High dietary iron and 137Cs radiation exposure induce oxidative stress and reduce bone mass SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Yuen, Evelyn; Gonzales, Estela; Camp, Kaleigh; Macias, Brandon R.; Bloomfield, Susan A.] Texas A&M Univ, College Stn, TX USA. [Morgan, Jennifer L.] ORAU, Houston, TX USA. [Zwart, Sara R.] USRA, Houston, TX USA. [Smith, Scott M.] NASA, Johnson Space Ctr, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711306725 ER PT J AU Zwart, SR Heer, M Smith, SM AF Zwart, Sara R. Heer, Martina Smith, Scott M. TI Urinary acid excretion can predict changes in bone metabolism during space flight SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY APR 21-25, 2012 CL San Diego, CA C1 [Zwart, Sara R.] USRA NASA JSC, Houston, TX USA. [Heer, Martina] Univ Bonn, Neuss, Germany. [Heer, Martina] Profil Inst Metab Res, Neuss, Germany. [Smith, Scott M.] NASA JSC, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2012 VL 26 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 032IZ UT WOS:000310711301770 ER PT J AU Klimas, A Hesse, M Zenitani, S AF Klimas, Alex Hesse, Michael Zenitani, Seiji TI Particle-in-cell simulation of collisionless undriven reconnection with open boundaries SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION; DRIVEN RECONNECTION AB The results are discussed of a 2 1/2 dimensional, undriven, fully open-boundary particle-in-cell simulation of symmetric, anti-parallel reconnection. It is shown that the reconnection rate as measured by the strength of the out-of-plane electric field component at the dominant x-line is fast and unrelated to the emergence of magnetic islands. In contrast, it is shown that this reconnection rate normalized by the inflowing VAlf,inBin at the x-line does show a striking relationship to island emergence in a majority of cases. A detailed study of an outflow jet is discussed. It is shown that for this example the concept of an outer electron diffusion region is a misnomer. In this jet, the electrons are tied to the magnetic field motion in the local Hall plane. The extended electron diffusion region ((EDR)-D-2) surrounding a reconnection site, where the out-of-plane non-ideal electric field is greater than zero, is discussed. The width d of this region is shown to remain between the ion and electron bounce length scales, in contrast, to the behavior in driven reconnection simulations in which d evolves from the electron bounce width to the ion bounce width, where it remains. The boundaries of the (EDR)-D-2 in the outflow directions are shown to mark the positions at which the electrons are magnetized and begin their drift with the field in the local Hall plane. It is shown that the aspect ratio d/L, in which L is the length of the (EDR)-D-2, yields an excellent approximation to the normalized reconnection rate while the expression T-i/L, in which T-i is the ion temperature at the x-line, yields an excellent approximation to the un-normalized rate. It is concluded that the dynamics of the electrons in the (EDR)-D-2 is intimately related to the reconnection rate and it is suggested that in two dimensional, anti parallel, symmetric simulations, this region is the correct choice for the controversial electron diffusion region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699032] C1 [Klimas, Alex] Univ Maryland Baltimore Cty, GPHI, Catonsville, MD 21228 USA. [Klimas, Alex; Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zenitani, Seiji] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. RP Klimas, A (reprint author), Univ Maryland Baltimore Cty, GPHI, Catonsville, MD 21228 USA. RI Zenitani, Seiji/D-7988-2013; NASA MMS, Science Team/J-5393-2013 OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA's MMS IDS [NCC5-494] FX This research was supported by NASA's MMS IDS Grant No. NCC5-494 (MOST). NR 22 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2012 VL 19 IS 4 AR 042901 DI 10.1063/1.3699032 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 017LT UT WOS:000309592100033 ER PT J AU Kaskaoutis, DG Singh, RP Gautam, R Sharma, M Kosmopoulos, PG Tripathi, SN AF Kaskaoutis, Dimitris G. Singh, Ramesh P. Gautam, Ritesh Sharma, Manish Kosmopoulos, P. G. Tripathi, S. N. TI Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001-10) SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE aerosol optical depth; trend; AERONET; Kanpur; Indo-Gangetic plains ID OPTICAL DEPTH; GANGETIC BASIN; NETWORK; WINTER; MODIS; DUST; SUN AB Natural and anthropogenic aerosols over northern India play an important role in influencing the regional radiation budget, causing climate implications to the overall hydrological cycle of South Asia. In the context of regional climate change and air quality, we discuss aerosol loading variability and trends at Kanpur AERONET station located in the central part of the Indo-Gangetic plains (IGP), during the last decade (2001-10). Ground-based radiometric measurements show an overall increase in column-integrated aerosol optical depth (AOD) on a yearly basis. This upward trend is mainly due to a sustained increase in the seasonal/monthly averaged AOD during the winter (Dec-Feb) and post-monsoon (Oct-Nov) seasons (dominated by anthropogenic emissions). In contrast, a neutral to weak declining trend is observed during late pre-monsoon (Mar-May) and monsoon (Jun-Sep) months, mainly influenced by inter-annual variations of dust outbreaks. A general decrease in coarse-mode aerosols associated with variable dust activity is observed, whereas the statistically significant increasing post-monsoon/winter AOD is reflected in a shift of the columnar size distribution towards relatively larger particles in the accumulation mode. Overall, the present study provides an insight into the pronounced seasonal behavior in aerosol loading trends and, in general, is in agreement with that associating the findings with those recently reported by satellite observations (MODIS and MISR) over northern India. Our results further suggest that anthropogenic emissions (due mainly to fossil-fuel and biomass combustion) over the IGP have continued to increase in the last decade. C1 [Kaskaoutis, Dimitris G.; Sharma, Manish] Sharda Univ, Res & Technol Dev Ctr, Greater Noida 201306, Ncr, India. [Singh, Ramesh P.] Chapman Univ, Sch Earth & Environm Sci, Schmid Coll Sci & Technol, Orange, CA 92866 USA. [Gautam, Ritesh] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Gautam, Ritesh] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kosmopoulos, P. G.] Univ Athens, Dept Phys, Lab Meteorol, GR-15784 Zografos, Greece. [Tripathi, S. N.] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India. RP Kaskaoutis, DG (reprint author), Sharda Univ, Res & Technol Dev Ctr, Greater Noida 201306, Ncr, India. EM rsingh@chapman.edu RI Kosmopoulos, Panagiotis/E-6156-2013; Gautam, Ritesh/E-9776-2010; Tripathi, Sachchida/J-4840-2016 OI Gautam, Ritesh/0000-0002-2177-9346; FU USRA FX IIT Kanpur AERONET was operational as of January 2001 after the joint agreement by IIT Kanpur and NASA. Our sincere thanks go to the AERONET team for processing and making the data available. The authors thank three anonymous referees for their comments/suggestions to improve the original version of the paper. One of the authors (RG) is grateful to USRA for partially supporting this work. NR 39 TC 35 Z9 35 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2012 VL 7 IS 2 AR 024003 DI 10.1088/1748-9326/7/2/024003 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 989VZ UT WOS:000307590300006 ER PT J AU Samanta, A Ganguly, S Vermote, E Nemani, RR Myneni, RB AF Samanta, Arindam Ganguly, Sangram Vermote, Eric Nemani, Ramakrishna R. Myneni, Ranga B. TI Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009 SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE Amazon; greenness; remote sensing ID TROPICAL FORESTS; RAIN-FORESTS; PRIMARY PRODUCTIVITY; SURFACE-TEMPERATURE; VEGETATION INDEXES; PHENOLOGY; DROUGHT; TREES; CONSEQUENCES; SENSITIVITY AB This work investigates variations in satellite-measured greenness of Amazon forests using ten years of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) data. Corruption of optical remote sensing data with clouds and aerosols is prevalent in this region; filtering corrupted data causes spatial sampling constraints, as well as reducing the record length, which introduces large biases in estimates of greenness anomalies. The EVI data, analyzed in multiple ways and taking into account EVI accuracy, consistently show a pattern of negligible changes in the greenness levels of forests both in the area affected by drought in 2005 and outside it. Small random patches of anomalous greening and browning-especially prominent in 2009-appear in all ten years, irrespective of contemporaneous variations in precipitation, but with no persistence over time. The fact that over 90% of the EVI anomalies are insignificantly small-within the envelope of error (95% confidence interval) in EVI-warrants cautious interpretation of these results: there were no changes in the greenness of these forests, or if there were changes, the EVI data failed to capture these either because the constituent reflectances were saturated or the moderate resolution precluded viewing small-scale variations. This suggests a need for more accurate and spatially resolved synoptic views from satellite data and corroborating comprehensive ground sampling to understand the greenness dynamics of these forests. C1 [Samanta, Arindam] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Samanta, Arindam; Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Ganguly, Sangram] NASA, BAERI, Ames Res Ctr, Moffett Field, CA 94035 USA. [Vermote, Eric] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Nemani, Ramakrishna R.] NASA, Biospher Sci Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Samanta, A (reprint author), Atmospher & Environm Res Inc, 131 Hartwell Ave, Lexington, MA 02421 USA. EM arindam.sam@gmail.com RI Vermote, Eric/K-3733-2012; ganguly, sangram/B-5108-2010; Myneni, Ranga/F-5129-2012 FU NASA Earth Science Enterprise FX This research was funded by the NASA Earth Science Enterprise. NR 45 TC 12 Z9 12 U1 2 U2 42 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2012 VL 7 IS 2 AR 024018 DI 10.1088/1748-9326/7/2/024018 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 989VZ UT WOS:000307590300021 ER PT J AU Simard, M Hensley, S Lavalle, M Dubayah, R Pinto, N Hofton, M AF Simard, Marc Hensley, Scott Lavalle, Marco Dubayah, Ralph Pinto, Naiara Hofton, Michelle TI An Empirical Assessment of Temporal Decorrelation Using the Uninhabited Aerial Vehicle Synthetic Aperture Radar over Forested Landscapes SO REMOTE SENSING LA English DT Article DE radar; forest; height; interferometry; temporal decorrelation; repeat-pass; PolinSAR ID SAR INTERFEROMETRY; TOPOGRAPHY; VEGETATION; INVERSION AB We present an empirical assessment of the impact of temporal decorrelation on interferometric coherence measured over a forested landscape. A series of repeat-pass interferometric radar images with a zero spatial baseline were collected with UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), a fully polarimetric airborne L-band radar system. The dataset provided temporal separations of 45 minutes, 2, 7 and 9 days. Coincident airborne lidar and weather data were collected. We theoretically demonstrate that UAVSAR measurement accuracy enables accurate quantification of temporal decorrelation. Data analysis revealed precipitation events to be the main driver of temporal decorrelation over the acquisition period. The experiment also shows temporal decorrelation increases with canopy height, and this pattern was found consistent across forest types and polarization. C1 [Simard, Marc; Hensley, Scott; Lavalle, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dubayah, Ralph; Pinto, Naiara; Hofton, Michelle] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. RP Simard, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM marc.simard@jpl.nasa.gov; scott.hensley@jpl.nasa.gov; marco.lavalle@jpl.nasa.gov; dubayah@umd.edu; npinto@umd.edu; mhofton@umd.edu RI Simard, Marc/H-3516-2013; Beckley, Matthew/D-4547-2013 OI Simard, Marc/0000-0002-9442-4562; FU University of Maryland, College Park; NASA's Terrestrial Ecology Program [WBS 281945.02.61.01.69] FX Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Special thanks to Yang Zheng for UAVSAR support at JPL. Data sets were provided by the Laser Vegetation Imaging Sensor (LVIS) team in the Laser Remote Sensing Branch at NASA Goddard Space Flight Center with support from the University of Maryland, College Park. This research was funded by NASA's Terrestrial Ecology Program (WBS 281945.02.61.01.69). NR 21 TC 19 Z9 20 U1 0 U2 21 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD APR PY 2012 VL 4 IS 4 BP 975 EP 986 DI 10.3390/rs4040975 PG 12 WC Remote Sensing SC Remote Sensing GA 978PQ UT WOS:000306757400008 ER PT J AU Irvine, TB AF Irvine, Thomas B. TI Opening the skies to UAVs SO AEROSPACE AMERICA LA English DT Editorial Material C1 NASA, Aeronaut Res Mission Directorate, Washington, DC USA. RP Irvine, TB (reprint author), NASA, Aeronaut Res Mission Directorate, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD APR PY 2012 VL 50 IS 4 BP 3 EP 3 PG 1 WC Engineering, Aerospace SC Engineering GA 981JB UT WOS:000306961800001 ER PT J AU Banke, J AF Banke, Jim TI Getting from gate to gate SO AEROSPACE AMERICA LA English DT Article AB When growing congestion at airports forces flights to queue up for takeoffs and landings, the resulting delays can have ripple effects throughout the air traffic system. NASA has been developing technology and software aimed at streamlining aircraft departures and arrivals, including ground movements, while still maintaining safe distances between planes. 2012 will be a busy year for testing these new air traffic management tools. C1 [Banke, Jim] NASA Headquarters, Washington, DC USA. RP Banke, J (reprint author), NASA Headquarters, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD APR PY 2012 VL 50 IS 4 BP 28 EP 33 PG 6 WC Engineering, Aerospace SC Engineering GA 981JB UT WOS:000306961800014 ER PT J AU Anderson, RB Bell, JF Wiens, RC Morris, RV Clegg, SM AF Anderson, Ryan B. Bell, James F., III Wiens, Roger C. Morris, Richard V. Clegg, Samuel M. TI Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; Mars; ChemCam; Multivariate analysis ID SAMPLES; CALIBRATION; PLASMA AB We investigated five clustering and training set selection methods to improve the accuracy of quantitative chemical analysis of geologic samples by laser induced breakdown spectroscopy (LIBS) using partial least squares (PLS) regression. The LIBS spectra were previously acquired for 195 rock slabs and 31 pressed powder geostandards under 7 Torr CO2 at a stand-off distance of 7 m at 17 RI per pulse to simulate the operational conditions of the ChemCam LIBS instrument on the Mars Science Laboratory Curiosity rover. The clustering and training set selection methods, which do not require prior knowledge of the chemical composition of the test-set samples, are based on grouping similar spectra and selecting appropriate training spectra for the partial least squares (PLS2) model. These methods were: (1) hierarchical clustering of the full set of training spectra and selection of a subset for use in training; (2) k-means clustering of all spectra and generation of PLS2 models based on the training samples within each cluster; (3) iterative use of PLS2 to predict sample composition and k-means clustering of the predicted compositions to subdivide the groups of spectra; (4) soft independent modeling of class analogy (SIMCA) classification of spectra, and generation of PLS2 models based on the training samples within each class; (5) use of Bayesian information criteria (BIC) to determine an optimal number of clusters and generation of PLS2 models based on the training samples within each cluster. The iterative method and the k-means method using 5 clusters showed the best performance, improving the absolute quadrature root mean squared error (RMSE) by similar to 3 wt.%. The statistical significance of these improvements was similar to 85%. Our results show that although clustering methods can modestly improve results, a large and diverse training set is the most reliable way to improve the accuracy of quantitative LIBS. In particular, additional sulfate standards and specifically fabricated analog samples with Mars-like compositions may improve the accuracy of ChemCam measurements on Mars. Refinement of the iterative method, modifications of the basic k-means clustering algorithm, and classification based on specifically selected S. C and Si emission lines may also prove beneficial and merit further study. Published by Elsevier B.V. C1 [Anderson, Ryan B.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Wiens, Roger C.; Clegg, Samuel M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Anderson, RB (reprint author), Cornell Univ, Dept Astron, 406 Space Sci Bldg, Ithaca, NY 14853 USA. EM randerson@astro.cornell.edu; Jim.Bell@asu.edu; rwiens@lanl.gov; richard.v.morris@nasa.gov; sclegg@lanl.gov OI Clegg, Sam/0000-0002-0338-0948 FU NASA; Mars Program Office through MSL; NASA Johnson Space Center FX This work was supported by the NASA Graduate Student Researchers Program, by the Mars Program Office through MSL, and by the NASA Johnson Space Center. NR 24 TC 15 Z9 15 U1 5 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD APR PY 2012 VL 70 BP 24 EP 32 DI 10.1016/j.sab.2012.04.004 PG 9 WC Spectroscopy SC Spectroscopy GA 969GW UT WOS:000306044700003 ER PT J AU Johnson, W Schnell, A AF Johnson, Wesley Schnell, Andrew TI 2011 Space Cryogenics Workshop SO CRYOGENICS LA English DT Editorial Material C1 [Johnson, Wesley] NASA, Kennedy Space Ctr, FL 32899 USA. [Schnell, Andrew] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Johnson, W (reprint author), NASA, M-S NE-F6, Kennedy Space Ctr, FL 32899 USA. EM Wesley.L.Johnson@nasa.gov; Andrew.Schnell@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 129 EP 129 DI 10.1016/j.cryogenics.2012.01.008 PG 1 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100001 ER PT J AU DiPirro, M Fixsen, D Kogut, A Li, X Marquardt, J Shirron, P AF DiPirro, M. Fixsen, D. Kogut, A. Li, X. Marquardt, J. Shirron, P. TI Design of the PIXIE cryogenic system SO CRYOGENICS LA English DT Article DE Cryogenic space instrument; ADR; Cryocooler AB The Primordial Inflation Explorer (PIXIE) is a proposed mission to study the polarization of the remnant cosmic microwave background with the goal of finding and understanding primordial gravity waves. The instrument has been designed to capture this information across the entire sky by rejecting foreground signals and suppressing systematic error by multiple differencing methods. The instrument operates at a temperature very close to the cosmic microwave background of 2.7 K, while the detectors operate at 0.1 K. The PIXIE cryogenic system provides this in low Earth orbit by making use of three subsystems. Lightweight, simply deployed shields provide protection against the Earth and Sun while passively cooling wiring and instrument supports at 150 K. A mechanical cryocooler precools wires and supports at 68, 17, and 4.5 K while its compressors operate at room temperature. And finally two adiabatic demagnetization refrigerators cool the instrument from 4.5 to 2.7 K and cool the detectors to 0.1 K. Staged cooling in this manner allows a thermodynamically efficient use of relatively mature technologies that can be fully demonstrated before flight. Published by Elsevier Ltd. C1 [DiPirro, M.; Kogut, A.; Li, X.; Shirron, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Fixsen, D.] Univ Maryland, College Pk, MD 20742 USA. [Marquardt, J.] Ball Aerosp Technol Ctr, Boulder, CO USA. RP DiPirro, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM mike.dipirro@nasa.gov NR 3 TC 1 Z9 1 U1 3 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 134 EP 139 DI 10.1016/j.cryogenics.2012.01.017 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100003 ER PT J AU Shirron, PJ Kimball, MO Fixsen, DJ Kogut, AJ Li, XY DiPirro, MJ AF Shirron, Peter J. Kimball, Mark O. Fixsen, Dale J. Kogut, Alan J. Li, Xiaoyi DiPirro, Michael J. TI Design of the PIXIE adiabatic demagnetization refrigerators SO CRYOGENICS LA English DT Article DE Adiabatic demagnetization refrigerator; Adiabatic demagnetization; Magnetic refrigeration; Cosmic microwave background AB The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 mu W. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope. Published by Elsevier Ltd. C1 [Shirron, Peter J.; Kimball, Mark O.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fixsen, Dale J.] Univ Maryland, College Pk, MD 20740 USA. RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM peter.shirron@nasa.gov NR 8 TC 1 Z9 1 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 140 EP 144 DI 10.1016/j.cryogenics.2012.01.009 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100004 ER PT J AU Shirron, PJ Kimball, MO James, BL Wegel, DC Martinez, RM Faulkner, RL Neubauer, L Sansebastian, M AF Shirron, Peter J. Kimball, Mark O. James, Bryan L. Wegel, Donald C. Martinez, Raul M. Faulkner, Richard L. Neubauer, Larry Sansebastian, Marcelino TI Design and predicted performance of the 3-stage ADR for the Soft-X-ray Spectrometer instrument on Astro-H SO CRYOGENICS LA English DT Article DE Adiabatic demagnetization refrigerator; Space cryogenics; Magnetic refrigeration; Astronomy AB The Japanese Astro-H mission will include the Soft X-ray Spectrometer (SXS) instrument provided by NASA/GSFC. The SXS will perform imaging spectroscopy in the soft X-ray band using a 6 x 6 array of silicon microcalorimeters operated at 50 mK. The detectors will be cooled by a 3-stage adiabatic demagnetization refrigerator (ADR). The configuration allows the ADR to operate with both a 1.3 K superfluid helium bath and a 4.5 K cryocooler as its heat sink. Initially, when liquid helium is present, the two coldest stages of the ADR will operate in a single-shot mode to cool the detectors from 1.3 K. During this phase of the mission, the 3rd stage may be used to reduce the net heat load on the liquid helium and extend its lifetime. When the liquid is depleted, the 2nd and 3rd stages will operate in a continuous mode to maintain the helium tank at about 1.3 K, allowing continued operation of the 1st stage (in a single-shot mode) and hence the SXS instrument. This paper describes the design and operating modes of the ADR, as well as details of critical components. Published by Elsevier Ltd. C1 [Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Wegel, Donald C.] NASA, Goddard Space Flight Ctr, Cryogen & Fluids Grp, Greenbelt, MD 20771 USA. [Martinez, Raul M.] Ball Aerosp & Technol Corp, Lanham, MD 20706 USA. [Faulkner, Richard L.; Neubauer, Larry; Sansebastian, Marcelino] SGT Inc, Greenbelt, MD 20770 USA. RP Shirron, PJ (reprint author), NASA, Goddard Space Flight Ctr, Cryogen & Fluids Grp, Greenbelt, MD 20771 USA. EM peter.shirron@nasa.gov NR 4 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 165 EP 171 DI 10.1016/j.cryogenics.2012.01.019 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100008 ER PT J AU James, BL Martinez, RM Shirron, P Tuttle, J Francis, JJ Sebastian, MS Wegel, DC Galassi, NM McGuinness, DS Puckett, D Flom, Y AF James, Bryan L. Martinez, Raul M. Shirron, Peter Tuttle, Jim Francis, John J. Sebastian, Marcelino San Wegel, Donald C. Galassi, Nicholas M. McGuinness, Daniel S. Puckett, David Flom, Yury TI Mechanical design of a 3-stage ADR for the Astro-H mission SO CRYOGENICS LA English DT Article DE Thermal conductivity; Adiabatic demagnetization refrigerator (ADR) AB The X-ray micro-calorimeter array in the Soft X-ray Spectrometer (SXS) instrument on Astro-H will be cooled by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR consists of two mechanically independent assemblies. When integrated with a mounting structure and the detector assembly, they form a self-contained unit that will be inserted into the top end of a liquid helium tank. The unique configuration requires many components and sub-assemblies to be thermally isolated from their structural mount. Normally in an ADR this is limited to suspending cold salt pills within their (much warmer) magnets, but in the case of SXS, it also involves one ADR stage being supported by, but thermally isolated from, the helium tank. This paper will describe the complex thermal and mechanical design of the SXS ADR, and summarize vibration and mechanical properties tests that have been performed to validate the design. (c) 2012 Published by Elsevier Ltd. C1 [James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Francis, John J.; Sebastian, Marcelino San; Wegel, Donald C.] NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, Greenbelt, MD 20770 USA. [Galassi, Nicholas M.; McGuinness, Daniel S.] NASA, Goddard Space Flight Ctr, Mech Syst & Anal Branch, Greenbelt, MD 20770 USA. [Puckett, David; Flom, Yury] NASA, Goddard Space Flight Ctr, Mat Engn Branch, Greenbelt, MD 20770 USA. RP James, BL (reprint author), NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, 8800 Greenbelt Rd, Greenbelt, MD 20770 USA. EM bryan.l.james@nasa.gov NR 2 TC 2 Z9 3 U1 2 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 172 EP 177 DI 10.1016/j.cryogenics.2012.01.001 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100009 ER PT J AU Ezoe, Y Ishikawa, K Ohashi, T Yamaguchi, H Mitsuda, K Fujimoto, R Murakami, M Kanao, K Yoshida, S Tsunematsu, S DiPirro, M Shirron, P AF Ezoe, Yuichiro Ishikawa, Kumi Ohashi, Takaya Yamaguchi, Hiroya Mitsuda, Kazuhisa Fujimoto, Ryuichi Murakami, Masahide Kanao, Kenichi Yoshida, Seiji Tsunematsu, Shoji DiPirro, Michael Shirron, Peter CA SXS Team TI Development of porous plug phase separator and superfluid film flow suppression system for the Soft X-ray Spectrometer onboard ASTRO-H SO CRYOGENICS LA English DT Article DE Space cryogenics; X-ray microcalorimeter; Porous plug phase separator; Superfluid film flow AB ASTRO-H is the sixth Japanese astronomy satellite scheduled for launch in 2014. The Soft X-ray Spectrometer instrument is onboard ASTRO-H. This is a 6 x 6 array of X-ray microcalorimeters with an energy resolution of <7 eV at 0.5-10 keV. Superfluid liquid helium is utilized as a part of the cooling system. To retain the liquid helium in the tank under zero-gravity, a porous plug phase separator made of sintered stainless is used. Since the vapor mass flow rate is only 29 mu g/s, any additional superfluid film loss influences the lifetime of the liquid helium. Therefore, a film flow suppression system consisting of an orifice, a heat exchanger, and knife edge devices is adopted based on the design used for the X-ray Spectrometer onboard Suzaku. The film flow will be suppressed to <2 mu g/s, sufficiently smaller than the vapor flow rate. In the present investigation, the design and ground experiments of a helium vent system composed of the porous plug and film flow suppression system are presented. The results show that the phase separation and the film flow suppression are satisfactorily achieved. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan. [Yamaguchi, Hiroya] RIKEN, Wako, Saitama 3510198, Japan. [Mitsuda, Kazuhisa] Japan Aerosp & EXpolorat Agcy JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Kanazawa, Ishikawa 9201192, Japan. [Murakami, Masahide] Univ Tsukuba, Tsukuba, Ibaraki 3058573, Japan. [Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji] Sumitomo Heavy Ind Ltd, Niihama, Ehime 7928588, Japan. [DiPirro, Michael; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. EM ezoe@tmu.ac.jp RI Mitsuda, Kazuhisa/C-2649-2008; XRAY, SUZAKU/A-1808-2009 NR 10 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 178 EP 182 DI 10.1016/j.cryogenics.2012.01.024 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100010 ER PT J AU Fesmire, JE Coffman, BE Meneghelli, BJ Heckle, KW AF Fesmire, J. E. Coffman, B. E. Meneghelli, B. J. Heckle, K. W. TI Spray-on foam insulations for launch vehicle cryogenic tanks SO CRYOGENICS LA English DT Article DE Foam insulation; Cryogenic tanks; Thermal conductivity; Environmental exposures; Space launch AB Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different methods is provided. Recent advancements and applications of SOFI systems on future launch vehicles and spacecraft are also addressed. Published by Elsevier Ltd. C1 [Fesmire, J. E.; Coffman, B. E.] NASA, Cryogen Test Lab, Kennedy Space Ctr, FL USA. [Meneghelli, B. J.; Heckle, K. W.] ASRC Aerosp, Cryogen Test Lab, Kennedy Space Ctr, FL USA. RP Fesmire, JE (reprint author), NASA, Cryogen Test Lab, Kennedy Space Ctr, FL USA. EM james.e.fesmire@nasa.gov FU Space Operations Mission Directorate through the NASA Internal Research and Development (IRD) project FX This work was funded in part by the Space Operations Mission Directorate through the NASA Internal Research and Development (IR&D) project, Technologies to Increase Reliability of Thermal Insulation Systems. The authors thank Jim Rice and Gweneth Smithers of NASA Marshall Space Flight Center for their support in producing the test articles and Nancy Zeitlin of NASA Kennedy Space Center for guiding this project. NR 23 TC 9 Z9 9 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 251 EP 261 DI 10.1016/j.cryogenics.2012.01.018 PG 11 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100023 ER PT J AU Johnson, WL Jurns, JM Bamberger, HH Plachta, DW AF Johnson, W. L. Jurns, J. M. Bamberger, H. H. Plachta, D. W. TI Launch ascent testing of a representative Altair ascent stage methane tank SO CRYOGENICS LA English DT Article DE Multilayer insulation; Rapid depressurization; Liquid methane AB In order to support long duration cryogenic propellant storage, the NASA is investigating the long duration storage properties of liquid methane. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair lunar ascent propellant tanks. The tank was insulated with multilayer insulation and placed inside of a vacuum chamber to simulate the various environments that would be encountered during launch and travel from the earth to the lunar surface, including long duration stays on the lunar surface. One of these environments to be studied is the launch and ascent environment; while all the effects of this mission phase cannot be simulated at the same time, an effort was made to simulate as many as possible. Boil-off testing included ambient pressure ground hold testing followed by a rapid depressurization of the vacuum chamber during which the liquid methane tank was allowed to come to steady state condition in the high vacuum environment. The data gathered from the series of tests fit with-in pre-test predictions and yielded much needed test data for rapid depressurization using liquid methane. Published by Elsevier Ltd. C1 [Johnson, W. L.] Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. [Jurns, J. M.] Glenn Res Ctr, ASRC Aerosp, Cleveland, OH 44135 USA. [Bamberger, H. H.] Glenn Res Ctr, Jacobs Technol, Cleveland, OH 44135 USA. RP Johnson, WL (reprint author), Cryogen Test Lab, M-S NE-F6, Kennedy Space Ctr, FL 32899 USA. EM wesley.l.johnson@nasa.gov NR 11 TC 2 Z9 2 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 278 EP 282 DI 10.1016/j.cryogenics.2012.01.028 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100026 ER PT J AU Jurns, JM Hartwig, JW AF Jurns, J. M. Hartwig, J. W. TI Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures SO CRYOGENICS LA English DT Article DE Cryogenic fluid management; Liquid oxygen AB When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Jurns, J. M.] NASA, Glenn Res Ctr, ASRC Aerosp Corp, Cleveland, OH 44135 USA. RP Jurns, JM (reprint author), NASA, Glenn Res Ctr, ASRC Aerosp Corp, MS 500-ASRC,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM john.M.Jurns@nasa.gov FU NASA Exploration Technology Development and Demonstration Program Office; NASA Glenn Research Center [NNC06BA07B] FX This work was sponsored by the NASA Exploration Technology Development and Demonstration Program Office, and was performed under NASA Glenn Research Center Contract NNC06BA07B. NR 13 TC 12 Z9 12 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 283 EP 289 DI 10.1016/j.cryogenics.2012.01.022 PG 7 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100027 ER PT J AU Kudlac, MT Weaver, HF Cmar, MD AF Kudlac, M. T. Weaver, H. F. Cmar, M. D. TI Thermal vacuum integrated system test at B-2 SO CRYOGENICS LA English DT Article DE Thermal vacuum; Infrared lamp; Space cryogenics; Liquid nitrogen AB The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3 x 10(-4) Pa (1 x 10(-6) torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (139 degrees R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/m(2) at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber's cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality. Published by Elsevier Ltd. C1 [Kudlac, M. T.] NASA, Glenn Res Ctr, Lewis Field, Cleveland, OH 44135 USA. [Weaver, H. F.] NASA, Glenn Res Ctr, Plum Brook Stn, Sandusky, OH 44870 USA. [Cmar, M. D.] Sierra Lobo Inc, NASA, Plum Brook Stn, Glenn Res Ctr, Sandusky, OH 44870 USA. RP Kudlac, MT (reprint author), NASA, Glenn Res Ctr, Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Maureen.T.Kudlac@nasa.gov NR 3 TC 0 Z9 0 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 296 EP 300 DI 10.1016/j.cryogenics.2012.01.027 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100029 ER PT J AU Urquiza, E Vasquez, C Rodriguez, J Van Gorp, B AF Urquiza, E. Vasquez, C. Rodriguez, J. Van Gorp, B. TI Development and testing of an innovative two-arm focal-plane thermal strap (TAFTS) SO CRYOGENICS LA English DT Article DE Thermal strap; Thermal Link; Flexible Link; Heat transfer; Thermal; Control; Airborne; Cryogenics AB Temperature control of optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet time, cost, and their unique nature means that their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness and without data on the stiffness of previously implemented thermal links. This paper describes the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three dimensions. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Urquiza, E.; Rodriguez, J.; Van Gorp, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vasquez, C.] Calif Polytech State Univ San Luis Obispo, Dept Mech Engn, San Luis Obispo, CA 93407 USA. RP Urquiza, E (reprint author), CALTECH, Jet Prop Lab, M-S 157-316,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Eugenio.Urquiza@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2011. All rights reserved. NR 6 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD APR-JUN PY 2012 VL 52 IS 4-6 SI SI BP 306 EP 309 DI 10.1016/j.cryogenics.2012.01.023 PG 4 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 961UX UT WOS:000305496100031 ER PT J AU Robertson, IP Cravens, TE Sibeck, DG Collier, MR Kuntz, KD AF Robertson, I. P. Cravens, T. E. Sibeck, D. G. Collier, M. R. Kuntz, K. D. TI Solar wind charge exchange during geomagnetic storms SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE Earth; solar-terrestrial relations; solar wind; X-rays: general ID X-RAY-EMISSION; SCIENCE; SYSTEM; COMETS AB On 2001 March 31 a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 R-E. The NASA/GSFC Community Coordinated Modeling Center (CCMC) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et al. then modeled the expected soft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on 2000 July 14 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images. (c) 2012 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Robertson, I. P.; Cravens, T. E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Sibeck, D. G.; Collier, M. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kuntz, K. D.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. RP Robertson, IP (reprint author), Univ Kansas, Dept Phys & Astron, 1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. EM robertin@ku.edu RI Sibeck, David/D-4424-2012; Collier, Michael/I-4864-2013 OI Collier, Michael/0000-0001-9658-6605 NR 13 TC 3 Z9 3 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD APR PY 2012 VL 333 IS 4 BP 309 EP 312 DI 10.1002/asna.201211671 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959RE UT WOS:000305329700007 ER PT J AU Ezoe, Y Fujimoto, R Yamasaki, NY Mitsuda, K Ohashi, T Ishikawa, K Oishi, S Miyoshi, Y Terada, N Futaana, Y Porter, FS Brown, GV AF Ezoe, Y. Fujimoto, R. Yamasaki, N. Y. Mitsuda, K. Ohashi, T. Ishikawa, K. Oishi, S. Miyoshi, Y. Terada, N. Futaana, Y. Porter, F. S. Brown, G. V. TI Suzaku observations of charge exchange emission from solar system objects SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE comets: individual (73P/SW3 fragment C); Earth; planets and satellites: individual (Jupiter, Mars); solar-terrestrial relations; solar wind ID X-RAY-EMISSION; EARTHS MAGNETOSHEATH; 1ST OBSERVATION; XMM-NEWTON; JUPITER; DISCOVERY; CHANDRA; MARS AB Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed. (c) 2012 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Ezoe, Y.; Ohashi, T.; Ishikawa, K.; Oishi, S.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Fujimoto, R.] Kanazawa Univ, Kanazawa, Ishikawa 9201192, Japan. [Yamasaki, N. Y.; Mitsuda, K.] Inst Space & Astronaut Sci, Tyuou Ku, Sagamihara, Kanagawa 2525210, Japan. [Miyoshi, Y.] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Futaana, Y.] Swedish Inst Space Phys, SE-98128 Kiruna, Sweden. [Terada, N.] Tohoku Univ, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa Hachioji, Tokyo 1920397, Japan. EM ezoe@tmu.ac.jp RI Yamasaki, Noriko/C-2252-2008; Mitsuda, Kazuhisa/C-2649-2008; Futaana, Yoshifumi/P-5899-2014; Miyoshi, Yoshizumi/B-5834-2015; Porter, Frederick/D-3501-2012; XRAY, SUZAKU/A-1808-2009 OI Futaana, Yoshifumi/0000-0002-7056-3517; Miyoshi, Yoshizumi/0000-0001-7998-1240; Porter, Frederick/0000-0002-6374-1119; FU LLNL [DE-AC52-07NA27344] FX Work by LLNL was completed under Contract DE-AC52-07NA27344. NR 27 TC 1 Z9 1 U1 0 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD APR PY 2012 VL 333 IS 4 BP 319 EP 323 DI 10.1002/asna.201211664 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959RE UT WOS:000305329700009 ER PT J AU Collier, MR Porter, FS Sibeck, DG Carter, JA Chiao, MP Chornay, DJ Cravens, T Galeazzi, M Keller, JW Koutroumpa, D Kuntz, K Read, AM Robertson, IP Sembay, S Snowden, S Thomas, N AF Collier, M. R. Porter, F. S. Sibeck, D. G. Carter, J. A. Chiao, M. P. Chornay, D. J. Cravens, T. Galeazzi, M. Keller, J. W. Koutroumpa, D. Kuntz, K. Read, A. M. Robertson, I. P. Sembay, S. Snowden, S. Thomas, N. TI Prototyping a global soft X-ray imaging instrument for heliophysics, planetary science, and astrophysics science SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE interplanetary medium; solar-terrestrial relations; solar wind; X-rays: diffuse background ID WIND CHARGE-EXCHANGE; SOLAR-WIND; XMM-NEWTON; MARS; EMISSION; CHANDRA; DISCOVERY; VENUS AB We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission. (c) 2012 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Chiao, M. P.; Chornay, D. J.; Keller, J. W.; Snowden, S.; Thomas, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Carter, J. A.; Read, A. M.; Sembay, S.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Cravens, T.; Robertson, I. P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Galeazzi, M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Koutroumpa, D.] LATMOS IPSL CNRS, F-78280 Guyancourt, France. [Kuntz, K.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. RP Collier, MR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM michael.r.collier@nasa.gov RI Sibeck, David/D-4424-2012; Collier, Michael/I-4864-2013; Keller, John/I-5097-2013; Porter, Frederick/D-3501-2012 OI Collier, Michael/0000-0001-9658-6605; Porter, Frederick/0000-0002-6374-1119 FU Planetary Division; Astrophysics Division at GSFC through Goddard's Internal Research and Development (IRAD) FX Special thanks to Paul Rozmarynowski for mechanical design support, Kenneth Simms for assembly support, Joseph Kujawski for electrical engineering support, and Norman Dobson for GSE support. The prototype development described in this paper was funded through the Planetary Division and the Astrophysics Division at GSFC through Goddard's Internal Research and Development (IRAD) program. NR 26 TC 11 Z9 11 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD APR PY 2012 VL 333 IS 4 BP 378 EP 382 DI 10.1002/asna.201211662 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959RE UT WOS:000305329700020 ER PT J AU Galeazzi, M Collier, MR Cravens, T Koutroumpa, D Kuntz, KD Lepri, S McCammon, D Porter, FS Prasai, K Robertson, I Snowden, S Thomas, NE Uprety, Y AF Galeazzi, M. Collier, M. R. Cravens, T. Koutroumpa, D. Kuntz, K. D. Lepri, S. McCammon, D. Porter, F. S. Prasai, K. Robertson, I. Snowden, S. Thomas, N. E. Uprety, Y. TI Solar wind charge exchange and local hot bubble X-ray emission with the DXL sounding rocket experiment SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE instrumentation: detectors; interplanetary medium; ISM: bubbles; solar wind; X-rays: ISM ID MAGNETOSHEATH; HELIOSPHERE; ENVIRONMENT; NEUTRALS AB The Diffuse X-ray emission from the Local Galaxy (DXL) sounding rocket is a NASA approved mission with a scheduled first launch in December 2012. Its goal is to identify and separate the X-ray emission of the solar wind charge exchange (SWCX) from that of the local hot bubble (LHB) to improve our understanding of both. To separate the SWCX contribution from the LHB, DXL will use the SWCX signature due to the helium focusing cone at l = 185 degrees, b = -18 degrees. DXL uses large area proportional counters, with an area of 1000 cm(2) and grasp of about 10 cm(2) sr both in the 1/4 and 3/4 keV bands. Thanks to the large grasp, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites. (c) 2012 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Galeazzi, M.; Prasai, K.; Uprety, Y.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Collier, M. R.; Porter, F. S.; Snowden, S.; Thomas, N. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cravens, T.; Robertson, I.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Koutroumpa, D.] LATMOS IPSL CNRS, F-78280 Guyancourt, France. [Kuntz, K. D.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Lepri, S.] Univ Michigan, Ann Arbor, MI 48109 USA. [McCammon, D.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Galeazzi, M (reprint author), Univ Miami, Dept Phys, 1320 Campo Sano Dr, Coral Gables, FL 33146 USA. EM galeazzi@physics.miami.edu RI Lepri, Susan/I-8611-2012; Collier, Michael/I-4864-2013; Porter, Frederick/D-3501-2012 OI Collier, Michael/0000-0001-9658-6605; Porter, Frederick/0000-0002-6374-1119 FU National Aeronautics and Space Administration (NASA) [NNX11AF04G] FX The investigation is supported by the National Aeronautics and Space Administration (NASA), grant # NNX11AF04G. The authors would like to thank the Engineering support at the University of Miami for the contribution in refurbishing the DXL payload. NR 27 TC 4 Z9 4 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD APR PY 2012 VL 333 IS 4 BP 383 EP 387 DI 10.1002/asna.201211665 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959RE UT WOS:000305329700021 ER PT J AU Sembay, S Branduardi-Raymont, G Eastwood, JP Sibeck, DG Abbey, A Brown, P Carter, JA Carr, CM Forsyth, C Kataria, D Kemble, S Milan, S Owen, CJ Read, AM Peacocke, L Arridge, CS Coates, AJ Collier, MR Cowley, SWH Fazakerley, AN Fraser, G Jones, GH Lallement, R Lester, M Porter, FS Yeoman, T AF Sembay, S. Branduardi-Raymont, G. Eastwood, J. P. Sibeck, D. G. Abbey, A. Brown, P. Carter, J. A. Carr, C. M. Forsyth, C. Kataria, D. Kemble, S. Milan, S. Owen, C. J. Read, A. M. Peacocke, L. Arridge, C. S. Coates, A. J. Collier, M. R. Cowley, S. W. H. Fazakerley, A. N. Fraser, G. Jones, G. H. Lallement, R. Lester, M. Porter, F. S. Yeoman, T. TI AXIOM: Advanced X-ray imaging of the magnetosheath SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE Earth; interplanetary medium; magnetic fields; space vehicles: instruments; X-rays: general ID CHARGE-EXCHANGE EMISSION; XMM-NEWTON AB AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space. (c) 2012 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim C1 [Sembay, S.; Abbey, A.; Carter, J. A.; Milan, S.; Read, A. M.; Cowley, S. W. H.; Fraser, G.; Lester, M.; Yeoman, T.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Branduardi-Raymont, G.; Forsyth, C.; Kataria, D.; Owen, C. J.; Arridge, C. S.; Coates, A. J.; Fazakerley, A. N.; Jones, G. H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Eastwood, J. P.; Brown, P.; Carr, C. M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Sibeck, D. G.; Collier, M. R.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kemble, S.; Peacocke, L.] Astrium Ltd, Stevenage SG1 2AS, Herts, England. [Lallement, R.] Univ Versailles St Quentin, LATMOS Inst Pierre Simon Laplace, Guyancourt, France. RP Sembay, S (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM sfs5@star.le.ac.uk RI Porter, Frederick/D-3501-2012; Arridge, Christopher/A-2894-2009; Sibeck, David/D-4424-2012; Coates, Andrew/C-2396-2008; Owen, Christopher/C-2999-2008; Collier, Michael/I-4864-2013; Yeoman, Timothy/L-9105-2014; Forsyth, Colin/E-4159-2010; OI Porter, Frederick/0000-0002-6374-1119; Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Owen, Christopher/0000-0002-5982-4667; Collier, Michael/0000-0001-9658-6605; Yeoman, Timothy/0000-0002-8434-4825; Forsyth, Colin/0000-0002-0026-8395; Jones, Geraint/0000-0002-5859-1136 FU Astrium FX The authors would like to thank Astrium (www.astrium.eads.net) for their support in developing the AXIOM spacecraft and mission profile, E2V (www.e2v.com) for their technical assistance with the design of the WFI detector plane and Photonis (www.photonis.com) for their long collaboration with Leicester University in the field of micropore optics. All the figures in this paper are reproduced from Branduardi-Raymont et al. (2011) with kind permission of Springer Science and Business Media. NR 13 TC 2 Z9 2 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD APR PY 2012 VL 333 IS 4 BP 388 EP 392 DI 10.1002/asna.201211672 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959RE UT WOS:000305329700022 ER PT J AU Datsko, B Luchko, Y Gafiychuk, V AF Datsko, Bohdan Luchko, Yury Gafiychuk, Vasyl TI PATTERN FORMATION IN FRACTIONAL REACTION-DIFFUSION SYSTEMS WITH MULTIPLE HOMOGENEOUS STATES SO INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS LA English DT Article DE Bifurcation; pattern formation; fractional derivative; time-fractional reaction-diffusion equation ID EQUATIONS; DYNAMICS AB This paper is devoted to the investigation of self-organization phenomena in time-fractional reaction-diffusion systems with multiple homogeneous states. It is shown that the fractional reaction-diffusion systems possess some new properties compared to the systems with derivatives of integer orders. In particular, some complex spatio-temporal solutions that cannot be found in the standard reaction-diffusion systems are identified. The simulation results are presented for the case of a incommensurate time-fractional reaction-diffusion system with a cubic nonlinearity. C1 [Datsko, Bohdan] NASU, Inst Appl Problems Mech & Math, UA-79061 Lvov, Ukraine. [Luchko, Yury] Beuth Tech Univ Appl Sci, Berlin, Germany. [Gafiychuk, Vasyl] NASA Ames Res Ctr, Moffett Field, CA USA. RP Datsko, B (reprint author), NASU, Inst Appl Problems Mech & Math, Naukova 3B, UA-79061 Lvov, Ukraine. EM b_datsko@yahoo.com; luchko@beuth-hochschule.de; vagaf@yahoo.com FU German Academic Exchange Service (DAAD) [A-11-05319] FX The first named author is thankful for the support by the German Academic Exchange Service (DAAD, grant No. A-11-05319). NR 25 TC 2 Z9 2 U1 0 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-1274 J9 INT J BIFURCAT CHAOS JI Int. J. Bifurcation Chaos PD APR PY 2012 VL 22 IS 4 AR 1250087 DI 10.1142/S0218127412500873 PG 10 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences SC Mathematics; Science & Technology - Other Topics GA 945BV UT WOS:000304248700022 ER PT J AU Liebe, CC Craig, W Kim, Y McLean, R Meras, P Raffanti, M Scholz, C AF Liebe, Carl Christian Craig, William Kim, Yunjin McLean, Ryan Meras, Patrick, Jr. Raffanti, Michael Scholz, Christopher TI Calibration and alignment of metrology system for the Nuclear Spectroscopic Telescope Array mission SO OPTICAL ENGINEERING LA English DT Article DE NuSTAR; metrology system; alignment AB A metrology system to measure the on-orbit movement of a ten meter mast has been built for the Nuclear Spectroscopic Telescope Array (NuSTAR) x-ray observatory. In this paper, the metrology system is described, and the performance is measured. The laser beam stability is discussed in detail. Pre-launch alignment and calibration are also described. The invisible infrared laser beams must be aligned to their corresponding detectors without deploying the telescope in Earth's gravity. Finally, a possible method for in-flight calibration of the metrology system is described. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.4.043605] C1 [Liebe, Carl Christian; Kim, Yunjin; Meras, Patrick, Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Craig, William; Raffanti, Michael; Scholz, Christopher] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [McLean, Ryan] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RP Liebe, CC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM carl.c.liebe@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, Space Radiation Laboratory, California Institute of Technology and Space Sciences Laboratory, U.C. Berkeley and was sponsored by the National Aeronautics and Space Administration. References herein to any specific commercial product, process or service by trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology, Space Radiation Laboratory, California Institute of Technology or Space Sciences Laboratory, U.C. Berkeley. NR 8 TC 4 Z9 4 U1 0 U2 2 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD APR PY 2012 VL 51 IS 4 AR 043605 DI 10.1117/1.OE.51.4.043605 PG 9 WC Optics SC Optics GA 942BS UT WOS:000304015100019 ER PT J AU Peter, H Abbo, L Andretta, V Auchere, F Bemporad, A Berrilli, F Bommier, V Braukhane, A Casini, R Curdt, W Davila, J Dittus, H Fineschi, S Fludra, A Gandorfer, A Griffin, D Inhester, B Lagg, A Degl'Innocenti, EL Maiwald, V Sainz, RM Pillet, VM Matthews, S Moses, D Parenti, S Pietarila, A Quantius, D Raouafi, NE Raymond, J Rochus, P Romberg, O Schlotterer, M Schuhle, U Solanki, S Spadaro, D Teriaca, L Tomczyk, S Bueno, JT Vial, JC AF Peter, Hardi Abbo, L. Andretta, V. Auchere, F. Bemporad, A. Berrilli, F. Bommier, V. Braukhane, A. Casini, R. Curdt, W. Davila, J. Dittus, H. Fineschi, S. Fludra, A. Gandorfer, A. Griffin, D. Inhester, B. Lagg, A. Degl'Innocenti, E. Landi Maiwald, V. Manso Sainz, R. Martinez Pillet, V. Matthews, S. Moses, D. Parenti, S. Pietarila, A. Quantius, D. Raouafi, N. -E. Raymond, J. Rochus, P. Romberg, O. Schlotterer, M. Schuehle, U. Solanki, S. Spadaro, D. Teriaca, L. Tomczyk, S. Trujillo Bueno, J. Vial, J. -C. TI Solar magnetism eXplorer (SolmeX) Exploring the magnetic field in the upper atmosphere of our closest star SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Sun: atmosphere; Magnetic fields; Space vehicles: instruments; Techniques: polarimetic; ESA Cosmic Vision ID SPACE-BASED INSTRUMENTATION; TRANSITION REGION; LINE POLARIZATION; MISSION; SUN; CHROMOSPHERE; SUNSPOT; HINODE; CORONA; WAVES AB The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations. C1 [Peter, Hardi; Curdt, W.; Gandorfer, A.; Inhester, B.; Lagg, A.; Schuehle, U.; Solanki, S.; Teriaca, L.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Abbo, L.; Bemporad, A.; Fineschi, S.] INAF Osservatorio Astron Torino, Turin, Italy. [Andretta, V.] INAF Osservatorio Astron Capodimonte, Naples, Italy. [Auchere, F.; Vial, J. -C.] Inst Astrophys Spatiale, Orsay, France. [Berrilli, F.] Univ Roma Tor Vergata, Rome, Italy. [Bommier, V.] Observ Paris, LESIA, Meudon, France. [Braukhane, A.; Dittus, H.; Maiwald, V.; Quantius, D.; Romberg, O.; Schlotterer, M.] DLR Inst Space Syst, Bremen, Germany. [Casini, R.; Tomczyk, S.] NCAR High Altitude Observ, Boulder, CO USA. [Davila, J.] NASA GSFC, Greenbelt, MD USA. [Fludra, A.; Griffin, D.] STFC Rutherford Appleton Lab, Didcot, Oxon, England. [Degl'Innocenti, E. Landi] Univ Florence, Florence, Italy. [Manso Sainz, R.; Martinez Pillet, V.; Trujillo Bueno, J.] Inst Astrofis Canarias, Tenerife, Spain. [Matthews, S.] Mullard Space Sci Lab, Surrey, England. [Moses, D.] USN, Res Lab, Washington, DC 20375 USA. [Parenti, S.] Royal Observ Belgium, Brussels, Belgium. [Pietarila, A.] Natl Opt Astron Observ, Natl Solar Observ, Tucson, AZ 85726 USA. [Raouafi, N. -E.] Johns Hopkins Univ APL, Laurel, MD USA. [Raymond, J.] Smithsonian Astrophys Observ, Cambridge, England. [Rochus, P.] Univ Liege, Ctr Spatial Liege, Liege, Belgium. [Spadaro, D.] INAF Osservatorio Astrofis Catania, Catania, Italy. RP Peter, H (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM peter@mps.mpg.de RI Solanki, Sami/E-2487-2013; Raouafi, Nour/C-2286-2016; OI Solanki, Sami/0000-0002-3418-8449; Raouafi, Nour/0000-0003-2409-3742; Bemporad, Alessandro/0000-0001-5796-5653; Abbo, Lucia/0000-0001-8235-2242; Spadaro, Daniele/0000-0003-3517-8688; Schlotterer, Markus/0000-0002-6565-3622; Auchere, Frederic/0000-0003-0972-7022; Matthews, Sarah/0000-0001-9346-8179; Andretta, Vincenzo/0000-0003-1962-9741 NR 45 TC 10 Z9 10 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 271 EP 303 DI 10.1007/s10686-011-9271-0 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100002 ER PT J AU Wilson, CF Chassefiere, E Hinglais, E Baines, KH Balint, TS Berthelier, JJ Blamont, J Durry, G Ferencz, CS Grimm, RE Imamura, T Josset, JL Leblanc, F Lebonnois, S Leitner, JJ Limaye, SS Marty, B Palomba, E Pogrebenko, SV Rafkin, SCR Talboys, DL Wieler, R Zasova, LV Szopa, C AF Wilson, Colin Frank Chassefiere, Eric Hinglais, Emmanuel Baines, Kevin H. Balint, Tibor S. Berthelier, Jean-Jacques Blamont, Jacques Durry, Georges Ferencz, Csaba S. Grimm, Robert E. Imamura, Takeshi Josset, Jean-Luc Leblanc, Francois Lebonnois, Sebastien Leitner, Johannes J. Limaye, Sanjay S. Marty, Bernard Palomba, Ernesto Pogrebenko, Sergei V. Rafkin, Scot C. R. Talboys, Dean L. Wieler, Rainer Zasova, Liudmila V. Szopa, Cyril CA EVE Team TI The 2010 European Venus Explorer (EVE) mission proposal SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Venus; Planetary mission; Cosmic vision; Superpressure balloon; Geochemistry; Dynamics ID IN-SITU MISSION; SULFURIC-ACID; ATMOSPHERE; EARTH; GREENHOUSE; EVOLUTION; RUNAWAY; WATER AB The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an 'M-class' mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55 km, where temperatures and pressures are benign (similar to 25A degrees C and similar to 0.5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond. C1 [Wilson, Colin Frank] Univ Oxford, Dept Phys, Oxford, England. [Chassefiere, Eric] Univ Paris 11, IDES, Orsay, France. [Hinglais, Emmanuel] CNES PASO, Toulouse, France. [Baines, Kevin H.; Balint, Tibor S.] NASA JPL, Pasadena, CA USA. [Baines, Kevin H.; Limaye, Sanjay S.] Univ Wisconsin, SSEC, Madison, WI USA. [Berthelier, Jean-Jacques; Leblanc, Francois; Szopa, Cyril] CNRS, IPSL, LATMOS, Guyancourt, France. [Blamont, Jacques] CNES, Paris, France. [Durry, Georges] Univ Reims, Reims, France. [Ferencz, Csaba S.] Eotvos Lorand Univ, Space Res Grp, Budapest, Hungary. [Grimm, Robert E.; Rafkin, Scot C. R.] SW Res Inst, Boulder, CO USA. [Imamura, Takeshi] ISAS JAXA, Sagamihara, Kanagawa, Japan. [Josset, Jean-Luc] Space Explorat Inst, Neuchatel, Switzerland. [Lebonnois, Sebastien] UPMC, CNRS, IPSL, Lab Meteorol Dynam, Paris, France. [Leitner, Johannes J.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Marty, Bernard] Ecole Natl Super Geol, CRPG, Nancy, France. [Palomba, Ernesto] INAF IFSI, Rome, Italy. [Pogrebenko, Sergei V.] Joint Inst VLBI Europe, Dwingeloo, Netherlands. [Talboys, Dean L.] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Wieler, Rainer] ETH, Inst Geochem & Petr, Zurich, Switzerland. [Zasova, Liudmila V.] Space Res Inst, Moscow, Russia. RP Wilson, CF (reprint author), Univ Oxford, Dept Phys, Oxford, England. EM wilson@atm.ox.ac.uk RI Wieler, Rainer/A-1355-2010; szopa, cyril/C-6865-2015; OI Wieler, Rainer/0000-0001-5666-7494; szopa, cyril/0000-0002-0090-4056; LEBONNOIS, SEBASTIEN/0000-0002-2390-8164; Grimm, Robert/0000-0002-7588-1194; Palomba, Ernesto/0000-0002-9101-6774 FU CNES (France); STFC (UK) FX The EVE science team thanks the CNES and Astrium teams who worked on the mission study. We acknowledge financial support from our national funding bodies including CNES (France) and STFC (UK). NR 39 TC 7 Z9 7 U1 1 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 305 EP 335 DI 10.1007/s10686-011-9259-9 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100003 ER PT J AU Ghail, RC Wilson, C Galand, M Hall, D Cochrane, C Mason, P Helbert, J MontMessin, F Limaye, S Patel, M Bowles, N Stam, D Wahlund, JE Rocca, F Waltham, D Mather, TA Biggs, J Genge, M Paillou, P Mitchell, K Wilson, L Singh, UN AF Ghail, Richard C. Wilson, Colin Galand, Marina Hall, David Cochrane, Chris Mason, Philippa Helbert, Joern MontMessin, Franck Limaye, Sanjay Patel, Manish Bowles, Neil Stam, Daphne Wahlund, Jan-Erik Rocca, Fabio Waltham, David Mather, Tamsin A. Biggs, Juliet Genge, Matthew Paillou, Philippe Mitchell, Karl Wilson, Lionel Singh, Upendra N. TI EnVision: taking the pulse of our twin planet SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Venus tectonics; Venus atmosphere; Venus ionosphere; InSAR; LIDAR ID RADAR INTERFEROMETRY; YELLOWSTONE CALDERA; THETIS-REGIO; VENUS; VOLCANISM; SUBDUCTION; TECTONICS; EVOLUTION; BOUNDARY; DYNAMICS AB EnVision is an ambitious but low-risk response to ESA's call for a medium-size mission opportunity for a launch in 2022. Venus is the planet most similar to Earth in mass, bulk properties and orbital distance, but has evolved to become extremely hostile to life. EnVision's 5-year mission objectives are to determine the nature of and rate of change caused by geological and atmospheric processes, to distinguish between competing theories about its evolution and to help predict the habitability of extrasolar planets. Three instrument suites will address specific surface, atmosphere and ionosphere science goals. The Surface Science Suite consists of a 2.2 m(2) radar antenna with Interferometer, Radiometer and Altimeter operating modes, supported by a complementary IR surface emissivity mapper and an advanced accelerometer for orbit control and gravity mapping. This suite will determine topographic changes caused by volcanic, tectonic and atmospheric processes at rates as low as 1 mm a (-aEuro parts per thousand 1). The Atmosphere Science Suite consists of a Doppler LIDAR for cloud top altitude, wind speed and mesospheric structure mapping, complemented by IR and UV spectrometers and a spectrophotopolarimeter, all designed to map the dynamic features and compositions of the clouds and middle atmosphere to identify the effects of volcanic and solar processes. The Ionosphere Science Suite uses a double Langmiur probe and vector magnetometer to understand the behaviour and long-term evolution of the ionosphere and induced magnetosphere. The suite also includes an interplanetary particle analyser to determine the delivery rate of water and other components to the atmosphere. C1 [Ghail, Richard C.; Galand, Marina; Cochrane, Chris; Mason, Philippa; Genge, Matthew] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Wilson, Colin; Bowles, Neil] Univ Oxford, Oxford OX1 3PU, England. [Hall, David] Astrium, Portsmouth PO3 5PU, Hants, England. [Helbert, Joern] DLR, D-12489 Berlin, Germany. [MontMessin, Franck] LATMOS, F-75252 Paris, France. [Limaye, Sanjay] Univ Wisconsin, Madison, WI 53706 USA. [Patel, Manish] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Stam, Daphne] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Wahlund, Jan-Erik] Uppsala Univ, Swedish Inst Space Phys, S-75105 Uppsala, Sweden. [Rocca, Fabio] Politecn Milan, I-20133 Milan, Italy. [Waltham, David] Univ London, Egham TW20 0EX, Surrey, England. [Mather, Tamsin A.] Univ Oxford, Oxford OX1 3AN, England. [Biggs, Juliet] Univ Bristol, Bristol BS8 1RJ, Avon, England. [Paillou, Philippe] Univ Bordeaux, F-33270 Floirac, France. [Mitchell, Karl] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wilson, Lionel] Univ Lancaster, Lancaster LA1 4YQ, England. [Singh, Upendra N.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Ghail, RC (reprint author), Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. EM r.ghail@imperial.ac.uk RI Mather, Tamsin/A-7604-2011; Biggs, Juliet/D-4599-2011; NCEO, COMET+`/A-3443-2013; Ghail, Richard/G-9455-2013; OI Mather, Tamsin/0000-0003-4259-7303; Ghail, Richard/0000-0002-4918-0685; Limaye, Sanjay/0000-0001-8659-2104; Helbert, Jorn/0000-0001-5346-9505; Biggs, Juliet/0000-0002-4855-039X FU National Aeronautics and Space Administration FX Dr Mitchell's was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 55 TC 4 Z9 4 U1 2 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 337 EP 363 DI 10.1007/s10686-011-9244-3 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100004 ER PT J AU Owen, CJ Amm, O Bruno, R De Keyser, J Dunlop, MW Eastwood, JP Fazakerley, AN Fontaine, D Forsyth, C Hasegawa, H Hellinger, P Hercik, D Jacquey, C Milan, S Raeder, J Sibeck, DG Stverak, S Travnicek, P Walsh, AP Wild, JA AF Owen, Christopher J. Amm, Olaf Bruno, Roberto De Keyser, Johan Dunlop, Malcolm W. Eastwood, Jonathan P. Fazakerley, Andrew N. Fontaine, Dominique Forsyth, Colin Hasegawa, Hiroshi Hellinger, Petr Hercik, David Jacquey, Christian Milan, Steven Raeder, Joachim Sibeck, David G. Stverak, Stepan Travnicek, Pavel Walsh, Andrew P. Wild, James A. TI IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites-a mission concept proposed for the ESA M3 2020/2022 launch SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Magnetopause; Magnetic reconnection; Solar wind-magnetosphere coupling; Cosmic vision ID FLUX-TRANSFER EVENTS; INTERPLANETARY MAGNETIC-FIELD; DAYSIDE MAGNETOPAUSE; MAGNETOSPHERIC RESPONSE; MAGNETOSHEATH; FLOW; DISTRIBUTIONS; MOTION; MODEL; ION AB The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfv,n waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Delta similar to 5 R-E) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints. C1 [Owen, Christopher J.; Fazakerley, Andrew N.; Forsyth, Colin; Walsh, Andrew P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Amm, Olaf] Finnish Meteorol Inst, Arctic Res Unit, FIN-00101 Helsinki, Finland. [Bruno, Roberto] INAF IFSI, Rome, Italy. [De Keyser, Johan] Inst Space Aeron, Brussels, Belgium. [Dunlop, Malcolm W.] Rutherford Appleton Lab, Div Space Sci, Didcot OX11 0QX, Oxon, England. [Eastwood, Jonathan P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Fontaine, Dominique] Ecole Polytech, Lab Phys Plasmas, Velizy Villacoublay, France. [Hasegawa, Hiroshi] Inst Space & Astronaut Sci ISAS, Kanagawa, Japan. [Hellinger, Petr; Hercik, David; Stverak, Stepan; Travnicek, Pavel] Acad Sci Czech Republic, Prague, Czech Republic. [Jacquey, Christian] Inst Rech Astrophys & Planetol IRAP, Toulouse, France. [Milan, Steven] Univ Leicester, Radio & Space Plasmas Grp, Leicester, Leics, England. [Raeder, Joachim] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Sibeck, David G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Travnicek, Pavel] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Wild, James A.] Univ Lancaster, Lancaster, England. RP Owen, CJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM cjo@mssl.ucl.ac.uk; olaf.amm@fmi.fi; roberto.bruno@ifsi-roma.inaf.it; Johan.DeKeyser@aeronomie.be; M.W.Dunlop@rl.ac.uk; jonathan.eastwood@imperial.ac.uk; anf@mssl.ucl.ac.uk; dominique.fontaine@lpp.polytechnique.fr; cfo@mssl.ucl.ac.uk; hase@stp.isas.jaxa.jp; petr.hellinger@ig.cas.cz; david.hercik@centrum.cz; Christian.Jacquey@cesr.fr; ets@ion.le.ac.uk; J.Raeder@unh.edu; david.g.sibeck@nasa.gov; stepan.stverak@centrum.cz; pavel@ssl.berkeley.edu; apw@mssl.ucl.ac.uk; j.wild@lancaster.ac.uk RI Hasegawa, Hiroshi/A-1192-2007; Owen, Christopher/C-2999-2008; Sibeck, David/D-4424-2012; Forsyth, Colin/E-4159-2010; Hellinger, Petr/F-5267-2014; Stverak, Stepan/F-5282-2014; Hercik, David/G-1224-2014; Travnicek, Pavel/G-8608-2014; OI Hasegawa, Hiroshi/0000-0002-1172-021X; Owen, Christopher/0000-0002-5982-4667; Forsyth, Colin/0000-0002-0026-8395; Hellinger, Petr/0000-0002-5608-0834; Walsh, Andrew/0000-0002-1682-1212; bruno, roberto/0000-0002-2152-0115; Wild, James/0000-0001-8025-8869 NR 36 TC 0 Z9 0 U1 2 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 365 EP 401 DI 10.1007/s10686-011-9245-2 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100005 ER PT J AU Branduardi-Raymont, G Sembay, SF Eastwood, JP Sibeck, DG Abbey, TA Brown, P Carter, JA Carr, CM Forsyth, C Kataria, D Kemble, S Milan, SE Owen, CJ Peacocke, L Read, AM Coates, AJ Collier, MR Cowley, SWH Fazakerley, AN Fraser, GW Jones, GH Lallement, R Lester, M Porter, FS Yeoman, TK AF Branduardi-Raymont, Graziella Sembay, Steve F. Eastwood, Jonathan P. Sibeck, David G. Abbey, Tony A. Brown, Patrick Carter, Jenny A. Carr, Chris M. Forsyth, Colin Kataria, Dhiren Kemble, Steve Milan, Steve E. Owen, Chris J. Peacocke, Lisa Read, Andy M. Coates, Andrew J. Collier, Michael R. Cowley, Stan W. H. Fazakerley, Andrew N. Fraser, George W. Jones, Geraint H. Lallement, Rosine Lester, Mark Porter, F. Scott Yeoman, Tim K. TI AXIOM: advanced X-ray imaging of the magnetosphere SO EXPERIMENTAL ASTRONOMY LA English DT Article DE X-rays; Space telescope; Space plasma instrumentation; Magnetometer; Techniques; Imaging; Spectroscopy; Plasma and field analysers ID WIND CHARGE-EXCHANGE; SOLAR-WIND; XMM-NEWTON; EARTHS MAGNETOSHEATH; EMISSION; MAGNETOPAUSE; PLASMASPHERE; IMAGE/HENA; SHOCK AB Planetary plasma and magnetic field environments can be studied in two complementary ways-by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth-Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission. C1 [Branduardi-Raymont, Graziella; Forsyth, Colin; Kataria, Dhiren; Owen, Chris J.; Coates, Andrew J.; Fazakerley, Andrew N.; Jones, Geraint H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Sembay, Steve F.; Abbey, Tony A.; Carter, Jenny A.; Milan, Steve E.; Read, Andy M.; Cowley, Stan W. H.; Fraser, George W.; Lester, Mark; Yeoman, Tim K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Eastwood, Jonathan P.; Brown, Patrick; Carr, Chris M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Sibeck, David G.; Collier, Michael R.; Porter, F. Scott] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kemble, Steve; Peacocke, Lisa] Astrium Ltd, Stevenage, Herts, England. [Lallement, Rosine] LATMOS Inst Pierre Simon Laplace, Paris, France. RP Branduardi-Raymont, G (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM gbr@mssl.ucl.ac.uk RI Owen, Christopher/C-2999-2008; Sibeck, David/D-4424-2012; Forsyth, Colin/E-4159-2010; Collier, Michael/I-4864-2013; Jones, Geraint/C-1682-2008; Coates, Andrew/C-2396-2008; Yeoman, Timothy/L-9105-2014; Porter, Frederick/D-3501-2012; OI Owen, Christopher/0000-0002-5982-4667; Forsyth, Colin/0000-0002-0026-8395; Collier, Michael/0000-0001-9658-6605; Coates, Andrew/0000-0002-6185-3125; Yeoman, Timothy/0000-0002-8434-4825; Porter, Frederick/0000-0002-6374-1119; Jones, Geraint/0000-0002-5859-1136 NR 46 TC 7 Z9 7 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 403 EP 443 DI 10.1007/s10686-011-9239-0 PG 41 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100006 ER PT J AU Mimoun, D Wieczorek, MA Alkalai, L Banerdt, WB Baratoux, D Bougeret, JL Bouley, S Cecconi, B Falcke, H Flohrer, J Garcia, RF Grimm, R Grott, M Gurvits, L Jaumann, R Johnson, CL Knapmeyer, M Kobayashi, N Konovalenko, A Lawrence, D Le Feuvre, M Lognonne, P Neal, C Oberst, J Olsen, N Rottgering, H Spohn, T Vennerstrom, S Woan, G Zarka, P AF Mimoun, David Wieczorek, Mark A. Alkalai, Leon Banerdt, W. Bruce Baratoux, David Bougeret, Jean-Louis Bouley, Sylvain Cecconi, Baptiste Falcke, Heino Flohrer, Joachim Garcia, Raphael F. Grimm, Robert Grott, Matthias Gurvits, Leonid Jaumann, Ralf Johnson, Catherine L. Knapmeyer, Martin Kobayashi, Naoki Konovalenko, Alexander Lawrence, David Le Feuvre, Mathieu Lognonne, Philippe Neal, Clive Oberst, Juergen Olsen, Nils Rottgering, Huub Spohn, Tilman Vennerstrom, Susanne Woan, Graham Zarka, Philippe TI Farside explorer: unique science from a mission to the farside of the moon SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Moon; Farside; Radio astronomy; Geophysics; Impact flux; ESA's Cosmic Vision program ID NEAR-EARTH OBJECTS; LUNAR-SURFACE; HYPERVELOCITY IMPACTS; LUMINOUS EFFICIENCY; RADIO TELESCOPES; BROAD-BAND; PLANETS; SEISMOMETER; EVOLUTION; EMISSIONS AB Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar-powered landers and a science/telecommunications relay satellite to be placed in a halo orbit about the Earth-Moon L2 Lagrange point. One lander would explore the largest and oldest recognized impact basin in the Solar System- the South Pole-Aitken basin-and the other would investigate the primordial highlands crust. Radio astronomy, geophysical, and geochemical instruments would be deployed on the surface, and the relay satellite would continuously monitor the surface for impact events. C1 [Mimoun, David] Univ Toulouse, ISAE, F-31055 Toulouse 4, France. [Wieczorek, Mark A.; Lognonne, Philippe] Univ Paris Diderot, Inst Phys Globe Paris, Paris, France. [Alkalai, Leon; Banerdt, W. Bruce] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Baratoux, David; Garcia, Raphael F.] Univ Toulouse, UPS OMP, IRAP, F-31055 Toulouse 4, France. [Baratoux, David; Garcia, Raphael F.] CNRS, IRAP, F-31400 Toulouse, France. [Bougeret, Jean-Louis; Cecconi, Baptiste] Observ Paris, CNRS, F-75014 Paris, France. [Bouley, Sylvain] Observ Paris, Inst Mecan Celeste & Calcul Ephemerides, F-75014 Paris, France. [Falcke, Heino] Radboud Univ Nijmegen, ASTRON, NL-6525 ED Nijmegen, Netherlands. [Falcke, Heino] MPIfR, Bonn, Germany. [Flohrer, Joachim; Grott, Matthias; Jaumann, Ralf; Knapmeyer, Martin; Oberst, Juergen; Spohn, Tilman] German Aerosp Ctr DLR, Berlin, Germany. [Grimm, Robert] SW Res Inst, Boulder, CO USA. [Gurvits, Leonid] Joint Inst VLBI Europe, Dwingeloo, Netherlands. [Gurvits, Leonid] Delft Univ Technol, Dept Astrodynam & Space Missions, Delft, Netherlands. [Johnson, Catherine L.] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V5Z 1M9, Canada. [Johnson, Catherine L.] Planetary Sci Inst, Tucson, AZ USA. [Kobayashi, Naoki] ISAS JAXA, Sagamihara, Kanagawa, Japan. [Konovalenko, Alexander] Inst Radio Astron, Kharkov, Ukraine. [Lawrence, David] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Le Feuvre, Mathieu] Univ Nantes, Lab Planetol & Geodynam, Nantes, France. [Neal, Clive] Univ Notre Dame, Notre Dame, IN 46556 USA. [Olsen, Nils; Vennerstrom, Susanne] Tech Univ Denmark, Copenhagen, Denmark. [Rottgering, Huub] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Woan, Graham] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Zarka, Philippe] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, Paris, France. RP Mimoun, D (reprint author), Univ Toulouse, ISAE, 10 Ave Edouard Belin,BP 54032, F-31055 Toulouse 4, France. EM david.mimoun@isae.fr RI Wieczorek, Mark/G-6427-2010; Olsen, Nils/H-1822-2011; Knapmeyer, Martin/A-5783-2012; Garcia, Raphael/B-2612-2012; Falcke, Heino/H-5262-2012; Baratoux, David/H-6006-2012; Lognonne, Philippe/F-8846-2010; MIMOUN, DAVID/M-7074-2016; OI Wieczorek, Mark/0000-0001-7007-4222; Olsen, Nils/0000-0003-1132-6113; Knapmeyer, Martin/0000-0003-0319-2514; Falcke, Heino/0000-0002-2526-6724; Baratoux, David/0000-0002-1785-5262; MIMOUN, DAVID/0000-0002-3427-2974; Grimm, Robert/0000-0002-7588-1194 NR 79 TC 15 Z9 16 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 529 EP 585 DI 10.1007/s10686-011-9252-3 PG 57 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100009 ER PT J AU Smith, A Crawford, IA Gowen, RA Ambrosi, R Anand, M Banerdt, B Bannister, N Bowles, N Braithwaite, C Brown, P Chela-Flores, J Cholinser, T Church, P Coates, AJ Colaprete, T Collins, G Collinson, G Cook, T Elphic, R Fraser, G Gao, Y Gibson, E Glotch, T Grande, M Griffiths, A Grygorczuk, J Gudipati, M Hagermann, A Heldmann, J Hood, LL Jones, AP Joy, KH Khavroshkin, OB Klingelhoefer, G Knapmeyer, M Kramer, G Lawrence, D Marczewski, W McKenna-Lawlor, S Miljkovic, K Narendranath, S Palomba, E Phipps, A Pike, WT Pullan, D Rask, J Richard, DT Seweryn, K Sheridan, S Sims, M Sweeting, M Swindle, T Talboys, D Taylor, L Teanby, N Tong, V Ulamec, S Wawrzaszek, R Wieczorek, M Wilson, L Wright, I AF Smith, Alan Crawford, I. A. Gowen, Robert Anthony Ambrosi, R. Anand, M. Banerdt, B. Bannister, N. Bowles, N. Braithwaite, C. Brown, P. Chela-Flores, J. Cholinser, T. Church, P. Coates, A. J. Colaprete, T. Collins, G. Collinson, G. Cook, T. Elphic, R. Fraser, G. Gao, Y. Gibson, E. Glotch, T. Grande, M. Griffiths, A. Grygorczuk, J. Gudipati, M. Hagermann, A. Heldmann, J. Hood, L. L. Jones, A. P. Joy, K. H. Khavroshkin, O. B. Klingelhoefer, G. Knapmeyer, M. Kramer, G. Lawrence, D. Marczewski, W. McKenna-Lawlor, S. Miljkovic, K. Narendranath, S. Palomba, E. Phipps, A. Pike, W. T. Pullan, D. Rask, J. Richard, D. T. Seweryn, K. Sheridan, S. Sims, M. Sweeting, M. Swindle, T. Talboys, D. Taylor, L. Teanby, N. Tong, V. Ulamec, S. Wawrzaszek, R. Wieczorek, M. Wilson, L. Wright, I. TI Lunar Net-a proposal in response to an ESA M3 call in 2010 for a medium sized mission SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Moon; Lunar; Penetrators; Space; Technology; MEMS ID MOON; MARS; PENETRATORS; SEISMOLOGY; INSTRUMENT; RADIOMETER; EVOLUTION; ORIGINS; SURFACE; SYSTEM AB Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network). C1 [Smith, Alan; Gowen, Robert Anthony; Coates, A. J.; Griffiths, A.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Crawford, I. A.; Tong, V.] Univ London, Dept Earth & Planetary Sci, Birkbeck Coll, London, England. [Brown, P.; Collins, G.; Miljkovic, K.; Pike, W. T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Jones, A. P.] UCL, Dept Earth Sci, London WC1E 6BT, England. [Gao, Y.] Univ Surrey, Surrey Space Ctr, Guildford GU2 5XH, Surrey, England. [Church, P.] QinetiQ Ltd, Ft Halsted, Sevenoaks, England. [Anand, M.; Hagermann, A.; Sheridan, S.; Wright, I.] Open Univ, CEPSAR, Milton Keynes MK7 6AA, Bucks, England. [Ambrosi, R.; Bannister, N.; Fraser, G.; Pullan, D.; Sims, M.; Talboys, D.] Univ Leicester, Leicester, Leics, England. [Braithwaite, C.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Phipps, A.; Sweeting, M.] SSTL, Guildford, Surrey, England. [Wilson, L.] Univ Lancaster, Lancaster, England. [Teanby, N.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. [Bowles, N.] Univ Oxford, Oxford, England. [Cook, T.; Grande, M.] Univ Wales Aberystwyth, Inst Math & Phys Sci, Aberystwyth, Dyfed, Wales. [McKenna-Lawlor, S.] Natl Univ Ireland, Space Technol Ireland, Maynooth, Kildare, Ireland. [Grygorczuk, J.; Marczewski, W.; Seweryn, K.; Wawrzaszek, R.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Palomba, E.] IFSI INAF, Rome, Italy. [Chela-Flores, J.] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy. [Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, Mainz, Germany. [Wieczorek, M.] Univ Paris Diderot, Inst Phys Globe Paris, Paris, France. [Knapmeyer, M.] Inst Planetary Res, DLR, Berlin, Germany. [Ulamec, S.] DLR MUSC, Cologne, Germany. [Khavroshkin, O. B.] Russian Acad Sci, Inst Phys Earth, Moscow, Russia. [Narendranath, S.] ISRO, Bangalore, Karnataka, India. [Collinson, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Colaprete, T.; Rask, J.] NASA Ames, Moffett Field, CA 94035 USA. [Lawrence, D.] Johns Hopkins APL, Laurel, MD 20723 USA. [Glotch, T.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Hood, L. L.; Swindle, T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Richard, D. T.] San Jose State Univ, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Taylor, L.] Univ Tennessee, Knoxville, TN 37996 USA. [Gibson, E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Banerdt, B.; Gudipati, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Joy, K. H.; Kramer, G.] Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA. RP Gowen, RA (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM as@mssl.ucl.ac.uk; rag@mssl.ucl.ac.uk RI Wieczorek, Mark/G-6427-2010; Knapmeyer, Martin/A-5783-2012; Crawford, Ian/H-7510-2012; Coates, Andrew/C-2396-2008; Gudipati, Murthy/F-7575-2011; Anand, Mahesh/E-9259-2013; Miljkovic, Katarina/D-4844-2013; Grande, Manuel/C-2242-2013; OI Wieczorek, Mark/0000-0001-7007-4222; Knapmeyer, Martin/0000-0003-0319-2514; Crawford, Ian/0000-0001-5661-7403; Coates, Andrew/0000-0002-6185-3125; Miljkovic, Katarina/0000-0001-8644-8903; Grande, Manuel/0000-0002-2233-2618; Anand, Mahesh/0000-0003-4026-4476; Teanby, Nicholas/0000-0003-3108-5775; Joy, Katherine/0000-0003-4992-8750; Collins, Gareth/0000-0002-6087-6149; Palomba, Ernesto/0000-0002-9101-6774 FU UK Science and Technology Facilities Council; Lunar and Planetary Institute [1632] FX Elements of this study were supported by the UK Science and Technology Facilities Council, and other international funding agencies including contribution 1632 from the Lunar and Planetary Institute. NR 72 TC 9 Z9 9 U1 1 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 587 EP 644 DI 10.1007/s10686-011-9250-5 PG 58 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100010 ER PT J AU Barucci, MA Cheng, AF Michel, P Benner, LAM Binzel, RP Bland, PA Bohnhardt, H Brucato, JR Bagatin, AC Cerroni, P Dotto, E Fitzsimmons, A Franchi, IA Green, SF Lara, LM Licandro, J Marty, B Muinonen, K Nathues, A Oberst, J Rivkin, AS Robert, F Saladino, R Trigo-Rodriguez, JM Ulamec, S Zolensky, M AF Barucci, Maria Antonietta Cheng, A. F. Michel, P. Benner, L. A. M. Binzel, R. P. Bland, P. A. Boehnhardt, H. Brucato, J. R. Campo Bagatin, A. Cerroni, P. Dotto, E. Fitzsimmons, A. Franchi, I. A. Green, S. F. Lara, L. -M. Licandro, J. Marty, B. Muinonen, K. Nathues, A. Oberst, J. Rivkin, A. S. Robert, F. Saladino, R. Trigo-Rodriguez, J. M. Ulamec, S. Zolensky, M. TI MarcoPolo-R near earth asteroid sample return mission SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Astrobiology; Near-Earth Asteroid; Origin; Primitive material; Sample return mission; Re-entry capsule ID BINARY ASTEROIDS; SPECTROSCOPIC SURVEY; 1996 FG(3); PHASE-II; OBJECTS; LIGHTCURVES; POPULATION AB MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales, and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2 kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binary NEA. This project is based on the previous Marco Polo mission study, which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees and it was not selected only because the estimated cost was higher than the allotted amount for an M class mission. The cost of MarcoPolo-R will be reduced to within the ESA medium mission budget by collaboration with APL (John Hopkins University) and JPL in the NASA program for coordination with ESA's Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of this target will allow new investigations to be performed more easily than at a single object, and also enables investigations of the fascinating geology and geophysics of asteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020-2024. A number of other possible primitive single targets of high scientific interest have been identified covering a wide range of possible launch dates. The baseline mission scenario of MarcoPolo-R to 1996 FG3 is as follows: a single primary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission duration of 7 and 8 years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT. C1 [Barucci, Maria Antonietta] Observ Paris, LESIA, F-92195 Meudon, France. [Cheng, A. F.; Rivkin, A. S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Michel, P.] Univ Nice Sophia Antipolis, Observ Cote Azur, CNRS, Nice, France. [Benner, L. A. M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Binzel, R. P.] MIT, Cambridge, MA 02139 USA. [Bland, P. A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Boehnhardt, H.; Nathues, A.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Brucato, J. R.] INAF, Osservatorio Astrofis Arcetri, Florence, Italy. [Campo Bagatin, A.] Univ Alicante, E-03080 Alicante, Spain. [Cerroni, P.] INAF, Inst Astrofis Spaziale & Fis Cosm, Rome, Italy. [Dotto, E.] INAF, Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Fitzsimmons, A.] Queens Univ Belfast, Belfast, Antrim, North Ireland. [Franchi, I. A.; Green, S. F.] Open Univ, PSSRI, Milton Keynes MK7 6AA, Bucks, England. [Lara, L. -M.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Licandro, J.] Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain. [Licandro, J.] Univ La Laguna, Dep Astrofis, Tenerife, Spain. [Marty, B.] CNRS, Ctr Rech Petrog & Geochim, Nancy, France. [Muinonen, K.] Univ Helsinki, Helsinki, Finland. [Muinonen, K.] FGI, Helsinki, Finland. [Oberst, J.] DLR, Berlin, Germany. [Robert, F.] Museum Natl Hist Nat, F-75231 Paris, France. [Saladino, R.] Univ Tuscia, Viterbo, Italy. [Trigo-Rodriguez, J. M.] CSIC, Inst Estudis Espacials Catalunya, Barcelona, Spain. [Ulamec, S.] DLR RB MC, Cologne, Germany. [Zolensky, M.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Barucci, MA (reprint author), Observ Paris, LESIA, 5 Pl J Janssen, F-92195 Meudon, France. EM antonella.barucci@obspm.fr RI Green, Simon/C-7408-2009; Rivkin, Andrew/B-7744-2016; Campo Bagatin, Adriano/L-2809-2014; OI Rivkin, Andrew/0000-0002-9939-9976; Campo Bagatin, Adriano/0000-0001-9840-2216; Cerroni, Priscilla/0000-0003-0239-2741; Dotto, Elisabetta/0000-0002-9335-1656; Brucato, John Robert/0000-0002-4738-5521 FU NASA under the Science Mission Directorate FX The mission design takes advantages of the ESA assessment study phase of the former Marco Polo project in 2008-2009 including the related three industrial studies. For this proposal, we acknowledge the contribution of the following European industrial teams: Astrium Ltd, OHB, GMV, Thales Alenia Space. Some components are based on work by APL and JPL funded by NASA under the Science Mission Directorate Research and Analysis Programs. NR 30 TC 38 Z9 39 U1 0 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 645 EP 684 DI 10.1007/s10686-011-9231-8 PG 40 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100011 ER PT J AU Lamy, P Vernazza, P Poncy, J Martinot, V Hinglais, E Canalias, E Bell, J Cruikshank, D Groussin, O Helbert, J Marzari, F Morbidelli, A Rosenblatt, P Sierks, H AF Lamy, Philippe Vernazza, Pierre Poncy, Joel Martinot, Vincent Hinglais, Emmanuel Canalias, Elisabet Bell, Jim Cruikshank, Dale Groussin, Olivier Helbert, Joern Marzari, Francesco Morbidelli, Alessandro Rosenblatt, Pascal Sierks, Holger TI Trojans' Odyssey: Unveiling the early history of the Solar System SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Asteroids; Trojans; Space mission; Solar system ID GIANT PLANETS; ORIGIN; SPECTROSCOPY; TRANSPORT; ASTEROIDS AB In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the 'snow line', around respectively the L-4 and L-5 Lagrange points of Jupiter at similar to 5.2 AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9 AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans' Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3 AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise time as well as the Delta V needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest Delta V. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy, and radio science/mass determination. The total mass of the payload amounts to 50 kg (including margins). The spacecraft is in the class of Mars-Express or a down-scaled version of Jupiter Ganymede Orbiter. It will have a dry mass of 1200 kg, a total mass at launch of 3070 kg and a Delta V capability of 700 m/s (after having reached the first Trojan) and can be launched by a Soyuz rocket. The mission operations concept (ground segment) and science operations are typical of a planetary mission as successfully implemented by ESA during, for instance, the recent flybys of Main Belt asteroids Steins and Lutetia. C1 [Lamy, Philippe; Vernazza, Pierre; Groussin, Olivier] Lab Astrophys Marseille, F-13388 Marseille, France. [Poncy, Joel; Martinot, Vincent] Thales Alenia Space, Cannes, France. [Hinglais, Emmanuel; Canalias, Elisabet] Ctr Natl Etud Spatiales, F-31055 Toulouse, France. [Bell, Jim] Arizona State Univ, Phoenix, AZ USA. [Cruikshank, Dale] NASA Ames, Moffett Field, CA USA. [Helbert, Joern] Deutsch Zentrums Luft & Raumfahrt, Berlin, Germany. [Marzari, Francesco] Univ Padua, Padua, Italy. [Morbidelli, Alessandro] Observ Cote Azur, F-06003 Nice, France. [Rosenblatt, Pascal] Observ Royal Belgique, B-1180 Brussels, Belgium. [Sierks, Holger] Max Planck Inst Solar Syst Studies, Lindau, Germany. RP Lamy, P (reprint author), Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille, France. EM philippe.lamy@oamp.fr OI Helbert, Jorn/0000-0001-5346-9505 NR 21 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 685 EP 721 DI 10.1007/s10686-011-9253-2 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100012 ER PT J AU Arridge, CS Agnor, CB Andre, N Baines, KH Fletcher, LN Gautier, D Hofstadter, MD Jones, GH Lamy, L Langevin, Y Mousis, O Nettelmann, N Russell, CT Stallard, T Tiscareno, MS Tobie, G Bacon, A Chaloner, C Guest, M Kemble, S Peacocke, L Achilleos, N Andert, TP Banfield, D Barabash, S Barthelemy, M Bertucci, C Brandt, P Cecconi, B Chakrabarti, S Cheng, AF Christensen, U Christou, A Coates, AJ Collinson, G Cooper, JF Courtin, R Dougherty, MK Ebert, RW Entradas, M Fazakerley, AN Fortney, JJ Galand, M Gustin, J Hedman, M Helled, R Henri, P Hess, S Holme, R Karatekin, O Krupp, N Leisner, J Martin-Torres, J Masters, A Melin, H Miller, S Muller-Wodarg, I Noyelles, B Paranicas, C de Pater, I Patzold, M Prange, R Quemerais, E Roussos, E Rymer, AM Sanchez-Lavega, A Saur, J Sayanagi, KM Schenk, P Schubert, G Sergis, N Sohl, F Sittler, EC Teanby, NA Tellmann, S Turtle, EP Vinatier, S Wahlund, JE Zarka, P AF Arridge, Christopher S. Agnor, Craig B. Andre, Nicolas Baines, Kevin H. Fletcher, Leigh N. Gautier, Daniel Hofstadter, Mark D. Jones, Geraint H. Lamy, Laurent Langevin, Yves Mousis, Olivier Nettelmann, Nadine Russell, Christopher T. Stallard, Tom Tiscareno, Matthew S. Tobie, Gabriel Bacon, Andrew Chaloner, Chris Guest, Michael Kemble, Steve Peacocke, Lisa Achilleos, Nicholas Andert, Thomas P. Banfield, Don Barabash, Stas Barthelemy, Mathieu Bertucci, Cesar Brandt, Pontus Cecconi, Baptiste Chakrabarti, Supriya Cheng, Andy F. Christensen, Ulrich Christou, Apostolos Coates, Andrew J. Collinson, Glyn Cooper, John F. Courtin, Regis Dougherty, Michele K. Ebert, Robert W. Entradas, Marta Fazakerley, Andrew N. Fortney, Jonathan J. Galand, Marina Gustin, Jaques Hedman, Matthew Helled, Ravit Henri, Pierre Hess, Sebastien Holme, Richard Karatekin, Ozgur Krupp, Norbert Leisner, Jared Martin-Torres, Javier Masters, Adam Melin, Henrik Miller, Steve Mueller-Wodarg, Ingo Noyelles, Benoit Paranicas, Chris de Pater, Imke Paetzold, Martin Prange, Renee Quemerais, Eric Roussos, Elias Rymer, Abigail M. Sanchez-Lavega, Agustin Saur, Joachim Sayanagi, Kunio M. Schenk, Paul Schubert, Gerald Sergis, Nick Sohl, Frank Sittler, Edward C., Jr. Teanby, Nick A. Tellmann, Silvia Turtle, Elizabeth P. Vinatier, Sandrine Wahlund, Jan-Erik Zarka, Philippe TI Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Uranus; Ice Giant; Orbiter; Giant planet atmosphere; Ring system; Interior; Dynamo; Magnetosphere; Natural satellite ID URANIAN SATELLITES; MAGNETIC-FIELDS; SOLAR-SYSTEM; VOYAGER-2 ENCOUNTER; TIDAL EVOLUTION; RADIO EMISSIONS; MAGNETOSPHERE; INTERIORS; ROTATION; JUPITER AB The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments. C1 [Arridge, Christopher S.; Jones, Geraint H.; Coates, Andrew J.; Fazakerley, Andrew N.; Masters, Adam] UCL, Ctr Planetary Sci, London, England. [Achilleos, Nicholas] UCL, Dept Phys & Astron, London, England. [Agnor, Craig B.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Andert, Thomas P.] Univ Bundeswehr, Munich, Germany. [Andre, Nicolas] CNRS, Ctr Etude Spatiale Rayonnements, Toulouse, France. [Arridge, Christopher S.; Jones, Geraint H.; Coates, Andrew J.; Fazakerley, Andrew N.; Masters, Adam] UCL, Mullard Space Sci Lab, Dept Space & Climate Phys, London, England. [Bacon, Andrew; Chaloner, Chris; Guest, Michael] Syst Engn & Asssessment Ltd, Bristol, Avon, England. [Baines, Kevin H.; Hofstadter, Mark D.] NASA, Jet Prop Lab, Pasadena, CA USA. [Tiscareno, Matthew S.; Banfield, Don; Hedman, Matthew] Cornell Univ, Ithaca, NY USA. [Barabash, Stas] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Barthelemy, Mathieu] Univ Grenoble 1, CNRS INSU, Inst Planetol & Astrophys Grenoble IPAG, Grenoble, France. [Bertucci, Cesar] Univ Buenos Aires, Inst Astron & Space Phys, Buenos Aires, DF, Argentina. [Brandt, Pontus; Cheng, Andy F.; Paranicas, Chris; Rymer, Abigail M.; Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Gautier, Daniel; Lamy, Laurent; Cecconi, Baptiste; Courtin, Regis; Henri, Pierre; Prange, Renee; Vinatier, Sandrine; Zarka, Philippe] Observ Paris, CNRS, LESIA, Meudon, France. [Chakrabarti, Supriya] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Christensen, Ulrich; Krupp, Norbert; Roussos, Elias] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Christou, Apostolos] Armagh Observ, Armagh BT61 9DG, North Ireland. [Collinson, Glyn; Cooper, John F.; Sittler, Edward C., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dougherty, Michele K.; Galand, Marina; Mueller-Wodarg, Ingo] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Ebert, Robert W.] SW Res Inst, San Antonio, TX USA. [Entradas, Marta; Miller, Steve] UCL, Dept Sci & Technol Studies, London, England. [Fletcher, Leigh N.] Univ Oxford, Dept Phys, Oxford, England. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Gustin, Jaques] Univ Liege, Lab Phys Atmospher & Planetaire, Liege, Belgium. [Helled, Ravit; Sayanagi, Kunio M.; Schubert, Gerald] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Hess, Sebastien] Univ Colorado, Boulder, CO 80309 USA. [Holme, Richard] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England. [Karatekin, Ozgur] Royal Observ Belgium, Brussels, Belgium. [Kemble, Steve; Peacocke, Lisa] EADS Astrium, Stevenage, Herts, England. [Langevin, Yves] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Leisner, Jared] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Martin-Torres, Javier] Ctr Astrobiol, Madrid, Spain. [Stallard, Tom; Melin, Henrik] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mousis, Olivier] Univ Franche Comte, OSU THETA, CNRS, Inst UTINAM, F-25030 Besancon, France. [Nettelmann, Nadine] Univ Rostock, Rostock, Germany. [Noyelles, Benoit] Univ Namur, Namur Ctr Complex Syst NAXYS, Namur, Belgium. [de Pater, Imke] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Paetzold, Martin; Tellmann, Silvia] Univ Cologne, Rhenish Inst Environm Res, D-50931 Cologne, Germany. [Quemerais, Eric] CNRS, LATMOS, Guyancourt, France. [Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Sanchez-Lavega, Agustin] Univ Basque Country, Bilbao, Spain. [Saur, Joachim] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany. [Schenk, Paul] Lunar & Planetary Inst, Houston, TX 77058 USA. [Sergis, Nick] Acad Athens, Off Space Res, Athens, Greece. [Sohl, Frank] DLR, Inst Planetary Res, Berlin, Germany. [Teanby, Nick A.] Univ Bristol, Sch Earth Sci, Bristol, Avon, England. [Tobie, Gabriel] Univ Nantes, CNRS, LPG, Nantes, France. [Wahlund, Jan-Erik] Swedish Inst Space Phys, Uppsala, Sweden. RP Arridge, CS (reprint author), UCL, Ctr Planetary Sci, London, England. EM csa@mssl.ucl.ac.uk RI Arridge, Christopher/A-2894-2009; Martin-Torres, Francisco Javier/G-6329-2015; Fletcher, Leigh/D-6093-2011; Noyelles, Benoit/Q-1767-2015; Paranicas, Christopher/B-1470-2016; Sergis, Nick/A-9881-2015; Coates, Andrew/C-2396-2008; Turtle, Elizabeth/K-8673-2012; Jones, Geraint/C-1682-2008; Cooper, John/D-4709-2012; Mueller-Wodarg, Ingo/M-9945-2014 OI Stallard, Tom/0000-0003-3990-670X; Hess, Sebastien/0000-0001-5753-0991; Jones, Geraint/0000-0002-5859-1136; Russell, Christopher/0000-0003-1639-8298; Roussos, Elias/0000-0002-5699-0678; Bertucci, Cesar/0000-0002-2540-5384; Achilleos, Nicholas/0000-0002-5886-3509; Banfield, Don/0000-0003-2664-0164; Teanby, Nicholas/0000-0003-3108-5775; Fortney, Jonathan/0000-0002-9843-4354; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Arridge, Christopher/0000-0002-0431-6526; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Fletcher, Leigh/0000-0001-5834-9588; Noyelles, Benoit/0000-0003-4106-8741; Paranicas, Christopher/0000-0002-4391-8255; Entradas, Marta/0000-0001-7146-9912; Coates, Andrew/0000-0002-6185-3125; Turtle, Elizabeth/0000-0003-1423-5751; Mueller-Wodarg, Ingo/0000-0001-6308-7826 FU Science and Technology Facilities Council; University of Oxford FX CSA was supported by a Science and Technology Facilities Council Post-doctoral Fellowship. LNF was supported by a Glasstone Fellowship at the University of Oxford. We wish to thank EADS Astrium and Systems Engineering and Assessment Ltd. for their assistance with this study. NR 69 TC 19 Z9 19 U1 1 U2 31 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD APR PY 2012 VL 33 IS 2-3 SI SI BP 753 EP 791 DI 10.1007/s10686-011-9251-4 PG 39 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934SE UT WOS:000303466100014 ER PT J AU Nguyen, NT AF Nguyen, Nhan T. TI Optimal control modification for robust adaptive control with large adaptive gain SO SYSTEMS & CONTROL LETTERS LA English DT Article DE Adaptive control; Optimal control; Flight control ID DYNAMICS AB In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain so as to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness. A new adaptive law, called optimal control modification, is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations. The modification is based on a minimization of the L-2 norm of the tracking error bounded away from some lower bound, formulated as an optimal control problem. The optimality condition is used to derive the modification based on the Pontryagin's Minimum Principle. The optimal control modification is shown to improve robustness of the standard MRAC without significantly compromising the tracking performance. Flight control simulations demonstrate the effectiveness of the new adaptive law. A series of recent, successful flight tests of this adaptive law on a NASA F/A-18A aircraft at NASA Dryden Flight Research Center further demonstrate the effectiveness of the optimal control modification adaptive law. Published by Elsevier B.V.. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nguyen, NT (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Nhan.T.Nguyen@nasa.gov FU NASA Aeronautics Research Mission Directorate FX The author would like to thank the reviewers for their constructive inputs in their reviews and valuable contributions in improving the manuscript. The author also would like to acknowledge NASA Aeronautics Research Mission Directorate Aviation Safety Program for providing support of this research. NR 24 TC 13 Z9 13 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6911 J9 SYST CONTROL LETT JI Syst. Control Lett. PD APR PY 2012 VL 61 IS 4 BP 485 EP 494 DI 10.1016/j.sysconle.2012.01.009 PG 10 WC Automation & Control Systems; Operations Research & Management Science SC Automation & Control Systems; Operations Research & Management Science GA 937ZT UT WOS:000303703500005 ER PT J AU Brosius, JW Holman, GD AF Brosius, J. W. Holman, G. D. TI Using SDO's AIA to investigate energy transport from a flare's energy release site to the chromosphere SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: transition region; Sun: UV radiation; Sun: X-rays, gamma rays ID LOOP RADIATIVE HYDRODYNAMICS; HIGH TIME RESOLUTION; CORONAL DIAGNOSTIC SPECTROMETER; BRAGG CRYSTAL SPECTROMETER; X-RAY SPECTROSCOPY; SOLAR-FLARE; EXTREME-ULTRAVIOLET; IMAGING SPECTROMETER; ATOMIC DATABASE; EMISSION-LINES AB Context. Coordinated observations of a GOES B4.8 microflare with SDO's Atmospheric Imaging Assembly (AIA) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIA's EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIA's 94, 131, 171, 193, 211, and 335 angstrom channels to solar flare brightenings by combining (1) AIA's nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop footpoint on 2001 April 24 with the Coronal Diagnostic Spectrometer (CDS) on timescales comparable to AIA's image cadence. Methods. The nine emission lines observed by CDS cover a wide range of formation temperature from about 0.05 to 8 MK. Line brightenings observed early during the CDS flare occurred at temperatures less than about 0.7 MK, with the largest values around 0.1 MK. These brightenings were consistent with the flare's energy transport being dominated by nonthermal particle beams. Because all of AIA's EUV channels are sensitive to emission from plasma in the 0.1 to 0.7 MK temperature range, we show that all of AIA's EUV channels will brighten simultaneously during flares like this, in which energy transport is dominated by nonthermal particle beams. Results. The 2010 July 31 flare observed by AIA and RHESSI displays this behavior, so we conclude that such beams likely dominated the flare's energy transport early during the event. When thermal conduction from a reconnection-heated, hot (similar to 10 MK) plasma dominates the energy transport, the AIA channels that are sensitive to emission from such temperatures (particularly the 94 and 131 angstrom channels) will brighten earlier than the channels that are not sensitive to such temperatures (171 and 211 angstrom). Conclusions. Thus, based on the differences expected between AIA's response to flares whose energy transport is dominated by nonthermal particle beams from those whose energy transport is dominated by thermal conduction, AIA can be used to determine the dominant energy transport mechanism for any given event. C1 [Brosius, J. W.] Catholic Univ Amer, NASAs Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brosius, JW (reprint author), Catholic Univ Amer, NASAs Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. EM Jeffrey.W.Brosius@nasa.gov; Gordon.D.Holman@nasa.gov FU NASA [NNX10AC08G]; SRT [NNX10AC08G]; RHESSI FX J.W.B. acknowledges NASA support through SR&T grant NNX10AC08G. G.D.H. acknowledges partial support from SR&T grant NNX10AC08G and the RHESSI Project. The AIA data used are provided courtesy of NASA/SDO and the AIA science team. NR 42 TC 16 Z9 16 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A24 DI 10.1051/0004-6361/201118144 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400038 ER PT J AU Courbin, F Faure, C Djorgovski, SG Rerat, F Tewes, M Meylan, G Stern, D Mahabal, A Boroson, T Dheeraj, R Sluse, D AF Courbin, F. Faure, C. Djorgovski, S. G. Rerat, F. Tewes, M. Meylan, G. Stern, D. Mahabal, A. Boroson, T. Dheeraj, R. Sluse, D. TI Three quasi-stellar objects acting as strong gravitational lenses SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational lensing: strong; quasars: individual: SDSS J0013+1523; quasars: individual: SDSS J0827+5224; quasars: individual: SDSS J0919+2720; quasars: individual: SDSS J1005+4016 ID EARLY-TYPE GALAXIES; GALACTIC NUCLEI; SUBSTRUCTURE; II.; DECONVOLUTION; DECOMPOSITION; COSMOGRAIL; LUMINOSITY; MODELS; IMAGES AB We report the discovery of three new cases of quasi-stellar objects (QSOs) acting as strong gravitational lenses on background emission line galaxies: SDSS J0827+5224 (z(QSO) = 0.293, z(s) = 0.412), SDSS J0919+2720 (z(QSO) = 0.209, z(s) = 0.558), SDSS J1005+4016 (z(QSO) = 0.230, z(s) = 0.441). The selection was carried out using a sample of 22,298 SDSS spectra displaying at least four emission lines at a redshift beyond that of the foreground QSO. The lensing nature is confirmed from Keck imaging and spectroscopy, as well as from HST/WFC3 imaging in the F475W and F814W filters. Two of the QSOs have face-on spiral host galaxies and the third is a QSO+galaxy pair. The velocity dispersion of the host galaxies, inferred from simple lens modeling, is between sigma = 210 and 285 km s(-1), making these host galaxies comparable in mass with the SLACS sample of early-type strong lenses. C1 [Courbin, F.; Faure, C.; Rerat, F.; Tewes, M.; Meylan, G.] EPFL, Astrophys Lab, Observatoire Sauverny, CH-1290 Chavannes Des Bois, Switzerland. [Djorgovski, S. G.; Mahabal, A.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Djorgovski, S. G.] King Abdulaziz Univ, Jeddah 21589, Saudi Arabia. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boroson, T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Dheeraj, R.] Univ Maryland, College Pk, MD 20742 USA. [Sluse, D.] Univ Heidelberg, Zentrum Astron, Astron Rechen Inst, D-69190 Heidelberg, Germany. [Sluse, D.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. RP Courbin, F (reprint author), EPFL, Astrophys Lab, Observatoire Sauverny, CH-1290 Chavannes Des Bois, Switzerland. EM cecile.faure@epfl.ch FU Swiss National Science Foundation (SNSF); National Aeronautics and Space Administration [HST-GO-12233.01-A, AST-0909182]; Ajax Foundation; German Virtual Observatory; Deutsche Forschungsgemeinschaft [SL172/1-1]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX This study is supported by the Swiss National Science Foundation (SNSF). S.G.D. and A.A.M. acknowledge a partial support from the NASA grant HST-GO-12233.01-A, the NSF grant AST-0909182, and the Ajax Foundation. The work of D. Stern was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. D. Sluse acknowledges partial support from the German Virtual Observatory and from the Deutsche Forschungsgemeinschaft, reference SL172/1-1. This work makes use of the data collected by the SDSS collaboration and released in DR7. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 29 TC 3 Z9 3 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A36 DI 10.1051/0004-6361/201118015 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400050 ER PT J AU Fairen, AG Haqq-Misra, JD McKay, CP AF Fairen, A. G. Haqq-Misra, J. D. McKay, C. P. TI Reduced albedo on early Mars does not solve the climate paradox under a faint young Sun SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: individual: Mars; planets and satellites: atmospheres; planets and satellites: surfaces ID CARBON-DIOXIDE CLOUDS; EARLY EARTH; NORTHERN PLAINS; SURFACE TEMPERATURES; CHAOTIC OBLIQUITY; CO2; ATMOSPHERES; GREENHOUSE; EVOLUTION; MODELS AB Context. The presence of liquid water on the surface of early Mars and Earth is difficult to reconcile with the reduced solar luminosity at 3.8 Ga. and before, which would have imposed mean temperatures below freezing all over both planets. For the case of Earth, it has been recently suggested the hypothesis that less continental area and limited cloudiness during the Archaean may have reduced planetary albedo and thereby increased surface warming by sunlight. Aims. Here we analyze whether this novel solution explaining warming conditions on the early Earth could be applied to early Mars. Methods. We use an energy balance climate model in our calculations. Results. Our results show that early Mars could have been kept warm as long as there was a nearly global ocean and relatively sparse cloud coverage. This result is internally inconsistent, and also incompatible with most of the observed geological evidence. Conclusions. Reduced albedo is not a suitable solution for the faint young Sun problem in the case of early Mars. The combination of climatic and geochemical models is essential for understanding the stability of liquid water during the Noachian. C1 [Fairen, A. G.; McKay, C. P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Haqq-Misra, J. D.] Blue Marble Space Inst Sci, Seattle, WA 98145 USA. RP Fairen, AG (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM alberto.g.fairen@nasa.gov; jacob@bmsis.org OI Haqq-Misra, Jacob/0000-0003-4346-2611 NR 50 TC 6 Z9 6 U1 3 U2 16 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A13 DI 10.1051/0004-6361/201118527 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400027 ER PT J AU Mosser, B Goupil, MJ Belkacem, K Michel, E Stello, D Marques, JP Elsworth, Y Barban, C Beck, PG Bedding, TR De Ridder, J Garcia, RA Hekker, S Kallinger, T Samadi, R Stumpe, MC Barclay, T Burke, CJ AF Mosser, B. Goupil, M. J. Belkacem, K. Michel, E. Stello, D. Marques, J. P. Elsworth, Y. Barban, C. Beck, P. G. Bedding, T. R. De Ridder, J. Garcia, R. A. Hekker, S. Kallinger, T. Samadi, R. Stumpe, M. C. Barclay, T. Burke, C. J. TI Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: oscillations; stars: interiors; stars: evolution; stars: late-type; methods: data analysis; asteroseismology ID SOLAR-LIKE OSCILLATIONS; 1ST 4 MONTHS; ASTEROSEISMIC DIAGRAMS; INPUT CATALOG; HD 49385; STARS; PARAMETERS; SCIENCE; SUN AB Context. There are now more than 22 months of long-cadence data available for thousands of red giants observed with the Kepler space mission. Consequently, we are able to clearly resolve fine details in their oscillation spectra and see many components of the mixed modes that probe the stellar core. Aims. We report for the first time a parametric fit to the pattern of the l = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. Methods. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. Results. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of l = 3 modes, of l = 2 mixed modes, for the mode widths and amplitudes, and for the l = 1 rotational splittings. Conclusions. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation. C1 [Mosser, B.; Goupil, M. J.; Belkacem, K.; Michel, E.; Marques, J. P.; Barban, C.; Samadi, R.] Univ Paris 07, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Stello, D.; Bedding, T. R.] Univ Sydney, Sydney Inst Astron, Sch Phys, Sydney, NSW 2006, Australia. [Marques, J. P.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Elsworth, Y.; Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Beck, P. G.; De Ridder, J.; Kallinger, T.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Garcia, R. A.] Univ Paris Diderot IRFU SAp, Lab AIM, CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Stumpe, M. C.; Burke, C. J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Barclay, T.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. RP Mosser, B (reprint author), Univ Paris 07, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. EM benoit.mosser@obspm.fr OI Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; UK Science and Technology Facilities Council; Netherlands Organisation for Scientific Research (NWO); Australian Research Council; FWO-Flanders [O6260 - G.0728.11]; European Research Council under the European Community [227224 PROSPERITY] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. B. M. thanks Ana Palacios for meaningful discussions about the red giant structure. YE acknowledges financial support from the UK Science and Technology Facilities Council. S. H. acknowledges financial support from The Netherlands Organisation for Scientific Research (NWO). D. S. and T. R. B. acknowledge support by the Australian Research Council. J.D.R. and T. K. acknowledge support of the FWO-Flanders under project O6260 - G.0728.11. P. G. B. has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreements no227224 PROSPERITY. NR 55 TC 96 Z9 96 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A143 DI 10.1051/0004-6361/201118519 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400157 ER PT J AU Oshagh, M Boue, G Haghighipour, N Montalto, M Figueira, P Santos, NC AF Oshagh, M. Boue, G. Haghighipour, N. Montalto, M. Figueira, P. Santos, N. C. TI Transit-timing measurements with the model-independent barycenter method: application to the LHS 6343 system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary systems; methods: data analysis ID SPIN-ORBIT ALIGNMENT; EARTH-MASS PLANETS; SUN-LIKE STAR; EXOPLANETARY SYSTEM; CM DRACONIS; KEPLER; STARSPOTS; EXOMOONS; DENSITY; TIME AB We present a model-independent technique for calculating the time of mid-transits. This technique, named "barycenter method", uses the light-curve's symmetry to determine the transit timing by calculating the transit light-curve barycenter. Unlike the other methods of calculating mid-transit timing, this technique does not depend on the parameters of the system and central star. We demonstrate the capabilities of the barycenter method by applying this technique to some known transiting systems including several Kepler confirmed planets. Results indicate that for complete and symmetric transit lightcurves, the barycenter method achieves the same precision as other techniques, but with fewer assumptions and much faster. Among the transiting systems studied with the barycenter method, we focus in particular on LHS 6343C, a brown dwarf that transits a member of an M+M binary system, LHS 6343AB. We present the results of our analysis, which can be used to set an upper limit on the period and mass of a possible second small perturber. C1 [Oshagh, M.; Boue, G.; Montalto, M.; Figueira, P.; Santos, N. C.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Oshagh, M.; Santos, N. C.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4169007 Oporto, Portugal. [Haghighipour, N.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Oshagh, M (reprint author), Univ Porto, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal. EM moshagh@astro.up.pt RI Santos, Nuno/E-9957-2011; Figueira, Pedro/J-4916-2013; OI Santos, Nuno/0000-0003-4422-2919; Figueira, Pedro/0000-0001-8504-283X; Oshagh, Mahmoudreza/0000-0002-0715-8789; Montalto, Marco/0000-0002-7618-8308 FU European Research Council/European Community [239953]; Fundacao para a Ciencia e a Tecnologia (FCT) [PTDC/CTE-AST/098528/2008]; FCT/MCTES (Portugal); POPH/FSE (EC); NASA/EXOB [NNX09AN05G]; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA04CC08A] FX We acknowledge the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953, and by Fundacao para a Ciencia e a Tecnologia (FCT) in the form of grant reference PTDC/CTE-AST/098528/2008. N.C.S. also acknowledge the support from FCT through program Ciencia 2007 funded by FCT/MCTES (Portugal) and POPH/FSE (EC). G. B. thanks the Paris Observatory for providing the necessary computational resources for this work. N.H. acknowledges support from the NASA/EXOB program through grant NNX09AN05G and from the NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii. NR 46 TC 6 Z9 6 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A62 DI 10.1051/0004-6361/201118102 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400076 ER PT J AU Shore, SN Wahlgren, GM Augusteijn, T Liimets, T Koubsky, P Slechta, M Votruba, V AF Shore, S. N. Wahlgren, G. M. Augusteijn, T. Liimets, T. Koubsky, P. Slechta, M. Votruba, V. TI The spectroscopic evolution of the symbiotic-like recurrent nova V407 Cygni during its 2010 outburst II. The circumstellar environment and the aftermath SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: symbiotic; gamma-ray burst: general; novae, cataclysmic variables; stars: individual: V407 Cygni ID RS-OPHIUCHI; IA SUPERNOVAE; SODIUM-ABSORPTION; RAY-EMISSION; BLAST WAVE; STARS; LITHIUM; EXTINCTION; SPECTRUM; OPH AB Context. The nova outburst of V407 Cyg in 2010 Mar. 10 was the first observed for this star but its close resemblance to the well known symbiotic-like recurrent nova RS Oph suggests that it is also a member of this rare type of Galactic novae. The nova was the first detected at.-ray energies and is the first known nova explosion for this system. The extensive multiwavelength coverage of this outburst makes it an ideal comparison with the few other outbursts known for similar systems. Aims. We extend our previous analysis of the Mira and the expanding shock from the explosion to detail the time development of the photoionized Mira wind, circumstellar medium, and shocked circumstellar environment to derive their physical parameters and how they relate to large scale structure of the environment, extending the previous coverage to more than 500 days after outburst. Methods. We use optical spectra obtained at high resolution with the Nordic Optical Telescope (NOT) (R approximate to 45 000 to 65 000) and medium resolution Ondrejov Observatory (R approximate to 12 000) data and compare the line variations with publicly available archival measurements at 30 GHz OVNR and at X-rays with Swift during the first four months of the outburst, through the end of the epoch of strong XR emission. We use nebular diagnostics and high resolution profile variations to derive the densities and locations of the extended emission. Results. We find that the higher the ionization and/or the higher the excitation energy, the more closely the profiles resemble the He II/Ca V-type high velocity shock profile discussed in Paper I. This also accounts for the comparative development of the [N II] and [O III] isoelectronic transitions: the [O III] 4363 angstrom profile does not show the low velocity peaks while the excited [N II] 5754 angstrom does. If nitrogen is mainly N+3 or higher in the shock, the upper state of the [N II] nebular lines will contribute but if the oxygen is O+2 then this line is formed by recombination, masking the nebular contributor, and the lower states are collisionally quenched but emit from the low density surroundings. Absorption lines of Fe-peak ions formed in the Mira wind were visible as P Cyg profiles at low velocity before Day 69, around the time of the X-ray peak and we identified many absorption transitions without accompanying emission for metal lines. The H Balmer lines showed strong P Cyg absorption troughs that weakened during the 2010 observing period, through Day 128. The Fe-peak line profiles and flux variations were different for permitted and forbidden transitions: the E1 transitions were not visible after Day 128 but had shown a narrow peak superimposed on an extended (200 km s(-1)) blue wing, while the M1 and E2 transitions persisted to Day 529, the last observation, and showed extended redshifted wings up of the same velocity. We distinguish the components from the shock, the photoionized environment, and the chromosphere and inner Mira wind using spectra taken more than one year after outburst. The multiple shells and radiative excitation phenomenology are similar to those recently cited for GRBs and SNIa. C1 [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Shore, S. N.] INFN Sez Pisa, Pisa, Italy. [Wahlgren, G. M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Wahlgren, G. M.] NASA GSFC, Greenbelt, MD 20771 USA. [Augusteijn, T.; Liimets, T.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Santa Cruz De T, Spain. [Liimets, T.] Tartu Observ, EE-61602 Toravere, Estonia. [Koubsky, P.; Slechta, M.; Votruba, V.] Acad Sci Czech Republic, Astron Inst, Ondrejov 25165, Czech Republic. RP Shore, SN (reprint author), Univ Pisa, Dipartimento Fis Enrico Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy. EM shore@df.unipi.it; glenn.m.wahlgren@nasa.gov; tau@not.iac.es; tiina@not.iac.es; koubsky@sunstel.asu.cas.cz RI Votruba, Viktor/G-9058-2014; Koubsky, Pavel/G-9031-2014; Slechta, Miroslav/G-9048-2014 FU PhD School "Galileo Galilei", Univ. of Pisa; NASA [NNG06GJ29G]; ESA PECS [98058] FX S.N.S. acknowledges support from the PhD School "Galileo Galilei", Univ. of Pisa and the organizers of the 2011 Asiago Symbiotics meeting for their invitation. G. M. W. acknowledges support from NASA grant NNG06GJ29G. P. K. was supported by ESA PECS grant No. 98058. We warmly thank L. Chomiuk, J. Jose, J. Mikolajewska, K. Mukai, C. Rossi, J. Sokoloski, and S. Starrfield for discussions and S. Frimann for his kind help with FIES data reductions. Some spectra at Ondrejov were taken by L. Kotkova, P. Skoda, and J. Polster. We have made extensive use of the Astrophysics Data System (ADS), SIMBAD (CDS), and the MAST archive (STScI) in the course of this work. We also thank C. Buil for generously making his observations of the early outburst publicly available. NR 35 TC 10 Z9 10 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A55 DI 10.1051/0004-6361/201118060 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400069 ER PT J AU Smolders, K Neyskens, P Blommaert, JADL Hony, S Van Winckel, H Decin, L Van Eck, S Sloan, GC Cami, J Uttenthaler, S Degroote, P Barry, D Feast, M Groenewegen, MAT Matsuura, M Menzies, J Sahai, R van Loon, JT Zijlstra, AA Acke, B Bloemen, S Cox, N de Cat, P Desmet, M Exter, K Ladjal, D Ostensen, R Saesen, S van Wyk, F Verhoelst, T Zima, W AF Smolders, K. Neyskens, P. Blommaert, J. A. D. L. Hony, S. Van Winckel, H. Decin, L. Van Eck, S. Sloan, G. C. Cami, J. Uttenthaler, S. Degroote, P. Barry, D. Feast, M. Groenewegen, M. A. T. Matsuura, M. Menzies, J. Sahai, R. van Loon, J. Th. Zijlstra, A. A. Acke, B. Bloemen, S. Cox, N. de Cat, P. Desmet, M. Exter, K. Ladjal, D. Ostensen, R. Saesen, S. van Wyk, F. Verhoelst, T. Zima, W. TI The Spitzer spectroscopic survey of S-type stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: AGB and post-AGB; circumstellar matter; stars: mass-loss; infrared: stars ID ASYMPTOTIC GIANT BRANCH; RICH AGB STARS; MU-M FEATURE; POLYCYCLIC AROMATIC-HYDROCARBONS; DIFFUSE INTERSTELLAR-MEDIUM; LARGE-MAGELLANIC-CLOUD; SKY AUTOMATED SURVEY; ISO-SWS SPECTRA; CARBON STARS; CIRCUMSTELLAR DUST AB Context. S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because the composition of the circumstellar environment reflects the photospheric abundances, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. Aims. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. Methods. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. Results. For the stars without significant dust emission features, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can thus be used as an additional diagnostic for the C/O ratio. For stars with significant dust emission, we define three distinct groups, based on the relative contribution of certain dust species to the infrared flux. We find a strong link between group-membership and C/O ratio. Furthermore, we show that these groups can be explained by assuming that the dust-condensation can be cut short before silicates are produced, while the remaining free atoms and molecules can then be used to form the observed magnesium sulfides or the carriers of the unidentified 13 mu m and 20 mu m features. Finally, we present the detection of emission features attributed to molecules and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons and magnesium sulfide grains. We show that we often detect magnesium sulfides together with molecular SiS and we propose that it is formed by a reaction of SiS molecules with Mg. C1 [Smolders, K.; Blommaert, J. A. D. L.; Van Winckel, H.; Decin, L.; Uttenthaler, S.; Degroote, P.; Acke, B.; Bloemen, S.; Cox, N.; Desmet, M.; Exter, K.; Ladjal, D.; Ostensen, R.; Saesen, S.; Verhoelst, T.; Zima, W.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Neyskens, P.; Van Eck, S.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium. [Hony, S.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Sloan, G. C.; Barry, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Cami, J.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Uttenthaler, S.] Univ Vienna, Dept Astron, A-1180 Vienna, Austria. [Feast, M.] Univ Cape Town, Dept Astron, Astrophys Cosmol & Grav Ctr, ZA-7701 Cape Town, South Africa. [Feast, M.; Menzies, J.; van Wyk, F.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Groenewegen, M. A. T.; de Cat, P.] Koninklijke Sterrenwacht Belgie, B-1180 Brussels, Belgium. [Matsuura, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sahai, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [van Loon, J. Th.] Univ Keele, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Zijlstra, A. A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Saesen, S.] Univ Geneva, Observ Geneve, CH-1290 Sauverny, Switzerland. RP Smolders, K (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200 D, B-3001 Louvain, Belgium. EM kristof.smolders@ster.kuleuven.be; sacha.hony@cea.fr RI Van Winckel, Hans/I-7863-2013 OI Van Winckel, Hans/0000-0001-5158-9327 FU Fund for Scientific Research of Flanders [G.0470.07]; Austrian Science Fund (FWF) [P 22911-N16]; National Research Foundation (NRF) of South Africa; Fund for Scientific Research of Flanders (FWO), Belgium; Research Council of K.U. Leuven, Belgium; Fonds de la Recherche Scientifique (FNRS), Belgium; Royal Observatory of Belgium; Observatoire de Geneve, Switzerland; Thuringer Landessternwarte Tautenburg, Germany; Action de recherche concerte (ARC) from Direction generale de l'Enseignement non obligatoire et de la Recherche scientifique - Direction de la recherche scientifique - Communaute francaise de Belgique; European Research Council under the European Community [227224]; Research Council of K.U. Leuven [GOA/2008/04] FX K. Smolders, J. Blommaert, L. Decin, H. Van Winckel and S. Uttenthaler acknowledge support from the Fund for Scientific Research of Flanders under the grant G.0470.07. S. Uttenthaler acknowledges support from the Austrian Science Fund (FWF) under project P 22911-N16. S. Van Eck is an F.N.R.S Research Associate. M.W.F. and J.W.M. thank the National Research Foundation (NRF) of South Africa for financial support. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations obtained with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Geneve, Switzerland and the Thuringer Landessternwarte Tautenburg, Germany. This work was partly funded by an Action de recherche concerte (ARC) from the Direction generale de l'Enseignement non obligatoire et de la Recherche scientifique - Direction de la recherche scientifique - Communaute francaise de Belgique. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 227224 (PROSPERITY), as well as from the Research Council of K.U. Leuven grant agreement GOA/2008/04. NR 94 TC 8 Z9 8 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A72 DI 10.1051/0004-6361/201118242 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400086 ER PT J AU Zethson, T Johansson, S Hartman, H Gull, TR AF Zethson, T. Johansson, S. Hartman, H. Gull, T. R. TI eta Carinae: linelist for the emission spectrum of the Weigelt blobs in the 1700 to 10 400 angstrom wavelength region SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE line: identification; circumstellar matter; stars: kinematics and dynamics; stars: individual: eta Carinae ID ENHANCED 2-PHOTON IONIZATION; FLUORESCENCE LINES; STRONTIUM FILAMENT; 2003.5 MINIMUM; TRANSITION-PROBABILITIES; ULTRAVIOLET-SPECTRUM; INFRARED-SPECTRUM; EJECTA ABSORPTION; FORBIDDEN LINES; RED SPECTRUM AB Aims. We present line identifications in the 1700 to 10 400 angstrom region for the Weigelt blobs B and D, located 0.'' 1 to 0 ''.3 NNW of Eta Carinae. The aim of this work is to characterize the behavior of these luminous, dense gas blobs in response to the broad highstate and the short low-state of. Carinae during its 5.54-year spectroscopic period. Methods. The spectra were recorded in a low state (March 1998) and an early high state (February 1999) with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) from 1640 to 10 400 angstrom using the 52 '' x 0.1 aperture centered on Eta Carinae at position angle, PA = 332 degrees. Extractions of the reduced spectrum including both Weigelt B and D, 0.'' 28 in length along the slit, were used to identify the narrow, nebular emission lines, measure their wavelengths and estimate their fluxes. Results. A linelist of 2500 lines is presented for the high and low states of the combined Weigelt blobs B and D. The spectra are dominated by emission lines from the iron-group elements, but include lines from lighter elements including parity-permitted and forbidden lines. A number of lines are fluorescent lines pumped by H Ly alpha. Other lines show anomalous excitation. C1 [Zethson, T.; Johansson, S.; Hartman, H.] Lund Univ, Lund Observ, S-22100 Lund, Sweden. [Gull, T. R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Zethson, T (reprint author), Lund Univ, Lund Observ, Box 43, S-22100 Lund, Sweden. EM Henrik.Hartman@astro.lu.se; Theodore.R.Gull@nasa.gov RI Gull, Theodore/D-2753-2012; Hartman, Henrik/K-3113-2013 OI Gull, Theodore/0000-0002-6851-5380; FU NASA [NAS5-26555]; Swedish Research Council (VR) [621-2006-3085]; Swedish National Space Board (SNSB) FX We are grateful to Nick Collins for providing the tools and producing the 2D spectro-images plots. The observations of the Weigelt blobs were made with the STIS on the NASA/ESA HST under programs 7302 and 8036, and were obtained by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. H. Hartman acknowledges support from the Swedish Research Council (VR) through contract 621-2006-3085. The research on eta Car at Lund University has received long term support from the Swedish National Space Board (SNSB), which is greatly appreciated. All analysis was done using STIS GTO IDL software tools on data available through the HST eta Car Treasury archive. Don Lindler provided very useful display tools for generating the spectro-images. We are grateful to the referee for improvements to the manuscript. NR 60 TC 4 Z9 4 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2012 VL 540 AR A133 DI 10.1051/0004-6361/201116696 PG 119 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932UG UT WOS:000303315400147 ER PT J AU Horikawa, DD Yamaguchi, A Sakashita, T Tanaka, D Hamada, N Yukuhiro, F Kuwahara, H Kunieda, T Watanabe, M Nakahara, Y Wada, S Funayama, T Katagiri, C Higashi, S Yokobori, SI Kuwabara, M Rothschild, LJ Okuda, T Hashimoto, H Kobayashi, Y AF Horikawa, Daiki D. Yamaguchi, Ayami Sakashita, Tetsuya Tanaka, Daisuke Hamada, Nobuyuki Yukuhiro, Fumiko Kuwahara, Hirokazu Kunieda, Takekazu Watanabe, Masahiko Nakahara, Yuichi Wada, Seiichi Funayama, Tomoo Katagiri, Chihiro Higashi, Seigo Yokobori, Shin-Ichi Kuwabara, Mikinori Rothschild, Lynn J. Okuda, Takashi Hashimoto, Hirofumi Kobayashi, Yasuhiko TI Tolerance of Anhydrobiotic Eggs of the Tardigrade Ramazzottius varieornatus to Extreme Environments SO ASTROBIOLOGY LA English DT Article DE Tardigrades; Ramazzottius varieornatus; Anhydrobiosis; Radiation tolerance; Temperatures; Vacuum; Astrobiology ID LIFE-TARSE MISSION; RADIATION TOLERANCE; RICHTERSIUS-CORONIFER; SURVIVAL; PRESSURE; MICROMETAZOANS; TEMPERATURE; RESISTANCE; FOTON-M3 AB Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196 degrees C or +50 degrees C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3 x 10(-4) Pa to 6.2 x 10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs. C1 [Horikawa, Daiki D.; Rothschild, Lynn J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Horikawa, Daiki D.] NASA, Astrobiol Inst, Moffett Field, CA USA. [Yamaguchi, Ayami; Kuwahara, Hirokazu; Kunieda, Takekazu] Univ Tokyo, Grad Sch Sci, Tokyo 113, Japan. [Sakashita, Tetsuya; Funayama, Tomoo; Kobayashi, Yasuhiko] Japan Atom Energy Agcy, Microbeam Radiat Biol Grp, Takasaki, Gumma, Japan. [Tanaka, Daisuke; Watanabe, Masahiko; Nakahara, Yuichi; Okuda, Takashi] Natl Inst Agrobiol Sci, Anhydrobiosis Res Unit, Tsukuba, Ibaraki, Japan. [Hamada, Nobuyuki] CRIEPI, Nucl Technol Res Lab, Radiat Safety Res Ctr, Tokyo, Japan. [Yukuhiro, Fumiko] Natl Inst Agrobiol Sci, Insect Microbe Res Unit, Tsukuba, Ibaraki, Japan. [Wada, Seiichi] Kitasato Univ, Sch Vet Med, Towada, Aomori, Japan. [Katagiri, Chihiro] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 060, Japan. [Higashi, Seigo] Hokkaido Univ, Grad Sch Environm Earth Sci, Sapporo, Hokkaido 060, Japan. [Yokobori, Shin-Ichi] Tokyo Univ Pharm & Life Sci, Sch Life Sci, Hachioji, Tokyo 19203, Japan. [Kuwabara, Mikinori] Hokkaido Univ, Grad Sch Vet Med, Sapporo, Hokkaido, Japan. [Hashimoto, Hirofumi] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Kobayashi, Yasuhiko] Gunma Univ, Grad Sch Med, Dept Quantum Biol, Maebashi, Gumma 371, Japan. RP Horikawa, DD (reprint author), Univ Paris 05, Sch Med, INSERM, U571, 156 Rue Vaugirard, F-75015 Paris 15, France. EM horikawadd@gmail.com RI Kunieda, Takekazu/G-4946-2014 FU REIMEI research resources of JAERI; TIARA [51047]; Oak Ridge Associated Universities FX This work was supported by the REIMEI research resources of JAERI (7) and TIARA Cooperative Research Program (51047). This research was also supported by an appointment to the NASA Astrobiology Institute NASA Postdoctoral Program by Oak Ridge Associated Universities. We thank T. Kubo of The University of Tokyo for daily assistance and encouragement and K. Shimada of Hokkaido University for assistance with recording temperatures inside samples in the temperature experiment. We also thank M. Yamashita of JAXA, A. Yamagishi of Tokyo University of Pharmacy and Life Science, and K. Kobayashi of Yokohama National University for arrangement of vacuum exposure experiments. NR 36 TC 6 Z9 6 U1 4 U2 33 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD APR PY 2012 VL 12 IS 4 BP 283 EP 289 DI 10.1089/ast.2011.0669 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 929LK UT WOS:000303064900001 PM 22490117 ER PT J AU Nuevo, M Milam, SN Sandford, SA AF Nuevo, Michel Milam, Stefanie N. Sandford, Scott A. TI Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices SO ASTROBIOLOGY LA English DT Article DE Pyrimidine; Nucleobases; Interstellar ices; Cometary ices; Molecular processes; Prebiotic chemistry ID POLYCYCLIC AROMATIC-HYDROCARBONS; INFRARED SPECTRAL PROPERTIES; AB-INITIO CALCULATIONS; RACEMIC AMINO-ACIDS; MURCHISON METEORITE; CARBONACEOUS METEORITES; HETEROCYCLIC-COMPOUNDS; BUTYLDIMETHYLSILYL DERIVATIVES; EXTRATERRESTRIAL NUCLEOBASES; INTERSTELLAR-MOLECULES AB Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid-and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces. C1 [Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Nuevo, Michel; Milam, Stefanie N.] SETI Inst, Mountain View, CA USA. RP Sandford, SA (reprint author), NASA, Ames Res Ctr, Div Space Sci, MS 245-6, Moffett Field, CA 94035 USA. EM Scott.A.Sandford@nasa.gov RI Milam, Stefanie/D-1092-2012 OI Milam, Stefanie/0000-0001-7694-4129 FU NASA Astrobiology Institute; Origins of Solar Systems programs FX This work was supported by NASA grants from the NASA Astrobiology Institute and Origins of Solar Systems programs. M.N., S.N.M., and S.A.S. would like to acknowledge M.G. Martin, J.E. Elsila, and J.P. Dworkin (NASA Goddard) for technical advice on the GC-MS data analysis, R.L. Walker (NASA Ames) for technical support, and C.K. Materese (NASA Ames/SETI) for his help in preparing and running standards for HPLC and GC-MS. NR 88 TC 33 Z9 33 U1 4 U2 45 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD APR PY 2012 VL 12 IS 4 BP 295 EP 314 DI 10.1089/ast.2011.0726 PG 20 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 929LK UT WOS:000303064900003 PM 22519971 ER PT J AU Trainer, MG Jimenez, JL Yung, YL Toon, OB Tolbert, MA AF Trainer, Melissa G. Jimenez, Jose L. Yung, Yuk L. Toon, Owen B. Tolbert, Margaret A. TI Nitrogen Incorporation in CH4-N-2 Photochemical Aerosol Produced by Far Ultraviolet Irradiation SO ASTROBIOLOGY LA English DT Article DE Titan; Photochemical aerosol; CH4-N-2 photolysis; Far UV; Nitrogen activation ID PHOTOABSORPTION CROSS-SECTIONS; TITANS UPPER-ATMOSPHERE; HIGH-RESOLUTION; EARLY EARTH; MASS-SPECTROMETER; ORGANIC AEROSOLS; RATE CONSTANTS; M-DWARFS; ASSOCIATION REACTIONS; ELEMENTAL ANALYSIS AB Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda < 120 nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120-200 nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We examined the chemical properties of photochemical aerosol produced at far UV wavelengths, using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH4/N-2 photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N-2 in the irradiated gas. The aerosol mass greatly decreases when N-2 is removed, which indicates that N-2 plays a major role in aerosol production. Because direct dissociation of N-2 is highly improbable given the immeasurably low cross section at the wavelengths studied, the chemical activation of N-2 must occur via another pathway. Any chemical activation of N-2 at wavelengths > 120nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets. C1 [Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Jimenez, Jose L.; Tolbert, Margaret A.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Jimenez, Jose L.; Tolbert, Margaret A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Toon, Owen B.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. RP Trainer, MG (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Code 699, Greenbelt, MD 20771 USA. EM melissa.trainer@nasa.gov RI Jimenez, Jose/A-5294-2008; Trainer, Melissa/E-1477-2012 OI Jimenez, Jose/0000-0001-6203-1847; FU NASA [NNX07AV55G, NNX11AD82G, NNX08AG93G, NX09AB72G]; NSF [ATM-0449815]; NOAA [NA08OAR4310565] FX M.G.T. thanks R. Lessard, C. Hasenkopf, and D. Day for help with control experiments. Y.L.Y. thanks K. Bayes, S. Sander, and W. DeMore for discussion of the kinetics of CH reactions. This work was funded by NASA grants NNX07AV55G, NNX11AD82G, and NNX08AG93G. The development of the HR-ToF-AMS and its analysis software was partially funded by NSF ATM-0449815 and NOAA NA08OAR4310565. Y.L.Y. was supported by NASA grant NX09AB72G to the California Institute of Technology. NR 77 TC 19 Z9 19 U1 1 U2 22 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD APR PY 2012 VL 12 IS 4 BP 315 EP 326 DI 10.1089/ast.2011.0754 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 929LK UT WOS:000303064900004 PM 22519972 ER PT J AU Nolan, PL Abdo, AA Ackermann, M Ajello, M Allafort, A Antolini, E Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Belfiore, A Bellazzini, R Berenji, B Bignami, GF Blandford, RD Bloom, ED Bonamente, E Bonnell, J Borgland, AW Bottacini, E Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Campana, R Canadas, B Cannon, A Caraveo, PA Casandjian, JM Cavazzuti, E Ceccanti, M Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Chipaux, R Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Corbet, R Cutini, S D'Ammando, F Davis, DS de Angelis, A DeCesar, ME DeKlotz, M De Luca, A den Hartog, PR de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Enoto, T Escande, L Fabiani, D Falletti, L Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Gustafsson, M Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Hill, AB Horan, D Hou, X Hughes, RE Iafrate, G Itoh, R Johannesson, G Johnson, RP Johnson, TE Johnson, AS Johnson, TJ Kamae, T Katagiri, H Kataoka, J Katsuta, J Kawai, N Kerr, M Knodlseder, J Kocevski, D Kuss, M Lande, J Landriu, D Latronico, L Lemoine-Goumard, M Lionetto, AM Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Marelli, M Massaro, E Mazziotta, MN McConville, W McEnery, JE Mehault, J Michelson, PF Minuti, M Mitthumsiri, W Mizuno, T Moiseev, AA Mongelli, M Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Norris, JP Nuss, E Nymark, T Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Perkins, JS Pesce-Rollins, M Pierbattista, M Pinchera, M Piron, F Pivato, G Porter, TA Racusin, JL Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Romani, RW Roth, M Rousseau, R Ryde, F Sadrozinski, HFW Salvetti, D Sanchez, DA Parkinson, PMS Sbarra, C Scargle, JD Schalk, TL Sgro, C Shaw, MS Shrader, C Siskind, EJ Smith, DA Spandre, G Spinelli, P Stephens, TE Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tibolla, O Tinebra, F Tinivella, M Torres, DF Tosti, G Troja, E Uchiyama, Y Vandenbroucke, J Van Etten, A Van Klaveren, B Vasileiou, V Vianello, G Vitale, V Waite, AP Wallace, E Wang, P Werner, M Winer, BL Wood, DL Wood, KS Wood, M Yang, Z Zimmer, S AF Nolan, P. L. Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Antolini, E. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Belfiore, A. Bellazzini, R. Berenji, B. Bignami, G. F. Blandford, R. D. Bloom, E. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bottacini, E. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Campana, R. Canadas, B. Cannon, A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Ceccanti, M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Chipaux, R. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbet, R. Cutini, S. D'Ammando, F. Davis, D. S. de Angelis, A. DeCesar, M. E. DeKlotz, M. De Luca, A. den Hartog, P. R. de Palma, F. Dermer, C. D. Digel, S. W. Do Couto E Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Enoto, T. Escande, L. Fabiani, D. Falletti, L. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Gustafsson, M. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hill, A. B. Horan, D. Hou, X. Hughes, R. E. Iafrate, G. Itoh, R. Johannesson, G. Johnson, R. P. Johnson, T. E. Johnson, A. S. Johnson, T. J. Kamae, T. Katagiri, H. Kataoka, J. Katsuta, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Landriu, D. Latronico, L. Lemoine-Goumard, M. Lionetto, A. M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Marelli, M. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. Mehault, J. Michelson, P. F. Minuti, M. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Mongelli, M. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Norris, J. P. Nuss, E. Nymark, T. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Perkins, J. S. Pesce-Rollins, M. Pierbattista, M. Pinchera, M. Piron, F. Pivato, G. Porter, T. A. Racusin, J. L. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Romani, R. W. Roth, M. Rousseau, R. Ryde, F. Sadrozinski, H. F. -W. Salvetti, D. Sanchez, D. A. Parkinson, P. M. Saz Sbarra, C. Scargle, J. D. Schalk, T. L. Sgro, C. Shaw, M. S. Shrader, C. Siskind, E. J. Smith, D. A. Spandre, G. Spinelli, P. Stephens, T. E. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tibolla, O. Tinebra, F. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Vandenbroucke, J. Van Etten, A. Van Klaveren, B. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Werner, M. Winer, B. L. Wood, D. L. Wood, K. S. Wood, M. Yang, Z. Zimmer, S. TI FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma rays: general ID GAMMA-RAY EMISSION; ACTIVE GALACTIC NUCLEI; PULSAR WIND NEBULA; PSR B1259-63/LS 2883; ALL-SKY SURVEY; SUPERNOVA REMNANT; MILLISECOND PULSARS; GLOBULAR-CLUSTERS; MAGELLANIC-CLOUD; SPACE-TELESCOPE AB We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes. C1 [Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Enoto, T.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Katsuta, J.; Kerr, M.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vianello, G.; Waite, A. P.; Wang, P.; Wood, M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Enoto, T.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Katsuta, J.; Kerr, M.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vianello, G.; Waite, A. P.; Wang, P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Parent, D.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Atwood, W. B.; Belfiore, A.; Bouvier, A.; Johnson, R. P.; Razzano, M.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Belfiore, A.; Bouvier, A.; Johnson, R. P.; Razzano, M.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Nolan, P. L.; Abdo, A. A.; Axelsson, M.; Conrad, J.; Garde, M. Llena; Nymark, T.; Ryde, F.; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Axelsson, M.; Nymark, T.; Ryde, F.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Ceccanti, M.; Fabiani, D.; Kuss, M.; Minuti, M.; Pesce-Rollins, M.; Pinchera, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Landriu, D.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA,IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Sbarra, C.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Belfiore, A.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Belfiore, A.; Caraveo, P. A.; Marelli, M.; Salvetti, D.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Bignami, G. F.; De Luca, A.] IUSS, I-27100 Pavia, Italy. [Bonnell, J.; Cannon, A.; Celik, Oe; Corbet, R.; Davis, D. S.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Perkins, J. S.; Racusin, J. L.; Shrader, C.; Stephens, T. E.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; DeCesar, M. E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bonnell, J.; DeCesar, M. E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brandt, T. J.; Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Brandt, T. J.; Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Mongelli, M.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] CSIC, IEEE, Inst Ciencies Espai, Barcelona 08193, Spain. [Campana, R.; D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Canadas, B.; Lionetto, A. M.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma, I-00133 Rome, Italy. [Canadas, B.; Lionetto, A. M.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Cannon, A.] Natl Univ Ireland Univ Coll Dublin, Expt Phys Dept, Dublin 4, Ireland. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Moiseev, A. A.; Perkins, J. S.; Shrader, C.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Corbet, R.; Davis, D. S.; Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Corbet, R.; Davis, D. S.; Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cheung, C. C.; Johnson, T. J.] Natl Acad Sci, Washington, DC 20001 USA. [Chipaux, R.] CEA Saclay, IRFU SEDI, F-91191 Gif Sur Yvette, France. [Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Falletti, L.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univ & Particules Montpellier, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [DeKlotz, M.] Stellar Solut Inc, Palo Alto, CA 94306 USA. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dumora, D.; Escande, L.; Hou, X.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.; Rousseau, R.; Smith, D. A.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.; Iafrate, G.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Itoh, R.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.; Sanchez, D. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Grondin, M. -H.] Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Bunkyo Ku, Mito, Ibaraki 3108512, Japan. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Massaro, E.; Tinebra, F.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stephens, T. E.] Wyle Labs, El Segundo, CA 90245 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Wood, D. L.] Praxis Inc, Alexandria, VA 22303 USA. EM jean.ballet@cea.fr; tburnett@u.washington.edu; digel@stanford.edu; Gino.Tosti@pg.infn.it RI Campana, Riccardo/F-5272-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Chipaux, Remi/G-1145-2010; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Racusin, Judith/D-2935-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Fabiani, Davide/J-5750-2012 OI Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Marelli, Martino/0000-0002-8017-0338; Caraveo, Patrizia/0000-0003-2478-8018; Stephens, Thomas/0000-0003-3065-6871; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; De Luca, Andrea/0000-0001-6739-687X; Giroletti, Marcello/0000-0002-8657-8852; Campana, Riccardo/0000-0002-4794-5453; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Bignami, Giovanni/0000-0001-9582-2450; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Iafrate, Giulia/0000-0002-6185-8292; Frailis, Marco/0000-0002-7400-2135; Funk, Stefan/0000-0002-2012-0080; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU K. A. Wallenberg Foundation; European Community [ERC-StG-259391]; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariata l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; Swedish Research Council; Swedish National Space Board in Sweden.; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; National Aeronautics and Space Administratio FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-259391 from the European Community.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariata l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This work made extensive use of the ATNF pulsar catalog101 (Manchester et al. 2005). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 118 TC 717 Z9 721 U1 14 U2 56 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2012 VL 199 IS 2 AR 31 DI 10.1088/0067-0049/199/2/31 PG 46 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929ZT UT WOS:000303105400007 ER PT J AU Postman, M Coe, D Benitez, N Bradley, L Broadhurst, T Donahue, M Ford, H Graur, O Graves, G Jouvel, S Koekemoer, A Lemze, D Medezinski, E Molino, A Moustakas, L Ogaz, S Riess, A Rodney, S Rosati, P Umetsu, K Zheng, W Zitrin, A Bartelmann, M Bouwens, R Czakon, N Golwala, S Host, O Infante, L Jha, S Jimenez-Teja, Y Kelson, D Lahav, O Lazkoz, R Maoz, D McCully, C Melchior, P Meneghetti, M Merten, J Moustakas, J Nonino, M Patel, B Regos, E Sayers, J Seitz, S Van der Wel, A AF Postman, Marc Coe, Dan Benitez, Narciso Bradley, Larry Broadhurst, Tom Donahue, Megan Ford, Holland Graur, Or Graves, Genevieve Jouvel, Stephanie Koekemoer, Anton Lemze, Doron Medezinski, Elinor Molino, Alberto Moustakas, Leonidas Ogaz, Sara Riess, Adam Rodney, Steve Rosati, Piero Umetsu, Keiichi Zheng, Wei Zitrin, Adi Bartelmann, Matthias Bouwens, Rychard Czakon, Nicole Golwala, Sunil Host, Ole Infante, Leopoldo Jha, Saurabh Jimenez-Teja, Yolanda Kelson, Daniel Lahav, Ofer Lazkoz, Ruth Maoz, Dani McCully, Curtis Melchior, Peter Meneghetti, Massimo Merten, Julian Moustakas, John Nonino, Mario Patel, Brandon Regoes, Enikoe Sayers, Jack Seitz, Stella Van der Wel, Arjen TI THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE dark energy; dark matter; Galaxy: evolution; Galaxy: formation; gravitational lensing: strong; gravitational lensing: weak ID ULTRA-DEEP-FIELD; DELAY-TIME DISTRIBUTION; MASSIVE GALAXY CLUSTERS; SIMILAR-TO 7; LYMAN-BREAK GALAXIES; DARK-MATTER HALOES; PHOTOMETRIC REDSHIFT ESTIMATION; EXTRAGALACTIC LEGACY SURVEY; SPITZER-SPACE-TELESCOPE; TADPOLE ADVANCED CAMERA AB The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (theta(Ein) > 35 '' at z(s) = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma(z) similar to 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6 + 2223 (z = 0.544). C1 [Postman, Marc; Coe, Dan; Bradley, Larry; Koekemoer, Anton; Ogaz, Sara; Riess, Adam] Space Telescope Sci Inst, Baltimore, MD 21208 USA. [Benitez, Narciso; Molino, Alberto; Jimenez-Teja, Yolanda] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Broadhurst, Tom; Lazkoz, Ruth] Univ Basque Country, Dept Theoret Phys, Bilbao 48080, Spain. [Donahue, Megan] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Ford, Holland; Lemze, Doron; Medezinski, Elinor; Riess, Adam; Rodney, Steve; Zheng, Wei] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Graur, Or; Zitrin, Adi; Maoz, Dani] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Graves, Genevieve] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Jouvel, Stephanie; Czakon, Nicole; Golwala, Sunil; Sayers, Jack] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Moustakas, Leonidas] ESO, D-85748 Garching, Germany. [Rosati, Piero] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Umetsu, Keiichi] Heidelberg Univ, Inst Theoret Astrophys, ZAH, D-69120 Heidelberg, Germany. [Bartelmann, Matthias; Merten, Julian] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bouwens, Rychard] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Host, Ole; Lahav, Ofer] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Infante, Leopoldo] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Jha, Saurabh; McCully, Curtis; Patel, Brandon] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kelson, Daniel] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Melchior, Peter] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Melchior, Peter] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Meneghetti, Massimo] INAF, Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Meneghetti, Massimo] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Moustakas, John] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Nonino, Mario] INAF Osservatorio Astron Trieste, I-40131 Trieste, Italy. [Regoes, Enikoe] CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland. [Seitz, Stella] Univ Sternwarte, D-81679 Munich, Germany. [Van der Wel, Arjen] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Postman, M (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21208 USA. EM postman@stsci.edu RI Bartelmann, Matthias/A-5336-2014; Molino Benito, Alberto/F-5298-2014; Lazkoz, Ruth/A-5642-2011; Jimenez-Teja, Yolanda/D-5933-2011; Meneghetti, Massimo/O-8139-2015; OI Benitez, Narciso/0000-0002-0403-7455; Koekemoer, Anton/0000-0002-6610-2048; Lazkoz, Ruth/0000-0001-5536-3130; Meneghetti, Massimo/0000-0003-1225-7084; Nonino, Mario/0000-0001-6342-9662; Graur, Or/0000-0002-4391-6137; Umetsu, Keiichi/0000-0002-7196-4822; Moustakas, Leonidas/0000-0003-3030-2360 FU NASA [NAS 5-26555, NAS 5-32864, HST-GO-12065.01-A]; Israel Science Foundation; Baden-Wuerttemberg Foundation; German Science Foundation (Transregio) [TR 33]; Spanish MICINN [AYA2010-22111-C03-00]; Junta de Andaluca Proyecto de Excelencia [NBL2003]; INAF [ASI-INAFI/009/10/0, ASI-INAF I/023/05/0, ASI-INAF I/088/06/0]; PRIN INAF; NSF CAREER [AST-0847157]; UK's STFC; Royal Society; Wolfson Foundation; National Science Council of Taiwan [NSC97-2112-M-001-020-MY3]; John Bahcall excellence prize; Conicyt FONDAP/BASAL; DFG FX The CLASH Multi-Cycle Treasury Program (GO-12065) is based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. ACS was developed under NASA contract NAS 5-32864.; This research is supported in part by NASA grant HST-GO-12065.01-A, the Israel Science Foundation, the Baden-Wuerttemberg Foundation, the German Science Foundation (Transregio TR 33), Spanish MICINN grant AYA2010-22111-C03-00, funding from the Junta de Andaluca Proyecto de Excelencia NBL2003, INAF contracts ASI-INAFI/009/10/0, ASI-INAF I/023/05/0, ASI-INAF I/088/06/0, PRIN INAF 2009, and PRIN INAF 2010, NSF CAREER grant AST-0847157, the UK's STFC, the Royal Society, the Wolfson Foundation, and National Science Council of Taiwan grant NSC97-2112-M-001-020-MY3. A.Z. acknowledges support by the John Bahcall excellence prize. L.I. acknowledges support from a Conicyt FONDAP/BASAL grant. P.R. and S.S. acknowledge support from the DFG cluster of excellence Origin and Structure of the Universe program. NR 198 TC 271 Z9 271 U1 2 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2012 VL 199 IS 2 AR 25 DI 10.1088/0067-0049/199/2/25 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929ZT UT WOS:000303105400001 ER PT J AU Ball, CG Kirkpatrick, AW Williams, DR Jones, JA Polk, JD Vanderploeg, JM Talamini, MA Campbell, MR Broderick, TJ AF Ball, Chad G. Kirkpatrick, Andrew W. Williams, David R. Jones, Jeffrey A. Polk, J. D. Vanderploeg, James M. Talamini, Mark A. Campbell, Mark R. Broderick, Timothy J. TI Prophylactic surgery prior to extended-duration space flight: Is the benefit worth the risk? SO CANADIAN JOURNAL OF SURGERY LA English DT Review ID RANDOMIZED CONTROLLED-TRIALS; ORTHOTOPIC HEART-TRANSPLANTATION; BILE-DUCT INJURY; LAPAROSCOPIC CHOLECYSTECTOMY; CONVENTIONAL APPENDECTOMY; PERCUTANEOUS DRAINAGE; ENDOSCOPIC SURGERY; ACUTE APPENDICITIS; MEDICAL-CARE; CLOSED-LOOP AB This article explores the potential benefits and defined risks associated with prophylactic surgical procedures for astronauts before extended-duration space flight. This includes, but is not limited to, appendectomy and cholecystesctomy. Furthermore, discussion of treatment during space flight, potential impact of an acute illness on a defined mission and the ethical issues surrounding this concept are debated in detail. C1 [Ball, Chad G.; Kirkpatrick, Andrew W.] Univ Calgary, Dept Surg, Calgary, AB, Canada. [Williams, David R.] McMaster Univ, Dept Surg, Hamilton, ON L8S 4L8, Canada. [Jones, Jeffrey A.; Polk, J. D.] NASA, Dept Surg, Washington, DC 20546 USA. [Jones, Jeffrey A.] Baylor Coll Med, Dept Surg, Houston, TX 77030 USA. [Jones, Jeffrey A.] USN, Dept Surg, Houston, TX USA. [Vanderploeg, James M.] Virgin Galact, Galveston, TX USA. [Vanderploeg, James M.] Univ Texas Med Branch, Galveston, TX USA. [Talamini, Mark A.] Univ Calif San Diego, Dept Surg, La Jolla, CA 92093 USA. [Campbell, Mark R.] Paris Reg Med Ctr, Paris, TX USA. [Broderick, Timothy J.] US Mil Def Adv Res Projects Agcy, Arlington, VA USA. RP Ball, CG (reprint author), 132 Silvergrove Rd NW, Calgary, AB T3B 4K1, Canada. EM ball.chad@gmail.com NR 102 TC 4 Z9 4 U1 2 U2 5 PU CMA-CANADIAN MEDICAL ASSOC PI OTTAWA PA 1867 ALTA VISTA DR, OTTAWA, ONTARIO K1G 3Y6, CANADA SN 0008-428X J9 CAN J SURG JI Can. J. Surg. PD APR PY 2012 VL 55 IS 2 BP 125 EP 131 DI 10.1503/cjs.024610 PG 7 WC Surgery SC Surgery GA 931EU UT WOS:000303199200011 PM 22564516 ER PT J AU Boggs, ASP Lowers, RH Hamlin, HJ Mccoy, JA Guillette, LJ AF Boggs, Ashley S. P. Lowers, Russell H. Hamlin, Heather J. Mccoy, Jessica A. Guillette, Louis J. TI The role of plasma iodide and endocrine disrupting chemicals in predictive adaptive responses of Alligator mississippiensis SO INTEGRATIVE AND COMPARATIVE BIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) CY JAN 03-07, 2012 CL Charleston, SC SP Soc Integrat & Comparat Biol (SICB) C1 Med Univ S Carolina, Charleston, SC USA. Univ Florida, Gainesville, FL 32611 USA. Univ Maine, Orono, ME 04469 USA. NASA, Washington, DC USA. EM boggsas@musc.edu NR 0 TC 2 Z9 2 U1 0 U2 3 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1540-7063 J9 INTEGR COMP BIOL JI Integr. Comp. Biol. PD APR PY 2012 VL 52 SU 1 BP E16 EP E16 PG 1 WC Zoology SC Zoology GA 930TV UT WOS:000303165000063 ER PT J AU Dec, JA Braun, RD Laub, B AF Dec, John A. Braun, Robert D. Laub, Bernard TI Ablative Thermal Response Analysis Using the Finite Element Method SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 47th AIAA Aerospace Sciences Meeting and Exhibit CY JAN 05-08, 2009 CL Orlando, FL SP Amer Inst Aeronaut & Astronaut (AIAA) AB A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three-dimensional finite element based ablative thermal response capability, a one-dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code-to-code comparison between the current one-dimensional finite element tool and the one-dimensional Fully Implicit Ablation and Thermal response program (FIAT), a NASA-standard finite difference tool, has been performed. In addition, the three-dimensional computer tool has been developed and preliminary results from the three-dimensional tool are presented. C1 [Dec, John A.] NASA, Langley Res Ctr, Struct & Thermal Syst Branch, Hampton, VA 23681 USA. [Braun, Robert D.] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Laub, Bernard] NASA, Ames Res Ctr, Thermal Protect Mat & Syst Branch, Moffett Field, CA 94035 USA. RP Dec, JA (reprint author), NASA, Langley Res Ctr, Struct & Thermal Syst Branch, Mail Stop 431, Hampton, VA 23681 USA. NR 43 TC 8 Z9 9 U1 0 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR-JUN PY 2012 VL 26 IS 2 BP 201 EP 212 DI 10.2514/1.T3694 PG 12 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 929RJ UT WOS:000303082900001 ER PT J AU Johnston, CO Gnoffo, PA Mazaheri, A AF Johnston, Christopher O. Gnoffo, Peter A. Mazaheri, Alireza TI Study of Ablation-Flowfield Coupling Relevant to the Orion Heat Shield SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article ID TRANSPORT PROPERTY COMPUTATIONS; RECOMMENDED COLLISION INTEGRALS; ATOM OXIDATION; ENTRIES; AIR AB The coupled interaction between an ablating surface and the surrounding aerothermal environment is studied. An equilibrium ablation model is coupled to the LAURA flowfield solver, which allows the char ablation rate (m)over dot(c) to be computed as part of the flowfield solution. The wall temperature T-w and pyrolysis ablation rate (m)over dot(g) may be specified by the user, obtained from the steady-state ablation approximation, or computed from a material response code. A 32-species thermochemical nonequilibrium flowfield model is applied, which permits the treatment of C, H, O, N, and Si-containing species. Coupled ablation cases relevant to NASA's Orion multipurpose crew vehicle heat shield are studied. These consist of diffusion-limited oxidation cases with Avcoat as the ablation material. The (m)over dot(c) values predicted from the developed coupled ablation analysis were compared with those obtained from a typical uncoupled ablation analysis. The coupled results were found to he as much as 50% greater than the uncoupled values in regions of turbulence. This is shown to be a result of the cumulative effect of the two fundamental approximations inherent in the uncoupled analysis. C1 [Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza] NASA, Langley Res Ctr, Aerothermodynam Branch, Res Technol Directorate, Hampton, VA 23681 USA. RP Johnston, CO (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, Res Technol Directorate, Hampton, VA 23681 USA. FU NASA FX The authors would like to thank NASA's Fundamental Aeronautics Program for funding this work. NR 29 TC 4 Z9 5 U1 0 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR-JUN PY 2012 VL 26 IS 2 BP 213 EP 221 DI 10.2514/1.T3769 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 929RJ UT WOS:000303082900002 ER PT J AU Cruden, BA AF Cruden, Brett A. TI Electron Density Measurement in Reentry Shocks for Lunar Return SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 42nd AIAA Thermophysics Conference CY JUN 27-30, 2011 CL Honolulu, HI SP AIAA ID EXPERIMENTAL STARK WIDTHS; SPECTRAL-LINES; IONIZED ATOMS; SHIFTS; PLASMA; RADIATION; TABLES; WAVES; AIR AB Results of electron density measurements in the Electric Arc Shock Tube at NASA Ames Research Center are reported here. Measurements are made at conditions relevant for lunar return of the Orion Command Module. Normal shocks are produced in the Electric Arc Shock Tube with freestream pressures of 0.1-1.0 Torr and velocities from 8-12 km/s. Nonintrusive electron density measurements are made by observing optical emission from various lines at high resolution and employing analysis of Stark broadening effects. The measurements show electron density in the shock to be up to several times larger than equilibrium density up to a few centimeters behind the shock front. The disagreement with equilibrium improves at higher velocities. C1 NASA, ERC Inc, Ames Res Ctr, Aerothermodynam Branch, Moffett Field, CA 94035 USA. RP Cruden, BA (reprint author), NASA, ERC Inc, Ames Res Ctr, Aerothermodynam Branch, MS 230-3, Moffett Field, CA 94035 USA. NR 33 TC 3 Z9 3 U1 1 U2 8 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR-JUN PY 2012 VL 26 IS 2 BP 222 EP 230 DI 10.2514/1.T3796 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 929RJ UT WOS:000303082900003 ER PT J AU Muhling, BA Roffer, MA Lamkin, JT Ingram, GW Upton, MA Gawlikowski, G Muller-Karger, F Habtes, S Richards, WJ AF Muhling, B. A. Roffer, M. A. Lamkin, J. T. Ingram, G. W., Jr. Upton, M. A. Gawlikowski, G. Muller-Karger, F. Habtes, S. Richards, W. J. TI Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon surface oil in the northern Gulf of Mexico SO MARINE POLLUTION BULLETIN LA English DT Article DE Atlantic bluefin tuna; Gulf of Mexico; Oil spill; Deepwater Horizon ID PRINCE-WILLIAM-SOUND; THUNNUS-THYNNUS; CRUDE-OIL; FISH EMBRYOS; LOOP CURRENT; SPILL; LARVAE; MORTALITY; EXPOSURE; ABNORMALITIES AB The 2010 Deepwater Horizon oil spill impacted the northern Gulf of Mexico (GOM) during the spring spawning season of Atlantic bluefin tuna (BFT). Overlap between BFT spawning habitat and surface oil in the northern GOM was examined using satellite-derived estimates of oil coverage, and spawning habitat models. Results suggested that although eggs and larvae were likely impacted by oil-contaminated waters in the eastern GOM, high abundances of larvae were located elsewhere, especially in the western GOM. Overall, less than 10% of BFT spawning habitat was predicted to have been covered by surface oil, and less than 12% of larval BFT were predicted to have been located within contaminated waters in the northern GOM, on a weekly basis. Our results provide preliminary but important initial estimates of the effects of the spill on larval BFT mortality, as concern continues over the appropriate management responses to impacts of the spill. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Muhling, B. A.] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Roffer, M. A.; Upton, M. A.; Gawlikowski, G.] Roffers Ocean Fishing Forecasting Serv Inc, W Melbourne, FL 32904 USA. [Lamkin, J. T.; Richards, W. J.] SE Fisheries Sci Ctr, Natl Marine Fisheries Serv, Miami, FL 33149 USA. [Ingram, G. W., Jr.] SE Fisheries Sci Ctr, Natl Marine Fisheries Serv, Mississippi Labs, Pascagoula, MS 39567 USA. [Muller-Karger, F.; Habtes, S.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. RP Muhling, BA (reprint author), Univ Miami, Cooperat Inst Marine & Atmospher Studies, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM Barbara.Muhling@noaa.gov FU NASA [NNX08AL06G] FX We wish to thank the captain and crew of the NOAA Ship Gordon Gunter, and all other NOAA ships which have collected plankton samples in the Gulf of Mexico. In addition, we extend our thanks to field-going and land-based staff at the NOAA-NMFS Pascagoula laboratory. We thank Horizon Marine, Inc. for making their drifting buoy data available during the study period, and T. Lee, K. Schaudt and G. Maul for reviewing the daily oceanographic analyses associated with the distribution of the oil, contaminated water and ocean circulation during the Deepwater Horizon spill event. We also wish to acknowledge J. Franks (University of Southern Mississippi) and M. Wood (NOAA AOML) for providing visual sightings of the oil during their research cruises, and G. Goni for assisting with the interpretations of the NOAA Coast Watch altimeter data. G. Samuels and the University of Miami CSTARS are thanked for providing SAR data. This research was funded in part by NASA grant Grant # NNX08AL06G "Improving The NOAA NMFS and ICCAT Atlantic Bluefin Tuna Fisheries Management Decision Support System." NR 34 TC 22 Z9 22 U1 4 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-326X EI 1879-3363 J9 MAR POLLUT BULL JI Mar. Pollut. Bull. PD APR PY 2012 VL 64 IS 4 BP 679 EP 687 DI 10.1016/j.marpolbul.2012.01.034 PG 9 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 932NV UT WOS:000303298700013 PM 22330074 ER PT J AU Nixon, A Burchell, MJ Price, MC Kearsley, AT Jones, S AF Nixon, Adam Burchell, Mark J. Price, Mark C. Kearsley, Anton T. Jones, Steven TI Aerogel tracks made by impacts of glycine: Implications for formation of bulbous tracks in aerogel and the Stardust mission SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ALUMINUM FOILS; HYPERVELOCITY CAPTURE; COMET 81P/WILD-2; PARTICLE-SIZE; WILD 2; DUST; SPACECRAFT; COLLECTION; FEATURES; CRATERS AB Impacts of small particles of soda-lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda-lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda-lime glass tracks have a carrot-like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.73.2, if the glycine tracks were analyzed using the soda-lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate. C1 [Nixon, Adam; Burchell, Mark J.; Price, Mark C.] Univ Kent, Ctr Astrophys & Planetary Sci, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. [Kearsley, Anton T.] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Jones, Steven] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Burchell, MJ (reprint author), Univ Kent, Ctr Astrophys & Planetary Sci, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. EM m.j.burchell@kent.ac.uk OI Burchell, Mark/0000-0002-2680-8943 FU STFC (UK) FX M. J. B. and M. C. P. acknowledge a grant from STFC (UK) that funds their work. The authors thank the referees for useful comments on the manuscript. NR 29 TC 2 Z9 2 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2012 VL 47 IS 4 BP 623 EP 633 DI 10.1111/j.1945-5100.2011.01260.x PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 931SW UT WOS:000303240600009 ER PT J AU Barghouty, AF Schnee, DA AF Barghouty, A. F. Schnee, D. A. TI ANOMALOUS TRANSPORT OF HIGH-ENERGY COSMIC RAYS IN GALACTIC SUPERBUBBLES. I. NUMERICAL SIMULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; ISM: bubbles; scattering ID DIFFUSIVE SHOCK ACCELERATION; PARTICLE-ACCELERATION; INTERSTELLAR-MEDIUM; SUPERNOVA-REMNANT; OB ASSOCIATIONS; MAXIMUM ENERGY; ORIGIN; ABUNDANCES; GALAXY; DUST AB We present a simple continuous-time random-walk model for the transport of energetic particles accelerated by a collection of supernova explosions in a galactic superbubble, developed to simulate and highlight signatures of anomalous transport on the particles' evolution and their spectra in a multi-shock context. We assume standard diffusive shock acceleration (DSA) theory for each shock encounter. The superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. The model is based on two coupled stochastic differential equations and is applied for protons and alpha particles. Using characteristic values for a typical bubble, our simulations suggest that acceleration and transport in the bubble may be sub-diffusive. In addition, a spectral break in the particles' evolution and spectra is evident located at approximate to 10(15) eV for protons and approximate to 3 x 10(15) eV for alphas. Our simulations are consistent with a bubble's mean magnetic field strength of approximate to 1 mu G and a shock separation distance similar to 0.1 x the characteristic radius of the bubble. The simulations imply that the diffusion coefficient (for the elementary shock acceleration process) is less than or similar to 10(27) cm(2) s(-1) at 1 GeV/c. While the sub-diffusive transport is readily attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high-energy cosmic rays in galactic superbubbles. C1 [Barghouty, A. F.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, Huntsville, AL 35805 USA. [Schnee, D. A.] Univ Chicago, Dept Math, Chicago, IL 60637 USA. RP Barghouty, AF (reprint author), NASA, George C Marshall Space Flight Ctr, Astrophys Off, Huntsville, AL 35805 USA. NR 74 TC 2 Z9 2 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 178 DI 10.1088/0004-637X/749/2/178 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700082 ER PT J AU Cordiner, MA Charnley, SB AF Cordiner, M. A. Charnley, S. B. TI GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: clouds; ISM: molecules ID CARBON-CHAIN MOLECULES; POLYCYCLIC AROMATIC-HYDROCARBONS; MASS PROTOSTAR IRAS-04368+2557; CHEMICAL-MODELS; ASTRONOMICAL IDENTIFICATION; STARLESS CORE; CLOUDS; L1527; TMC-1; ENVELOPES AB Long-chain hydrocarbon anions CnH- (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(H2) greater than or similar to 10(5) cm(-3)). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H - anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment. C1 [Cordiner, M. A.] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Cordiner, M. A.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP Cordiner, MA (reprint author), NASA, Astrochem Lab, Goddard Space Flight Ctr, Mailstop 691,8800 Greenbelt Rd, Greenbelt, MD 20770 USA. EM martin.cordiner@nasa.gov FU NASA; NASA Astrobiology Institute through the Goddard Center for Astrobiology FX We acknowledge Dr. Catherine Walsh for assistance in development of the anion chemical network and Professor Veronica Bierbaum and Dr. Zhibo Yang for sharing their laboratory data pertaining to reactions between oxygen atoms and anions. This research was supported NASA's Exobiology and Origins of Solar Systems programs and by the NASA Astrobiology Institute through the Goddard Center for Astrobiology. NR 52 TC 12 Z9 12 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 120 DI 10.1088/0004-637X/749/2/120 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700024 ER PT J AU Galametz, A Stern, D De Breuck, C Hatch, N Mayo, J Miley, G Rettura, A Seymour, N Stanford, SA Vernet, J AF Galametz, Audrey Stern, Daniel De Breuck, Carlos Hatch, Nina Mayo, Jack Miley, George Rettura, Alessandro Seymour, Nick Stanford, S. Adam Vernet, Joel TI THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: clusters: general; galaxies: high-redshift; infrared: galaxies ID INFRARED ARRAY CAMERA; H-ALPHA EMITTERS; SPITZER-SPACE-TELESCOPE; IRAC SHALLOW SURVEY; PROTO-CLUSTER; SPECTROSCOPIC CONFIRMATION; RED-SEQUENCE; MU-M; PROTOCLUSTER CANDIDATES; POPULATION SYNTHESIS AB Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5 sigma flux density limits of our IRAC data (f(4.5) = 13.4 mu Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2. C1 [Galametz, Audrey; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Galametz, Audrey] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [De Breuck, Carlos; Vernet, Joel] European So Observ, D-85748 Garching, Germany. [Hatch, Nina] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Mayo, Jack] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Miley, George] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Rettura, Alessandro] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Seymour, Nick] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Galametz, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM audrey.galametz@oa-roma.inaf.it OI Hatch, Nina/0000-0001-5600-0534; Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536; De Breuck, Carlos/0000-0002-6637-3315 FU NASA FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We are very grateful to Mark Brodwin and Peter Eisenhardt for having provided information on the Bootes cluster sample mentioned in this paper and to Conor Mancone for providing his useful EZ Gal Model Generator and valuable help on models. We also thank the anonymous referee for his/her very useful comments. NR 60 TC 37 Z9 37 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 169 DI 10.1088/0004-637X/749/2/169 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700073 ER PT J AU Guillard, P Boulanger, F des Forets, GP Falgarone, E Gusdorf, A Cluver, ME Appleton, PN Lisenfeld, U Duc, PA Ogle, PM Xu, CK AF Guillard, P. Boulanger, F. des Forets, G. Pineau Falgarone, E. Gusdorf, A. Cluver, M. E. Appleton, P. N. Lisenfeld, U. Duc, P. -A. Ogle, P. M. Xu, C. K. TI TURBULENT MOLECULAR GAS AND STAR FORMATION IN THE SHOCKED INTERGALACTIC MEDIUM OF STEPHAN'S QUINTET SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual: Stephan's Quintet; galaxies: interactions; galaxies: ISM; intergalactic medium ID HICKSON COMPACT-GROUPS; INTERACTING GALAXIES; INTRAGROUP MEDIUM; DUST EMISSION; HCG 92; H-2; HYDROGEN; CLOUDS; RAY; CO AB The Stephan's Quintet (hereafter SQ) is a template source to study the impact of galaxies interaction on the physical state and energetics of their gas. We report on IRAM single-dish CO observations of the SQ compact group of galaxies. These observations follow up the Spitzer discovery of bright mid-IR H-2 rotational line emission (L(H-2) approximate to 10(35) W) from warm (10(2-3) K) molecular gas, associated with a 30 kpc long shock between a galaxy, NGC 7318b, and NGC 7319's tidal arm. We detect CO(1-0), (2-1) and (3-2) line emission in the inter-galactic medium (IGM) with complex profiles, spanning a velocity range of approximate to 1000 km s(-1). The spectra exhibit the pre-shock recession velocities of the two colliding gas systems (5700 and 6700 km s(-1)), but also intermediate velocities. This shows that much of the molecular gas has formed out of diffuse gas accelerated by the galaxy-tidal arm collision. CO emission is also detected in a bridge feature that connects the shock to the Seyfert member of the group, NGC 7319, and in the northern star forming region, SQ-A, where a new velocity component is identified at 6900 km s(-1), in addition to the two velocity components already known. Assuming a Galactic CO(1-0) emission to H-2 mass conversion factor, a total H-2 mass of approximate to 5 x 10(9) M-circle dot is detected in the shock. The ratio between the warm H-2 mass derived from Spitzer spectroscopy, and the H-2 mass derived from CO fluxes is approximate to 0.3 in the IGM of SQ, which is 10-100 times higher than in star-forming galaxies. The molecular gas carries a large fraction of the gas kinetic energy involved in the collision, meaning that this energy has not been thermalized yet. The kinetic energy of the H-2 gas derived from CO observations is comparable to that of the warm H-2 gas from Spitzer spectroscopy, and a factor approximate to 5 greater than the thermal energy of the hot plasma heated by the collision. In the shock and bridge regions, the ratio of the PAH-to-CO surface luminosities, commonly used to measure the star formation efficiency of the H-2 gas, is lower (up to a factor 75) than the observed values in star-forming galaxies. We suggest that turbulence fed by the galaxy-tidal arm collision maintains a high heating rate within the H-2 gas. This interpretation implies that the velocity dispersion on the scale of giant molecular clouds in SQ is one order of magnitude larger than the Galactic value. The high amplitude of turbulence may explain why this gas is not forming stars efficiently. C1 [Guillard, P.; Cluver, M. E.; Lisenfeld, U.; Ogle, P. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Guillard, P.; Boulanger, F.; des Forets, G. Pineau] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [des Forets, G. Pineau; Falgarone, E.; Gusdorf, A.] Observ Paris, CNRS, UMR 8112, ENS,LERMA, F-75005 Paris, France. Max Planck Inst Radioastron, D-53121 Bonn, Germany. Univ Paris Diderot, Observ Paris, UMR CNRS 8102, Lab Univers & Theories LUTH, F-92190 Meudon, France. [Appleton, P. N.] CALTECH, NHSC, Pasadena, CA 91125 USA. [Lisenfeld, U.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Lisenfeld, U.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Duc, P. -A.] Univ Paris 07, UMR 7158, Unite Mixte Rech CEA CNRS, AIM, F-75221 Paris 05, France. [Xu, C. K.] CALTECH, Jet Prop Lab, Ctr Infrared Proc & Anal, Pasadena, CA 91109 USA. RP Guillard, P (reprint author), CALTECH, Spitzer Sci Ctr, MC 220-6, Pasadena, CA 91125 USA. RI Lisenfeld, Ute/A-1637-2015; OI Lisenfeld, Ute/0000-0002-9471-5423; Appleton, Philip/0000-0002-7607-8766; Cluver, Michelle/0000-0002-9871-6490 FU INSU/CNRS (France); MPG (Germany); IGN (Spain); Spanish Ministerio de Ciencia y Educacion [AYA2007-67625-C02-02]; Junta de Andalucia (Spain) [FQM-0108]; National Aeronautics and Space Administration FX This paper is based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). P.G. also would like to acknowledge in particular the IRAM staff for help provided during the observations. U.L. acknowledges support by the research project AYA2007-67625-C02-02 from the Spanish Ministerio de Ciencia y Educacion and the Junta de Andalucia (Spain) Grant FQM-0108.; This work is partly based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.; This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 59 TC 31 Z9 31 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 158 DI 10.1088/0004-637X/749/2/158 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700062 ER PT J AU Haghighipour, N Scott, ERD AF Haghighipour, Nader Scott, Edward R. D. TI ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY SO ASTROPHYSICAL JOURNAL LA English DT Article DE meteorites, meteors, meteoroids; minor planets, asteroids: general; planets and satellites: dynamical evolution and stability; planets and satellites: general ID SOLAR-SYSTEM; PRIMORDIAL EXCITATION; PROTOPLANETARY DISKS; MAIN BELT; GAS; ACCRETION; MIGRATION; NEBULA; PLANETESIMALS; CORE AB In their model for the origin of the parent bodies of iron meteorites, Bottke et al. proposed differentiated planetesimals, formed in 1-2 AU during the first 1.5 Myr, as the parent bodies, and suggested that these objects and their fragments were scattered into the asteroid belt as a result of interactions with planetary embryos. Although viable, this model does not include the effect of a giant planet that might have existed or been growing in the outer regions. We present the results of a concept study where we have examined the effect of a planetary body in the orbit of Jupiter on the early scattering of planetesimals from the terrestrial region into the asteroid belt. We integrated the orbits of a large battery of planetesimals in a disk of planetary embryos and studied their evolutions for different values of the mass of the planet. Results indicate that when the mass of the planet is smaller than 10 M-circle plus, its effects on the interactions among planetesimals and planetary embryos are negligible. However, when the planet mass is between 10 and 50 M-circle plus, simulations point to a transitional regime with similar to 50M(circle plus) being the value for which the perturbing effect of the planet can no longer be ignored. Simulations also show that further increase of the mass of the planet strongly reduces the efficiency of the scattering of planetesimals from the terrestrial planet region into the asteroid belt. We present the results of our simulations and discuss their possible implications for the time of giant planet formation. C1 [Haghighipour, Nader] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] Univ Hawaii Manoa, NASA, Astrobiol Inst, Honolulu, HI 96822 USA. [Scott, Edward R. D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. RP Haghighipour, N (reprint author), Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. EM nader@ifa.hawaii.edu FU NASA [NNH08ZDA001N-COS]; NASA Astrobiology Institute (NAI) at the Institute for Astronomy (IfA), University of Hawaii (UH) [NNA09DA77A]; NASA EXOB [NNX09AN05G] FX We thank the anonymous referee for critically reading our manuscript and for constructive suggestions. We acknowledge support from the NASA Cosmochemistry program under grant NNH08ZDA001N-COS. N.H. also acknowledges support from the NASA Astrobiology Institute (NAI) under Cooperative Agreement NNA09DA77A at the Institute for Astronomy (IfA), University of Hawaii (UH), and NASA EXOB grant NNX09AN05G. NR 54 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 113 DI 10.1088/0004-637X/749/2/113 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700017 ER PT J AU Jang-Condell, H Turner, NJ AF Jang-Condell, Hannah Turner, Neal J. TI GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. I. METHODOLOGY AND VALIDATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE planet-disk interactions; planets and satellites: detection; protoplanetary disks; radiative transfer ID HERBIG AE STARS; RADIATIVE-TRANSFER; AB-AURIGAE; VERTICAL STRUCTURE; ACCRETION DISKS; YOUNG OBJECTS; SOLAR NEBULA; LKCA 15; MODELS; DISCS AB We examine the observational consequences of partial gaps being opened by planets in protoplanetary disks. We model the disk using a static alpha-disk model with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. Shadowing and illumination by stellar irradiation at the surface of the gap leads to increased contrast as the gap trough is deepened by shadowing and cooling and the far gap wall is puffed up by illumination and heating. In calculating observables, we find that multiple scattering is important and derive an approximation to include these effects. A gap produced by a 200 M-circle plus (70 M-circle plus) planet at 10 AU can lower/raise the midplane temperature of the disk by up to similar to-25%/+29% (similar to-11/+19) by shadowing in the gap trough and illumination on the far shoulder of the gap. At the distance of Taurus, this gap would be resolvable with similar to 0.'' 01 angular resolution. The gap contrast is most significant in scattered light and at thermal continuum wavelengths characteristic of the surface temperature, reducing or raising the surface brightness by up to order of magnitude. Since gap sizes are correlated with planet mass, this is a promising way of finding and determining the masses of planets embedded in protoplanetary disks. C1 [Jang-Condell, Hannah] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Jang-Condell, H (reprint author), Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. OI Jang-Condell, Hannah/0000-0002-7639-1322; Turner, Neal/0000-0001-8292-1943 FU Jet Propulsion Laboratory (JPL); NASA FX The authors thank an anonymous referee for constructive comments that greatly improved this paper. H.J.-C. acknowledges support for this work through the Michelson Fellowship Program under contract with the Jet Propulsion Laboratory (JPL) funded by NASA. N.J.T. carried out his part at JPL, which is managed for NASA by the California Institute of Technology. NR 37 TC 24 Z9 24 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 153 DI 10.1088/0004-637X/749/2/153 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700057 ER PT J AU Luo, B Fabbiano, G Fragos, T Kim, DW Belczynski, K Brassington, NJ Pellegrini, S Tzanavaris, P Wang, JF Zezas, A AF Luo, B. Fabbiano, G. Fragos, T. Kim, D-W Belczynski, K. Brassington, N. J. Pellegrini, S. Tzanavaris, P. Wang, Junfeng Zezas, A. TI PROBING THE X-RAY BINARY POPULATIONS OF THE RING GALAXY NGC 1291 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 1291); galaxies: luminosity function, mass function; X-rays: binaries; X-rays: galaxies ID CHANDRA MONITORING OBSERVATIONS; STAR-FORMING GALAXIES; BLACK-HOLE BINARIES; MS SOURCE CATALOGS; LUMINOSITY FUNCTION; ELLIPTIC GALAXIES; NEARBY GALAXIES; DEEP CHANDRA; LENTICULAR GALAXIES; CONFIDENCE-LIMITS AB We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approximate to 40% of the bulge sources and approximate to 25% of the ring sources showing >3 sigma long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approximate to 75%) and ring (approximate to 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity active galactic nucleus (AGN) with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approximate to 1.5 x 10(37) and approximate to 2.2 x 10(37) erg s(-1) for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291, which suggests that the observed combined XLF is dominated by an old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative overdensity of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF. C1 [Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D-W; Wang, Junfeng] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Belczynski, K.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Brassington, N. J.] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield AL10 9AB, Herts, England. [Pellegrini, S.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Tzanavaris, P.] NASA, Lab Xray Astrophys, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tzanavaris, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Zezas, A.] Univ Crete, Dept Phys, GR-71003 Iraklion, Crete, Greece. RP Luo, B (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Zezas, Andreas/C-7543-2011; Fragos, Tassos/A-3581-2016 OI Zezas, Andreas/0000-0001-8952-676X; Fragos, Tassos/0000-0003-1474-1523 FU NASA [GO0-11104X, NAS8-03060]; CXC; NASA at Goddard Space Flight Center FX This work is supported by NASA grant GO0-11104X. We acknowledge support from the CXC, which is operated by the Smithsonian Astrophysical Observatory (SAO) for and on behalf of NASA under Contract NAS8-03060. S. Pellegrini acknowledges partial support from ASI/INAF grant I/009/10/0. P. Tzanavaris acknowledges support through a NASA Postdoctoral Program Fellowship at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We thank G. Risaliti for helpful discussions. We thank the referee for carefully reviewing the manuscript and providing helpful comments. NR 90 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 130 DI 10.1088/0004-637X/749/2/130 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700034 ER PT J AU Masiero, JR Mainzer, AK Grav, T Bauer, JM Wright, EL McMillan, RS Tholen, DJ Blain, AW AF Masiero, Joseph R. Mainzer, A. K. Grav, T. Bauer, J. M. Wright, E. L. McMillan, R. S. Tholen, D. J. Blain, A. W. TI A REVISED ASTEROID POLARIZATION-ALBEDO RELATIONSHIP USING WISE/NEOWISE DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE minor planets, asteroids: general; polarization ID THERMAL-MODEL CALIBRATION; INFRARED-SURVEY-EXPLORER; POLARIMETRIC OBSERVATIONS; MINOR PLANETS; NEOWISE; DIAMETERS; BEHAVIOR; OBJECTS AB We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log (albedo)-log (polarization slope)-log (minimum polarization). When projected to two dimensions, the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with the albedo and present the best-fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D < 30 km) asteroids are underrepresented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies. C1 [Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Bauer, J. M.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wright, E. L.] UCLA Astron, Los Angeles, CA 90095 USA. [McMillan, R. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Tholen, D. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Blain, A. W.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Masiero, JR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 321-520, Pasadena, CA 91109 USA. EM Joseph.Masiero@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU NASA; Planetary Science Division of the National Aeronautics and Space Administration FX The authors thank referee Alberto Cellino for his helpful review of this paper. J.R.M. was supported by an appointment to the NASA Postdoctoral Program at JPL, administered by Oak Ridge Associated Universities through a contract with NASA. This paper makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This paper also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 34 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 104 DI 10.1088/0004-637X/749/2/104 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700009 ER PT J AU Mathur, S Metcalfe, TS Woitaszek, M Bruntt, H Verner, GA Christensen-Dalsgaard, J Creevey, OL Dogan, G Basu, S Karoff, C Stello, D Appourchaux, T Campante, TL Chaplin, WJ Garcia, RA Bedding, TR Benomar, O Bonanno, A Deheuvels, S Elsworth, Y Gaulme, P Guzik, JA Handberg, R Hekker, S Herzberg, W Monteiro, MJPFG Piau, L Quirion, PO Regulo, C Roth, M Salabert, D Serenelli, A Thompson, MJ Trampedach, R White, TR Ballot, J Brandao, IM Molenda-Zakowicz, J Kjeldsen, H Twicken, JD Uddin, K Wohler, B AF Mathur, S. Metcalfe, T. S. Woitaszek, M. Bruntt, H. Verner, G. A. Christensen-Dalsgaard, J. Creevey, O. L. Dogan, G. Basu, S. Karoff, C. Stello, D. Appourchaux, T. Campante, T. L. Chaplin, W. J. Garcia, R. A. Bedding, T. R. Benomar, O. Bonanno, A. Deheuvels, S. Elsworth, Y. Gaulme, P. Guzik, J. A. Handberg, R. Hekker, S. Herzberg, W. Monteiro, M. J. P. F. G. Piau, L. Quirion, P. -O. Regulo, C. Roth, M. Salabert, D. Serenelli, A. Thompson, M. J. Trampedach, R. White, T. R. Ballot, J. Brandao, I. M. Molenda-Zakowicz, J. Kjeldsen, H. Twicken, J. D. Uddin, K. Wohler, B. TI A UNIFORM ASTEROSEISMIC ANALYSIS OF 22 SOLAR-TYPE STARS OBSERVED BY KEPLER SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; stars: evolution; stars: interiors; stars: oscillations ID STELLAR EVOLUTION CODE; MODE FREQUENCY-SHIFTS; EQUATION-OF-STATE; SUN-LIKE STAR; BOLOMETRIC CORRECTIONS; MIXING-LENGTH; NGC 6819; OSCILLATIONS; PARAMETERS; DIAGRAMS AB Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to similar to 1% precision, and ages to similar to 2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission. C1 [Mathur, S.; Metcalfe, T. S.; Christensen-Dalsgaard, J.; Dogan, G.; Thompson, M. J.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Metcalfe, T. S.; Woitaszek, M.] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA. [Bruntt, H.; Christensen-Dalsgaard, J.; Dogan, G.; Karoff, C.; Campante, T. L.; Handberg, R.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Bruntt, H.] Univ Paris 07, Univ Paris 06, UMR8109, LESIA,Obs Paris, F-92195 Meudon, France. [Verner, G. A.; Karoff, C.; Chaplin, W. J.; Elsworth, Y.; Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Creevey, O. L.; Salabert, D.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR7293, F-06304 Nice 4, France. [Basu, S.; Deheuvels, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Stello, D.; Bedding, T. R.; Benomar, O.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Appourchaux, T.; Gaulme, P.] Univ Paris 11, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Campante, T. L.; Monteiro, M. J. P. F. G.; Brandao, I. M.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Campante, T. L.; Monteiro, M. J. P. F. G.; Brandao, I. M.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal. [Garcia, R. A.] CEA DSM CNRS Univ Paris Diderot, Lab AIM, F-91191 Gif Sur Yvette, France. [Garcia, R. A.] Ctr Saclay, IRFU SAp, F-91191 Gif Sur Yvette, France. [Bonanno, A.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hekker, S.; Roth, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Herzberg, W.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Piau, L.] LATMOS, F-78280 Guyancourt, France. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Regulo, C.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Regulo, C.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Serenelli, A.] Inst Ciencias Espacio CSIC IEEC, Fac Ciencias, Bellaterra 08193, Spain. [Trampedach, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Trampedach, R.] Natl Inst Stand & Technol, Boulder, CO 80309 USA. [Ballot, J.] CNRS, Inst Rech Astrophys & Planetol, F-31400 Toulouse, France. [Ballot, J.] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Twicken, J. D.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Uddin, K.; Wohler, B.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mathur, S (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, POB 3000, Boulder, CO 80307 USA. RI Ballot, Jerome/G-1019-2010; Bonanno, Alfio/J-1845-2012; Brandao, Isa/M-5172-2013; Monteiro, Mario J.P.F.G./B-4715-2008; OI Garcia, Rafael/0000-0002-8854-3776; Brandao, Isa/0000-0002-1153-0942; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Bonanno, Alfio/0000-0003-3175-9776; Bedding, Timothy/0000-0001-5943-1460; Metcalfe, Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Basu, Sarbani/0000-0002-6163-3472; Serenelli, Aldo/0000-0001-6359-2769; Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate; NASA [NNX09AE59G]; White Dwarf Research Corporation; European Community [269194]; NSF TeraGrid allocation [TG-AST090107]; TeraGrid Science Gateways program; NSF MRI [CNS-0421498, CNS-0420873, CNS-0420985]; NSF; University of Colorado; IBM FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. This work was supported in part by the NASA grant NNX09AE59G and by the White Dwarf Research Corporation through the Pale Blue Dot project. The authors thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of the KASC Working Group 1, and the International Space Science Institute (ISSI). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 269194 (IRSES/ASK). Computational time on Kraken at the National Institute of Computational Sciences was provided through the NSF TeraGrid allocation TG-AST090107. Funding to integrate AMP with TeraGrid resources was provided by the TeraGrid Science Gateways program. Computational time at NCAR was provided by the NSF MRI Grants CNS-0421498, CNS-0420873, and CNS-0420985, NSF sponsorship of the National Center for Atmospheric Research, the University of Colorado, and a grant from the IBM Shared University Research program. NR 87 TC 95 Z9 95 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 152 DI 10.1088/0004-637X/749/2/152 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700056 ER PT J AU Nixon, CA Temelso, B Vinatier, S Teanby, NA Bezard, B Achterberg, RK Mandt, KE Sherrill, CD Irwin, PGJ Jennings, DE Romani, PN Coustenis, A Flasar, FM AF Nixon, C. A. Temelso, B. Vinatier, S. Teanby, N. A. Bezard, B. Achterberg, R. K. Mandt, K. E. Sherrill, C. D. Irwin, P. G. J. Jennings, D. E. Romani, P. N. Coustenis, A. Flasar, F. M. TI ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING SO ASTROPHYSICAL JOURNAL LA English DT Article DE molecular processes; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: formation; planets and satellites: individual (Titan); radiative transfer ID COMPOSITE INFRARED SPECTROMETER; WAVE-FUNCTIONS; CASSINI CIRS; D/H RATIO; SPIN CONTAMINATION; RATE COEFFICIENTS; BASIS-SETS; ATMOSPHERE; ORIGIN; SPECTRA AB The existence of methane in Titan's atmosphere (similar to 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of similar to 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (CH4)-C-13, (CH3D)-C-12, and (CH3D)-C-13. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(-4), in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H -> CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane. C1 [Nixon, C. A.; Achterberg, R. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nixon, C. A.; Achterberg, R. K.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.] NASA, Planetary Syst Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Temelso, B.] Bucknell Univ, Dept Chem, Coll Arts & Sci, Deans Off, Lewisburg, PA 17837 USA. [Vinatier, S.; Bezard, B.; Coustenis, A.] Observ Paris, CNRS, LESIA, F-92195 Meudon, France. [Teanby, N. A.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. [Mandt, K. E.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. [Mandt, K. E.] Univ Texas San Antonio, Dept Environm & Civil Engn, San Antonio, TX 78249 USA. [Sherrill, C. D.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Irwin, P. G. J.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. RP Nixon, CA (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RI Flasar, F Michael/C-8509-2012; Jennings, Donald/D-7978-2012; Nixon, Conor/A-8531-2009; Mandt, Kathleen/M-9812-2013; OI Sherrill, David/0000-0002-5570-7666; Nixon, Conor/0000-0001-9540-9121; Mandt, Kathleen/0000-0001-8397-3315; Teanby, Nicholas/0000-0003-3108-5775; Irwin, Patrick/0000-0002-6772-384X FU NASA Cassini Mission; UK STFC; Leverhulme Trust FX C.A.N., R.K.A., D.E.J., P.N.R., and F.M.F. were supported by the NASA Cassini Mission during the period in which this work was conducted. N.A.T. and P.G.J.I. received support for their portion of this work from the UK STFC, and N.A.T. received additional support from the Leverhulme Trust. The authors thank Panayotis Lavvas for supplying methane column depletion rates predicted by his photochemical model (Lavvas et al. 2008). NR 96 TC 29 Z9 29 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 159 DI 10.1088/0004-637X/749/2/159 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700063 ER PT J AU Roy, N Minter, AH Goss, WM Brogan, CL Lazio, TJW AF Roy, Nirupam Minter, Anthony H. Goss, W. M. Brogan, Crystal L. Lazio, T. J. W. TI TINY SCALE OPACITY FLUCTUATIONS FROM VLBA, MERLIN, AND VLA OBSERVATIONS OF HI ABSORPTION TOWARD 3C 138 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: atoms; ISM: general; ISM: structure; radio lines: ISM; turbulence ID GALACTIC NEUTRAL HYDROGEN; POWER SPECTRUM ANALYSIS; LARGE-MAGELLANIC-CLOUD; INTERSTELLAR-MEDIUM; MAGNETOHYDRODYNAMIC TURBULENCE; ATOMIC-STRUCTURE; AU SCALES; EMISSION; PULSARS; CASSIOPEIA AB The structure function of opacity fluctuations is a useful statistical tool to study tiny scale structures of neutral hydrogen. Here we present high-resolution observation of Hi absorption toward 3C 138, and estimate the structure function of opacity fluctuations from the combined VLA, MERLIN, and VLBA data. The angular scales probed in this work are similar to 10-200 mas (about 5-100 AU). The structure function in this range is found to be well represented by a power law S-tau (x) similar to x(beta) with index beta similar to 0.33 +/- 0.07 corresponding to a power spectrum P-tau (U) similar to U-2.33. This is slightly shallower than the earlier reported power-law index of similar to 2.5-3.0 at similar to 1000 AU to few pc scales. The amplitude of the derived structure function is a factor of similar to 20-60 times higher than the extrapolated amplitude from observation of Cas A at larger scales. On the other hand, extrapolating the AU scale structure function for 3C 138 predicts the observed structure function for Cas A at the pc scale correctly. These results clearly establish that the atomic gas has significantly more structures in AU scales than expected from earlier pc scale observations. Some plausible reasons are identified and discussed here to explain these results. The observational evidence of a shallower slope and the presence of rich small-scale structures may have implications for the current understanding of the interstellar turbulence. C1 [Roy, Nirupam; Goss, W. M.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Minter, Anthony H.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Brogan, Crystal L.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Lazio, T. J. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Roy, N (reprint author), Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA. EM nroy@aoc.nrao.edu FU National Aeronautics and Space Administration FX We thank the anonymous referee for many useful comments which prompted us to improve this paper substantially. We also thank John Scalo, Deputy Editor of ApJ Letters, for useful suggestions. We are grateful to Jayaram N. Chengalur, Avinash A. Deshpande, Prasun Dutta, and Snezana Stanimirovic for helpful discussions and useful comments on an earlier version of this manuscript. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 37 TC 8 Z9 8 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 144 DI 10.1088/0004-637X/749/2/144 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700048 ER PT J AU Slane, P Hughes, JP Temim, T Rousseau, R Castro, D Foight, D Gaensler, BM Funk, S Lemoine-Goumard, M Gelfand, JD Moffett, DA Dodson, RG Bernstein, JP AF Slane, Patrick Hughes, John P. Temim, Tea Rousseau, Romain Castro, Daniel Foight, Dillon Gaensler, B. M. Funk, Stefan Lemoine-Goumard, Marianne Gelfand, Joseph D. Moffett, David A. Dodson, Richard G. Bernstein, Joseph P. TI A BROADBAND STUDY OF THE EMISSION FROM THE COMPOSITE SUPERNOVA REMNANT MSH 11-62 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (MSH-11-62); ISM: supernova remnants; radiation mechanisms: non-thermal; stars: neutron ID PULSAR WIND NEBULA; LARGE-AREA TELESCOPE; X-RAY-EMISSION; HIGH-ENERGY; RADIO; EVOLUTION; G291.0-0.1; HESS; HYDRODYNAMICS; ACCELERATION AB MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH 11-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission. C1 [Slane, Patrick; Castro, Daniel; Foight, Dillon] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Temim, Tea] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rousseau, Romain; Lemoine-Goumard, Marianne] Univ Bordeaux, CNRS IN2P3, UMR 5797, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Gaensler, B. M.] Univ Sydney, Sydney Inst Astron, Sch Phys A29, Sydney, NSW 2006, Australia. [Funk, Stefan] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Gelfand, Joseph D.] New York Univ Abu Dhabi, Abu Dhabi, U Arab Emirates. [Moffett, David A.] Furman Univ, Dept Phys, Greenville, SC 29613 USA. [Dodson, Richard G.] Univ Western Australia, Int Ctr Radio Astron Res, Crawley, WA 6009, Australia. [Bernstein, Joseph P.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Bernstein, Joseph P.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Slane, P (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM slane@cfa.harvard.edu; jph@physics.rutgers.edu; tea.temim@nasa.gov; rousseau@cenbg.in2p3.fr; bryan.gaensler@sydney.edu.au; funk@slac.stanford.edu; lemoine@cenbg.in2p3.fr; jg168@astro.physics.nyu.edu; david.moffett@furman.edu; richard.dodson@icrar.org; jpbernst@anl.gov RI Gaensler, Bryan/F-8655-2010; Funk, Stefan/B-7629-2015; Gelfand, Joseph/F-1110-2015; OI Funk, Stefan/0000-0002-2012-0080; Gelfand, Joseph/0000-0003-4679-1058; Gaensler, Bryan/0000-0002-3382-9558; Temim, Tea/0000-0001-7380-3144 FU NASA [NRA 00-OSS-07/03500279, NNX 11AQ09G, NGT5-159, NAS8-03060]; Commonwealth of Australia FX NASA supported this work via grant numbers NRA 00-OSS-07/03500279, NNX 11AQ09G, and NGT5-159. P.S. acknowledges support from NASA Contract NAS8-03060. The ATCA is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.; R.R., M.L.-G., and SF. have participated as members of the Fermi-LAT Collaboration, which acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include th United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Phe National Aeronautics and Space Administration and the Department of Energy in theysique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace NR 41 TC 10 Z9 10 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 131 DI 10.1088/0004-637X/749/2/131 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700035 ER PT J AU Taylor, JE Massey, RJ Leauthaud, A George, MR Rhodes, J Kitching, TD Capak, P Ellis, R Finoguenov, A Ilbert, O Jullo, E Kneib, JP Koekemoer, AM Scoville, N Tanaka, M AF Taylor, James E. Massey, Richard J. Leauthaud, Alexie George, Matthew R. Rhodes, Jason Kitching, Thomas D. Capak, Peter Ellis, Richard Finoguenov, Alexis Ilbert, Olivier Jullo, Eric Kneib, Jean-Paul Koekemoer, Anton M. Scoville, Nick Tanaka, Masayuki TI MEASURING THE GEOMETRY OF THE UNIVERSE FROM WEAK GRAVITATIONAL LENSING BEHIND GALAXY GROUPS IN THE HST COSMOS SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark energy; distance scale; galaxies: groups: general; gravitational lensing: weak; large-scale structure of Universe ID HUBBLE-SPACE-TELESCOPE; WIDE-FIELD SURVEY; BARYON ACOUSTIC-OSCILLATIONS; DARK ENERGY CONSTRAINTS; EVOLUTION SURVEY COSMOS; POINT-SPREAD FUNCTION; LARGE-SCALE STRUCTURE; X-RAY GROUPS; ADVANCED CAMERA; COSMOLOGICAL CONSTRAINTS AB Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component OX at greater than 99% confidence for an equation-of-state parameter -2.5 <= w <= -0.1. For the case w = -1, we find a value for the cosmological constant density parameter Omega(Lambda) = 0.85(-0.19)(+0.044) (68% CL) and detect cosmic acceleration (q(0) < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys. C1 [Taylor, James E.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Massey, Richard J.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Leauthaud, Alexie; Tanaka, Masayuki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [George, Matthew R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Rhodes, Jason; Ellis, Richard; Scoville, Nick] CALTECH, Pasadena, CA 91125 USA. [Rhodes, Jason; Jullo, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kitching, Thomas D.] Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Capak, Peter] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Finoguenov, Alexis] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Finoguenov, Alexis] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Ilbert, Olivier; Jullo, Eric; Kneib, Jean-Paul] Univ Aix Marseille, CNRS, LAM, F-13013 Marseille, France. [Koekemoer, Anton M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Taylor, JE (reprint author), Univ Waterloo, Dept Phys & Astron, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada. EM taylor@uwaterloo.ca RI Kneib, Jean-Paul/A-7919-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Taylor, James/0000-0002-6639-4183; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS 5-26555]; Subaru Telescope; European Southern Observatory under the Large Program, Chile [175.A-0839]; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory; National Optical Astronomy Observatory; National Science Foundation; NSERC Canada; STFC [PP/E006450/1]; ERC [MIRG-CT-208994.]; LBNL; Berkeley Center for Cosmological Physics; RAS; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan FX Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA Inc. under the NASA contract NAS 5-26555; the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the European Southern Observatory under the Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.; The authors gratefully acknowledge helpful discussions with Niayesh Afshordi, Hendrik Hildebrandt, Mike Hudson, Fabian Schmidt, and Kris Sigurdson. J.E.T. is supported by a NSERC Canada Discovery Grant. R.M. is supported by STFC Advanced Fellowship PP/E006450/1 and ERC grant MIRG-CT-208994. A.L. acknowledges support from the Chamberlain Fellowship at LBNL and from the Berkeley Center for Cosmological Physics. The work of J.R. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. T.K. was supported by a RAS 2010 Fellowship. This work was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.; The HST COSMOS Treasury programwas supported through the NASA grant HST-GO-09822. We thank Tony Roman, Denise Taylor, and David Soderblom for their assistance in planning and scheduling of the extensive COSMOS observations. We gratefully acknowledge the contributions of the entire COSMOS collaboration consisting of more than 70 scientists. More information on the COSMOS survey is available at http://cosmos.astro.caltech.edu. It is also a pleasure the acknowledge the excellent services provided by the NASA IPAC/IRSA staff (Anastasia Laity, Anastasia Alexov, Bruce Berriman, and John Good) in providing online archive and server capabilities for the COSMOS data sets. NR 72 TC 10 Z9 11 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 127 DI 10.1088/0004-637X/749/2/127 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700031 ER PT J AU van der Horst, AJ Kouveliotou, C Gorgone, NM Kaneko, Y Baring, MG Guiriec, S Gogus, E Granot, J Watts, AL Lin, L Bhat, PN Bissaldi, E Chaplin, VL Finger, MH Gehrels, N Gibby, MH Giles, MM Goldstein, A Gruber, D Harding, AK Kaper, L von Kienlin, A van der Klis, M McBreen, S Mcenery, J Meegan, CA Paciesas, WS Pe'er, A Preece, RD Ramirez-Ruiz, E Rau, A Wachter, S Wilson-Hodge, C Woods, PM Wijers, RAMJ AF van der Horst, A. J. Kouveliotou, C. Gorgone, N. M. Kaneko, Y. Baring, M. G. Guiriec, S. Gogus, E. Granot, J. Watts, A. L. Lin, L. Bhat, P. N. Bissaldi, E. Chaplin, V. L. Finger, M. H. Gehrels, N. Gibby, M. H. Giles, M. M. Goldstein, A. Gruber, D. Harding, A. K. Kaper, L. von Kienlin, A. van der Klis, M. McBreen, S. Mcenery, J. Meegan, C. A. Paciesas, W. S. Pe'er, A. Preece, R. D. Ramirez-Ruiz, E. Rau, A. Wachter, S. Wilson-Hodge, C. Woods, P. M. Wijers, R. A. M. J. TI SGRJ 1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (SGR J1550-5418, 1E 1547.0-5408, PSR J1550-5418); stars: neutron; X-rays: bursts ID PULSAR 1E 1547.0-5408; MAGNETIZED NEUTRON-STARS; STATISTICAL PROPERTIES; 2009 OUTBURST; EMISSION; REPEATERS; SGR-1900+14; 1E-1547.0-5408; MAGNETARS; SOFT-GAMMA-REPEATER-1806-20 AB We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E-peak and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models. C1 [van der Horst, A. J.; Finger, M. H.; Meegan, C. A.] NSSTC, Univ Space Res Assoc, Huntsville, AL 35805 USA. [van der Horst, A. J.; Watts, A. L.; Kaper, L.; van der Klis, M.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Kouveliotou, C.; Wilson-Hodge, C.] NASA, Space Sci Off, VP62, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Gorgone, N. M.] Connecticut Coll, New London, CT 06320 USA. [Kaneko, Y.; Gogus, E.; Lin, L.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Guiriec, S.; Lin, L.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Guiriec, S.; Gehrels, N.; Harding, A. K.; Mcenery, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Granot, J.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Granot, J.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Lin, L.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Bissaldi, E.; Gruber, D.; von Kienlin, A.; Rau, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gibby, M. H.; Giles, M. M.] Jacobs Technol Inc, Huntsville, AL USA. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [Pe'er, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ramirez-Ruiz, E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Wachter, S.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Woods, P. M.] Corvid Technol, Huntsville, AL 35806 USA. RP van der Horst, AJ (reprint author), NSSTC, Univ Space Res Assoc, Huntsville, AL 35805 USA. EM A.J.VanDerHorst@uva.nl RI McEnery, Julie/D-6612-2012; Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Wijers, Ralph/0000-0002-3101-1808 FU NASA [NNH07ZDA001-GLAST, NNX10AC59A]; Scientific and Technological Research Council of Turkey (TUBITAK) [109T755]; NASA at the Goddard Space Flight Center; ERC; NWO FX A.J.v.d.H. thanks Vicky Kaspi for useful discussions. This publication is part of the GBM/Magnetar Key Project (NASA grant NNH07ZDA001-GLAST, PI: C. Kouveliotou). Y.K. and E.G. acknowledge the support from the Scientific and Technological Research Council of Turkey (TUBITAK) through grant 109T755. M.G.B. acknowledges support from NASA through grant NNX10AC59A. S.G. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. J.G. is supported by the ERC advanced research grant "GRBs." A.L.W. acknowledges support from an NWO Vidi Grant. NR 63 TC 27 Z9 27 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 122 DI 10.1088/0004-637X/749/2/122 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700026 ER PT J AU Wang, XF Wang, LF Filippenko, AV Baron, E Kromer, M Jack, D Zhang, TM Aldering, G Antilogus, P Arnett, WD Baade, D Barris, BJ Benetti, S Bouchet, P Burrows, AS Canal, R Cappellaro, E Carlberg, RG di Carlo, E Challis, PJ Crotts, APS Danziger, JI Della Valle, M Fink, M Foley, RJ Fransson, C Gal-Yam, A Garnavich, PM Gerardy, CL Goldhaber, G Hamuy, M Hillebrandt, W Hoflich, P Holland, ST Holz, DE Hughes, JP Jeffery, DJ Jha, SW Kasen, D Khokhlov, AM Kirshner, RP Knop, RA Kozma, C Krisciunas, K Lee, BC Leibundgut, B Lentz, EJ Leonard, DC Lewin, WHG Li, WD Livio, M Lundqvist, P Maoz, D Matheson, T Mazzali, PA Meikle, P Miknaitis, G Milne, PA Mochnacki, SW Nomoto, K Nugent, PE Oran, ES Panagia, N Perlmutter, S Phillips, MM Pinto, P Poznanski, D Pritchet, CJ Reinecke, M Riess, AG Ruiz-Lapuente, P Scalzo, RA Schlegel, EM Schmidt, BP Siegrist, J Soderberg, AM Sollerman, J Sonneborn, G Spadafora, A Spyromilio, J Sramek, RA Starrfield, SG Strolger, LG Suntzeff, NB Thomas, RC Tonry, JL Tornambe, A Truran, JW Turatto, M Turner, M Van Dyk, SD Weiler, KW Wheeler, JC Wood-Vasey, M Woosley, SE Yamaoka, H AF Wang, Xiaofeng Wang, Lifan Filippenko, Alexei V. Baron, Eddie Kromer, Markus Jack, Dennis Zhang, Tianmeng Aldering, Greg Antilogus, Pierre Arnett, W. David Baade, Dietrich Barris, Brian J. Benetti, Stefano Bouchet, Patrice Burrows, Adam S. Canal, Ramon Cappellaro, Enrico Carlberg, Raymond G. di Carlo, Elisa Challis, Peter J. Crotts, Arlin P. S. Danziger, John I. Della Valle, Massimo Fink, Michael Foley, Ryan J. Fransson, Claes Gal-Yam, Avishay Garnavich, Peter M. Gerardy, Chris L. Goldhaber, Gerson Hamuy, Mario Hillebrandt, Wolfgang Hoeflich, Peter Holland, Stephen T. Holz, Daniel E. Hughes, John P. Jeffery, David J. Jha, Saurabh W. Kasen, Dan Khokhlov, Alexei M. Kirshner, Robert P. Knop, Robert A. Kozma, Cecilia Krisciunas, Kevin Lee, Brian C. Leibundgut, Bruno Lentz, Eric J. Leonard, Douglas C. Lewin, Walter H. G. Li, Weidong Livio, Mario Lundqvist, Peter Maoz, Dan Matheson, Thomas Mazzali, Paolo A. Meikle, Peter Miknaitis, Gajus Milne, Peter A. Mochnacki, Stefan W. Nomoto, Ken'ichi Nugent, Peter E. Oran, Elaine S. Panagia, Nino Perlmutter, Saul Phillips, Mark M. Pinto, Philip Poznanski, Dovi Pritchet, Christopher J. Reinecke, Martin Riess, Adam G. Ruiz-Lapuente, Pilar Scalzo, Richard A. Schlegel, Eric M. Schmidt, Brian P. Siegrist, James Soderberg, Alicia M. Sollerman, Jesper Sonneborn, George Spadafora, Anthony Spyromilio, Jason Sramek, Richard A. Starrfield, Sumner G. Strolger, Louis G. Suntzeff, Nicholas B. Thomas, Rollin C. Tonry, John L. Tornambe, Amedeo Truran, James W. Turatto, Massimo Turner, Michael Van Dyk, Schuyler D. Weiler, Kurt W. Wheeler, J. Craig Wood-Vasey, Michael Woosley, Stanford E. Yamaoka, Hitoshi TI EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; distance scale; dust, extinction; supernovae: general; ultraviolet: general ID HIGH-VELOCITY FEATURES; WHITE-DWARF MODELS; LIGHT CURVES; MAXIMUM LIGHT; COSMOLOGICAL PARAMETERS; ABSOLUTE MAGNITUDES; SPECTRAL EVOLUTION; SYNTHETIC SPECTRA; HOST GALAXIES; K-CORRECTIONS AB We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 angstrom. Significant diversity is seen in the near-maximum-light spectra (similar to 2000-3500 angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminositiesmeasured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter Delta m(15)(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., similar to 0.4 mag versus similar to 0.2 mag for those with 0.8 mag < Delta m(15)(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by similar to 0.9 mag and similar to 2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects. C1 [Wang, Xiaofeng] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Wang, Xiaofeng] Tsinghua Univ, Tsinghua Ctr Astrophys THCA, Beijing 100084, Peoples R China. [Wang, Xiaofeng; Wang, Lifan; Krisciunas, Kevin; Suntzeff, Nicholas B.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Wang, Xiaofeng; Filippenko, Alexei V.; Li, Weidong] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Baron, Eddie] Univ Oklahoma, Dept Phys, Norman, OK 73019 USA. [Kromer, Markus; Hillebrandt, Wolfgang; Mazzali, Paolo A.; Reinecke, Martin] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Jack, Dennis] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Zhang, Tianmeng] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. [Aldering, Greg; Goldhaber, Gerson; Lee, Brian C.; Nugent, Peter E.; Perlmutter, Saul; Scalzo, Richard A.; Siegrist, James; Spadafora, Anthony; Thomas, Rollin C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Antilogus, Pierre] Lab Phys Nucl Hautes Energies, Paris, France. [Arnett, W. David; Milne, Peter A.; Pinto, Philip] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Baade, Dietrich; Leibundgut, Bruno; Spyromilio, Jason] European So Observ, D-85748 Garching, Germany. [Barris, Brian J.; Tonry, John L.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Benetti, Stefano; Cappellaro, Enrico; Mazzali, Paolo A.] Osserv Astron Padova, I-35122 Padua, Italy. [Bouchet, Patrice] CEA, Serv Astrophys, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [Burrows, Adam S.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Canal, Ramon; Ruiz-Lapuente, Pilar] Univ Barcelona, Dept Astron & Meterorol, Barcelona 8007, Spain. [Carlberg, Raymond G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3J3, Canada. [di Carlo, Elisa] Osservatorio Astron Teramo, INAF, I-64100 Treamo, Italy. [Challis, Peter J.; Foley, Ryan J.; Kirshner, Robert P.; Soderberg, Alicia M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Crotts, Arlin P. S.] Columbia Univ, Dept Astron, New York, NY 10025 USA. [Danziger, John I.; Turatto, Massimo] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Della Valle, Massimo] INAF Napoli, Capodimonte Astron Observ, I-80131 Naples, Italy. [Della Valle, Massimo] Int Ctr Relativist Astrophys, I-65122 Pescara, Italy. [Fink, Michael] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Fransson, Claes; Kozma, Cecilia; Lundqvist, Peter; Sollerman, Jesper] Stockholm Univ, SE-10691 Stockholm, Sweden. [Gal-Yam, Avishay] Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Garnavich, Peter M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Gerardy, Chris L.; Hoeflich, Peter] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hamuy, Mario] Univ Chile, Dept Astron, Santiago, Chile. [Holland, Stephen T.; Sonneborn, George] NASA, Lab Observat Cosmol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Holz, Daniel E.; Khokhlov, Alexei M.; Truran, James W.; Turner, Michael] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Holz, Daniel E.; Khokhlov, Alexei M.; Truran, James W.; Turner, Michael] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hughes, John P.; Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Jeffery, David J.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA. [Kasen, Dan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knop, Robert A.] Quest Univ Canada, Dept Phys, Squamish, BC, Canada. [Lentz, Eric J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Leonard, Douglas C.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Lewin, Walter H. G.] MIT, Cambridge, MA 02139 USA. [Livio, Mario; Panagia, Nino; Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Maoz, Dan] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Meikle, Peter] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Miknaitis, Gajus] Ctr Neighborhood Technol, Chicago, IL 60647 USA. [Mochnacki, Stefan W.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3G4, Canada. [Nomoto, Ken'ichi; Oran, Elaine S.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778583, Japan. [Phillips, Mark M.] Carnegie Inst Washington, Washington, DC 20005 USA. [Poznanski, Dovi] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Pritchet, Christopher J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 2Y2, Canada. [Schlegel, Eric M.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Schmidt, Brian P.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 0200, Australia. [Sramek, Richard A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Starrfield, Sumner G.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Strolger, Louis G.] Western Kentucky Univ, Dept Phys & Astron, Bowling Green, KY 42101 USA. [Tornambe, Amedeo] Rome Astron Observ, INAF, I-00136 Rome, Italy. [Van Dyk, Schuyler D.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Weiler, Kurt W.] USN, Res Lab, Washington, DC 20375 USA. [Wheeler, J. Craig] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Wood-Vasey, Michael] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA. [Woosley, Stanford E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. [Yamaoka, Hitoshi] Kyushu Univ, Grad Sch Sci, Fukuoka 8128581, Japan. RP Wang, XF (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM wang_xf@mail.tsinghua.edu.cn RI Carlberg, Raymond/I-6947-2012; Nomoto, Ken'ichi/A-4393-2011; Perlmutter, Saul/I-3505-2015; Wang, Xiaofeng/J-5390-2015; Lentz, Eric/M-7173-2015; Hamuy, Mario/G-7541-2016; OI Cappellaro, Enrico/0000-0001-5008-8619; Turatto, Massimo/0000-0002-9719-3157; Carlberg, Raymond/0000-0002-7667-0081; Perlmutter, Saul/0000-0002-4436-4661; Lentz, Eric/0000-0002-5231-0532; TORNAMBE, AMEDEO/0000-0002-6392-7378; Baron, Edward/0000-0001-5393-1608; Della Valle, Massimo/0000-0003-3142-5020; Schmidt, Brian/0000-0001-6589-1287; Sollerman, Jesper/0000-0003-1546-6615; Scalzo, Richard/0000-0003-3740-1214; Van Dyk, Schuyler/0000-0001-9038-9950; Benetti, Stefano/0000-0002-3256-0016 FU National Science Foundation of China (NSFC) [11178003, 11073013, 10173003]; National Key Basic Research Science Foundation (NKBRSF) [TG199075402]; NSF [AST-0607485, AST-0908886, AST-0708873, AST-0707769]; TABASGO Foundation; US Department of Energy [DE-FC02-06ER41453, DE-FG02-08ER41563]; NASA [GO-10182, AR-12126, NAS 5-26555]; Space Telescope Science Institute [AR-12623]; WPI Initiative, MEXT, Japan; NASA ADP [NNX06AH85G]; ICM [P10-064-F]; CONICYT, Chile [150100003, PFB-06]; [ASI-INAF I/009/10/0] FX We thank Mark Sullivan and Andy Howell for their suggestions. Financial support for this work has been provided by the National Science Foundation of China (NSFC grants 11178003, 11073013, and 10173003) and the National Key Basic Research Science Foundation (NKBRSF TG199075402). A.V.F.'s group at U.C. Berkeley is grateful for the support of NSF grants AST-0607485 and AST-0908886, the TABASGO Foundation, and US Department of Energy grants DE-FC02-06ER41453 (SciDAC) and DE-FG02-08ER41563. Substantial financial support for this work was also provided by NASA through grants GO-10182, AR-12126, and AR-12623 from the Space Telescope Science Institute, which is operated by Associated Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The work of L.W. is supported by NSF grant AST-0708873. J.C.W. is supported by NSF grant AST-0707769. K.N. is supported by WPI Initiative, MEXT, Japan. M.T., S.B., and E.C. are supported by grant ASI-INAF I/009/10/0. P.A.M. is supported by NASA ADP NNX06AH85G. The work of M.H. is supported by ICM grant P10-064-F and CONICYT grants 150100003 and PFB-06, Chile. NR 99 TC 29 Z9 30 U1 1 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 126 DI 10.1088/0004-637X/749/2/126 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700030 ER PT J AU Zemcov, M Aguirre, J Bock, J Bradford, CM Czakon, N Glenn, J Golwala, SR Lupu, R Maloney, P Mauskopf, P Million, E Murphy, EJ Naylor, B Nguyen, H Rosenman, M Sayers, J Scott, KS Zmuidzinas, J AF Zemcov, M. Aguirre, J. Bock, J. Bradford, C. M. Czakon, N. Glenn, J. Golwala, S. R. Lupu, R. Maloney, P. Mauskopf, P. Million, E. Murphy, E. J. Naylor, B. Nguyen, H. Rosenman, M. Sayers, J. Scott, K. S. Zmuidzinas, J. TI HIGH SPECTRAL RESOLUTION MEASUREMENT OF THE SUNYAEV-ZEL'DOVICH EFFECT NULL WITH Z-Spec SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; galaxies: clusters: individual (RX J1347.5-1145); galaxies: clusters: intracluster medium; submillimeter: galaxies ID X-RAY; GALAXY CLUSTERS; RELATIVISTIC CORRECTIONS; RX J1347-1145; SKY SURVEY; BOLOCAM; INCREMENT; GAS; GHZ; COSMOLOGY AB The Sunyaev-Zel'dovich (SZ) effect spectrum crosses through a null where Delta T-CMB = 0 near nu(0) = 217 GHz. In a cluster of galaxies, nu(0) can be shifted from the canonical thermal SZ effect value by corrections to the SZ effect scattering due to the properties of the inter-cluster medium. We have measured the SZ effect in the hot galaxy cluster RX J 1347.5-1145 with Z-Spec, an R similar to 300 grating spectrometer sensitive between 185 and 305 GHz. These data comprise a high spectral resolution measurement around the null of the SZ effect and clearly exhibit the transition from negative to positive Delta T-CMB over the Z-Spec band. The SZ null position is measured to be nu(0) = 225.8 +/- 2.5(stat.) +/- 1.2(sys.) GHz, which differs from the canonical null frequency by 3.0 sigma and is evidence for modifications to the canonical thermal SZ effect shape. Assuming the measured shift in nu(0) is due only to relativistic corrections to the SZ spectrum, we place the limit kT(e) = 17.1 +/- 5.3 keV from the zero-point measurement alone. By simulating the response of the instrument to the sky, we are able to generate likelihood functions in {y(0), T-e, u(pec)} space. For u(pec) = 0 km s(-1), we measure the best-fitting SZ model to be y0 = 4.6(-0.9)(+0.6) x 10(-4), T-e,T-0 = 15.2(-7.4)(+12) keV. When v(pec) is allowed to vary, a most probable value of v(pec) = +450 +/- 810 km s(-1) is found. C1 [Zemcov, M.; Bock, J.; Bradford, C. M.; Czakon, N.; Golwala, S. R.; Naylor, B.; Nguyen, H.; Sayers, J.; Zmuidzinas, J.] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Zemcov, M.; Bock, J.; Bradford, C. M.; Naylor, B.; Nguyen, H.; Zmuidzinas, J.] NASA, JPL, Pasadena, CA 91109 USA. [Aguirre, J.; Lupu, R.; Rosenman, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Glenn, J.; Maloney, P.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80303 USA. [Mauskopf, P.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Million, E.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Murphy, E. J.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Scott, K. S.] Natl Radio Astron Observ, N Amer ALMA Sci Ctr, Charlottesville, VA 22901 USA. RP Zemcov, M (reprint author), CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. EM zemcov@caltech.edu RI Lupu, Roxana/P-9060-2014 OI Lupu, Roxana/0000-0003-3444-5908 FU NASA SARA [NAGS-11911, NAGS-12788]; NSF AST [0807990]; Gordon and Betty Moore Foundation; NASA [NSF/AST-0838261, NASA/NNX11AB07G]; [NSF/AST-9618798]; [NSF/AST-0098737]; [NSF/AST-9980846]; [NSF/AST-0229008]; [NSF/AST-0206158] FX Our thanks to M. Hollister for his help acquiring the Bolocam data used in this work, J. Filippini for many useful discussions on statistics, and the anonymous referee for useful suggestions which improved this manuscript. The Z-Spec team acknowledges support from the following grants for building and fielding the instrument: NASA SARA grants NAGS-11911 and NAGS-12788, and the NSF AST grant 0807990. Bolocam was constructed and commissioned using funds from NSF/AST-9618798, NSF/AST-0098737, NSF/AST-9980846, NSF/AST-0229008, and NSF/AST-0206158. The Bolocam observation and data analysis efforts were also supported by the Gordon and Betty Moore Foundation. J.S. was partially supported by a NASA Post-doctoral Program fellowship, NSF/AST-0838261, and NASA/NNX11AB07G; N.C. was partially supported by the NASA Graduate Student Research Fellowship. This research has made use of data obtained from the Chandra Data Archive and software provided by the Chandra X-ray Center (CXC) in the application package CIAO. NR 47 TC 18 Z9 18 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 114 DI 10.1088/0004-637X/749/2/114 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700018 ER PT J AU Zitrin, A Rosati, P Nonino, M Grillo, C Postman, M Coe, D Seitz, S Eichner, T Broadhurst, T Jouvel, S Balestra, I Mercurio, A Scodeggio, M Benitez, N Bradley, L Ford, H Host, O Jimenez-Teja, Y Koekemoer, A Zheng, W Bartelmann, M Bouwens, R Czoske, O Donahue, M Graur, O Graves, G Infante, L Jha, S Kelson, D Lahav, O Lazkoz, R Lemze, D Lombardi, M Maoz, D McCully, C Medezinski, E Melchior, P Meneghetti, M Merten, J Molino, A Moustakas, LA Ogaz, S Patel, B Regoes, E Riess, A Rodney, S Umetsu, K Van der Wel, A AF Zitrin, A. Rosati, P. Nonino, M. Grillo, C. Postman, M. Coe, D. Seitz, S. Eichner, T. Broadhurst, T. Jouvel, S. Balestra, I. Mercurio, A. Scodeggio, M. Benitez, N. Bradley, L. Ford, H. Host, O. Jimenez-Teja, Y. Koekemoer, A. Zheng, W. Bartelmann, M. Bouwens, R. Czoske, O. Donahue, M. Graur, O. Graves, G. Infante, L. Jha, S. Kelson, D. Lahav, O. Lazkoz, R. Lemze, D. Lombardi, M. Maoz, D. McCully, C. Medezinski, E. Melchior, P. Meneghetti, M. Merten, J. Molino, A. Moustakas, L. A. Ogaz, S. Patel, B. Regoes, E. Riess, A. Rodney, S. Umetsu, K. Van der Wel, A. TI CLASH: NEW MULTIPLE IMAGES CONSTRAINING THE INNER MASS PROFILE OF MACS J1206.2-0847 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: clusters: general; galaxies: clusters: individual (MACS J1206.2-0847); galaxies: high-redshift; gravitational lensing: strong ID STRONG-LENSING ANALYSIS; HUBBLE-SPACE-TELESCOPE; DEEP ADVANCED CAMERA; LINE-OF-SIGHT; SIMILAR-TO 1; GALAXY CLUSTERS; PHOTOMETRIC REDSHIFTS; LAMBDA-CDM; COMPLETE SAMPLE; EINSTEIN RADII AB We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (z = 0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply lensed arcs. The CLASH observations, combined with our mass model, allow us to identify 47 new multiply lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1 less than or similar to z less than or similar to 5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass profile of this cluster. We find an inner profile slope of d log Sigma/d log theta similar or equal to -0.55 +/- 0.1 (in the range [1 '', 53 ''], or 5 kpc less than or similar to r less than or similar to 300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at z(s) similar or equal to 2.5, the critical curve encloses a large area with an effective Einstein radius of theta(E) = 28 '' +/- 3 '', and a projected mass of (1.34 +/- 0.15) x 10(14) M-circle dot. From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z similar to 0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the Lambda CDM paradigm. C1 [Zitrin, A.; Graur, O.; Maoz, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Zitrin, A.; Bartelmann, M.; Merten, J.] Heidelberg Univ, Inst Theoret Astrophys, ZAH, D-69120 Heidelberg, Germany. [Rosati, P.] ESO, D-85748 Garching, Germany. [Nonino, M.] INAF Osservatorio Astron Trieste, I-40131 Trieste, Italy. [Grillo, C.] Tech Univ Munich, D-85748 Garching, Germany. [Postman, M.; Coe, D.; Bradley, L.; Koekemoer, A.; Ogaz, S.; Riess, A.] Space Telescope Sci Inst, Baltimore, MD 21208 USA. [Seitz, S.; Eichner, T.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [Broadhurst, T.; Lazkoz, R.] Univ Basque Country, Dept Theoret Phys, Bilbao 48080, Spain. [Broadhurst, T.] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain. [Jouvel, S.; Host, O.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Balestra, I.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Mercurio, A.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Scodeggio, M.] INAF IASF Milano, I-20133 Milan, Italy. [Benitez, N.; Jimenez-Teja, Y.; Molino, A.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Ford, H.; Zheng, W.; Lemze, D.; Medezinski, E.; Rodney, S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Bouwens, R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Czoske, O.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Donahue, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Graves, G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Infante, L.] Pontificia Univ Catolica Chile, Dept Astronoia & Astrofis, Santiago 22, Chile. [Jha, S.; McCully, C.; Patel, B.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kelson, D.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Lombardi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Melchior, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Melchior, P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Meneghetti, M.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Regoes, E.] CERN, European Lab Particle Phys, CH-1211 Geneva, Switzerland. [Umetsu, K.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Van der Wel, A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Zitrin, A (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. EM adiz@wise.tau.ac.il RI Bartelmann, Matthias/A-5336-2014; Molino Benito, Alberto/F-5298-2014; Lazkoz, Ruth/A-5642-2011; Jimenez-Teja, Yolanda/D-5933-2011; Grillo, Claudio/E-6223-2015; Meneghetti, Massimo/O-8139-2015; OI Scodeggio, Marco/0000-0002-2282-5850; Lazkoz, Ruth/0000-0001-5536-3130; Grillo, Claudio/0000-0002-5926-7143; Meneghetti, Massimo/0000-0003-1225-7084; Bartelmann, Matthias/0000-0001-6951-3582; Nonino, Mario/0000-0001-6342-9662; Balestra, Italo/0000-0001-9660-894X; Graur, Or/0000-0002-4391-6137; Umetsu, Keiichi/0000-0002-7196-4822; LOMBARDI, MARCO/0000-0002-3336-4965; Moustakas, Leonidas/0000-0003-3030-2360; Koekemoer, Anton/0000-0002-6610-2048; Benitez, Narciso/0000-0002-0403-7455 FU NASA [NAS 5-26555] FX We thank the anonymous reviewer of this manuscript for useful comments. The CLASH Multi-Cycle Treasury Program (GO-12065) is based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. Part of this work is based on data collected at the Very Large Telescope at the ESO Paranal Observatory, under Programme ID 186.A-0798. NR 43 TC 37 Z9 37 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR PY 2012 VL 749 IS 2 AR 97 DI 10.1088/0004-637X/749/2/97 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 925TY UT WOS:000302785700002 ER PT J AU Caldarone, EM MacLean, SA Sharack, B AF Caldarone, Elaine M. MacLean, Sharon A. Sharack, Beth TI Evaluation of bioelectrical impedance analysis and Fulton's condition factor as nonlethal techniques for estimating short-term responses in postsmolt Atlantic salmon (Salmo solar) to food availability SO FISHERY BULLETIN LA English DT Article ID SIZE-DEPENDENT PREDATION; SALAR-L.; BODY-COMPOSITION; PHASE-ANGLE; ENERGY DENSITY; FISH; GROWTH; TISSUES; PERFORMANCE; SELECTION AB We evaluated measures of bioelectrical impedance analysis (BIA) and Fulton's condition factor (K) as potential nonlethal indices for detecting short-term changes in nutritional condition of postsmolt Atlantic salmon (Salmo salar). Fish reared in the laboratory for 27 days were fed, fasted, or fasted and then refed. Growth rates and proximate body composition (protein, fat, water) were measured in each fish to evaluate nutritional status and condition. Growth rates of fish responded rapidly to the absence or reintroduction of food, whereas body composition (% wet weight) remained relatively stable owing to isometric growth in fed fish and little loss of body constituents in fasted fish, resulting in nonsignificant differences in body composition among feeding treatments. The utility of BIA and Fulton's K as condition indices requires differences in body composition. In our study, BIA measures were not significantly different among the three feeding treatments, and only on the final day of sampling was K of fasted vs. fed fish significantly different. BIA measures were correlated with body composition content; however, wet weight was a better predictor of body composition on both a content and concentration (% wet weight) basis. Because fish were growing isometrically, neither BIA nor K was well correlated with growth rate. For immature fish, where growth rate, rather than energy reserves, is a more important indicator of fish condition, a nonlethal index that reflects short-term changes in growth rate or the potential for growth would be more suitable as a condition index than either BIA measures or Fulton's K. C1 [Caldarone, Elaine M.; MacLean, Sharon A.] Natl Marine Fisheries Serv, Narragansett Lab, NE Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, Narragansett, RI 02882 USA. [Sharack, Beth] Natl Marine Fisheries Serv, JJ Howard Lab, NE Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, Highlands, NJ 07732 USA. RP Caldarone, EM (reprint author), Natl Marine Fisheries Serv, Narragansett Lab, NE Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, 28 Tarzwell Dr, Narragansett, RI 02882 USA. EM elaine.caldarone@noaa.gov NR 44 TC 7 Z9 7 U1 2 U2 13 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2012 VL 110 IS 2 BP 257 EP 270 PG 14 WC Fisheries SC Fisheries GA 929PX UT WOS:000303079000009 ER PT J AU Stachura, MM Lunsford, CR Rodgveller, CJ Heifetz, J AF Stachura, Megan M. Lunsford, Chris R. Rodgveller, Cara J. Heifetz, Jonathan TI Estimation of discard mortality of sablefish (Anoplopoma fimbria) in Alaska longline fisheries SO FISHERY BULLETIN LA English DT Article ID RELEASE; SURVIVAL; CATCH; FISH; IMPAIRMENT; BEHAVIOR; INJURY; HOOKS; COD AB Sablefish (Anoplopoma fimbria) are often caught incidentally in longline fisheries and discarded, but the extent of mortality after release is unknown, which creates uncertainty for estimates of total mortality. We analyzed data from 10,427 fish that were tagged in research surveys and recovered in surveys and commercial fisheries up to 19 years later and found a decrease in recapture rates for fish originally captured at shallower depths (210-319 m) during the study, sustaining severe hooking injuries, and sustaining amphipod predation injuries. The overall estimated discard mortality rate was 11.71%. This estimate is based on an assumed survival rate of 96.5% for fish with minor hooking injuries and the observed recapture rates for sablefish at each level of severity of hook injury. This estimate may be lower than what actually occurs in commercial fisheries because fish are likely not handled as carefully as those in our study. Comparing our results with data on the relative occurrence of the severity of hooking injuries in longline fisheries may lead to more accurate accounting of total mortality attributable to fishing and to improved management of this species. C1 [Stachura, Megan M.; Lunsford, Chris R.; Rodgveller, Cara J.; Heifetz, Jonathan] Natl Marine Fisheries Serv, Auke Bay Labs, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr,Natl Ocean & Atmospher A, Juneau, AK 99801 USA. RP Lunsford, CR (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr,Natl Ocean & Atmospher A, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM chris.lunsford@noaa.gov FU National Oceanic and Atmospheric Administration (NOAA) FX This analysis was performed while author M. Stachura was a student intern from the University of Miami and funded by the National Oceanic and Atmospheric Administration (NOAA) Ernest F. Hollings Undergraduate Scholarship Program administered by Oak Ridge Associated Universities through a Cooperative Grant sponsored by NOAA. We thank N. Maloney for managing the tag data for the entirety of this project. We also thank E. Varosi and J. Fujioka for help in designing hook injury codes, and the crew of the RV Townsend Cromwell. This manuscript has benefited from review by D. DiResta, G. Thomas, J. Richardson, J. Murphy, K. Echave, P. Rigby, and three anonymous reviewers. NR 27 TC 1 Z9 1 U1 1 U2 5 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2012 VL 110 IS 2 BP 271 EP 279 PG 9 WC Fisheries SC Fisheries GA 929PX UT WOS:000303079000010 ER PT J AU Cornet, T Bourgeois, O Le Mouelic, S Rodriguez, S Gonzalez, TL Sotin, C Tobie, G Fleurant, C Barnes, JW Brown, RH Baines, KH Buratti, BJ Clark, RN Nicholson, PD AF Cornet, T. Bourgeois, O. Le Mouelic, S. Rodriguez, S. Gonzalez, T. Lopez Sotin, C. Tobie, G. Fleurant, C. Barnes, J. W. Brown, R. H. Baines, K. H. Buratti, B. J. Clark, R. N. Nicholson, P. D. TI Geomorphological significance of Ontario Lacus on Titan: Integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia) SO ICARUS LA English DT Article DE Satellites, Surfaces; Titan; Geological processes; Infrared observations; Radar observations ID COUPLING PHOTOCHEMISTRY; PLANETARY SCIENCE; HAZE FORMATION; METHANE CYCLE; SURFACE; ATMOSPHERE; LAKES; INSTRUMENT; EVOLUTION; RAIN AB Ontario Lacus is the largest lake of the whole southern hemisphere of Titan, Saturn's major moon. It has been imaged twice by each of the Cassini imaging systems (Imaging Science Subsystem (ISS) in 2004 and 2005, Visual and Infrared Mapping Spectrometer (VIMS) in 2007 and 2009 and RADAR in 2009 and 2010). We compile a geomorphological map and derive a "hydrogeological" interpretation of Ontario Lacus, based on a joint analysis of ISS. VIMS and RADAR SAR datasets, along with the T49 altimetric profile acquired in December 2008. The morphologies observed on Ontario Lacus are compared to landforms of a semi-arid terrestrial analog, which resembles Titan's lakes: the Etosha Pan, located in the Owambo Basin (Namibia). The Etosha Pan is a flat-floored depression formed by dissolution, under semi-arid conditions, of a surface evaporitic layer (calcretes) controlled by groundwater vertical motions. We infer that Ontario Lacus is an extremely flat and shallow depression lying in an alluvial plain surrounded by small mountain ranges under climatic conditions similar to those of terrestrial semi-arid regions. Channels are seen in the southern part of Ontario Lacus in VIMS and RADAR data, acquired at a 2-years time interval. Their constancy in location with time implies that the southern portion of the depression is probably not fully covered by a liquid layer at the time of the observations, and that they most probably run on the floor of the depression. A shallow layer of surface liquids, corresponding to the darkest portions of the RADAR images, would thus cover about 53% of the surface area of the depression, of which almost 70% is located in its northern part. These liquid-covered parts of the depression, where liquid ethane was previously identified, are interpreted as topographic lows where the "alkanofer" raises above the depression floor. The rest of the depression, and mostly its southern part, is interpreted as a flat and smooth exposed floor, likely composed of a thick and liquid-saturated coating of photon-absorbing materials in the infrared. This hypothesis could explain its dark appearance both in the infrared and radar data and the persistence of channels seen on the depression floor over the time. Shorelines are observed on the border of Ontario Lacus suggesting past high-stand levels of the alkanofer table. The analogy with the Etosha Pan suggests that Ontario Lacus' depression developed at the expense of a soluble layer covering the region. Dissolution of this layer would be controlled by vertical motions of the alkanofer table over the time. During flooding events, liquid hydrocarbons covering the depression floor would dissolve the surface layer, increasing progressively the diameter of the depression on geological timescales. During drought episodes, liquid hydrocarbons of the underground alkanofer would evaporate, leading to crystallization of "evaporites" in the pores and at the surface of the substratum, and to the formation of the regional soluble layer. The presence of specific landforms (lunette dunes or evaporites) is compatible with such evaporitic regional settings. Alternatively, but not exclusively, the surface soluble layer might have formed by accumulation on the ground of soluble compounds formed in the atmosphere. (C) 2012 Elsevier Inc. All rights reserved. C1 [Cornet, T.; Bourgeois, O.; Le Mouelic, S.; Sotin, C.; Tobie, G.] Univ Nantes, Fac Sci & Tech, Lab Planetol & Geodynam Nantes, UMR 6112,CNRS, F-44322 Nantes 3, France. [Rodriguez, S.] Ctr Orme Merisiers, IRFU Sap, Ctr Etud Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Gonzalez, T. Lopez] Observ Midi Pyrenees, CNRS, UMR 5277, F-31400 Toulouse, France. [Sotin, C.; Baines, K. H.; Buratti, B. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fleurant, C.] Agrocampus Ouest Ctr Angers Inst Natl Hort & Pays, F-49045 Angers 01, France. [Barnes, J. W.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Brown, R. H.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Clark, R. N.] US Geol Survey, Denver, CO 80225 USA. [Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Cornet, T (reprint author), Univ Nantes, Fac Sci & Tech, Lab Planetol & Geodynam Nantes, UMR 6112,CNRS, 2 Rue Houssiniere,BP92208, F-44322 Nantes 3, France. EM Thomas.Cornet@univ-nantes.fr RI Barnes, Jason/B-1284-2009; Rodriguez, Sebastien/H-5902-2016; Cornet, Thomas/E-7539-2017 OI Barnes, Jason/0000-0002-7755-3530; Rodriguez, Sebastien/0000-0003-1219-0641; Cornet, Thomas/0000-0001-5971-0056 FU CNES (France); Institut National des Sciences de l'Univers (INSU, France); Agence Nationale de la Recherche (ANR, France) FX The authors want to thank Stephen Wall, Alexander Hayes and an anonymous reviewer for useful comments on the manuscript. They also want to thank Dr. Martin Hipondoka for interesting discussions about the Etosha pan geology. The authors appreciate financial support provided by CNES (France), the Institut National des Sciences de l'Univers (INSU Programme National de Planetologie and Programme Reliefs, France) and the Agence Nationale de la Recherche (ANR project Exoclimat, France). ASTER GDEM is a product of METI and NASA. The Envisat ASAR image has been provided by the European Space Agency (c) ESA 2009, ESA (R). The MODIS image has been provided by the National Aeronautics and Space Agency NASA/GSFC, MODIS Rapid Response. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. NR 92 TC 27 Z9 28 U1 2 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2012 VL 218 IS 2 BP 788 EP 806 DI 10.1016/j.icarus.2012.01.013 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 927BV UT WOS:000302882800005 ER PT J AU Simon-Miller, AA Rogers, JH Gierasch, PJ Choi, D Allison, MD Adamoli, G Mettig, HJ AF Simon-Miller, Amy A. Rogers, John H. Gierasch, Peter J. Choi, David Allison, Michael D. Adamoli, Gianluigi Mettig, Hans-Joerg TI Longitudinal variation and waves in Jupiter's south equatorial wind jet SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Atmospheres, Structure; Jupiter, Atmosphere ID 5-MICRON HOT-SPOTS; MEAN ZONAL FLOW; GALILEO PROBE; JOVIAN ATMOSPHERE; CASSINI; VOYAGER-1; IMAGES; SATELLITES; VELOCITY; SYSTEMS AB A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 degrees S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and increasing with distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of similar to 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 degrees N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of similar to 20 degrees and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 degrees N and 7.5 degrees S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary. (C) 2012 Elsevier Inc. All rights reserved. C1 [Simon-Miller, Amy A.; Choi, David] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rogers, John H.; Adamoli, Gianluigi; Mettig, Hans-Joerg] JUPOS Team, London W1J 0DU, England. [Rogers, John H.; Adamoli, Gianluigi; Mettig, Hans-Joerg] British Astron Assoc, London W1J 0DU, England. [Gierasch, Peter J.] Cornell Univ, Ithaca, NY 14853 USA. [Choi, David] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Allison, Michael D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Simon-Miller, AA (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Amy.Simon@nasa.gov RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 FU NASA ROSES; NASA [NAS5-26555] FX This work was funded in part by a grant to ASM from the NASA ROSES Planetary Atmospheres program. We thank the many amateur observers who supplied images included in the BAA and JUPOS records, and who are listed on the BAA and JUPOS web sites: and in particular D. Peach who supplied the ground-based strip-map in Fig. Si. We also thank the ALPO-Japan for providing some of the images through the archive on their web site. Measurements of ground-based images were performed by the JUPOS team (HJM, GA, M. Jacquesson, and M. Vedovato); the JUPOS project is coordinated by HJM and the software was developed by G. Hahn. The Voyager strip map in Fig. 51 was generated from reprocessed highest resolution images, courtesy of B. Jonsson. We also acknowledge the use of Voyager global maps (produced by C. Avis and S. Collins) and Cassini mapped images (acquired and produced by C. Porco, CICLOPS, A. Vasavada and the Cassini ISS Team), which are located at the Planetary Data System Atmospheres Node. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST) from programs: GO5313, GO6009, GO6452, GO/CAR7616, GO8148, GO/DD8871, GO/DD11096, and GO11102. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS5-26555. Finally, we thank two anonymous reviewers for comments and suggestions that have strengthened this work. NR 42 TC 10 Z9 10 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2012 VL 218 IS 2 BP 817 EP 830 DI 10.1016/j.icarus.2012.01.022 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 927BV UT WOS:000302882800007 ER PT J AU Clark, RN Cruikshank, DP Jaumann, R Brown, RH Stephan, K Ore, CMD Livo, KE Pearson, N Curchin, JM Hoefen, TM Buratti, BJ Filacchione, G Baines, KH Nicholson, PD AF Clark, Roger N. Cruikshank, Dale P. Jaumann, Ralf Brown, Robert H. Stephan, Katrin Ore, Cristina Morea Dalle Livo, K. Eric Pearson, Neil Curchin, John M. Hoefen, Todd M. Buratti, Bonnie J. Filacchione, Gianrico Baines, Kevin H. Nicholson, Philip D. TI The surface composition of Iapetus: Mapping results from Cassini VIMS SO ICARUS LA English DT Article DE Iapetus; Saturn, Satellites; Spectroscopy; Satellites, Composition; Ices, IR spectroscopy ID OPTICAL-PROPERTIES; DARK MATERIAL; E-RING; IMAGING SPECTROSCOPY; GALILEAN SATELLITES; SATURNS SATELLITES; ENCELADUS SURFACE; ALBEDO DICHOTOMY; MU-M; PHOEBE AB Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Iapetus on September 10, 2007 provided the best data on the spectral signature and spatial extent of dark material on Iapetus. This Cassini Rev 49 Iapetus fly-by provided spatially resolved imaging spectroscopy data of the dark material and the leading/trailing side transition from the dark material to visually bright ice on the trailing side. Compositional mapping and radiative transfer modeling shows that the dark material is composed of metallic iron, nano-size iron oxide (hematite), CO2, H2O ice, and possible signatures of ammonia, bound water, H-2 or OH-bearing minerals, trace organics, and as yet unidentified materials. CO2 indicates a pattern of increasing CO2 strength from the leading side apex to the transition zone to the icy trailing side. A Rayleigh scattering peak in the visible part of the spectrum indicates the dark material has a large component of fine, sub-0.5-mu m diameter particles consistent with nanophase hematite and nanophase iron. Spectral signatures of ice also indicate that sub-0.5-mu m diameter particles are present in the icy regions. Multiple lines of evidence point to an external origin for the dark material on Iapetus, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the leading side, exposing clean ice, and slopes facing the leading direction which show higher abundances of dark material. Multiple Spectral features and overall spectral shape of the dark material on Iapetus match those seen on Phoebe, Hyperion, Dione, Epimetheus, Saturn's rings Cassini Division, and the F-ring implying the material has a common composition throughout the Saturn system. The dark material appears to have significant components of nanophase metallic iron and nanophase hematite contributing to the observed UV absorption. The blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites that contain dark material, again pointing to a common origin of contamination by metallic iron that is partially oxidized. Published by Elsevier Inc. C1 [Clark, Roger N.; Livo, K. Eric; Pearson, Neil; Curchin, John M.; Hoefen, Todd M.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Cruikshank, Dale P.; Ore, Cristina Morea Dalle] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Jaumann, Ralf; Stephan, Katrin] German Aerosp Ctr DLR, Inst Space Sensor Technol & Planetary Explorat, D-12489 Berlin, Germany. [Brown, Robert H.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Buratti, Bonnie J.; Baines, Kevin H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Filacchione, Gianrico] INAF IAPS, Area Ric Tor Vergata, I-00133 Rome, Italy. [Nicholson, Philip D.] Cornell Univ, Ithaca, NY 14853 USA. [Ore, Cristina Morea Dalle] SETI Inst, Mountain View, CA 94043 USA. RP Clark, RN (reprint author), US Geol Survey, Denver Fed Ctr, MS964,Box 25046, Denver, CO 80225 USA. EM rclark@usgs.gov OI Filacchione, Gianrico/0000-0001-9567-0055 FU NASA FX Work for this paper was funded by the NASA Cassini project. Some laboratory spectra for this study were obtained with NASA Cassini Data Analysis Program funding, R. Clark, PI. NR 73 TC 44 Z9 44 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2012 VL 218 IS 2 BP 831 EP 860 DI 10.1016/j.icarus.2012.01.008 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 927BV UT WOS:000302882800008 ER PT J AU Friedson, AJ Moses, JI AF Friedson, A. James Moses, Julianne I. TI General circulation and transport in Saturn's upper troposphere and stratosphere SO ICARUS LA English DT Article DE Saturn; Atmospheres, Dynamics; Atmospheres, Structure ID VOYAGER INFRARED OBSERVATIONS; QUASI-BIENNIAL OSCILLATION; MIDDLE ATMOSPHERE; THERMAL STRUCTURE; MERIDIONAL DISTRIBUTION; SEMIANNUAL OSCILLATION; CIRS/CASSINI LIMB; CLIMATE MODEL; EQUATORIAL; JUPITER AB We present a model for the general circulation and dynamical transport in Saturn's upper troposphere and stratosphere and derive the effective advective circulation and eddy transport coefficients required for use in two-dimensional (latitude-altitude) photochemistry-transport models. A three-dimensional Outer-Planet General Circulation Model (OPGCM) is used to generate the transport data. We find that the OPGCM adequately captures the global-scale, pole-to pole temperature contrast, but overestimates mid- and high-latitude temperatures in the summer hemisphere by similar to 5 K. In addition, the model reproduces the local temperature minimum seen at the equator in Cassini Composite Infrared Spectrometer (CIRS) 0.1-mbar data but not the local maximum in 1-mbar temperatures, suggesting that it is capturing the phase of Saturn's Semiannual Oscillation associated with a temperature minimum at the equator but not the opposite phase. The meridional circulation at low latitudes is found to be dominated by a seasonally reversing Hadley circulation, characterized by upwelling near the equator, cross-equatorial flow from summer to winter hemisphere, and strong subsidence centered near 25 degrees latitude in the winter hemisphere. The cross-equatorial flow induces an asymmetry in which the equatorial jet is found to be stronger in the winter than in the summer stratosphere. The location of the subsidence near 25 degrees N for L-s similar to 310 degrees coincides with local maxima in acetylene, diacetylene, and methylacetylene mixing ratios measured by Cassini/CIRS (Guerlet, S., Fouchet, T., Bezard, B., Moses, J.I., Fletcher, L.N., Simon-Miller, A.A., Flasar, F.M. 120101. Icarus 209, 682-695). This result supports the suggestion by Guerlet et al. (2010) that the hydrocarbon abundances are enhanced at this latitude by pronounced downward transport of hydrocarbon-rich air from above. The lateral eddy diffusion coefficient is found to typically be similar to 10(5)-10(6) m(2) s(-1) at mid-latitudes, implying meridional eddy transport time scales of order 100-1000 years. (C) 2012 Elsevier Inc. All rights reserved. C1 [Friedson, A. James] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Moses, Julianne I.] Space Sci Inst, Seabrook, TX 77586 USA. RP Friedson, AJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Andrew.Friedson@jpl.nasa.gov RI Moses, Julianne/I-2151-2013 OI Moses, Julianne/0000-0002-8837-0035 FU NASA; JPL Office of the Chief Information Officer FX This research was supported by grants from the NASA Planetary Atmospheres Program. We wish to express our appreciation for the dedication, intelligence, and good humor with which Dr. Philippe Crane directed this program during his tenure as its Discipline Scientist. Most of the calculations presented in this paper were conducted using resources provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. An additional portion of the simulations were performed on a Dell Cluster provided by funding from the JPL Office of the Chief Information Officer. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. NR 62 TC 19 Z9 19 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2012 VL 218 IS 2 BP 861 EP 875 DI 10.1016/j.icarus.2012.02.004 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 927BV UT WOS:000302882800009 ER PT J AU Beghin, C Randriamboarison, O Hamelin, M Karkoschka, E Sotin, C Whitten, RC Berthelier, JJ Grard, R Simoes, F AF Beghin, Christian Randriamboarison, Orelien Hamelin, Michel Karkoschka, Erich Sotin, Christophe Whitten, Robert C. Berthelier, Jean-Jacques Grard, Rejean Simoes, Fernando TI Analytic theory of Titan's Schumann resonance: Constraints on ionospheric conductivity and buried water ocean SO ICARUS LA English DT Article DE Interiors; Lightning; Saturn, Magnetosphere; Titan, Atmosphere; Titan, Interior ID HUYGENS PROBE; ELECTRICAL-CONDUCTIVITY; INTERNAL STRUCTURE; CONDENSATE CLOUDS; ATMOSPHERE; DESCENT; MODEL; AEROSOLS; SURFACE; WAVES AB This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out. (C) 2012 Elsevier Inc. All rights reserved. C1 [Beghin, Christian; Randriamboarison, Orelien] Univ Orleans, CNRS, LPC2E, F-45071 Orleans 2, France. [Hamelin, Michel; Berthelier, Jean-Jacques] Univ Paris 06, LATMOS, IPSL, F-75252 Paris 05, France. [Karkoschka, Erich] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Whitten, Robert C.] SETI Inst, Mountain View, CA 94043 USA. [Grard, Rejean] European Space Agcy, Estec, RSSD, NL-2200 AG Noordwijk, Netherlands. [Simoes, Fernando] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Beghin, C (reprint author), Univ Orleans, CNRS, LPC2E, 3A Ave Rech Sci, F-45071 Orleans 2, France. EM cbeghin@cnrs-orleans.fr; randriam@cnrs-orleans.fr; michel.hamelin@latmos.ipsl.fr; erich@pirl.lpl.Arizona.EDU; csotin@jpl.nasa.gov; rwhitten@pacbell.net; jean-jacques.berthelier@latmos.ipsl.fr; rgrard@rssd.esa.int; fernando.a.simoes@nasa.gov RI Simoes, Fernando/D-7731-2012 FU Centre National d'Etudes Spatiales [60015]; JPL; NASA FX C.B. is very grateful to Michael Bird for providing us with first-hand information about the Doppler Wind Experiment, and would like to acknowledge the fruitful discussions with Frederic Deschamps, Jonathan Lunine, Jean-Pierre Lebreton and Stefan Schroder during the preparation of this paper. Members from LATMOS-IPSL were supported for this experiment by the Centre National d'Etudes Spatiales under contract 60015. This work was partly performed (C.S.) at the Jet Propulsion Laboratory, California Institute of Technology. C.S. acknowledges support by the JPL Research and Technology Development Program and the NASA Outer Planets Research Program. F.S. is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by the Oak Ridge Associated Universities. Authors are very grateful to the two reviewers, including Dr. A.P. Nickolaenko, who carefully reviewed this work, allowing us to substantially improve the manuscript. NR 67 TC 24 Z9 24 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2012 VL 218 IS 2 BP 1028 EP 1042 DI 10.1016/j.icarus.2012.02.005 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 927BV UT WOS:000302882800021 ER PT J AU Lian, Y Richardson, MI Newman, CE Lee, C Toigo, AD Mischna, MA Campin, JM AF Lian, Yuan Richardson, Mark I. Newman, Claire E. Lee, Christopher Toigo, Anthony D. Mischna, Michael A. Campin, Jean-Michel TI The Ashima/MIT Mars GCM and argon in the martian atmosphere SO ICARUS LA English DT Article DE Mars; Atmospheres, Dynamics; Abundances, atmospheres ID GENERAL-CIRCULATION MODEL; THERMAL EMISSION SPECTROMETER; ORBITER LASER ALTIMETER; WATER-VAPOR; PART I; ADVECTION; CLIMATE; SIMULATION; SCHEMES; SURFACE AB We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from 'freeze distillation', as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole - the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of similar to 6, previously published model predictions peaked at EF values of only 2-3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube-sphere grid structure thus avoiding the gridpoint convergence problem at the pole that exists for most current Mars GCMs. We describe this model - the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the simulation of the argon cycle. We conclude that current GCMs may be insufficient for detailed simulation of transport-sensitive problems like the water cycle and potentially also the dust cycle. (C) 2012 Elsevier Inc. All rights reserved. C1 [Lian, Yuan; Richardson, Mark I.; Newman, Claire E.; Lee, Christopher] Ashima Res, Pasadena, CA 91106 USA. [Toigo, Anthony D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mischna, Michael A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Campin, Jean-Michel] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Lian, Y (reprint author), Ashima Res, Suite 104,600 S Lake Ave, Pasadena, CA 91106 USA. EM lian@ashimaresearch.com FU NASA Planetary Atmospheres [NNX10AB42G] FX We wish to thank R.M. Haberle and an anonymous reviewer. During the work described in this paper, we benefited greatly from discussions with F. Forget, X. Guo, S. Nelli and A. Sprague. This work was funded by NASA Planetary Atmospheres under grant number NNX10AB42G to Ashima Research. Simulations were conducted on the NASA HEC Pleiades computer. NR 77 TC 8 Z9 8 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2012 VL 218 IS 2 BP 1043 EP 1070 DI 10.1016/j.icarus.2012.02.012 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 927BV UT WOS:000302882800022 ER PT J AU Yue, Y Yan, Y Ahmed, N Yang, JY Zhang, L Ren, YX Huang, H Birnbaum, KM Erkmen, BI Dolinar, S Tur, M Willner, AE AF Yue, Yang Yan, Yan Ahmed, Nisar Yang, Jeng-Yuan Zhang, Lin Ren, Yongxiong Huang, Hao Birnbaum, Kevin M. Erkmen, Baris I. Dolinar, Sam Tur, Moshe Willner, Alan E. TI Mode Properties and Propagation Effects of Optical Orbital Angular Momentum (OAM) Modes in a Ring Fiber SO IEEE PHOTONICS JOURNAL LA English DT Article DE Fiber optics systems; multiplexing; optics; orbital angular momentum; waveguides ID SPECTRAL EFFICIENCY; SPACE; TRANSMISSION; GENERATION; MODULATION; BEAMS AB We simulate and analyze the mode properties and propagation effects of orbital angular momentum (OAM) modes in a ring fiber. A ring fiber with 0.05 up-doping is designed in simulation to support up to 10 OAM modes while maintaining single-mode condition radially. With a multiple-ring fiber, tens of OAM modes can be potentially multiplexed to greatly enhance the system capacity and spectral efficiency. The mode index difference can be maintained above 10(-4) over hundreds of nanometers optical bandwidth. Higher order OAM modes' azimuthal intensity and odd-order OAM modes' azimuthal phase show better tolerance to the fiber ellipticity. Moreover, higher order OAM modes also have longer 2 pi and 10-ps walk-off length. After 600-km propagation, OAM(0,4) mode shows < 10-ps mode walk-off, even in a ring fiber with 1% ellipticity. Also, in such an elliptical fiber, the well-aligned OAM modes with different charges have <-20 dB intermode crosstalk. The improvement of the circularity for the ring fiber is expected to reduce the crosstalk and increase the demultiplexing efficiency. C1 [Yue, Yang; Yan, Yan; Ahmed, Nisar; Yang, Jeng-Yuan; Zhang, Lin; Ren, Yongxiong; Huang, Hao; Willner, Alan E.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Birnbaum, Kevin M.; Erkmen, Baris I.; Dolinar, Sam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tur, Moshe] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel. RP Yue, Y (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. EM yyue@usc.edu RI Yue, Yang/A-3357-2012; Zhang, Lin/E-7913-2011 OI Zhang, Lin/0000-0003-0545-1110 NR 22 TC 35 Z9 37 U1 0 U2 30 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1943-0655 J9 IEEE PHOTONICS J JI IEEE Photonics J. PD APR PY 2012 VL 4 IS 2 BP 535 EP 543 DI 10.1109/JPHOT.2012.2192474 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 925EM UT WOS:000302743600007 ER PT J AU Yueh, SH Chaubell, J AF Yueh, Simon H. Chaubell, Julian TI Sea Surface Salinity and Wind Retrieval Using Combined Passive and Active L-Band Microwave Observations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave remote sensing; ocean wind; radar; radiometer ID OCEAN SURFACE; FIELD EXPERIMENTS; SCATTEROMETER; MISSION; RADIOMETER; SPACE; MODEL; WATER AB This paper describes an algorithm to simultaneously retrieve ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction. The algorithm minimizes the least square error (LSE) measure, signifying the difference between measurements and model functions of brightness temperatures and radar backscatter. Three LSE measures with different measurement combinations are tested. One of the LSE measures uses passive microwave data only with retrieval errors reaching 2 psu for salinity and 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, we propose the third LSE measure using measurement combinations invariant under the Faraday rotation. For Aquarius, the expected root-mean-square SSS error will be less than 0.2 psu for low winds and increases to 0.3 psu at 25-m/s wind speed for warm waters, and the accuracy of retrieved wind speed will be high (about 1-2 m/s or lower). Our results suggest that combining passive and active microwave observations will allow retrieval of sea surface salinity along with the wind speed and direction. In particular, the LSE measure invariant under the Faraday rotation will be directly applicable to spaceborne missions, such as the NASA Aquarius and Soil Moisture Active Passive missions. C1 [Yueh, Simon H.; Chaubell, Julian] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yueh, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM simon.yueh@jpl.nasa.gov; mario.j.chaubell@jpl.nasa.gov RI Furumoto, Jun-ichi/E-8676-2013 FU National Aeronautics and Space Administration FX The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 29 TC 25 Z9 25 U1 1 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2012 VL 50 IS 4 BP 1022 EP 1032 DI 10.1109/TGRS.2011.2165075 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 922EH UT WOS:000302529100002 ER PT J AU Kurum, M O'Neill, PE Lang, RH Cosh, MH Joseph, AT Jackson, TJ AF Kurum, Mehmet O'Neill, Peggy E. Lang, Roger H. Cosh, Michael H. Joseph, Alicia T. Jackson, Thomas J. TI Impact of Conifer Forest Litter on Microwave Emission at L-Band SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Forest; litter; microwave radiometry; radiative transfer; soil ID TIME-DOMAIN REFLECTOMETRY; WATER-CONTENT MEASUREMENT; DIELECTRIC-CONSTANT; SOIL-MOISTURE; DECIDUOUS FOREST; MODEL; CALIBRATION; RADIOMETRY; SURFACE; MEDIA AB This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission. C1 [Kurum, Mehmet; O'Neill, Peggy E.; Joseph, Alicia T.] NASA, Hydrol Sci Branch, Code 614 3, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lang, Roger H.] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA. [Cosh, Michael H.; Jackson, Thomas J.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. RP Kurum, M (reprint author), NASA, Hydrol Sci Branch, Code 614 3, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM mehmet.kurum@nasa.gov; peggy.e.oneill@nasa.gov; lang@gwu.edu; Michael.Cosh@ars.usda.gov; Alicia.T.Joseph@nasa.gov; tom.jackson@ars.usda.gov RI Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 FU NASA at the Goddard Space Flight Center; NASA FX Manuscript received November 15, 2010; revised June 21, 2011; accepted July 31, 2011. Date of publication September 29, 2011; date of current version March 28, 2012. This work was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center administered by Oak Ridge Associated Universities through a contract with NASA. NR 42 TC 8 Z9 8 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2012 VL 50 IS 4 BP 1071 EP 1084 DI 10.1109/TGRS.2011.2166272 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 922EH UT WOS:000302529100006 ER PT J AU Sanchez-Barbetty, M Jackson, RW Frasier, S AF Sanchez-Barbetty, Mauricio Jackson, Robert W. Frasier, Stephen TI Interleaved Sparse Arrays for Polarization Control of Electronically Steered Phased Arrays for Meteorological Applications SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Electronically steered arrays (ESA); phased arrays; polarimetric radar; polarization correction; weather radar ID RADAR; BIAS AB A method is described for adjusting the far-field polarization of an electronically steered phased-array antenna. In this method, the polarization of a small subset of array elements is switched in order to reduce far-field cross-polarization of the overall array. The technique is intended for antennas used in polarimetric radars that measure quantities such as differential reflectivity (Z(dr)) and specific differential phase (K-DP). In particular, it is appropriate for lower cost arrays where only one transmit or receive polarization is active at a time. In such arrays, it will reduce the number of measurements needed by one-third. Analysis of the tradeoffs in the technique is presented as well as examples in hypothetical large arrays. Measured results are presented for a small 4 x 4 array. C1 [Jackson, Robert W.; Frasier, Stephen] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA. RP Sanchez-Barbetty, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mauricio.barbetty@ieee.org; jackson@ecs.umass.edu; frasier@ecs.umass.edu RI Frasier, Stephen/H-1536-2015 OI Frasier, Stephen/0000-0003-4287-2889 FU Center for Advanced Sensor and Communication Antennas at the University of Massachusetts [FA8718-06-C-0047]; University of Massachusetts Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center (National Science Foundation) [0313747] FX Manuscript received November 23, 2010; revised May 3, 2011 and August 1, 2011; accepted August 20, 2011. Date of publication October 3, 2011; date of current version March 28, 2012. This work was supported in part by the Center for Advanced Sensor and Communication Antennas at the University of Massachusetts under Air Force Contract FA8718-06-C-0047 and in part by the University of Massachusetts Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center (National Science Foundation Award Number 0313747). NR 16 TC 4 Z9 4 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2012 VL 50 IS 4 BP 1283 EP 1290 DI 10.1109/TGRS.2011.2167016 PG 8 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 922EH UT WOS:000302529100023 ER PT J AU Seta, H Tashiro, MS Ishisaki, Y Tsujimoto, M Shimoda, Y Abe, Y Yasuda, T Takeda, S Asahina, M Hiyama, Y Yamaguchi, S Terada, Y Boyce, KR Porter, FS Kilbourne, CA Kelley, RL Fujimoto, R Takei, Y Mitsuda, K Matsuda, K Masukawa, K AF Seta, H. Tashiro, M. S. Ishisaki, Y. Tsujimoto, M. Shimoda, Y. Abe, Y. Yasuda, T. Takeda, S. Asahina, M. Hiyama, Y. Yamaguchi, S. Terada, Y. Boyce, K. R. Porter, F. S. Kilbourne, C. A. Kelley, R. L. Fujimoto, R. Takei, Y. Mitsuda, K. Matsuda, K. Masukawa, K. CA ASTRO-H SXS Team TI The Digital Processing System for the Soft X-Ray Spectrometer Onboard ASTRO-H - The Design and the Performance SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Astrophysics; X-ray detectors; digital signal processing AB We report the design and the performance of the engineering model of the digital signal processing system called the Pulse Shape Processor (PSP) for the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H satellite. The SXS employs an X-ray microcalorimeter system, in which X-ray photons are detected as a heat pulse due to photoelectric absorption. The pixelized HgTe absorbers are cooled down to 50 mK. The required energy resolution is 7 eV (FWHM) at 6 keV. Since the data link to the satellite data recorder is limited to 200 kbit s(-1), the onboard digital processor PSP plays a critical role in achieving the required resolution. The PSP is also the rate-limiting factor for other performance of the SXS, such as maximum count rate and energy range. In this paper, we show the design of the PSP, and show the performance based on a series of laboratory tests performed with the engineering models of the detector and the analog readout electronics. We found that (1) the PSP can register energy in the 0.07-18 keV band [energy range], (2) the energy resolution of the engineering model system, including the detector, analog electronics, and the PSP, is 4.8-5.7 eV at 5.9 keV [energy resolution], and (3) the PSP has sufficient processing power to handle a point-like source fainter than 0.3 Crab [maximum count rate]. These results are expected to be quite similar to those with the flight model, thus the results will be useful for the observation planning using the SXS. C1 [Seta, H.; Tashiro, M. S.; Ishisaki, Y.; Yasuda, T.; Takeda, S.; Asahina, M.; Yamaguchi, S.; Terada, Y.] Saitama Univ, Dept Phys, Saitama 3388570, Japan. [Ishisaki, Y.; Abe, Y.; Hiyama, Y.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Tsujimoto, M.; Takei, Y.; Mitsuda, K.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Boyce, K. R.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fujimoto, R.] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan. [Matsuda, K.; Masukawa, K.] Mitsubishi Heavy Ind Co Ltd, Nagoya Guidance & Prop Syst Works, Komaki, Aichi 4858561, Japan. RP Seta, H (reprint author), Saitama Univ, Dept Phys, Saitama 3388570, Japan. EM seta@heal.phy.saitama-u.ac.jp RI Tashiro, Makoto/J-4562-2012; Kelley, Richard/K-4474-2012; Terada, Yukikatsu/A-5879-2013; Mitsuda, Kazuhisa/C-2649-2008; Porter, Frederick/D-3501-2012 OI Terada, Yukikatsu/0000-0002-2359-1857; Porter, Frederick/0000-0002-6374-1119 NR 9 TC 7 Z9 7 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2012 VL 59 IS 2 BP 366 EP 372 DI 10.1109/TNS.2011.2179671 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 928BD UT WOS:000302953700015 ER PT J AU Polzin, KA Sivak, AD Balla, JV AF Polzin, Kurt A. Sivak, Amy D. Balla, Joseph V. TI Effect of an Additional Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Accelerators; inductive accelerators; modeling; plasma engines AB A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a 1-D momentum equation has been used to study the effects of adding a second parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that, when the value of the second capacitor is much less than that of the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value, the current rise rate can grow to be twice as great as the rise rate attained in the single-capacitor case. C1 [Polzin, Kurt A.; Sivak, Amy D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Balla, Joseph V.] Ohio State Univ, Columbus, OH 43210 USA. RP Polzin, KA (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM kurt.a.polzin@nasa.gov; amy.sivak@nasa.gov; joey.balla@gmail.com FU Ohio Space Grant Consortium FX The authors would like to thank J. Martin and M. B. Koelbl for the continued MSFC management support. The authors would also like to thank J. B. Pearson for several helpful conversations during the preparation of this work. Author J. V. Balla would like to thank the Ohio Space Grant Consortium for the support he received for his effort on this work. This work was completed under NASA's Advanced In-Space Propulsion program managed by Dr. M. LaPointe. NR 9 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD APR PY 2012 VL 40 IS 4 BP 1190 EP 1197 DI 10.1109/TPS.2012.2185854 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 924UM UT WOS:000302716800031 ER PT J AU Tribuzio, CA Kruse, GH AF Tribuzio, C. A. Kruse, G. H. TI Life history characteristics of a lightly exploited stock of Squalus suckleyi SO JOURNAL OF FISH BIOLOGY LA English DT Article DE elasmobranch; fecundity; gestation; Gulf of Alaska; maturity; mortality; reproduction AB The purpose of this study was to examine the basic life history of a lightly exploited stock of Squalus suckleyi in the Gulf of Alaska to establish a baseline for future comparison and to provide critical information for stock assessments. Average total length (total length extended) of females (87.7 cm) was significantly larger (t-test, t = -12.57, d.f. = 1533, P < 0.01) than males (80.3 cm); size at 50% maturity (74.5 and 97.3 cm, males and females, respectively) and age at 50% maturity (21 and 36 years, respectively) were also significantly different between the sexes (i.e. bootstrapped 95% c.i. did not overlap). Total average fecundity was 8.5 pups per female, and individual fecundity was a linear function of either length or whole mass. The best estimate of instantaneous natural mortality was 0.097. The delayed age of maturity, low natural mortality and low rates of reproduction imply that only very low rates of fishing mortality are sustainable. Finally, this paper provides the first reported evidence that a small percentage of the adult females may undergo an extended resting period between pregnancies of =1 years. C1 [Tribuzio, C. A.; Kruse, G. H.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau Ctr, Juneau, AK 99801 USA. RP Tribuzio, CA (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Lab, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM cindy.tribuzio@noaa.gov FU North Pacific Research Board (NPRB) [345]; Rasmuson Fisheries Research Centre; Alaska Fisheries Science Center through the Cooperative Institute for Arctic Research (CIFAR) FX The authors are grateful for funding of this research by the North Pacific Research Board (NPRB publication no. 345), the Rasmuson Fisheries Research Centre, and the Alaska Fisheries Science Center's Population Dynamics Fellowship through the Cooperative Institute for Arctic Research (CIFAR). Thanks go to V. Gallucci, J. Rice, A. Andrews and W. Strasburger for field and laboratory assistance. The authors also acknowledge the National Marine Fisheries Service; Alaska Department of Fish and Game; chartered vessels and crew of the FVs Kingfisher, Winter King, and Sea View, commercial fishermen in Yakutat, Cordova, and Kasilof; Gauvin and Associates, LLC, and Alaska Pacific, Trident and Yakutat Seafoods for kindly providing sampling opportunities. NR 0 TC 4 Z9 4 U1 1 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1112 J9 J FISH BIOL JI J. Fish Biol. PD APR PY 2012 VL 80 IS 5 SI SI BP 1159 EP 1180 DI 10.1111/j.1095-8649.2012.03241.x PG 22 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 924WU UT WOS:000302722800012 PM 22497377 ER PT J AU Andersen, MPS Waterland, RL Sander, SP Nielsen, OJ Wallington, TJ AF Andersen, Mads P. Sulbaek Waterland, Robert L. Sander, Stanley P. Nielsen, Ole J. Wallington, Timothy J. TI Atmospheric chemistry of CxF2x+1CH=CH2 (x=1, 2, 4, 6 and 8): Radiative efficiencies and global warming potentials SO JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY LA English DT Article DE Atmospheric chemistry; Fluoro alkenes; Olefins; Global warming potentials ID GAS-PHASE REACTIONS; OH-RADICALS; CL-ATOMS; CF3CF=CH2; KINETICS; O-3 AB IR spectra for CxF2x+1CH=CH2 (x=1, 2, 4, 6, 8) were recorded in 700Torr of air, 298 +/- 2 K. Integrated absorption cross sections (650-1800 cm(-1)) of (1.18 +/- 0.06), (1.32 +/- 0.07), (2.43 +/- 0.12). (2.86 +/- 0.14) and (3.32 +/- 0.17) x 10(-16) cm(2) molecule(-1) cm(-1) were determined for CxF2x+1CH=CH2 (x = 1, 2, 4, 6, 8), respectively. Radiative efficiencies of 0.159, 0.176, 0.338, 0.376, and 0.418 W m(-2) ppb(-1) were calculated for CxF2x+1CH=CH2 (x = 1, 2, 4, 6, 8), respectively. The title compounds have short atmospheric lifetimes (approximately 7-8 days) and 100-year global warming potentials of <= 2. CxF2x+1CH=CH2 (x = 1, 2, 4, 6, 8) will not contribute significantly to radiative forcing of climate change. (C) 2012 Elsevier B.V. All rights reserved. C1 [Andersen, Mads P. Sulbaek; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Waterland, Robert L.] DuPont Informat & Comp Technol, Cent Res & Technol, Wilmington, DE 19880 USA. [Nielsen, Ole J.] Univ Copenhagen, DK-1168 Copenhagen, Denmark. [Wallington, Timothy J.] Ford Motor Co, Syst Analyt & Environm Sci Dept, Dearborn, MI 48121 USA. RP Andersen, MPS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 183-901, Pasadena, CA 91109 USA. EM mads@sulbaek.dk RI Sulbaek Andersen, Mads/C-4708-2008; Nielsen, Ole/B-9988-2011 OI Sulbaek Andersen, Mads/0000-0002-7976-5852; Nielsen, Ole/0000-0002-0088-3937 FU NASA FX This work was performed partly at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. M.P.S.A. is supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. NR 16 TC 5 Z9 5 U1 1 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1010-6030 J9 J PHOTOCH PHOTOBIO A JI J. Photochem. Photobiol. A-Chem. PD APR 1 PY 2012 VL 233 BP 50 EP 52 DI 10.1016/j.jphotochem.2012.02.020 PG 3 WC Chemistry, Physical SC Chemistry GA 928IU UT WOS:000302977200008 ER PT J AU Copeman, LA Stoner, AW Ottmar, ML Daly, B Parrish, CC Eckert, GL AF Copeman, Louise A. Stoner, Allan W. Ottmar, Michele L. Daly, Benjamin Parrish, Christopher C. Eckert, Ginny L. TI TOTAL LIPIDS, LIPID CLASSES, AND FATTY ACIDS OF NEWLY SETTLED RED KING CRAB (PARALITHODES CAMTSCHATICUS): COMPARISON OF HATCHERY-CULTURED AND WILD CRABS SO JOURNAL OF SHELLFISH RESEARCH LA English DT Article DE lipids; fatty acids; nutrition; molt; red king crab; Paralilhodes candschaticus ID LOBSTER HOMARUS-AMERICANUS; COD GADUS-MORHUA; MUD CRAB; LABORATORY CONDITIONS; SCYLLA-SERRATA; LITHODES-SANTOLLA; FUTURE-DIRECTIONS; ARTEMIA-NAUPLII; CONDITION INDEX; GROWTH AB Little is known about the nutrition or lipid metabolism of cold-water crabs, particularly in the North Pacific. We undertook a 2-part study to understand more completely the energetics and nutritional requirements of juvenile red king crab (RKC; Paralithodes canusehaticus). First, we investigated changes in proximate composition, total lipids (TLs), lipid classes, and fatty acids (FAs) throughout a molt cycle (C4-C5). Trends in lipid parameters were described by a 3-pari, piecewise linear regression with 3 distinct stages: (I) a postmolt phase (similar to 0-7 days), (2) an intramolt stage (similar to 7-24 days), and (3) a premolt stage (similar to 24-33 days). Significant intramolt differences in TLs indicated that caution should be taken when comparing crabs of unknown molt stage in future aquaculture and ecological experiments. However, little variability was found in the proportional FA composition of crabs, indicating that the intramolt stage has little effect on the interpretation of FA biomarkers. During a second investigation, we examined differences in lipid classes and FAs from cultured and wild RKC. We found significantly higher proportions of the essential fatty acids (EFAs) 20:5n-3 (EPA) and 20:4n-6 (AA) in wild crabs compared with cultured animals at the same stage. Furthermore, higher proportions of bacterial markers and lower proportions of zooplankton FA markers were found in wild than in hatchery-reared crabs. Here, we provide the first baseline data for future dietary studies on juvenile cold-water crabs. We suggest that an initial EFA ratio for DHA:EPA:AA of 5:8:1 could be used as a starting point for controlled dietary studies on the effect of EFAs on juvenile growth, molt success, and survival. C1 [Copeman, Louise A.] Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. [Stoner, Allan W.; Ottmar, Michele L.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Fisheries Behav Ecol Program, Newport, OR 97365 USA. [Daly, Benjamin] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Seward, AK 99664 USA. [Parrish, Christopher C.] Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada. [Eckert, Ginny L.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau Ctr, Juneau, AK 99801 USA. RP Copeman, LA (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. EM copemanl@onid.orst.edu FU NOAA aquaculture; Cooperative Institute for Marine Resource Studies, Oregon State University [NA17RJ1362]; Natural Sciences and Engineering Research Council of Canada (NSERC) FX Sample processing costs and salary for L. C. were provided by a joint NOAA aquaculture and a Cooperative Institute for Marine Resource Studies, Oregon State University grant (no. NA17RJ1362). We are thankful to Miranda Westphal, Jaspri Sylvan, and Melissa Rhodes-Reese at the University of Alaska for the collection and shipment of wild RKCs. We also thank Jim Swingle and Jeff Hetrick of the Alutiiq Pride Shellfish Hatchery for hatchery logistical support, and Jeff Stephan and Lu Dochterman for helping with broodstock acquisition. Our lipid data were analyzed in partnership with the Core Research Equipment and Instrument Training (CREAIT) Network of Memorial University, Newfoundland, Canada. Partnership funding for lipid analyses was provided through a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to C. P. We thank Jeanette Wells and Tara Hooper for chromatography of lipid classes and fatty acids on lipid extracts. Thanks also to Scott Haines and Paul Iseri for providing husbandry assistance in the Newport laboratory during the juvenile intramolt study. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. The findings and conclusions in the paper are those of the authors and do not necessarily represent the view of the National Marine Fisheries Service. NR 66 TC 10 Z9 11 U1 1 U2 15 PU NATL SHELLFISHERIES ASSOC PI GROTON PA C/O DR. SANDRA E. SHUMWAY, UNIV CONNECTICUT, 1080 SHENNECOSSETT RD, GROTON, CT 06340 USA SN 0730-8000 J9 J SHELLFISH RES JI J. Shellfish Res. PD APR PY 2012 VL 31 IS 1 BP 153 EP 165 DI 10.2983/035.031.0119 PG 13 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 926QU UT WOS:000302846800019 ER PT J AU Wang, S Neuman, M AF Wang, Susan Neuman, Melissa TI BUILDING A ROADMAP TO RECOVERY FOR THE ENDANGERED BLACK ABALONE (HALIOTIS CRACHERODII). SO JOURNAL OF SHELLFISH RESEARCH LA English DT Meeting Abstract C1 [Wang, Susan; Neuman, Melissa] Natl Marine Fisheries Serv, Long Beach, CA 90802 USA. NR 0 TC 0 Z9 0 U1 0 U2 12 PU NATL SHELLFISHERIES ASSOC PI GROTON PA C/O DR. SANDRA E. SHUMWAY, UNIV CONNECTICUT, 1080 SHENNECOSSETT RD, GROTON, CT 06340 USA SN 0730-8000 J9 J SHELLFISH RES JI J. Shellfish Res. PD APR PY 2012 VL 31 IS 1 BP 357 EP 358 PG 2 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 926QU UT WOS:000302846800374 ER PT J AU Wiersema, K van der Horst, AJ Levan, AJ Tanvir, NR Karjalainen, R Kamble, A Kouveliotou, C Metzger, BD Russell, DM Skillen, I Starling, RLC Wijers, RAMJ AF Wiersema, K. van der Horst, A. J. Levan, A. J. Tanvir, N. R. Karjalainen, R. Kamble, A. Kouveliotou, C. Metzger, B. D. Russell, D. M. Skillen, I. Starling, R. L. C. Wijers, R. A. M. J. TI Polarimetry of the transient relativistic jet of GRB 110328/Swift J164449.3+573451 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: polarimetric; gamma-ray burst: individual: Swift J164449.3+57345; galaxies: jets ID GAMMA-RAY BURST; MASSIVE BLACK-HOLE; LINEAR-POLARIZATION; INFRARED-EMISSION; MAGNETIC-FIELD; LIGHT CURVES; AFTERGLOWS; STAR; ULTRAVIOLET; OUTBURST AB We present deep infrared (Ks-band) imaging polarimetry and radio (1.4- and 4.8-GHz) polarimetry of the enigmatic transient Swift J164449.3+573451. This source appears to be a short-lived jet phenomenon in a galaxy at redshift z= 0.354, activated by a sudden mass accretion on to the central massive black hole, possibly caused by the tidal disruption of a star. We aim to find evidence for this scenario through linear polarimetry, as linear polarization is a sensitive probe of jet physics, source geometry and the various mechanisms giving rise to the observed radiation. We find a formal Ks-band polarization measurement of Plin= 7.4 +/- 3.5 per cent (including systematic errors). Our radio observations show continuing brightening of the source, which allows sensitive searches for linear polarization as a function of time. We find no evidence of linear polarization at radio wavelengths of 1.4 and 4.8 GHz at any epoch, with the most sensitive 3s limits as deep as 2.1 per cent. These upper limits are in agreement with expectations from scenarios in which the radio emission is produced by the interaction of a relativistic jet with a dense circumsource medium. We further demonstrate how polarization properties can be used to derive properties of the jet in Swift J164449.3+573451, exploiting the similarities between this source and the afterglows of gamma-ray bursts. C1 [Wiersema, K.; Tanvir, N. R.; Starling, R. L. C.] Univ Leicester, Leicester LE1 7RH, Leics, England. [van der Horst, A. J.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Karjalainen, R.; Skillen, I.] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Canary Islands, Spain. [Kamble, A.] Univ Wisconsin, Ctr Gravitat & Cosmol, Milwaukee, WI 53211 USA. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Metzger, B. D.; Wijers, R. A. M. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Russell, D. M.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. RP Wiersema, K (reprint author), Univ Leicester, Univ Rd, Leicester LE1 7RH, Leics, England. EM kw113@star.le.ac.uk OI Wijers, Ralph/0000-0002-3101-1808 FU STFC; Royal Society; Netherlands Foundation for Scientific Research FX We thank the ING staff for their LIRIS polarimetry effort discussed here, in particular M. Hrudkova. We thank the anonymous referee for useful suggestions. KW acknowledges support from STFC. RLCS is supported by a Royal Society Fellowship. WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias. WSRT is operated by ASTRON (Netherlands Institute for Radio Astronomy) with support from the Netherlands Foundation for Scientific Research. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. NR 40 TC 15 Z9 15 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 3 BP 1942 EP 1948 DI 10.1111/j.1365-2966.2011.20379.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923LJ UT WOS:000302620500010 ER PT J AU Steffen, JH Fabrycky, DC Ford, EB Carter, JA Desert, JM Fressin, F Holman, MJ Lissauer, JJ Moorhead, AV Rowe, JF Ragozzine, D Welsh, WF Batalha, NM Borucki, WJ Buchhave, LA Bryson, S Caldwell, DA Charbonneau, D Ciardi, DR Cochran, WD Endl, M Everett, ME Gautier, TN Gilliland, RL Girouard, FR Jenkins, JM Horch, E Howell, SB Isaacson, H Klaus, TC Koch, DG Latham, DW Li, J Lucas, P MacQueen, PJ Marcy, GW McCauliff, S Middour, CK Morris, RL Mullally, FR Quinn, SN Quintana, EV Shporer, A Still, M Tenenbaum, P Thompson, SE Twicken, JD Van Cleve, J AF Steffen, Jason H. Fabrycky, Daniel C. Ford, Eric B. Carter, Joshua A. Desert, Jean-Michel Fressin, Francois Holman, Matthew J. Lissauer, Jack J. Moorhead, Althea V. Rowe, Jason F. Ragozzine, Darin Welsh, William F. Batalha, Natalie M. Borucki, William J. Buchhave, Lars A. Bryson, Steve Caldwell, Douglas A. Charbonneau, David Ciardi, David R. Cochran, William D. Endl, Michael Everett, Mark E. Gautier, Thomas N., III Gilliland, Ron L. Girouard, Forrest R. Jenkins, Jon M. Horch, Elliott Howell, Steve B. Isaacson, Howard Klaus, Todd C. Koch, David G. Latham, David W. Li, Jie Lucas, Philip MacQueen, Phillip J. Marcy, Geoffrey W. McCauliff, Sean Middour, Christopher K. Morris, Robert L. Mullally, Fergal R. Quinn, Samuel N. Quintana, Elisa V. Shporer, Avi Still, Martin Tenenbaum, Peter Thompson, Susan E. Twicken, Joseph D. Van Cleve, Jeffery TI Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; celestial mechanics; stars: individual: KIC 4349452; stars: individual: KIC 9757613; stars: individual: KIC 5792202; stars: individual: KIC 6949607 ID SPITZER-SPACE-TELESCOPE; EXOPLANET HD 189733B; SOLAR-TYPE STARS; LIGHT CURVES; CANDIDATES; MISSION; MASS; ATMOSPHERE; SCIENCE; II. AB We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate. C1 [Steffen, Jason H.; Moorhead, Althea V.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32111 USA. [Carter, Joshua A.; Desert, Jean-Michel; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David; Quinn, Samuel N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lissauer, Jack J.; Rowe, Jason F.; Borucki, William J.; Bryson, Steve; Caldwell, Douglas A.; Girouard, Forrest R.; Jenkins, Jon M.; Howell, Steve B.; Klaus, Todd C.; Koch, David G.; Li, Jie; Middour, Christopher K.; Morris, Robert L.; Mullally, Fergal R.; Quintana, Elisa V.; Still, Martin; Tenenbaum, Peter; Thompson, Susan E.; Twicken, Joseph D.; Van Cleve, Jeffery] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rowe, Jason F.; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Mullally, Fergal R.; Quintana, Elisa V.; Tenenbaum, Peter; Thompson, Susan E.; Twicken, Joseph D.; Van Cleve, Jeffery] SETI Inst, Mountain View, CA 94043 USA. [Welsh, William F.; Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Batalha, Natalie M.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Buchhave, Lars A.; Shporer, Avi] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Cochran, William D.; Endl, Michael; MacQueen, Phillip J.] Univ Texas Austin, McDonald Observ, Austin, TX 78730 USA. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ron L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Girouard, Forrest R.; Klaus, Todd C.; Middour, Christopher K.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Horch, Elliott] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Isaacson, Howard; Marcy, Geoffrey W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lucas, Philip] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [McCauliff, Sean] San Jose State Univ, San Jose, CA 95192 USA. [Shporer, Avi; Still, Martin] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. RP Steffen, JH (reprint author), Fermilab Ctr Particle Astrophys, POB 500,MS 127, Batavia, IL 60510 USA. EM jsteffen@fnal.gov RI Steffen, Jason/A-4320-2013; Carter, Joshua/A-8280-2013; Ragozzine, Darin/C-4926-2013; Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; NASA [NNX08AR04G, HF-51272.01-A, HF-51267.01-A]; Space Telescope Science Institute [NAS 5-26555]; NASA through JPL/Caltech FX Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the many years of work that is proving so successful. JHS acknowledges support by NASA under grant NNX08AR04G issued through the Kepler Participating Scientist Programme. DCF and JAC acknowledge support for this work provided by NASA through Hubble Fellowship grants #HF-51272.01-A and #HF-51267.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We would like to thank the Spitzer staff at IPAC and in particular Nancy Silbermann for scheduling the Spitzer observations of this programme. NR 34 TC 83 Z9 83 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 3 BP 2342 EP 2354 DI 10.1111/j.1365-2966.2012.20467.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923LJ UT WOS:000302620500038 ER PT J AU Scaringi, S Kording, E Uttley, P Knigge, C Groot, PJ Still, M AF Scaringi, S. Kording, E. Uttley, P. Knigge, C. Groot, P. J. Still, M. TI The universal nature of accretion-induced variability: the rms-flux relation in an accreting white dwarf SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; binaries: close; stars: individual: MV Lyrae; novae, cataclysmic variables; stars: oscillations ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; CATACLYSMIC VARIABLES; MV-LYRAE; ACTIVE GALAXIES; MODEL; NOVA; DISC; X-1; SCIENCE AB We report the discovery of a linear relationship between the root mean square (rms) variability amplitude and the mean flux in the accreting white dwarf binary system MV Lyrae. Our light curve, obtained with the Kepler satellite, spans 633 d with quasi-continuous 58.8-s cadence resolution. We show, for the first time, that how this cataclysmic variable displays linear rmsflux relations similar to those observed in many other black hole binaries, neutron star binaries and active galactic nuclei. The phenomenological similarity between the rmsflux relation observed here and in other X-ray binaries suggests a common physical origin for the broad-band variability, independent of source type, mass or size of the compact accretor. Furthermore, we infer the viscosity parameter, a, and disc scale height, H/R, using two independent methods. In both cases, both values are found to be uncomfortably high to be accommodated by the disc instability model. C1 [Scaringi, S.; Kording, E.; Groot, P. J.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Uttley, P.; Knigge, C.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Uttley, P.] Univ Amsterdam, Astron Inst Anion Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Still, M.] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. RP Scaringi, S (reprint author), Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. EM s.scaringi@astro.ru.nl RI Groot, Paul/K-4391-2016; OI Groot, Paul/0000-0002-4488-726X; Scaringi, Simone/0000-0001-5387-7189 FU NASA Science Mission directorate; NWO [600.065.140.08N306]; STFC; European Community [ITN 215212]; NASA [NNX11AB86G] FX This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This research has made use of NASA's Astrophysics Data System Bibliographic Services. SS acknowledges funding from NWO project 600.065.140.08N306 to PJG. PU acknowledges funding from an STFC Advanced Fellowship and from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 'Black Hole Universe'. MS acknowledges funding from the NASA grant NNX11AB86G. NR 33 TC 32 Z9 32 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 4 BP 2854 EP 2860 DI 10.1111/j.1365-2966.2012.20512.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923LL UT WOS:000302620700012 ER PT J AU Corbel, S Dubus, G Tomsick, JA Szostek, A Corbet, RHD Miller-Jones, JCA Richards, JL Pooley, G Trushkin, S Dubois, R Hill, AB Kerr, M Max-Moerbeck, W Readhead, ACS Bodaghee, A Tudose, V Parent, D Wilms, J Pottschmidt, K AF Corbel, S. Dubus, G. Tomsick, J. A. Szostek, A. Corbet, R. H. D. Miller-Jones, J. C. A. Richards, J. L. Pooley, G. Trushkin, S. Dubois, R. Hill, A. B. Kerr, M. Max-Moerbeck, W. Readhead, A. C. S. Bodaghee, A. Tudose, V. Parent, D. Wilms, J. Pottschmidt, K. TI A giant radio flare from Cygnus X-3 with associated ?-ray emission SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE black hole physics; stars: individual: Cyg X-3; ISM: jets and outflows; gamma-rays: stars; radio continuum: stars; X-rays: binaries ID X-RAY; RELATIVISTIC JET; TIMING-EXPLORER; GAMMA-RAYS; 8.3 GHZ; VARIABILITY; TELESCOPE; MISSION; OUTBURSTS; BEHAVIOR AB With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy ?-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy ?-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (similar to 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E= 100 MeV) reveal renewed ?-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the ?-ray emission is not exclusively related to the rare giant radio flares. A three-week period of ?-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No ?-rays are observed during the similar to 1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger ?-ray emission, implying a connection to the accretion process, and also that the ?-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets. C1 [Corbel, S.] Univ Paris 07, F-91191 Gif Sur Yvette, France. [Corbel, S.] CEA Saclay, Serv Astrophys, UMR AIM, F-91191 Gif Sur Yvette, France. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [Dubus, G.] UJF Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Tomsick, J. A.; Bodaghee, A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Szostek, A.; Dubois, R.; Kerr, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Szostek, A.; Dubois, R.; Kerr, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Szostek, A.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Corbet, R. H. D.; Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Corbet, R. H. D.; Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Miller-Jones, J. C. A.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6845, Australia. [Richards, J. L.; Max-Moerbeck, W.; Readhead, A. C. S.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Pooley, G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Trushkin, S.] Special Astrophys Observ RAS, Nizhnii Arkhyz 369167, Russia. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Tudose, V.] Netherlands Inst Radio Astron, NL-7990 AA Dwingeloo, Netherlands. [Parent, D.] George Mason Univ, Ctr Earth Observing & Space Res, Coll Sci, Fairfax, VA 22030 USA. [Wilms, J.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. RP Corbel, S (reprint author), Univ Paris 07, F-91191 Gif Sur Yvette, France. EM stephane.corbel@cea.fr RI Tudose, Valeriu/F-8976-2010; Miller-Jones, James/B-2411-2013; Wilms, Joern/C-8116-2013 OI Miller-Jones, James/0000-0003-3124-2814; Wilms, Joern/0000-0003-2065-5410 FU European Community (EC) [ITN 215212 Black Hole Universe, ERC-StG-200911]; NASA [NNX10AP83G, NNX11AF84G, NNX08AW31G, NNG06GG1G]; STFC; University of Cambridge; NSF [AST-0808050]; Ministry of Education and Science of the Russian Federation FX We thank the Fermi team for accepting and promptly conducting the LAT Target of Opportunity on Cyg X-3 in 2011 March. We acknowledge Elmar Koerding, Andrzej Zdziarski and the referee for their comments on the manuscript. The research by SC leading to these results has received funding from the European Community (EC) Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 Black Hole Universe. GD acknowledges support from the EC via contract ERC-StG-200911. JAT acknowledges partial support from NASA Fermi Guest Observer award NNX10AP83G and from NASA Astrophysics Data Analysis Programme award NNX11AF84G. The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. This research has made use of the MAXI data provided by RIKEN, JAXA and the MAXI team. Swift/BAT transient monitor results provided by the Swift/BAT team. We also acknowledge the RXTE/ASM team for the X-ray monitoring ASM data. AMI is supported by STFC and the University of Cambridge. The OVRO 40-m monitoring programme was supported in part by NASA grants NNX08AW31G and NNG06GG1G and NSF grant AST-0808050. The RATAN-600 observations were carried out with the financial support of the Ministry of Education and Science of the Russian Federation. NR 57 TC 27 Z9 27 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 4 BP 2947 EP 2955 DI 10.1111/j.1365-2966.2012.20517.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923LL UT WOS:000302620700020 ER PT J AU Bourne, N Maddox, SJ Dunne, L Auld, R Baes, M Baldry, IK Bonfield, DG Cooray, A Croom, SM Dariush, A de Zotti, G Driver, SP Dye, S Eales, S Gomez, HL Gonzalez-Nuevo, J Hopkins, AM Ibar, E Jarvis, MJ Lapi, A Madore, B Michalowski, MJ Pohlen, M Popescu, CC Rigby, EE Seibert, M Smith, DJB Tuffs, RJ van der Werf, P Brough, S Buttiglione, S Cava, A Clements, DL Conselice, CJ Fritz, J Hopwood, R Ivison, RJ Jones, DH Kelvin, LS Liske, J Loveday, J Norberg, P Robotham, ASG Rodighiero, G Temi, P AF Bourne, N. Maddox, S. J. Dunne, L. Auld, R. Baes, M. Baldry, I. K. Bonfield, D. G. Cooray, A. Croom, S. M. Dariush, A. de Zotti, G. Driver, S. P. Dye, S. Eales, S. Gomez, H. L. Gonzalez-Nuevo, J. Hopkins, A. M. Ibar, E. Jarvis, M. J. Lapi, A. Madore, B. Michalowski, M. J. Pohlen, M. Popescu, C. C. Rigby, E. E. Seibert, M. Smith, D. J. B. Tuffs, R. J. van der Werf, P. Brough, S. Buttiglione, S. Cava, A. Clements, D. L. Conselice, C. J. Fritz, J. Hopwood, R. Ivison, R. J. Jones, D. H. Kelvin, L. S. Liske, J. Loveday, J. Norberg, P. Robotham, A. S. G. Rodighiero, G. Temi, P. TI Herschel -ATLAS/GAMA: a census of dust in optically selected galaxies from stacking at submillimetre wavelengths SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE galaxies: evolution; galaxies: ISM; galaxies: statistics; submillimetre: diffuse background; submillimetre: galaxies ID DIGITAL SKY SURVEY; DEEP-FIELD-SOUTH; STAR-FORMATION HISTORY; INFRARED LUMINOSITY FUNCTIONS; SPECTRAL ENERGY-DISTRIBUTIONS; COLOR-MAGNITUDE DIAGRAM; EXTRAGALACTIC SURVEY SHADES; VIRGO CLUSTER GALAXIES; INITIAL MASS FUNCTION; 250 MU-M AB We use the Herschel-ATLAS survey to conduct the first large-scale statistical study of the submillimetre properties of optically selected galaxies. Using similar to 80 000 r-band selected galaxies from 126 deg2 of the GAMA survey, we stack into submillimetre imaging at 250, 350 and 500 mu m to gain unprecedented statistics on the dust emission from galaxies at z < 0.35. We find that low-redshift galaxies account for 5 per cent of the cosmic 250-mu m background (4 per cent at 350 mu m; 3 per cent at 500 mu m), of which approximately 60 per cent comes from blue and 20 per cent from red galaxies (rest-frame g-r). We compare the dust properties of different galaxy populations by dividing the sample into bins of optical luminosity, stellar mass, colour and redshift. In blue galaxies we find that dust temperature and luminosity correlate strongly with stellar mass at a fixed redshift, but red galaxies do not follow these correlations and overall have lower luminosities and temperatures. We make reasonable assumptions to account for the contaminating flux from lensing by red-sequence galaxies and conclude that galaxies with different optical colours have fundamentally different dust emission properties. Results indicate that while blue galaxies are more luminous than red galaxies due to higher temperatures, the dust masses of the two samples are relatively similar. Dust mass is shown to correlate with stellar mass, although the dust-to-stellar mass ratio is much higher for low stellar mass galaxies, consistent with the lowest mass galaxies having the highest specific star formation rates. We stack the 250 mu m-to-NUV luminosity ratio, finding results consistent with greater obscuration of star formation at lower stellar mass and higher redshift. Submillimetre luminosities and dust masses of all galaxies are shown to evolve strongly with redshift, indicating a fall in the amount of obscured star formation in ordinary galaxies over the last four billion years. C1 [Bourne, N.; Maddox, S. J.; Dunne, L.; Dye, S.; Smith, D. J. B.; Conselice, C. J.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Auld, R.; Eales, S.; Gomez, H. L.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Baldry, I. K.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bonfield, D. G.; Jarvis, M. J.; Smith, D. J. B.] Univ Hertfordshire, Ctr Astrophys Sci & Technol, Res Inst, Hatfield AL10 9AB, Herts, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Croom, S. M.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Dariush, A.] Univ London Imperial Coll Sci Technol & Med, Phys Dept, London SW7 2AZ, England. [de Zotti, G.; Buttiglione, S.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [de Zotti, G.; Gonzalez-Nuevo, J.; Lapi, A.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Driver, S. P.; Kelvin, L. S.; Robotham, A. S. G.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance SUPA, St Andrews KY16 9SS, Fife, Scotland. [Driver, S. P.] Univ Western Australia, Int Ctr Radio Astron Res ICRAR, Nedlands, WA 6009, Australia. [Hopkins, A. M.; Brough, S.] Australian Astron Observ, Epping, NSW 1710, Australia. [Ibar, E.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M. J.] Univ Western Cape, Phys Dept, ZA-7535 Cape Town, South Africa. [Lapi, A.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Madore, B.; Seibert, M.] Carnegie Inst Sci, Pasadena, CA 91101 USA. [Michalowski, M. J.; Rigby, E. E.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Popescu, C. C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Tuffs, R. J.] Max Planck Inst Nucl Phys MPIK, D-69117 Heidelberg, Germany. [van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Cava, A.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [Jones, D. H.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Liske, J.] European So Observ, D-85748 Garching, Germany. [Loveday, J.] Univ Sussex, Astron Ctr, Brighton BN1 9QH, E Sussex, England. [Rodighiero, G.] Univ Padua, I-35122 Padua, Italy. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bourne, N (reprint author), Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. EM ppxnb1@nottingham.ac.uk RI Gomez, Haley/C-2800-2009; Conselice, Christopher/B-4348-2013; Cava, Antonio/C-5274-2017; Baes, Maarten/I-6985-2013; Robotham, Aaron/H-5733-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; OI Cava, Antonio/0000-0002-4821-1275; De Zotti, Gianfranco/0000-0003-2868-2595; Maddox, Stephen/0000-0001-5549-195X; Conselice, Christopher/0000-0003-1949-7638; Baes, Maarten/0000-0002-3930-2757; Robotham, Aaron/0000-0003-0429-3579; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; Liske, Jochen/0000-0001-7542-2927; Baldry, Ivan/0000-0003-0719-9385 NR 151 TC 44 Z9 44 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 4 BP 3027 EP 3059 DI 10.1111/j.1365-2966.2012.20528.x PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923LL UT WOS:000302620700027 ER PT J AU Torres-Flores, S de Oliveira, CM de Mello, DF Scarano, S Urrutia-Viscarra, F AF Torres-Flores, S. Mendes de Oliveira, C. de Mello, D. F. Scarano, S., Jr. Urrutia-Viscarra, F. TI NGC 2782: a merger remnant with young stars in its gaseous tidal tail SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: interactions; intergalactic medium; galaxies: star clusters: general ID H-II REGIONS; GALAXY-EVOLUTION-EXPLORER; INTERACTING GALAXIES; DWARF GALAXIES; MOLECULAR GAS; SYNTHESIS MODELS; INTERSTELLAR EXTINCTION; METALLICITY RELATION; ANTENNAE GALAXIES; CLUSTER FORMATION AB We have searched for young star-forming regions around the merger remnant NGC 2782. By using Galaxy Evolution Explorer far-ultraviolet and near-ultraviolet imaging and H i data we found seven ultraviolet sources, located at distances greater than 26 kpc from the centre of NGC 2782, and coinciding with its western H i tidal tail. These regions were resolved in several smaller systems when Gemini/Gemini multi-object spectrograph (GMOS) r-band images were used. We compared the observed colours to stellar population synthesis models and found that these objects have ages of similar to 1 to 11 Myr and masses ranging from 103.9 to 104.6 M circle dot. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H) = 8.74 +/- 0.20, 8.81 +/- 0.20 and 8.78 +/- 0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the centre of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided. C1 [Torres-Flores, S.; Mendes de Oliveira, C.; Scarano, S., Jr.; Urrutia-Viscarra, F.] Univ Sao Paulo, Dept Astron, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [Torres-Flores, S.] Univ Aix Marseille 1, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Torres-Flores, S.] CNRS, F-13388 Marseille 13, France. [Torres-Flores, S.] Univ La Serena, Dept Fis, La Serena, Chile. [de Mello, D. F.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [de Mello, D. F.] Catholic Univ Amer, Washington, DC 20064 USA. RP Torres-Flores, S (reprint author), Univ Sao Paulo, Dept Astron, Inst Astron Geofis & Ciencias Atmosfer, Rua Matao 1226, BR-05508090 Sao Paulo, Brazil. EM storres@dfuls.cl RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013 FU FONDECYT (Chile) [3110087]; FAPESP [2007/07973-3, 09/05181-8]; NASA's Goodard Space Flight Center; Catholic University of America; Brazilian agencies FAPESP [2006/56213-9]; CNPq; CAPES; GALEX [NNG06GG45G]; ADP [NNX09AC72G]; FAPESP through the Master position [2007/06436-4] FX We would like to thank the referee for the very useful comments that improved this paper considerably. We thank Gladys Vieira-Kober and Elysse Voyer for making the H alpha data of NGC 2782 available to us prior to publication. ST-F acknowledges the financial support of FONDECYT (Chile) through a post-doctoral position, under contract 3110087 and FAPESP through the doctoral position, under contract 2007/07973-3. ST-F would also like to thank the NASA's Goodard Space Flight Center and the Catholic University of America for support during visit where part of this work was developed. CMdO acknowledges support from the Brazilian agencies FAPESP (projeto tematico 2006/56213-9), CNPq and CAPES. DFdM acknowledges support from GALEX grant NNG06GG45G and ADP grant NNX09AC72G. SSJ acknowledges FAPESP for the postdoc grant 09/05181-8. FU-V acknowledges the financial support of FAPESP through the Master position, under contract 2007/06436-4. GALEX is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation and science analysis for the GALEX mission, developed in cooperation with the Centre National d' Etudes Spatiales of France and the Korean Ministry of Science and Technology. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 78 TC 11 Z9 11 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 4 BP 3612 EP 3621 DI 10.1111/j.1365-2966.2012.20589.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923LL UT WOS:000302620700075 ER PT J AU Paulitsch-Fuchs, AH Fuchs, EC Wexler, AD Freund, FT Rothschild, LJ Cherukupally, A Euverink, GJW AF Paulitsch-Fuchs, A. H. Fuchs, E. C. Wexler, A. D. Freund, F. T. Rothschild, L. J. Cherukupally, A. Euverink, G. J. W. TI Prokaryotic transport in electrohydrodynamic structures SO PHYSICAL BIOLOGY LA English DT Article ID CELL-SURFACE CHARGE; ESCHERICHIA-COLI; MICROFLUIDIC SYSTEMS; SEPARATION; BACTERIA; ELECTROPORATION; WATER; DIELECTROPHORESIS; HYDROPHOBICITY; ATTACHMENT AB When a high-voltage direct-current is applied to two beakers filled with water, a horizontal electrohydrodynamic (EHD) bridge forms between the two beakers. In this work we study the transport and behavior of bacterial cells added to an EHD bridge set-up. Organisms were added to one or to both beakers, and the transport of the cells through the bridge was monitored using optical and microbiological techniques. It is shown that Escherichia coli top10 (Invitrogen, Carlsbad, CA, USA) and bioluminescent E. coli YMC10 with a plasmid (pJE202) containing Vibrio fischeri genes can survive the exposure to an EHD liquid bridge set-up and the cells are drawn toward the anode due to their negative surface charge. Dielectrophoresis and hydrostatic forces are likely to be the cause for their transport in the opposite direction which was observed as well, but to a much lesser extent. Most E. coli YMC10 bacteria which passed the EHD bridge exhibited increased luminescent activity after 24 h. This can be explained by two likely mechanisms: nutrient limitation in the heavier inoculated vials and a 'survival of the strongest' mechanism. C1 [Paulitsch-Fuchs, A. H.; Fuchs, E. C.; Wexler, A. D.] Wetsus, Ctr Excellence Sustainable Water Technol, Leeuwarden, Netherlands. [Freund, F. T.] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. [Rothschild, L. J.] NASA, Ames Res Ctr, Mountain View, CA USA. [Cherukupally, A.] Univ Arizona, Dept Min & Geol Engn, Tucson, AZ 85721 USA. [Euverink, G. J. W.] Univ Groningen, ITM, NL-9700 AB Groningen, Netherlands. RP Paulitsch-Fuchs, AH (reprint author), Wetsus, Ctr Excellence Sustainable Water Technol, Leeuwarden, Netherlands. EM astrid.paulitsch@wetsus.nl OI Euverink, Gert-Jan/0000-0003-2289-7085 FU Dutch Ministry of Economic Affairs; European Union; Province of Fryslan; City of Leeuwarden; EZ/Kompas program of the 'Samenwerkingsverband Noord-Nederland'; Applied Water Physics Theme of Wetsus FX This work was performed in the TTIW-cooperation framework of Wetsus, Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslan, the City of Leeuwarden and the EZ/Kompas program of the 'Samenwerkingsverband Noord-Nederland'. The financial support of the Applied Water Physics Theme of Wetsus is thankfully acknowledged. The authors would like to thank the team at the NASA Astrobiology lab at AMES; Professors Eshel Ben-Jacob (Tel Aviv University), Harry Bruning (Wetsus), Cees Buisman (Wetsus), Karl Gatterer (Graz University of Technology), Emilio Del Giudice (Universita di Milano), Gerald H Pollack (University of Washington), Jose Teixeira (Laboratoire Leon Brillouin, CEA-CNRS/IRAMIS, CEA/Saclay), Giuseppe Vitiello (Universita degli studi di Salerno), Vladimir Voeikov (M. V. Lomonosov Moscow State University), Jakob Woisetschlager (Graz University of Technology) as well as Cees Kamp, Justina Racyte, Martina Sammer and Andrea Zsohar (Wetsus) for the ongoing discussion on the water bridge phenomenon (in alphabetic order). NR 44 TC 5 Z9 5 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1478-3967 J9 PHYS BIOL JI Phys. Biol. PD APR PY 2012 VL 9 IS 2 AR 026006 DI 10.1088/1478-3975/9/2/026006 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 925RH UT WOS:000302778300008 ER PT J AU Everett, ME Howell, SB Kinemuchi, K AF Everett, Mark E. Howell, Steve B. Kinemuchi, Karen TI A UBV Photometric Survey of the Kepler Field SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID HIGH-PERFORMANCE PIPELINE; NORTHERN GALACTIC PLANE; MOSAIC CAMERA PIPELINE; MISSION; CATALOG; SYSTEM; STARS AB We present the motivations for and methods we used to create a new ground-based photometric survey of the field targeted by the NASA Kepler Mission. The survey contains magnitudes for 4,416,007 sources in one or more of the U BV filters, including 1,861,126 sources detected in all three filters. The typical completeness limit is U similar to 18: 7, B similar to 19: 3, and V similar to 19: 1 mag, but varies by location. The area covered is 191 deg(2) and includes the areas on and between the 42 Kepler CCDs, as well as additional areas around the perimeter of the Kepler field. The major significance of this survey is our addition of U to the optical bandpass coverage available in the Kepler Input Catalog, which was primarily limited to the redder SDSS griz and D51 filters. The U coverage reveals a sample of the hottest sources in the field, many of which are not currently targeted by Kepler, but may be objects of astrophysical interest. C1 [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, Steve B.; Kinemuchi, Karen] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Everett, ME (reprint author), Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. FU NASA [NNA04CK77G] FX We wish to thank the NOAO staff, including Frank Valdes, who helped us to understand the data and worked to process our images through the Mosaic image pipeline. We are also grateful to the efforts of Multimission Archive at the Space Telescope Science Institute for their work in hosting our survey products. This article was also improved by the helpful comments of a referee, who we wish to thank. Funding for this research was provided by NASA Kepler grant NNA04CK77G to S. H. awarded to NOAO. Kepler was selected as the 10th mission of the NASA Discovery Program. The 0.9 m telescope is operated by WIYN Consortium, Inc., on behalf of 10 partner universities and organizations. WIYN is a joint partnership of the University of Wisconsin at Madison, Indiana University, Yale University, and the National Optical Astronomical Observatory. NR 20 TC 36 Z9 36 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD APR PY 2012 VL 124 IS 914 BP 316 EP 322 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926XS UT WOS:000302866400003 ER PT J AU DeBonis, JR Oberkampf, WL Wolf, RT Orkwis, PD Turner, MG Babinsky, H Benek, JA AF DeBonis, James R. Oberkampf, William L. Wolf, Richard T. Orkwis, Paul D. Turner, Mark G. Babinsky, Holger Benek, John A. TI Assessment of Computational Fluid Dynamics and Experimental Data for Shock Boundary-Layer Interactions SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 28th AIAA Applied Aerodynamics Conference CY JUN 28-JUL 01, 2010 CL Chicago, IL SP AIAA ID PARTICLE IMAGE VELOCIMETRY; FLOWS; MODEL AB A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part oldie workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CID predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. C1 [DeBonis, James R.] NASA, John H Glenn Res Ctr Lewis Field, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. [Oberkampf, William L.] WLO Consulting, Austin, TX 78633 USA. [Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.] Univ Cincinnati, Dept Aerosp Engn, Cincinnati, OH 45221 USA. [Babinsky, Holger] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Benek, John A.] USAF, Res Lab, Computat Sci Ctr, Air Vehicles Directorate, Wright Patterson AFB, OH 45433 USA. RP DeBonis, JR (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. EM james.r.debonis@nasa.gov; wloconsulting@gmail.com; wolfrt@mail.uc.edu; orkwispd@ucmail.uc.edu; turnermr@ucmail.uc.edu; hb@eng.cam.ac.uk; john.benek@wpafb.af.mil NR 26 TC 12 Z9 12 U1 3 U2 16 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD APR PY 2012 VL 50 IS 4 BP 891 EP 903 DI 10.2514/1.J051341 PG 13 WC Engineering, Aerospace SC Engineering GA 918UQ UT WOS:000302277000012 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Ackermann, M Adams, J Aguilar, JA Ahlers, M Allen, MM Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brown, AM Buitink, S Caballero-Mora, KS Carson, M Chirkin, D Christy, B Clevermann, F Cohen, S Colnard, C Cowen, DF Silva, AHC D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Degner, T Demirors, L Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Dunkman, M Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Han, K Hanson, K Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, B Homeier, A Hoshina, K Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Johansson, H Kampert, KH Kappes, A Karg, T Karle, A Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Kroll, G Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lunemann, J Madsen, J Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schonwald, A Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Stuer, M Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Allen, M. M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brown, A. M. Buitink, S. Caballero-Mora, K. S. Carson, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. Silva, A. H. Cruz D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Degner, T. Demiroers, L. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Dunkman, M. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Han, K. Hanson, K. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, B. Homeier, A. Hoshina, K. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Johansson, H. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Kroll, G. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Luenemann, J. Madsen, J. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoenwald, A. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Stueer, M. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. CA IceCube Collaboration TI SEARCHES FOR PERIODIC NEUTRINO EMISSION FROM BINARY SYSTEMS WITH 22 AND 40 STRINGS OF ICECUBE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; binaries: general; neutrinos ID GAMMA-RAY EMISSION; HIGH-ENERGY EMISSION; LS I+61-DEGREES 303; X-RAY; CYGNUS X-1; DISCOVERY; MICROQUASAR; VARIABILITY; PERIASTRON; TELESCOPE AB In this paper, we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during similar to 20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from 2007 May 31 to 2008 April 5 with its 22 string configuration and from 2008 April 5 to 2009 May 20 with its 40 string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1 sigma significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided. C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Han, K.; Jacobi, E.; Kislat, F.; Lauer, R.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Tosi, D.; Walter, M.; Wischnewski, R.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Brown, A. M.; Gross, A.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Allen, M. M.; Caballero-Mora, K. S.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Larson, M. J.; Meszaros, P.; Rutledge, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Altmann, D.; Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heinen, D.; Hoffmann, B.; Huelss, J. -P.; Laihem, K.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 2, D-52056 Aachen, Germany. [Auffenberg, J.; Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Berghaus, P.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Berghaus, P.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Miarecki, S.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Meures, T.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bose, D.; Buitink, S.; De Clercq, C.; Labare, M.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Degner, T.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Stueer, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Japaridze, G. S.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Montaruli, T.] Dipartimento Fis, Sez INFN, I-70126 Bari, Italy. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Maruyama, Reina/A-1064-2013 OI Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We thank D. Guetta and E. Waxman for helpful discussions on neutrino flux prediction models. We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 44 TC 5 Z9 5 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 118 DI 10.1088/0004-637X/748/2/118 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200046 ER PT J AU Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bhat, PN Blandford, RD Bonamente, E Borgland, AW Bregeon, J Briggs, MS Brigida, M Bruel, P Buehler, R Burgess, JM Buson, S Caliandro, GA Cameron, RA Casandjian, JM Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Cutini, S Dennis, BR de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Fortin, P Fukazawa, Y Fusco, P Gargano, F Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grillo, L Grove, JE Gruber, D Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Iafrate, G Johannesson, G Johnson, AS Johnson, WN Kamae, T Kippen, RM Knodlseder, J Kuss, M Lande, J Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Meegan, C Mehault, J Michelson, PF Mitthumsiri, W Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Murphy, R Naumann-Godo, M Nuss, E Nymark, T Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Paciesas, WS Panetta, JH Parent, D Pesce-Rollins, M Petrosian, V Pierbattista, M Piron, F Pivato, G Poon, H Porter, TA Preece, R Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Ritz, S Sbarra, C Schwartz, RA Sgro, C Share, GH Siskind, EJ Spinelli, P Takahashi, H Tanaka, T Tanaka, Y Thayer, JB Tibaldo, L Tinivella, M Tolbert, AK Tosti, G Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V von Kienlin, A Waite, AP Wilson-Hodge, C Wood, DL Wood, KS Yang, Z AF Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bhat, P. N. Blandford, R. D. Bonamente, E. Borgland, A. W. Bregeon, J. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Burgess, J. M. Buson, S. Caliandro, G. A. Cameron, R. A. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Cutini, S. Dennis, B. R. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fortin, P. Fukazawa, Y. Fusco, P. Gargano, F. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grillo, L. Grove, J. E. Gruber, D. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Iafrate, G. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Kippen, R. M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Meegan, C. Mehault, J. Michelson, P. F. Mitthumsiri, W. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Murphy, R. Naumann-Godo, M. Nuss, E. Nymark, T. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Paciesas, W. S. Panetta, J. H. Parent, D. Pesce-Rollins, M. Petrosian, V. Pierbattista, M. Piron, F. Pivato, G. Poon, H. Porter, T. A. Preece, R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ritz, S. Sbarra, C. Schwartz, R. A. Sgro, C. Share, G. H. Siskind, E. J. Spinelli, P. Takahashi, H. Tanaka, T. Tanaka, Y. Thayer, J. B. Tibaldo, L. Tinivella, M. Tolbert, A. K. Tosti, G. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. von Kienlin, A. Waite, A. P. Wilson-Hodge, C. Wood, D. L. Wood, K. S. Yang, Z. TI FERMI DETECTION OF gamma-RAY EMISSION FROM THE M2 SOFT X-RAY FLARE ON 2010 JUNE 12 (vol 745, pg 144,2012) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Glanzman, T.; Godfrey, G.; Grillo, L.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Glanzman, T.; Godfrey, G.; Grillo, L.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Sbarra, C.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Poon, H.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.] Inst Ciencies Espai IEEE CSIC, E-08193 Barcelona, Spain. [Casandjian, J. M.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Nymark, T.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Dennis, B. R.; Ferrara, E. C.; Hays, E.; McEnery, J. E.; Schwartz, R. A.; Tolbert, A. K.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Murphy, R.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Fukazawa, Y.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Gruber, D.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hayashida, M.] Kyoto Univ, Dept Astron, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Iafrate, G.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Share, G. H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nymark, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ohno, M.; Okumura, A.; Tanaka, Y.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Parent, D.; Razzaque, S.] George Mason Univ, Ctr Earth Observing & Space Res, Coll Sci, Fairfax, VA 22030 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wilson-Hodge, C.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Wood, D. L.] Praxis Inc, Alexandria, VA 22303 USA. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM michael.briggs@nasa.gov; dgruber@mpe.mpg.de; francesco.longo@trieste.infn.it; nicola.omodei@gmail.com; gerald.share@nrl.navy.mil RI Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Johnson, Neil/G-3309-2014; Johannesson, Gudlaugur/O-8741-2015; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Orlando, E/R-5594-2016 OI Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Mazziotta, Mario /0000-0001-9325-4672; NR 1 TC 1 Z9 1 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 151 DI 10.1088/0004-637X/748/2/151 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200079 ER PT J AU Brown, TM Lanz, T Sweigart, AV Cracraft, M Hubeny, I Landsman, WB AF Brown, Thomas M. Lanz, Thierry Sweigart, Allen V. Cracraft, Misty Hubeny, Ivan Landsman, Wayne B. TI FLASH MIXING ON THE WHITE DWARF COOLING CURVE: SPECTROSCOPIC CONFIRMATION IN NGC 2808 SO ASTROPHYSICAL JOURNAL LA English DT Article DE globular clusters: individual (NGC 2808); stars: atmospheres; stars: evolution; stars: horizontal-branch; ultraviolet: stars ID HORIZONTAL-BRANCH STARS; BLANKETED MODEL ATMOSPHERES; SPACE-TELESCOPE OBSERVATIONS; GLOBULAR-CLUSTER NGC-2808; MAIN-SEQUENCE STARS; SUBDWARF-B STARS; OMEGA-CENTAURI; ABUNDANCE ANOMALIES; SDB STARS; RADIATIVE LEVITATION AB We present new Hubble Space Telescope far-UV spectroscopy of two dozen hot evolved stars in NGC 2808, a massive globular cluster with a large population of "blue-hook" (BHk) stars. The BHk stars are found in ultraviolet color-magnitude diagrams of the most massive globular clusters, where they fall at luminosities immediately below the hot end of the horizontal branch (HB), in a region of the H-R diagram unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that these subluminous HB stars are very likely the progeny of stars that undergo extensive internal mixing during a late He-core flash on the white dwarf cooling curve. This flash mixing leads to hotter temperatures and an enormous enhancement of the surface He and C abundances; these hotter temperatures, together with the decrease in H opacity shortward of the Lyman limit, make the BHk stars brighter in the extreme UV while appearing subluminous in the UV and optical. Our far-UV spectroscopy demonstrates that, relative to normal HB stars at the same color, the BHk stars of NGC 2808 are hotter and greatly enhanced in He and C, thus providing unambiguous evidence of flash mixing in the subluminous population. Although the C abundance in the BHk stars is orders of magnitude larger than that in the normal HB stars, the atmospheric C abundance in both the BHk and normal HB stars appears to be affected by gravitational settling. The abundance variations seen in Si and the Fe-peak elements also indicate that atmospheric diffusion is at play in our sample, with all of our hot subdwarfs at 25,000-50,000 K exhibiting large enhancements of the iron-peak elements. The hottest subdwarfs in our BHk sample may be pulsators, given that they fall in the temperature range of newly discovered pulsating subdwarfs in omega Cen. In addition to the normal hot HB and BHk stars, we also obtain spectra of five blue HB stars, a post-HB star, and three unclassified stars with unusually blue UV colors. C1 [Brown, Thomas M.; Cracraft, Misty] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lanz, Thierry] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lanz, Thierry] Univ Nice Sophia Antipolis, Lab Lagrange, Observ Cote Azur, CNRS,UMR7293, F-06304 Nice, France. [Sweigart, Allen V.; Landsman, Wayne B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hubeny, Ivan] Univ Arizona, Steward Observ, Tucson, AZ 85712 USA. RP Brown, TM (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM tbrown@stsci.edu; thierry.lanz@oca.eu; allen.v.sweigart@nasa.gov; cracraft@stsci.edu; hubeny@aegis.as.arizona.edu; wayne.b.landsman@nasa.gov OI Brown, Thomas/0000-0002-1793-9968; Cracraft, Misty/0000-0002-7698-3002 FU NASA through STScI; NASA [NAS 5-26555] FX Support for Program 11665 was provided by NASA through a grant from STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555. The TheoSSA service (http://dc.g-vo.org/theossa) used to retrieve a theoretical spectrum for this paper was constructed as part of the activities of the German Astrophysical Virtual Observatory. We thank the anonymous referee for useful suggestions that improved the clarity of our manuscript. NR 53 TC 10 Z9 10 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 85 DI 10.1088/0004-637X/748/2/85 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200013 ER PT J AU Donoso, E Yan, L Tsai, C Eisenhardt, P Stern, D Assef, RJ Leisawitz, D Jarrett, TH Stanford, SA AF Donoso, E. Yan, Lin Tsai, C. Eisenhardt, P. Stern, D. Assef, R. J. Leisawitz, D. Jarrett, T. H. Stanford, S. A. TI ORIGIN OF 12 mu m EMISSION ACROSS GALAXY POPULATIONS FROM WISE AND SDSS SURVEYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: galaxies; galaxies: active; surveys ID DIGITAL SKY SURVEY; STAR-FORMATION RATES; ACTIVE GALACTIC NUCLEI; FORMING GALAXIES; INFRARED GALAXIES; MASSIVE GALAXIES; FIELD GALAXIES; HIGH-REDSHIFT; ESO-SCULPTOR; DATA RELEASE AB We cross-matched Wide-field Infrared Survey Explorer sources brighter than 1 mJy at 12 mu m with the Sloan Digital Sky Survey galaxy spectroscopic catalog to produce a sample of similar to 10(5) galaxies at < z > = 0.08, the largest of its kind. This sample is dominated (70%) by star-forming (SF) galaxies from the blue sequence, with total IR luminosities in the range similar to 10(8)-10(12) L-circle dot. We identify which stellar populations are responsible for most of the 12 mu m emission. We find that most (similar to 80%) of the 12 mu m emission in SF galaxies is produced by stellar populations younger than 0.6 Gyr. In contrast, the 12 mu m emission in weak active galactic nuclei (AGNs; L-[O III] < 10(7) L-circle dot) is produced by older stars, with ages of similar to 1-3 Gyr. We find that L-12 mu m linearly correlates with stellar mass for SF galaxies. At fixed 12 mu m luminosity, weak AGNs deviate toward higher masses since they tend to be hosted by massive, early-type galaxies with older stellar populations. SF galaxies and weak AGNs follow different L-12 mu m-SFR (star formation rate) relations, with weak AGNs showing excess 12 mu m emission at low SFR (0.02-1M(circle dot) yr(-1)). This is likely due to dust grains heated by older stars. While the specific star formation rate (SSFR) of SF galaxies is nearly constant, the SSFR of weak AGNs decreases by similar to 3 orders of magnitude, reflecting the very different star formation efficiencies between SF galaxies and massive, early-type galaxies. Stronger type II AGNs in our sample (L-[O III] > 10(7) L-circle dot), act as an extension of massive SF galaxies, connecting the SF and weak AGN sequences. This suggests a picture where galaxies form stars normally until an AGN (possibly after a starburst episode) starts to gradually quench the SF activity. We also find that 4.6-12 mu m color is a useful first-order indicator of SF activity in a galaxy when no other data are available. C1 [Donoso, E.; Yan, Lin; Tsai, C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Eisenhardt, P.; Stern, D.; Assef, R. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Leisawitz, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jarrett, T. H.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Donoso, E (reprint author), CALTECH, Spitzer Sci Ctr, 1200 E Calif Blvd, Pasadena, CA 91125 USA. FU National Aeronautics and Space Administration; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; Jet Propulsion Laboratory FX The authors thank G. Kauffmann, J. Brinchmann, and S. Salim for useful suggestions. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. R.J.A. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. NR 63 TC 41 Z9 41 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 80 DI 10.1088/0004-637X/748/2/80 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200008 ER PT J AU Hasler, N Bulbul, E Bonamente, M Carlstrom, JE Culverhouse, TL Gralla, M Greer, C Hawkins, D Hennessy, R Joy, M Kolodziejczak, J Lamb, JW Landry, D Leitch, EM Mantz, A Marrone, DP Miller, A Mroczkowski, T Muchovej, S Plagge, T Pryke, C Woody, D AF Hasler, Nicole Bulbul, Esra Bonamente, Massimiliano Carlstrom, John E. Culverhouse, Thomas L. Gralla, Megan Greer, Christopher Hawkins, David Hennessy, Ryan Joy, Marshall Kolodziejczak, Jeffery Lamb, James W. Landry, David Leitch, Erik M. Mantz, Adam Marrone, Daniel P. Miller, Amber Mroczkowski, Tony Muchovej, Stephen Plagge, Thomas Pryke, Clem Woody, David TI JOINT ANALYSIS OF X-RAY AND SUNYAEV-ZEL'DOVICH OBSERVATIONS OF GALAXY CLUSTERS USING AN ANALYTIC MODEL OF THE INTRACLUSTER MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: galaxies: clusters; X-rays: individuals (A2204, A2631) ID COSMIC DISTANCE SCALE; GAS MASS FRACTION; GHZ SKY SURVEY; DARK ENERGY; COSMOLOGICAL CONSTRAINTS; RELATIVISTIC CORRECTIONS; SPATIAL-DISTRIBUTION; OBSERVED GROWTH; RYLE TELESCOPE; XMM-NEWTON AB We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204. C1 [Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Landry, David] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Bonamente, Massimiliano; Joy, Marshall; Kolodziejczak, Jeffery] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Mantz, Adam; Marrone, Daniel P.; Plagge, Thomas; Pryke, Clem] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Mantz, Adam; Plagge, Thomas; Pryke, Clem] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, John E.; Pryke, Clem] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, John E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hawkins, David; Lamb, James W.; Muchovej, Stephen; Woody, David] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Mantz, Adam] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Miller, Amber] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, Amber] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, Tony] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RP Hasler, N (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. OI Marrone, Daniel/0000-0002-2367-1080; Mroczkowski, Tony/0000-0003-3816-5372 FU NSF [AST-0604982, AST-0838187, AST-0507545, AST-05-07161]; University of Chicago [PHY-0114422]; CARMA partner universities; NASA [HF-51259.01, PF0-110077] FX The operation of the SZA is supported by the NSF through grants AST-0604982 and AST-0838187. Partial support is also provided from the grant PHY-0114422 at the University of Chicago, and by NSF grants AST-0507545 and AST-05-07161 to Columbia University. CARMA operations are supported by the NSF under a cooperative agreement, and by the CARMA partner universities. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship; C.G. and S.M. from NSF Graduate Research Fellowships; and D.P.M. from the NASA Hubble Fellowship grant HF-51259.01. Support for this work was provided for T.M. by NASA through the Einstein Fellowship Program, grant PF0-110077. NR 60 TC 3 Z9 3 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 113 DI 10.1088/0004-637X/748/2/113 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200041 ER PT J AU Hidalgo, MA Nieves-Chinchilla, T AF Hidalgo, M. A. Nieves-Chinchilla, T. TI A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. I. SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; solar-terrestrial relations; solar wind; Sun: coronal mass ejections (CMEs); Sun: magnetic topology ID CORONAL MASS EJECTIONS; SOLAR-WIND; FLUX ROPE; CROSS-SECTION; OCTOBER 18-20; FIELD AB We present an analytical approach to the global magnetic field topology of magnetic clouds (MCs) that considers them like close magnetic structures with torus geometry and with a non-uniform (variable maximum radius) cross section along them. Following our previous approach to the problem of MCs (Hidalgo 2003, 2011), we establish an intrinsic coordinate system for that topology, and then we analytically solve the Maxwell equations in terms of it. The purpose of the present work is to present this model, which will lead us to understand in a more realistic way the physical mechanisms inside MCs. The model has a non-force-free character and also takes into account the time evolution of the cross sections of the MCs in their movement through the interplanetary medium. In this first paper, we obtain the expressions for the components of the magnetic field and the plasma current density imposing a large mean radius of the torus, and imposing a circular cross section with a variable maximum radius. Eventually, we fit the model to data related to four well-known MCs measurements at 1 AU, (three of them with circular cross sections and without expansion, as it is deduced from the experimental data). We compare the results of this toroidal model with those obtained with our previous cylindrical circular cross section model, also with a non-force-free character. C1 [Hidalgo, M. A.] Univ Alcala De Henares, Dept Fis, Alcala De Henares, Spain. [Nieves-Chinchilla, T.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Nieves-Chinchilla, T.] NASA, Heliosphys Sci Div, GSFC, Greenbelt, MD USA. RP Hidalgo, MA (reprint author), Univ Alcala De Henares, Dept Fis, Alcala De Henares, Spain. EM miguel.hidalgo@uah.es; teresa.nieves-chinchil-1@nasa.gov RI Nieves-Chinchilla, Teresa/F-3482-2016; Hidalgo, Miguel/L-5826-2014 OI Nieves-Chinchilla, Teresa/0000-0003-0565-4890; Hidalgo, Miguel/0000-0003-1617-2037 FU Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain; Project "Mineria de datos de SOHO"; [ESP2006-08459] FX This work has been supported by the Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain, Project "Mineria de datos de SOHO", and grant ESP2006-08459. The author thanks K. Ogilvie, R. Fitzenreiter, and R. Lepping (Goddard Space Flight Center, Greenbelt, MD, USA) for permission to use the Wind data. NR 26 TC 16 Z9 16 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 109 DI 10.1088/0004-637X/748/2/109 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200037 ER PT J AU Inglis, AR Dennis, BR AF Inglis, A. R. Dennis, B. R. TI THE RELATIONSHIP BETWEEN HARD X-RAY PULSE TIMINGS AND THE LOCATIONS OF FOOTPOINT SOURCES DURING SOLAR FLARES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: flares; Sun: oscillations ID QUASI-PERIODIC PULSATIONS; WAVE-PROPAGATION; OSCILLATORY RECONNECTION; MICROWAVE; EMISSION; LOOP; ACCELERATION; RHESSI; BURST AB The cause of quasi-periodic pulsations in solar flares remains the subject of debate. Recently, Nakariakov & Zimovets proposed a new model suggesting that, in two-ribbon flares, such pulsations could be explained by propagating slow waves. These waves may travel obliquely to the magnetic field, reflect in the chromosphere, and constructively interfere at a spatially separate site in the corona, leading to quasi-periodic reconnection events progressing along the flaring arcade. Such a slow wave regime would have certain observational characteristics. We search for evidence of this phenomenon during a selection of two-ribbon flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager, Solar and Heliospheric Observatory, and Transition Region and Coronal Explorer; the flares of 2002 November 9, 2005 January 19, and 2005 August 22. We were not able to observe a clear correlation between hard X-ray footpoint separations and pulse timings during these events. Also, the motion of hard X-ray footpoints is shown to be continuous within the observational error, whereas a discontinuous motion might be anticipated in the slow wave model. Finally, we find that for a preferential slow wave propagation angle of 25 degrees-28 degrees that is expected for the fastest waves, the velocities of the hard X-ray footpoints lead to estimated pulse periods and ribbon lengths significantly larger than the measured values. Hence, for the three events studied, we conclude that the observational characteristics cannot be easily explained via the Nakariakov & Zimovets propagating slow wave model when only angles of 25 degrees-28 degrees are considered. We provide suggested flare parameters to optimize future studies of this kind. C1 [Inglis, A. R.; Dennis, B. R.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Inglis, AR (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Heliophys Sci Div, Greenbelt, MD 20771 USA. RI Inglis, Andrew/D-7674-2012 FU NASA; NASA at Goddard Space Flight Center FX We are grateful to Anil Gopie, Nicholas Shields, and Richard Schwartz for helpful discussions on the topic of peak finding in light curves. A. R. I. is also grateful to Valery Nakariakov for useful discussions on the propagation of slow waves in flares. A. R. I. was supported by an appointment to the NASA Post-doctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 33 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 139 DI 10.1088/0004-637X/748/2/139 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200067 ER PT J AU Knez, C Moore, MH Ferrante, RF Hudson, RL AF Knez, C. Moore, M. H. Ferrante, R. F. Hudson, R. L. TI LABORATORY IR STUDIES AND ASTROPHYSICAL IMPLICATIONS OF C2H2-CONTAINING BINARY ICES SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: ISM; ISM: lines and bands; ISM: molecules; methods: laboratory ID ABSOLUTE INFRARED INTENSITIES; YOUNG STELLAR OBJECTS; DARK CLOUD; AB-INITIO; CRYSTALLINE C2H2; INTERSTELLAR ICE; CARBON-MONOXIDE; SOLID CO; ACETYLENE; SPECTRA AB Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu(5)-band position (743 cm(-1), 13.46 mu m) and FWHM on temperature. Our results show that the nu(5) feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens. C1 [Knez, C.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Knez, C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Moore, M. H.; Hudson, R. L.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Ferrante, R. F.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. RP Knez, C (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM Claudia.Knez@jhuapl.edu RI Hudson, Reggie/E-2335-2012 FU NASA; Goddard Center for Astrobiology FX The authors acknowledge support through NASA's Outer Planets, Cassini Data Analysis, and Planetary Atmospheres programs, and The Goddard Center for Astrobiology. The authors thank S. Travis for help with some of the experiments, P. Gerakines for assistance with graphics, A. Boogert for providing tools for reducing the Spitzer spectrum, and Z. Peeters for useful discussions. NR 44 TC 6 Z9 6 U1 4 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 95 DI 10.1088/0004-637X/748/2/95 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200023 ER PT J AU Leggett, SK Saumon, D Marley, MS Lodders, K Canty, J Lucas, P Smart, RL Tinney, CG Homeier, D Allard, F Burningham, B Day-Jones, A Fegley, B Ishii, M Jones, HRA Marocco, F Pinfield, DJ Tamura, M AF Leggett, S. K. Saumon, D. Marley, M. S. Lodders, K. Canty, J. Lucas, P. Smart, R. L. Tinney, C. G. Homeier, D. Allard, F. Burningham, Ben Day-Jones, A. Fegley, B. Ishii, Miki Jones, H. R. A. Marocco, F. Pinfield, D. J. Tamura, M. TI THE PROPERTIES OF THE 500 K DWARF UGPS J072227.51-054031.2 AND A STUDY OF THE FAR-RED FLUX OF COLD BROWN DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; line: profiles; stars: abundances ID DIGITAL SKY SURVEY; INFRARED-SURVEY-EXPLORER; LARGE-AREA SURVEY; T-DWARFS; SPECTRAL CLASSIFICATION; MULTIOBJECT SPECTROGRAPH; TRANSMISSION SPECTRUM; FIRE SPECTROSCOPY; SURVEY TELESCOPE; RESONANCE LINE AB We present i and z photometry for 25 T dwarfs and 1 L dwarf. Combined with published photometry, the data show that the i - z, z - Y, and z - J colors of T dwarfs are very red, and continue to increase through to the late-type T dwarfs, with a hint of a saturation for the latest types with T-eff approximate to 600 K. We present new 0.7-1.0 mu m and 2.8-4.2 mu m spectra for the very late type T dwarf UGPS J072227.51-054031.2, as well as improved astrometry for this dwarf. Examination of the spectral energy distribution using new and published data, with Saumon & Marley models, shows that the dwarf has T-eff = 505 +/- 10 K, a mass of 3-11 M-Jupiter, and an age between 60 Myr and 1 Gyr. This young age is consistent with the thin disk kinematics of the dwarf. The mass range overlaps with that usually considered to be planetary, despite this being an unbound object discovered in the field near the Sun. This apparently young rapid rotator is also undergoing vigorous atmospheric mixing, as determined by the IRAC and WISE 4.5 mu m photometry and the Saumon & Marley models. The optical spectrum for this 500 K object shows clearly detected lines of the neutral alkalis Cs and Rb, which are emitted from deep atmospheric layers with temperatures of 900-1200 K. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lodders, K.; Fegley, B.] Washington Univ, McDonnell Ctr Space Sci, Dept Earth & Planetary Sci, Planetary Chem Lab, St Louis, MO 63130 USA. [Canty, J.; Lucas, P.; Burningham, Ben; Jones, H. R. A.; Marocco, F.; Pinfield, D. J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Smart, R. L.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Tinney, C. G.] Univ New S Wales, Dept Astrophys, Sydney, NSW 2052, Australia. [Homeier, D.; Allard, F.] Univ Lyon, Ecole Normale Super, CRAL, F-69364 Lyon 07, France. [Day-Jones, A.] Univ Chile, Santiago, Chile. [Ishii, Miki] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Tamura, M.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Smart, Richard/0000-0002-4424-4766; Jones, Hugh/0000-0003-0433-3665; Allard, France/0000-0003-1929-9340; Burningham, Ben/0000-0003-4600-5627; Marley, Mark/0000-0002-5251-2943; Tinney, Christopher/0000-0002-7595-0970; Homeier, Derek/0000-0002-8546-9128; Leggett, Sandy/0000-0002-3681-2989 FU Gemini Observatory; NASA [NNH11AQ54I]; National Science Foundation (NSF) [AST 0707377]; FONDECYT [3100098]; National Science Foundation (United States); Science and Technology Facilities Council (United Kingdom); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) FX S.K.L.'s research is supported by Gemini Observatory. The contribution of D.S. and M.M. was supported by NASA grant NNH11AQ54I. Work by K.L. was supported while working at the National Science Foundation. Work by B.F. was supported by the National Science Foundation grant AST 0707377. A.D.J. is supported by a FONDECYT postdoctorado fellowship under project number 3100098. We thank James Clarke, of the University of Hertfordshire, for drawing our attention to the overlap between the kinematics of UGPS 0722-05 and that of the Hyades moving group.; Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina); also based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; and also based on observations made at the UK Infrared Telescope, which operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. NR 105 TC 25 Z9 25 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 74 DI 10.1088/0004-637X/748/2/74 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200002 ER PT J AU Raga, AC Noriega-Crespo, A Rodriguez-Gonzalez, A Lora, V Stapelfeldt, KR Carey, SJ AF Raga, A. C. Noriega-Crespo, A. Rodriguez-Gonzalez, A. Lora, V. Stapelfeldt, K. R. Carey, S. J. TI THE KINEMATICS OF HH 34 FROM HST IMAGES WITH A NINE-YEAR TIME BASELINE SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; Herbig-Haro objects; ISM: individual objects (HH 34); ISM: jets and outflows; stars: formation ID BOW-SHOCK; STELLAR JETS; PROPER MOTIONS; HH-34 OUTFLOW; YOUNG STARS; HH-111; MODEL; DECELERATION; PRECESSION; EVOLUTION AB We study archival HST [S II] 6716+30 and H alpha images of the HH 34 outflow, taken in 1998.71 and in 2007.83. The similar to 9 yr time baseline and the high angular resolution of these observations allow us to carry out a detailed proper-motion study. We determine the proper motions of the substructure of the HH 34S bow shock (from the [S II] and H alpha frames) and of the aligned knots within similar to 30 '' from the outflow source (only from the [S II] frames). We find that the present-day motions of the knots along the HH 34 jet are approximately ballistic, and that these motions directly imply the formation of a major mass concentration in similar to 900 yr, at a position similar to the one of the present-day HH 34S bow shock. In other words, we find that the knots along the HH 34 jet will merge to form a more massive structure, possibly resembling HH 34S. C1 [Raga, A. C.; Rodriguez-Gonzalez, A.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Noriega-Crespo, A.; Carey, S. J.] CALTECH, SPITZER Sci Ctr, Pasadena, CA 91125 USA. [Lora, V.] Univ Heidelberg, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Stapelfeldt, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Raga, AC (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ap 70-543, Mexico City 04510, DF, Mexico. RI Stapelfeldt, Karl/D-2721-2012 FU CONACyT [61547, 101356, 101975] FX This paper is based on observations made with the NASA/ESA Hubble Space Telescope, and information obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The work of A.R., A.R.G., and V.L. was supported by the CONACyT grants 61547, 101356, and 101975. We thank John Bally (the referee) for helpful comments which led to the inclusion of Figure 6 and to the discussion at the end of Section 5. NR 34 TC 10 Z9 10 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 103 DI 10.1088/0004-637X/748/2/103 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200031 ER PT J AU Sahraoui, F Belmont, G Goldstein, ML AF Sahraoui, F. Belmont, G. Goldstein, M. L. TI NEW INSIGHT INTO SHORT-WAVELENGTH SOLAR WIND FLUCTUATIONS FROM VLASOV THEORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); plasmas; solar wind; turbulence; waves ID WEAKLY COLLISIONAL PLASMAS; ELECTRON SCALES; MAGNETIC-FIELD; HALL-MAGNETOHYDRODYNAMICS; TURBULENCE; MAGNETOSHEATH; WAVES; MHD; IDENTIFICATION AB The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega < omega(ci), other studies suggest that the KAW mode cannot carry the turbulence cascade down to electron scales and that the whistler mode (i.e., omega > omega(ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, typically beta(i) greater than or similar to beta(e) similar to 1 and for high oblique angles of propagation 80 degrees <= Theta(kB) < 90 degrees as observed from the Cluster spacecraft data. The linear properties of the plasma modes under these conditions are poorly known, which contrasts with the well-documented cold plasma limit and/or moderate oblique angles of propagation (Theta(kB) < 80 degrees). Based on linear solutions of the Vlasov kinetic theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales k rho(i) greater than or similar to 1 to frequencies either larger or smaller than omega(ci), depending on the anisotropy k(parallel to)/k(perpendicular to). This extension into small scales is more readily called whistler (omega > omega(ci)) or KAW (omega < omega(ci)), although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW. C1 [Sahraoui, F.; Belmont, G.] Observ St Maur, Lab Phys Plasmas, CNRS Ecole Polytech UPMC, F-94107 St Maur Des Fosses, France. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sahraoui, F (reprint author), Observ St Maur, Lab Phys Plasmas, CNRS Ecole Polytech UPMC, 4 Ave Neptune, F-94107 St Maur Des Fosses, France. EM fouad.sahraoui@lpp.polytechnique.fr RI Goldstein, Melvyn/B-1724-2008 FU l'Agence Nationale de la Recherche (ANR, France) FX This work is part of the project THESOW funded by l'Agence Nationale de la Recherche (ANR, France). F.S. thanks G. Howes for stimulating discussions. NR 41 TC 50 Z9 50 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 100 DI 10.1088/0004-637X/748/2/100 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200028 ER PT J AU Schimoia, JS Storchi-Bergmann, T Nemmen, RS Winge, C Eracleous, M AF Schimoia, Jaderson S. Storchi-Bergmann, Thaisa Nemmen, Rodrigo S. Winge, Claudia Eracleous, Michael TI SHORT TIMESCALE VARIATIONS OF THE H alpha DOUBLE-PEAKED PROFILE OF THE NUCLEUS OF NGC 1097 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: individual (NGC 1097); galaxies: nuclei; galaxies: Seyfert; line: profiles ID ACTIVE GALACTIC NUCLEI; ACCRETION DISK MODELS; BALMER EMISSION-LINES; BLACK-HOLE; 3C 390.3; VARIABILITY; NGC-1097; GALAXIES; REGIONS; MASSES AB The broad (FWHM similar to 10,000 km s(-1)) double-peaked Ha profile from the LINER/Seyfert 1 nucleus of NGC 1097 was discovered in 1991 and monitored for the following 11 years. The profile showed variations attributed to the rotation of gas in a non-axisymmetric Keplerian accretion disk, ionized by a varying radiatively inefficient accretion flow (RIAF) located in the inner parts of the disk. We present and model 11 new spectroscopic observations of the double-peaked profile taken between 2010 March and 2011 March. This series of observations was motivated by the finding that in 2010 March the flux in the double-peaked line was again strong, indeed, in 2010 December, even stronger than in the observations of a decade ago. We also discovered shorter timescale variations than in the previous observations: (1) the first, of similar to 7 days, is interpreted as due to "reverberation" of the variation of the ionizing source luminosity, and the timescale of 7 days as the light crossing time between the source and the accretion disk; this new timescale and its interpretation provides a distance between the emitting gas and the supermassive black hole and as such introduces a new constraint on its mass; (2) the second, of approximate to 5 months, was attributed to the rotation of a spiral arm in the disk, which was found to occur on the dynamical timescale. We use two accretion disk models to fit theoretical profiles to the new data, both having non-axisymmetric emissivities produced by the presence of an one-armed spiral. Our modeling constrains the rotation period for the spiral to be approximate to 18 months. This work supports our previous conclusion that the broad double-peaked Balmer emission lines in NGC 1097-and probably also in other low-luminosity active nuclei-originate from an accretion disk ionized by a central RIAF. C1 [Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa] Univ Fed Rio Grande do Sul, Inst Fis, Porto Alegre, RS, Brazil. [Nemmen, Rodrigo S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Winge, Claudia] AURA Inc, Gemini S Observ, La Serena, Chile. [Eracleous, Michael] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Schimoia, JS (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, Campus Vale, Porto Alegre, RS, Brazil. EM silva.schimoia@ufrgs.br RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Nemmen, Rodrigo/O-6841-2014 FU NSF; Brazilian institution CNPq; Brazilian institution CAPES; Brazilian institution FAPERGS FX We thank the referee, Martin Gaskell, for the careful reading of the manuscript and his thoughtful comments. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). J.S.S. and T. S. B. acknowledge the Brazilian institutions CNPq, CAPES, and FAPERGS for partial support. NR 36 TC 3 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 145 DI 10.1088/0004-637X/748/2/145 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200073 ER PT J AU Turner, NJ Choukroun, M Castillo-Rogez, J Bryden, G AF Turner, N. J. Choukroun, M. Castillo-Rogez, J. Bryden, G. TI A HOT GAP AROUND JUPITER'S ORBIT IN THE SOLAR NEBULA SO ASTROPHYSICAL JOURNAL LA English DT Article DE protoplanetary disks; radiative transfer ID GIANT PLANET FORMATION; MAIN-SEQUENCE TRACKS; PROTOSTELLAR DISKS; ACCRETION DISKS; ICE; SYSTEM; INSTABILITY; SATELLITES; ENRICHMENT; ELEMENTS AB The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically thin gap in the nebula. Using Monte Carlo radiative transfer calculations, we show that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much farther from the star or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids. C1 [Turner, N. J.; Choukroun, M.; Castillo-Rogez, J.; Bryden, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Turner, NJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM neal.turner@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU National Aeronautics and Space Administration [07-OPR07-0065]; JPL FX We thank T. Hosokawa and H. Yorke for discussions regarding protostellar evolution. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The project was supported by the JPL Research & Technology Development program, and by the NASA Outer Planets Research program under grant 07-OPR07-0065 to N.J.T. NR 64 TC 13 Z9 13 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 92 DI 10.1088/0004-637X/748/2/92 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200020 ER PT J AU Young, M Brandt, WN Xue, YQ Paolillo, M Alexander, DM Bauer, FE Lehmer, BD Luo, B Shemmer, O Schneider, DP Vignali, C AF Young, M. Brandt, W. N. Xue, Y. Q. Paolillo, M. Alexander, D. M. Bauer, F. E. Lehmer, B. D. Luo, B. Shemmer, O. Schneider, D. P. Vignali, C. TI VARIABILITY-SELECTED LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI IN THE 4 Ms CHANDRA DEEP FIELD-SOUTH SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; X-rays: galaxies ID X-RAY VARIABILITY; BLACK-HOLE MASS; SPECTRAL ENERGY-DISTRIBUTIONS; XMM-NEWTON OBSERVATION; SEYFERT 1 GALAXIES; YALE-CHILE MUSYC; STELLAR-MASS; OPTICAL SPECTROSCOPY; HOST GALAXIES; MULTIWAVELENGTH SURVEY AB The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGNs). However, cosmologically distant low-luminosity AGNs (LLAGNs) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X-ray variability (similar to month-years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts z approximate to 0.08-1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole (SMBH). The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(stack) approximate to 1.93 +/- 0.13, and are therefore likely LLAGNs. The LLAGNs tend to lie a factor of approximate to 6-80 below the extrapolated linear variability-luminosity relation measured for luminous AGNs. This may be explained by their lower accretion rates. Variability-independent black hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs. C1 [Young, M.; Brandt, W. N.; Xue, Y. Q.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Young, M.; Brandt, W. N.; Xue, Y. Q.; Schneider, D. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Paolillo, M.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Luo, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Shemmer, O.] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Vignali, C.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. RP Young, M (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. RI Paolillo, Maurizio/J-1733-2012; Vignali, Cristian/J-4974-2012; Brandt, William/N-2844-2015; OI Paolillo, Maurizio/0000-0003-4210-7693; Vignali, Cristian/0000-0002-8853-9611; Brandt, William/0000-0002-0167-2453; Shemmer, Ohad/0000-0003-4327-1460; Alexander, David/0000-0002-5896-6313 FU NASA ADP [NNX10AC99G]; Chandra X-ray Center [SP1-12007A]; Italian MIUR; Programa de Financiamiento Basal; CONICYT-Chile [FONDECYT 1101024, ALMA-CONICYT 31100004, FONDAP-CATA 15010003]; Einstein Fellowship Program; Science and Technology Facilities Council (STFC) FX We thank P. Uttley, E. Feigelson, and C. Saez for helpful discussions on variability statistics. We also thank M. Gilfanov for helpful discussions regarding XRB variability. We thank the referee for constructive comments. We acknowledge the financial support of NASA ADP grant NNX10AC99G (M.Y., W.N.B., and Y.Q.X.) and Chandra X-ray Center grant SP1-12007A (W.N.B. and Y.Q.X.). M. P. acknowledges support from PRIN-2009 by the Italian MIUR. F. E. B. acknowledges support from Programa de Financiamiento Basal and CONICYT-Chile under grants FONDECYT 1101024, ALMA-CONICYT 31100004, and FONDAP-CATA 15010003. B. D. L. acknowledges financial support provided by the Einstein Fellowship Program. D. M. A. thanks the Science and Technology Facilities Council (STFC) for support. NR 116 TC 25 Z9 25 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 124 DI 10.1088/0004-637X/748/2/124 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200052 ER PT J AU Zhang, BB Burrows, DN Zhang, B Meszaros, P Wang, XY Stratta, G D'Elia, V Frederiks, D Golenetskii, S Cummings, JR Norris, JP Falcone, AD Barthelmy, SD Gehrels, N AF Zhang, Bin-Bin Burrows, David N. Zhang, Bing Meszaros, Peter Wang, Xiang-Yu Stratta, Giulia D'Elia, Valerio Frederiks, Dmitry Golenetskii, Sergey Cummings, Jay R. Norris, Jay P. Falcone, Abraham D. Barthelmy, Scott D. Gehrels, Neil TI UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID GAMMA-RAY BURSTS; CANONICAL LIGHT CURVES; INTERNAL-SHOCK MODEL; COMPREHENSIVE ANALYSIS; PRECURSOR ACTIVITY; ACCRETION DISKS; OPTICAL FLASH; SPECTRAL LAGS; NEUTRON-STAR; BLACK-HOLES AB The double burst, GRB 110709B, triggered the Swift/Burst Alert Telescope (BAT) twice at 21:32:39 UT and 21:43:45 UT, respectively, on 2011 July 9. This is the first time we observed a gamma-ray burst (GRB) with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system. C1 [Zhang, Bin-Bin; Burrows, David N.; Meszaros, Peter; Falcone, Abraham D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Zhang, Bing] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Meszaros, Peter] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Wang, Xiang-Yu] Nanjing Univ, Dept Astron, Nanjing 210093, Jiangsu, Peoples R China. [Wang, Xiang-Yu] Nanjing Univ, Key Lab Modern Astron & Astrophys, Minist Educ, Nanjing 210093, Jiangsu, Peoples R China. [Stratta, Giulia; D'Elia, Valerio] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Stratta, Giulia; D'Elia, Valerio] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frederiks, Dmitry; Golenetskii, Sergey] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia. [Cummings, Jay R.; Barthelmy, Scott D.; Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cummings, Jay R.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Norris, Jay P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. RP Zhang, BB (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM bbzhang@psu.edu RI Frederiks, Dmitry/C-7612-2014; Golenetskii, Sergey/B-3818-2015; Zhang, Binbin/C-9035-2013; Stratta, Maria Giuliana/L-3045-2016; Barthelmy, Scott/D-2943-2012; OI Zhang, Binbin/0000-0003-2002-116X; Stratta, Maria Giuliana/0000-0003-1055-7980; Frederiks, Dmitry/0000-0002-1153-6340; D'Elia, Valerio/0000-0002-7320-5862 FU NASA [SAO SV4-74018, NAS5-00136, NNX08AL40G, NNX10AD48G]; NSF [PHY-0757155, AST-0908362]; ASI [I/009/10/0]; NSFC [10973008]; 973 program [2009CB824800]; Russian Space Agency; Russian Foundation for Basic Research [09-02-00166, 11-02-12082] FX We thank John Nousek, Judith L. Racusin, Alexander J. Van Der Horst, Peter Veres, Hao-Ning He, Mark Walker, Davide Burlon, David Gruber, Eveline Helder, Jonathan Gelbord, Zach Prieskorn, En-Wei Liang, Suk Yee Yong, and Fuwen Zhang for helpful comments. This work is partially supported by the following grants: NASA SAO SV4-74018 (B.B.Z.), NASA NAS5-00136 (D.N.B.), NASA NNX08AL40G (P. M.), NSF PHY-0757155 (P. M.), NSF AST-0908362 (B.Z.), NASA NNX10AD48G (B.Z.), ASI grants I/009/10/0 (G. S.), NSFC 10973008 (X.Y.W.), and the 973 program 2009CB824800 (X.Y.W.). The Konus-WIND experiment is supported by the Russian Space Agency and the Russian Foundation for Basic Research (grants 09-02-00166 and 11-02-12082). NR 88 TC 12 Z9 12 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2012 VL 748 IS 2 AR 132 DI 10.1088/0004-637X/748/2/132 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916WZ UT WOS:000302135200060 ER PT J AU Rodriguez, E Toledano, C Cachorro, V de Leeuw, G De Frutos, A Gausa, M Holben, B AF Rodriguez, E. Toledano, C. Cachorro, V. de Leeuw, G. De Frutos, A. Gausa, M. Holben, B. TI Comparison of aerosol optical properties at the sub-arctic stations ALOMAR-Andenes, Abisko and Sodankyla in late spring and summer 2007 SO ATMOSPHERIC RESEARCH LA English DT Article DE Arctic aerosol; Sun photometer; Aerosol optical depth; Angstrom Exponent ID DEPTH; AERONET; TRENDS; CLASSIFICATION; TRAJECTORIES; CLIMATOLOGY; VARIABILITY; RADIANCE; SPAIN; HAZE AB Aerosol concentration and aerosol type, retrieved from observations with CIMEL sun-photometers at three sub-arctic locations at the Scandinavian Peninsula are presented. The observations were made at ALOMAR-Andenes in Norway, Abisko in Sweden and Sodankyla in Finland. This field campaign took place in late spring and summer 2007 as part of the activities of the International Polar Year (IPY) within the POLARCAT project at ALOMAR and Abisko. Aerosol properties were characterized using the relationship between the aerosol optical depth and the Angstrom Exponent. The characteristics of the predominant aerosol type and microphysics are largely determined by the location of the site (continental or coastal). During summer the fine mode particles dominate, as indicated by the fine mode volume fraction and the Angstrom Exponent. The aerosol concentration was on average very low, except during an event in which long-range transported aerosols (dust and pollution) were detected. (C) 2011 Elsevier B.V. All rights reserved. C1 [Rodriguez, E.; de Leeuw, G.] Finnish Meteorol Inst, Atmospher Radiat Grp, Climate Change Unit, FIN-00101 Helsinki, Finland. [Rodriguez, E.; Toledano, C.; Cachorro, V.; De Frutos, A.] Univ Valladolid, GOA Grp Atmospher Opt, E-47071 Valladolid, Spain. [de Leeuw, G.] Univ Helsinki, Dept Phys, Helsinki, Finland. [de Leeuw, G.] TNO Environm & Geosci, Dept Air Qual & Climate, Utrecht, Netherlands. [Gausa, M.] ALOMAR, Andenes, Norway. [Holben, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rodriguez, E (reprint author), Finnish Meteorol Inst, Atmospher Radiat Grp, Climate Change Unit, FIN-00101 Helsinki, Finland. EM edith.rodriguez@fmi.fi RI Toledano, Carlos/J-3672-2012; OI Toledano, Carlos/0000-0002-6890-6648; Cachorro, Victoria/0000-0002-4627-9444 FU ALOMAR eARI under EU [RITA-CT-2003-506208]; European Union [E05D050718CO]; PHOTONS FX We gratefully acknowledge the ALOMAR eARI (Enhanced Access to Research Infrastructure) Project under the EU's 6th framework program (RITA-CT-2003-506208) and the European Union Programme Al beta an of High Level Scholarships for Latin America, scholarship No. E05D050718CO. The projects CGL2008-05939-CO3-01/CLI and CGL 2008-01571-E of Spanish CICyT and GR-220 of Junta de Castilla y Leon. We are grateful to the Abisko team for the permission to install the Cimel and for collaborating with the data acquisition. Thanks are also due to B. Holben and the AERONET team for the data of Sodankyla site and PHOTONS for their general support. We also acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.html) used in this publication. We thank the GIOVANNI online data system, developed and maintained by the NASA GES DISC. (http://g0dup05u.ecs.nasa.gov/Giovanni/), for the analyses and visualizations used in this publication. NR 36 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD APR PY 2012 VL 107 BP 20 EP 30 DI 10.1016/j.atmosres.2011.12.003 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 921VZ UT WOS:000302507500003 ER PT J AU Gu, MF Beiersdorfer, P Brown, GV Graf, A Kelley, RL Kilbourne, CA Porter, FS Kahn, SM AF Gu, M. F. Beiersdorfer, P. Brown, G. V. Graf, A. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Kahn, S. M. TI Laboratory measurements of the dielectronic recombination satellite transitions of He-like Fe XXV and H-like Fe XXVI SO CANADIAN JOURNAL OF PHYSICS LA English DT Article ID HELIUM-LIKE IONS; OPTICALLY THIN PLASMAS; X-RAY SPECTROMETER; CHARGE-EXCHANGE; MICROCALORIMETER SPECTROMETER; RATE COEFFICIENTS; IRON SPECTRA; SPECTROSCOPY; EMISSION; LINES AB We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simulation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step for its application in X-ray astronomy. C1 [Beiersdorfer, P.; Brown, G. V.; Graf, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gu, M. F.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kahn, S. M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM beiersdorfer1@llnl.gov RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA APRA FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA APRA grants to Lawrence Livermore National Laboratory and Goddard Space Flight Center. NR 44 TC 6 Z9 6 U1 0 U2 10 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4204 EI 1208-6045 J9 CAN J PHYS JI Can. J. Phys. PD APR PY 2012 VL 90 IS 4 BP 351 EP 357 DI 10.1139/P2012-025 PG 7 WC Physics, Multidisciplinary SC Physics GA 925WS UT WOS:000302793400006 ER PT J AU Lall, P Vaidya, R More, V Goebel, K AF Lall, Pradeep Vaidya, Rahul More, Vikrant Goebel, Kai TI Assessment of Accrued Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermal Environments of Thermal Aging and Thermal Cycling SO IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY LA English DT Article DE Failure mechanisms; health management; leadfree solders; prognostics; reliability; remaining useful life; thermo-mechanics ID FAILURE-ENVELOPE APPROACH; SOLDER-JOINT RELIABILITY; FINE-PITCH BGAS; FEATURE-EXTRACTION; THERMOMECHANICAL LOADS; VIBRATION SURVIVABILITY; INTERMETALLIC COMPOUNDS; MECHANICAL-SHOCK; MODELING SHOCK; BOUNDARY-SCAN AB Electronic systems are often stored for long periods prior to deployment in the intended environment. Aging has been previously shown to effect the reliability and constitutive behavior of second-level leadfree interconnects. Deployed systems may be subjected to cyclic thermo-mechanical loads subsequent to deployment. Prognostication of accrued damage and assessment of residual life is extremely critical for ultrahigh reliability systems in which the cost of failure is too high. The presented methodology uses leading indicators of failure based on microstructural evolution of damage to identify impending failure in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. The methodology has been demonstrated on area-array ball-grid array test assemblies with Sn3Ag0.5Cu interconnects subjected to thermal aging at 125 degrees C and thermal cycling from -55 to 125 degrees C for various lengths of time and cycles. Damage equivalency methodologies have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. Assemblies have been prognosticated to assess the error with interrogation of system state and assessment of residual life. Prognostic metrics including alpha - lambda metric, sample standard deviation, mean square error, mean absolute percentage error, average bias, relative accuracy (RA), and cumulative RA have been used to compare the performance of the damage proxies. C1 [Lall, Pradeep; Vaidya, Rahul; More, Vikrant] Auburn Univ, Dept Mech Engn, NSF Ctr Adv Vehicle & Extreme Environm Elect, Auburn, AL 36849 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lall, P (reprint author), Auburn Univ, Dept Mech Engn, NSF Ctr Adv Vehicle & Extreme Environm Elect, Auburn, AL 36849 USA. EM lall@eng.auburn.edu; rcv0001@auburn.edu; vsm0003@auburn.edu; kai.f.goebel@nasa.gov NR 60 TC 3 Z9 3 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3950 J9 IEEE T COMP PACK MAN JI IEEE Trans. Compon. Pack. Manuf. Technol. PD APR PY 2012 VL 2 IS 4 BP 634 EP 649 DI 10.1109/TCPMT.2011.2176491 PG 16 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 922GJ UT WOS:000302534900012 ER PT J AU Bernard, K Tarabalka, Y Angulo, J Chanussot, J Benediktsson, JA AF Bernard, Kevin Tarabalka, Yuliya Angulo, Jesus Chanussot, Jocelyn Benediktsson, Jon Atli TI Spectral-Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach SO IEEE TRANSACTIONS ON IMAGE PROCESSING LA English DT Article DE Classification; hyperspectral image; marker selection; minimum spanning forest (MSF); multiple classifiers; stochastic ID SUPPORT VECTOR MACHINES; IMAGE CLASSIFICATION; MORPHOLOGICAL SEGMENTATION; PATTERN-RECOGNITION; NEURAL-NETWORKS; INFORMATION; MULTISOURCE; SIMILARITY AB In this paper, a new method for supervised hyperspectral data classification is proposed. In particular, the notion of stochastic minimum spanning forest (MSF) is introduced. For a given hyperspectral image, a pixelwise classification is first performed. From this classification map, M marker maps are generated by randomly selecting pixels and labeling them as markers for the construction of MSFs. The next step consists in building an MSF from each of the M marker maps. Finally, all the M realizations are aggregated with a maximum vote decision rule in order to build the final classification map. The proposed method is tested on three different data sets of hyperspectral airborne images with different resolutions and contexts. The influences of the number of markers and of the number of realizations M on the results are investigated in experiments. The performance of the proposed method is compared to several classification techniques (both pixelwise and spectral-spatial) using standard quantitative criteria and visual qualitative evaluation. C1 [Bernard, Kevin; Benediktsson, Jon Atli] Univ Iceland, IS-101 Reykjavik, Iceland. [Bernard, Kevin] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland. [Tarabalka, Yuliya] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angulo, Jesus] Ecole Mines Paris Mines ParisTech, Dept Math & Syst, Ctr Math Morphol, F-77305 Fontainebleau, France. [Chanussot, Jocelyn] Grenoble Inst Technol, Grenoble Images Speech Signals & Automat Lab, F-38402 St Martin Dheres, France. RP Bernard, K (reprint author), Univ Iceland, IS-101 Reykjavik, Iceland. RI Benediktsson, Jon/F-2861-2010 OI Benediktsson, Jon/0000-0003-0621-9647 FU University of Iceland FX Manuscript received April 06, 2011; revised August 11, 2011; accepted October 21, 2011. Date of publication November 11, 2011; date of current version March 21, 2012. This research was supported in part by the Research Fund of the University of Iceland. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Yongyi Yang. NR 58 TC 53 Z9 56 U1 2 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7149 J9 IEEE T IMAGE PROCESS JI IEEE Trans. Image Process. PD APR PY 2012 VL 21 IS 4 BP 2008 EP 2021 DI 10.1109/TIP.2011.2175741 PG 14 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 917MP UT WOS:000302181800046 PM 22086502 ER PT J AU Taori, A Kamalakar, V Raghunath, K Rao, SVB Russell, JM AF Taori, A. Kamalakar, V. Raghunath, K. Rao, S. V. B. Russell, J. M., III TI Simultaneous Rayleigh lidar and airglow measurements of middle atmospheric waves over low latitudes in India SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Airglow; Mesosphere; Gravity wave ID MESOSPHERIC GRAVITY-WAVES; METEOR RADAR; SPREADFEX CAMPAIGN; OH-EMISSION; FLUCTUATIONS; CHEMISTRIES; RESPONSES; DRIVEN; REGION AB We utilize simultaneous Rayleigh lidar and mesospheric OH and O-2 airglow measurements to identify the dominant and propagating waves within 40-95 km altitude regions over a low latitude station Gadanki (13.8 degrees N. 79.2 degrees E). It is found that waves with 0.4-0.6 h periodicity are common throughout the altitude range of 40-95 km with significant amplitudes. The ground based temperature measurements with lidar and airglow monitoring are found to compare well with SABER data. With simultaneous Rayleigh lidar (temperature) and mesospheric airglow (emission intensity and temperature) measurements, we estimate the amplitude growth and Krassovsky parameters to characterize the propagation and dissipation of these upward propagating waves. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Taori, A.; Raghunath, K.] Natl Atmospher Res Lab, Gadanki, India. [Kamalakar, V.; Rao, S. V. B.] SV Univ, Dept Phys, Tirupati, Andhra Pradesh, India. [Russell, J. M., III] NASA, Sci Miss Directorate, Langley Res Ctr, Hampton, VA USA. RP Taori, A (reprint author), Natl Atmospher Res Lab, Gadanki, India. EM alok.taori@gmail.com RI Marin, Carmen/F-3528-2013; OI Vijaya Bhaskara Rao, Sarangam/0000-0002-8755-027X FU Dept. of Space, Govt. of India FX This work is supported by Dept. of Space, Govt. of India and the investigations are carried out as a part of SAFAR program of NARL, Gadanki and CAWSES India-Phase II theme 3 initiatives. NR 39 TC 6 Z9 6 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD APR PY 2012 VL 78-79 SI SI BP 62 EP 69 DI 10.1016/j.jastp.2011.06.012 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 922YX UT WOS:000302586000009 ER PT J AU Munchak, SJ Kummerow, CD Elsaesser, G AF Munchak, S. Joseph Kummerow, Christian D. Elsaesser, Gregory TI Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMM SO JOURNAL OF CLIMATE LA English DT Article ID PRECIPITATION RADAR; PART I; PROFILING ALGORITHM; OPTICAL-THICKNESS; CONCEPTUAL-MODEL; AIR-POLLUTION; RAINFALL; SPECTRA; REGIMES; TROPICS AB Raindrop size distribution (DSD) retrievals from two years of data gathered by the Tropical Rainfall Measuring Mission (TRMM) satellite and processed with a combined radar-radiometer algorithm over the oceans equatorward of 35 degrees are examined for relationships with variables describing properties of the vertical precipitation profile, mesoscale organization, and background environment. In general, higher freezing levels and relative humidities (tropical environments) are associated with smaller reflectivity-normalized median drop size (epsilon(DSD)) than in the extratropics. Within the tropics, the smallest epsilon(DSD) values are found in large, shallow convective systems where warm rain formation processes are thought to be predominant, whereas larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest epsilon(DSD) values are found in the scattered convection that occurs when cold, dry continental air moves over the much warmer ocean after the passage of a cold front. These relationships are formally attributed to variables describing the large-scale environment, mesoscale organization, and profile characteristics via principal component (PC) analysis. The leading three PCs account for 23% of the variance in epsilon(DSD) at the individual profile level and 45% of the variance in 1 degrees-gridded mean values. The geographical distribution of epsilon(DSD) is consistent with many of the observed regional reflectivity-rainfall (Z-R) relationships found in the literature as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In particular, midlatitude and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Ocean intertropical convergence zone. C1 [Munchak, S. Joseph] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Munchak, S. Joseph] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Kummerow, Christian D.; Elsaesser, Gregory] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Munchak, SJ (reprint author), NASA, Atmospheres Lab, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM s.j.munchak@nasa.gov FU NASA; [NNX10AG75G] FX We thank two anonymous reviewers and Dr. Matthias Steiner for critical comments that helped improve this work. This research was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program under Dr. Ming-Ying Wei and NASA Precipitation Measurement Missions under Dr. Ramesh Kakar. Additional funds for publication were provided by Grant NNX10AG75G. NR 63 TC 5 Z9 5 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD APR PY 2012 VL 25 IS 8 BP 2963 EP 2978 DI 10.1175/JCLI-D-11-00274.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 925UN UT WOS:000302787300022 ER PT J AU Kinsey, JS Timko, MT Herndon, SC Wood, EC Yu, ZH Miake-Lye, RC Lobo, P Whitefield, P Hagen, D Wey, C Anderson, BE Beyersdorf, AJ Hudgins, CH Thornhill, KL Winstead, E Howard, R Bulzan, DI Tacina, KB Knighton, WB AF Kinsey, John S. Timko, Michael T. Herndon, Scott C. Wood, Ezra C. Yu, Zhenhong Miake-Lye, Richard C. Lobo, Prem Whitefield, Philip Hagen, Donald Wey, Changlie Anderson, Bruce E. Beyersdorf, Andreas J. Hudgins, Charles H. Thornhill, K. Lee Winstead, Edward Howard, Robert Bulzan, Dan I. Tacina, Kathleen B. Knighton, W. Berk TI Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX) SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID HYDROCARBON EMISSIONS; JET FUEL; ENGINE; SPECIATION; EXHAUST; FLAMES AB The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2), total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number black carbon, and speciated PM In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5 x 10(15) to 5 x 10(15) particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of similar to 90% for SO2 and particle mass EIs and similar to 60% for the particle number El, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of similar to 5 as compared with JP-8. Implications: The results of this research show that APUs can be, depending on the level of fuel usage, an important source of air pollutant emissions at major airports in urban areas. Substantial decreases in emissions can also be achieved through the use of Fischer Tropsch (FT) fuel. Based on these results, the use of FT fuel could be a viable future control strategy for both gas- and particle-phase air pollutants. Supplemental Data: Supplemental data is available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for information on the test participants, description of the APU, fuel composition, sampling probes and instrumentation, test matrix, benzene to formaldehyde ratios, and speciated emissions by particle size. C1 [Kinsey, John S.] US EPA, Off Res & Dev, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Timko, Michael T.; Herndon, Scott C.; Wood, Ezra C.; Yu, Zhenhong; Miake-Lye, Richard C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Hagen, Donald] Missouri Univ Sci & Technol, Ctr Excellence Aerosp Particulate Emiss Reduct Re, Cloud & Aerosol Sci Lab, Rolla, MO USA. [Wey, Changlie] NASA, ASRC Aerosp Corp, John Glenn Res Ctr, Cleveland, OH USA. [Anderson, Bruce E.; Beyersdorf, Andreas J.] NASA, Langley Res Ctr, Chem & Dynam Branch, Sci Directorate, Hampton, VA 23665 USA. [Hudgins, Charles H.; Thornhill, K. Lee; Winstead, Edward] Sci Syst & Applicat Inc, Hampton, VA USA. [Howard, Robert] USAF, Arnold Engn Dev Ctr, Aerosp Testing Alliance, Arnold AFB, TN USA. [Knighton, W. Berk] Montana State Univ, Dept Chem, Bozeman, MT 59717 USA. [Bulzan, Dan I.; Tacina, Kathleen B.] NASA, Combust Branch, John Glenn Res Ctr, Cleveland, OH USA. [Miake-Lye, Richard C.] Ctr AeroThermodynam, Billerica, MA 01821 USA. RP Kinsey, JS (reprint author), US EPA, Off Res & Dev, Natl Risk Management Res Lab, MD E343-02,109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. RI Kinsey, John/A-8335-2009; Beyersdorf, Andreas/N-1247-2013; Lobo, Prem/E-8860-2013 OI Lobo, Prem/0000-0003-0626-6646 FU Federal Aviation Administration (FAA); FAA/NASA/Transport Canada [07-C-NE-UMR]; NASA [NNC07CB57C] FX MST and Aerodyne were funded by the Federal Aviation Administration (FAA) through the Partnership for AiR Transportation for Noise and Emissions Reduction (PARTNER), an FAA/NASA/Transport Canada sponsored Center of Excellence, under Grant No. 07-C-NE-UMR Amendments 006 and 007 (Carl Ma, project manager). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the FAA. In addition, the Aerodyne PM measurements were supported through NASA Contract No. NNC07CB57C. NR 27 TC 11 Z9 11 U1 4 U2 24 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1096-2247 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD APR PY 2012 VL 62 IS 4 BP 420 EP 430 DI 10.1080/10473289.2012.655884 PG 11 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 921UW UT WOS:000302504500006 PM 22616284 ER PT J AU Busch, S Hatridge, M Mossle, M Myers, W Wong, T Muck, M Chew, K Kuchinsky, K Simko, J Clarke, J AF Busch, Sarah Hatridge, Michael Moessle, Michael Myers, Whittier Wong, Travis Mueck, Michael Chew, Kevin Kuchinsky, Kyle Simko, Jeffry Clarke, John TI Measurements of T1-relaxation in ex vivo prostate tissue at 132 mu T SO MAGNETIC RESONANCE IN MEDICINE LA English DT Article DE prostate cancer; T1 contrast; T1 map; microtesla MRI; SQUID ID MICROTESLA MAGNETIC-FIELDS; MRI; CANCER; LOCALIZATION; CARCINOMA; METAL AB The proton T1 was measured at 132 mu T in ex vivo prostate tissue specimens from radical prostatectomies of 35 patients with prostate cancer. Each patient provided two specimens. The NMR and MRI measurements involved proton repolarization, a field of typically 150 mT and detection of the 5.6-kHz signal with a superconducting quantum interference device. Values of T1 varied from 41 to 86 ms. Subsequently, the percentages of tissue types were determined histologically. The theoretical image contrast is quantified for each case by d = [1 T1(more cancer)/T1(less cancer)]. A linear fit of d versus difference in percentage cancer yields T1 (100% cancer)/T1 (0% cancer) = 0.70 +/- 0.05 with correlation coefficient R2 = 0.30. Two-dimensional T1 maps for four specimens demonstrate variation within a single specimen. These results suggest that MR images with T1 contrast established at ultra-low fields may discriminate prostate cancer from normal prostate tissue in vivo without a contrast agent. Magn Reson Med, 2012. (C) 2012 Wiley Periodicals, Inc. C1 [Busch, Sarah; Hatridge, Michael; Moessle, Michael; Myers, Whittier; Wong, Travis; Clarke, John] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Busch, Sarah; Hatridge, Michael; Moessle, Michael; Myers, Whittier; Wong, Travis; Clarke, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mueck, Michael] Univ Giessen, Dept Phys, Giessen, Germany. [Chew, Kevin; Kuchinsky, Kyle; Simko, Jeffry] Univ Calif San Francisco, Dept Anat Pathol, San Francisco, CA 94143 USA. [Simko, Jeffry] Univ Calif San Francisco, Dept Urol, San Francisco, CA USA. RP Busch, S (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 662, Greenbelt, MD 20771 USA. EM sebusch@gmail.com FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [AC02-05CH11231]; National Institutes of Health [5R21CA133338, P50 CA89520] FX Grant sponsor for the development of the ULF MRI technique: Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy; Grant number: DE-AC02-05CH11231; Grant sponsor: National Institutes of Health; Grant number: 5R21CA133338; Grant sponsor for Dr. Simko's participation: National Institutes of Health; Grant number: P50 CA89520. NR 29 TC 21 Z9 21 U1 1 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0740-3194 J9 MAGN RESON MED JI Magn. Reson. Med. PD APR PY 2012 VL 67 IS 4 BP 1138 EP 1145 DI 10.1002/mrm.24177 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 909AF UT WOS:000301533500029 PM 22294500 ER PT J AU Bielewicz, P Banday, AJ Gorski, KM AF Bielewicz, P. Banday, A. J. Gorski, K. M. TI Constraining the topology of the Universe using the polarized cosmic microwave background maps SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; cosmic background radiation; cosmology: observations ID PROBE WMAP OBSERVATIONS; SKY ANALYSIS; ANISOTROPY; CIRCLES AB We study the possibility for constraining the topology of the Universe by means of the matched circles statistic applied to polarized cosmic microwave background (CMB) anisotropy maps. The advantages of using the CMB polarization maps in studies of the topology over simply analysing the temperature data as has been done to date are clearly demonstrated. We test our algorithm to search for pairs of matched circles on simulated CMB maps for a universe with the topology of a 3-torus. It is found that the noise levels of both Planck and next generation CMB experiment data are no longer prohibitive and should be low enough to enable the use of the polarization maps for such studies. For such experiments, the minimum radius of the back-to-back matched circles which can be detected is determined. We also show that the polarization generated after reionization does not have an impact on the detectability of the matched circles. C1 [Bielewicz, P.; Banday, A. J.] Univ Toulouse UPS OMP, Inst Rech Astrophys & Planetol, Toulouse, France. [Bielewicz, P.; Banday, A. J.] CNRS, UMR 5277, F-31028 Toulouse 4, France. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Gorski, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bielewicz, P (reprint author), Univ Toulouse UPS OMP, Inst Rech Astrophys & Planetol, Toulouse, France. EM Pawel.Bielewicz@irap.omp.eu NR 33 TC 7 Z9 7 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 2 BP 1064 EP 1072 DI 10.1111/j.1365-2966.2011.20371.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924MJ UT WOS:000302695600011 ER PT J AU Voigt, LM Bridle, SL Amara, A Cropper, M Kitching, TD Massey, R Rhodes, J Schrabback, T AF Voigt, L. M. Bridle, S. L. Amara, A. Cropper, M. Kitching, T. D. Massey, R. Rhodes, J. Schrabback, T. TI The impact of galaxy colour gradients on cosmic shear measurement SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; cosmology: observations; large scale structure of Universe ID IMAGE-ANALYSIS COMPETITION; WEAK-LENSING TOMOGRAPHY; DEEP GROTH STRIP; INTRINSIC ALIGNMENTS; GREAT08 CHALLENGE; SYSTEMATIC-ERRORS; SELF-CALIBRATION; POWER SPECTRA; DARK ENERGY; REQUIREMENTS AB Cosmic shear has been identified as the method with the most potential to constrain dark energy. To capitalize on this potential, it is necessary to measure galaxy shapes with great accuracy, which in turn requires a detailed model for the image blurring by the telescope and atmosphere, the point spread function (PSF). In general, the PSF varies with wavelength and therefore the PSF integrated over an observing filter depends on the spectrum of the object. For a typical galaxy the spectrum varies across the galaxy image, thus the PSF depends on the position within the image. We estimate the bias on the shear due to such colour gradients by modelling galaxies using two co-centred, co-elliptical Sersic profiles, each with a different spectrum. We estimate the effect of ignoring colour gradients and find the shear bias from a single galaxy can be very large depending on the properties of the galaxy. We find that halving the filter width reduces the shear bias by a factor of about 5. We show that, to the first order, tomographic cosmic shear two point statistics depend on the mean shear bias over the galaxy population at a given redshift. For a single broad filter, and averaging over a small galaxy catalogue from Simard et al., we find a mean shear bias which is subdominant to the predicted statistical errors for future cosmic shear surveys. However, the true mean shear bias may exceed the statistical errors, depending on how accurately the catalogue represents the observed distribution of galaxies in the cosmic shear survey. We then investigate the bias on the shear for two-filter imaging and find that the bias is reduced by at least an order of magnitude. Lastly, we find that it is possible to calibrate galaxies for which colour gradients were ignored using two-filter imaging of a fair sample of noisy galaxies, if the galaxy model is known. For a signal-to-noise ratio of 25 the number of galaxies required in each tomographic redshift bin is of the order of 10(4). C1 [Voigt, L. M.; Bridle, S. L.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Amara, A.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Cropper, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Kitching, T. D.; Massey, R.] Univ Edinburgh, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rhodes, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, J.] CALTECH, Pasadena, CA 91125 USA. [Schrabback, T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Voigt, LM (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM lvoigt@star.ucl.ac.uk FU STFC; Royal Society; European Research Council; RAS; Jet Propulsion Laboratory; NSF [AST-0444059-001]; Smithsonian Astrophysics Observatory [GO0-11147A] FX We are grateful to Lance Miller, Gary Bernstein, Catherine Heymans, Henk Hoekstra, Stefano Andreon, Eduardo Cypriano, Marcella Carollo, Ignacio Ferreras, Ewan Cameron, Alexandre Refregier, Michael Seiffert, Kevin Bundy, Stephane Paulin-Henrikkson, Anais Rassat, Donnacha Kirk, Ole Host, Filipe Abdalla, Ofer Lahav, Chris Hirata and Sam Thompson for helpful discussions. LMV acknowledges support from the STFC. SLB thanks the Royal Society for support in the form of a University Research Fellowship and the European Research Council for support in the form of a Starting Grant. TDK is supported by a RAS 2010 Fellowship. RJM thanks STFC for support in the form of an Advanced Fellowship. JR was supported by the Jet Propulsion Laboratory, operated by the California Institute of Technology under a contract for NASA. TS acknowledges support from NSF through grant AST-0444059-001, and the Smithsonian Astrophysics Observatory through grant GO0-11147A. NR 51 TC 20 Z9 20 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2012 VL 421 IS 2 BP 1385 EP 1398 DI 10.1111/j.1365-2966.2011.20395.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924MJ UT WOS:000302695600037 ER PT J AU Booth, JF Thompson, L Patoux, J Kelly, KA AF Booth, James F. Thompson, Luanne Patoux, Jerome Kelly, Kathryn A. TI Sensitivity of Midlatitude Storm Intensification to Perturbations in the Sea Surface Temperature near the Gulf Stream SO MONTHLY WEATHER REVIEW LA English DT Article ID LATENT-HEAT RELEASE; TROPOSPHERIC POTENTIAL VORTICITY; BOUNDARY-LAYER FRICTION; OBSERVING PERIOD ONE; ERICA IOP-5 STORM; EXTRATROPICAL CYCLONES; PART I; CONVECTIVE PARAMETERIZATION; INDUCED BAROCLINICITY; DYNAMICAL ROLE AB The Gulf Stream region is a primary location for midlatitude storm cyclogenesis and growth. However, the influence of sea surface temperature (SST) on storms in the region is still under question, particularly after a storm has developed. Using the Weather Research and Forecasting (WRF) model, a storm that intensified as it transited northward across the Gulf Stream is simulated multiple times using different SST boundary conditions. These experiments test the storm response to changes in both the absolute value of the SST and the meridional SST gradient. Across the different simulations, the storm strength increases monotonically with the magnitude of the SST perturbations, even when the perturbations weaken the SST gradient. The storm response to the SST perturbations is driven by the latent heat release in the storm warm conveyor belt (WCB). During the late stages of development, the surface fluxes under the storm warm sector regulate the supply of heat and moisture to the WCB. This allows the surface fluxes to govern late-stage intensification and control the storm SST sensitivity. The storm warm front also responds to the SST perturbations; however, the response is independent of that of the storm central pressure. These modeling results suggest that the SST beneath the storm can have just as important a role as the SST gradients in local forcing of the storm. C1 [Booth, James F.; Patoux, Jerome] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Thompson, Luanne] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Kelly, Kathryn A.] Univ Washington, Appl Phys Lab, Seattle, WA 98195 USA. RP Booth, JF (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, NASA Goddard Inst Space Studies, 200 SW Mudd Bldg,MC 4701,500 W 120th St, New York, NY 10027 USA. EM jfb2130@columbia.edu FU NASA's Ocean Vector Winds Science Team [1285662] FX We thank Mark Stoelinga, Nick Bond, Olivier Pauluis, and Rick Steed for useful conversations on this topic. We thank the reviewers and David Schultz for their suggestions, which greatly improved the experimental design and the organization of the paper. This research was sponsored by NASA's Ocean Vector Winds Science Team, under Contract 1285662 between the University of Washington and the Jet Propulsion Laboratory. NR 55 TC 24 Z9 24 U1 0 U2 22 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD APR PY 2012 VL 140 IS 4 BP 1241 EP 1256 DI 10.1175/MWR-D-11-00195.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 920ZS UT WOS:000302448400013 ER PT J AU Pagli, C Wright, TJ Ebinger, CJ Yun, SH Cann, JR Barnie, T Ayele, A AF Pagli, Carolina Wright, Tim J. Ebinger, Cynthia J. Yun, Sang-Ho Cann, Johnson R. Barnie, Talfan Ayele, Atalay TI Shallow axial magma chamber at the slow-spreading Erta Ale Ridge SO NATURE GEOSCIENCE LA English DT Article ID EAST PACIFIC RISE; SATELLITE RADAR; SEISMIC STRUCTURE; GPS MEASUREMENTS; AFAR; INTERFEROMETRY; DEFORMATION; CONSTRAINTS; EARTHQUAKE; CENTERS AB The existence of elongated, shallow magma chambers beneath the axes of fast-spreading mid-ocean ridges is well established(1-8). Yet, at slow-spreading ridges such shallow and elongated magma chambers are much less evident(9,10). Simple thermal models(8) therefore predict that spreading velocity and magma supply may provide the main controls on magma-chamber depth and morphology. Here we use interferometric synthetic aperture radar data to investigate the dynamics of the magma chamber beneath the slow-spreading Erta Ale segment of the Ethiopian Rift. We show that an eruption from Alu-Dalafilla in November 2008 was sourced from a shallow, 1 km deep, elongated magma chamber that is divided into two segments. The eruption was probably triggered by a small influx of magma into the northern segment. Both segments of the magma chamber fed the main eruption through a connecting dyke and both segments have been refilling rapidly since the eruption ended. Our results support the presence of independent sources of magma supply to segmented chambers located along the axes of spreading centres(11). However, the existence of a shallow, elongated axial chamber at Erta Ale indicates that spreading rate and magma supply may not be the only controls on magma-chamber characteristics. C1 [Pagli, Carolina; Wright, Tim J.; Cann, Johnson R.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Ebinger, Cynthia J.] Univ Rochester, Dept Earth & Environm Sci, Rochester, NY 14627 USA. [Yun, Sang-Ho] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Barnie, Talfan] Univ Cambridge, Dept Geog, Cambridge CB2 3EN, England. [Ayele, Atalay] Univ Addis Ababa, Inst Geophys Space Sci & Astron, Addis Ababa, Ethiopia. RP Pagli, C (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. EM C.Pagli@leeds.ac.uk RI Wright, Tim/A-5892-2011; Pagli, Carolina/K-2145-2013; OI Wright, Tim/0000-0001-8338-5935; Pagli, Carolina/0000-0002-9072-3004 FU Natural Environment Research Council [NE/D008611/1, NE/D01039X/1, NE/E007414/1]; National Science Foundation [EAR-0635789, EAR-0613651]; Royal Society; National Aeronautics and Space Administration FX Our work is supported by Natural Environment Research Council grants NE/D008611/1, NE/D01039X/1 and NE/E007414/1, National Science Foundation grants EAR-0635789 and EAR-0613651 and a Royal Society University Research Fellowship to T.J.W. We are grateful to D. Keir for the help in analysing the seismicity. SAR data copyright ESA from CAT 1 3435. Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. ALOS PALSAR data were provided by Alaska Satellite Facility and the ownership belongs to METI (Ministry of Economy, Trade and Industry) and the Japan Aerospace Exploration Agency. NR 30 TC 38 Z9 39 U1 2 U2 40 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD APR PY 2012 VL 5 IS 4 BP 284 EP 288 DI 10.1038/NGEO1414 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 918YU UT WOS:000302288400018 ER PT J AU Holman, GD AF Holman, Gordon D. TI SOLAR eruptive events SO PHYSICS TODAY LA English DT Article ID MAGNETIC RECONNECTION; GAMMA-RAY; FLARE; RHESSI C1 NASAs Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD USA. RP Holman, GD (reprint author), NASAs Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD USA. NR 18 TC 8 Z9 8 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD APR PY 2012 VL 65 IS 4 BP 56 EP 61 PG 6 WC Physics, Multidisciplinary SC Physics GA 924DU UT WOS:000302672100017 ER PT J AU Zhang, FF Xu, HF Konishi, H Shelobolina, ES Roden, EE AF Zhang, Fangfu Xu, Huifang Konishi, Hiromi Shelobolina, Evgenya S. Roden, Eric E. TI Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite SO AMERICAN MINERALOGIST LA English DT Article DE Disordered dolomite; dolomite; extracellular polysaccharides; carboxymethyl cellulose; agar ID SULFATE-REDUCING BACTERIA; LOW-TEMPERATURE DOLOMITE; CALCIUM-CARBONATE; DIELECTRIC-CONSTANTS; ORGANOGENIC DOLOMITIZATION; MICROBIAL MEDIATION; ORGANIC-MATTER; SEA-WATER; PRECIPITATION; MAGNESIUM AB The origin of dolomite is a, long-standing enigma in sedimentary geology. It has been proposed that microorganisms, especially anaerobic microorganisms, can overcome kinetic barriers to facilitate dolomite precipitation, although their specific role in dolomite formation is still unclear. Our experimental results demonstrate that disordered dolomite can be synthesized at room temperature abiotically from solutions containing polysaccharides such as carboxymethyl cellulose or agar. We propose that when dissolved in solution, polysaccharides can be strongly adsorbed on Ca-Mg carbonate surfaces through hydrogen bonding. The adsorbed polysaccharides may help weaken the chemical bonding between surface Mg2+ ions and water molecules, which can lower the energy barrier to the desolvation of surface Mg2+-water complexes, enhance Mg2+ incorporation into the precipitating carbonate, and thereby promote disordered dolomite formation. In natural environments, it is possible that polysaccharides produced by microorganisms, e.g., extracellular polysaccharides, may play a key role in promoting disordered dolomite nucleation and crystallization. In marine sediments, the accumulated dissolved carbohydrates produced from organic matter degradation during early diagenesis may also serve as catalysts for disordered 'dolomite formation. C1 [Zhang, Fangfu; Xu, Huifang; Konishi, Hiromi; Shelobolina, Evgenya S.; Roden, Eric E.] Univ Wisconsin, NASA, Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. RP Zhang, FF (reprint author), Univ Wisconsin, NASA, Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu RI Zhang, Fangfu/B-4295-2014 OI Zhang, Fangfu/0000-0001-7550-9483 FU NASA Astrobiology Institute [N07-5489]; NSF [EAR-095800]; U.S. Department of Energy [DE-FG02-09ER16050]; Department of Geoscience, University of Wisconsin-Madison; ExxonMobil; Geological Society of America FX This work is supported by NASA Astrobiology Institute (N07-5489), NSF (EAR-095800), and U.S. Department of Energy (DE-FG02-09ER16050). We thank John Fournelle for providing the dolomite standard. Zhang thanks the Department of Geoscience, University of Wisconsin-Madison, and ExxonMobil for 2008 Summer Research Grant, and the Geological Society of America for a 2009 Graduate Research Grant. NR 86 TC 45 Z9 50 U1 1 U2 45 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD APR PY 2012 VL 97 IS 4 BP 556 EP 567 DI 10.2138/am.2012.3979 PG 12 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 917UP UT WOS:000302204400008 ER PT J AU Hoard, DW Ladjal, D Stencel, RE Howell, SB AF Hoard, D. W. Ladjal, D. Stencel, R. E. Howell, S. B. TI THE INVISIBLE MONSTER HAS TWO FACES: OBSERVATIONS OF epsilon AURIGAE WITH THE HERSCHEL SPACE OBSERVATORY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: eclipsing; circumstellar matter; stars: AGB and post-AGB; stars: individual (Epsilon Aurigae) ID ECLIPSE; SYSTEM; STARS; DUST; DISK AB We present Herschel Space Observatory photometric observations of the unique, long-period eclipsing binary star epsilon Aurigae. Its extended spectral energy distribution is consistent with our previously published cool (550 K) dust disk model. We also present an archival infrared spectral energy distribution of the side of the disk facing the bright F-type star in the binary, which is consistent with a warmer (1150 K) disk model. The lack of strong molecular emission features in the Herschel bands suggests that the disk has a low gas-to-dust ratio. The spectral energy distribution and Herschel images imply that the 250 GHz radio detection reported by Altenhoff et al. is likely contaminated by infrared-bright, extended background emission associated with a nearby nebular region and should be considered an upper limit to the true flux density of epsilon Aur. C1 [Hoard, D. W.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Ladjal, D.; Stencel, R. E.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Howell, S. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hoard, DW (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. FU NASA; NASA through JPL/Caltech; NSF FX This work is based on observations made with Herschel, an ESA Cornerstone Mission with significant participation by NASA, and with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We used data products from the Two Micron All Sky Survey, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and NSF, and utilized the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. We thank Sean Carey for a helpful discussion about MSX photometry. NR 16 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2012 VL 748 IS 2 AR L28 DI 10.1088/2041-8205/748/2/L28 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916SW UT WOS:000302124500010 ER PT J AU Muto, T Grady, CA Hashimoto, J Fukagawa, M Hornbeck, JB Sitko, M Russell, R Werren, C Cure, M Currie, T Ohashi, N Okamoto, Y Momose, M Honda, M Inutsuka, S Takeuchi, T Dong, R Abe, L Brandner, W Brandt, T Carson, J Egner, S Feldt, M Fukue, T Goto, M Guyon, O Hayano, Y Hayashi, M Hayashi, S Henning, T Hodapp, KW Ishii, M Iye, M Janson, M Kandori, R Knapp, GR Kudo, T Kusakabe, N Kuzuhara, M Matsuo, T Mayama, S McElwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suto, H Suzuki, R Takami, M Takato, N Terada, H Thalmann, C Tomono, D Turner, EL Watanabe, M Wisniewski, JP Yamada, T Takami, H Usuda, T Tamura, M AF Muto, T. Grady, C. A. Hashimoto, J. Fukagawa, M. Hornbeck, J. B. Sitko, M. Russell, R. Werren, C. Cure, M. Currie, T. Ohashi, N. Okamoto, Y. Momose, M. Honda, M. Inutsuka, S. Takeuchi, T. Dong, R. Abe, L. Brandner, W. Brandt, T. Carson, J. Egner, S. Feldt, M. Fukue, T. Goto, M. Guyon, O. Hayano, Y. Hayashi, M. Hayashi, S. Henning, T. Hodapp, K. W. Ishii, M. Iye, M. Janson, M. Kandori, R. Knapp, G. R. Kudo, T. Kusakabe, N. Kuzuhara, M. Matsuo, T. Mayama, S. McElwain, M. W. Miyama, S. Morino, J-, I Moro-Martin, A. Nishimura, T. Pyo, T-S Serabyn, E. Suto, H. Suzuki, R. Takami, M. Takato, N. Terada, H. Thalmann, C. Tomono, D. Turner, E. L. Watanabe, M. Wisniewski, J. P. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; instrumentation: high angular resolution; polarization; protoplanetary disks; stars: individual (SAO 206462, HD 135344B); waves ID INTERMEDIATE-MASS STARS; HERBIG AE STARS; PROTOPLANETARY DISK; CIRCUMSTELLAR DISKS; POLARIZED-LIGHT; PLANET; DUST; GAP; PROPAGATION; COROTATION AB We present high-resolution, H-band imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of a dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as 0 ''.2 (similar to 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.'' 5 (similar to 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h similar to 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelength observations. C1 [Muto, T.; Takeuchi, T.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Grady, C. A.] Eureka Sci, Oakland, CA 96002 USA. [Grady, C. A.; Currie, T.; McElwain, M. W.] NASA, Goddard Space Flight Ctr, ExoPlanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Grady, C. A.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Hashimoto, J.; Fukue, T.; Iye, M.; Kandori, R.; Kusakabe, N.; Kuzuhara, M.; Miyama, S.; Morino, J-, I; Suto, H.; Tamura, M.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Fukagawa, M.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Hornbeck, J. B.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Sitko, M.] Space Sci Inst, Boulder, CO 80301 USA. [Sitko, M.; Werren, C.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Russell, R.] Aerosp Corp, Los Angeles, CA 90009 USA. [Cure, M.] Univ Valparaiso, Dept Fis & Astron, Valparaiso, Chile. [Ohashi, N.; Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Ohashi, N.; Egner, S.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Kudo, T.; Nishimura, T.; Pyo, T-S; Takato, N.; Terada, H.; Tomono, D.; Takami, H.; Usuda, T.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Okamoto, Y.; Momose, M.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Honda, M.] Kanagawa Univ, Dept Informat Sci, Hiratsuka, Kanagawa 2591293, Japan. [Inutsuka, S.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Dong, R.; Brandt, T.; Janson, M.; Knapp, G. R.; Moro-Martin, A.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Abe, L.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR7293, F-06300 Nice, France. [Brandner, W.; Feldt, M.; Goto, M.; Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Carson, J.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Hayashi, M.] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Matsuo, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Mayama, S.] Grad Univ Adv Studies SOKENDAI, Hayama, Kanagawa 2400193, Japan. [Moro-Martin, A.] Inst Nacl Tecn Aeroespacial, Dept Astrofis, CAB INTA CSIC, Madrid 28850, Spain. [Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Suzuki, R.] TMT Observ Corp, Pasadena, CA 91105 USA. [Thalmann, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Turner, E. L.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe, WPI, Kashiwa, Chiba 2278568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido 0600810, Japan. [Wisniewski, J. P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Muto, T (reprint author), Kogakuin Univ, Div Liberal Arts, Shinjuku Ku, 1-24-2 Nishi Shinjuku, Tokyo 1638677, Japan. EM muto@geo.titech.ac.jp RI McElwain, Michael/D-3607-2012; Turner, Edwin/A-4295-2011; MIYAMA, Shoken/A-3598-2015; Takeuchi, Taku/F-1954-2015 OI McElwain, Michael/0000-0003-0241-8956; FU KAKENHI [22000005, 23103002, 23103004, 23103005, 23244027, 18540238, 22.2942]; WPI Initiative, MEXT, Japan; NSF AST [1008440, 1009203, 1009314]; NASA [NNH06CC28C, NNX09AC73G] FX The authors thank Roman Rafikov for comments, the support staff members of the IRTF and REM telescopes for assistance in obtaining the SED data, and the IR&D program at The Aerospace Corporation. REM data in this study were obtained under Chilean National TAC programs CN2011A-050 and CN2011B-31. This work is partially supported by KAKENHI 22000005 (M.T.), 23103002 (M.H. and M.H.), 23103004 (M.M. and M.F.), 23103005, 23244027, 18540238 (S.I.), and 22.2942 (T.M.), WPI Initiative, MEXT, Japan (E.L.T.), NSF AST 1008440 (C.A.G.), 1009203 (J.C.), and 1009314 (J.P.W.), and NASA NNH06CC28C (M.L.S.) and NNX09AC73G (C.A.G. and M.L.S.). Part of this research was carried out at JPL. NR 43 TC 132 Z9 132 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2012 VL 748 IS 2 AR L22 DI 10.1088/2041-8205/748/2/L22 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916SW UT WOS:000302124500004 ER PT J AU Russell, BR Immler, S AF Russell, B. R. Immler, S. TI SWIFT X-RAY UPPER LIMITS ON TYPE Ia SUPERNOVA ENVIRONMENTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; supernovae: general; X-rays: general; X-rays: ISM ID WHITE-DWARF MODELS; CIRCUMSTELLAR INTERACTION; RADIO-EMISSION; EVOLUTION; BINARIES AB We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L0.2-10 < 1.7 x 10(38) erg s(-1) and (M) over dot < 1.1 x 10(-6) M-circle dot yr(-1) x (v(w))/(10 km s(-1)), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies. C1 [Russell, B. R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Russell, B. R.; Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. RP Russell, BR (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM brock@umd.edu NR 23 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2012 VL 748 IS 2 AR L29 DI 10.1088/2041-8205/748/2/L29 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916SW UT WOS:000302124500011 ER PT J AU Ray, RD Egbert, GD AF Ray, Richard D. Egbert, Gary D. TI Fortnightly Earth rotation, ocean tides and mantle anelasticity SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Earth rotation variations; Tides and planetary waves; Mantle processes ID SHORT-PERIOD TERMS; TIDAL VARIATIONS; POLAR MOTION; ZONAL TIDES; SEA-LEVEL; CHANDLER-WOBBLE; UNIVERSAL TIME; CORE-MANTLE; LENGTH; MODEL AB This study of the fortnightly Mf tide comprises three main topics: (1) a new determination of the fortnightly component of polar motion and length of day (LOD) from a multidecade time-series of observed space-geodetic data; (2) the use of the polar motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide and (3) the use of these results to place new constraints on mantle anelasticity at the Mf tidal period. Our model of the Mf ocean tide assimilates more than 14 years of altimeter data from the Topex/Poseidon and Jason-1 satellites. Because the Mf altimetric signal-to-noise ratio is very small, it is critical that altimeter data not be overweighted. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed LOD caused by mantle anelasticity. The inferred effective tidal Q of the anelastic body tide is 90 and is in line with a ?a frequency dependence with a in the range 0.20.3. C1 [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Egbert, Gary D.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. RP Ray, RD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM richard.ray@nasa.gov RI Ray, Richard/D-1034-2012; OI Egbert, Gary/0000-0003-1276-8538 FU U.S. National Aeronautics and Space Administration FX We thank John Wahr, Ben Chao, Richard Gross and Bruce Buffett for useful discussions. Lana Erofeeva provided essential help with the ocean-tide modelling. This work was funded by the U.S. National Aeronautics and Space Administration through the Ocean Surface Topography program and the Earth Surface and Interior program. NR 69 TC 9 Z9 9 U1 1 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD APR PY 2012 VL 189 IS 1 BP 400 EP 413 DI 10.1111/j.1365-246X.2012.05351.x PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 909OK UT WOS:000301573800028 ER PT J AU Stephens, GL Wild, M Stackhouse, PW L'Ecuyer, T Kato, S Henderson, DS AF Stephens, Graeme L. Wild, Martin Stackhouse, Paul W., Jr. L'Ecuyer, Tristan Kato, Seiji Henderson, David S. TI The Global Character of the Flux of Downward Longwave Radiation SO JOURNAL OF CLIMATE LA English DT Article ID SURFACE RADIATION; WAVE RADIATION; CLIMATE SYSTEM; ENERGY BUDGET; CLEAR SKIES; REANALYSIS; ATMOSPHERE; MODELS; PARAMETERIZATION; IRRADIANCE AB Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the globalmean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W m(-2) with an error of approximately +/- 10 W m(-2) that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W m(-2) and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W m(-2) for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics. C1 [Stephens, Graeme L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wild, Martin] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Stackhouse, Paul W., Jr.; Kato, Seiji] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [L'Ecuyer, Tristan; Henderson, David S.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Stephens, GL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM stephens@atmos.colostate.edu RI L'Ecuyer, Tristan/E-5607-2012; Wild, Martin/J-8977-2012; L'Ecuyer, Tristan/C-7040-2013 OI L'Ecuyer, Tristan/0000-0002-7584-4836; FU NASA [NNX07AR11G, NAS5-99237, NNX09AK02G] FX NCEP reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website at http://www.esrl.noaa.gov/psd/. This work was supported by the NASA Grants NNX07AR11G, NAS5-99237, and NNX09AK02G. NR 66 TC 28 Z9 30 U1 5 U2 40 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD APR PY 2012 VL 25 IS 7 BP 2329 EP 2340 DI 10.1175/JCLI-D-11-00262.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 916ZX UT WOS:000302142800009 ER PT J AU Achuthavarier, D Krishnamurthy, V Kirtman, BP Huang, BH AF Achuthavarier, Deepthi Krishnamurthy, V. Kirtman, Ben P. Huang, Bohua TI Role of the Indian Ocean in the ENSO-Indian Summer Monsoon Teleconnection in the NCEP Climate Forecast System SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE-TEMPERATURE; TROPICAL PACIFIC; INTERANNUAL VARIABILITY; ATMOSPHERIC BRIDGE; REANALYSIS; ANOMALIES; PATTERNS; RAINFALL; GCM; SIMULATION AB The observed negative correlation between El Nino-Southern Oscillation (ENSO) and the Indian summer monsoon is not simulated by the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) coupled model. The correlation is partially restored in the simulations where the Indian Ocean (IO) sea surface temperature (SST) is prescribed with the daily mean or climatology. Comparison among the simulations suggests that ENSO-induced SST anomalies form a strong dipole pattern oriented along the zonal direction in the IO in the coupled model, preventing the ENSO signals from reaching the Indian monsoon region. In the model, the dipole develops early in the monsoon season and extends to the central equatorial IO while it is formed at the end of the season in observations. The dipole modifies low-level winds and surface pressure, and grows in a positive feedback loop involving winds, surface pressure, and SST. Examination of the mean state in the model reveals that the thermocline is relatively shallow in the eastern IO. This preconditions the ocean such that the atmospheric fluxes can easily impart fluctuations in the subsurface temperature and thereby in the SST. These results suggest that biases in the IO can adversely affect the ENSO-monsoon teleconnection in a coupled model. C1 [Achuthavarier, Deepthi; Krishnamurthy, V.; Huang, Bohua] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA. [Krishnamurthy, V.; Huang, Bohua] Inst Global Environm & Soc, Ctr Ocean Land Atmosphere Studies, Calverton, MD USA. [Kirtman, Ben P.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. RP Achuthavarier, D (reprint author), NASA, Goddard Space Flight Ctr, B33 C118, Greenbelt, MD 20771 USA. EM dvarrier@yahoo.com RI Achuthavarier, Deepthi/F-6036-2010 FU National Science Foundation [ATM-0332910, ATM-0830062, ATM-0830068]; National Oceanic and Atmospheric Administration [NA04OAR4310034, NA09OAR4310058]; National Aeronautics and Space Administration [NNG04GG46G, NNX09AN50G] FX This research was supported by grants from the National Science Foundation (ATM-0332910, ATM-0830062, and ATM-0830068), the National Oceanic and Atmospheric Administration (NA04OAR4310034 and NA09OAR4310058), and the National Aeronautics and Space Administration (NNG04GG46G and NNX09AN50G). The computing resources provided by the National Center for Atmospheric Research for conducting the numerical experiments in this study are gratefully acknowledged. DA would like to thank Kathy Pegion for CFS control simulation data and help in setting up the model, Edwin Schneider for CFS ocean output data, and Lakshmi Krishnamurthy for the precipitation observations. A large part of this work formed part of the Ph.D. thesis of DA submitted to George Mason University. NR 37 TC 19 Z9 19 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD APR PY 2012 VL 25 IS 7 BP 2490 EP 2508 DI 10.1175/JCLI-D-11-00111.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 916ZX UT WOS:000302142800020 ER PT J AU Chung, D Teixeira, J AF Chung, D. Teixeira, J. TI A Simple Model for Stratocumulus to Shallow Cumulus Cloud Transitions SO JOURNAL OF CLIMATE LA English DT Article ID MARINE BOUNDARY-LAYER; SIMULATION; FEEDBACK AB It is shown that essential features of stratocumulus to shallow cumulus cloud transitions can be represented by a simple stochastic model constructed from an ensemble of transitions, each of which depends on the amount of surface latent heat flux relative to initial cloud-top longwave net radiative flux. In its essence the simple model establishes a causal relation between the increase of sea surface temperature (SST) and the decrease in cloud fraction (CF) along the trade winds. The mean and variance of SST are taken from observations. Model predictions are compared with observations of CF along Lagrangian trajectories in four eastern subtropical ocean regions. The model reproduces well the decrease in mean CF and the peak in CF spread. C1 [Chung, D.; Teixeira, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Teixeira, J (reprint author), CALTECH, Jet Prop Lab, MS 233-300,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joao.teixeira@jpl.nasa.gov RI Chung, Daniel/F-4468-2016 OI Chung, Daniel/0000-0003-3732-364X FU Office of Naval Research [N0001408IP20064]; NASA MAP; NOAA MAPP/CPO; National Aeronautics and Space Administration FX The authors acknowledge the comments from three reviewers and the support provided by the Office of Naval Research, Marine Meteorology Program under Award N0001408IP20064; the NASA MAP Program; and the NOAA MAPP/CPO Program. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 15 TC 8 Z9 8 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD APR PY 2012 VL 25 IS 7 BP 2547 EP 2554 DI 10.1175/JCLI-D-11-00105.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 916ZX UT WOS:000302142800025 ER PT J AU Burnett, J Hochschild, AE Smith, SM Stotts, AL Diamond, PM Dyer, CB AF Burnett, J. Hochschild, A. E. Smith, S. M. Stotts, A. L. Diamond, P. M. Dyer, C. B. TI The First Intervention Study in Elder Self-Neglect: A Randomized Clinical Trial to Improve Vitamin D Levels. SO JOURNAL OF THE AMERICAN GERIATRICS SOCIETY LA English DT Meeting Abstract CT Annual Scientific Meeting of the American-Geriatrics-Society CY MAY 03-05, 2012 CL Seattle, WA SP Amer Geriatr Soc C1 [Burnett, J.; Hochschild, A. E.; Stotts, A. L.; Dyer, C. B.] UT Hlth, Internal Med, Houston, TX USA. [Smith, S. M.] NASA, Houston, TX USA. [Diamond, P. M.] Univ Texas Houston, Sch Publ Hlth, UT, Houston, TX USA. [Burnett, J.; Hochschild, A. E.; Smith, S. M.; Stotts, A. L.; Diamond, P. M.; Dyer, C. B.] Texas Elder Abuse & Mistreatment Inst TEAM, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-8614 J9 J AM GERIATR SOC JI J. Am. Geriatr. Soc. PD APR PY 2012 VL 60 SU 4 SI SI BP S196 EP S196 PG 1 WC Geriatrics & Gerontology; Gerontology SC Geriatrics & Gerontology GA 921FZ UT WOS:000302464800570 ER PT J AU Ozdemir, H Unal, A Kindap, T Turuncoglu, UU Durmusoglu, ZO Khan, M Tayanc, M Karaca, M AF Ozdemir, Huseyin Unal, Alper Kindap, Tayfun Turuncoglu, Ufuk Utku Durmusoglu, Zeynep Okay Khan, Maudood Tayanc, Mete Karaca, Mehmet TI Quantification of the urban heat island under a changing climate over Anatolian Peninsula SO THEORETICAL AND APPLIED CLIMATOLOGY LA English DT Article ID URBANIZATION; CITIES; ENVIRONMENT; ISTANBUL; SURFACE; TURKEY AB The Anatolian Peninsula is located at the confluence of Europe, Asia, and Africa and houses 81 cities of which 79 of them have population over 100,000. We employed some criteria to select the cities from the 81 cities. After accomplishing all the criteria, eight cities were remaining for the study. Nonparametric Mann-Kendall test procedure was employed for the urban and rural stations of these cities to detect the long-term change in temperature trends. Statistical analysis of daily minimum temperatures for the period between 1965 and 2006 suggest that there is no statistically significant increase in rural areas. In contrast to the findings of the previous studies, however, all the urban sites and difference between urban and rural pairs show significant increase in temperatures, a strong indication for the existence of urban heat island (UHI) affect over the region. Regional Climate Model was also utilized to assess the changes in temperature by the end of century for the region. The findings suggest that an increase of up to 5A degrees C is possible. Climate change effects enforced with UHI have the potential to cause serious problems for the entire region and hence needs to be studied thoroughly. C1 [Unal, Alper; Kindap, Tayfun; Karaca, Mehmet] Istanbul Tech Univ, Eurasia Inst Earth Sci, TR-34469 Istanbul, Turkey. [Ozdemir, Huseyin] Bahcesehir Univ, Dept Environm Engn, TR-34349 Istanbul, Turkey. [Turuncoglu, Ufuk Utku] Istanbul Tech Univ, Inst Informat, TR-34469 Istanbul, Turkey. [Durmusoglu, Zeynep Okay] Sci & Technol Res Council Turkey, TR-06100 Ankara, Turkey. [Khan, Maudood] NASA, Natl Space Sci & Technol Ctr, George C Marshall Space Flight Ctr, Huntsville, AL 35806 USA. [Tayanc, Mete] Cyprus Int Univ, Fac Engn, Nicosia, Cyprus. [Ozdemir, Huseyin; Tayanc, Mete] Marmara Univ, Dept Environm Engn, Istanbul, Turkey. RP Kindap, T (reprint author), Istanbul Tech Univ, Eurasia Inst Earth Sci, TR-34469 Istanbul, Turkey. EM huseyin.ozdemir@bahcesehir.edu.tr; alper.unal@itu.edu.tr; kindap@itu.edu.tr; turuncu@be.itu.edu.tr; zeynep.durmusoglu@tubitak.gov.tr; maudood.khan@nsstc.uah.edu; mtayanc@eng.marmara.edu.tr; karaca@itu.edu.tr RI Turuncoglu, Ufuk/B-5908-2011; Unal, Alper/A-3857-2017 OI Turuncoglu, Ufuk/0000-0001-5499-7326; Unal, Alper/0000-0002-8890-3145 FU TUBITAK (The Scientific and Technological Research Council of Turkey) [108Y064] FX This study is partly supported by a grant (108Y064) from TUBITAK (The Scientific and Technological Research Council of Turkey). NR 19 TC 3 Z9 3 U1 4 U2 29 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-798X J9 THEOR APPL CLIMATOL JI Theor. Appl. Climatol. PD APR PY 2012 VL 108 IS 1-2 BP 31 EP 38 DI 10.1007/s00704-011-0515-8 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918RI UT WOS:000302267800004 ER PT J AU Moore, S Fisher, JB AF Moore, Scott Fisher, Joshua B. TI Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen SO WATER RESOURCES MANAGEMENT LA English DT Article DE GRACE; Water management; Yemen; Groundwater; Hydrology; Remote sensing ID CLIMATE EXPERIMENT GRACE; TIME-VARIABLE GRAVITY; WATER-RESOURCES; INFORMATION-SYSTEMS; ADAPTIVE CAPACITY; COASTAL-PLAIN; VULNERABILITY; RECOVERY; BASIN; AGRICULTURE AB Sustainable management of groundwater resources is often hampered by information asymmetries between abstracters and managers. At the same time, developments in satellite remote sensing, particularly estimates of groundwater storage using the Gravity Recovery And Climate Experiment (GRACE), have dramatically improved water resource assessment. This study examines the potential for GRACE-based assessment of groundwater resources in the context of the persistent challenges of water management in Yemen, which suffers from acute groundwater depletion and water scarcity. By comparing GRACE estimates of groundwater storage change to observed well measurements in Yemen, this study indicates that GRACE can complement institutional water management reform by providing better water resources information, especially in combination with socioeconomic data visualized in a Geographic Information System (GIS). However, the case of Yemen also indicates that commonly accepted principles of water management must be adapted to harness the potential of GRACE-based groundwater storage assessment. C1 [Moore, Scott] Univ Oxford Merton Coll, Environm Change Inst, Oxford OX1 4JD, England. [Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, S (reprint author), Univ Oxford Merton Coll, Environm Change Inst, Oxford OX1 4JD, England. EM scottm@alumni.princeton.edu OI Fisher, Joshua/0000-0003-4734-9085 FU Environmental Change Institute and Merton College, Oxford University FX We thank J. Famiglietti for discussions on the analysis; for M. Rodell helpfully clarifying issues related to SM and GLDAS; M. Lo for reviewing data and results; O. Ecker and C. Beringer for providing food security data; and finally the Environmental Change Institute and Merton College, Oxford University, for providing research funding. We are also grateful for the comments of two anonymous reviewers, which greatly improved this work. NR 86 TC 7 Z9 7 U1 3 U2 31 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-4741 EI 1573-1650 J9 WATER RESOUR MANAG JI Water Resour. Manag. PD APR PY 2012 VL 26 IS 6 BP 1425 EP 1453 DI 10.1007/s11269-011-9966-z PG 29 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 918WW UT WOS:000302283200002 ER PT J AU Hu, SW Smirnova, OA Cucinotta, FA AF Hu, Shaowen Smirnova, Olga A. Cucinotta, Francis A. TI A BIOMATHEMATICAL MODEL OF LYMPHOPOIESIS FOLLOWING SEVERE RADIATION ACCIDENTS-POTENTIAL USE FOR DOSE ASSESSMENT SO HEALTH PHYSICS LA English DT Article DE accidents; nuclear; analysis; risk; biodosimetry; dose assessment ID BIODOSIMETRY ASSESSMENT-TOOL; IONIZING-RADIATION; MEDICAL-MANAGEMENT; EXPOSURE; IRRADIATION; RECOMMENDATIONS; HEMATOPOIESIS; MECHANISMS; PREDICTION; DOSIMETRY AB A biomathematical model of lymphopoiesis is described and used to analyze the lymphocyte changes observed in the blood of exposed victims in radiation accidents. The coarse-grained architecture of cellular replication and production and implicit cellular regulation mechanisms used in this model make it straightforward to incorporate various radiation conditions. Model simulations with reported absorbed doses as inputs are shown to qualitatively and quantitatively describe a wide range of accidental data in vastly different scenarios. In addition, the absolute lymphocyte counts and the depletion rate constants calculated by this model show good correlation with two widely recognized empirical methods for early dose assessment. This demonstrates the potential to use the biophysical model as an alternative method for the assessment of radiation injury in the case of large-scale radiation disaster. The physiological assumptions underlying the model are also discussed, which may provide a putative mechanism for some biodosimetric tools that use the peripheral blood cell counts as markers of radiation impairment. Health Phys. 102(4):425-436; 2012 C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Hu, Shaowen] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Smirnova, Olga A.] Fed State Unitary Enterprise Res & Tech Ctr Radia, Moscow, Russia. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Francis.A.Cucinotta@nasa.gov FU NASA FX This study was supported by the NASA Space Radiation Risk Assessment Project. NR 41 TC 10 Z9 10 U1 1 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD APR PY 2012 VL 102 IS 4 BP 425 EP 436 DI 10.1097/HP.0b013e318240593d PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 906NT UT WOS:000301353000008 PM 22378204 ER PT J AU Burow, LC Woebken, D Bebout, BM McMurdie, PJ Singer, SW Pett-Ridge, J Prufert-Bebout, L Spormann, AM Weber, PK Hoehler, TM AF Burow, Luke C. Woebken, Dagmar Bebout, Brad M. McMurdie, Paul J. Singer, Steven W. Pett-Ridge, Jennifer Prufert-Bebout, Leslie Spormann, Alfred M. Weber, Peter K. Hoehler, Tori M. TI Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay SO ISME JOURNAL LA English DT Article DE microbial mats; fermentation; hydrogen; hydrogenase; Microcoleus spp.; pyrotags ID MICROCOLEUS-CHTHONOPLASTES; ANOXYGENIC PHOTOSYNTHESIS; ACETYLENE-REDUCTION; NITROGEN-FIXATION; SEQUENCE DATA; DIVERSITY; CYANOBACTERIA; ARB; FERMENTATION; ADAPTATION AB Hydrogen (H-2) release from photosynthetic microbial mats has contributed to the chemical evolution of Earth and could potentially be a source of renewable H-2 in the future. However, the taxonomy of H-2-producing microorganisms (hydrogenogens) in these mats has not been previously determined. With combined biogeochemical and molecular studies of microbial mats collected from Elkhorn Slough, Monterey Bay, California, we characterized the mechanisms of H-2 production and identified a dominant hydrogenogen. Net production of H-2 was observed within the upper photosynthetic layer (0-2 mm) of the mats under dark and anoxic conditions. Pyrosequencing of rRNA gene libraries generated from this layer demonstrated the presence of 64 phyla, with Bacteriodetes, Cyanobacteria and Proteobacteria dominating the sequences. Sequencing of rRNA transcripts obtained from this layer demonstrated that Cyanobacteria dominated rRNA transcript pyrotag libraries. An OTU affiliated to Microcoleus spp. was the most abundant OTU in both rRNA gene and transcript libraries. Depriving mats of sunlight resulted in an order of magnitude decrease in subsequent nighttime H-2 production, suggesting that newly fixed carbon is critical to H-2 production. Suppression of nitrogen (N-2)-fixation in the mats did not suppress H-2 production, which indicates that co-metabolic production of H-2 during N-2-fixation is not an important contributor to H-2 production. Concomitant production of organic acids is consistent with fermentation of recently produced photosynthate as the dominant mode of H-2 production. Analysis of rRNA % transcript: % gene ratios and H-2-evolving bidirectional [NiFe] hydrogenase % transcript:% gene ratios indicated that Microcoelus spp. are dominant hydrogenogens in the Elkhorn Slough mats. The ISME Journal (2012) 6, 863-874; doi: 10.1038/ismej.2011.142; published online 20 October 2011 C1 [Burow, Luke C.; Woebken, Dagmar; McMurdie, Paul J.; Spormann, Alfred M.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Burow, Luke C.; Woebken, Dagmar; Bebout, Brad M.; Prufert-Bebout, Leslie; Hoehler, Tori M.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Pett-Ridge, Jennifer; Weber, Peter K.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA USA. RP Burow, LC (reprint author), Stanford Univ, Dept Civil & Environm Engn, 318 Campus Dr,E250, Stanford, CA 94305 USA. EM lukeburow@hotmail.com RI vedha, angeline/F-7272-2012; Woebken, Dagmar/A-4447-2013; OI McMurdie, Paul/0000-0001-8879-3954; Woebken, Dagmar/0000-0002-1314-9926 FU U.S. Department of Energy (DOE) [SCW1039]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; German Research Foundation (Deutsche Forschungsgemeinschaft) FX We thank Michael Kubo, Adrienne Frisbee, Angela Detweiler and Erich Fleming for technical support. We thank Tijana Glavina del Rio, Susannah Tringe and Stephanie Malfatti of the Joint Genome Institute for assistance obtaining and analyzing amplicon pyrosequencing. Funding was provided by the U.S. Department of Energy (DOE) Genomic Sciences Program under contract SCW1039. Work at LLNL was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at LBNL was performed under the auspices of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. DW was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft). NR 42 TC 25 Z9 25 U1 6 U2 27 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD APR PY 2012 VL 6 IS 4 BP 863 EP 874 DI 10.1038/ismej.2011.142 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 914JJ UT WOS:000301945500015 PM 22011721 ER PT J AU Martin, C Kuchner, M AF Martin, Christian Kuchner, Marc TI The m word SO NATURE MATERIALS LA English DT Editorial Material C1 [Kuchner, Marc] NASA, Goddard Space Flight Ctr, Washington, DC USA. RI Kuchner, Marc/E-2288-2012 NR 0 TC 0 Z9 0 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD APR PY 2012 VL 11 IS 4 BP 264 EP 265 DI 10.1038/nmat3276 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 914WU UT WOS:000301984600004 ER PT J AU Kuchner, MJ AF Kuchner, Marc J. TI Shopping Your Science SO SCIENTIST LA English DT Editorial Material C1 NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. RP Kuchner, MJ (reprint author), NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. EM marc@marketingforscientists.com RI Kuchner, Marc/E-2288-2012 NR 0 TC 0 Z9 0 U1 0 U2 1 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD APR PY 2012 VL 26 IS 4 BP 86 EP 86 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 917ST UT WOS:000302199600020 ER PT J AU Zaretsky, EV Poplawski, JV Root, LE AF Zaretsky, Erwin V. Poplawski, Joseph V. Root, Lawrence E. TI Reexamination of Ball-Race Conformity Effects on Ball Bearing Life SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Review DE Rolling-Element Bearings; Bearing Life; Race Conformity; Bearing Geometry ID FATIGUE LIFE AB G. Lundberg and A. Palmgren, in 1947, established the primary relation between rolling-element bearing geometry and bearing life. Their analysis of ball and roller bearings did not consider the life of the bearing's set of rolling elements independent of race life. The analysis in this report considers the life of the ball set as well as the respective lives of the races to reassess the effect of ball-race conformity on ball bearing life. The related changes in ball bearing life are incorporated in life factors that can be used to modify the bearing predicted life using the Lundberg-Palmgren equations and the ANSI/ABMA and ISO Standards. Two simple algebraic relationships were established to calculate life factors LF, to determine the effect of inner- and outer-race conformity combinations on bearing L-10 life for deep-groove and angular-contact ball bearings, respectively. Depending on the bearing type and series as well as conformity combinations, the calculated life for deep-groove ball bearings can be over 40 percent less than that calculated by the Lundberg-Palmgren equations. For angular-contact ball bearings, the life can vary between +16 and -39% from that calculated by the Lundberg-Palmgren equations. Comparing the two ball bearing types, the life factors LF, for the deep-groove bearings can be as much as 40% lower than that for angular-contact ball bearings. The use of a fatigue limit from either the program ASMELIFE or the proposed ISO 281:2006 standard can significantly overpredict bearing life over a range of normal operating Hertz stresses, which can result in the selection of undersized bearings for a particular application. C1 [Zaretsky, Erwin V.] NASA Glenn Res Ctr, STLE, Cleveland, OH USA. [Poplawski, Joseph V.] JV Poplawski & Associates, Bethlehem, PA USA. [Root, Lawrence E.] Lawrence E Root PE, Lebanon, NH USA. RP Zaretsky, EV (reprint author), NASA Glenn Res Ctr, STLE, Cleveland, OH USA. NR 29 TC 0 Z9 0 U1 2 U2 6 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD APR PY 2012 VL 68 IS 4 BP 44 EP + PG 15 WC Engineering, Mechanical SC Engineering GA 914RA UT WOS:000301968100011 ER PT J AU Jaeger, TR Hyman, SD Kassim, NE Lazio, TJW AF Jaeger, T. R. Hyman, S. D. Kassim, N. E. Lazio, T. J. W. TI DISCOVERY OF A METER-WAVELENGTH RADIO TRANSIENT IN THE SWIRE DEEP FIELD: 1046+59 SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: observational; radio continuum: general; stars: oscillations; stars: variables: general ID REFRACTIVE INTERSTELLAR SCINTILLATION; GAMMA-RAY BURSTS; SKY SURVEY; EMISSION; ARRAY; ARCHIVAL; CATALOG; SEARCH; ORIGIN; FLARES AB We report the results of a low frequency radio variability and slow transient search using archival observations from the Very Long Array. We selected six 325 MHz radio observations from the spring of 2006, each centered on the Spitzer-Space-Telescope Wide-area Infrared Extragalactic Survey (SWIRE) Deep Field: 1046+59. Observations were spaced between one day to three months, with a typical single-epoch peak flux sensitivity below 0.2 mJy beam(-1) near the field pointing center. We describe the observation parameters, data post-processing, and search methodology used to identify variable and transient emission. Our search revealed multiple variable sources and the presence of one, day-scale transient event with no apparent astronomical counterpart. This detection implies a transient rate of 1 +/- 1 event per 6.5 deg(2) per 72 observing hours in the direction of 1046+59 and an isotropic transient surface density Sigma = 0.12 deg(-2) at 95% confidence for sources with average peak flux density higher than 2.1 mJy over 12 hr. C1 [Jaeger, T. R.; Kassim, N. E.] USN, Res Lab, Washington, DC 20375 USA. [Hyman, S. D.] Sweet Briar Coll, Dept Phys & Engn, Sweet Briar, VA 24595 USA. [Lazio, T. J. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. RP Jaeger, TR (reprint author), USN, Res Lab, Code 7213, Washington, DC 20375 USA. EM ted.jaeger.ctr@nrl.navy.mill FU Naval Research Laboratory [6.1]; Research Corporation; NASA Lunar Science Institute FX We would like to thank B. Cotton and W. Peters for assistance with Obit. We thank F. Owen for sharing images previously made of this field for use in a preliminary analysis. Analysis utilizes data from VLA program AO201. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We also made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was performed while the primary author held a National Research Council Research Associateship Award at the US Naval Research Laboratory. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding. Radio astronomy research at Sweet Briar College is funded by Research Corporation. Additional research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. NR 34 TC 15 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD APR PY 2012 VL 143 IS 4 AR 96 DI 10.1088/0004-6256/143/4/96 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 913JE UT WOS:000301872800019 ER PT J AU Hibbard, K Glaze, L Prince, J AF Hibbard, Kenneth Glaze, Lori Prince, Jill TI Aerobraking at Venus: A science and technology enabler SO ACTA ASTRONAUTICA LA English DT Article DE Aerobraking; Venus; Design considerations; Autonomous execution ID IMPACT CRATERS; MARS AB Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of similar to 400 km and 60-70 degrees inclination. This type of mission profile results in a total mission delta-V of similar to 4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles. Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night. Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities. The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground activities to onboard the spacecraft. A defined aerobraking temperature corridor, based on spacecraft component maximum temperatures, can be employed on a spacecraft specifically designed for aerobraking, and will predict subsequent aerobraking orbits and prescribe apoapsis propulsive maneuvers to maintain the spacecraft within its specified temperature limits. A spacecraft specifically designed for aerobraking in the Venus environment can provide a cost-effective platform for achieving these expanded science and technology goals. This paper discusses the scientific merits of a low-altitude, near-circular orbit at Venus, highlights the differences in aerobraking at Venus versus Mars, and presents design data using a flight system specifically designed for an aerobraking mission at Venus. Using aerobraking to achieve a low altitude orbit at Venus may pave the way for various technology demonstrations, such as autonomous aerobraking techniques and/or new science measurements like a multi-mode, synthetic aperture radar capable of altimetry and radiometry with performance that is significantly more capable than Magellan. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hibbard, Kenneth] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Glaze, Lori] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Prince, Jill] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Hibbard, K (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM kenneth.hibbard@jhuapl.edu; lori.s.glaze@nasa.gov; jill.l.prince@nasa.gov RI Glaze, Lori/D-1314-2012 NR 28 TC 1 Z9 1 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2012 VL 73 BP 137 EP 143 DI 10.1016/j.actaastro.2011.11.008 PG 7 WC Engineering, Aerospace SC Engineering GA 900CC UT WOS:000300863200013 ER PT J AU Folta, DC Woodard, M Howell, K Patterson, C Schlei, W AF Folta, David C. Woodard, Mark Howell, Kathleen Patterson, Chris Schlei, Wayne TI Applications of multi-body dynamical environments: The ARTEMIS transfer trajectory design SO ACTA ASTRONAUTICA LA English DT Article DE ARTEMIS; Manifolds; Libration; Lissajous; Multi-body; Optimization ID LIBRATION POINTS; SYSTEMS THEORY; EARTH; ORBITS; MOON; TRANSITIONS; MISSION; L-1 AB The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun-Earth weak stability regions and then return to the Earth-Moon libration (L-1 and L-2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth-Moon libration orbits by means of these applications. Published by Elsevier Ltd. C1 [Folta, David C.; Woodard, Mark] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Howell, Kathleen; Patterson, Chris; Schlei, Wayne] Purdue Univ, W Lafayette, IN 47907 USA. RP Folta, DC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM david.c.folta@nasa.gov; howell@purdue.edu NR 32 TC 20 Z9 20 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2012 VL 73 BP 237 EP 249 DI 10.1016/j.actaastro.2011.11.007 PG 13 WC Engineering, Aerospace SC Engineering GA 900CC UT WOS:000300863200023 ER PT J AU Huang, CC Li, YM Wang, Q Sun, DY Le, CF Shi, K AF Huang, Chang-Chun Li, Yun-Mei Wang, Qiao Sun, De-Yong Le, Cheng-Feng Shi, Kun TI Scattering spectrum properties and their relationship to biogeochemical parameters: a case study in Taihu Lake SO LIMNOLOGY LA English DT Article DE Scattering coefficient; Biogeochemical parameters; Specific scattering coefficient; Taihu Lake ID DISSOLVED ORGANIC-MATTER; APPARENT OPTICAL-PROPERTIES; REMOTE-SENSING REFLECTANCE; EASTERN ENGLISH-CHANNEL; SOUTHERN NORTH-SEA; COASTAL WATERS; BACKSCATTERING RATIO; SIZE DISTRIBUTION; BIOOPTICAL PROPERTIES; MASS CONCENTRATION AB The scattering spectrum properties of highly turbid and eutrophic inland case 2 water from Taihu Lake were studied during three cruises from 2006 to 2007. The scattering [b (p)(lambda)] and backscattering [b (bp)(lambda)] coefficients and the backscattering probability (B) for Taihu Lake were found to show a clear spectral dependence, and this dependence was well simulated by a power-law function. This dependence, however, became weak when algae dominated the sample points. The mean values of the power-law index for b (p)(lambda), v, in Oct 2006, Mar 2007 and Nov 2007 were -0.6712, -0.8129 and -0.7600, respectively. To interpret the spectral characteristics and mechanisms of b (p)(lambda) and b (bp)(lambda), water samples were collected simultaneously for the biogeochemical characterization of suspended particles. The average values of the specific scattering coefficients for total suspended matter, inorganic suspended matter (ISPM) and organic suspended matter (OSPM) were 0.634 (550 nm), 1.057 (532 nm), and 0.396 g m(-2) (532 nm), respectively. The power-law index of b (bp)(lambda) (Y) was significantly related to ISPM/OSPM and b (bp)(532 nm), but only weakly related to the particle size distribution index. The mean (spatial and wavelength) values of B in Oct 2006, Mar 2007, and Nov 2007 were 0.0108, 0.0138, and 0.0125, respectively. B decreases with increasing ISPM concentration because of the large contribution of ISPM to b (b)(lambda) and the strong restraint on b (bp)(lambda) caused by the multi-scattering effect under high-turbidity conditions. C1 [Huang, Chang-Chun; Li, Yun-Mei; Wang, Qiao; Sun, De-Yong; Le, Cheng-Feng; Shi, Kun] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Dept Geog K3 510, Nanjing 210046, Jiangsu, Peoples R China. [Huang, Chang-Chun] Mississippi State Univ, Stennis Space Ctr, No Gulf Inst, Starkville, MS USA. RP Huang, CC (reprint author), Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Dept Geog K3 510, Nanjing 210046, Jiangsu, Peoples R China. EM Huangchangchun_aaa@163.com RI Le, Chengfeng/A-2584-2013; huang, changchun/E-6580-2016; huang, changchun/R-5236-2016 OI huang, changchun/0000-0002-4704-548X; huang, changchun/0000-0002-9833-5663 FU National Natural Science Foundation of China [40971215]; National Water Project of China [2009ZX07527-006]; Scientific Innovation Research Foundation of Jiangsu [CX09B-301Z]; Scientific Research Foundation of Outstanding Doctors of Nanjing Normal University [12432116011036] FX This research was supported by the National Natural Science Foundation of China (no. 40971215), the National Water Project of China (no. 2009ZX07527-006), the Scientific Innovation Research Foundation of Jiangsu (no. CX09B-301Z), and the Scientific Research Foundation of Outstanding Doctors of Nanjing Normal University (no. 12432116011036). We are grateful to the two anonymous reviewers for their very useful comments and suggestions. NR 54 TC 5 Z9 5 U1 0 U2 7 PU SPRINGER TOKYO PI TOKYO PA 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1439-8621 J9 LIMNOLOGY JI Limnology PD APR PY 2012 VL 13 IS 1 BP 1 EP 11 DI 10.1007/s10201-011-0346-4 PG 11 WC Limnology SC Marine & Freshwater Biology GA 908IA UT WOS:000301482900001 ER PT J AU Webb, A Fainberg, J Osherovich, V AF Webb, Alla Fainberg, Joseph Osherovich, Vladimir TI Solar Wind Quasi-invariant for Slow and Fast Magnetic Clouds SO SOLAR PHYSICS LA English DT Article DE Magnetic clouds; Magnetic storms; Quasi-invariant; Solar wind ID CYCLE 23; INTERPLANETARY; INDEX AB The solar wind quasi-invariant (QI) has been defined by Osherovich, Fainberg, and Stone (Geophys. Res. Lett. 26, 2597, 1999) as the ratio of magnetic energy density and the energy density of the solar wind flow. In the regular solar wind QI is a rather small number, since the energy of the flow is almost two orders of magnitude greater than the magnetic energy. However, in magnetic clouds, QI is the order of unity (less than 1) and thus magnetic clouds can be viewed as a great anomaly in comparison with its value in the background solar wind. We study the duration, extent, and amplitude of this anomaly for two groups of isolated magnetic clouds: slow clouds (360 < v < 450 km s(-1)) and fast clouds (450a parts per thousand currency signv < 720 km s(-1)). By applying the technique of superposition of epochs to 12 slow and 12 fast clouds from the catalog of Richardson and Cane (Solar Phys. 264, 189, 2010), we create an average slow cloud and an average fast cloud observed at 1 AU. From our analysis of these average clouds, we obtain cloud boundaries in both time and space as well as differences in QI amplitude and other parameters characterizing the solar wind state. Interplanetary magnetic clouds are known to cause major magnetic storms at the Earth, especially those clouds which travel from the sun to the Earth at high speeds. Characterizing each magnetic cloud by its QI value and extent may help in understanding the role of those disturbances in producing geomagnetic activity. C1 [Webb, Alla] George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA. [Osherovich, Vladimir] NASA, CUA, Goddard Space Fight Ctr, Greenbelt, MD 20771 USA. NASA, CUA, Goddard Space Fight Ctr, Greenbelt, MD 20771 USA. RP Webb, A (reprint author), George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA. EM allawebb@gmail.com; fainberg@jhu.edu; vladimir.osherovich@gmail.com FU NASA [NNX09AR806] FX The authors thank the reviewers for their suggestions used in clarifying and improving the paper. We also acknowledge valuable discussions with Dr. I.G. Richardson on the methods employed to determine the ICME boundaries. V. Osherovich was supported in part by NASA grant NNX09AR806. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov NR 15 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD APR PY 2012 VL 277 IS 2 BP 375 EP 388 DI 10.1007/s11207-011-9904-5 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 908GN UT WOS:000301479000011 ER PT J AU Gopalswamy, N Thompson, WT Davila, JM Kaiser, ML Yashiro, S Maekelae, P Michalek, G Bougeret, JL Howard, RA AF Gopalswamy, N. Thompson, W. T. Davila, J. M. Kaiser, M. L. Yashiro, S. Maekelae, P. Michalek, G. Bougeret, J. -L. Howard, R. A. TI Relation Between Type II Bursts and CMEs Inferred from STEREO Observations (vol 259, pg 227, 2009) SO SOLAR PHYSICS LA English DT Correction C1 [Gopalswamy, N.; Thompson, W. T.; Davila, J. M.; Kaiser, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yashiro, S.] Div Very Long Baseline Interferometer Astrophys, Herndon, VA USA. [Maekelae, P.; Michalek, G.] Catholic Univ Amer, Washington, DC 20064 USA. [Bougeret, J. -L.] Observ Paris, Meudon, France. [Howard, R. A.] USN, Res Lab, Washington, DC 20375 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM nat.gopalswamy@nasa.gov RI Gopalswamy, Nat/D-3659-2012; Thompson, William/D-7376-2012 NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD APR PY 2012 VL 277 IS 2 BP 459 EP 459 DI 10.1007/s11207-011-9918-z PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 908GN UT WOS:000301479000017 ER PT J AU Ten Hoeve, JE Remer, LA Correia, AL Jacobson, MZ AF Ten Hoeve, J. E. Remer, L. A. Correia, A. L. Jacobson, M. Z. TI Recent shift from forest to savanna burning in the Amazon Basin observed by satellite SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE biomass burning; fires; Amazon; deforestation; remote sensing; land cover ID BRAZILIAN AMAZON; FIRE ACTIVITY; DEFORESTATION; DROUGHT; MODIS; PRODUCTS; CLIMATE; SMOKE AB The numbers of fires detected on forest, savanna and transition lands during the 2002-10 biomass burning seasons in Amazonia are shown using fire count data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). The ratio of forest fires to savanna fires has varied substantially over the study period, with a maximum ratio of 0.65:1 in 2005 and a minimum ratio of 0.27:1 in 2009, with the four lowest years occurring in 2007-10. The burning during the droughts of 2007 and 2010 is attributed to a higher number of savanna fires relative to the drought of 2005. A decrease in the regional mean single scattering albedo of biomass burning aerosols, consistent with the shift from forest to savanna burning, is also shown. During the severe drought of 2010, forest fire detections were lower in many areas compared with 2005, even though the drought was more severe in 2010. This result suggests that improved fire management practices, including stricter burning regulations as well as lower deforestation burning, may have reduced forest fires in 2010 relative to 2005 in some areas of the Amazon Basin. C1 [Ten Hoeve, J. E.; Jacobson, M. Z.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Remer, L. A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Correia, A. L.] Univ Sao Paulo, Inst Phys, BR-05508900 Sao Paulo, Brazil. RP Ten Hoeve, JE (reprint author), Stanford Univ, Dept Civil & Environm Engn, 473 Via Ortega, Stanford, CA 94305 USA. EM tenhoeve@stanford.edu FU NASA [NNX07AN25G]; US EPA Grant [RD-83337101-O]; NASA Interdisciplinary Sciences Program; NASA Earth and Space Science Fellowship; FAPESP SERENA grant [2010/15959-3] FX This study was supported by NASA grant NNX07AN25G, US EPA Grant RD-83337101-O, the NASA Interdisciplinary Sciences Program and the NASA Earth and Space Science Fellowship. We thank Paulo Artaxo and Eric Lambin for helpful comments, as well as the AERONET support team. A L Correia thanks FAPESP SERENA grant 2010/15959-3. NR 37 TC 9 Z9 9 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2012 VL 7 IS 2 AR 024020 DI 10.1088/1748-9326/7/2/024020 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 989VZ UT WOS:000307590300023 ER PT J AU Winternitz, LB Nicholls, SO Tits, AL O'Leary, DP AF Winternitz, Luke B. Nicholls, Stacey O. Tits, Andre L. O'Leary, Dianne P. TI A constraint-reduced variant of Mehrotra's predictor-corrector algorithm SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS LA English DT Article DE Linear programming; Linear optimization; Constraint reduction; Primal-dual interior-point methods; Mehrotra's predictor corrector ID POTENTIAL REDUCTION ALGORITHM; SCALED PROJECTIONS; PSEUDOINVERSES; POLYNOMIALITY AB Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A, requires n >> m it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple "constraint-reduction" scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra's predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported. As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms. C1 [Tits, Andre L.] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. [Tits, Andre L.] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA. [Winternitz, Luke B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nicholls, Stacey O.] Univ Maryland, Appl Math & Sci Comp Program, College Pk, MD 20742 USA. [O'Leary, Dianne P.] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. [O'Leary, Dianne P.] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA. RP Tits, AL (reprint author), Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. EM Luke.B.Winternitz@nasa.gov; sonicholls@aacc.edu; andre@umd.edu; oleary@cs.umd.edu FU NSF [DMI0422931]; DoE [DEFG0204ER25655, DESC0002218]; NASA under the Goddard Space Flight Center FX This work was supported by NSF grant DMI0422931 and DoE grants DEFG0204ER25655 and DESC0002218. The work of the first author was supported by NASA under the Goddard Space Flight Center Study Fellowship Program. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation, those of the US Department of Energy, or those of NASA. NR 36 TC 6 Z9 6 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0926-6003 J9 COMPUT OPTIM APPL JI Comput. Optim. Appl. PD APR PY 2012 VL 51 IS 3 BP 1001 EP 1036 DI 10.1007/s10589-010-9389-4 PG 36 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA 904GB UT WOS:000301181200004 ER PT J AU Toutanji, HA Evans, S Grugel, RN AF Toutanji, Houssam A. Evans, Steve Grugel, Richard N. TI Performance of lunar sulfur concrete in lunar environments SO CONSTRUCTION AND BUILDING MATERIALS LA English DT Article DE Sulfur; Concrete; Strength; Impact; Radiation; Lunar AB This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions such as impact and space radiation on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target small sulfur concrete samples. The lunar concrete samples have been prepared using JSC-1 lunar simulant, produced by Johnson Space Center, as an aggregate addition. The sample was placed in the MSFC Impact Test Facility's Micro Light Gas Gun' target chamber, and was struck by a 1-mm diameter (similar to 1.4e-03 g) aluminum projectile at 5.85 km/s. A detailed analysis of the damage caused by a catastrophic event could help design the size, shape, and placement of individual structures in the base to minimize detrimental effects. The effectiveness of sulfur concrete subjected to space radiation was analyzed using HZETRN mathematical code, provided by NASA. A concrete wall made of sulfur and JSC-1 simulant would need to be thicker than a wall made of plain JSC-1 simulant to provide the same amount of protection. Test results were presented, discussed and put into the context of the lunar environments. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Toutanji, Houssam A.] Univ Alabama, Dept Civil & Environm Eng, Huntsville, AL 35899 USA. [Evans, Steve] NASA, Marshall Space Flight Ctr MSFC EM50, Huntsville, AL USA. [Grugel, Richard N.] NASA, Marshall Space Flight Ctr MSFC EM30, Huntsville, AL USA. RP Toutanji, HA (reprint author), Univ Alabama, Dept Civil & Environm Eng, Huntsville, AL 35899 USA. EM toutanji@cee.uah.edu NR 9 TC 7 Z9 7 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0950-0618 J9 CONSTR BUILD MATER JI Constr. Build. Mater. PD APR PY 2012 VL 29 BP 444 EP 448 DI 10.1016/j.conbuildmat.2011.10.041 PG 5 WC Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary SC Construction & Building Technology; Engineering; Materials Science GA 903XS UT WOS:000301156800055 ER PT J AU Parnell, J Boyce, AJ Osinski, GR Izawa, MRM Banerjee, N Flemming, R Lee, P AF Parnell, John Boyce, Adrian J. Osinski, Gordon R. Izawa, Matthew R. M. Banerjee, Neil Flemming, Roberta Lee, Pascal TI Evidence for life in the isotopic analysis of surface sulphates in the Haughton impact structure, and potential application on Mars SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE evidence for life; impact craters; Mars; sulphides; sulphur isotope fractionation ID INDUCED HYDROTHERMAL ACTIVITY; DEVON ISLAND; SULFUR ISOTOPES; ARCTIC CANADA; REDUCTION; SULFIDES; CRATER; FRACTIONATION; METEORITES; MINERALOGY AB The analysis of sulphur isotopic compositions in three sets of surface sulphate samples from the soil zone in the Haughton impact structure shows that they are distinct. They include surface gypsum crusts remobilized from the pre-impact gypsum bedrock (mean delta S-34 + 31 parts per thousand), efflorescent copiapite and fibroferrite associated with hydrothermal marcasite (mean delta S-34 - 37 parts per thousand), and gypsum-iron oxide crusts representing weathering of pyritic crater-fill sediments (mean delta S-34 + 7 parts per thousand). Their different compositions reflect different histories of sulphur cycling. Two of the three sulphates have isotopically light (low delta S-34) compositions compared with the gypsum bedrock (mean delta S-34 + 31 parts per thousand), reflecting derivation by weathering of sulphides (three sets of pyrite/marcasite samples with mean delta S-34 of -41, -20 and -8 parts per thousand), which had in turn been precipitated by microbial sulphate reduction. Thus, even in the absence of the parent sulphides due to surface oxidation, evidence of life would be preserved. This indicates that on Mars, where surface oxidation may rule out sampling of sulphides during robotic exploration, but where sulphates are widespread, sulphur isotope analysis is a valuable tool that could be sensitive to any near-surface microbial activity. Other causes of sulphur isotopic fractionation on the surface of Mars are feasible, but any anomalous fractionation would indicate the desirability of further analysis. C1 [Parnell, John] Univ Aberdeen, Dept Geol & Petr Geol, Aberdeen, Scotland. [Boyce, Adrian J.] Scottish Univ, Environm Res Ctr, Glasgow, Lanark, Scotland. [Osinski, Gordon R.; Izawa, Matthew R. M.; Banerjee, Neil; Flemming, Roberta] Univ Western Ontario, London, ON, Canada. [Lee, Pascal] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Parnell, J (reprint author), Univ Aberdeen, Dept Geol & Petr Geol, Aberdeen, Scotland. EM J.Parnell@abdn.ac.uk RI Boyce, Adrian/D-2263-2010; OI Boyce, Adrian/0000-0002-9680-0787; Izawa, Matthew/0000-0001-5456-2912 FU NASA; Mars Institute; SETI Institute; Canadian Space Agency FX We are grateful to John Still, Barry Fulton, Colin Taylor, Alison Sandison and Alison McDonald for skilled technical help. This work was conducted in part under the auspices of the Haughton-Mars Project with support from NASA, Mars Institute, SETI Institute and the Canadian Space Agency. The arctic communities of Grise Fiord and Resolute Bay are also thanked. We are grateful to four anonymous reviewers who commented on earlier versions of the manuscript. NR 59 TC 3 Z9 3 U1 2 U2 22 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD APR PY 2012 VL 11 IS 2 BP 93 EP 101 DI 10.1017/S1473550411000395 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 901FE UT WOS:000300947100003 ER PT J AU Boxe, CS Hand, KP Nealson, KH Yung, YL Saiz-Lopez, A AF Boxe, C. S. Hand, K. P. Nealson, K. H. Yung, Y. L. Saiz-Lopez, A. TI An active nitrogen cycle on Mars sufficient to support a subsurface biosphere SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE Mars; nitrogen; nitrogen fixation; klingler hypothesis; free energy ID AQUEOUS-SOLUTION; NITRATE; ICE; NITRITE; PHOTOCHEMISTRY; LIFE; TERRESTRIAL; PHOTOLYSIS; EVOLUTION; RELEASE AB Mars' total atmospheric nitrogen content is 0.2 mbar. One-dimensional (1D) photochemical simulations of Mars' atmosphere show that nitric acid (HNO3(g)), the most soluble nitrogen oxide, is the principal reservoir species for nitrogen in its lower atmosphere, which amounts to a steady-state value of 6 x 10(-2) kg or 4 moles, conditions of severe nitrogen deficiency. Mars could, however, support similar to 10(15) kg of biomass (similar to 1 kg N m(-2)) from its current atmospheric nitrogen inventory. The terrestrial mass ratio of nitrogen in biomass to that in the atmosphere is similar to 10(-5); applying this ratio to Mars yields similar to 10(10) kg of total biomass - also, conditions of severe nitrogen deficiency. These amounts, however, are lower limits as the maximum surface-sink of atmospheric nitrogen is 2.8 mbar (9 x 10(15) kg of N), which indicates, in contradistinction to the Klingler et al. (1989), that biological metabolism would not be inhibited in the subsurface of Mars. Within this context, we explore HNO3 deposition on Mars' surface (i.e. soil and icecovered regions) on pure water metastable thin liquid films. We show for the first time that the negative change in Gibbs free energy increases with decreasing HNO3(g) (NO3-(aq)) in metastable thin liquid films that may exist on Mars' surface. We also show that additional reaction pathways are exergonic and may proceed spontaneously, thus providing an ample source of energy for nitrogen fixation on Mars. Lastly, we explore the dissociation of HNO3(g) to form NO3-(aq) in metastable thin liquid films on the Martian surface via condensed phase simulations. These simulations show that photochemically produced fixed nitrogen species are not only released from the Martian surface to the gas-phase, but more importantly, transported to lower depths from the Martian surface in transient thin liquid films. A putative biotic layer at 10 m depth would produce HNO3 and N-2 sinks of -54 and -5 x 10(12) molecules cm(-2)s(-1), respectively, which is an ample supply of available nitrogen that can be efficiently transported to the subsurface. The downward transport as well as the release to the atmosphere of photochemically produced fixed nitrogen species (e.g. NO2-, NO and NO2) suggests the existence of a transient but active nitrogen cycle on Mars. C1 [Boxe, C. S.; Hand, K. P.; Saiz-Lopez, A.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA. [Nealson, K. H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Yung, Y. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Saiz-Lopez, A.] CSIC, Lab Atmospher & Climate Sci, Toledo, Spain. RP Boxe, CS (reprint author), CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA. EM boxeman3@gmail.com RI Saiz-Lopez, Alfonso/B-3759-2015 OI Saiz-Lopez, Alfonso/0000-0002-0060-1581 NR 37 TC 9 Z9 10 U1 1 U2 33 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD APR PY 2012 VL 11 IS 2 BP 109 EP 115 DI 10.1017/S1473550411000401 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 901FE UT WOS:000300947100005 ER PT J AU Race, MS Moses, J Mckay, C Venkateswaran, KJ AF Race, Margaret S. Moses, Jacob Mckay, Christopher Venkateswaran, Kasthuri J. TI Synthetic biology in space: considering the broad societal and ethical implications SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE ethics; risks of new technology; societal impacts; space applications; synthetic biology ID LIFE; SCIENCE AB Although the field of synthetic biology is still in its infancy, there are expectations for great advances in the coming decades, both on Earth and potentially in space. Promising applications for long duration space missions include a variety of biologically engineered products and biologically aided processes and technologies, which will undoubtedly be scrutinized for risks and benefits in the broad context of ethical, legal and social realms. By comparing and contrasting features of Earth-based and space-applied synthetic biology, it is possible to identify the likely similarities and differences, and to identify possible challenges ahead for space applications that will require additional research, both in the short and long terms. Using an analytical framework associated with synthetic biology and new technologies on Earth, this paper analyses the kinds of issues and concerns ahead, and identifies those areas where space applications may require additional examination. In general, while Earth- and space-based synthetic biology share many commonalities, space applications have additional challenges such as those raised by space microbiology and environmental factors, legal complications, planetary protection, lack of decision-making infrastructure(s), long duration human missions, terraforming and the possible discovery of extraterrestrial (ET) life. For synthetic biology, the way forward offers many exciting opportunities, but is not without legitimate concerns - for life, environments and society, both on Earth and beyond. C1 [Race, Margaret S.] SETI Inst, Mountain View, CA 94043 USA. [Moses, Jacob] Hasting Ctr, Garrison, NY USA. [Mckay, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Venkateswaran, Kasthuri J.] NASA JPL, Pasadena, CA USA. RP Race, MS (reprint author), SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM mrace@seti.org NR 54 TC 1 Z9 2 U1 5 U2 55 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD APR PY 2012 VL 11 IS 2 BP 133 EP 139 DI 10.1017/S1473550412000018 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 901FE UT WOS:000300947100008 ER PT J AU Helder, D Thome, K Aaron, D Leigh, L Czapla-Myers, J Leisso, N Biggar, S Anderson, N AF Helder, Dennis Thome, Kurt Aaron, Dave Leigh, Larry Czapla-Myers, Jeff Leisso, Nathan Biggar, Stuart Anderson, Nik TI Recent surface reflectance measurement campaigns with emphasis on best practices, SI traceability and uncertainty estimation SO METROLOGIA LA English DT Article; Proceedings Paper CT 11th International Conference on New Developments and Applications in Optical Radiometry (NEWARD) CY SEP 18-23, 2011 CL HI SP Moss Landing Marine Labs AB A significant problem facing the optical satellite calibration community is limited knowledge of the uncertainties associated with fundamental measurements, such as surface reflectance, used to derive satellite radiometric calibration estimates. In addition, it is difficult to compare the capabilities of calibration teams around the globe, which leads to differences in the estimated calibration of optical satellite sensors. This paper reports on two recent field campaigns that were designed to isolate common uncertainties within and across calibration groups, particularly with respect to ground-based surface reflectance measurements. Initial results from these efforts suggest the uncertainties can be as low as 1.5% to 2.5%. In addition, methods for improving the cross-comparison of calibration teams are suggested that can potentially reduce the differences in the calibration estimates of optical satellite sensors. C1 [Helder, Dennis; Aaron, Dave; Leigh, Larry] S Dakota State Univ, Brookings, SD 57007 USA. [Thome, Kurt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Czapla-Myers, Jeff; Leisso, Nathan; Biggar, Stuart; Anderson, Nik] Univ Arizona, Tucson, AZ 85721 USA. RP Helder, D (reprint author), S Dakota State Univ, Brookings, SD 57007 USA. RI Thome, Kurtis/D-7251-2012; OI Czapla-Myers, Jeffrey/0000-0003-4804-5358 NR 6 TC 7 Z9 7 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0026-1394 J9 METROLOGIA JI Metrologia PD APR PY 2012 VL 49 IS 2 BP S21 EP S28 DI 10.1088/0026-1394/49/2/S21 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 903RP UT WOS:000301136900005 ER PT J AU Spurr, R Wang, J Zeng, J Mishchenko, MI AF Spurr, R. Wang, J. Zeng, J. Mishchenko, M. I. TI Linearized T-matrix and Mie scattering computations SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Light scattering; T-matrix and Mie codes; Analytic linearization ID AEROSOL PROPERTIES; ELECTROMAGNETIC SCATTERING; LIGHT-SCATTERING; PARTICLES; RETRIEVALS; ABSORPTION; MISSION; OCEAN AB We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the "shape" parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Spurr, R.] RT Solut Inc, Cambridge, MA 02138 USA. [Wang, J.; Zeng, J.] Univ Nebraska, Dept Earth & Atmospher Sci, Lincoln, NE 68588 USA. [Mishchenko, M. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Spurr, R (reprint author), RT Solut Inc, Cambridge, MA 02138 USA. EM rtsolutions@verizon.net RI Mishchenko, Michael/D-4426-2012; Wang, Jun/A-2977-2008 OI Wang, Jun/0000-0002-7334-0490 FU NASA Glory Science Team [ROSES A19]; NASA; [NNH09ZDA001N] FX The authors would like to thank Xiong Liu for useful discussions, and Mick Christi for help preparing the package User Guide. This work was funded under the ROSES 2009 NRA (NNH09ZDA001N, ROSES A19 NASA Glory Science Team). Partial support was provided by the NASA Remote Sensing Theory and Radiation Sciences programs managed by Lucia Tsaoussi and Hal Maring. NR 31 TC 17 Z9 18 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD APR PY 2012 VL 113 IS 6 BP 425 EP 439 DI 10.1016/j.jqsrt.2011.11.014 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 902BE UT WOS:000301012800003 ER PT J AU Simon, DL Armstrong, JB Garg, S AF Simon, Donald L. Armstrong, Jeffrey B. Garg, Sanjay TI Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE aerospace engines; aircraft control; closed loop systems; dynamic response; Kalman filters; mean square error methods; open loop systems; optimisation; self-adjusting systems; state estimation AB An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specifically addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy. [DOI: 10.1115/1.4004178] C1 [Simon, Donald L.; Garg, Sanjay] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Armstrong, Jeffrey B.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. RP Simon, DL (reprint author), NASA Glenn Res Ctr, 21000 Brookpk Rd,MS 77-1, Cleveland, OH 44135 USA. NR 11 TC 0 Z9 0 U1 1 U2 3 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD APR PY 2012 VL 134 IS 4 AR 041601 DI 10.1115/1.4004178 PG 11 WC Engineering, Mechanical SC Engineering GA 889HK UT WOS:000300064100008 ER PT J AU Ciufolini, I Pavlis, EC Paolozzi, A Ries, J Koenig, R Matzner, R Sindoni, G Neumayer, KH AF Ciufolini, Ignazio Pavlis, Erricos C. Paolozzi, Antonio Ries, John Koenig, Rolf Matzner, Richard Sindoni, Giampiero Neumayer, Karl Hans TI Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites SO NEW ASTRONOMY LA English DT Article DE Gravitation; Relativity; Frame dragging; Gravitomagnetism ID NON-GRAVITATIONAL PERTURBATIONS; GRAVITY-FIELD MODEL; LAGEOS-II PERIGEE; GRAVITOMAGNETIC FIELD; GRACE; IMPACT; PART; RETROREFLECTORS; REASSESSMENT; RELATIVITY AB In this paper we respond to the criticisms of "Phenomenology of the Lense-Thirring effect in the Solar System" by lorio et al. about the general relativistic phenomena of gravitomagnetism and frame-dragging. The claims of the paper by lorio et al. are not reproducible in any of our independent analyses. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ciufolini, Ignazio] Univ Salento, Dip Ingn Innovaz, I-73100 Lecce, Italy. [Ciufolini, Ignazio] INFN Sez Lecce, I-73100 Lecce, Italy. [Pavlis, Erricos C.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Paolozzi, Antonio; Sindoni, Giampiero] Univ Roma La Sapienza, Scuola Ingn Aerosp, Rome, Italy. [Ries, John] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Koenig, Rolf; Neumayer, Karl Hans] GFZ German Res Ctr Geosci, Potsdam, Germany. [Matzner, Richard] Univ Texas Austin, Ctr Relat, Austin, TX 78712 USA. RP Ciufolini, I (reprint author), Univ Salento, Dip Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy. EM ignazio.ciufolini@unisalento.it FU Italian Space Agency [I/043/08/0, I/016/07/0]; NASA [NNX09AU86G, NNGO6DA07C] FX The authors acknowledge the International laser Ranging Service for providing high quality laser ranging tracking of the two LAGEOS satellites. I. Ciufolini and A. Paolozzi gratefully acknowledge the support of the Italian Space Agency, Grants I/043/08/0 and I/016/07/0, E.C. Pavlis and R. Matzner the support of NASA Grant NNX09AU86G and J.C. Ries the support of NASA Contract NNGO6DA07C. We would also like to thank the referees for useful suggestions and comments to improve our paper. NR 44 TC 22 Z9 22 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1384-1076 J9 NEW ASTRON JI New Astron. PD APR PY 2012 VL 17 IS 3 BP 341 EP 346 DI 10.1016/j.newast.2011.08.003 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 864EJ UT WOS:000298219500013 ER PT J AU Datsko, B Gafiychuk, V AF Datsko, B. Gafiychuk, V. TI Complex nonlinear dynamics in subdiffusive activator-inhibitor systems SO COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION LA English DT Article DE Reaction-diffusion system; Fractional differential equations; Homogeneous oscillations; Dissipative structures ID PATTERN-FORMATION; DIFFUSION; EQUATION; WAVES AB In this article we analyze the linear stability of nonlinear time-fractional reaction-diffusion systems. As an example, the reaction-subdiffusion model with cubic nonlinearity is considered. By linear stability analysis and computer simulation, it was shown that fractional derivative orders can change substantially an eigenvalue spectrum and significantly enrich nonlinear system dynamics. A overall picture of nonlinear solutions in subdiffusive reaction-diffusion systems is presented. (C) 2011 Elsevier B.V. All rights reserved. C1 [Datsko, B.] Natl Acad Sci Ukraine, Inst Appl Problems Mech & Math, UA-79060 Lvov, Ukraine. [Gafiychuk, V.] SGT Inc, Greenbelt, MD 20770 USA. [Gafiychuk, V.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Datsko, B (reprint author), Natl Acad Sci Ukraine, Inst Appl Problems Mech & Math, Naukova St 3 B, UA-79060 Lvov, Ukraine. EM b_datsko@yahoo.com; vagaf@yahoo.com NR 34 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1007-5704 J9 COMMUN NONLINEAR SCI JI Commun. Nonlinear Sci. Numer. Simul. PD APR PY 2012 VL 17 IS 4 BP 1673 EP 1680 DI 10.1016/j.cnsns.2011.08.037 PG 8 WC Mathematics, Applied; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas; Physics, Mathematical SC Mathematics; Mechanics; Physics GA 859RP UT WOS:000297893800018 ER PT J AU Boisvert, LN Markus, T Parkinson, CL Vihma, T AF Boisvert, Linette N. Markus, Thorsten Parkinson, Claire L. Vihma, Timo TI Moisture fluxes derived from EOS aqua satellite data for the north water polynya over 2003-2009 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC INFRARED SOUNDER; SENSIBLE-HEAT-FLUX; ARCTIC SEA-ICE; CANADIAN ARCHIPELAGO; COASTAL POLYNYAS; PHYSICAL PROCESSES; BOUNDARY-LAYER; BAFFIN-BAY; LEADS; CLOUDS AB t Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) on board NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E, also on board Aqua), and wind speed from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than those from ERA-Interim, they are more accurate owing to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x 10(-3) g m(-2) s(-1), only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller-scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack. C1 [Boisvert, Linette N.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Markus, Thorsten; Parkinson, Claire L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Vihma, Timo] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. RP Boisvert, LN (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM linette.n.boisvert@nasa.gov RI Markus, Thorsten/D-5365-2012; Parkinson, Claire/E-1747-2012; OI Parkinson, Claire/0000-0001-6730-4197; Boisvert, Linette/0000-0003-4778-4765 FU NASA FX Thanks go to Timo Vihma for all of his helpful discussions and vast array of knowledge on this subject. We would also like to thank Jeffrey Miller, Alvaro Ivanoff and Nicolo DiGirolamo for their help with some of the data processing. This work was funded under NASA Aqua AMSR-E Sea Ice Algorithm Validation and Refinement grant. NR 57 TC 6 Z9 6 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 31 PY 2012 VL 117 AR D06119 DI 10.1029/2011JD016949 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GL UT WOS:000302237200005 ER PT J AU Hsu, NC Li, C Krotkov, NA Liang, Q Yang, K Tsay, SC AF Hsu, N. Christina Li, Can Krotkov, Nickolay A. Liang, Qing Yang, Kai Tsay, Si-Chee TI Rapid transpacific transport in autumn observed by the A-train satellites SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LONG-RANGE TRANSPORT; OZONE MONITORING INSTRUMENT; AIR-POLLUTION TRANSPORT; INTEX-B; NORTH-AMERICA; EAST-ASIA; REACTIVE NITROGEN; UNITED-STATES; PACIFIC TRANSPORT; CALIPSO LIDAR AB Transpacific transport of dust and pollutants is well documented for spring but less so for other seasons. Here we investigate rapid transpacific transport in autumn utilizing the A-train satellites. In three episodes studied as examples, SO2 plumes over East Asia were detected by the Ozone Monitoring Instrument aboard the Aura satellite and found to reach North America in 5-6 days. They were likely derived from anthropogenic sources, given that identical transport patterns of CO, a tracer for incomplete combustion, were simultaneously observed by the Aqua satellite. Trajectory analysis and meteorological data were employed to explore the meteorological circumstances surrounding these events: like many of their counterparts in spring, all three plumes were lifted to the free troposphere in warm conveyor belts associated with midlatitude wave cyclones, and their migration to the downwind region was regulated by the meteorology over the east Pacific. These cases provide further evidence that a fraction of SO2 could escape wet scavenging and be transported at much greater efficiency than could NOx (NO + NO2). An analysis of the SO2 and CO data from September to November during 2005-2008 found 16 SO2 long-range transport episodes, out of 62 Asian outflow events. While the counts are sensitive to the choice of criteria, they suggest that the long-range transport of Asian sulfur species occurs quite frequently and could exert strong impacts on large downstream areas. This study also highlights the importance of transpacific transport in autumn, which has thus far been rarely studied and deserves more attention from the community. C1 [Hsu, N. Christina; Li, Can; Krotkov, Nickolay A.; Liang, Qing; Yang, Kai; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Liang, Qing] Univ Space Res Assoc, Columbia, MD 21044 USA. [Yang, Kai] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Hsu, NC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Krotkov, Nickolay/E-1541-2012; Liang, Qing/B-1276-2011; Hsu, N. Christina/H-3420-2013; Tsay, Si-Chee/J-1147-2014 OI Krotkov, Nickolay/0000-0001-6170-6750; FU NASA FX The OMI and AIRS data used in this study were acquired as part of the activities of NASA's Science Mission Directorate and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). CALIPSO data were acquired from the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center. The authors wish to thank Russell R. Dickerson of University of Maryland and the anonymous reviewers for helpful comments. This study was partially supported by the NASA Radiation Sciences Program managed by Hal Maring. NR 65 TC 15 Z9 15 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 31 PY 2012 VL 117 AR D06312 DI 10.1029/2011JD016626 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GL UT WOS:000302237200003 ER PT J AU Oreopoulos, L Mlawer, E Delamere, J Shippert, T Cole, J Fomin, B Iacono, M Jin, ZH Li, JN Manners, J Raisanen, P Rose, F Zhang, YC Wilson, MJ Rossow, WB AF Oreopoulos, Lazaros Mlawer, Eli Delamere, Jennifer Shippert, Timothy Cole, Jason Fomin, Boris Iacono, Michael Jin, Zhonghai Li, Jiangnan Manners, James Raisanen, Petri Rose, Fred Zhang, Yuanchong Wilson, Michael J. Rossow, William B. TI The Continual Intercomparison of Radiation Codes: Results from Phase I SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CORRELATED-K-DISTRIBUTION; TRANSFER MODEL; GENERAL-CIRCULATION; MULTIPLE-SCATTERING; UNRESOLVED CLOUDS; CLIMATE MODELS; PART I; INHOMOGENEOUS ATMOSPHERE; TRANSFER SIMULATION; SOLAR-RADIATION AB We present results from Phase I of the Continual Intercomparison of Radiation Codes (CIRC), intended as an evolving and regularly updated reference source for evaluation of radiative transfer (RT) codes used in global climate models and other atmospheric applications. CIRC differs from previous intercomparisons in that it relies on an observationally validated catalog of cases. The seven CIRC Phase I baseline cases, five cloud free and two with overcast liquid clouds, are built around observations by the Atmospheric Radiation Measurements program that satisfy the goals of Phase I, namely, to examine RT model performance in realistic, yet not overly complex, atmospheric conditions. Besides the seven baseline cases, additional idealized "subcases" are also employed to facilitate interpretation of model errors. In addition to quantifying individual model performance with respect to reference line-by-line calculations, we also highlight RT code behavior for conditions of doubled CO2, issues arising from spectral specification of surface albedo, and the impact of cloud scattering in the thermal infrared. Our analysis suggests that improvements in the calculation of diffuse shortwave flux, shortwave absorption, and shortwave CO2 forcing as well as in the treatment of spectral surface albedo should be considered for many RT codes. On the other hand, longwave calculations are generally in agreement with the reference results. By expanding the range of conditions under which participating codes are tested, future CIRC phases will hopefully allow even more rigorous examination of RT codes. C1 [Oreopoulos, Lazaros; Wilson, Michael J.] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mlawer, Eli; Delamere, Jennifer; Iacono, Michael] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Shippert, Timothy] Pacific NW Natl Lab, Richland, WA USA. [Cole, Jason; Li, Jiangnan] Environm Canada, Canadian Ctr Modeling & Anal, Victoria, BC, Canada. [Fomin, Boris] Cent Aerol Observ, Dolgoprudnyi 141700, Russia. [Jin, Zhonghai; Rose, Fred] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Jin, Zhonghai; Rose, Fred] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA USA. [Manners, James] Met Off, Exeter, Devon, England. [Raisanen, Petri] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Zhang, Yuanchong] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Wilson, Michael J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Rossow, William B.] CUNY City Coll, Cooperat Remote Sensing Sci & Technol Ctr, New York, NY 10025 USA. RP Oreopoulos, L (reprint author), NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM lazaros.oreopoulos@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Raisanen, Petri/I-1954-2012; Wilson, Michael/G-9611-2013; Rossow, William/F-3138-2015; Li, Jiangnan/J-6262-2016; OI Oreopoulos, Lazaros/0000-0001-6061-6905; Raisanen, Petri/0000-0003-4466-213X; Cole, Jason/0000-0003-0450-2748; Rose, Fred G/0000-0003-0769-0772 FU U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FG02-07ER64354, DE-FG02-90ER610]; Academy of Finland [127210] FX The authors gratefully acknowledge financial support from the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Sciences Division as part of the ARM program under grants DE-FG02-07ER64354 (L. Oreopoulos) and DE-FG02-90ER610 (E. Mlawer). P. R is nen acknowledges funding by the Academy of Finland (project 127210). The endorsement of the GEWEX Radiation Panel and the International Radiation Commission is critical for the success of CIRC, and we extend our thanks to their respective leaders, C. Kummerow (GRP) and R. Cahalan (IRC), for their guidance. We would like to acknowledge the large number of people involved in CIRC indirectly by developing the ARM data products used and, specifically, M. Miller for leading the cloud retrieval effort used in BBHRP, D. Turner and C. Chiu for CIRC Case 7 cloud and surface input, B. Zak for providing satellite images relevant to CIRC Cases 4 and 5, and M. Khaiyer and P. Minnis for the GOES and CERES satellite-based radiative fluxes. NR 55 TC 36 Z9 38 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 31 PY 2012 VL 117 AR D06118 DI 10.1029/2011JD016821 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GL UT WOS:000302237200004 ER PT J AU Cuero, R Lilly, J McKay, DS AF Cuero, Raul Lilly, J. McKay, David S. TI Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch-ion channel protein interaction SO JOURNAL OF BIOTECHNOLOGY LA English DT Article DE Biosensor; Ribosomal switch; Ion channel ID GENE-EXPRESSION; RIBOSWITCH; BIOSENSORS; AFLATOXIN AB Molecular biosensors are useful tools that detect metal ions or other potentially toxic chemicals. However, the efficiency of conventional sensors is limited in mixed metals substrates, which is the common way they are found in nature. The use of biosensors constructed from genetically modified living microbial systems has the potential of providing sensitive detection systems for specific toxic targets. Consequently, our investigation was aimed at assembling different genetic building blocks to produce a focused microbial biosensor with the ability to detect specific metals. This objective was achieved by using a synthetic biology approach. Our genetic building blocks, including a synchronized ribosomal switch-iron ion channel, along with sequences of promoters, metal-binding proteins (Fe, Pb), ribosomal binding sites, yellow fluorescence reporter protein (YFRP), and terminators, were constructed within the same biobrick in Escherichia coli. We used an rpoS ribosomal switch containing an aptamer, which responds to the specific metal ligands, in synchronization with an iron ion channel, TonB. This switch significantly stimulates translation, as expressed by higher fluorescence, number of colonies, and concentration of RNA in E. coli. The positive results show the effectiveness of using genetically tailored synchronized ribosomal switch-ion channels to construct microbial biosensors to detect specific metals, as tested in iron solutions. (C) 2012 Elsevier B.V. All rights reserved. C1 [Cuero, Raul; Lilly, J.] Prairie View A&M Univ, CARC, Prairie View, TX 77446 USA. [McKay, David S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Cuero, R (reprint author), Prairie View A&M Univ, CARC, POB 685, Prairie View, TX 77446 USA. EM olimpa@aol.com NR 19 TC 6 Z9 6 U1 1 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD MAR 31 PY 2012 VL 158 IS 1-2 BP 1 EP 7 DI 10.1016/j.jbiotec.2012.01.011 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 897GM UT WOS:000300635600001 PM 22300511 ER PT J AU Benson, RF Truhlik, V Huang, XQ Wang, YL Bilitza, D AF Benson, Robert F. Truhlik, Vladimir Huang, Xueqin Wang, Yongli Bilitza, Dieter TI Improving the automatic inversion of digital Alouette/ISIS ionogram reflection traces into topside electron density profiles SO RADIO SCIENCE LA English DT Article ID SOUNDER; IONOSPHERE AB The topside sounders of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35 mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the Topside Ionogram Scalar With True-Height (TOPIST) algorithm, has been produced and used for the automatic inversion of the ionogram reflection traces on more than 100,000 ISIS-2 digital topside ionograms into topside vertical electron density profiles N-e(h). Here we present some topside ionospheric solar cycle variations deduced from the TOPIST database to illustrate the scientific benefit of improving and expanding the topside ionospheric N-e(h) database. The profile improvements will be based on improvements in the TOPIST software motivated by direct comparisons between TOPIST profiles and profiles produced by manual scaling in the early days of the ISIS program. The database expansion will be based on new software designed to overcome limitations in the original digital topside ionogram database caused by difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame sync pulse and/or the frequency markers. This improved and expanded TOPIST topside N-e(h) database will greatly enhance investigations into both short-and long-term ionospheric changes, e.g., the observed topside ionospheric responses to magnetic storms, induced by interplanetary magnetic clouds, and solar cycle variations, respectively. C1 [Benson, Robert F.; Wang, Yongli] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Goddard Planetary Heliophys Inst, Greenbelt, MD 20771 USA. [Truhlik, Vladimir] Acad Sci Czech Republic, Inst Atmospher Phys, Prague 14131, Czech Republic. [Huang, Xueqin] Univ Massachusetts Lowell, Ctr Atmospher Res, Lowell, MA 01854 USA. [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. RP Benson, RF (reprint author), Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Goddard Planetary Heliophys Inst, Code 673, Greenbelt, MD 20771 USA. EM robert.f.benson@nasa.gov RI Truhlik, Vladimir/H-6971-2014 OI Truhlik, Vladimir/0000-0002-6624-4388 FU NASA; Grant Agency of the Czech Republic [P209/10/2086] FX This work was supported by the NASA Heliospheric Geospace Science Research Program. V.T. was supported, in part, by grant P209/10/2086 of the Grant Agency of the Czech Republic. The Interactive Data Language (IDL) program for Alouette/ISIS digital ionogram analysis, used in this work by R.F.B., was written by Gary Burgess at the GSFC. NR 20 TC 3 Z9 3 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD MAR 30 PY 2012 VL 47 AR RS0L04 DI 10.1029/2011RS004963 PG 10 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 918MK UT WOS:000302253700005 ER PT J AU France, JA Harvey, VL Randall, CE Hitchman, MH Schwartz, MJ AF France, J. A. Harvey, V. L. Randall, C. E. Hitchman, M. H. Schwartz, M. J. TI A climatology of stratopause temperature and height in the polar vortex and anticyclones SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHERN-HEMISPHERE; NORTHERN HEMISPHERE; WINTER STRATOSPHERE; MIDDLE ATMOSPHERE; CIRCULATION; EVOLUTION; DISTURBANCES; VARIABILITY; VORTICES; MLS AB A global climatology of stratopause temperature and height is shown using 7 years of Microwave Limb Sounder satellite data, from 2004 to 2011. Stratopause temperature and height is interpreted in the context of the polar vortices and anticyclones defined by the Goddard Earth Observing System meteorological analyses. Multiyear, monthly mean geographic patterns in stratopause temperature and height are shown to depend on the location of the polar vortices and anticyclones. The anomalous winters of 2005/2006 and 2008/2009 are considered separately in this analysis. In the anomalous years, we show that the elevated stratopause in February is confined to the vortex core. This is the first study to show that the stratopause is, on average, 20 K colder and 5-10 km lower in the Aleutian anticyclone than in ambient air during the Arctic winter. During September in the Antarctic the stratopause is, on average, 10 K colder inside anticyclones south of Australia. The regional temperature and height anomalies, which are due to vertical ageostrophic motion associated with baroclinic instability, are shown to be climatological features. The mean structure of the temperature and height anomalies is consistent with moderate baroclinic growth below the stratopause and decay above. This work furthers current understanding of the geography of the stratopause by emphasizing the role of synoptic baroclinic instability, whereby anticyclones establish zonally asymmetric climatological patterns in stratopause temperature and height. This work highlights the need to consider zonal asymmetries when calculating upper stratospheric temperature trends. C1 [France, J. A.; Harvey, V. L.; Randall, C. E.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hitchman, M. H.] Univ Wisconsin, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Schwartz, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [France, J. A.; Randall, C. E.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. RP France, JA (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM jeffrey.france@colorado.edu RI Randall, Cora/L-8760-2014; Schwartz, Michael/F-5172-2016 OI Randall, Cora/0000-0002-4313-4397; Schwartz, Michael/0000-0001-6169-5094 FU NASA [NAS5-97046, NNX08AK45G, NNX06AE27G, NNX10AQ54G, NNX10AG57G]; NSF [AGS 0940124, ARC 1107498, ATM 0822858] FX We thank NASA's GMAO for providing the GEOS analyses and the MLS science team for the processing and distributing the satellite data. We thank Matthias Brakebusch for the MLS gridding routine. Work done at CU was supported by NASA grants NAS5-97046, NNX08AK45G, NNX06AE27G, and NNX10AQ54G, and NSF grants AGS 0940124 and ARC 1107498. M. H. H. was supported by NSF grant ATM 0822858 and NASA grant NNX10AG57G. Research at JPL was supported by NASA. NR 47 TC 7 Z9 7 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 30 PY 2012 VL 117 AR D06116 DI 10.1029/2011JD016893 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GK UT WOS:000302237100008 ER PT J AU Miller, SM Kort, EA Hirsch, AI Dlugokencky, EJ Andrews, AE Xu, X Tian, H Nehrkorn, T Eluszkiewicz, J Michalak, AM Wofsy, SC AF Miller, S. M. Kort, E. A. Hirsch, A. I. Dlugokencky, E. J. Andrews, A. E. Xu, X. Tian, H. Nehrkorn, T. Eluszkiewicz, J. Michalak, A. M. Wofsy, S. C. TI Regional sources of nitrous oxide over the United States: Seasonal variation and spatial distribution SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MODELING SYSTEM; ATMOSPHERIC OBSERVATIONS; GEOSTATISTICAL APPROACH; NORTH-AMERICA; N2O EMISSIONS; STILT MODEL; TRACE GASES; ART.; TRANSPORT; EXCHANGE AB This paper presents top-down constraints on the magnitude, spatial distribution, and seasonality of nitrous oxide (N2O) emissions over the central United States. We analyze data from tall towers in 2004 and 2008 using a high resolution Lagrangian particle dispersion model paired with both geostatistical and Bayesian inversions. Our results indicate peak N2O emissions in June with a strong seasonal cycle. The spatial distribution of sources closely mirrors data on fertilizer application with particularly large N2O sources over the US Cornbelt. Existing inventories for N2O predict emissions that differ substantially from the inverse model results in both seasonal cycle and magnitude. We estimate a total annual N2O budget over the central US of 0.9-1.2 TgN/yr and an extrapolated budget for the entire US and Canada of 2.1-2.6 TgN/yr. By this estimate, the US and Canada account for 12-15% of the total global N2O source or 32-39% of the global anthropogenic source as reported by the Intergovernmental Panel on Climate Change in 2007. C1 [Miller, S. M.; Wofsy, S. C.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Dlugokencky, E. J.; Andrews, A. E.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Nehrkorn, T.; Eluszkiewicz, J.] Atmospher & Environm Res, Lexington, MA 02421 USA. [Hirsch, A. I.] DOE, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kort, E. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Michalak, A. M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Xu, X.; Tian, H.] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. RP Miller, SM (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM smiller@fas.harvard.edu; kort47@gmail.com; adam.hirsch@nrel.gov; ed.dlugokencky@noaa.gov; arlyn.andrews@noaa.gov; xuxiaof@tigermail.auburn.edu; tianhan@auburn.edu; tnehrkor@aer.com; jeluszki@aer.com; michalak@stanford.edu; swofsy@seas.harvard.edu RI Kort, Eric/F-9942-2012; Tian, Hanqin/A-6484-2012; Andrews, Arlyn/K-3427-2012; Xu, Xiaofeng/B-2391-2008; OI Kort, Eric/0000-0003-4940-7541; Tian, Hanqin/0000-0002-1806-4091; Xu, Xiaofeng/0000-0002-6553-6514; Nehrkorn, Thomas/0000-0003-0637-3468 FU American Meteorological Society/DOE; DOE; National Science Foundation [ATM-0836153]; National Aeronautics and Space Administration (NASA) [NNX06AE84G, NNH05CC42C, NNX08AR47G]; NOAA/ESRL [RA133R-08-SE-2359, NRMJ1000-15617DT] FX This work was supported by the American Meteorological Society Graduate Student Fellowship/DOE Atmospheric Radiation Measurement Program, the DOE Computational Science Graduate Fellowship, and the National Science Foundation Graduate Research Fellowship Program. We thank Marcos Longo and Elaine Gottlieb (Harvard) for their help with model meteorology. The generation of the WRF meteorological fields was supported by the National Aeronautics and Space Administration (NASA) under grants NNX06AE84G, NNH05CC42C, and NNX08AR47G; National Science Foundation grant ATM-0836153; and NOAA/ESRL contracts RA133R-08-SE-2359 and NRMJ1000-15617DT. The WRF and STILT runs described in this paper have been made possible by access to NASA's high-end computing resources and we thank the personnel at the NASA Ames supercomputing facility for technical assistance. Additionally, we thank Kimberly Mueller and Sharon Gourdji (Carnegie Institution for Science) for input on the Restricted Maximum Likelihood implementation, and we thank Navin Ramankutty and Philip Potter (McGill University) for their fertilizer use data sets. NR 59 TC 20 Z9 20 U1 2 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 30 PY 2012 VL 117 AR D06310 DI 10.1029/2011JD016951 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GK UT WOS:000302237100011 ER PT J AU Chakrabarti, S Hebert, P Wolf, MT Campos, M Burdick, JW Gail, A AF Chakrabarti, Shubhodeep Hebert, Paul Wolf, Michael T. Campos, Michael Burdick, Joel W. Gail, Alexander TI Expert-like performance of an autonomous spike tracking algorithm in isolating and maintaining single units in the macaque cortex SO JOURNAL OF NEUROSCIENCE METHODS LA English DT Article DE Spike tracking; Signal quality; Signal stability; Electrode motion; Neuronal waveforms ID MOTORIZED MICRODRIVE; NEURAL PROSTHETICS; VISUAL-CORTEX; RECORDING ELECTRODES; ACTION-POTENTIALS; SIGNALS; SYSTEM; ARRAY; INTERFACES; PRIMATES AB Isolating action potentials of a single neuron (unit) is essential for intra-cortical neurophysiological recordings. Yet, during extracellular recordings in semi-chronic awake preparations, the relationship between neuronal soma and the recording electrode is typically not stationary. Neuronal waveforms often change in shape, and in the absence of counter-measures, merge with the background noise. To avoid this, experimenters can repeatedly re-adjust electrode positions to maintain the shapes of isolated spikes. In recordings with a larger number of electrodes, this process becomes extremely difficult. We report the performance of an automated algorithm that tracks neurons to obtain well isolated spiking, and autonomously adjusts electrode position to maintain good isolation. We tested the performance of this algorithm in isolating units with multiple individually adjustable micro-electrodes in a cortical surface area of macaque monkeys. We compared the performance in terms of signal quality and signal stability against passive placement of microelectrodes and against the performance of three human experts. The results show that our SpikeTrack2 algorithm achieves significantly better signal quality compared to passive placement. It is as least as good as humans in initially finding and isolating units, and better as the average and at least as good as the most proficient of three human experimenters in maintaining signal quality and signal stability. The autonomous tracking performance, the scalability of the system to large numbers of individual channels, and the possibility to objectify single unit recording criteria makes SpikeTrack2 a highly valuable tool for all multi-channel recording systems with individually adjustable electrodes. (C) 2012 Elsevier B.V. All rights reserved. C1 [Chakrabarti, Shubhodeep; Gail, Alexander] Leibniz Inst Primate Res, Bernstein Ctr Computat Neurosci, German Primate Ctr, D-37077 Gottingen, Germany. [Hebert, Paul; Burdick, Joel W.] CALTECH, Dept Mech Engn, Pasadena, CA 91125 USA. [Wolf, Michael T.] CALTECH, Jet Prop Lab, Adv Robot Controls Grp, Pasadena, CA 91125 USA. [Campos, Michael] Qualcomm, Corp Res & Dev, San Diego, CA 92121 USA. RP Gail, A (reprint author), Leibniz Inst Primate Res, Bernstein Ctr Computat Neurosci, German Primate Ctr, Kellnerweg 4, D-37077 Gottingen, Germany. EM agail@gwdg.de OI Chakrabarti, Shubhodeep/0000-0002-2759-019X FU Federal Ministry for Education and Research (BMBF, Germany) [01GQ0433, 01GQ0814, 01GQ1005C]; Alexander von Humboldt Foundation FX The authors thank Pablo Martinez-Vazquez for his help with the statistical analyses for spike stability measures and Stephanie Westendorff and Christian Klaes for allowing access to their data for comparisons between humans and SpikeTrack2. This study was supported by the Federal Ministry for Education and Research (BMBF, Germany) grants 01GQ0433, 01GQ0814 and 01GQ1005C awarded to AG, and a postdoctoral stipend awarded to SC by the Alexander von Humboldt Foundation. NR 58 TC 3 Z9 3 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-0270 J9 J NEUROSCI METH JI J. Neurosci. Methods PD MAR 30 PY 2012 VL 205 IS 1 BP 72 EP 85 DI 10.1016/j.jneumeth.2011.12.018 PG 14 WC Biochemical Research Methods; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 911AB UT WOS:000301688600009 PM 22227443 ER PT J AU Webber, WR McDonald, FB Cummings, AC Stone, EC Heikkila, B Lal, N AF Webber, W. R. McDonald, F. B. Cummings, A. C. Stone, E. C. Heikkila, B. Lal, N. TI Sudden intensity increases and radial gradient changes of cosmic ray MeV electrons and protons observed at Voyager 1 beyond 111 AU in the heliosheath SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID OUTER HELIOSPHERE AB Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheath at a distance of about 111 AU from the Sun. The low energy 6-14 MeV galactic electron intensity increased by similar to 20% over a time period <= 10 days and the electron radial intensity gradient abruptly decreased from similar to 19%/AU to similar to 8%/AU at 2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of similar to 25% was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to 18%/AU. This large positive gradient and the similar to 13 day periodic variations of >200 MeV particles observed near the end of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these results regarding the proximity of the heliopause are discussed. Citation: Webber, W. R., F. B. McDonald, A. C. Cummings, E. C. Stone, B. Heikkila, and N. Lal (2012), Sudden intensity increases and radial gradient changes of cosmic ray MeV electrons and protons observed at Voyager 1 beyond 111 AU in the heliosheath, Geophys. Res. Lett., 39, L06107, doi:10.1029/2012GL051171. C1 [Webber, W. R.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [McDonald, F. B.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Cummings, A. C.; Stone, E. C.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Heikkila, B.; Lal, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Webber, WR (reprint author), New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. EM bwebber@nmsu.edu FU JPL FX The authors all appreciate the support of the Voyager program by JPL. The data used here comes from both the Voyager CRS experiments web-site (http://voyager.gsfc.nasa.gov) and from internally generated CRS documents. NR 16 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 29 PY 2012 VL 39 AR L06107 DI 10.1029/2012GL051171 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 918FR UT WOS:000302235200004 ER PT J AU Aquila, V Oman, LD Stolarski, RS Colarco, PR Newman, PA AF Aquila, Valentina Oman, Luke D. Stolarski, Richard S. Colarco, Peter R. Newman, Paul A. TI Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHERN ANNULAR MODE; STRATOSPHERIC AEROSOL; GLOBAL CLIMATOLOGY; II MEASUREMENTS; EL-CHICHON; SIMULATION; CIRCULATION; SATELLITE; EVOLUTION; IMPACT AB We use the GEOS-5 general circulation model to simulate the transport of the volcanic cloud from an eruption similar to the 1991 eruption of Mount Pinatubo. The simulated aerosol optical thickness and transport of the volcanic cloud are in good agreement with observations of the actual Pinatubo eruption from the Stratospheric Aerosol and Gas Experiment II (SAGE II) and the Advanced Very High Resolution Radiometer (AVHRR) and with vertical profiles of sulfur dioxide observed by the Microwave Limb Sounder (MLS). We tested the importance of initial conditions corresponding to the specific meteorological situation at the time of the eruption by comparing results when GEOS-5 is initialized using Modern Era Retrospective Analyses for Research and Applications (MERRA) reanalysis fields with results when it is initialized from an existing model run. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of longwave radiation by the volcanic sulfate largely induces the rising of the volcanic cloud up to the middle stratosphere and the divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud is transported to the Northern Hemisphere through a lower stratospheric pathway and to middle and high latitudes of the Southern Hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season of the eruption. C1 [Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [Stolarski, Richard S.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. RP Aquila, V (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Mail Code 614, Greenbelt, MD 20771 USA. EM valentina.aquila@nasa.gov RI Newman, Paul/D-6208-2012; Aquila, Valentina/D-7267-2012; Oman, Luke/C-2778-2009; Stolarski, Richard/B-8499-2013; Colarco, Peter/D-8637-2012 OI Newman, Paul/0000-0003-1139-2508; Aquila, Valentina/0000-0003-2060-6694; Oman, Luke/0000-0002-5487-2598; Stolarski, Richard/0000-0001-8722-4012; Colarco, Peter/0000-0003-3525-1662 FU NASA FX We thank Anne Douglass, Steven Pawson, and Chaim Garfinkel for helpful discussions. We also thank three anonymous reviewers, who helped to significantly enhance this paper. V. Aquila is supported by the NASA Postdoctoral Program, administered by the Oak Ridge Associated University (ORAU). NR 53 TC 26 Z9 26 U1 2 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 29 PY 2012 VL 117 AR D06216 DI 10.1029/2011JD016968 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GI UT WOS:000302236900005 ER PT J AU Iwabuchi, H Yang, P Liou, KN Minnis, P AF Iwabuchi, Hironobu Yang, Ping Liou, K. N. Minnis, Patrick TI Physical and optical properties of persistent contrails: Climatology and interpretation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IN-SITU OBSERVATIONS; CIRRUS CLOUD CLIMATOLOGY; ICE CRYSTALS; MICROPHYSICAL PROPERTIES; LIDAR MEASUREMENTS; LIGHT-SCATTERING; DEPOLARIZATION RATIO; POLARIZATION LIDAR; PART II; ATTENUATED BACKSCATTER AB The physical and optical properties of persistent contrails were studied with the measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. MODIS data were used to determine the contrail locations on the basis of their artificial shapes easily distinguished from natural cirrus, and the so-identified contrails were analyzed with collocated CALIPSO lidar data. Statistics of the geography, geometry, meteorology, and optical properties are reported for approximately 3400 persistent contrails observed over North America, the North Atlantic Ocean, and Europe. The majority of the detected contrails appear in ice-supersaturated air with temperatures lower than -40 degrees C. On average, contrails have significantly larger backscattering coefficients and slightly higher linear depolarization ratios (LDRs) than neighboring cirrus clouds. Depolarization tends to be strong when ice crystals are small, and LDR is approximately 0.4-0.45 for young contrails and contrail cores. The mean LDR for the detected contrails increases with decreasing temperature and is not strongly dependent on the lidar pointing angle. The backscattering properties suggest that contrails are primarily composed of small, randomly oriented ice crystals but may also contain a few horizontally oriented plates. Most contrails are optically thin with a mean (median) optical thickness of approximately 0.19 (0.14); however, optically thicker contrails do exist and tend to occur in warmer and more humid ambient air. The mean value and range of the observed LDR data are consistent with theoretical predictions based on a mixture of nonspherical ice crystals randomly oriented in the atmosphere. C1 [Iwabuchi, Hironobu; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Liou, K. N.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Liou, K. N.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23682 USA. RP Iwabuchi, H (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@tamu.edu RI Yang, Ping/B-4590-2011; Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU Aviation Climate Change Research Initiative (ACCRI); Federal Aviation Administration (FAA) [DTRT57-10-C-10016, DTRT57-10-X-70020] FX This work was supported by the Aviation Climate Change Research Initiative (ACCRI) sponsored by the Federal Aviation Administration (FAA) under contracts DTRT57-10-C-10016 and DTRT57-10-X-70020. The authors thank Rangasayi Halthore and S. Daniel Jacob from the FAA for overseeing the project progress and for guidance and encouragement. The authors are grateful to Ulrich Schumann, Bernd Karcher, and an anonymous reviewer for constructive comments and suggestions. The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. The MODIS data were obtained from NASA/GSFC, MODIS Rapid Response System, and the Level 1 and Atmosphere Archive and Distribution System (LAADS). NR 80 TC 33 Z9 33 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 29 PY 2012 VL 117 AR D06215 DI 10.1029/2011JD017020 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GI UT WOS:000302236900008 ER PT J AU Burke, WJ Gentile, LC Shomo, SR Roddy, PA Pfaff, RF AF Burke, William J. Gentile, Louise C. Shomo, Shannon R. Roddy, Patrick A. Pfaff, Robert F. TI Images of bottomside irregularities observed at topside altitudes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL PLASMA BUBBLES; F-REGION; SPREAD-F; ELECTRIC-FIELD; IONOSPHERE; SCINTILLATION; CLIMATOLOGY AB We analyzed plasma and field measurements acquired by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (similar to 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (similar to 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere. C1 [Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.] Space Vehicles Directorate, AF Res Lab, Hanscom AFB, MA 01731 USA. [Burke, William J.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02167 USA. [Pfaff, Robert F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Burke, WJ (reprint author), Space Vehicles Directorate, AF Res Lab, 29 Randolph Rd, Hanscom AFB, MA 01731 USA. EM afrl.rvborgmailbox@kirtland.af.mil RI Pfaff, Robert/F-5703-2012 OI Pfaff, Robert/0000-0002-4881-9715 FU Air Force Office of Scientific Research; Task [12RV10COR]; Boston College; [FA8718-08-C-0012] FX Support for the present work was provided by the Air Force Office of Scientific Research, Task 12RV10COR, and AF contract FA8718-08-C-0012 with Boston College. The authors are very grateful to R.A. Heelis for helpful discussions about the possible roles of Alfven waves in the development of the Rayleigh-Taylor instability. NR 34 TC 2 Z9 2 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 29 PY 2012 VL 117 AR A03332 DI 10.1029/2011JA017169 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 918LZ UT WOS:000302252500001 ER PT J AU Abe, K Fuke, H Haino, S Hams, T Hasegawa, M Horikoshi, A Itazaki, A Kim, KC Kumazawa, T Kusumoto, A Lee, MH Makida, Y Matsuda, S Matsukawa, Y Matsumoto, K Mitchell, JW Myers, Z Nishimura, J Nozaki, M Orito, R Ormes, JF Sakai, K Sasaki, M Seo, ES Shikaze, Y Shinoda, R Streitmatter, RE Suzuki, J Takasugi, Y Takeuchi, K Tanaka, K Thakur, N Yamagami, T Yamamoto, A Yoshida, T Yoshimura, K AF Abe, K. Fuke, H. Haino, S. Hams, T. Hasegawa, M. Horikoshi, A. Itazaki, A. Kim, K. C. Kumazawa, T. Kusumoto, A. Lee, M. H. Makida, Y. Matsuda, S. Matsukawa, Y. Matsumoto, K. Mitchell, J. W. Myers, Z. Nishimura, J. Nozaki, M. Orito, R. Ormes, J. F. Sakai, K. Sasaki, M. Seo, E. S. Shikaze, Y. Shinoda, R. Streitmatter, R. E. Suzuki, J. Takasugi, Y. Takeuchi, K. Tanaka, K. Thakur, N. Yamagami, T. Yamamoto, A. Yoshida, T. Yoshimura, K. TI Search for Antihelium with the BESS-Polar Spectrometer SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY ANTIPROTON FLUX; COSMIC-RAYS; ANTIMATTER; RADIATION; ELECTRON; UNIVERSE; PROGRESS; MATTER; LIMIT AB In two long-duration balloon flights over Antarctica, the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has searched for antihelium in the cosmic radiation with the highest sensitivity reported. BESS-Polar I flew in 2004, observing for 8.5 days. BESS-Polar II flew in 2007-2008, observing for 24.5 days. No antihelium candidate was found in BESS-Polar I data among 8.4 x 10(6) vertical bar Z vertical bar = 2 nuclei from 1.0 to 20 GV or in BESS-Polar II data among 4: 0 x 10(7) vertical bar Z vertical bar = 2 nuclei from 1.0 to 14 GV. Assuming antihelium to have the same spectral shape as helium, a 95% confidence upper limit to the possible abundance of antihelium relative to helium of 6.9 x 10(-8) was determined combining all BESS data, including the two BESS-Polar flights. With no assumed antihelium spectrum and a weighted average of the lowest antihelium efficiencies for each flight, an upper limit of 1.0 x 10(-7) from 1.6 to 14 GV was determined for the combined BESS-Polar data. Under both antihelium spectral assumptions, these are the lowest limits obtained to date. C1 [Hams, T.; Mitchell, J. W.; Sasaki, M.; Streitmatter, R. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R.; Shikaze, Y.; Takasugi, Y.; Takeuchi, K.] Kobe Univ, Kobe, Hyogo 6578501, Japan. [Fuke, H.; Yamagami, T.; Yoshida, T.] Japan Aerosp Explorat Agcy ISAS JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M.; Suzuki, J.; Tanaka, K.; Yamamoto, A.; Yoshimura, K.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kim, K. C.; Lee, M. H.; Myers, Z.; Seo, E. S.] Univ Maryland, College Pk, MD 20742 USA. [Nishimura, J.; Sakai, K.; Shinoda, R.; Yamamoto, A.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Ormes, J. F.; Thakur, N.] Univ Denver, Denver, CO 80208 USA. RP Sasaki, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Makoto.Sasaki@nasa.gov OI Seo, Eun-Suk/0000-0001-8682-805X FU NASA [10-APRA10-0160, NNX10AC48G]; ISAS/JAXA; KEK; MEXT [KAKENHI 13001004, KAKENHI 18104006]; National Science Foundation FX The authors thank NASA Headquarters, ISAS/JAXA, and KEK for continuous support and encouragement in this United States-Japan project. We thank the NASA Balloon Program Office at GSFC/WFF, the NASA Columbia Scientific Balloon Facility, the National Science Foundation, and Raytheon Polar Services for their professional support of the Antarctic flights. BESS-Polar is supported in Japan by MEXT grants KAKENHI (13001004; 18104006), and in the U. S. by NASA (10-APRA10-0160; NNX10AC48G). NR 26 TC 19 Z9 20 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 29 PY 2012 VL 108 IS 13 AR 131301 DI 10.1103/PhysRevLett.108.131301 PG 4 WC Physics, Multidisciplinary SC Physics GA 916QM UT WOS:000302118300002 PM 22540691 ER PT J AU Huang, XC Schwenke, DW Tashkun, SA Lee, TJ AF Huang, Xinchuan Schwenke, David W. Tashkun, Sergey A. Lee, Timothy J. TI An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial (C16O2)-C-12 infrared line list SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR SPECTROSCOPIC DATABASE; DIRECT NUMERICAL DIAGONALIZATION; CARBON-DIOXIDE MOLECULE; ABSORPTION-BANDS; DIPOLE-MOMENT; MU-M; PROJECTION OPERATORS; TRIATOMIC-MOLECULES; FORCE-FIELDS; INTENSITIES AB An isotopic-independent, highly accurate potential energy surface (PES) has been determined for CO2 by refining a purely ab initio PES with selected, purely experimentally determined rovibrational energy levels. The purely ab initio PES is denoted Ames-0, while the refined PES is denoted Ames-1. Detailed tests are performed to demonstrate the spectroscopic accuracy of the Ames-1 PES. It is shown that Ames-1 yields sigma(rms) (root-mean-squares error) = 0.0156 cm(-1) for 6873 J = 0-117 (CO2)-C-12-O-16 experimental energy levels, even though less than 500 (CO2)-C-12-O-16 energy levels were included in the refinement procedure. It is also demonstrated that, without any additional refinement, Ames-1 yields very good agreement for isotopologues. Specifically, for the (CO2)-C-12-O-16 and (CO2)-C-13-O-16 isotopologues, spectroscopic constants G(nu) computed from Ames-1 are within +/- 0.01 and 0.02 cm(-1) of reliable experimentally derived values, while for the (OCO)-O-16-C-12-O-18, (OCO)-O-16-C-12-O-17, (OCO)-O-16-C-13-O-18, (OCO)-O-16-C-13-O-17, (CO2)-C-12-O-18, (OCO)-O-17-C-12-O-18, (CO2)-C-12-O-17, (CO2)-C-13-O-18, (CO2)-C-13-O-17, (OCO)-O-17-C-13-O-18, and (CO2)-C-14-O-16 isotopologues, the differences are between +/- 0.10 and 0.15 cm(-1). To our knowledge, this is the first time a polyatomic PES has been refined using such high J values, and this has led to new challenges in the refinement procedure. An initial high quality, purely ab initio dipole moment surface (DMS) is constructed and used to generate a 296 K line list. For most bands, experimental IR intensities are well reproduced for (CO2)-C-12-O-16 using Ames-1 and the DMS. For more than 80% of the bands, the experimental intensities are reproduced with sigma(rms)(Delta I) < 20% or srms(Delta I/delta(obs)) < 5. A few exceptions are analyzed and discussed. Directions for future improvements are discussed, though it is concluded that the current Ames-1 and the DMS should be useful in analyzing and assigning high-resolution laboratory or astronomical spectra. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697540] C1 [Schwenke, David W.; Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huang, Xinchuan] SETI Inst, Mountain View, CA 94043 USA. [Tashkun, Sergey A.] SB RAS, VE Zuev Inst Atmospher Opt, Tomsk 634021, Russia. RP Lee, TJ (reprint author), NASA, Ames Res Ctr, MS 245-1, Moffett Field, CA 94035 USA. EM Xinchuan.Huang-1@nasa.gov; David.W.Schwenke@nasa.gov; Tashkun@rambler.ru; Timothy.J.Lee@nasa.gov RI HUANG, XINCHUAN/A-3266-2013; Lee, Timothy/K-2838-2012; Tashkun, Sergey/E-8682-2014; schwenke, david/I-3564-2013 FU NASA; NASA/SETI [NNX09AI4A]; joint RFBR-Russia [09-05-92508]; CRDF-USA [RUG1-2954-TO-09] FX We thank all the experimentalists who have contributed to CO2 high-resolution IR spectral studies. Without their invaluable work, refinements reported in this study are simply impossible. D.W.S., T.J.L., and X.H. gratefully acknowledge financial support from the NASA Venus Express Supporting Investigator Program. X.H. acknowledges the NASA/SETI Co-operative Agreement NNX09AI4A. S.A.T. thanks Dr. V. I. Perevalov for useful discussions and acknowledges support from a joint RFBR-Russia (09-05-92508) and CRDF-USA (RUG1-2954-TO-09) grant. NR 65 TC 41 Z9 43 U1 0 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 28 PY 2012 VL 136 IS 12 AR 124311 DI 10.1063/1.3697540 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 917YU UT WOS:000302216200037 PM 22462861 ER PT J AU McComas, DJ Buzulukova, N Connors, MG Dayeh, MA Goldstein, J Funsten, HO Fuselier, S Schwadron, NA Valek, P AF McComas, D. J. Buzulukova, N. Connors, M. G. Dayeh, M. A. Goldstein, J. Funsten, H. O. Fuselier, S. Schwadron, N. A. Valek, P. TI Two Wide-Angle Imaging Neutral-Atom Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5 April 2010 substorm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC-FIELD; RING CURRENT; MODEL; MISSION; EVENT; FLUX AB This study is the first to combine energetic neutral atom (ENA) observations from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) and Interstellar Boundary Explorer (IBEX). Here we examine the arrival of an interplanetary shock and the subsequent geomagnetically effective substorm on 5 April 2010, which was associated with the Galaxy 15 communications satellite anomaly. IBEX shows sharply enhanced ENA emissions immediately upon compression of the dayside magnetosphere at 08:26:17+/-9 s UT. The compression drove a markedly different spectral shape for the dayside emissions, with a strong enhancement at energies >1 keV, which persisted for hours after the shock arrival, consistent with the higher solar wind speed, density, and dynamic pressure (similar to 10 nPa) after the shock. TWINS ENA observations indicate a slower response of the ring current and precipitation of ring current ions as low-altitude emissions similar to 15 min later, with the >50 keV ion precipitation leading the <10 keV precipitation by similar to 20 min. These observations suggest internal magnetospheric processes are occurring after compression of the magnetosphere and before the ring current ions end up in the loss cone and precipitate into the ionosphere. We also compare MHD simulation results with both the TWINS and IBEX ENA observations; while the overall fluxes and distributions of emissions were generally similar, there were significant quantitative differences. Such differences emphasize the complexity of the magnetospheric system and importance of the global perspective for macroscopic magnetospheric studies. Finally, Appendix A documents important details of the TWINS data processing, including improved binning procedures, smoothing of images to a given level of statistical accuracy, and differential background subtraction. C1 [McComas, D. J.; Dayeh, M. A.; Goldstein, J.; Fuselier, S.; Schwadron, N. A.; Valek, P.] SW Res Inst, San Antonio, TX 78228 USA. [Buzulukova, N.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20770 USA. [Connors, M. G.] Athabasca Univ, Geophys Observ, Dept Phys & Astron, Athabasca, AB T9S 3A3, Canada. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schwadron, N. A.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Buzulukova, N.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD USA. [Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McComas, D. J.; Goldstein, J.; Valek, P.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. RP McComas, DJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.edu RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Valek, Philip/0000-0002-2318-8750 FU IBEX as a part of NASA; TWINS as a part of NASA FX We are deeply indebted to all of the outstanding men and women who have made both the IBEX and TWINS missions such great successes, and we specifically thank R. Vanderspek for help with the data processing and S. Petrinec for help with Figure 3. We also thank the ACE and Wind plasma and magnetometer teams for L1 data and the OMNI data set for their propagation of these data. Simulation results were provided by the Community Coordinated Modeling Center at GSFC (http://ccmc.gsfc.nasa.gov) using the Open GGCM Model developed by J. Raeder. This work was supported by the IBEX and TWINS missions as a part of NASA's Explorer Program. NR 35 TC 27 Z9 27 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 27 PY 2012 VL 117 AR A03225 DI 10.1029/2011JA017273 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 918LR UT WOS:000302251700005 ER PT J AU Natarajan, M Pierce, RB Schaack, TK Lenzen, AJ Al-Saadi, JA Soja, AJ Charlock, TP Rose, FG Winker, DM Worden, JR AF Natarajan, Murali Pierce, R. Bradley Schaack, Todd K. Lenzen, Allen J. Al-Saadi, Jassim A. Soja, Amber J. Charlock, Thomas P. Rose, Fred G. Winker, David M. Worden, John R. TI Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BLACK CARBON; SATELLITE; CLIMATE; CLOUDS; MODEL; SIMULATION; EMISSIONS; AERONET; BUDGET; CYCLE AB Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/m(2) occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/m(2) occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle. C1 [Natarajan, Murali; Al-Saadi, Jassim A.; Charlock, Thomas P.; Winker, David M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Pierce, R. Bradley] NOAA, NESDIS, STAR, Madison, WI 53706 USA. [Schaack, Todd K.; Lenzen, Allen J.] Univ Wisconsin, SSEC, Madison, WI 53706 USA. [Soja, Amber J.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Rose, Fred G.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Worden, John R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Natarajan, M (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM murali.natarajan@nasa.gov RI Pierce, Robert Bradley/F-5609-2010; OI Pierce, Robert Bradley/0000-0002-2767-1643; Rose, Fred G/0000-0003-0769-0772 FU NASA Earth Sciences Division FX The Tropospheric Chemistry Research Program of NASA Earth Sciences Division supported this research. We thank the reviewers for their suggestions and comments. NR 51 TC 5 Z9 5 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2012 VL 117 AR D06307 DI 10.1029/2011JD016584 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GE UT WOS:000302236500001 ER PT J AU Scollo, S Kahn, RA Nelson, DL Coltelli, M Diner, DJ Garay, MJ Realmuto, VJ AF Scollo, S. Kahn, R. A. Nelson, D. L. Coltelli, M. Diner, D. J. Garay, M. J. Realmuto, V. J. TI MISR observations of Etna volcanic plumes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLOUD-TOP HEIGHTS; SOUTHEAST CRATER; TEPHRA FALLOUT; MOUNT-ETNA; ERUPTION; ASH; RETRIEVAL; MODIS; TRANSPORT; HAZARDS AB In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA's Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes. C1 [Scollo, S.; Coltelli, M.] Ist Nazl Geofis & Vulcanol, Osservatorio Etneo, Sez Catania, I-95125 Catania, Italy. [Kahn, R. A.] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nelson, D. L.] Raytheon Co, Pasadena, CA 91101 USA. [Diner, D. J.; Garay, M. J.; Realmuto, V. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Scollo, S (reprint author), Ist Nazl Geofis & Vulcanol, Osservatorio Etneo, Sez Catania, Piazza Roma 2, I-95125 Catania, Italy. EM simona.scollo@ct.ingv.it RI Kahn, Ralph/D-5371-2012; Coltelli, Mauro/F-1676-2015 OI Kahn, Ralph/0000-0002-5234-6359; Coltelli, Mauro/0000-0001-7868-3946 FU FIRB of Italian Ministry of Universities and Research; National Aeronautics and Space Administration; EOS-MISR FX The MISR data used in this study were obtained from the NASA Langley Research Center Atmospheric Science Data Center. Volcanological information was obtained by INGV-OE reports of Etna activity. The authors thank Boris Behncke, who furnished information of the 2000 Etna activity, three anonymous reviewers who greatly improved the quality of the paper, and the native speaker Stephen Conwey. This work was partially funded by the FIRB project "Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali" of Italian Ministry of Universities and Research for one of the authors (S. Scollo). Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work of R. Kahn is supported in part by NASA's Climate and Radiation Research and Analysis Program, under H. Maring, NASA's Atmospheric Composition Program, and the EOS-MISR project. NR 53 TC 15 Z9 15 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2012 VL 117 AR D06210 DI 10.1029/2011JD016625 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 918GE UT WOS:000302236500002 ER PT J AU Plescia, JB Cintala, MJ AF Plescia, J. B. Cintala, M. J. TI Impact melt in small lunar highland craters SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID OBLIQUE IMPACTS; DIMENSIONS; CHICXULUB; RECORD AB Impact melt deposits have been identified in small, simple impact craters within the lunar highlands. Such deposits are rare, but have been observed in craters as small as 170 m diameter. The melt occurs as well-defined pools on the crater floor, as well as veneers on the inner crater wall and stringers of material extending over the rim and away from the crater. Model calculations indicate that the amount of melt formed in craters 100-2000 m diameter would amount to a few to similar to 10(6) m(3), representing <1% of the crater volume. Thus, significant, visible impact melt deposits would not be expected in such small craters as most of the melt material that was formed would be ejected. Variations in the properties of the projectile or the target cannot account for the amount of observed melt; the amount of melt produced is largely insensitive to such variations. Rather, we suggest that these small melt-containing craters represent near-vertical impacts in which the axes of melting and melt motion are essentially straight down, toward the base of the transient cavity. For a given event energy under vertical impact conditions, the volume of melt produced would be greater than in an oblique impact and the momentum of the material would be directed vertically downward with minimal lateral momentum such that most of the melt is retained within the crater interior. Since vertical impacts are relatively rare, such small craters with visible, interior melt deposits are rare. While we focus here on the highlands, such craters also occur on the maria. C1 [Plescia, J. B.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Cintala, M. J.] NASA, Astromat Res Off, Johnson Space Ctr, Houston, TX 77058 USA. RP Plescia, JB (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM jeffrey.plescia@jhuapl.edu RI Plescia, Jeffrey/B-7738-2016 NR 52 TC 13 Z9 13 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 27 PY 2012 VL 117 AR E00H12 DI 10.1029/2011JE003941 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 918JF UT WOS:000302244800002 ER PT J AU Goldstein, ME Sescu, A Afsar, MZ AF Goldstein, M. E. Sescu, Adrian Afsar, M. Z. TI Effect of non-parallel mean flow on the Green's function for predicting the low-frequency sound from turbulent air jets SO JOURNAL OF FLUID MECHANICS LA English DT Article DE aeroacoustics; jet noise ID GENERALIZED ACOUSTIC ANALOGY; AXISYMMETRIC SHEAR FLOWS; INSTABILITY WAVES; MULTIPOLE SOURCES; EDDY SIMULATION; BOUNDARY-LAYER; NOISE AB It is now well-known that there is an exact formula relating the far-field jet noise spectrum to the convolution product of a propagator (that accounts for the mean flow interactions) and a generalized Reynolds stress autocovariance tensor (that accounts for the turbulence fluctuations). The propagator depends only on the mean flow and an adjoint vector Green's function for a particular form of the linearized Euler equations. Recent numerical calculations of Karabasov, Bogey & Hynes (AIAA Paper 2011-2929) for a Mach 0.9 jet show use of the true non-parallel flow Green's function rather than the more conventional locally parallel flow result leads to a significant increase in the predicted low-frequency sound radiation at observation angles close to the downstream jet axis. But the non-parallel flow appears to have little effect on the sound radiated at 90 degrees to the downstream axis. The present paper is concerned with the effects of non-parallel mean flows on the adjoint vector Green's function. We obtain a low-frequency asymptotic solution for that function by solving a very simple second-order hyperbolic equation for a composite dependent variable (which is directly proportional to a pressure-like component of this Green's function and roughly corresponds to the strength of a monopole source within the jet). Our numerical calculations show that this quantity remains fairly close to the corresponding parallel flow result at low Mach numbers and that, as expected, it converges to that result when an appropriately scaled frequency parameter is increased. But the convergence occurs at progressively higher frequencies as the Mach number increases and the supersonic solution never actually converges to the parallel flow result in the vicinity of a critical-layer singularity that occurs in that solution. The dominant contribution to the propagator comes from the radial derivative of a certain component of the adjoint vector Green's function. The non-parallel flow has a large effect on this quantity, causing it (and, therefore, the radiated sound) to increase at subsonic speeds and decrease at supersonic speeds. The effects of acoustic source location can be visualized by plotting the magnitude of this quantity, as function of position. These 'altitude plots' (which represent the intensity of the radiated sound as a function of source location) show that while the parallel flow solutions exhibit a single peak at subsonic speeds (when the source point is centred on the initial shear layer), the non-parallel solutions exhibit a double peak structure, with the second peak occurring about two potential core lengths downstream of the nozzle. These results are qualitatively consistent with the numerical calculations reported in Karabasov et al. (2011). C1 [Goldstein, M. E.; Afsar, M. Z.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Sescu, Adrian] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA. RP Goldstein, ME (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Marvin.E.Goldstein@nasa.gov FU RANS Based Prediction element of NASA; Acoustics Jet noise Research element of NASA FX The authors gratefully acknowledge the support of the RANS Based Prediction element of NASA's supersonic fixed wing project and the Acoustics Jet noise Research element of NASA's subsonic fixed wing project. A. S. is grateful to Dr A. Afjeh for his financial support. NR 38 TC 1 Z9 2 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAR 25 PY 2012 VL 695 BP 199 EP 234 DI 10.1017/jfm.2012.12 PG 36 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 906PB UT WOS:000301357500009 ER PT J AU Beck, RZ Coffield, JE Duffy, NV Hepp, AF AF Beck, Rory Z. Coffield, James E. Duffy, Norman V. Hepp, Aloysius F. TI Synthesis and thermal decomposition of tris-diethyldithiocarbamato iron(IV) hexafluorophosphate SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Beck, Rory Z.; Coffield, James E.; Duffy, Norman V.] Wheeling Jesuit Univ, Dept Chem, Wheeling, WV 26003 USA. [Hepp, Aloysius F.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM jcoffield@wju.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 786-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475102481 ER PT J AU Bennett, CJ Jones, B Gu, XB Kaiser, RI AF Bennett, Christopher J. Jones, Brant Gu, Xibin Kaiser, Ralf I. TI Interaction of charged particles with Kuiper belt ices and astrobiological implications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 243rd National Spring Meeting of the American-Chemical-Society CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc C1 [Bennett, Christopher J.; Jones, Brant; Gu, Xibin; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Bennett, Christopher J.; Kaiser, Ralf I.] Univ Hawaii Manoa, NASA, Astrobiol Inst, Honolulu, HI 96822 USA. [Bennett, Christopher J.; Jones, Brant; Gu, Xibin; Kaiser, Ralf I.] Univ Hawaii Manoa, WM Keck Res Lab Astrochem, Honolulu, HI 96822 USA. EM cjbennet@hawaii.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 58-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219JX UT WOS:000324503203308 ER PT J AU Berry, J Perez-Montano, S Feick, N Ha, KT Leong, L Tell, KA Dwisaksono, R Khaled, KA Le, H Gross, DS Iraci, LT Van Wyngarden, A AF Berry, Jeffrey Perez-Montano, Saul Feick, Nathan Ha, Kieu T. Leong, Linda Tell, Keven A. Dwisaksono, Riyanto Khaled, Khaled A. Le, Hoang Gross, Deborah S. Iraci, Laura T. Van Wyngarden, Annalise TI Colored solutes, precipitates and surface films produced by reactions of organics in sulfuric acid solutions at upper troposphere/lower stratosphere aerosol acidities SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Berry, Jeffrey; Perez-Montano, Saul; Feick, Nathan; Ha, Kieu T.; Leong, Linda; Dwisaksono, Riyanto; Khaled, Khaled A.; Le, Hoang; Van Wyngarden, Annalise] San Jose State Univ, Dept Chem, San Jose, CA 95192 USA. [Tell, Keven A.; Gross, Deborah S.] Carleton Coll, Dept Chem, Northfield, MN 55057 USA. [Iraci, Laura T.] NASA, Atmospher Sci Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. EM berryjeff@hotmail.com NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 342-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475105125 ER PT J AU Blank, JG Winter, NW AF Blank, Jennifer G. Winter, Nicholas W. TI Chemical evolution of prebiotic molecules during cometary impacts on the early earth SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Blank, Jennifer G.] SETI Inst, Mountain View, CA 94043 USA. [Blank, Jennifer G.] NASA, Ames Res Ctr, Mountain View, CA 94043 USA. [Winter, Nicholas W.] Precipio Innovat, Fremont, CA 94539 USA. EM jennifer.g.blank@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 138-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475106107 ER PT J AU Coffield, JE Balbier, CV Lamyaithong, AB Duffy, NV Hepp, AF AF Coffield, James E. Balbier, Catherine V. Lamyaithong, Andre B. Duffy, Norman V. Hepp, Aloysius F. TI Differential scanning calorimetry of the thermal decomposition of metal dithiocarbamate complexes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 243rd National Spring Meeting of the American-Chemical-Society CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc C1 [Coffield, James E.; Balbier, Catherine V.; Lamyaithong, Andre B.; Duffy, Norman V.] Wheeling Jesuit Univ, Dept Chem, Wheeling, WV 26003 USA. [Hepp, Aloysius F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM jcoffield@wju.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 752-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219JX UT WOS:000324503201118 ER PT J AU Crowe, CH Ferrante, RF Moore, MH Hudson, RL Moore, WJ AF Crowe, Christopher H. Ferrante, Robert F. Moore, Marla H. Hudson, Reggie L. Moore, W. James TI Laboratory studies of hydrocarbon ices of astrophysical interest SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 243rd National Spring Meeting of the American-Chemical-Society CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc C1 [Crowe, Christopher H.; Ferrante, Robert F.] US Naval Acad, Dept Chem, Annapolis, MD 21402 USA. [Moore, Marla H.; Hudson, Reggie L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moore, W. James] Incline Opt Consulting, Incline Village, NV 89451 USA. EM m121386@usna.edu; ferrante@usna.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 379-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219JX UT WOS:000324503203617 ER PT J AU Huang, JP Chen, B Minnis, P Liu, JJ AF Huang, Jianping Chen, Bin Minnis, Patrick Liu, Jingjing TI Global vertical distribution and variability of dust aerosol optical depth derived from CALIPSO Measurements SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Huang, Jianping; Chen, Bin; Liu, Jingjing] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. [Minnis, Patrick] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23666 USA. EM hjp@lzu.edu.cn NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 353-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475105134 ER PT J AU Liu, YD Sander, SP AF Liu, Yingdi Sander, Stanley P. TI Rate coefficient for OH radical reaction with CO at low temperatures SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Liu, Yingdi; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM yingdi.liu@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 297-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475105088 ER PT J AU Meador, MA AF Meador, Michael A. TI Future directions and opportunities in polymer related nanotechnology research at NASA SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 243rd National Spring Meeting of the American-Chemical-Society CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc C1 [Meador, Michael A.] NASA Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. EM Michael.A.Meador@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 444-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219JX UT WOS:000324503204682 ER PT J AU Pecnik, SL Lamyaithong, AB Hepp, AF Duffy, NV Coffield, JE AF Pecnik, Samantha L. Lamyaithong, Andre B. Hepp, Aloysius F. Duffy, Norman V. Coffield, James E. TI Synthesis and thermal analysis of several bis(diorganodithiocarbamato)nickel(II) complexes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Pecnik, Samantha L.; Lamyaithong, Andre B.; Duffy, Norman V.; Coffield, James E.] Wheeling Jesuit Univ, Dept Chem, Wheeling, WV 26003 USA. [Hepp, Aloysius F.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM jcoffield@wju.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 785-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475102480 ER PT J AU Pohorille, A Wilson, MA Wei, CY AF Pohorille, Andrew Wilson, Michael A. Wei, Chenyu TI Origin and early evolution of transport across cell walls SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 243rd National Spring Meeting of the American-Chemical-Society CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc C1 [Pohorille, Andrew; Wilson, Michael A.; Wei, Chenyu] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Pohorille, Andrew; Wilson, Michael A.; Wei, Chenyu] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA. EM Andrew.Pohorille@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 215-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219JX UT WOS:000324503203459 ER PT J AU Rivera-Melendez, J Suazo-Davila, D Koehne, J Meyyappan, M Cabrera, CR AF Rivera-Melendez, Johary Suazo-Davila, Damaris Koehne, Jessica Meyyappan, Meyya Cabrera, Carlos R. TI Characterization of high and low density carbon nanofiber electrodes towards the direct electrochemistry of cholesterol oxidase SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Rivera-Melendez, Johary; Suazo-Davila, Damaris; Cabrera, Carlos R.] Univ Puerto Rico, Dept Chem, San Juan, PR 00936 USA. [Koehne, Jessica; Meyyappan, Meyya] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jorime22@gmail.com NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 335-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475102050 ER PT J AU Timko, MT Herndon, SC Yu, ZH Miake-Lye, RC Anderson, BE Beyersdorf, AJ Knighton, WB AF Timko, Michael T. Herndon, Scott C. Yu, Zhenhong Miake-Lye, Richard C. Anderson, Bruce E. Beyersdorf, Andreas J. Knighton, W. Berk TI Fischer-Tropsch and biofuels gas turbine engine combustion emissions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Timko, Michael T.; Herndon, Scott C.; Yu, Zhenhong; Miake-Lye, Richard C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Anderson, Bruce E.; Beyersdorf, Andreas J.] NASA, Hampton, VA 23681 USA. [Knighton, W. Berk] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. EM timko@aerodyne.com RI Beyersdorf, Andreas/N-1247-2013 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 435-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475105786 ER PT J AU Vaidehi, N Park, IH Gangupomu, V Wagner, J Jain, A AF Vaidehi, Nagarajan Park, In-Hee Gangupomu, Vamshi Wagner, Jeffrey Jain, Abhi TI GNEIMO constrained dynamics method: A tool for protein structure refinement and conformational changes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Vaidehi, Nagarajan; Park, In-Hee; Gangupomu, Vamshi; Wagner, Jeffrey] City Hope Natl Med Ctr, Beckman Res Inst, Div Immunol, Duarte, CA 91010 USA. [Jain, Abhi] CALTECH, Jet Prop Lab, Pasadena, CA USA. EM NVaidehi@coh.org NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 212-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475104399 ER PT J AU Vander Wal, RL Hunter, GW Street, KW Berger, GM Kulis, MJ Bryg, BM AF Vander Wal, Randy L. Hunter, Gary W. Street, Kenneth W. Berger, Gordon M. Kulis, Mike J. Bryg, Bryg M. TI Survey of nanomaterials for energy applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 11th International Biorelated Polymer Symposium / 243rd National Spring Meeting of the American-Chemical-Society (ACS) CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc, Div Polymer Chem Inc, Amer Chem Soc C1 [Vander Wal, Randy L.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Vander Wal, Randy L.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Berger, Gordon M.; Kulis, Mike J.; Bryg, Bryg M.] NASA Glenn, Natl Ctr Space Explorat Res, USRA, Cleveland, OH 44135 USA. [Hunter, Gary W.] NASA Glenn, Sensors & Elect Branch, Cleveland, OH 44135 USA. [Street, Kenneth W.] NASA Glenn, Cleveland, OH 44135 USA. EM ruv12@psu.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 277-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219AH UT WOS:000324475105639 ER PT J AU Walker, SI Davies, PCW AF Walker, Sara I. Davies, Paul C. W. TI Rise of information in the origins of life SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 243rd National Spring Meeting of the American-Chemical-Society CY MAR 25-29, 2012 CL San Diego, CA SP Amer Chem Soc C1 [Walker, Sara I.] NASA Astrobiol Inst, NASA Postdoctoral Fellowship Program, Washington, DC USA. [Walker, Sara I.; Davies, Paul C. W.] Arizona State Univ, Ctr Fundamental Concepts Sci, Tempe, AZ 85287 USA. EM sara.i.walker@asu.edu NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 25 PY 2012 VL 243 MA 107-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 219JX UT WOS:000324503203357 ER PT J AU Hammerling, DM Michalak, AM Kawa, SR AF Hammerling, Dorit M. Michalak, Anna M. Kawa, S. Randolph TI Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MISSION; LIDAR AB Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1 degrees latitude x 1.25 degrees longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one- day Level 3 maps reproduce the large- scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature. C1 [Hammerling, Dorit M.; Michalak, Anna M.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Kawa, S. Randolph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hammerling, DM (reprint author), Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. EM michalak@stanford.edu RI Kawa, Stephan/E-9040-2012; OI Hammerling, Dorit/0000-0003-3583-3611 FU National Aeronautics and Space Administration [NNX08AJ92G] FX This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX08AJ92G issued through the Research Opportunities in Space and Earth Sciences (ROSES) Carbon Cycle Science program. We would like to thank Denis O'Brien, Igor Polonsky, Alanood Alkhaled, Abhishek Chatterjee, Noel Cressie, Matthias Katzfuss, and Amy Braverman for their helpful comments and contributions. NR 29 TC 27 Z9 27 U1 3 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 24 PY 2012 VL 117 AR D06306 DI 10.1029/2011JD017015 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 914IJ UT WOS:000301942700004 ER PT J AU Hong, G Minnis, P Doelling, D Ayers, JK Sun-Mack, S AF Hong, Gang Minnis, Patrick Doelling, David Ayers, J. Kirk Sun-Mack, Szedung TI Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID EFFECTIVE RADIUS; ICE CLOUDS; RADIATIVE-TRANSFER; SURFACE-ROUGHNESS; CIRRUS CLOUDS; RETRIEVAL; MODIS; THICKNESS; WATER; PRECIPITATION AB A method for estimating effective ice particle radius R-e at the tops of tropical deep convective clouds (DCC) is developed on the basis of precomputed look-up tables (LUTs) of brightness temperature differences (BTDs) between the 3.7 and 11.0 mu m bands. A combination of discrete ordinates radiative transfer and correlated k distribution programs, which account for the multiple scattering and monochromatic molecular absorption in the atmosphere, is utilized to compute the LUTs as functions of solar zenith angle, satellite zenith angle, relative azimuth angle, R-e, cloud top temperature (CTT), and cloud visible optical thickness tau. The LUT-estimated DCC R-e agrees well with the cloud retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for the NASA Clouds and Earth's Radiant Energy System with a correlation coefficient of 0.988 and differences of less than 10%. The LUTs are applied to 1 year of measurements taken from MODIS aboard Aqua in 2007 to estimate DCC R-e and are compared to a similar quantity from CloudSat over the region bounded by 140 degrees E, 180 degrees E, 0 degrees N, and 20 degrees N in the Western Pacific Warm Pool. The estimated DCC R-e values are mainly concentrated in the range of 25-45 mu m and decrease with CTT. Matching the LUT-estimated R-e with ice cloud R-e retrieved by CloudSat, it is found that the ice cloud tau values from DCC top to the vertical location where LUT-estimated R-e is located at the CloudSat-retrieved R-e profile are mostly less than 2.5 with a mean value of about 1.3. Changes in the DCC tau can result in differences of less than 10% for R-e estimated from LUTs. The LUTs of 0.65 mu m bidirectional reflectance distribution function (BRDF) are built as functions of viewing geometry and column amount of ozone above upper troposphere. The 0.65 mu m BRDF can eliminate some noncore portions of the DCCs detected using only 11 mu m brightness temperature thresholds, which result in a mean difference of only 0.6 mu m for DCC R-e estimated from BTD LUTs. C1 [Hong, Gang; Ayers, J. Kirk; Sun-Mack, Szedung] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick; Doelling, David] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Hong, G (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM gang.hong@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA through the CERES; NASA through CALIPSO; NASA through CloudSat FX We thank the NASA CloudSat project for providing the 2B-CWC-RO, 1B-CPR, ECMWF-AUX, and 2B-GEOPROF-LIDAR data used in this study, which are taken from the CloudSat Data Processing Center at Colorado State University. The MODIS data are archived at NASA's Goddard Earth Sciences Data and Information Services Center. This research was supported by NASA through the CERES, CALIPSO, and CloudSat programs. NR 50 TC 3 Z9 3 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 24 PY 2012 VL 117 AR D06207 DI 10.1029/2011JD016652 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 914IJ UT WOS:000301942700001 ER PT J AU Thomas, JN Love, JJ Komjathy, A Verkhoglyadova, OP Butala, M Rivera, N AF Thomas, J. N. Love, J. J. Komjathy, A. Verkhoglyadova, O. P. Butala, M. Rivera, N. TI On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TOTAL ELECTRON-CONTENT; GPS DETECTION; INDONESIA; SEQUENCE; SLIP AB Using Global Positioning System (GPS) data from sites near the 16 Oct. 1999 Hector Mine, California earthquake, Pulinets et al. (2007) identified anomalous changes in the ionospheric total electron content (TEC) starting one week prior to the earthquake. Pulinets (2007) suggested that precursory phenomena of this type could be useful for predicting earthquakes. On the other hand, and in a separate analysis, Afraimovich et al. (2004) concluded that TEC variations near the epicenter were controlled by solar and geomagnetic activity that were unrelated to the earthquake. In an investigation of these very different results, we examine TEC time series of long duration from GPS stations near and far from the epicenter of the Hector Mine earthquake, and long before and long after the earthquake. While we can reproduce the essential time series results of Pulinets et al., we find that the signal they identified as being anomalous is not actually anomalous. Instead, it is just part of normal global-scale TEC variation. We conclude that the TEC anomaly reported by Pulinets et al. is unrelated to the Hector Mine earthquake. Citation: Thomas, J. N., J. J. Love, A. Komjathy, O. P. Verkhoglyadova, M. Butala, and N. Rivera (2012), On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake, Geophys. Res. Lett., 39, L06302, doi:10.1029/2012GL051022. C1 [Thomas, J. N.; Rivera, N.] NW Res Associates, Redmond, WA 98052 USA. [Komjathy, A.; Verkhoglyadova, O. P.; Butala, M.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Love, J. J.] USGS Geomagnetism Program, Denver, CO 80225 USA. [Thomas, J. N.; Rivera, N.] Digipen Inst Technol, Dept Elect & Comp Engn, Redmond, WA USA. [Thomas, J. N.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. RP Thomas, JN (reprint author), NW Res Associates, 4118 148th Ave NE, Redmond, WA 98052 USA. EM jnt@u.washington.edu RI Love, Jeffrey/N-7593-2013; OI Love, Jeffrey/0000-0002-3324-0348; Verkhoglyadova, Olga/0000-0002-9295-9539 FU USGS [G11AP20177]; NASA FX This research was supported by the USGS Earthquake Hazards Program, external research grant G11AP20177. Partial support was also received from the Digipen Institute of Technology, the USGS Geomagnetism Program, and the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We thank C. A. Finn, G. Hayes, M. J. S. Johnston, and S. A. Pulinets for reading a draft manuscript. NR 27 TC 23 Z9 23 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 24 PY 2012 VL 39 AR L06302 DI 10.1029/2012GL051022 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 914GK UT WOS:000301937300002 ER PT J AU Brown, ME Brickley, EB AF Brown, Molly E. Brickley, Elizabeth B. TI Evaluating the use of remote sensing data in the US Agency for International Development Famine Early Warning Systems Network SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE drought monitoring; food security; imaging systems; remote sensing; satellites ID FOOD-SECURITY; CLIMATE-CHANGE; MODIS; SENEGAL; YIELD; MODEL AB The U.S. Agency for International Development (USAID)'s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods, and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. We analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000 to 2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices, and food access parameters in their analysis of food security problems. The reports display large-scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data were used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10% of the time, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063511] C1 [Brown, Molly E.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Brickley, Elizabeth B.] Univ Cambridge, Dept Geog, Cambridge CB2 3EN, England. RP Brown, ME (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. EM molly.brown@nasa.gov RI Brown, Molly/M-5146-2013; Brown, Molly/E-2724-2010 OI Brown, Molly/0000-0001-7384-3314; Brown, Molly/0000-0001-7384-3314 NR 41 TC 3 Z9 3 U1 3 U2 28 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD MAR 23 PY 2012 VL 6 AR 063511 DI 10.1117/1.JRS.6.063511 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 927KU UT WOS:000302907100001 ER PT J AU Schmerr, N AF Schmerr, Nicholas TI The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary SO SCIENCE LA English DT Article ID UPPER-MANTLE; LOW-VELOCITY; HEAT-FLOW; SHEAR; WATER; TEMPERATURE; VOLCANISM; RHEOLOGY; ORIGIN; ZONE AB The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction. C1 [Schmerr, Nicholas] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Schmerr, N (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Code 698, Greenbelt, MD 20771 USA. EM nschmerr@dtm.ciw.edu RI Schmerr, Nicholas/D-7338-2012; OI Schmerr, Nicholas/0000-0002-3256-1262 FU Carnegie Institution of Washington Department of Terrestrial Magnetism; NASA FX This work was supported by a Carnegie Institution of Washington Department of Terrestrial Magnetism Postdoctoral Fellowship and by the NASA Postdoctoral Program. The facilities of the IRIS Data Management Center were used for access to the data required in this study. I am grateful to three anonymous referees for constructive comments and reviews. I appreciatively recognize the contribution to this work of many prior discussions with Paul Silver (deceased). NR 30 TC 78 Z9 79 U1 4 U2 65 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 23 PY 2012 VL 335 IS 6075 BP 1480 EP 1483 DI 10.1126/science.1215433 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 912YG UT WOS:000301837000044 PM 22442480 ER PT J AU Alexander, B Allman, DJ Amos, HM Fairlie, TD Dachs, J Hegg, DA Sletten, RS AF Alexander, B. Allman, D. J. Amos, H. M. Fairlie, T. D. Dachs, J. Hegg, Dean A. Sletten, Ronald S. TI Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SEA-SALT AEROSOLS; THERMODYNAMIC-EQUILIBRIUM MODEL; NONMETAL REDOX KINETICS; SULFUR-DIOXIDE; ATMOSPHERIC SULFATE; MINERAL DUST; CLOUD CHEMISTRY; CHEMICAL-COMPOSITION; RELATIVE-HUMIDITY; STRATIFORM CLOUDS AB We use observations of the oxygen-17 excess of non-sea salt sulfate aerosol (Delta O-17(nssSO(4)(2-))) collected from two ship cruises in the subtropical northeast Atlantic Ocean in August 2006 and February 2007 to quantify the formation pathways of sulfate in the marine boundary layer (MBL). The large observed Delta O-17(nssSO(4)(2-)) values up to 7.3 parts per thousand suggest a large role for sulfate formation via S(IV) oxidation by O-3 in the MBL. Model simulations with the GEOS-Chem global chemical transport model suggest that in-cloud oxidation of S(IV) by O-3 represents over one-third (36-37%) of total in-cloud sulfate production on average. A model parameterization accounting for the impacts of sea salt aerosol on cloud droplet chemical heterogeneity and resulting impacts on in-cloud sulfate production rates improves the model's agreement with the Delta O-17(nssSO(4)(2-)) observations in the MBL. Including this parameterization in the model had little impact on the global sulfur budget due to the dominant role of continental anthropogenic emissions for global sulfur emissions in the present-day. The large observed Delta O-17(nssSO(4)(2-)) argue against a significant role of hypobromous (HOBr) or hypochlorous (HOCl) acid for sulfate formation in the remote MBL of the wintertime subtropical northeast Atlantic, but S(IV) oxidation by HOBr/HOCl on the order of 20% of total sulfate abundance is consistent with the summertime Delta O-17(nssSO(4)(2-)) observations in the more polluted coastal region of the Iberian Peninsula. Additional measurements of Delta O-17(nssSO(4)(2-)) are needed to quantify sulfate production mechanisms in the MBL over larger spatial and temporal scales. C1 [Alexander, B.; Allman, D. J.; Hegg, Dean A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Amos, H. M.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Dachs, J.] Inst Environm Assessment & Water Studies, Dept Environm Chem, E-08034 Barcelona, Spain. [Fairlie, T. D.] NASA, Langley Res Ctr, Hampton, VA 23188 USA. [Sletten, Ronald S.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. RP Alexander, B (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RI Alexander, Becky/N-7048-2013; Chem, GEOS/C-5595-2014; OI Alexander, Becky/0000-0001-9915-4621; Dachs, Jordi/0000-0002-4237-169X FU Spanish Ministry of Science and Innovation; NSF [NSF-AGS 0607846]; ONR [N00014-07-1-0277] FX We gratefully acknowledge funding for the RODA campaign by the Spanish Ministry of Science and Innovation and financial support for this project from the NSF Atmospheric Chemistry Program under grant NSF-AGS 0607846 to B. A. D. A. H. acknowledges support from ONR grant N00014-07-1-0277. We thank Roland von Glasow for helpful discussions. NR 109 TC 16 Z9 16 U1 5 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 22 PY 2012 VL 117 AR D06304 DI 10.1029/2011JD016773 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 914ID UT WOS:000301942100003 ER PT J AU Randel, WJ Moyer, E Park, M Jensen, E Bernath, P Walker, K Boone, C AF Randel, William J. Moyer, Elisabeth Park, Mijeong Jensen, Eric Bernath, Peter Walker, Kaley Boone, Chris TI Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL TROPOPAUSE LAYER; ATMOSPHERIC WATER-VAPOR; ISOTOPIC COMPOSITION; DEUTERATED WATER; TAPE-RECORDER; ASIAN MONSOON; TRANSPORT; BUDGET; HYDROGEN; MODEL AB High-quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., delta D) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE-FTS data reveal seasonal variations in the tropics and allow mapping of climatological regional structure. These data reveal strong regional isotopic enhancement associated with the North American summer monsoon but not the Asian monsoon or the western Pacific warm pool. We suggest that the isotopic effects of deep convection near the tropopause are moderated by the ambient relative humidity, which controls the amount of convective ice that evaporates. Local convective signals can in turn affect global behavior: the North America monsoon influence introduces a Northern Hemisphere-Southern Hemisphere asymmetry in water isotopic composition in the lower stratosphere that extends into the tropics and influences the apparent seasonal cycle in averaged tropical UTLS data. Seasonal variation in tropical lower stratospheric water isotopic composition extends up to similar to 20 km in ACE retrievals, but in contrast to previous reports, there is no clear evidence of propagation beyond the lowermost stratosphere. The reliability of these observations is supported by the broad consistency of ACE-FTS averaged tropical profiles with previous remote and in situ delta D measurements. C1 [Randel, William J.; Park, Mijeong] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bernath, Peter] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA. [Boone, Chris] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Jensen, Eric] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Moyer, Elisabeth] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Walker, Kaley] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Randel, WJ (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM randel@ucar.edu RI Bernath, Peter/B-6567-2012; Randel, William/K-3267-2016 OI Bernath, Peter/0000-0002-1255-396X; Randel, William/0000-0002-5999-7162 FU NASA; Canadian Space Agency; National Science Foundation FX We thank Chuck Bardeen, Rolando Garcia, Andrew Gettelman, Chuntao Liu, and Holger Vomel for discussions and comments on the manuscript and three reviewers for constructive comments that improved the paper. This work was partially supported under the NASA Aura Science Program. ACE is funded primarily by the Canadian Space Agency. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research, under sponsorship of the National Science Foundation. NR 49 TC 20 Z9 20 U1 1 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 22 PY 2012 VL 117 AR D06303 DI 10.1029/2011JD016632 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 914ID UT WOS:000301942100001 ER PT J AU Baker, DMH Head, JW Neumann, GA Smith, DE Zuber, MT AF Baker, David M. H. Head, James W. Neumann, Gregory A. Smith, David E. Zuber, Maria T. TI The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID IMPACT BASINS; EJECTA EMPLACEMENT; RING FORMATION; TOPOGRAPHY; PEAK; INSTRUMENT; DIMENSIONS; EVOLUTION; PLANETS; MISSION AB The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e. g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/Dr) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/Dr ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios of wall width to radius and wall height to depth may reflect burial of wall slump block toes by impact melt redistribution during transient cavity collapse. Melt expulsion from the central basin may help to explain the observed increase in floor height to depth ratio; such central depressions are seen within the largest peak-ring basins. Peak-ring height: Heights of peak rings increase with increasing rim-crest diameter (similar to central peak heights in complex craters); peak-ring height to basin depth ratio also increases, suggesting that floor uplift is even larger in magnitude in the largest peak-ring basins. No correlation is found between peak-ring elevation and distance to the rim wall within a single basin, suggesting that rim-wall slumping does not control the topography of peak rings. Offset of peak rings: Peak rings often show minor offset from the basin center. Enhancement in peak-ring elevation in the direction of offset is generally not observed, although this could be a function of magnitude of offset. Basin volume: Volumes of peak-ring basins are about 40% smaller than the volumes predicted by geophysical estimates of the dimensions of corresponding excavation cavities. This difference indicates that collapse of the transient cavity must result in large inward and upward translations of the cavity floor. These new observations of geometric/morphometric properties of protobasins and peak-ring basins place some constraints on the processes controlling the onset and formation of interior landforms in peak-ring basins. Comparisons of the geometric trends of the inner rings of Orientale basin with those of peak-ring basins are generally consistent with a mega-terrace model for the formation of multi-ring basins. C1 [Baker, David M. H.; Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Baker, DMH (reprint author), Brown Univ, Dept Geol Sci, Box 1846, Providence, RI 02912 USA. EM david_baker@brown.edu RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 FU NASA Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) experiment [NNX09AM54G] FX Thanks are extended to Jay Dickson for help in data processing. The manuscript benefited from helpful reviews by Michelle Kirchoff and an anonymous reviewer. We gratefully acknowledge financial support from the NASA Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) experiment (NNX09AM54G to JWH). NR 65 TC 19 Z9 19 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 22 PY 2012 VL 117 AR E00H16 DI 10.1029/2011JE004021 PG 29 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 914GP UT WOS:000301937800001 ER PT J AU Aveiro, HC Hysell, DL Caton, RG Groves, KM Klenzing, J Pfaff, RF Stoneback, R Heelis, RA AF Aveiro, H. C. Hysell, D. L. Caton, R. G. Groves, K. M. Klenzing, J. Pfaff, R. F. Stoneback, R. Heelis, R. A. TI Three-dimensional numerical simulations of equatorial spread F: Results and observations in the Pacific sector SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID IONOSPHERIC PLASMA CLOUDS; SCATTERING LAYERS; DRIFT WAVES; RADAR; IRREGULARITIES; INSTABILITY; DYNAMICS; ECHOES; MODEL; WINDS AB A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region. C1 [Aveiro, H. C.; Hysell, D. L.] Cornell Univ, Ithaca, NY 14853 USA. [Caton, R. G.] USAF, Res Lab, Kirtland AFB, NM 87117 USA. [Groves, K. M.] USAF, Res Lab, Space Vehicles Directorate, Hanscom AFB, MA 01731 USA. [Stoneback, R.; Heelis, R. A.] Univ Texas Dallas, Hanson Ctr Space Sci, Richardson, TX 75080 USA. [Klenzing, J.; Pfaff, R. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Aveiro, HC (reprint author), Cornell Univ, 2122 Snee Hall, Ithaca, NY 14853 USA. EM hca24@cornell.edu RI Klenzing, Jeff/E-2406-2011; Pfaff, Robert/F-5703-2012; OI Klenzing, Jeff/0000-0001-8321-6074; Pfaff, Robert/0000-0002-4881-9715; Stoneback, Russell/0000-0001-7216-4336 FU Air Force Office of Sponsored Research [FA9550-09-1-0337]; NASA [NNX10AM94G] FX This work was supported by award FA9550-09-1-0337 from the Air Force Office of Sponsored Research to Cornell University. The CINDI project is supported at the University of Texas at Dallas by NASA grant NNX10AM94G. Special thanks go to Dale Sponseller and the rest of the Kwajalein Range Systems crew at the Kwajalein Missile Range for their support during the 2009 C/NOFS campaign. NR 32 TC 12 Z9 12 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 21 PY 2012 VL 117 AR A03325 DI 10.1029/2011JA017077 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 914GY UT WOS:000301938900001 ER PT J AU Miller, RJ Hocevar, J Stone, RP Fedorov, DV AF Miller, Robert J. Hocevar, John Stone, Robert P. Fedorov, Dmitry V. TI Structure-Forming Corals and Sponges and Their Use as Fish Habitat in Bering Sea Submarine Canyons SO PLOS ONE LA English DT Article ID DEEP-SEA; PRIMNOA-RESEDAEFORMIS; ECOSYSTEM ENGINEERS; PACIFIC-OCEAN; SPECIES ASSOCIATIONS; COMMUNITY STRUCTURE; LOPHELIA-PERTUSA; ATLANTIC-OCEAN; FLOOR HABITAT; SHELF-EDGE AB Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. C1 [Miller, Robert J.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. [Hocevar, John] Greenpeace USA, Washington, DC USA. [Stone, Robert P.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, Juneau, AK USA. [Fedorov, Dmitry V.] Univ Calif Santa Barbara, Vis Res Lab, Ctr Bioimage Informat, Santa Barbara, CA 93106 USA. RP Miller, RJ (reprint author), Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. EM miller@msi.ucsb.edu OI Hocevar, John/0000-0002-8346-1341 FU Aspenwood Foundation; Firedoll Foundation; United States National Science Foundation [III-0808772, 0941717]; iPlant Collaborative [DBI-0735191] FX This research was supported by the Aspenwood and Firedoll Foundations, John and Ginger Sall, the United States National Science Foundation awards III-0808772, #0941717 and iPlant Collaborative #DBI-0735191. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 19 Z9 19 U1 4 U2 46 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 21 PY 2012 VL 7 IS 3 AR e33885 DI 10.1371/journal.pone.0033885 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 939YN UT WOS:000303857100053 PM 22470486 ER PT J AU Qian, LY Burns, AG Solomon, SC Chamberlin, PC AF Qian, Liying Burns, Alan G. Solomon, Stanley C. Chamberlin, Phillip C. TI Solar flare impacts on ionospheric electrodyamics SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EQUATORIAL ELECTROJET AB The sudden increase of X-ray and extreme ultra-violet irradiance during flares increases the density of the ionosphere through enhanced photoionization. In this paper, we use model simulations to investigate possible additional contributions from electrodynamics, finding that the vertical E x B drift in the magnetic equatorial region plays a significant role in the ionosphere response to solar flares. During the initial stage of flares, upward E x B drifts weaken in the magnetic equatorial region, causing a weakened equatorial fountain effect, which in turn causes lowering of the peak height of the F-2 region and depletion of the peak electron density of the F-2 region. In this initial stage, total electron content (TEC) enhancement is predominantly determined by solar zenith angle control of photoionization. As flares decay, upward E x B drifts are enhanced in the magnetic equatorial region, causing increases of the peak height and density of the F-2 region. This process lasts for several hours, causing a prolonged F-2-region disturbance and TEC enhancement in the magnetic equator region in the aftermath of flares. During this stage, the global morphology of the TEC enhancement becomes predominantly determined by these perturbations to the electrodynamics of the ionosphere. Citation: Qian, L., A. G. Burns, S. C. Solomon, and P. C. Chamberlin (2012), Solar flare impacts on ionospheric electrodyamics, Geophys. Res. Lett., 39, L06101, doi: 10.1029/2012GL051102. C1 [Qian, Liying; Burns, Alan G.; Solomon, Stanley C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. [Chamberlin, Phillip C.] NASA, Solar Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Qian, LY (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, 3080 Ctr Green Dr, Boulder, CO 80301 USA. EM lqian@ucar.edu RI Chamberlin, Phillip/C-9531-2012; Solomon, Stanley/J-4847-2012; Qian, Liying/D-9236-2013; Burns, Alan/L-1547-2013 OI Chamberlin, Phillip/0000-0003-4372-7405; Solomon, Stanley/0000-0002-5291-3034; Qian, Liying/0000-0003-2430-1388; FU NASA [NNX08AQ31G, NNX09AJ60G]; National Science Foundation's STC [ATM-0120950]; National Science Foundation FX This research was supported by NASA grants NNX08AQ31G and NNX09AJ60G to the National Center for Atmospheric Research. We would also like to acknowledge the Center for Integrated Space Weather Modeling (CISM) which is funded by the National Science Foundation's STC program under agreement ATM-0120950. NCAR is sponsored by the National Science Foundation. NR 18 TC 10 Z9 10 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 20 PY 2012 VL 39 AR L06101 DI 10.1029/2012GL051102 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 914GC UT WOS:000301936500006 ER PT J AU Painemal, D Minnis, P AF Painemal, David Minnis, Patrick TI On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth's Radiant Energy System (CERES) data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOFTWARE PACKAGE; EFFECTIVE RADIUS; OPTICAL DEPTH; VOCALS-REX; PART I; SATELLITE; PARAMETERIZATION; MODELS; RETRIEVALS; AEROSOLS AB The dependence of the top-of-the-atmosphere (TOA) albedo A on cloud microphysical properties was investigated for the three largest maritime stratocumulus clouds regimes: off California, Southeast Pacific (Chile-Peru), and southwest Africa (Namibia-Angola). Absolute S and relative S-R albedo susceptibilities to perturbations in cloud droplet number concentrations N-d, defined as dA/dN(d) and dA/dln(N-d) respectively, were calculated for the season having maximum cloud cover during the period 2006-2010. Satellite-based susceptibilities were computed by combining an adiabatically based N-d estimate and liquid water path (LWP) derived from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals matched with TOA A from the Clouds and the Earth's Radiant Energy System. Empirical susceptibility maps were calculated for three constant LWP intervals at 25, 50, and 90 g(-2). It was found that S increases with LWP, with small and spatially homogeneous values for low LWP, and a contrasting increase far offshore for larger LWP values. An overall increase of S-R with LWP was also observed, with larger values near the coast for LWP = 25 and 50 g(-2). A relatively homogeneous spatial pattern of maximum SR values covered most of each regime's domain for a LWP of 90 g(-2). These results highlight the importance of LWP in modulating the albedo susceptibility. The dependencies of S and S-R on LWP are mostly explained by variations in the mean Nd and cloud optical thickness (tau), with an increase of S with LWP linked to a decrease in Nd, whereas S-R increased with t and A, until reaching a maximum for A and t near 0.36-0.4 and 12-14 respectively, and decreasing thereafter, consistent with expectations based on two-stream estimates. Larger S-R values in the Southeast Pacific are thought to be the consequence of a drier and more pristine atmosphere. Radiative transfer simulations with realistic values of above-cloud water vapor path and aerosol optical thickness showed that differing atmospheric compositions could explain why the Chile-Peru regime was the marine stratocumulus cloud deck most susceptible to change its TOA albedo due to fractional changes in N-d. C1 [Painemal, David; Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Painemal, D (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd, Hampton, VA 23681 USA. EM david.painemal@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA; CERES FX The CERES SSF data were obtained from the NASA Earth Observing System Data and Information System, Langley Research Center Atmospheric Sciences Data Center (ASDC). D. Painemal was supported by the NASA Postdoctoral Program at the NASA Langley Research Center, administered by Oak Ridge Associated Universities (ORAU) through a contract with NASA. P. Minnis was supported by the CERES Project sponsored by the NASA Radiation Sciences Program. NR 44 TC 10 Z9 10 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 20 PY 2012 VL 117 AR D06203 DI 10.1029/2011JD017120 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 914HX UT WOS:000301941500002 ER PT J AU Dib, R Kaspi, VM Scholz, P Gavriil, FP AF Dib, Rim Kaspi, Victoria M. Scholz, Paul Gavriil, Fotis P. TI RXTE OBSERVATIONS OF ANOMALOUS X-RAY PULSAR 1E 1547.0-5408 DURING AND AFTER ITS 2008 AND 2009 OUTBURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (1E 1547.0-5408); stars: neutron; X-rays: stars ID SOFT GAMMA-REPEATERS; MAGNETIZED NEUTRON-STARS; LARGE TORQUE VARIATIONS; SUPERNOVA REMNANT; 1E-1547.0-5408; EMISSION; BURSTS; SPECTRA; SUZAKU AB We present the results of Rossi X-ray Timing Explorer and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative.., such that ". was a factor of similar to 60 larger than that reported in data from 2007. This. magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, ". was consistent with zero, and. had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening similar to 15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model. C1 [Dib, Rim; Kaspi, Victoria M.; Scholz, Paul] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gavriil, Fotis P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Gavriil, Fotis P.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. RP Dib, R (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. NR 34 TC 21 Z9 21 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 3 DI 10.1088/0004-637X/748/1/3 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500003 ER PT J AU Kargaltsev, O Kouveliotou, C Pavlov, GG Gogus, E Lin, L Wachter, S Griffith, RL Kaneko, Y Younes, G AF Kargaltsev, Oleg Kouveliotou, Chryssa Pavlov, George G. Gogus, Ersin Lin, Lin Wachter, Stefanie Griffith, Roger L. Kaneko, Yuki Younes, George TI X-RAY OBSERVATIONS OF THE NEW UNUSUAL MAGNETAR SWIFT J1834.9-0846 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (HESS J1834-087); ISM: individual objects (W41); stars: neutron; X-rays: individuals (Swift J1834.9-0846); X-rays: ISM ID SOFT GAMMA-REPEATERS; NEUTRON-STARS; HESS J1834-087; RADIO PULSARS; EMISSION; DISTANCES; FIELD AB We present X-ray observations of the new transient magnetar Swift J1834.9-0846, discovered with the Swift Burst Alert Telescope on 2011 August 7. The data were obtained with Swift, Rossi X-ray Timing Explorer (RXTE), CXO, and XMM-Newton both before and after the outburst. Timing analysis reveals single peak pulsations with a period of 2.4823 s and an unusually high pulsed fraction, 85% +/- 10%. Using the RXTE and CXO data, we estimated the period derivative, (P) over dot = 8 x 10(-12) s s(-1), and confirmed the high magnetic field of the source, B = 1.4 x 10(14) G. The decay of the persistent X-ray flux, spanning 48 days, is consistent with a power law, F proportional to t(-0.5). In the CXO/Advanced CCD Imaging Spectrometer image, we find that the highly absorbed point source is surrounded by extended emission, which most likely is a dust scattering halo. Swift J1834.9-0846 is located near the center of the radio supernova remnant W41 and TeV source HESS J1834-087. An association with W41 would imply a source distance of about 4 kpc; however, any relation to the HESS source remains unclear, given the presence of several other candidate counterparts for the latter source in the field. Our search for an IR counterpart of Swift J1834.9-0846 revealed no source down to K-s similar to 19.5 within the 0 ''.6 CXO error circle. C1 [Kargaltsev, Oleg] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Kouveliotou, Chryssa; Younes, George] NASA, George C Marshall Space Flight Ctr, Sci & Technol Off, Huntsville, AL 35812 USA. [Pavlov, George G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Pavlov, George G.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Gogus, Ersin; Lin, Lin; Kaneko, Yuki] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey. [Wachter, Stefanie; Griffith, Roger L.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Younes, George] Univ Space Res Assoc, Huntsville, AL 35806 USA. RP Kargaltsev, O (reprint author), Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. EM oyk100@astro.ufl.edu FU National Aeronautics and Space Administration [NNX09AC81G, NNX09AC84G, NNH07ZDA001-GLAST]; National Science Foundation [AST09-08733, AST09-08611]; Ministry of Education and Science of the Russian Federation [11.G34.31.0001]; Turkish Academy of Sciences (TUBA) FX The authors are grateful to Harvey Tananbaum for his decision to award his DDT time for CXO observations of Swift J1834.9-0846. S.W. thanks Davy Kirkpatrick for the use of his Palomar observing time to obtain the near-IR observations of Swift J1834.9-0846. This work was partly based on observations obtained at the Hale Telescope, Palomar Observatory, as a part of a continuing collaboration between the California Institute of Technology, NASA/JPL, and Cornell University. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The work by O.Y.K. and G.G.P. was partly supported by NASA grants NNX09AC81G and NNX09AC84G, NSF grants AST09-08733 and AST09-08611, and by the Ministry of Education and Science of the Russian Federation (contract 11.G34.31.0001). C.K. was partly supported by NASA grant NNH07ZDA001-GLAST. L.L. is supported by the Postdoctoral Research Program of the Turkish Academy of Sciences (TUBA). NR 39 TC 24 Z9 24 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 26 DI 10.1088/0004-637X/748/1/26 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500026 ER PT J AU Menanteau, F Hughes, JP Sifon, C Hilton, M Gonzalez, J Infante, L Barrientos, LF Baker, AJ Bond, JR Das, S Devlin, MJ Dunkley, J Hajian, A Hincks, AD Kosowsky, A Marsden, D Marriage, TA Moodley, K Niemack, MD Nolta, MR Page, LA Reese, ED Sehgal, N Sievers, J Spergel, DN Staggs, ST Wollack, E AF Menanteau, Felipe Hughes, John P. Sifon, Cristobal Hilton, Matt Gonzalez, Jorge Infante, Leopoldo Felipe Barrientos, L. Baker, Andrew J. Bond, John R. Das, Sudeep Devlin, Mark J. Dunkley, Joanna Hajian, Amir Hincks, Adam D. Kosowsky, Arthur Marsden, Danica Marriage, Tobias A. Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Reese, Erik D. Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Wollack, Edward TI THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102-4915 "EL GORDO," A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: clusters: individual (ACT-CL J0102-4915) ID COLOR-MAGNITUDE RELATION; STELLAR POPULATION SYNTHESIS; INTERACTION CROSS-SECTION; LUMINOUS GALAXY CLUSTER; EXTENDED RADIO-EMISSION; STAR-FORMING GALAXIES; SOUTH-POLE TELESCOPE; X-RAY; DARK-MATTER; PECULIAR VELOCITIES AB We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant SZ decrement in a sky survey area of 755 deg(2). Our Very Large Telescope (VLT)/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(gal) = 1321 +/- 106 km s(-1). Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T-X = 14.5 +/- 0.1 keV and 0.5-2.0 keV band luminosity of L-X = (2.19 +/- 0.11) x 10(45)h(70)(-2) erg s(-1). We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y-X, and integrated SZ distortion, we estimate a cluster mass of M-200a = (2.16 +/- 0.32) x 10(15) h(70)(-1) M-circle dot. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6 +/- 0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 +/- 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet cluster. Such a massive cluster at this redshift is rare, although consistent with the standard.CDM cosmology in the lower part of its allowed mass range. Massive, high-redshift mergers like ACT-CL J0102-4915 are unlikely to be reproduced in the current generation of numerical N-body cosmological simulations. C1 [Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Felipe Barrientos, L.] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bond, John R.; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Das, Sudeep; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Devlin, Mark J.; Marsden, Danica; Reese, Erik D.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dunkley, Joanna] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Niemack, Michael D.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Sehgal, Neelima] Stanford Univ, KIPAC, Stanford, CA 94305 USA. [Wollack, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Menanteau, F (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. RI Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Sifon, Cristobal/0000-0002-8149-1352 FU U. S. National Science Foundation [AST0408698, PHY-0355328, AST-0707731, PIRE-0507768, OISE-0530095]; Centro de Astrofisica FONDAP [15010003]; Centro BASAL-CATA; FONDECYT [1085286] FX We are very grateful to Gustavo Yepes for detailed discussions and exploring the results of the simulations performed by the Juropa supercomputer at Juelich. We thank Ricardo Demarco for helpful discussions on the spectra of galaxies in the cluster and Larry Rudnick for suggesting we look at the SUMSS data. We acknowledge Chandra grant number GO1-12008X and Spitzer JPL-RSA# 1414522 to Rutgers University. This work is based in part on observations made with the Spitzer Space Telescope (PID 70149), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work was supported by the U. S. National Science Foundation through awards AST0408698 for the ACT project and PHY-0355328, AST-0707731, and PIRE-0507768 (award number OISE-0530095). The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Funding was also provided by Princeton University and the University of Pennsylvania. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; theGovernment of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto. This research is partially funded by "Centro de Astrofisica FONDAP" 15010003, Centro BASAL-CATA, and by FONDECYT under proyecto 1085286. M. Hilton acknowledges financial support from the Leverhulme Trust. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa deAstronomia, a program of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). This work was based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministerio da Ciencia, Tecnologia, e Inovacao (MCTI) da Republica Federativa do Brasil, the U. S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). NR 96 TC 83 Z9 83 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 7 DI 10.1088/0004-637X/748/1/7 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500007 ER PT J AU Natraj, V Hovenier, JW AF Natraj, Vijay Hovenier, J. W. TI POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: analytical; methods: numerical; planets and satellites: atmospheres; polarization; radiative transfer; scattering ID PLANETARY-ATMOSPHERES; EXTRASOLAR PLANETS; RADIATIVE-TRANSFER; LIMB POLARIZATION; MODELS; POLARIMETRY; JUPITER; NEPTUNE; URANUS AB Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo) planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided. C1 [Natraj, Vijay] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hovenier, J. W.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. RP Natraj, V (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Vijay.Natraj@jpl.nasa.gov FU National Aeronautics and Space Administration; internal Research and Technology Development program FX Part of the research described in this paper was carried out at the Jet Propulsion Laboratory at the California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. The authors thank Dr. Wim de Rooij for providing his code to compute the H-matrix; Dr. Johan de Haan for the DAK code; Dr. Robert Spurr for the VLIDORT code; Prof. Yuk Yung, Ms. Irma Black, Mr. George Porter and Ms. Kathy Johnson for providing access to the two Web sites for hosting the Stokes parameter and basic function results; and the reviewer for helpful comments. NR 37 TC 3 Z9 3 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 28 DI 10.1088/0004-637X/748/1/28 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500028 ER PT J AU Nelson, T Donato, D Mukai, K Sokoloski, J Chomiuk, L AF Nelson, Thomas Donato, Davide Mukai, Koji Sokoloski, Jennifer Chomiuk, Laura TI X-RAY EMISSION FROM AN ASYMMETRIC BLAST WAVE AND A MASSIVE WHITE DWARF IN THE GAMMA-RAY EMITTING NOVA V407 Cyg SO ASTROPHYSICAL JOURNAL LA English DT Article DE ultraviolet: stars; white dwarfs; X-rays: stars ID RS OPHIUCHI 2006; SWIFT OBSERVATIONS; INTERSTELLAR-MEDIUM; IA SUPERNOVA; V2491 CYG; OUTBURST; SHOCK; SPECTROSCOPY; ABSORPTION; MODELS AB Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turnoff time of this emission component, in addition to the observed breaks in the optical and UV light curves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV gamma-ray evolution, and propose that the gamma-ray turnoff is due to the stalling of the forward shock as the ejecta reach the red giant surface. C1 [Nelson, Thomas; Donato, Davide; Mukai, Koji] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Nelson, Thomas; Donato, Davide; Mukai, Koji] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Nelson, Thomas; Mukai, Koji] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Donato, Davide] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Donato, Davide] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Sokoloski, Jennifer] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Chomiuk, Laura] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chomiuk, Laura] Natl Radio Astron Observ, Socorro, NM 87801 USA. RP Nelson, T (reprint author), Univ Minnesota, Sch Phys & Astron, 115 Church St SE, Minneapolis, MN 55455 USA. EM tnelson@physics.umn.ed RI XRAY, SUZAKU/A-1808-2009 NR 41 TC 24 Z9 24 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 43 DI 10.1088/0004-637X/748/1/43 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500043 ER PT J AU Neufeld, DA Roueff, E Snell, RL Lis, D Benz, AO Bruderer, S Black, JH De Luca, M Gerin, M Goldsmith, PF Gupta, H Indriolo, N Le Bourlot, J Le Petit, F Larsson, B Melnick, GJ Menten, KM Monje, R Nagy, Z Phillips, TG Sandqvist, A Sonnentrucker, P van der Tak, F Wolfire, MG AF Neufeld, David A. Roueff, Evelyne Snell, Ronald L. Lis, Dariusz Benz, Arnold O. Bruderer, Simon Black, John H. De Luca, Massimo Gerin, Maryvonne Goldsmith, Paul F. Gupta, Harshal Indriolo, Nick Le Bourlot, Jacques Le Petit, Franck Larsson, Bengt Melnick, Gary J. Menten, Karl M. Monje, Raquel Nagy, Zsofia Phillips, Thomas G. Sandqvist, Aage Sonnentrucker, Paule van der Tak, Floris Wolfire, Mark G. TI HERSCHEL OBSERVATIONS OF INTERSTELLAR CHLORONIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: molecules; molecular processes; submillimeter: ISM ID CHLORINE-BEARING MOLECULES; HYDROGEN-CHLORIDE; DIFFUSE CLOUDS; G10.6-0.4 W31C; SIGHT-LINES; ORION-BAR; ABSORPTION; OMC-1; EXCITATION; EMISSION AB Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared, we have observed parachloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight lines to the bright submillimeter continuum sources Sgr A (+50 km s(-1) cloud) and W31C. Both the para-(H2Cl+)-Cl-35 and para-(H2Cl+)-Cl-37 isotopologues were detected, through observations of their 1(11)-0(00) transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio (OPR) of 3, the observed optical depths imply that chloronium accounts for similar to 4%-12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed OPR of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of similar to 2 x 10(13) cm(-2) and similar to 1.2 x 10(13) cm(-2), respectively, for chloronium in these two sources. We obtained upper limits on the para-(H2Cl+)-Cl-35 line strengths toward H-2 Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL 2591. The chloronium abundances inferred in this study are typically at least a factor similar to 10 larger than the predictions of steady-state theoretical models for the chemistry of interstellar molecules containing chlorine. Several explanations for this discrepancy were investigated, but none has proven satisfactory, and thus the large observed abundances of chloronium remain puzzling. C1 [Neufeld, David A.; Indriolo, Nick] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Roueff, Evelyne; Le Bourlot, Jacques; Le Petit, Franck] Observ Paris, LUTH UMR 8102, F-92195 Meudon, France. [Snell, Ronald L.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Lis, Dariusz; Monje, Raquel; Phillips, Thomas G.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Benz, Arnold O.] Swiss Fed Inst Technol, Inst Astron, CH-8092 Zurich, Switzerland. [Bruderer, Simon] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Black, John H.; Larsson, Bengt] Chalmers, Dept Earth & Space Sci, Onsala, Sweden. [De Luca, Massimo; Gerin, Maryvonne] UPMC, Ecole Normale Super, Observ Paris, UMR CNRS 8112,LERMA, Paris, France. [Goldsmith, Paul F.; Gupta, Harshal] CALTECH, JPL, Pasadena, CA 91125 USA. [Melnick, Gary J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Menten, Karl M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Nagy, Zsofia; van der Tak, Floris] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. [Sandqvist, Aage] Stockholm Univ, Stockholm Observ, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. [Sonnentrucker, Paule] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [van der Tak, Floris] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Wolfire, Mark G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Neufeld, DA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RI Goldsmith, Paul/H-3159-2016; OI Indriolo, Nick/0000-0001-8533-6440; Black, John/0000-0001-7221-7207 FU NASA through JPL/Caltech FX Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 51 TC 26 Z9 26 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 37 DI 10.1088/0004-637X/748/1/37 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500037 ER PT J AU Phillips, KJH Dennis, BR AF Phillips, K. J. H. Dennis, B. R. TI THE SOLAR FLARE IRON ABUNDANCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE line: identification; Sun: abundances; Sun: corona; Sun: flares; Sun: X-rays, gamma rays ID X-RAY-SPECTRA; ATOMIC DATABASE; EMISSION-LINES; ENERGETIC PARTICLES; CORONAL ABUNDANCES; ABSOLUTE ABUNDANCE; CHIANTI; METALLICITY; ATMOSPHERES; CALCIUM AB The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 +/- 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 +/- 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated. C1 [Phillips, K. J. H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH6 5NT, Surrey, England. [Dennis, B. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Phillips, KJH (reprint author), Univ Coll London, Mullard Space Sci Lab, Dorking RH6 5NT, Surrey, England. EM kjhp@mssl.ucl.ac.uk; Brian.R.Dennis@nasa.gov RI Dennis, Brian/C-9511-2012 FU NASA through AD-NET (under the SESAA-II) [NNG06EB68C]; National Research Council FX We thank A.K. Tolbert and R. A. Schwartz for their invaluable help in the data analysis and to A. Gopie for initial data reduction. J. Sylwester and B. Sylwester are thanked for the use of their methodology in the derivation of the Fe abundance in this work. K. J. H. P. acknowledges support from NASA through AD-NET (under the SESAA-II contract, NNG06EB68C) for a visit to Goddard Space Flight Center in 2008 and support from a National Research Council Senior Research Associateship during the original conception of this work. chianti is a collaborative project involving the US Naval Research Laboratory, the Universities of Florence (Italy) and Cambridge (UK), and George Mason University (USA). We are grateful to the authors of the chianti code for continued help in adding data to the spectral regions discussed here. NR 34 TC 8 Z9 8 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 52 DI 10.1088/0004-637X/748/1/52 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500052 ER PT J AU Pon, A Johnstone, D Kaufman, MJ AF Pon, A. Johnstone, D. Kaufman, M. J. TI MOLECULAR TRACERS OF TURBULENT SHOCKS IN GIANT MOLECULAR CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; ISM: molecules; shock waves; stars: formation; turbulence ID COSMIC-RAY IONIZATION; STAR-FORMING REGIONS; MAGNETOHYDRODYNAMIC SHOCK; SUPERSONIC TURBULENCE; AMBIPOLAR DIFFUSION; INTERSTELLAR CLOUDS; FRACTIONAL IONIZATION; HYDROMAGNETIC-WAVES; ENERGY-DISSIPATION; PRESTELLAR CORES AB Giant molecular clouds contain supersonic turbulence and simulations of magnetohydrodynamic turbulence show that these supersonic motions decay in roughly a crossing time, which is less than the estimated lifetimes of molecular clouds. Such a situation requires a significant release of energy. We run models of C- type shocks propagating into gas with densities around 10(3) cm(-3) at velocities of a few km s- 1, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with shock cooling of turbulent molecular clouds. We find that these shocks dissipate their energy primarily through CO rotational transitions and by compressing pre- existing magnetic fields. We present model spectra for these shocks, and by combining these models with estimates for the rate of turbulent energy dissipation, we show that shock emission should dominate over emission from unshocked gas for mid to high rotational transitions (J > 5) of CO. We also find that the turbulent energy dissipation rate is roughly equivalent to the cosmic-ray heating rate and that the ambipolar diffusion heating rate may be significant, especially in shocked gas. C1 [Pon, A.; Johnstone, D.] Univ Victoria, Dept Phys & Astron, STN CSC, Victoria, BC V8W 3P6, Canada. [Pon, A.; Johnstone, D.] NRC Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Kaufman, M. J.] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA. [Kaufman, M. J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Pon, A (reprint author), Univ Victoria, Dept Phys & Astron, STN CSC, POB 3055, Victoria, BC V8W 3P6, Canada. EM arpon@uvic.ca; Douglas.Johnstone@nrc-cnrc.gc.ca; mkaufman@email.sjsu.edu FU Natural Sciences and Engineering Research Council of Canada (NSERC) FX We thank Shantanu Basu for helpful suggestions on the role of magnetic fields in molecular clouds, as well as our anonymous referee for many useful changes to this paper. A. P. is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) graduate scholarship program and D. J. is supported by a NSERC Discovery grant. This research has made use of NASA's Astrophysics Data System. NR 89 TC 8 Z9 8 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 25 DI 10.1088/0004-637X/748/1/25 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500025 ER PT J AU Serabyn, E Mennesson, B Colavita, MM Koresko, C Kuchner, MJ AF Serabyn, E. Mennesson, B. Colavita, M. M. Koresko, C. Kuchner, M. J. TI THE KECK INTERFEROMETER NULLER SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instrumentation: interferometers; interplanetary medium ID MAIN-SEQUENCE STARS; DEBRIS DISK; NULLING INTERFEROMETER; EXTRASOLAR PLANETS; CIRCUMSTELLAR DISK; BETA-PICTORIS; HOT DUST; CHARA/FLUOR; SYSTEM; EXCESS AB The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which "cross-combination" on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant (similar to order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies. C1 [Serabyn, E.; Mennesson, B.; Colavita, M. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Koresko, C.] Argon ST Inc, Lemont Furnace, PA 15456 USA. [Kuchner, M. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Serabyn, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Gene.Serabyn@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank Ben Parvin for his unflagging enthusiasm. NR 61 TC 9 Z9 9 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 55 DI 10.1088/0004-637X/748/1/55 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500055 ER PT J AU Shan, HY Kneib, JP Tao, C Fan, ZH Jauzac, M Limousin, M Massey, R Rhodes, J Thanjavur, K McCracken, HJ AF Shan, HuanYuan Kneib, Jean-Paul Tao, Charling Fan, Zuhui Jauzac, Mathilde Limousin, Marceau Massey, Richard Rhodes, Jason Thanjavur, Karun McCracken, Henry J. TI WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general; gravitational lensing: weak; X-rays: galaxies: clusters ID DARK-MATTER HALOS; SPACE-TELESCOPE OBSERVATIONS; BONN DEEP SURVEY; COSMIC SHEAR; LEGACY SURVEY; PHOTOMETRIC REDSHIFTS; MASS RECONSTRUCTION; NONLINEAR STRUCTURE; PEAK STATISTICS; COSMOLOGY AB We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg(2) W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence "mass map" yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio nu > 3.5, consistent with predictions of a Lambda CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg(2) XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with chi(2)(reduced) < 3.0, at a mean redshift < z(c)> = 0.36 and velocity dispersion = 658.8 km s(-1). Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models. C1 [Shan, HuanYuan; Tao, Charling] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Shan, HuanYuan; Tao, Charling] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Shan, HuanYuan; Kneib, Jean-Paul; Jauzac, Mathilde; Limousin, Marceau] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Shan, HuanYuan; Tao, Charling] CNRS IN2P3 Luminy, Ctr Phys Particules Marseille, F-13288 Marseille 9, France. [Shan, HuanYuan; Tao, Charling] Univ Aix Marseille 2, F-13288 Marseille 9, France. [Fan, Zuhui] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Limousin, Marceau] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Massey, Richard] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thanjavur, Karun] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Thanjavur, Karun] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Thanjavur, Karun] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [McCracken, Henry J.] Inst Astrophys, UMR 7095, F-75014 Paris, France. RP Shan, HY (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM shanhuany@gmail.com RI Jauzac, Mathilde/B-1966-2015; Kneib, Jean-Paul/A-7919-2015; Shan, Huanyuan/G-3353-2015 OI Kneib, Jean-Paul/0000-0002-4616-4989; Shan, Huanyuan/0000-0001-8534-837X FU Sino French laboratory FCPPL; NSFC of China [11103011, 10773001, 11033005]; China Postdoctoral Science Foundation; CNRS; PNCG; CNES; 973 program [2007CB815401]; Centre National de la Recherche Scientifique (CNRS); Danish National Research Foundation; NASA [HST-GO-09822]; Sino French laboratory Origins FX The authors thank Bernard Fort, Liping Fu, Bo Qin, Catherine Heymans, and Ludovic Van Waerbeke for useful discussions. H.Y.S. acknowledges support from the Sino French laboratories FCPPL and Origins, and CPPM hospitality during stays in France. H.Y.S. acknowledges the support from NSFC of China under grants 11103011 and China Postdoctoral Science Foundation. J.P.K. acknowledges supports from CNRS as well as PNCG and CNES. Z.H.F. acknowledges the support from NSFC of China under grants 10773001, 11033005, and 973 program 2007CB815401. M. L. acknowledges the Centre National de la Recherche Scientifique (CNRS) for its support. The Dark Cosmology Centre is funded by the Danish National Research Foundation.; This work also uses observations obtained with the Hubble Space Telescope. The HST COSMOS Treasury program was supported by the NASA grant HST-GO-09822. We thank Tony Roman, Denise Taylor, and David Soderblom for their assistance in planning and scheduling the extensive COSMOS observations. We thank the NASA IPAC/IRSA staff (Anastasia Laity, Anastasia Alexov, Bruce Berriman, and John Good) for providing online archive and server capabilities for the COSMOS data sets. It is also our pleasure to gratefully acknowledge the contributions of the entire COSMOS collaboration, consisting of more than 70 scientists. More information on the COSMOS survey is available at http://www.astro.caltech.edu/cosmos. NR 79 TC 32 Z9 32 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 56 DI 10.1088/0004-637X/748/1/56 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500056 ER PT J AU Uritsky, VM Davila, JM AF Uritsky, Vadim M. Davila, Joseph M. TI MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; methods: statistical; Sun: magnetic topology; Sun: photosphere; turbulence ID ACTIVE REGIONS; STRANGE ATTRACTORS; PERCOLATION THEORY; CURRENT SHEETS; FIELD; NETWORK; FLUX; ELEMENTS; MODELS; FLARES AB Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating. C1 [Uritsky, Vadim M.] NASA, Goddard Space Flight Ctr, CUA, Greenbelt, MD 20771 USA. RP Uritsky, VM (reprint author), NASA, Goddard Space Flight Ctr, CUA, Greenbelt, MD 20771 USA. EM vadim.uritsky@nasa.gov FU ADNET Systems [WAP 612.1-003] FX We thank V. Abramenko for preparing the set of SOHO MDI high-resolution magnetograms used in this study and valuable comments on the manuscript. We are also grateful to S. Antiochos, D. Falconer, J. Gurman, K. Muglach, D. Pesnell, D. Rabin, V. Titov, and V. Yurchyshyn for helpful comments and advice. This work was partly supported by the contract WAP 612.1-003 from ADNET Systems. The code of the stochastic Cantor dust set with adjustable fractal dimension was developed by G. Uritskiy. NR 80 TC 13 Z9 13 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 60 DI 10.1088/0004-637X/748/1/60 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500060 ER PT J AU Wik, DR Sarazin, CL Zhang, YY Baumgartner, WH Mushotzky, RF Tueller, J Okajima, T Clarke, TE AF Wik, Daniel R. Sarazin, Craig L. Zhang, Yu-Ying Baumgartner, Wayne H. Mushotzky, Richard F. Tueller, Jack Okajima, Takashi Clarke, Tracy E. TI THE SWIFT BURST ALERT TELESCOPE PERSPECTIVE ON NON-THERMAL EMISSION IN HIFLUGCS GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; intergalactic medium; magnetic fields; radiation mechanisms: non-thermal; X-rays: galaxies: clusters ID X-RAY-EMISSION; TIMING-EXPLORER OBSERVATIONS; DIFFUSE RADIO-EMISSION; 2 EPOCH OBSERVATIONS; ALL-SKY SURVEY; COMA CLUSTER; XMM-NEWTON; MAGNETIC-FIELDS; INTRACLUSTER MEDIUM; SPECTRAL PROPERTIES AB The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. In this work, we investigate 14-195 keV spectra from the Swift Burst Alert Telescope (BAT) all-sky survey for evidence of non-thermal excess emission above the exponentially decreasing tail of thermal emission in the flux-limited HIFLUGCS sample. To account for the thermal contribution at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both thermal and non-thermal spectral components can be determined simultaneously. We find marginally significant IC components in six clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single-temperature fits to the XMM-Newton data alone, we see no significant excess emission above that predicted by the thermal model determined at soft energies. This result also holds for the summed spectra of various subgroups, except for the subsample of clusters with diffuse radio emission. For clusters hosting a diffuse radio halo, a relic, or a mini-halo, non-thermal emission is initially detected at the similar to 5 sigma confidence level-driven by clusters with mini-halos-but modeling and systematic uncertainties ultimately degrade this significance. In individual clusters, the non-thermal pressure of relativistic electrons is limited to less than or similar to 10% of the thermal electron pressure, with stricter limits for the more massive clusters, indicating that these electrons are likely not dynamically important in the central regions of clusters. C1 [Wik, Daniel R.] NASA, Postdoctoral Program, Greenbelt, MD 20771 USA. [Sarazin, Craig L.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Zhang, Yu-Ying] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Mushotzky, Richard F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Clarke, Tracy E.] USN, Res Lab, Washington, DC 20375 USA. [Wik, Daniel R.; Baumgartner, Wayne H.; Tueller, Jack; Okajima, Takashi] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Wik, DR (reprint author), NASA, Postdoctoral Program, Greenbelt, MD 20771 USA. EM daniel.r.wik@nasa.gov RI Tueller, Jack/D-5334-2012 FU NASA [NNX08AZ99G, NNX09AH25G, NNX09AH74G, NNX08AZ34G, NNX08AW83G]; German BMBF through the Verbundforschung [50 OR 1005]; ESA Member States; USA (NASA); Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR) [FKZ 50 OX 0001]; Max-Planck Society; 6.1 Base funding FX We particularly owe the Swift BAT team a hearty thanks for uniformly processing the tens of thousands of individual pointings that make up the BAT survey that allows it to be such an incredibly useful resource for studies like ours. D. R. W. and C. L. S. were supported in part by NASA through Suzaku grants NNX08AZ99G, NNX09AH25G, and NNX09AH74G and XMM-Newton grants NNX08AZ34G and NNX08AW83G. Y.Y.Z. acknowledges support from the German BMBF through the Verbundforschung under grant no. 50 OR 1005. The XMM-Newton project is an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), and it is supported by the Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR, FKZ 50 OX 0001) and the Max-Planck Society. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 Base funding. This research was also supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 83 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2012 VL 748 IS 1 AR 67 DI 10.1088/0004-637X/748/1/67 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 906LU UT WOS:000301347500067 ER PT J AU Kerr, M Camilo, F Johnson, TJ Ferrara, EC Guillemot, L Harding, AK Hessels, J Johnston, S Keith, M Kramer, M Ransom, SM Ray, PS Reynolds, JE Sarkissian, J Wood, KS AF Kerr, M. Camilo, F. Johnson, T. J. Ferrara, E. C. Guillemot, L. Harding, A. K. Hessels, J. Johnston, S. Keith, M. Kramer, M. Ransom, S. M. Ray, P. S. Reynolds, J. E. Sarkissian, J. Wood, K. S. TI FIVE NEW MILLISECOND PULSARS FROM A RADIO SURVEY OF 14 UNIDENTIFIED FERMI-LAT GAMMA-RAY SOURCES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: general; pulsars: individual (PSR J0101-6422) ID LARGE-AREA TELESCOPE; LIGHT CURVES; SPACE-TELESCOPE; DISCOVERY; POPULATION; SEARCHES; CATALOG AB We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi Large Area Telescope sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR J0101-6422 (P = 2.57 ms, DM = 12 pc cm(-3)), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey-enabled by selecting gamma-ray sources based on their detailed spectral characteristics-and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known. C1 [Kerr, M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Kerr, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Johnson, T. J.] Natl Acad Sci, Washington, DC 20001 USA. [Ferrara, E. C.; Harding, A. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guillemot, L.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hessels, J.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Hessels, J.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Johnston, S.; Keith, M.; Reynolds, J. E.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kramer, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ray, P. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Sarkissian, J.] CSIRO Parkes Observ, Parkes, NSW 2870, Australia. RP Kerr, M (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM kerrm@stanford.edu; fernando@astro.columbia.edu; tyrel.j.johnson@gmail.com RI Harding, Alice/D-3160-2012; OI Ransom, Scott/0000-0001-5799-9714; Ray, Paul/0000-0002-5297-5278 FU Commonwealth of Australia; NASA [NAS8-03060]; DOE in the United States; CEA/Irfu; IN2P3/CNRS in France; ASI; INFN in Italy; MEXT; KEK; JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; CNES in France; NASA through Chandra X-ray Observatory Center [PF0-110073] FX We thank the marvelous staff at Parkes that make it such a wonderful research facility, Willem van Straten for help with PSRCHIVE, and Jules Halpern for help with optical analysis. The Parkes Observatory is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.; The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged.; Support for this work was provided by NASA through Einstein Postdoctoral Fellowship Award Number PF0-110073 issued by the Chandra X-ray Observatory Center, which is operated by the SAO for and on behalf of NASA under contract NAS8-03060. NR 35 TC 32 Z9 32 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2012 VL 748 IS 1 AR L2 DI 10.1088/2041-8205/748/1/L2 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 905TK UT WOS:000301297500002 ER PT J AU Metcalfe, TS Chaplin, WJ Appourchaux, T Garcia, RA Basu, S Brandao, I Creevey, OL Deheuvels, S Dogan, G Eggenberger, P Karoff, C Miglio, A Stello, D Yildiz, M Celik, Z Antia, HM Benomar, O Howe, R Regulo, C Salabert, D Stahn, T Bedding, TR Davies, GR Elsworth, Y Gizon, L Hekker, S Mathur, S Mosser, B Bryson, ST Still, MD Christensen-Dalsgaard, J Gilliland, RL Kawaler, SD Kjeldsen, H Ibrahim, KA Klaus, TC Li, J AF Metcalfe, T. S. Chaplin, W. J. Appourchaux, T. Garcia, R. A. Basu, S. Brandao, I. Creevey, O. L. Deheuvels, S. Dogan, G. Eggenberger, P. Karoff, C. Miglio, A. Stello, D. Yildiz, M. Celik, Z. Antia, H. M. Benomar, O. Howe, R. Regulo, C. Salabert, D. Stahn, T. Bedding, T. R. Davies, G. R. Elsworth, Y. Gizon, L. Hekker, S. Mathur, S. Mosser, B. Bryson, S. T. Still, M. D. Christensen-Dalsgaard, J. Gilliland, R. L. Kawaler, S. D. Kjeldsen, H. Ibrahim, K. A. Klaus, T. C. Li, J. TI ASTEROSEISMOLOGY OF THE SOLAR ANALOGS 16 Cyg A AND B FROM KEPLER OBSERVATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: fundamental parameters; stars: individual (HD 186408, HD 186427); stars: interiors; stars: oscillations; stars: solar-type ID THERMONUCLEAR REACTION-RATES; CA-II EMISSION; OSCILLATION FREQUENCIES; BOLOMETRIC CORRECTIONS; PLANET FORMATION; MODE PARAMETERS; STARS; DIFFUSION; PIPELINE; SUN AB The evolved solar-type stars 16 Cyg A and B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A and B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components, respectively, including a clear detection of octupole (l = 3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t = 6.8 +/- 0.4 Gyr) and initial composition (Z(i) = 0.024 +/- 0.002, Y-i = 0.25 +/- 0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles. C1 [Metcalfe, T. S.; Dogan, G.; Mathur, S.; Christensen-Dalsgaard, J.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Metcalfe, T. S.] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA. [Metcalfe, T. S.; Chaplin, W. J.; Garcia, R. A.; Deheuvels, S.; Dogan, G.; Miglio, A.; Bedding, T. R.; Mathur, S.; Christensen-Dalsgaard, J.; Kawaler, S. D.; Kjeldsen, H.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Chaplin, W. J.; Miglio, A.; Howe, R.; Elsworth, Y.; Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Appourchaux, T.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Garcia, R. A.; Davies, G. R.] Univ Paris Diderot, CEA, CNRS, Lab AIM,DSM, F-91191 Gif Sur Yvette, France. [Garcia, R. A.; Davies, G. R.] Ctr Saclay, IRFU, SAp, F-91191 Gif Sur Yvette, France. [Basu, S.; Deheuvels, S.] Yale Univ, Dept Astron, New Have, CT 06520 USA. [Brandao, I.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Brandao, I.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal. [Creevey, O. L.; Salabert, D.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR7293, F-06304 Nice 4, France. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Karoff, C.; Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Stello, D.; Benomar, O.; Bedding, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Yildiz, M.; Celik, Z.] Ege Univ, Dept Astron & Space Sci, TR-35100 Izmir, Turkey. [Antia, H. M.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Regulo, C.] Inst Astrofis Canarias, Tenerife 38206, Spain. [Regulo, C.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Stahn, T.; Gizon, L.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Stahn, T.; Gizon, L.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 HX Amsterdam, Netherlands. [Mosser, B.] Univ Paris 07, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Ibrahim, K. A.; Klaus, T. C.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Gilliland, R. L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Metcalfe, TS (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, POB 3000, Boulder, CO 80307 USA. RI Gizon, Laurent/B-9457-2008; Brandao, Isa/M-5172-2013; OI Brandao, Isa/0000-0002-1153-0942; Antia, H. M./0000-0001-7549-9684; Davies, Guy/0000-0002-4290-7351; Bedding, Timothy/0000-0001-5943-1460; Metcalfe, Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; NASA [NNX09AE59G]; National Science Foundation [NSF PHY05-51164] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. This work was supported in part by NASA grant NNX09AE59G. Computational time on Kraken at the National Institute of Computational Sciences was provided through NSF TeraGrid allocation TG-AST090107. We acknowledge the KITP staff at UCSB for their warm hospitality during the research program "Asteroseismology in the Space Age." This research was supported in part by the National Science Foundation under Grant No. NSF PHY05-51164. The authors thank Jeff Hall, Todd Henry, Dave Soderblom, and Russel White for helpful discussions, as well as the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of the Kepler Asteroseismic Science Consortium Working Group 1, including the Pale Blue Dot Project hosted by White Dwarf Research Corporation (http://whitedwarf.org/palebluedot/). NR 49 TC 71 Z9 71 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2012 VL 748 IS 1 AR L10 DI 10.1088/2041-8205/748/1/L10 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 905TK UT WOS:000301297500010 ER PT J AU Milligan, RO Chamberlin, PC Hudson, HS Woods, TN Mathioudakis, M Fletcher, L Kowalski, AF Keenan, FP AF Milligan, Ryan O. Chamberlin, Phillip C. Hudson, Hugh S. Woods, Thomas N. Mathioudakis, Mihalis Fletcher, Lyndsay Kowalski, Adam F. Keenan, Francis P. TI OBSERVATIONS OF ENHANCED EXTREME ULTRAVIOLET CONTINUA DURING AN X-CLASS SOLAR FLARE USING SDO/EVE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: chromosphere; Sun: corona; Sun: flares; Sun: UV radiation; Sun: X-rays, gamma rays ID WHITE-LIGHT FLARES; CHROMOSPHERIC EVAPORATION; LYMAN CONTINUUM; EMISSION; RAY; PLASMAS; RHESSI AB Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01: 44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-free continuum (6.5-37 nm). The He II 30.4 nm and Ly alpha 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components. C1 [Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Chamberlin, Phillip C.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab Code 671, Greenbelt, MD 20771 USA. [Hudson, Hugh S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Woods, Thomas N.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Fletcher, Lyndsay] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Kowalski, Adam F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. RP Milligan, RO (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland. EM r.milligan@qub.ac.uk RI Chamberlin, Phillip/C-9531-2012 OI Chamberlin, Phillip/0000-0003-4372-7405 FU Leverhulme Trust [F/00203/X]; NASA [NAS5-98033]; STFC [ST/I001808]; EC [FP7-2010-SPACE-1-263086] FX This research was a result of several stimulating discussions between participants at a meeting on Chromospheric Flares held at the International Space Science Institute (ISSI) in Bern, Switzerland. R.O.M. is grateful to the Leverhulme Trust for financial support from grant F/00203/X. H.S.H. was supported by NASA under contract NAS5-98033 for RHESSI. L.F. acknowledges financial support from STFC Grant ST/I001808 and the EC-funded FP7 project HESPE (FP7-2010-SPACE-1-263086). NR 30 TC 23 Z9 23 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2012 VL 748 IS 1 AR L14 DI 10.1088/2041-8205/748/1/L14 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 905TK UT WOS:000301297500014 ER PT J AU Paganini, L Mumma, MJ Villanueva, GL DiSanti, MA Bonev, BP Lippi, M Boehnhardt, H AF Paganini, L. Mumma, M. J. Villanueva, G. L. DiSanti, M. A. Bonev, B. P. Lippi, M. Boehnhardt, H. TI THE CHEMICAL COMPOSITION OF CO-RICH COMET C/2009 P1 (GARRADD) AT R-h=2.4 and 2.0 AU BEFORE PERIHELION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; comets: general; comets: individual (C/2009 P1 (Garradd)); infrared: planetary systems; molecular processes; Oort Cloud ID C/1996 B2 HYAKUTAKE; O1 HALE-BOPP; CARBON-MONOXIDE; INFRARED OBSERVATIONS; MOLECULES; EVOLUTION; LEGACY; DISKS; ICE AB We quantified 10 parent volatiles in comet C/2009 P1 (Garradd) before perihelion, through high-dispersion infrared spectra acquired with CRIRES at ESO's Very Large Telescope on UT 2011 August 7 (R-h = 2.4 AU) and September 17-21 (R-h = 2.0 AU). On August 7, water was searched for but not detected at an upper limit (3 sigma) of 2.1 x 10(28) s(-1), while ethane was detected with a production rate of 6.1 x 10(26) s(-1). On September 17-21, the mean production rate for water was 8.4 x 10(28) s(-1), and five trace species (CO, C2H6, CH4, HCN, and CH, OH) were securely detected, and (3 sigma) upper limits were retrieved for NH3, C2H2, OCS, and HDO. Given the relatively large heliocentric distance, we explored the effect of water not being fully sublimated within our field of view and identified the "missing" water fraction needed to reconcile the retrieved abundance ratios with the mean values found for "organics-normal" comets. The individual spatial profiles of parent volatiles and the continuum displayed rather asymmetric outgassing. Indications of H2O and CO gas being released in different directions suggest chemically distinct active vents and/or the possible existence of polar and apolar ice aggregates in the nucleus. The high fractional abundance of CO identifies comet C/2009 P1 as a CO-rich comet. C1 [Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Villanueva, G. L.; Bonev, B. P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Lippi, M.; Boehnhardt, H.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Paganini, L (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, MS 690, Greenbelt, MD 20771 USA. EM lucas.paganini@nasa.gov RI mumma, michael/I-2764-2013 FU IMPRS; GIF FX We thank ESO's VLT team. L. P. thanks the NASA Post-doctoral Program. M.J.M., G. L. V., and M. A. D. acknowledge NASA's Astrobiology, PAST, and PATM. B. P. B. acknowledges NSF. H. B. and M. L. acknowledge support from IMPRS and GIF. NR 28 TC 26 Z9 26 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2012 VL 748 IS 1 AR L13 DI 10.1088/2041-8205/748/1/L13 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 905TK UT WOS:000301297500013 ER PT J AU Zhao, M Milburn, J Barman, T Hinkley, S Swain, MR Wright, J Monnier, JD AF Zhao, Ming Milburn, Jennifer Barman, Travis Hinkley, Sasha Swain, Mark R. Wright, Jason Monnier, John D. TI DETECTION OF K-S-BAND THERMAL EMISSION FROM WASP-3b SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE infrared: planetary systems; planetary systems; stars: individual (WASP-3) ID ROSSITER-MCLAUGHLIN OBSERVATIONS; TRANSITING EXOPLANET WASP-3B; GROUND-BASED DETECTION; NASA EPOXI MISSION; SECONDARY ECLIPSE; PLANET; CONSTRAINTS; SYSTEMS; PARAMETERS; TELESCOPE AB We report the detection of thermal emission from the hot Jupiter WASP-3b in the K-S band, using a newly developed guiding scheme for the WIRC instrument at the Palomar Hale 200 inch telescope. Our new guiding scheme has improved the telescope guiding precision by a factor of similar to 5-7, significantly reducing the correlated systematics in the measured light curves. This results in the detection of a secondary eclipse with depth of 0.181% +/- 0.020% (9 sigma)-a significant improvement in WIRC's photometric precision and a demonstration of the capability of Palomar/WIRC to produce high-quality measurements of exoplanetary atmospheres. Our measured eclipse depth cannot be explained by model atmospheres with heat redistribution but favors a pure radiative equilibrium case with no redistribution across the surface of the planet. Our measurement also gives an eclipse phase center of 0.5045 +/- 0.0020, corresponding to an e cos. of 0.0070 +/- 0.0032. This result is consistent with a circular orbit, although it also suggests that the planet's orbit might be slightly eccentric. The possible non-zero eccentricity provides insight into the tidal circularization process of the star-planet system, but might also have been caused by a second low-mass planet in the system, as suggested by a previous transit timing variation study. More secondary eclipse observations, especially at multiple wavelengths, are necessary to determine the temperature-pressure profile of the planet's atmosphere and shed light on its orbital eccentricity. C1 [Zhao, Ming; Wright, Jason] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Zhao, Ming; Wright, Jason] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16802 USA. [Milburn, Jennifer; Hinkley, Sasha] CALTECH, Dept Astron, Pasadena, CA 91009 USA. [Barman, Travis] Lowell Observ, Flagstaff, AZ 86001 USA. [Swain, Mark R.] CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. [Monnier, John D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48104 USA. RP Zhao, M (reprint author), Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. EM mingzhao@psu.edu FU Center for Exoplanets and Habitable Worlds; Pennsylvania State University; Pennsylvania Space Grant Consortium; NASA FX We thank Dr. Jonathan Fortney for providing valuable advice to improve the Letter. We thank the Palomar supporting staff for their help with the observations. Part of this research was conducted at the Jet Propulsion Lab/California Institute of Technology. This work was also partially supported by the Center for Exoplanets and Habitable Worlds funded by the Pennsylvania State University and the Pennsylvania Space Grant Consortium. M.Z. was previously supported by the NASA Postdoctoral Program. T. B. acknowledges support from NASA Origins grants to Lowell Observatory and support from the NASA High-End Computing Program. S. H. is supported by NASA's Sagan Fellowship. The Palomar Hale Telescope is operated by Caltech, JPL, and the Cornell University. NR 30 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2012 VL 748 IS 1 AR L8 DI 10.1088/2041-8205/748/1/L8 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 905TK UT WOS:000301297500008 ER PT J AU Chen, K Cunnane, D Shen, Y Xi, XX Kleinsasser, AW Rowell, JM AF Chen, Ke Cunnane, Daniel Shen, Yi Xi, X. X. Kleinsasser, Alan W. Rowell, John M. TI Multiple Andreev reflection in MgB2/MgO/MgB2 Josephson junctions SO APPLIED PHYSICS LETTERS LA English DT Article ID SUPERCONDUCTING TUNNEL-JUNCTIONS; ENERGY-GAP STRUCTURE; MAGNESIUM DIBORIDE; EXCESS CURRENTS; MGB2 AB The current-voltage and conductance-voltage characteristics of MgB2/MgO/MgB2 junctions made with MgB2 electrodes grown by hybrid physical-chemical vapor deposition were systematically analyzed. In the junctions with different sizes and critical current densities, we found excess current and subharmonic gap structure indicative of multiple Andreev reflection. An apparent link between multiple Andreev reflection and substantial Josephson current at high temperatures suggests that the barrier is dominated by high-transparency channels. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695159] C1 [Chen, Ke; Cunnane, Daniel; Shen, Yi; Xi, X. X.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Kleinsasser, Alan W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rowell, John M.] Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. RP Chen, K (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. EM xiaoxing@temple.edu FU ONR [N00014-10-1-0164] FX The work is supported by ONR under Grant No. N00014-10-1-0164. We thank Rugerro Vaglio for helpful discussions. NR 21 TC 2 Z9 2 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 19 PY 2012 VL 100 IS 12 AR 122601 DI 10.1063/1.3695159 PG 4 WC Physics, Applied SC Physics GA 918DE UT WOS:000302228700054 ER PT J AU Arbic, BK Scott, RB Chelton, DB Richman, JG Shriver, JF AF Arbic, Brian K. Scott, Robert B. Chelton, Dudley B. Richman, James G. Shriver, Jay F. TI Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID DIFFERENTIATION; TOPEX/POSEIDON; CIRCULATION; RESOLUTION AB This paper examines the effect of "stencil width" on surface ocean geostrophic velocity and vorticity estimated from differentiating gridded satellite altimeter sea surface height products. In oceanographic applications, the value of the first derivative at a central grid point is generally obtained by differencing the sea surface heights at adjacent grid points. This is called a "three-point stencil centered difference". Here the stencil width is increased from three to five, seven, and nine points, using well-known formulae from the numerical analysis literature. The discrepancies between velocities computed with successive stencils decreases with increasing stencil width, suggesting that wide stencil results are more reliable. Significant speed-dependent biases (up to 10-20%) are found between results computed from three-point stencils versus those computed from wider stencils. The geostrophic velocity, and the variance of geostrophic velocity, are underestimated with thin stencils. Similar results are seen in geostrophic velocities computed from high-resolution model output. In contrast to the case when three-point stencils are used, wider stencils yield estimates of the anisotropy of velocity variance that are insensitive to the differences in grid spacing between two widely used altimeter products. Three-point stencils yield incorrect anisotropies on the 1/4 degrees anisotropic AVISO grid; we recommend the use of 7-point stencils. Despite the demonstrated inadequacies of the three-point stencils, the conclusions of earlier studies based on them, that the zonally averaged midlatitude eddy kinetic energy field is nearly isotropic, are found to pertain also with wider stencils. Finally, the paper also examines the strengths and limitations of applying noise-suppressing differentiators, versus classic centered differences, to altimeter data. C1 [Arbic, Brian K.] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Scott, Robert B.] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. [Chelton, Dudley B.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Richman, James G.; Shriver, Jay F.] USN, Div Oceanog, Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA. [Scott, Robert B.] Univ Bretagne Occidentale, Dept Phys, Brest, France. [Scott, Robert B.] Univ Bretagne Occidentale, LPO, Brest, France. RP Arbic, BK (reprint author), Univ Michigan, Dept Earth & Environm Sci, 2534 CC Little Bldg, Ann Arbor, MI 48109 USA. EM arbic@umich.edu OI Arbic, Brian K/0000-0002-7969-2294 FU Office of Naval Research [N00014-11-1-0487, 601153N]; National Science Foundation (NSF) [OCE-0924481, OCE-09607820]; NSF [OCE-0960834, OCE-0851457]; National Oceanography Centre, Southampton; NASA subcontract to Boston University; NASA [NNX08AR37G]; NRL [NRL/JA/7320-2010-557]; UTIG [2397] FX The authors thank three anonymous reviewers whose comments led to the inclusion of section 9 and to many other improvements in the manuscript. B.K.A. acknowledges helpful conversations with David Amundsen, Patrick Cummins, Sarah Gille, and Alfredo Wetzel, and funding provided by Office of Naval Research grant N00014-11-1-0487 and National Science Foundation (NSF) grants OCE-0924481 and OCE-09607820. R.B.S. acknowledges funding provided by NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. D.B.C.'s contributions to this study were supported by NASA grant NNX08AR37G. J.F.S. and J.G.R. were supported by the projects "Global and remote littoral forcing in global ocean models" and "Ageostrophic vorticity dynamics of the ocean", respectively, both sponsored by the Office of Naval Research under program element 601153N. This is NRL contribution NRL/JA/7320-2010-557 and has been approved for public release. This is UTIG contribution 2397. NR 26 TC 14 Z9 15 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR 17 PY 2012 VL 117 AR C03029 DI 10.1029/2011JC007367 PG 18 WC Oceanography SC Oceanography GA 910VP UT WOS:000301671600001 ER PT J AU Volkov, DL Pujol, MI AF Volkov, Denis L. Pujol, M. -Isabelle TI Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID ARCTIC-OCEAN; LEVEL CHANGE; WORLD OCEAN; MODEL; TOPEX/POSEIDON; VARIABILITY; CIRCULATION; TIDES; SURFACE; EARTH AB Satellite altimetry provides high-quality sea surface height data that have been successfully used to study the variability of sea level and surface geostrophic circulation at different spatial and temporal scales. However, the high-latitude regions have traditionally been avoided due to the persistent sea ice cover. Most of the validation studies have focused on the areas below the polar circles. In this paper we examine the quality and performance of a gridded satellite altimetry product in the Nordic, Barents, and Kara seas. The altimetric sea level in coastal areas is validated using available tide gauge records. We show that at most locations in the Nordic seas the altimetry and tide gauge measurements are in a good agreement in terms of the root-mean square differences and the amplitudes and phases of the seasonal cycle. The agreement deteriorates in the shallow areas of the Barents and Kara seas subject to the seasonal presence of sea ice, and where the altimetry data are contaminated by the residual aliasing of unresolved high-frequency signals. The comparison of linear trends at the locations of tide gauges reveals discrepancies that need to be taken into account when interpreting long-term changes of sea level in the region. Away from the coast the altimetry data are compared to drifter trajectories, corrected for Ekman currents. The drifter trajectories are found consistent with the mesoscale variability of the altimetric sea level. This study provides the first comprehensive validation of a gridded satellite altimetry data product in the high-latitude seas. C1 [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Pujol, M. -Isabelle] Collecte Localisat Satellites, Space Oceanog Div, F-31520 Ramonville St Agne, France. RP Volkov, DL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-323, Pasadena, CA 91109 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011 OI Volkov, Denis/0000-0002-9290-0502 FU NASA [NNX11AE27G] FX This work was carried out at Jet Propulsion Laboratory, California Institute of Technology, within the framework of the project "Investigating the variability of sea level in the sub-Arctic and Arctic seas,"sponsored by the NASA Physical Oceanography program (award NNX11AE27G). The ERA-Interim and ERA-40 sea level pressure data are provided by the European Centre for Medium Range Weather Forecast www.ecmwf.int). The authors thank C.K. Shum, an anonymous reviewer, and the editor A. Proshutinsky for their comments and suggestions. NR 45 TC 23 Z9 23 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR 17 PY 2012 VL 117 AR C03025 DI 10.1029/2011JC007557 PG 18 WC Oceanography SC Oceanography GA 910VP UT WOS:000301671600002 ER PT J AU Denton, RE Wang, Y Webb, PA Tengdin, PM Goldstein, J Redfern, JA Reinisch, BW AF Denton, R. E. Wang, Y. Webb, P. A. Tengdin, P. M. Goldstein, J. Redfern, J. A. Reinisch, B. W. TI Magnetospheric electron density long-term (> 1 day) refilling rates inferred from passive radio emissions measured by IMAGE RPI during geomagnetically quiet times SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMASPHERIC DEPLETION; GEOSYNCHRONOUS ORBIT; INNER MAGNETOSPHERE; MAGNETIC STORM; ART.; DYNAMICS; IONOSPHERE; SATELLITE; PLUMES; MODEL AB Using measurements of the electron density ne found from passive radio wave observations by the IMAGE spacecraft RPI instrument on consecutive passes through the magnetosphere, we calculate the long- term (> 1 day) refilling rate of equatorial electron density dne, eq/ dt from L = 2 to 9. Our events did not exhibit saturation, probably because our data set did not include a deep solar minimum and because saturation is an unusual occurrence, especially outside of solar minimum. The median rate in cm(-3)/day can be modeled with log(10)(dn(e,eq)/dt) = 2.22 - 0.006L - 0.0347L(2), while the third quartile rate can be modeled with log10(dn(e,eq)/ dt) = 3.39 - 0.353L, and the mean rate can be modeled as log10(dn(e,eq)/dt) = 2.74 - 0.269L. These statistical values are found from the ensemble of all observed rates at each L value, including negative rates (decreases in density due to azimuthal structure or radial motion or for other reasons), in order to characterize the typical behavior. The first quartile rates are usually negative for L < 4.7 and close to zero for larger L values. Our rates are roughly consistent with previous observations of ion refilling at geostationary orbit. Most previous studies of refilling found larger refilling rates, but many of these examined a single event which may have exhibited unusually rapid refilling. Comparing refilling rates at solar maximum to those at solar minimum, we found that the refilling rate is larger at solar maximum for small L < 4, about the same at solar maximum and solar minimum for L = 4.2 to 5.8, and is larger at solar minimum for large L > 5.8 such as at geostationary orbit ( L similar to 6.8) (at least to L of about 8). These results agree with previous results for ion refilling at geostationary orbit, may agree with previous results at lower L, and are consistent with some trends for ionospheric density. C1 [Denton, R. E.; Tengdin, P. M.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Wang, Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Y.; Webb, P. A.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. [Goldstein, J.; Redfern, J. A.] SW Res Inst, San Antonio, TX 78238 USA. [Reinisch, B. W.] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM richard.e.denton@dartmouth.edu; yongli.wang@nasa.gov; spacesheep@gmail.com; phoebe.tengdin@gmail.com; jgoldstein@swri.edu; jredfern@swri.edu; bodo_reinisch@uml.edu FU NSF [ATM-0751002]; NASA [NNX10AQ60G, NNX11AO59G] FX This research was supported by NSF grant ATM-0751002. Work at Dartmouth College was further supported by NASA grants NNX10AQ60G (Living with a Star Targeted Research Plasmasphere focused science topic) and NNX11AO59G ( Heliophysics Theory Program). We acknowledge useful conversations with Dieter Blitza, Vladimir Truhlik, and Stan Solomon. NR 41 TC 18 Z9 18 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 17 PY 2012 VL 117 AR A03221 DI 10.1029/2011JA017274 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910TZ UT WOS:000301667000004 ER PT J AU Stammerjohn, S Massom, R Rind, D Martinson, D AF Stammerjohn, Sharon Massom, Robert Rind, David Martinson, Douglas TI Regions of rapid sea ice change: An inter-hemispheric seasonal comparison SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOUTHERN ANNULAR MODE; ANTARCTIC PENINSULA; CLIMATE-CHANGE; COVER; VARIABILITY; OCEAN; ENSO AB This bi-polar analysis resolves ice edge changes on space/time scales relevant for investigating seasonal ice-ocean feedbacks and focuses on spatio-temporal changes in the timing of annual sea ice retreat and advance over 1979/80 to 2010/11. Where Arctic sea ice decrease is fastest, the sea ice retreat is now nearly 2 months earlier and subsequent advance more than 1 month later (compared to 1979/80), resulting in a 3-month longer summer ice-free season. In the Antarctic Peninsula and Bellingshausen Sea region, sea ice retreat is more than 1 month earlier and advance 2 months later, resulting in a more than 3-month longer summer icefree season. In contrast, in the western Ross Sea (Antarctica) region, sea ice retreat and advance are more than 1 month later and earlier respectively, resulting in a more than 2 month shorter summer ice-free season. Regardless of trend magnitude or direction, and at latitudes mostly poleward of 70 degrees (N/S), there is strong correspondence between anomalies in the timings of sea ice retreat and subsequent advance, but little correspondence between advance and subsequent retreat. These results support a strong ocean thermal feedback in autumn in response to changes in spring sea ice retreat. Further, model calculations suggest different net ocean heat changes in the Arctic versus Antarctic where autumn sea ice advance is 1 versus 2 months later. Ocean-atmosphere changes, particularly in boreal spring and austral autumn (i.e., during similar to March-May), are discussed and compared, as well as possible inter-hemispheric climate connections. Citation: Stammerjohn, S., R. Massom, D. Rind, and D. Martinson (2012), Regions of rapid sea ice change: An interhemispheric seasonal comparison, Geophys. Res. Lett., 39, L05502, doi: 10.1029/2012GL050874. C1 [Stammerjohn, Sharon] Univ Colorado Boulder, Inst Arctic & Alpine Studies, Boulder, CO 80303 USA. [Stammerjohn, Sharon] Univ Calif Santa Cruz, Ocean Sci Dept, Santa Cruz, CA 95064 USA. [Massom, Robert] Australian Antarctic Div, Kingston, Tas, Australia. [Massom, Robert] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia. [Rind, David] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Martinson, Douglas] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Stammerjohn, S (reprint author), Univ Colorado Boulder, Inst Arctic & Alpine Studies, Boulder, CO 80303 USA. EM sharon.stammerjohn@colorado.edu OI STAMMERJOHN, SHARON/0000-0002-1697-8244 FU NOAA [NA17RJ1231]; LTER [NSF/OPP 0217282]; Australian Government's Cooperative Research Centre through the Antarctic Climate and Ecosystems Cooperative Research Centre; Australian Antarctic Division Project [CPC19]; Australian Antarctic Science Project [3024]; NASA FX S.E.S. was supported by NOAA grant/cooperative agreement NA17RJ1231, and S.E.S and D.G.M. supported by Palmer LTER NSF/OPP 0217282. R.A.M was supported by the Australian Government's Cooperative Research Centre programme through the Antarctic Climate and Ecosystems Cooperative Research Centre, Australian Antarctic Division Project CPC19 and Australian Antarctic Science Project 3024. D. R. was supported by the NASA Cryosphere Program. NR 38 TC 130 Z9 137 U1 2 U2 87 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 16 PY 2012 VL 39 AR L06501 DI 10.1029/2012GL050874 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 910UI UT WOS:000301668100001 ER PT J AU Hand, KP Carlson, RW AF Hand, K. P. Carlson, R. W. TI Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIFFUSE INTERSTELLAR-MEDIUM; ORGANIC-MOLECULES; GALILEAN SATELLITES; ASTROPHYSICAL ICES; ICY SATELLITES; EUROPA; COMETARY; ION; ENCELADUS AB We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at similar to 10(-8) Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (butene and cis/ trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains. C1 [Hand, K. P.; Carlson, R. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hand, KP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM khand@jpl.nasa.gov FU internal Research and Technology Development program; Exobiology program; NASA Astrobiology Institute team at JPL; U.S. Rosetta program; Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded in part through the internal Research and Technology Development program. R. W. C. and K. P. H. acknowledge support from the Exobiology program and the NASA Astrobiology Institute "Astrobiology of Icy Worlds" team at JPL and from the U.S. Rosetta program. NR 49 TC 6 Z9 6 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 16 PY 2012 VL 117 AR E03008 DI 10.1029/2011JE003888 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 910VZ UT WOS:000301672700001 ER PT J AU Lefort, A Burr, DM Beyer, RA Howard, AD AF Lefort, Alexandra Burr, Devon M. Beyer, Ross A. Howard, Alan D. TI Inverted fluvial features in the Aeolis-Zephyria Plana, western Medusae Fossae Formation, Mars: Evidence for post-formation modification SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ORBITER LASER ALTIMETER; MARTIAN CRUSTAL DICHOTOMY; ICE-RICH DEPOSITS; GLOBAL SURVEYOR; AMAZONIS-PLANITIA; VALLES MARINERIS; RECENT VOLCANISM; SINUOUS RIDGES; NORTHERN CHILE; EQUATORIAL ICE AB The Aeolis and Zephyria Plana contain the western-most portion of the Medusae Fossae Formation (MFF), an enigmatic and extensive light-toned deposit located in the Martian equatorial region and dated from the Hesperian to Amazonian epochs. This area hosts a large population of sinuous ridges (SRs), interpreted as inverted fluvial features, formed by precipitation, indurated by chemical cementation, buried by subsequent deposition, and finally exhumed. This interpretation of SRs as uniformly fluvial represents a modification to an earlier hypothesis for one particular SR of possible glaciofluvial (i.e. esker) formation. These SRs provide a tool to investigate the degree and character of post-fluvial modification processes in this region. We combined digital terrain models made from Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo image pairs with individual data points from the Mars Orbiter Laser Altimeter (MOLA) to estimate relief, cross-sectional profiles, longitudinal profiles and slope directions of selected SRs. Longitudinal profiles of several SRs display undulations with amplitudes of up to order 100 m. While some of the lower amplitude undulations may be due to differential erosion, undulations having amplitudes in excess of SR relief require alternative explanations. Our combined morphologic and topographic analysis suggests that multiple post-flow processes, including compaction of the deposits and tectonic displacements, have modified the original SR profiles. Specification of the type(s) and magnitudes of these modification processes will contribute to understanding both the potential of post-flow modification of fluvial profiles elsewhere on Mars as well as the nature and properties of the MFF. C1 [Lefort, Alexandra; Burr, Devon M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Beyer, Ross A.] SETI Inst, Sagan Ctr, Mountain View, CA USA. [Beyer, Ross A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Howard, Alan D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. RP Lefort, A (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, 306 EPS Bldg,1412 Circle Dr, Knoxville, TN 37996 USA. EM alefort@utk.edu OI Beyer, Ross/0000-0003-4503-3335; Howard, Alan/0000-0002-5423-1600 FU Mars Data Analysis Program FX We thank Edwin Kite for helpful discussion and for providing the HiRISE DTM in Figure 8 and Becky Williams for helpful discussion. This work was funded by a Mars Data Analysis Program grant to D.M.B. NR 146 TC 6 Z9 6 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 16 PY 2012 VL 117 AR E03007 DI 10.1029/2011JE004008 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 910VZ UT WOS:000301672700002 ER PT J AU Holt, LA Randall, CE Harvey, VL Remsberg, EE Stiller, GP Funke, B Bernath, PF Walker, KA AF Holt, L. A. Randall, C. E. Harvey, V. L. Remsberg, E. E. Stiller, G. P. Funke, B. Bernath, P. F. Walker, K. A. TI Atmospheric effects of energetic particle precipitation in the Arctic winter 1978-1979 revisited SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOLAR PROTON EVENTS; LIMB INFRARED MONITOR; MIDDLE ATMOSPHERE; ODD NITROGEN; NITRIC-OXIDE; MICHELSON INTERFEROMETER; 2-DIMENSIONAL MODEL; DOWNWARD TRANSPORT; HALOE OBSERVATIONS; STRATOSPHERIC NOX AB The Limb Infrared Monitor of the Stratosphere (LIMS) measured polar stratospheric enhancements of NO2 mixing ratios due to energetic particle precipitation (EPP) in the Arctic winter of 1978-1979. Recently reprocessed LIMS data are compared to more recent measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) to place the LIMS measurements in the context of current observations. The amount of NOx (NO + NO2) entering the stratosphere that has been created by EPP in the mesosphere and lower thermosphere (EPP-NOx) has been quantified for the 1978-1979 and 2002-2003 through 2008-2009 Arctic winters. The NO2 enhancements in the LIMS data are similar to those in MIPAS and ACE-FTS data in the Arctic winters of 2002-2003, 2004-2005, 2006-2007, and 2007-2008. The largest enhancement by far is in 2003-2004 (similar to 2.2 Gmol at 1500 K), which is attributed to a combination of elevated EPP and unusual dynamics that led to strong descent in the upper stratosphere/lower mesosphere in late winter. The enhancements in 2005-2006 and 2008-2009, during which large stratospheric NOx enhancements were caused by a dynamical situation similar to that in 2003-2004, are larger than in all the other years (except 2003-2004) at 3000 K. However, by 2000 K the enhancements in 2005-2006 (2008-2009) are on the same order of magnitude as (smaller than) all other years. These results highlight the importance of the timing of the descent in determining the potential of EPP-NOx for reaching the middle stratosphere. C1 [Holt, L. A.; Randall, C. E.; Harvey, V. L.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Holt, L. A.; Randall, C. E.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80303 USA. [Remsberg, E. E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Stiller, G. P.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76344 Karlsruhe, Germany. [Funke, B.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Bernath, P. F.] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Walker, K. A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A1, Canada. RP Holt, LA (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. EM holt@lasp.colorado.edu RI Funke, Bernd/C-2162-2008; Randall, Cora/L-8760-2014; Bernath, Peter/B-6567-2012; Stiller, Gabriele/A-7340-2013 OI Funke, Bernd/0000-0003-0462-4702; Randall, Cora/0000-0002-4313-4397; Bernath, Peter/0000-0002-1255-396X; HOLT, LAURA/0000-0003-0211-053X; Stiller, Gabriele/0000-0003-2883-6873 FU NSF [AGS 0940124]; NASA [NNX10AQ54G, NNXO6AC05G]; Canadian Space Agency; UK Natural Environment Research Council (NERC) FX Support for this work was provided by the NSF CEDAR program, grant AGS 0940124, and by the NASA Living With a Star program, grants NNX10AQ54G and NNXO6AC05G. The ACE mission is supported primarily by the Canadian Space Agency. Support was also provided by the UK Natural Environment Research Council (NERC). We thank the National Geophysical Data Center for the Ap index and the Space Environment Center for SPE data. NR 72 TC 7 Z9 7 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 15 PY 2012 VL 117 AR D05315 DI 10.1029/2011JD016663 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VN UT WOS:000301671400004 ER PT J AU Li, F Waugh, DW Douglass, AR Newman, PA Pawson, S Stolarski, RS Strahan, SE Nielsen, JE AF Li, Feng Waugh, Darryn W. Douglass, Anne R. Newman, Paul A. Pawson, Steven Stolarski, Richard S. Strahan, Susan E. Nielsen, J. Eric TI Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IN-SITU OBSERVATIONS; BREWER-DOBSON CIRCULATION; HEMISPHERIC ASYMMETRIES; WATER-VAPOR; TRANSPORT; CO2; OCEAN; CYCLE; AIR AB The stratospheric age spectrum is the probability distribution function of the transit times since a stratospheric air parcel had last contact with a tropospheric boundary region. Previous age spectrum studies have focused on its annual mean properties. Knowledge of the age spectrum's seasonal variability is very limited. In this study, we investigate the seasonal variations of the stratospheric age spectra using the pulse tracer method in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). The relationships between the age spectrum and the boundary impulse response (BIR) are reviewed, and a simplified method to reconstruct seasonally varying age spectra is introduced. The age spectra in GEOSCCM have strong seasonal cycles, especially in the lowermost and lower stratosphere and in the subtropical overworld. These changes reflect the seasonal evolution of the Brewer-Dobson circulation, isentropic mixing, and transport barriers. We also investigate the seasonal and interannual variations of the BIRs. Our results clearly show that computing an ensemble of seasonally dependent BIRs is necessary in order to capture the seasonal and annual mean properties of the stratospheric age spectrum. C1 [Li, Feng; Strahan, Susan E.] Univ Space Res Assoc, Columbia, MD USA. [Li, Feng; Douglass, Anne R.; Newman, Paul A.; Pawson, Steven; Stolarski, Richard S.; Strahan, Susan E.; Nielsen, J. Eric] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Waugh, Darryn W.; Stolarski, Richard S.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Nielsen, J. Eric] Sci Syst & Applicat Inc, Lanham, MD USA. RP Li, F (reprint author), Univ Space Res Assoc, Columbia, MD USA. EM feng.li@nasa.gov RI Newman, Paul/D-6208-2012; Douglass, Anne/D-4655-2012; Strahan, Susan/H-1965-2012; Li, Feng/H-2241-2012; Stolarski, Richard/B-8499-2013; Pawson, Steven/I-1865-2014; Waugh, Darryn/K-3688-2016 OI Newman, Paul/0000-0003-1139-2508; Stolarski, Richard/0000-0001-8722-4012; Pawson, Steven/0000-0003-0200-717X; Waugh, Darryn/0000-0001-7692-2798 FU NASA FX This work is supported by NASA's Modeling, Analysis, and Prediction program. We thank Laura Pan for very helpful discussions. Computational resources for this work were provided by NASA's High-Performance Computing through the generous award of computing time at NASA Ames Research Center. NR 36 TC 10 Z9 10 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 15 PY 2012 VL 117 AR D05134 DI 10.1029/2011JD016877 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VN UT WOS:000301671400007 ER PT J AU Nghiem, SV Rigor, IG Richter, A Burrows, JP Shepson, PB Bottenheim, J Barber, DG Steffen, A Latonas, J Wang, FY Stern, G Clemente-Colon, P Martin, S Hall, DK Kaleschke, L Tackett, P Neumann, G Asplin, MG AF Nghiem, Son V. Rigor, Ignatius G. Richter, Andreas Burrows, John P. Shepson, Paul B. Bottenheim, Jan Barber, David G. Steffen, Alexandra Latonas, Jeff Wang, Feiyue Stern, Gary Clemente-Colon, Pablo Martin, Seelye Hall, Dorothy K. Kaleschke, Lars Tackett, Philip Neumann, Gregory Asplin, Matthew G. TI Field and satellite observations of the formation and distribution of Arctic atmospheric bromine above a rejuvenated sea ice cover SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE DEPLETION EVENTS; FROST FLOWER GROWTH; POLAR SUNRISE; POLARIMETRIC SIGNATURES; TROPOSPHERIC BRO; SURFACE; MERCURY; SNOW; LEADS; CHEMISTRY AB Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km(2). In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O-3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O-3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion. C1 [Nghiem, Son V.; Neumann, Gregory] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rigor, Ignatius G.] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Richter, Andreas; Burrows, John P.] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. [Burrows, John P.] NERC Ctr Ecol & Hydrol, Biogeochem Programme, Wallingford, Oxon, England. [Shepson, Paul B.; Tackett, Philip] Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA. [Shepson, Paul B.; Tackett, Philip] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Shepson, Paul B.; Tackett, Philip] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Bottenheim, Jan; Steffen, Alexandra] Environm Canada, Sci & Technol Branch, Air Qual Res Div, Toronto, ON M3H 5T4, Canada. [Barber, David G.; Latonas, Jeff; Wang, Feiyue; Stern, Gary; Asplin, Matthew G.] Univ Manitoba, Ctr Earth Observat Sci, Fac Environm Earth & Resources, Winnipeg, MB R3T 2N2, Canada. [Latonas, Jeff] Clearstone Engn, Calgary, AB T2P 3K2, Canada. [Wang, Feiyue] Univ Manitoba, Dept Geog & Environm, Winnipeg, MB R3T 2N2, Canada. [Wang, Feiyue] Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2, Canada. [Stern, Gary] Fisheries & Oceans Canada, Inst Freshwater, Dept Fisheries & Oceans, Winnipeg, MB R3T 2N6, Canada. [Clemente-Colon, Pablo] NSOF, US Natl Ice Ctr, Washington, DC 20395 USA. [Clemente-Colon, Pablo] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA. [Martin, Seelye] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Hall, Dorothy K.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Kaleschke, Lars] Univ Hamburg, Inst Oceanog, D-20146 Hamburg, Germany. [Tackett, Philip] FLIR Mass Spectrometry, W Lafayette, IN 47906 USA. RP Nghiem, SV (reprint author), CALTECH, Jet Prop Lab, MS 300-235,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM son.v.nghiem@jpl.nasa.gov RI Clemente-Colon, Pablo/F-5581-2010; Wang, Feiyue/E-4147-2012; Hall, Dorothy/D-5562-2012; Shepson, Paul/E-9955-2012; Richter, Andreas/C-4971-2008; Burrows, John/B-6199-2014; OI Wang, Feiyue/0000-0001-5297-0859; Richter, Andreas/0000-0003-3339-212X; Burrows, John/0000-0002-6821-5580; Kaleschke, Lars/0000-0001-7086-3299 FU National Aeronautics and Space Administration (NASA); German Aerospace; European Union; State of Bremen; Canadian Federal Program Office; Natural Sciences and Engineering Research Council; Environment Canada FX The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, and the Goddard Space Flight Center was supported by the National Aeronautics and Space Administration (NASA) Cryospheric Sciences Program. Rigor is funded by NOAA, NASA, NSF, and ONR. The research carried out by the University of Bremen team was supported in part by the German Aerospace, the European Union, and the State of Bremen. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration, or any other U.S. government position, policy, or decision. The CFL system study was funded by the Canadian Federal Program Office for the IPY and by the Natural Sciences and Engineering Research Council. The University of Manitoba was the lead agency in the international multiagency CFL project. The OASIS-Canada program was funded by the Canadian Federal Program Office for the IPY and by Environment Canada. Thanks to Alex Hare of the University of Manitoba for the photograph of frost flowers in Figure 2. NR 84 TC 24 Z9 24 U1 1 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 15 PY 2012 VL 117 AR D00S05 DI 10.1029/2011JD016268 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VN UT WOS:000301671400001 ER PT J AU Sayer, AM Smirnov, A Hsu, NC Holben, BN AF Sayer, A. M. Smirnov, A. Hsu, N. C. Holben, B. N. TI A pure marine aerosol model, for use in remote sensing applications SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SEA-SALT AEROSOL; SKY RADIANCE MEASUREMENTS; MID-ATLANTIC COAST; ART. NO. D06202; OPTICAL-PROPERTIES; WIND-SPEED; MARITIME AEROSOL; CHEMICAL APPORTIONMENT; INVERSION ALGORITHM; UNITED-STATES AB Retrievals of aerosol optical depth (AOD) and related parameters from satellite measurements typically involve prescribed models of aerosol size and composition, and are therefore dependent on how well these models are able to represent the radiative behavior of real aerosols. This study uses aerosol volume size distributions retrieved from Sun-photometer measurements at 11 Aerosol Robotic Network (AERONET) island sites, spread throughout the world's oceans, as a basis to define such a model for pure (unpolluted) maritime aerosol. Volume size distributions are observed to be bimodal and approximately lognormal, although the coarse mode is skewed with a long tail on the low-radius end. The relationship of AOD and size distribution parameters to meteorological conditions is also examined. As wind speed increases, so do coarse-mode volume and radius. The AOD and angstrom ngstrom exponent show linear relationships with wind speed, although with considerable scatter. Links between aerosol properties and near-surface relative humidity, columnar water vapor, and sea surface temperature are also explored. A recommended bimodal maritime model, which is able to reconstruct the AERONET AOD with accuracy of order 0.01-0.02, is presented for use in aerosol remote sensing applications. This accuracy holds at most sites and for wavelengths between 340 nm and 1020 nm. Calculated lidar ratios are also provided, and are in the range of other studies, although differ more strongly from those currently used in Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) processing. C1 [Sayer, A. M.] Univ Space Res Assoc, Greenbelt, MD 20771 USA. [Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smirnov, A.] Sigma Space Corp, Lanham, MD USA. RP Sayer, AM (reprint author), Univ Space Res Assoc, Greenbelt, MD 20771 USA. EM andrew.sayer@nasa.gov RI Smirnov, Alexander/C-2121-2009; Sayer, Andrew/H-2314-2012; Hsu, N. Christina/H-3420-2013 OI Smirnov, Alexander/0000-0002-8208-1304; Sayer, Andrew/0000-0001-9149-1789; FU NASA; AERONET FX This work was supported by a grant from the NASA MEaSUREs program, managed by M. Maiden. The authors would like to acknowledge Hal Maring for his support of the AERONET program. The AERONET (C. McClain, R. Frouin, J. Sciare, M. A. Lander, R. Wagener) and MAN (S. Piketh, R. Losno, J. Sciare, N. Nelson, K. Voss, R. Frouin, G. Milinevsky) PIs are thanked for the creation and maintenance of the Sun- photometer data sets. G. Knig- Langlo and the Alfred Wegener Institute for Polar and Marine Research are thanked for the meteorological data from RV Polarstern. NCEP data were obtained from the SeaWiFS Ocean Biology Processing Group data distribution service. The authors are grateful to A. Sinyuk for assistance in verification of the results of Mie computations, and S. Kinne and two anonymous reviewers for their comments and suggestions, which helped us to improve the manuscript. NR 88 TC 19 Z9 22 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 15 PY 2012 VL 117 AR D05213 DI 10.1029/2011JD016689 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VN UT WOS:000301671400005 ER PT J AU Wang, SH Hsu, NC Tsay, SC Lin, NH Sayer, AM Huang, SJ Lau, WKM AF Wang, Sheng-Hsiang Hsu, N. Christina Tsay, Si-Chee Lin, Neng-Huei Sayer, Andrew M. Huang, Shih-Jen Lau, William K. M. TI Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BIOMASS; POLLUTION; PACIFIC; INPUT AB Satellite data estimate a high dust deposition flux (similar to 18 g m(-2) a(-1)) into the northern South China Sea (SCS). However, observational evidence concerning any biological response to dust fertilization is sparse. In this study, we combined long-term aerosol and chlorophyll-a (Chl-a) measurements from satellite sensors (MODIS and SeaWiFS) with a 16-year record of dust events from surface PM10 observations to investigate dust transport, flux, and the changes in Chl-a concentration over the northern SCS. Our result revealed that readily identifiable strong dust events over this region, although relatively rare (6 cases since 1994) and accounting for only a small proportion of the total dust deposition (similar to 0.28 g m(-2) a(-1)), do occur and could significantly enhance phytoplankton blooms. Following such events, the Chl-a concentration increased up to 4-fold, and generally doubled the springtime background value (0.15 mg m(-3)). We suggest these heavy dust events contain readily bioavailable iron and enhance the phytoplankton growth in the oligotrophic northern SCS. Citation: Wang, S.-H., N. C. Hsu, S.-C. Tsay, N.-H. Lin, A. M. Sayer, S.-J. Huang, and W. K. M. Lau (2012), Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea?, Geophys. Res. Lett., 39, L05811, doi:10.1029/2011GL050415. C1 [Wang, Sheng-Hsiang; Lin, Neng-Huei] Natl Cent Univ, Dept Atmospher Sci, Chungli 320, Taiwan. [Wang, Sheng-Hsiang] NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Greenbelt, MD 20771 USA. [Sayer, Andrew M.] Univ Space Res Assoc, Columbia, MD USA. [Huang, Shih-Jen] Natl Taiwan Ocean Univ, Dept Marine Environm Informat, Keelung, Taiwan. RP Wang, SH (reprint author), Natl Cent Univ, Dept Atmospher Sci, 300 Chung Da Rd, Chungli 320, Taiwan. EM nhlin@cc.ncu.edu.tw RI Sayer, Andrew/H-2314-2012; Hsu, N. Christina/H-3420-2013; Tsay, Si-Chee/J-1147-2014; Lau, William /E-1510-2012; Wang, Sheng-Hsiang/F-4532-2010 OI Sayer, Andrew/0000-0001-9149-1789; Lau, William /0000-0002-3587-3691; Wang, Sheng-Hsiang/0000-0001-9675-3135 FU NASA; Taiwan Environmental Protection Administration [EPA-99-FA11-03-A097]; Taiwan National Science Council [NSC-98-2745-M-008-001, NSC-98-2811-M-008-073, NSC-99-2811-M-008-081, NSC-992111-M-008-011, NSC-98-2611-M-019-016-MY3] FX This research was supported by the NASA Radiation Sciences Program, managed by Hal B. Maring. Coauthors affiliated with Universities in Taiwan were supported by the Taiwan Environmental Protection Administration under contract EPA-99-FA11-03-A097, and the Taiwan National Science Council under grants NSC-98-2745-M-008-001, NSC-98-2811-M-008-073, NSC-99-2811-M-008-081, NSC-992111-M-008-011, and NSC-98-2611-M-019-016-MY3. The authors would like to give special thanks to the NASA ocean color team, led by Charles R. McClain, for the MODIS and SeaWiFS ocean color products, and the MODIS science team for the aerosol data. We also thank anonymous reviewers for their constructive comments. NR 25 TC 19 Z9 19 U1 2 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 15 PY 2012 VL 39 AR L05811 DI 10.1029/2011GL050415 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 910UF UT WOS:000301667700003 ER PT J AU Lin, X Hou, AY AF Lin, Xin Hou, Arthur Y. TI Estimation of Rain Intensity Spectra over the Continental United States Using Ground Radar-Gauge Measurements SO JOURNAL OF CLIMATE LA English DT Article ID MEASURING MISSION TRMM; PRESENT-WEATHER REPORTS; PASSIVE MICROWAVE; SATELLITE-OBSERVATIONS; OCEANIC PRECIPITATION; GLOBAL PRECIPITATION; PROFILING ALGORITHM; FREQUENCY; TRENDS; MODELS AB A high-resolution surface rainfall product is used to estimate rain characteristics over the continental United States as a function of rain intensity. By defining data at 4-km horizontal resolutions and 1-h temporal resolutions as an individual precipitating or nonprecipitating sample, statistics of rain occurrence and rain volume including their geographical and seasonal variations are documented. Quantitative estimations are also conducted to evaluate the impact of missing light rain events due to satellite sensors' detection capabilities. It is found that statistics of rain characteristics have large seasonal and geographical variations across the continental United States. Although heavy rain events (>10 mm h(-1) only occupy 2.6% of total rain occurrence, they may contribute to 27% of total rain volume. Light rain events (<1.0 nim h(-1)), occurring much more frequently (65%) than heavy rain events, can also make important contributions (15%) to the total rain volume. For minimum detectable rain rates setting at 0.5 and 0.2 mm h(-1) which are close to sensitivities of the current and future spaceborne precipitation radars, there are about 43% and 11% of total rain occurrence below these thresholds, and they respectively represent 7% and 0.8% of total rain volume. For passive microwave sensors with their rain pixel sizes ranging from 14 to 16 km and the minimum detectable rain rates around 1 mm h(-1) the missed light rain events may account for 70% of rain occurrence and 16% of rain volume. Statistics of rain characteristics are also examined on domains with different temporal and spatial resolutions. Current issues in estimates of rain characteristics from satellite measurements and model outputs are discussed. C1 [Lin, Xin; Hou, Arthur Y.] NASA, Mesoscale Atmospher Proc Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lin, X (reprint author), NASA, Mesoscale Atmospher Proc Branch, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM xin.lin-1@nasa.gov RI Hou, Arthur/D-8578-2012; Measurement, Global/C-4698-2015 FU GPM at NASA Goddard Space Flight Center in Greenbelt, Maryland FX The NCEP surface radar and gauge Stage IV data are obtained from National Center for Atmospheric Research Earth Observing Laboratory. Thanks to Professor Hong Yang at University of Oklahoma for providing one-month Q2 rainfall data used for the sensitivity test. Special thanks to three anonymous reviewers for very constructive comments that greatly improved the paper. This research is supported by the GPM Project at the NASA Goddard Space Flight Center in Greenbelt, Maryland. NR 32 TC 13 Z9 13 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAR 15 PY 2012 VL 25 IS 6 BP 1901 EP 1915 DI 10.1175/JCLI-D-11-00151.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910EP UT WOS:000301620300009 ER PT J AU Decker, M Brunke, MA Wang, Z Sakaguchi, K Zeng, XB Bosilovich, MG AF Decker, Mark Brunke, Michael A. Wang, Zhuo Sakaguchi, Koichi Zeng, Xubin Bosilovich, Michael G. TI Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations SO JOURNAL OF CLIMATE LA English DT Article ID MIXED HARDWOOD FOREST; CARBON-DIOXIDE; CO2 EXCHANGE; CHAPARRAL ECOSYSTEM; ATMOSPHERE EXCHANGE; PONDEROSA PINE; SOIL-MOISTURE; UNITED-STATES; GREAT-PLAINS; WATER-VAPOR AB Reanalysis products produced at the various centers around the globe are utilized for many different scientific endeavors, including forcing land surface models and creating surface flux estimates, Here, flux tower observations of temperature, wind speed, precipitation, downward shortwave radiation, net surface radiation, and latent and sensible heat fluxes are used to evaluate the performance of various reanalysis products [NCEP- NCAR reanalysis and Climate Forecast System Reanalysis (CFSR) from NCEP; 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and ECMWF Interim Re-Analysis (ERA-Interim) from ECMWF; and Modern-Era Retrospective Analysis for Research and Applications (MERRA) and Global Land Data Assimilation System (GLDAS) from the Goddard Space Flight Center (GSFC)]. To combine the biases and standard deviation of errors from the separate stations, a ranking system is utilized. It is found that ERA-Interim has the lowest overall bias in 6-hourly air temperature, followed closely by MERRA and GLDAS. The variability in 6-hourly air temperature is again most accurate in ERA-Interim. ERA-40 is found to have the lowest overall bias in latent heat flux, followed closely by CFSR, while ERA-40 also has the lowest 6-hourly sensible heat bias. MERRA has the second lowest and is close to ERA-40. The variability in 6-hourly precipitation is best captured by GLDAS and ERA-Interim, and ERA-40 has the lowest precipitation bias. It is also found that at monthly time scales, the bias term in the reanalysis products are the dominant cause of the mean square errors, while at 6-hourly and daily time scales the dominant contributor to the mean square errors is the correlation term. Also, it is found that the hourly CFSR data have discontinuities present due to the assimilation cycle, while the hourly MERRA data do not contain these jumps. C1 [Decker, Mark] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2502, Australia. [Decker, Mark; Brunke, Michael A.; Wang, Zhuo; Sakaguchi, Koichi; Zeng, Xubin] Univ Arizona, Dept Atmospher Sci, Tucson, AZ USA. [Bosilovich, Michael G.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Decker, M (reprint author), Univ New S Wales, Climate Change Res Ctr, Mathews Bldg,Level 4, Sydney, NSW 2502, Australia. EM m.decker@unsw.edu.au RI Bosilovich, Michael/F-8175-2012; Sakaguchi, Koichi/D-9557-2013; OI Sakaguchi, Koichi/0000-0001-9672-6364; Zeng, Xubin/0000-0001-7352-2764; Decker, Mark/0000-0003-1071-611X FU NASA [NNX09A021G]; NOAA [NA10NES4400006]; NSF [AGS-0944101] FX This work was supported by NASA (Grant NNX09A021G), NOAA (Grant NA10NES4400006), and NSF (Grant AGS-0944101). We thank Hoshin Gupta for suggesting the analysis of the mean square error decomposition and two anonymous reviewers for their insightful suggestions (including the impact of energy balance closure issue in tower measurements on reanalysis evaluations). We thank the scientists at NCAR CISL, as they provided web access to the reanalysis products from NCEP and ECMWF. Also, we thank NCAR for the use of the NCAR computers for obtaining data from the mass store system. The GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We thank all of the principal investigators for each of the towers utilized in this study, each contributed their data to the Flux Net database, as their efforts have produced an abundance of valuable data for the earth sciences community. Finally, we thank the Oak Ridge National Laboratory for providing access to the Flux Net data. NR 49 TC 84 Z9 87 U1 6 U2 64 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAR 15 PY 2012 VL 25 IS 6 BP 1916 EP 1944 DI 10.1175/JCLI-D-11-00004.1 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910EP UT WOS:000301620300010 ER PT J AU Kawai, H Teixeira, J AF Kawai, Hideaki Teixeira, Joao TI Probability Density Functions of Liquid Water Path and Total Water Content of Marine Boundary Layer Clouds: Implications for Cloud Parameterization SO JOURNAL OF CLIMATE LA English DT Article ID LARGE-SCALE MODELS; GENERAL-CIRCULATION MODEL; HORIZONTAL VARIABILITY; STRATOCUMULUS CLOUDS; STRATIFORM CLOUDS; PART I; CONDENSATION; SIMULATION; CONVECTION; ALBEDO AB Mathematical forms of probability density functions (PDFs) of liquid water path (LWP) and total water content for marine boundary layer clouds are investigated using the homogeneity, skewness, and kurtosis of PDFs of LWP obtained from observations described in a companion paper. First, observed LWP PDF data are divided into four categories depending on the stability between 775 and 1000 hPa in order to investigate the characteristics of the PDFs of LWP depending on stability of the atmospheric boundary layer (ABL). The relationships between cloud amount and higher moments of LWP PDFs for different ABLs show different features. When the stability becomes larger, the LWP PDFs have larger homogeneity, smaller skewness, and smaller kurtosis for similar cloud amounts. To extract useful information about the PDFs of total water content for strongly and moderately stable ABLs, the relationship between LWP PDFs and PDFs of total water content is determined by introducing a set of simple assumptions for the vertical structure of total water content in well-mixed boundary layers. By comparing the observed relationships between cloud amount and higher moments of LWP PDFs, with similar relationships deduced theoretically from various forms of PDFs of total water content, it is found that, in general, the triangular and Gaussian PDFs are a realistic approximation for PDFs of total water content in marine boundary layer clouds for strongly and moderately stable ABLs. Results concerning the correction ratio for the autoconversion rate of cloud water content to precipitation and the reduction factor for short-wave reflectance, as functions of cloud amount, are also discussed. C1 [Kawai, Hideaki] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Teixeira, Joao] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kawai, H (reprint author), Meteorol Res Inst, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan. EM h-kawai@mri-jma.go.jp FU KAKUSHIN of Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Office of Naval Research [N0001408IP20064]; NASA MAP; NOAA MAPP CPO FX This work was conducted under the framework of the "Projection of the Change in Future Weather Extremes Using Super-High-Resolution Atmospheric Models" project supported by the KAKUSHIN program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. We acknowledge the three anonymous reviewers for their constructive and insightful comments. GOES data were downloaded from the Comprehensive Large Array-data Stewardship System (CLASS) website managed by NOAA. The ERA-Interim data used in this study were provided by ECMWF. JT acknowledges the support provided by the Office of Naval Research Marine Meteorology Program under Award N0001408IP20064, the NASA MAP Program, and the NOAA MAPP CPO program. This research was partly carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 38 TC 4 Z9 4 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAR 15 PY 2012 VL 25 IS 6 BP 2162 EP 2177 DI 10.1175/JCLI-D-11-00117.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910EP UT WOS:000301620300022 ER PT J AU Schwartz, SE Charlson, RJ Kahn, RA Ogren, JA Rodhe, H AF Schwartz, Stephen E. Charlson, Robert J. Kahn, Ralph A. Ogren, John A. Rodhe, Henning TI Reply to "Comments on 'Why Hasn't Earth Warmed as Much as Expected?'" SO JOURNAL OF CLIMATE LA English DT Editorial Material ID CLIMATE-CHANGE; EMISSIONS C1 [Schwartz, Stephen E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Charlson, Robert J.] Univ Washington, Seattle, WA 98195 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ogren, John A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Rodhe, Henning] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. RP Schwartz, SE (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM ses@bnl.gov RI Schwartz, Stephen/C-2729-2008; Kahn, Ralph/D-5371-2012; Ogren, John/M-8255-2015 OI Schwartz, Stephen/0000-0001-6288-310X; Kahn, Ralph/0000-0002-5234-6359; Ogren, John/0000-0002-7895-9583 NR 22 TC 1 Z9 1 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAR 15 PY 2012 VL 25 IS 6 BP 2200 EP 2204 DI 10.1175/2011JCLI4161.1 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910EP UT WOS:000301620300025 ER PT J AU Johnson, M Proshutinsky, A Aksenov, Y Nguyen, AT Lindsay, R Haas, C Zhang, JL Diansky, N Kwok, R Maslowski, W Hakkinen, S Ashik, I de Cuevas, B AF Johnson, Mark Proshutinsky, Andrey Aksenov, Yevgeny Nguyen, An T. Lindsay, Ron Haas, Christian Zhang, Jinlun Diansky, Nikolay Kwok, Ron Maslowski, Wieslaw Haekkinen, Sirpa Ashik, Igor de Cuevas, Beverly TI Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID GENERAL-CIRCULATION MODEL; MASS-BALANCE; NUMERICAL INVESTIGATIONS; COUPLED MODEL; CLIMATE; VARIABILITY; TOPOGRAPHY; REPRESENTATION; DYNAMICS; SCHEMES AB Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than similar to 2 m and underestimate the thickness of ice measured thicker than about similar to 2 m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models. C1 [Johnson, Mark] Univ Alaska Fairbanks, Inst Marine Sci, Fairbanks, AK 99775 USA. [Proshutinsky, Andrey] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Aksenov, Yevgeny; de Cuevas, Beverly] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England. [Nguyen, An T.] MIT, Dept Earth Atmospher & Planetary, Cambridge, MA 02139 USA. [Lindsay, Ron; Zhang, Jinlun] Univ Washington, Polar Sci Ctr, Seattle, WA 98105 USA. [Haas, Christian] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Diansky, Nikolay] Russian Acad Sci, Inst Numer Math, Moscow 119991, Russia. [Kwok, Ron] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Maslowski, Wieslaw] USN, Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA. [Haekkinen, Sirpa] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ashik, Igor] Arctic & Antarctic Res Inst, St Petersburg 198095, Russia. RP Johnson, M (reprint author), Univ Alaska Fairbanks, Inst Marine Sci, POB 757220, Fairbanks, AK 99775 USA. EM majohnson@alaska.edu RI Hakkinen, Sirpa/E-1461-2012; Kwok, Ron/A-9762-2008; Haas, Christian/L-5279-2016; Lindsay, Ron/S-9083-2016 OI Kwok, Ron/0000-0003-4051-5896; Haas, Christian/0000-0002-7674-3500; FU National Science Foundation Office of Polar [ARC-0804180, ARC-0804010, ARC-0805141, ARC080789, ARC0908769]; AOMIP; OPP project [ARC-0804010]; Alfred Wegener Institute in Germany; EU; Russian Foundation of Basic Research [09-05-00266, 09-05-01231]; UK Natural Environment Research Council [2025] FX This research is supported by the National Science Foundation Office of Polar Programs covering awards of AOMIP collaborative research projects: ARC-0804180 (M.J.), ARC-0804010 (A.P.), ARC-0805141 (W.M.), ARC080789, and ARC0908769 (J.Z.). Travel support to attend AOMIP meetings and publications fees for Y.A., I.A., B.d.C., S. H., R.K., R.L., and A.N. were provided by OPP project ARC-0804010. C.H. is grateful for support with data acquisitions through the Alfred Wegener Institute in Germany and various EU projects. This research is also supported by the Russian Foundation of Basic Research, projects 09-05-00266 and 09-05-01231. At the National Oceanography Centre Southampton, this study was funded by the UK Natural Environment Research Council as a contribution to the Marine Centres' Strategic Research Programme Oceans 2025. The NOCS-ORCA simulations were undertaken as part of the DRAKKAR collaboration [ Bernard et al., 2006]. NOCS also acknowledges the use of UK National High Performance Computing Resource. NR 128 TC 34 Z9 34 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR 15 PY 2012 VL 117 AR C00D13 DI 10.1029/2011JC007257 PG 21 WC Oceanography SC Oceanography GA 910VI UT WOS:000301670800001 ER PT J AU Kibler, AB Jamieson, BG Durand, DM AF Kibler, Andrew B. Jamieson, Brian G. Durand, Dominique M. TI A high aspect ratio microelectrode array for mapping neural activity in vitro SO JOURNAL OF NEUROSCIENCE METHODS LA English DT Article DE Hippocampus; Microelectrode; Array; Propagation; MEMS ID HIPPOCAMPAL SLICE; ELECTRODE-ARRAY; BRAIN-SLICES; STIMULATION; PROPAGATION; SYSTEM AB A novel high-aspect-ratio penetrating microelectrode array was designed and fabricated for the purpose of recording neural activity. The array allows two dimensional recording of 64 sites in vitro with high aspect ratio penetrating electrodes. Traditional surface electrode arrays, although easy to fabricate, do not penetrate to the viable tissue such as central hippocampus slices and thus have a lower signal/noise ratio and lower selectivity than a penetrating array. In the unfolded hippocampus preparation, the CA1-CA3 pyramidal cell layer in the whole unfolded rodent hippocampus preparation is encased by the alveus on one side and the Schaffer tract on the other and requires penetrating electrodes for high signal to noise ratio recording. An array of 64 electrode spikes, each with a target height of 200 mu m and diameter of 20 mu m, was fabricated in silicon on a transparent glass substrate. The impedance of the individual electrodes was measured to be approximately 1.5 M Omega +/- 497 k Omega. The signal to noise ratio was measured and found to be 19.4 +/- 3 dB compared to 3.9 +/- 0.8 dB S/N for signals obtained with voltage sensitive dye RH414. A mouse unfolded hippocampus preparation was bathed in solution containing 50 micromolar 4-amino pyridine and a complex two dimensional wave of activity was recorded using the array. These results indicate that this novel penetrating electrode array is able to obtain data superior to that of voltage sensitive dye techniques for broad field two-dimensional neuronal activity recording. When used with the unfolded hippocampus preparation, the combination forms a uniquely capable tool for imaging hippocampal network activity in the entire hippocampus. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kibler, Andrew B.; Durand, Dominique M.] Case Western Reserve Univ, Dept Biomed Engn, Ctr Neural Engn, Cleveland, OH 44106 USA. [Jamieson, Brian G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Durand, DM (reprint author), Case Western Reserve Univ, Dept Biomed Engn, Ctr Neural Engn, Wickenden Bldg,Rm 319,10900 Euclid Ave, Cleveland, OH 44106 USA. EM dominique.urand@case.edu FU NIH [R01NS40785] FX Financial support for this proposal was provided by NIH grant R01NS40785. NR 21 TC 14 Z9 14 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-0270 J9 J NEUROSCI METH JI J. Neurosci. Methods PD MAR 15 PY 2012 VL 204 IS 2 BP 296 EP 305 DI 10.1016/j.jneumeth.2011.11.027 PG 10 WC Biochemical Research Methods; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 910BR UT WOS:000301612700013 PM 22179041 ER PT J AU Kurum, M O'Neill, PE Lang, RH Joseph, AT Cosh, MH Jackson, TJ AF Kurum, Mehmet O'Neill, Peggy E. Lang, Roger H. Joseph, Alicia T. Cosh, Michael H. Jackson, Thomas J. TI Effective tree scattering and opacity at L-band SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Radiometry; Emission; Opacity; Albedo; Scattering; L-band; Forest; Soil ID PASSIVE MICROWAVE MEASUREMENTS; SURFACE SOIL-MOISTURE; L-MEB MODEL; DIELECTRIC DISKS; DECIDUOUS FOREST; CROP FIELDS; VEGETATION; EMISSION; RADIOMETRY; BACKSCATTERING AB This paper investigates vegetation effects at L-band by using a first-order radiative transfer (RT) model and truck-based microwave measurements over natural conifer stands to assess the applicability of the tau - omega (tau-omega) model over trees. The tau-omega model is a zero-order RT solution that accounts for vegetation effects with two vegetation parameters (vegetation opacity and single-scattering albedo), which represent the canopy as a whole. This approach inherently ignores multiple-scattering effects and, therefore, has a limited validity depending on the level of scattering within the canopy. The fact that the scattering from large forest components such as branches and trunks is significant at L-band requires that zero-order vegetation parameters be evaluated (compared) along with their theoretical definitions to provide a better understanding of these parameters in the retrieval algorithms as applied to trees. This paper compares the effective vegetation opacities, computed from multi-angular pine tree brightness temperature data, against the results of two independent approaches that provide theoretical and measured optical depths. These two techniques are based on forward scattering theory and radar corner reflector measurements, respectively. The results indicate that the effective vegetation opacity values are smaller than but of similar magnitude to both radar and theoretical estimates. The effective opacity of the zero-order model is thus set equal to the theoretical opacity and an explicit expression for the effective albedo is then obtained from the zero- and first-order RT model comparison. The resultant albedo is found to have a similar magnitude as the effective albedo value obtained from brightness temperature measurements. However, both are less than half of the single-scattering albedo estimated using the theoretical calculations (0.5-0.6 for tree canopies at L-band). This lower observed effective albedo balances the scattering darkening effect of the large theoretical single-scattering albedo with a first-order multiple-scattering contribution. The retrieved effective albedo is different from theoretical definitions and not the albedo of single forest elements anymore, but it becomes a global parameter, which depends on all the processes taking place within the canopy, including multiple-scattering and canopy ground interaction. (C) 2011 Elsevier Inc. All rights reserved. C1 [Kurum, Mehmet; O'Neill, Peggy E.; Joseph, Alicia T.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Lang, Roger H.] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA. [Cosh, Michael H.; Jackson, Thomas J.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. RP Kurum, M (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA. EM mehmet.kurum@nasa.gov RI Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 FU NASA FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center administered by Oak Ridge Associated Universities through a contract with NASA. NR 47 TC 15 Z9 15 U1 2 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2012 VL 118 BP 1 EP 9 DI 10.1016/j.rse.2011.10.024 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 895SW UT WOS:000300517700001 ER PT J AU Xin, QC Woodcock, CE Liu, JC Tan, B Melloh, RA Davis, RE AF Xin, Qinchuan Woodcock, Curtis E. Liu, Jicheng Tan, Bin Melloh, Rae A. Davis, Robert E. TI View angle effects on MODIS snow mapping in forests SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; MODIS; Snow cover; View angle effect ID BIDIRECTIONAL REFLECTANCE; OPTICAL-PROPERTIES; GAP FRACTIONS; COVER; MODEL; RESOLUTION; CANOPIES; ALBEDO; VALIDATION AB Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level. NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas. (C) 2011 Elsevier Inc. All rights reserved. C1 [Xin, Qinchuan; Woodcock, Curtis E.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Liu, Jicheng] NOAA NESDIS STAR, IM Syst Grp, Rockville, MD 20852 USA. [Tan, Bin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Melloh, Rae A.; Davis, Robert E.] Engn Res & Dev Ctr, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA. RP Xin, QC (reprint author), Boston Univ, Dept Geog & Environm, 675 Commonwealth Ave,Room 334, Boston, MA 02215 USA. EM xqcchina@gmail.com RI Tan, Bin/G-1331-2012; Liu, Jicheng/B-4575-2009; Xin, Qinchuan/O-3276-2014 OI Xin, Qinchuan/0000-0003-1146-4874 NR 29 TC 19 Z9 20 U1 0 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2012 VL 118 BP 50 EP 59 DI 10.1016/j.rse.2011.10.029 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 895SW UT WOS:000300517700005 ER PT J AU Chowdhary, J Cairns, B Waquet, F Knobelspiesse, K Ottaviani, M Redemann, J Travis, L Mishchenko, M AF Chowdhary, Jacek Cairns, Brian Waquet, Fabien Knobelspiesse, Kirk Ottaviani, Matteo Redemann, Jens Travis, Larry Mishchenko, Michael TI Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during the MILAGRO campaign SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; Polarization; RSP; MILAGRO; Aerosol; Hydrosol; Ocean color; Case-1 waters; Bio-optics; Chlorophyll a; CDOM; Plankton; Scattering; Radiative transfer ID RESEARCH SCANNING POLARIMETER; LIGHT-SCATTERING; AEROSOL PROPERTIES; OPTICAL-PROPERTIES; PHASE FUNCTION; CASE-1 WATERS; BIOOPTICAL PROPERTIES; SATELLITE RETRIEVAL; GLOBAL DISTRIBUTION; REFLECTED SUNLIGHT AB For remote sensing of aerosol over the ocean, there is a contribution from light scattered under water. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations. (C) 2011 Elsevier Inc. All rights reserved. C1 [Chowdhary, Jacek; Cairns, Brian; Knobelspiesse, Kirk] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Chowdhary, Jacek; Cairns, Brian; Knobelspiesse, Kirk; Ottaviani, Matteo; Travis, Larry; Mishchenko, Michael] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Waquet, Fabien] Univ Sci & Technol Lille, Opt Atmospher Lab, Villeneuve Dascq, France. [Redemann, Jens] NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. RP Chowdhary, J (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. EM jacek.chowdhary@nasa.gov RI Mishchenko, Michael/D-4426-2012; Knobelspiesse, Kirk/S-5902-2016; OI Knobelspiesse, Kirk/0000-0001-5986-1751; Cairns, Brian/0000-0002-1980-1022 FU Mexican institutions; NASA FX The MILAGRO/INTEX-B Campaign is a collaborative effort of a large number of participants with the support of multi-national agencies. We thank the governments of the Federal District, the States of Mexico, Hildalgo and Veracruz, and the Mexican Ministries of the Environment, Foreign Relations, Defense and Finance for their logistical support; IMP, U-Tecamac, and Rancho La Bisnega for hosting the supersites; and many other Mexican institutions for their support. We further extend our gratitude to all MILAGRO/INTEX-B participants and sponsoring agencies who made this research possible. We appreciate the fruitful discussions with Emmanuel Boss and Dave Siegel on the spectrum of underwater light particulate backscattering and on CDOM variations, and with Andre Morel and Stephane Maritorena on the implementation of these quantities, on variations of particulate scattering functions with [Chl], and on variations of underwater light fluxes with solar zenith angles. We are further grateful for the kernels provided by Oleg Dubovik to compute scattering matrices of randomly oriented spheroid aerosols, for the comments by Tatyana Lapyonok on using these kernels, and for the spectra provided by Annick Bricaud for absorption by marine particulates. We also thank Tristan Harmel for useful comments on an earlier draft of this manuscript, and the anonymous reviewers for their constructive comments on the submitted manuscript. The mission scientist for the J31 was Phillip Russel to whome we express our deep appreciation for the effective and collegial use of flight hours. The J-31 measurements were supported by the NASA Radiation Sciences Program. The MODIS/Aqua ocean color data were obtained from NASA Goddard Space Flight Center. This study was funded by the NASA Glory Mission project and the NASA Radiation Sciences Program managed by Hal Maring. NR 90 TC 26 Z9 26 U1 0 U2 24 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2012 VL 118 BP 284 EP 308 DI 10.1016/j.rse.2011.11.003 PG 25 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 895SW UT WOS:000300517700026 ER PT J AU Park, C Kim, JW Sauti, G Kang, JH Lovell, CS Gibbons, LJ Lowther, SE Lillehei, PT Harrison, JS Nazem, N Taylor, LT AF Park, Cheol Kim, Jae-Woo Sauti, Godfrey Kang, Jin Ho Lovell, Conrad S. Gibbons, Luke J. Lowther, Sharon E. Lillehei, Peter T. Harrison, Joycelyn S. Nazem, Negin Taylor, Larry T. TI Metallized nanotube polymer composites via supercritical fluid impregnation SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE carbon nanotube; metallization; nanocomposite; supercritical CO2; toughness ID ANNIHILATION LIFETIME SPECTROSCOPY; SITU SILVER(I) REDUCTION; POLYIMIDE FILMS; CARBON NANOTUBES; TEMPERATURE; DIOXIDE; CONDUCTIVITY; ELECTRODES; DEPOSITION; PARTICLES AB Although many metal decorated nanotubes and nanowires appear in the literature, well-dispersed metal decorated nanotube polymer composites have rarely been reported because of the excessive density mismatch between the decorated nanotubes and polymer matrix. Here, we report a novel method to prepare well-dispersed, highly functional, metallized nanotube polymer composites (MNPCs) that possess remarkably improved electrical conductivity and mechanical toughness. The MNPCs are prepared by supercritical fluid impregnation of an organometal compound into a premade well-dispersed single wall carbon nanotube-polymer composite film. The infused precursor preferentially migrates towards the nanotubes to undergo spontaneous reduction and form nanometer-scale metal particles leading to an increase in the conductivity of the MNPC films. The environmentally friendly supercritical fluid impregnation process significantly improved the toughness of the composite films, regardless of the presence of metal. Additional functionality can be imparted into the resulting MNPC by infusing other precursors such as magnetic and catalytic metal compounds. (C) 2011 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys, 2012 C1 [Park, Cheol; Kim, Jae-Woo; Sauti, Godfrey; Kang, Jin Ho; Lovell, Conrad S.; Gibbons, Luke J.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Lowther, Sharon E.; Lillehei, Peter T.; Harrison, Joycelyn S.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Nazem, Negin; Taylor, Larry T.] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. RP Park, C (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. EM cheol.park-1@nasa.gov RI Kim, Jae-Woo/A-8314-2008; Lillehei, Peter/C-9196-2009 OI Lillehei, Peter/0000-0001-8183-9980 FU National Science Foundation [CMMI-0928839]; Advanced Materials and Processing Branch at NASA Langley Research Center FX The authors thank Nancy Holloway (NASA Langley) for technical support. They acknowledge support by National Science Foundation CMMI-0928839 in part and the Advanced Materials and Processing Branch at NASA Langley Research Center. NR 41 TC 2 Z9 3 U1 1 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0488 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD MAR 15 PY 2012 VL 50 IS 6 BP 394 EP 402 DI 10.1002/polb.23015 PG 9 WC Polymer Science SC Polymer Science GA 887LG UT WOS:000299928300003 ER PT J AU Wei, JF Dirmeyer, PA Bosilovich, MG Wu, RG AF Wei, Jiangfeng Dirmeyer, Paul A. Bosilovich, Michael G. Wu, Renguang TI Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ASIAN SUMMER MONSOON; EAST-ASIA; GLOBAL PRECIPITATION; MOISTURE TRANSPORT; GAUGE OBSERVATIONS; HYDROLOGIC-CYCLE; SOIL-MOISTURE; PART I; CHINA; ASSOCIATION AB The method of calculating water vapor flux can show the paths of moisture transport but cannot easily identify the sources and sinks of water vapor. In this study, we estimate the evaporative moisture sources for the Yangtze River Valley (YRV) rainfall with a water vapor back-trajectory method, using meteorological data from the Modern Era Retrospective-analysis for Research and Applications (MERRA). The major moisture sources and their relative contributions show large seasonal variations. The moisture from the Bay of Bengal and the western Pacific usually compensate each other both during the evolution of YRV wet season (April-September) and interannually for the wet months (peak in August). The major direct moisture sources are over YRV and its major moisture transport pathways over land, rather than over the ocean, but the ocean is important in initiating the moisture transfer. However, over these important land moisture sources, surface evapotranspiration is not controlled by soil wetness and has weak impact on the variability of rainfall. Local moisture recycling over YRV is mostly a passive response to rainfall and circulation changes. The prediction of YRV rainy season rainfall thus depends more on the knowledge of large-scale circulations and monsoons than land surface conditions. C1 [Wei, Jiangfeng; Dirmeyer, Paul A.] Inst Global Environm & Soc, Ctr Ocean Land Atmosphere Studies, Calverton, MD 20705 USA. [Bosilovich, Michael G.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Wu, Renguang] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China. RP Wei, JF (reprint author), Inst Global Environm & Soc, Ctr Ocean Land Atmosphere Studies, Calverton, MD 20705 USA. EM jianfeng@cola.iges.org RI Wei, Jiangfeng/C-6342-2009; Bosilovich, Michael/F-8175-2012; Dirmeyer, Paul/B-6553-2016 OI Wei, Jiangfeng/0000-0001-8981-8674; Dirmeyer, Paul/0000-0003-3158-1752 FU National Aeronautics and Space Administration of USA [NNX09AI84G]; National Basic Research Program of China [2012CB955604] FX We thank the three reviewers for their constructive comments. The Goddard Earth Sciences (GES) Data and Information Services Center (DISC) are acknowledged by making the MERRA data online. This work was supported by grants from National Aeronautics and Space Administration (NNX09AI84G) of USA and National Basic Research Program of China (2012CB955604). NR 40 TC 26 Z9 26 U1 0 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 14 PY 2012 VL 117 AR D05126 DI 10.1029/2011JD016902 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VJ UT WOS:000301670900008 ER PT J AU Zhang, Y Yu, HB Eck, TF Smirnov, A Chin, M Remer, LA Bian, HS Tan, Q Levy, R Holben, BN Piazzolla, S AF Zhang, Yan Yu, Hongbin Eck, Tom F. Smirnov, Alexander Chin, Mian Remer, Lorraine A. Bian, Huisheng Tan, Qian Levy, Robert Holben, Brent N. Piazzolla, Sabino TI Aerosol daytime variations over North and South America derived from multiyear AERONET measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BOUNDARY-LAYER EVOLUTION; AIR POLLUTANT TRANSPORT; LOS-ANGELES BASIN; OPTICAL-THICKNESS; MEXICO-CITY; DIURNAL VARIABILITY; COASTAL ENVIRONMENT; MCMA-2003 CAMPAIGN; ANGSTROM EXPONENT; UNITED-STATES AB This study analyzes the daytime variation of aerosol with seasonal distinction by using multiyear measurements from 54 of the Aerosol Robotic Network (AERONET) sites over North America, South America, and islands in surrounding oceans. The analysis shows a wide range of daytime variability of aerosol optical depth (AOD) and angstrom ngstrom exponent depending on location and season. Possible reasons for daytime variations are given. The largest AOD daytime variation range at 440 nm, up to 75%, occurs in Mexico City, with maximum AOD in the afternoon. Large AOD daytime variations are also observed in the polluted mid-Atlantic United States and West Coast with maximum AOD occurring in the afternoon in the mid-Atlantic United States, but in the morning in the West Coast. In South American sites during the biomass burning season (August to October), maximum AOD generally occurs in the afternoon. But the daytime variation becomes smaller when sites are influenced more by long-range transported smoke than by local burning. Islands show minimum AOD in the morning and maximum AOD in the afternoon. The diverse patterns of aerosol daytime variation suggest that geostationary satellite measurements would be invaluable for characterizing aerosol temporal variations on regional and continental scales. In particular, simultaneous measurements of aerosols and aerosol precursors from a geostationary satellite would greatly aid in understanding the evolution of aerosol as determined by emissions, chemical transformations, and transport processes. C1 [Zhang, Yan; Eck, Tom F.; Tan, Qian] Univ Space Res Assoc, Columbia, MD 20771 USA. [Bian, Huisheng] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 20771 USA. [Chin, Mian; Tan, Qian] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20770 USA. [Eck, Tom F.; Smirnov, Alexander; Holben, Brent N.] NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Lab, Greenbelt, MD 20771 USA. [Levy, Robert] Sci Syst Applicat Inc, Lanham, MD 20901 USA. [Piazzolla, Sabino] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, Yan; Yu, Hongbin; Remer, Lorraine A.; Bian, Huisheng; Levy, Robert] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA. [Smirnov, Alexander] Sigma Space Corp, Lanham, MD 20771 USA. [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20771 USA. RP Zhang, Y (reprint author), Univ Space Res Assoc, Columbia, MD 20771 USA. EM yan.zhang@nasa.gov RI Yu, Hongbin/C-6485-2008; ECK, THOMAS/D-7407-2012; Smirnov, Alexander/C-2121-2009; Chin, Mian/J-8354-2012; Zhang, Yan/C-4792-2012; Levy, Robert/M-7764-2013 OI Yu, Hongbin/0000-0003-4706-1575; Smirnov, Alexander/0000-0002-8208-1304; Levy, Robert/0000-0002-8933-5303 FU NASA; Jet Propulsion Laboratory, California Institute of Technology, under National Aeronautics and Space Administration FX The work was supported by NASA as part of efforts for GEO-CAPE aerosol science definition under the direction of Jay Al-Saadi. We are grateful to Shobha Kondragunta, Robert Chatfield, and Warren Wiscombe for helpful discussions. The research of Sabino Piazzolla was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank three anonymous reviewers for their comments and suggestions. NR 53 TC 22 Z9 23 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 14 PY 2012 VL 117 AR D05211 DI 10.1029/2011JD017242 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VJ UT WOS:000301670900011 ER PT J AU Adams, C Strong, K Zhao, X Bassford, MR Chipperfield, MP Daffer, W Drummond, JR Farahani, EE Feng, W Fraser, A Goutail, F Manney, G McLinden, CA Pazmino, A Rex, M Walker, KA AF Adams, C. Strong, K. Zhao, X. Bassford, M. R. Chipperfield, M. P. Daffer, W. Drummond, J. R. Farahani, E. E. Feng, W. Fraser, A. Goutail, F. Manney, G. McLinden, C. A. Pazmino, A. Rex, M. Walker, Kaley A. TI Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and OClO measurements at 80 degrees N SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CHEMISTRY; WINTER AB Unusually cold conditions in Arctic winter 2010/11 led to large stratospheric ozone loss. We investigate this with UV-visible measurements made at Eureka, Canada (80.05 degrees N, 86.42 degrees W) from 1999-2011. For 8-22 March 2011, OClO was enhanced, indicating chlorine activation above Eureka. Ozone columns were lower than in any other year in the record, reaching minima of 237 DU and 247 DU in two datasets. The average NO2 column inside the vortex, measured at visible and UV wavelengths, was 46 +/- 30% and 45 +/- 27% lower in 2011 than the average NO2 column from previous years. Ozone column loss was estimated from two ozone datasets, using a modeled passive ozone tracer. For 12-20 March 2011, the average ozone loss was 27% and 29% (99 DU and 108 DU). The largest percent ozone loss in the 11-year record of 47% (250 DU and 251 DU) was observed on 5 April 2011. Citation: Adams, C., et al. (2012), Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and OClO measurements at 80 degrees N, Geophys. Res. Lett., 39, L05806, doi:10.1029/2011GL050478. C1 [Adams, C.; Strong, K.; Zhao, X.; Bassford, M. R.; Drummond, J. R.; Farahani, E. E.; Fraser, A.; Walker, Kaley A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Chipperfield, M. P.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Daffer, W.; Manney, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Drummond, J. R.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Feng, W.] Univ Leeds, Sch Earth & Environm, Natl Ctr Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Goutail, F.; Pazmino, A.] CNRS, LATMOS, F-78280 Guyancourt, France. [Manney, G.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [McLinden, C. A.] Environm Canada, Toronto, ON M3H 5T4, Canada. [Rex, M.] Alfred Wegener Inst Polar & Marine Res, D-14473 Potsdam, Germany. [Walker, Kaley A.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. RP Adams, C (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM cadams@physics.utoronto.ca RI Strong, Kimberly/D-2563-2012; Fraser, Annemarie/D-3874-2012; Chipperfield, Martyn/H-6359-2013; FENG, WUHU/B-8327-2008; Rex, Markus/A-6054-2009; Drummond, James/O-7467-2014 OI Chipperfield, Martyn/0000-0002-6803-4149; FENG, WUHU/0000-0002-9907-9120; Rex, Markus/0000-0001-7847-8221; FU Atlantic Innovation Fund/Nova Scotia Research Innovation Trust; Canada Foundation for Innovation; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Canadian Space Agency (CSA); Environment Canada (EC); Natural Sciences and Engineering Research Council (NSERC); Northern Scientific Training Program (NSTP); Ontario Innovation Trust; Polar Continental Shelf Program; Ontario Research Fund; CSA; NSERC; NSTP; EC; Centre for Global Change Science; University of Toronto; CFCAS; Centre National D'Etudes Spatiales; Government of Canada FX The 2006-2011 GBS measurements were made at PEARL by CANDAC. CANDAC is supported by the Atlantic Innovation Fund/Nova Scotia Research Innovation Trust, Canada Foundation for Innovation, Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), Canadian Space Agency (CSA), Environment Canada (EC), Government of Canada International Polar Year funding, Natural Sciences and Engineering Research Council (NSERC), Northern Scientific Training Program (NSTP), Ontario Innovation Trust, Polar Continental Shelf Program, and Ontario Research Fund. Ozonesonde measurements were made by EC. The spring 2004-2011 GBS, SAOZ, and ozonesonde measurements were also supported by the Canadian Arctic ACE Validation Campaigns, which were funded by CSA, NSERC, NSTP, EC, and the Centre for Global Change Science. The spring 1999-2000 GBS measurements were supported by NSERC and the University of Toronto and the 2001-2003 GBS measurements were supported by CFCAS and NSTP. SAOZ participation in the campaigns was supported by the Centre National D'Etudes Spatiales. The authors wish to thank PEARL site manager Pierre F. Fogal, the CANDAC operators, and the staff at EC's Eureka weather station for their contributions to data acquisition, and logistical and on-site support. Work carried out at the Jet Propulsion Laboratory, California Institute of Technology was done under contract with the National Aeronautics and Space Administration. The QDOAS data analysis software and ozone/NO2 air-mass factors were provided by IASB-BIRA. NR 20 TC 17 Z9 17 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 13 PY 2012 VL 39 AR L05806 DI 10.1029/2011GL050478 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 910UA UT WOS:000301667100002 ER PT J AU Avery, M Winker, D Heymsfield, A Vaughan, M Young, S Hu, YX Trepte, C AF Avery, Melody Winker, David Heymsfield, Andrew Vaughan, Mark Young, Stuart Hu, Yongxiang Trepte, Charles TI Cloud ice water content retrieved from the CALIOP space-based lidar SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CALIPSO; ALGORITHM; PERFORMANCE; EXTINCTION; AIRBORNE AB Ice water content (IWC) profiles are derived from retrievals of optical extinction from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite lidar, using a parameterization derived from particle probe measurements acquired during several aircraft field campaigns. With more than five years of data now available, CALIOP IWC is well suited for characterization of the climate-sensitive upper troposphere/lower stratosphere where reliable global IWC measurements are needed to reduce climate model uncertainty. We describe CALIOP IWC and compare it with global satellite-based and regional airborne IWC measurements made during August 2007. IWC distributions in a convective cloud sampled during the Tropical Clouds, Chemistry, Composition and Climate experiment show temperature-dependent differences between in situ measured IWC, IWC retrieved from CloudSat and CALIOP, and IWC parameterized from the airborne Cloud Physics Lidar (CPL) 532 nm volume extinction coefficients. At temperatures above -50 degrees C the CALIOP IWC retrieval indicates less cloud ice than the other instruments, due to signal attenuation and screening for horizontally-oriented ice crystals. Above 12 km where temperatures drop below -50 degrees C CALIOP compares well with in situ IWC measurements. In situ measurements are limited above 12 km, and more cold-temperature comparisons are needed. Global zonal in-cloud IWC averages at altitudes above 9 km show that CloudSat IWC is roughly an order of magnitude higher than CALIOP IWC, consistent with a higher detection threshold. When averaged to the vertical resolution characteristic of Microwave Limb Sounder (MLS), global zonal averages of CALIOP and MLS IWC were found to agree to about +/-50%. Citation: Avery, M., D. Winker, A. Heymsfield, M. Vaughan, S. Young, Y. Hu, and C. Trepte (2012), Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808, doi:10.1029/2011GL050545. C1 [Avery, Melody; Winker, David; Vaughan, Mark; Hu, Yongxiang; Trepte, Charles] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Heymsfield, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80301 USA. [Young, Stuart] CSIRO Marine & Atmospher Res, Aspendale, Vic 3195, Australia. RP Avery, M (reprint author), NASA, Langley Res Ctr, MS 483, Hampton, VA 23681 USA. EM melody.a.avery@nasa.gov RI Heymsfield, Andrew/E-7340-2011; Hu, Yongxiang/K-4426-2012; Young, Stuart/A-8641-2011 OI Young, Stuart/0000-0001-6434-9816 NR 24 TC 9 Z9 11 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 13 PY 2012 VL 39 AR L05808 DI 10.1029/2011GL050545 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 910UA UT WOS:000301667100003 ER PT J AU Kumar, SV Reichle, RH Harrison, KW Peters-Lidard, CD Yatheendradas, S Santanello, JA AF Kumar, Sujay V. Reichle, Rolf H. Harrison, Kenneth W. Peters-Lidard, Christa D. Yatheendradas, Soni Santanello, Joseph A. TI A comparison of methods for a priori bias correction in soil moisture data assimilation SO WATER RESOURCES RESEARCH LA English DT Article ID ENSEMBLE KALMAN FILTER; LAND INFORMATION-SYSTEM; PARAMETER-ESTIMATION; HYDRAULIC-PROPERTIES; PARTICLE FILTER; SURFACE MODELS; FRAMEWORK; WATER; UNCERTAINTY; IMPACT AB Data assimilation is increasingly being used to merge remotely sensed land surface variables such as soil moisture, snow, and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (1) parameter estimation to calibrate the land model to the climatology of the soil moisture observations and (2) scaling of the observations to the model's soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model's climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue. C1 [Kumar, Sujay V.] Sci Applicat Int Corp, Beltsville, MD USA. [Kumar, Sujay V.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Harrison, Kenneth W.; Yatheendradas, Soni] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Kumar, SV (reprint author), Sci Applicat Int Corp, Beltsville, MD USA. EM sujay.v.kumar@nasa.gov RI Santanello, Joseph/D-4438-2012; Reichle, Rolf/E-1419-2012; Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012 OI Santanello, Joseph/0000-0002-0807-6590; Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA Earth Science Technology Office (ESTO) [AIST-08-077]; NASA; NASA Center for Climate Simulation FX We gratefully acknowledge the financial support from the NASA Earth Science Technology Office (ESTO) (Advanced Information System Technology program award AIST-08-077). Rolf Reichle was supported by the NASA program on Earth System Science Research using Data and Products from Terra, Aqua, and ACRIMSAT satellites and the SMAP Science Definition Team. We thank James Geiger, Scott Rheingrover, and Dalia Kirschbaum for helpful comments. Computing was supported by the resources at the NASA Center for Climate Simulation. NR 66 TC 30 Z9 30 U1 2 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAR 13 PY 2012 VL 48 AR W03515 DI 10.1029/2010WR010261 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 910VS UT WOS:000301672000001 ER PT J AU Fridlind, AM Ackerman, AS Chaboureau, JP Fan, J Grabowski, WW Hill, AA Jones, TR Khaiyer, MM Liu, G Minnis, P Morrison, H Nguyen, L Park, S Petch, JC Pinty, JP Schumacher, C Shipway, BJ Varble, AC Wu, X Xie, S Zhang, M AF Fridlind, A. M. Ackerman, A. S. Chaboureau, J. -P. Fan, J. Grabowski, W. W. Hill, A. A. Jones, T. R. Khaiyer, M. M. Liu, G. Minnis, P. Morrison, H. Nguyen, L. Park, S. Petch, J. C. Pinty, J. -P. Schumacher, C. Shipway, B. J. Varble, A. C. Wu, X. Xie, S. Zhang, M. TI A comparison of TWP-ICE observational data with cloud-resolving model results SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SINGLE-COLUMN MODEL; LONG-TERM BEHAVIOR; TRMM PRECIPITATION RADAR; SIMULATED SQUALL LINE; LIQUID WATER PATH; TOGA-COARE; DEEP CONVECTION; PART I; SURFACE PROCESSES; PHASE-III AB Observations made during the TWP-ICE campaign are used to drive and evaluate thirteen cloud-resolving model simulations with periodic lateral boundary conditions. The simulations employ 2D and 3D dynamics, one-and two-moment microphysics, several variations on large-scale forcing, and the use of observationally derived aerosol properties to prognose droplet numbers. When domain means are averaged over a 6-day active monsoon period, all simulations reproduce observed surface precipitation rate but not its structural distribution. Simulated fractional areas covered by convective and stratiform rain are uncorrelated with one another, and are both variably overpredicted by up to a factor of similar to 2. Stratiform area fractions are strongly anticorrelated with outgoing longwave radiation (OLR) but are negligibly correlated with ice water path (IWP), indicating that ice spatial distribution controls OLR more than mean IWP. Overpredictions of OLR tend to be accompanied by underpredictions of reflected shortwave radiation (RSR). When there are two simulations differing only in microphysics scheme or large-scale forcing, the one with smaller stratiform area tends to exhibit greater OLR and lesser RSR by similar amounts. After similar to 10 days, simulations reach a suppressed monsoon period with a wide range of mean precipitable water vapor, attributable in part to varying overprediction of cloud-modulated radiative flux divergence compared with observationally derived values. Differences across the simulation ensemble arise from multiple sources, including dynamics, microphysics, and radiation treatments. Close agreement of spatial and temporal averages with observations may not be expected, but the wide spreads of predicted stratiform fraction and anticorrelated OLR indicate a need for more rigorous observation-based evaluation of the underlying micro- and macrophysical properties of convective and stratiform structures. C1 [Fridlind, A. M.; Ackerman, A. S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chaboureau, J. -P.; Pinty, J. -P.] Univ Toulouse, CNRS, Lab Aerol, F-31400 Toulouse, France. [Fan, J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Grabowski, W. W.; Morrison, H.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Hill, A. A.; Petch, J. C.; Shipway, B. J.] Met Off, Exeter EX1 3PB, Devon, England. [Jones, T. R.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Khaiyer, M. M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Liu, G.; Wu, X.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Minnis, P.; Nguyen, L.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Park, S.] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA USA. [Schumacher, C.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77840 USA. [Varble, A. C.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA. [Xie, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhang, M.] SUNY Stony Brook, Inst Planetary & Terr Atmospheres, Stony Brook, NY 11794 USA. RP Fridlind, AM (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM ann.fridlind@nasa.gov RI Liu, Guosheng/D-3479-2011; Ackerman, Andrew/D-4433-2012; Fridlind, Ann/E-1495-2012; Fan, Jiwen/E-9138-2011; Schumacher, Courtney/B-8968-2011; Shipway, Ben/E-1375-2011; Xie, Shaocheng/D-2207-2013; Minnis, Patrick/G-1902-2010 OI Liu, Guosheng/0000-0001-7899-6125; Ackerman, Andrew/0000-0003-0254-6253; Schumacher, Courtney/0000-0003-3612-485X; Shipway, Ben/0000-0002-7419-0789; Xie, Shaocheng/0000-0001-8931-5145; Minnis, Patrick/0000-0002-4733-6148 FU NASA; DOE Office of Science; Office of Biological and Environmental Research [DE-AI02-06ER64173, DE-AI02-08ER64547, DE-FG03-02ER63337, DE-FG02-08ER64574, DE-AI02-07ER64546, DE-FG02-08ER64559]; DOE Atmospheric System Research Program FX This research was supported by the NASA Radiation Sciences Program and by the DOE Office of Science, Office of Biological and Environmental Research, through Contracts DE-AI02-06ER64173, DE-AI02-08ER64547, and DE-FG03-02ER63337 (Fridlind and Ackerman), DE-FG02-08ER64574 (Grabowski and Morrison), DE-AI02-07ER64546 (Minnis), and DE-FG02-08ER64559 (Wu), and the DOE Atmospheric System Research Program (Fan). Computational support was provided by the DOE National Energy Research Scientific Computing Center and the NASA Advanced Supercomputing Division. We thank the TWP-ICE and ACTIVE field campaign teams led by Peter May and Geraint Vaughan. TWP-ICE data were obtained from the ARM Program archive, sponsored by the DOE Office of Science, Office of Biological and Environmental Research, Environmental Science Division. ECMWF analyses were provided to the ARM data archive under a site license agreement. Sally McFarlane is thanked for help in Rayleigh reflectivity calculations for SAM simulations. We thank Ed Zipser and Chris Bretherton for helpful discussions. We thank Steven Krueger and an anonymous reviewer for detailed corrections and comments. NR 115 TC 68 Z9 68 U1 1 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 13 PY 2012 VL 117 AR D05204 DI 10.1029/2011JD016595 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VD UT WOS:000301670300003 ER PT J AU Ma, HY Kohler, M Li, JLF Farrara, JD Mechoso, CR Forbes, RM Waliser, DE AF Ma, H. -Y. Koehler, M. Li, J. -L. F. Farrara, J. D. Mechoso, C. R. Forbes, R. M. Waliser, D. E. TI Evaluation of an ice cloud parameterization based on a dynamical-microphysical lifetime concept using CloudSat observations and the ERA-Interim reanalysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; LARGE-SCALE MODELS; COMMUNITY ATMOSPHERE MODEL; PLANETARY BOUNDARY-LAYER; NUMERICAL-SIMULATION; BIOSPHERE MODEL; GLOBAL CLIMATE; VERSION-3 CAM3; SCHEME; WATER AB This study validates the cloud ice water content (IWC, non-precipitating ice/non-snow) produced by a unique prognostic cloud ice parameterization when used in the UCLA atmospheric general circulation model against CloudSat observations, and also compares it with the ERA-Interim reanalysis. A distinctive aspect of this parameterization is the novel treatment of the conversion of cloud ice to precipitating snow. The ice-to-snow autoconversion time scale is a function of differential infrared radiative heating and environmental static stability. The simulated IWC is in agreement with CloudSat observations in terms of its magnitude and three-dimensional structure. The annual and seasonal means of the zonal-mean IWC profiles from the simulations both show a local maximum in the upper troposphere in the tropics associated with deep convection, and other local maxima in the mid-troposphere in midlatitudes in both hemispheres associated with storm tracks. In contrast to the CloudSat values, the reanalysis shows much smaller IWC values in the tropics and much larger values in the lower troposphere in midlatitudes. The different vertical structures and magnitudes of IWC between the simulations and the reanalysis are likely due to differences in the parameterization of various processes in addition to the ice-to-snow autoconversion, including ice sedimentation, temperature thresholds for ice deposition and cumulus detrainment of cloud ice. However, a series of sensitivity experiments supports the conclusion that the model with a constant autoconversion time scale cannot reproduce the correct IWC distribution in both the tropics and midlatitudes, which strongly suggests the importance of physically based effects on the autoconversion timescale. C1 [Ma, H. -Y.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. [Koehler, M.] Deutsch Wetterdienst, D-63067 Offenbach, Germany. [Li, J. -L. F.; Waliser, D. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Farrara, J. D.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Mechoso, C. R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Forbes, R. M.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. RP Ma, HY (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, MC L-103,7000 East Ave, Livermore, CA 94551 USA. EM ma21@llnl.gov RI Ma, Hsi-Yen/K-1019-2013 FU Office of Science at the U.S. Department of Energy; U.S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the three anonymous reviewers for their valuable comments on this paper. Computing resources were provided from the NCAR computational and information systems laboratory. Support for Hsi-Yen Ma was provided by the Regional and Global Climate and Earth System Modeling Programs of the Office of Science at the U.S. Department of Energy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 64 TC 6 Z9 6 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 13 PY 2012 VL 117 AR D05210 DI 10.1029/2011JD016275 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910VD UT WOS:000301670300001 ER PT J AU Schwadron, NA Baker, T Blake, B Case, AW Cooper, JF Golightly, M Jordan, A Joyce, C Kasper, J Kozarev, K Mislinski, J Mazur, J Posner, A Rother, O Smith, S Spence, HE Townsend, LW Wilson, J Zeitlin, C AF Schwadron, N. A. Baker, T. Blake, B. Case, A. W. Cooper, J. F. Golightly, M. Jordan, A. Joyce, C. Kasper, J. Kozarev, K. Mislinski, J. Mazur, J. Posner, A. Rother, O. Smith, S. Spence, H. E. Townsend, L. W. Wilson, J. Zeitlin, C. TI Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID INFRARED MAPPING SPECTROMETER; ICY GALILEAN SATELLITES; HYDRATED SALT MINERALS; MAGNETIC-FLUX; PROTON IRRADIATION; EUROPAS SURFACE; SULFURIC-ACID; SOLAR-SYSTEM; KUIPER-BELT; MODULATION AB The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (similar to 11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit similar to 88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e. g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon. C1 [Schwadron, N. A.; Baker, T.; Golightly, M.; Jordan, A.; Joyce, C.; Mislinski, J.; Smith, S.; Spence, H. E.; Wilson, J.] Univ New Hampshire, EOS Space Sci Ctr, Durham, NH 03824 USA. [Blake, B.] Aerosp Corp, Dept Space Sci, Los Angeles, CA 90245 USA. [Case, A. W.; Kasper, J.; Kozarev, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cooper, J. F.] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. [Kozarev, K.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Mazur, J.] Aerosp Corp, Dept Space Sci, Chantilly, VA 20151 USA. [Posner, A.] NASA Headquarters, Washington, DC 20546 USA. [Rother, O.] Univ Kiel, Inst Expt & Angew Phys, D-24118 Kiel, Germany. [Townsend, L. W.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Zeitlin, C.] SW Res Inst, Space Sci & Engn Div, Boulder, CO 80302 USA. [Schwadron, N. A.; Baker, T.; Golightly, M.; Jordan, A.; Mislinski, J.; Smith, S.; Spence, H. E.; Wilson, J.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Rother, O.] Sci Data Proc, Kiel, Germany. RP Schwadron, NA (reprint author), Univ New Hampshire, EOS Space Sci Ctr, 8 Coll Rd, Durham, NH 03824 USA. EM n.schwadron@unh.edu RI Cooper, John/D-4709-2012; Spence, Harlan/A-1942-2011; Kasper, Justin/D-1152-2010; OI Kasper, Justin/0000-0002-7077-930X; Spence, Harlan/0000-0002-2526-2205 FU NASA CRaTER [NNG11PA03C]; EMMREM; NASA FX This work is supported by the NASA CRaTER contract NNG11PA03C and the EMMREM project, and for J.F.C. by the NASA Lunar Advanced Science and Exploration Research and Outer Planets Research programs. NR 73 TC 27 Z9 27 U1 3 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 13 PY 2012 VL 117 AR E00H13 DI 10.1029/2011JE003978 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 910VU UT WOS:000301672200001 ER PT J AU Sarantos, M Killen, RM Glenar, DA Benna, M Stubbs, TJ AF Sarantos, Menelaos Killen, Rosemary M. Glenar, David A. Benna, Mehdi Stubbs, Timothy J. TI Metallic species, oxygen and silicon in the lunar exosphere: Upper limits and prospects for LADEE measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PHOTON-STIMULATED DESORPTION; MERCURYS EXOSPHERE; ZODIACAL LIGHT; ULTRAVIOLET SPECTROMETER; ATMOSPHERE; MOON; SODIUM; MODEL; MAGNESIUM; SURFACE AB The only species that have been so far detected in the lunar exosphere are Na, K, Ar, and He. However, models for the production and loss of species derived from the lunar regolith through micrometeoroid impact vaporization, sputtering, and photon-stimulated desorption, predict that a host of other species should exist in the lunar exosphere. Assuming that loss processes are limited to ballistic escape, photoionization, and recycling to the surface, we have computed column abundances and compared them to published upper limits for the Moon. Only for Ca do modeled abundances clearly exceed the available measurements. This result suggests the relevance of some loss processes that were not included in the model, such as the possibility of gas-to-solid phase condensation during micrometeoroid impacts or the formation of stable metallic oxides. Our simulations and the recalculation of efficiencies for resonant light scattering show that models for other species studied are not well constrained by existing measurements. This fact underlines the need for improved remote and in situ measurements of the lunar exosphere such as those planned by the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Our simulations of the LADEE neutral mass spectrometer and visible/ultraviolet spectrometer indicate that LADEE measurements promise to provide definitive observations or set stringent upper limits for all regolith-driven exospheric species. We predict that observations by LADEE will constrain assumed model parameters for the exosphere of the Moon. C1 [Sarantos, Menelaos] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Benna, Mehdi; Stubbs, Timothy J.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Glenar, David A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Killen, Rosemary M.] NASA, Goddard Space Flight Ctr, Planetary Magnetospheres Branch, Greenbelt, MD 20771 USA. [Sarantos, Menelaos] Univ Maryland, Goddard Planetary Heliophys Inst, Baltimore, MD 21201 USA. [Sarantos, Menelaos; Killen, Rosemary M.; Glenar, David A.; Stubbs, Timothy J.] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. [Stubbs, Timothy J.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21201 USA. RP Sarantos, M (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Bldg 21,Room C222, Greenbelt, MD 20771 USA. EM menelaos.sarantos-1@nasa.gov RI Benna, Mehdi/F-3489-2012; Sarantos, Menelaos/H-8136-2013; Stubbs, Timothy/I-5139-2013 OI Stubbs, Timothy/0000-0002-5524-645X FU NASA Lunar Science Institute; DREAM; NASA (LASER) [NNX09A079G] FX NSO/Kitt Peak FTS data used here were produced by NSF/NOAO. G_values were computed using the oscillator strengths in the National Institute of Standards and Technology (NIST) online atomic database [Ralchenko et al., 2010]. MS, RMK, DG, and TS acknowledge funding from the NASA Lunar Science Institute, DREAM. Additional funding for Stubbs, Glenar, and Killen was provided by NASA grant NNX09A079G (LASER). The authors thank Anthony Colaprete for providing results from the latest tests of the LADEE UVS performance. Two anonymous reviewers greatly improved the content of this paper with their comments. NR 60 TC 22 Z9 22 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 13 PY 2012 VL 117 AR A03103 DI 10.1029/2011JA017044 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910TI UT WOS:000301665000002 ER PT J AU Grudinin, IS Baumgartel, L Yu, N AF Grudinin, Ivan S. Baumgartel, Lukas Yu, Nan TI Frequency comb from a microresonator with engineered spectrum SO OPTICS EXPRESS LA English DT Article ID WHISPERING-GALLERY MODES; GENERATION; MICROCAVITIES; RESONATOR; CAF2; MGF2 AB We demonstrate that by varying the ratio between the linewidth and dispersion of a whispering gallery mode resonator we are able to control the number N of free spectral ranges separating the first generated comb sidebands from the pump. We observed combs with N = 19 and N = 1. For the comb with N = 1 we have achieved a span of over 200 nm using a 0.4 mm MgF2 resonator pumped with 50 mW at 1560 nm. This pump power is a factor of 10 lower than previously reported for combs with comparable bandwidth. (C) 2012 Optical Society of America C1 [Grudinin, Ivan S.; Baumgartel, Lukas; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Grudinin, IS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM grudinin@jpl.nasa.gov FU NASA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. I.S.G thanks M. L. Gorodetsky, A. B. Matsko and D. Strekalov for helpful discussions. NR 25 TC 48 Z9 48 U1 3 U2 31 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAR 12 PY 2012 VL 20 IS 6 BP 6604 EP 6609 DI 10.1364/OE.20.006604 PG 6 WC Optics SC Optics GA 913KW UT WOS:000301877700108 PM 22418543 ER PT J AU Ackermann, M Albert, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bottacini, E Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Charles, E Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Essig, R Falletti, L Favuzzi, C Fegan, SJ Focke, WB Fukazawa, Y Funk, S Fusco, P Gargano, F Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Gustafsson, M Hadasch, D Hayashida, M Hou, X Hughes, RE Johnson, RP Johnson, AS Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lionetto, AM Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Ozaki, M Paneque, D Pelassa, V Pierbattista, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Sadrozinski, HFW Sehgal, N Sgro, C Siskind, EJ Spinelli, P Strigari, L Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JG Thayer, JB Tibaldo, L Tinivella, M Torres, DF Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Zalewski, S Zimmer, S AF Ackermann, M. Albert, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Charles, E. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Essig, R. Falletti, L. Favuzzi, C. Fegan, S. J. Focke, W. B. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Gustafsson, M. Hadasch, D. Hayashida, M. Hou, X. Hughes, R. E. Johnson, R. P. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lionetto, A. M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Pelassa, V. Pierbattista, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Sadrozinski, H. F. -W. Sehgal, N. Sgro, C. Siskind, E. J. Spinelli, P. Strigari, L. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Tibaldo, L. Tinivella, M. Torres, D. F. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Zalewski, S. Zimmer, S. TI SEARCH FOR DARK MATTER SATELLITES USING FERMI-LAT SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; gamma rays: galaxies ID LARGE-AREA TELESCOPE; DWARF SPHEROIDAL GALAXIES; GAMMA-RAY PULSARS; MILKY-WAY; ANNIHILATION; SUBSTRUCTURE; CATALOG; CONSTRAINTS; PROFILE; HALO AB Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the b (b) over bar channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b (b) over bar channel. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Albert, A.; Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Razzano, M.; Sgro, C.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CNRS,CEA IRFU,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Pivato, G.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Essig, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Sehgal, N.; Strigari, L.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Essig, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Sehgal, N.; Strigari, L.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Brandt, T. J.; Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, F-31100 Toulouse, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, E-08193 Barcelona, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Ciprini, S.; Cutini, S.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Falletti, L.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dermer, C. D.; Lovellette, M. N.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Fukazawa, Y.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guiriec, S.; Pelassa, V.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Hayashida, M.] Kyoto Univ, Dept Astron, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Hou, X.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Johnson, R. P.; Razzano, M.; Ritz, S.; Sadrozinski, H. F. -W.; Zalewski, S.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Johnson, R. P.; Razzano, M.; Ritz, S.; Sadrozinski, H. F. -W.; Zalewski, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Katagiri, H.] Ibaraki Univ, Coll Sci, Bunkyo Ku, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Latronico, L.] Ist Nazl Fis Nucl, Sezioine Torino, I-10125 Turin, Italy. [Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [Lionetto, A. M.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Lionetto, A. M.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [McEnery, J. E.; Moiseev, A. A.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Torres, D. F.] ICREA, E-08010 Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM elliott@slac.stanford.edu; strigari@slac.stanford.edu; pingw@slac.stanford.edu RI Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Mazziotta, Mario /O-8867-2015 OI Baldini, Luca/0000-0002-9785-7726; Torres, Diego/0000-0002-1522-9065; Giordano, Francesco/0000-0002-8651-2394; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Mazziotta, Mario /0000-0001-9325-4672 FU Department of Energy Office of Science [DE-AC05-06OR23100] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Support was also provided by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) administered by ORISE-ORAU under contract No. DE-AC05-06OR23100. NR 51 TC 49 Z9 49 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 121 DI 10.1088/0004-637X/747/2/121 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400037 ER PT J AU Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Drlica-Wagner, A Enoto, T Favuzzi, C Fegan, SJ Ferrara, EC Fortin, P Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Godfrey, G Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Hughes, RE Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Mazziotta, MN Michelson, PF Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nishino, S Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Orlando, E Ozaki, M Paneque, D Pesce-Rollins, M Pierbattista, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Roth, M Sanchez, DA Sbarra, C Sgro, C Siskind, EJ Spandre, G Spinelli, P Stawarz, L Strong, AW Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thompson, DJ Tibaldo, L Tinivella, M Torres, DF Tosti, G Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Winer, BL Wood, KS Wood, M Yang, Z Zimmer, S AF Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Enoto, T. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fortin, P. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Godfrey, G. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Mazziotta, M. N. Michelson, P. F. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nishino, S. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Orlando, E. Ozaki, M. Paneque, D. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Roth, M. Sanchez, D. A. Sbarra, C. Sgro, C. Siskind, E. J. Spandre, G. Spinelli, P. Stawarz, L. Strong, A. W. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Winer, B. L. Wood, K. S. Wood, M. Yang, Z. Zimmer, S. TI SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: active; galaxies: Seyfert; gamma rays: galaxies; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; SWIFT-BAT SURVEY; ALL-SKY SURVEY; BLACK-HOLE; STATISTICAL PROPERTIES; VLA OBSERVATIONS; RADIO STRUCTURES; NEARBY GALAXIES; PAIR PRODUCTION AB We report on a systematic investigation of the gamma-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as "radio-quiet" objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F14-195 keV >= 2.5 x 10(-11) erg cm(-2) s(-1) at high Galactic latitudes (|b| > 10 degrees). In order to remove "radio-loud" objects from the sample, we use the "hard X-ray radio loudness parameter," RrX, defined as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with RrX < 10(-4), we did not find a statistically significant g-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level gamma-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is similar or equal to 4 x 10(-9) photons cm(-2) s(-1), and the upper limits derived for several objects reach similar or equal to 1 x 10(-9) photons cm(-2) s(-1). Our results indicate that no prominent gamma-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of gamma-ray to X-ray luminosities L-gamma/L-X < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of "radio-quiet" Seyfert galaxies. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Enoto, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Enoto, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Giroletti, M.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Pierbattista, M.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Sbarra, C.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, E-08193 Barcelona, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, F-34095 Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ferrara, E. C.; Gehrels, N.; Hays, E.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Y.; Mizuno, T.; Nishino, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Dept Astron, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, F-31100 Toulouse, France. [Lott, B.] Univ Bordeaux 1, CNRS, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, F-33175 Gradignan, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sanchez, D. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Torres, D. F.] ICREA, E-08010 Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Hayashida, M (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM bechtol@stanford.edu; mahaya@slac.stanford.edu; madejski@slac.stanford.edu; stawarz@astro.isas.jaxa.jp RI Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015 OI Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Torres, Diego/0000-0002-1522-9065; Giordano, Francesco/0000-0002-8651-2394; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672 FU K. A. Wallenberg Foundation; Fermi-LAT Collaboration; National Aeronautics and Space Administration; Japan Society for the Promotion of Science FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the High Energy Accelerator Research Organization (KEK) and the Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; M. H. is supported by the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. K. B. is supported by a Stanford Graduate Fellowship. We thank the anonymous referee for the valuable comments which helped to improve the paper. NR 85 TC 26 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 104 DI 10.1088/0004-637X/747/2/104 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400020 ER PT J AU Cannizzo, JK Smale, AP Wood, MA Still, MD Howell, SB AF Cannizzo, John K. Smale, Alan P. Wood, Matt A. Still, Martin D. Howell, Steve B. TI THE KEPLER LIGHT CURVES OF V1504 CYGNI AND V344 LYRAE: A STUDY OF THE OUTBURST PROPERTIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: close; novae, cataclysmic variables; stars: individual (V1504 Cygni, V344 Lyrae) ID LIMIT-CYCLE MECHANISM; CLOSE BINARY-SYSTEMS; DWARF NOVA OUTBURSTS; LONG-TERM BEHAVIOR; ACCRETION DISKS; SS-CYGNI; WZ SAGITTAE; INSTABILITY MODEL; PERIOD VARIATIONS; RECURRENCE TIME AB We examine the Kepler light curves of V1504 Cyg and V344 Lyr, encompassing similar to 736 days at one-minute cadence. During this span each system exhibited similar to 64-65 outbursts, including 6 superoutbursts. We find that, in both systems, the normal outbursts lying between two superoutbursts increase in duration over time by a factor similar to 1.2-1.9, and then reset to a small value after the following superoutburst. In both systems the trend of quiescent intervals between normal outbursts is to increase to a local maximum about halfway through the supercycle-the interval from one superoutburst to the next-and then to decrease back to a small value by the time of the next superoutburst. This is inconsistent with Osaki's thermal-tidal model, which predicts a monotonic increase in the quiescent intervals between normal outbursts during a supercycle. Also, most of the normal outbursts have an asymmetric, fast-rise/slower-decline shape, which would be consistent with outbursts triggered at large radii. The exponential rate of decay of the plateau phase of the superoutbursts is 8 days mag(-1) for V1504 Cyg and 12 days mag(-1) for V344 Lyr. This timescale gives a direct measure of the viscous timescale in the outer accretion disk given the expectation that the entire disk is in the hot, viscous state during superoutburst. The resulting constraint on the Shakura-Sunyaev parameter, alpha(hot) similar or equal to 0.1, is consistent with the value inferred from the fast dwarf nova decays. By looking at the slow decay rate for superoutbursts, which occur in systems below the period gap, in combination with the slow decay rate in one long outburst above the period gap (in U Gem), we infer a steep dependence of the decay rate on orbital period for long outbursts. We argue that this relation implies a steep dependence of alpha(cold) on orbital period, which may be consistent with recent findings of Patterson, and is consistent with tidal torquing as being the dominant angular momentum transport mechanism in quiescent disks in interacting binary systems. C1 [Cannizzo, John K.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. [Cannizzo, John K.] NASA, Astroparticle Phys Lab, GSFC, Greenbelt, MD 20771 USA. [Cannizzo, John K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Wood, Matt A.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Still, Martin D.; Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Still, Martin D.] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. RP Cannizzo, JK (reprint author), NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. EM John.K.Cannizzo@nasa.gov OI Wood, Matthew/0000-0003-0372-9553 NR 65 TC 31 Z9 31 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 117 DI 10.1088/0004-637X/747/2/117 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400033 ER PT J AU Lien, A Fields, BD AF Lien, Amy Fields, Brian D. TI THE DIFFUSE GAMMA-RAY BACKGROUND FROM TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; gamma rays: diffuse background; gamma rays: galaxies; supernovae: general ID EARLY-TYPE GALAXIES; STAR-FORMING GALAXIES; PROBE WMAP OBSERVATIONS; DELAY-TIME DISTRIBUTION; GALACTIC COSMIC-RAYS; FERMI-LAT DISCOVERY; DIGITAL SKY SURVEY; ELLIPTIC GALAXIES; SHOCK ACCELERATION; SPACE-TELESCOPE AB The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper, we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae (SNe), extending earlier work that only included core-collapse SNe. We consider Type Ia events not only in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both SN types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus, our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays; total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies. C1 [Lien, Amy; Fields, Brian D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP Lien, A (reprint author), NASA, Postdoctoral Program, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU NASA [NNX10AC86G] FX We are thankful for the helpful comments and suggestions from Floyd Stecker that greatly improved this paper. We also appreciate the helpful discussions with Tonia Venters, Don Ellison, Robert Brunner, Tijana Prodanovic, Vasiliki Pavlidou, Ann Hornschemeier, Bret Lehmer, and Theresa Brandt. Additionally, we are grateful for the thoughtful comments from the anonymous referee. This work was partially supported by NASA via the Astrophysics Theory Program through award NNX10AC86G. NR 100 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 120 DI 10.1088/0004-637X/747/2/120 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400036 ER PT J AU Lisse, CM Wyatt, MC Chen, CH Morlok, A Watson, DM Manoj, P Sheehan, P Currie, TM Thebault, P Sitko, ML AF Lisse, C. M. Wyatt, M. C. Chen, C. H. Morlok, A. Watson, D. M. Manoj, P. Sheehan, P. Currie, T. M. Thebault, P. Sitko, M. L. TI SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN eta CORVI At similar to 1 Gyr SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: planetary systems; Kuiper belt: general; planet-disk interactions; planets and satellites: dynamical evolution and stability; techniques: spectroscopic ID TERRESTRIAL PLANET FORMATION; SUN-LIKE STARS; INFRARED TELESCOPE FACILITY; KECK INTERFEROMETER NULLER; GENEVA-COPENHAGEN SURVEY; MAIN-SEQUENCE STARS; DEEP IMPACT EJECTA; DUSTY DEBRIS DISKS; INNER SOLAR-SYSTEM; KUIPER-BELT AB We have analyzed Spitzer and NASA/IRTF 2-35 mu m spectra of the warm, similar to 350 K circumstellar dust around the nearby MS star eta Corvi (F2V, 1.4 +/- 0.3Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at similar to 3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 x 10(18) kg of 0.1-100 mu m warm dust is present in a collisional equilibrium distribution with dn/da similar to a(-3.5), the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm(3) density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at similar to 150 AU. At similar to 1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s(-1) with a rocky planetary body of mass <= M-Earth at similar to 3 AU, delivering large amounts of water (>0.1% of M-Earth's Oceans) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO. C1 [Lisse, C. M.] Johns Hopkins Univ, Dept Space, Appl Phys Lab, Planetary Explorat Grp, Laurel, MD 20723 USA. [Wyatt, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Chen, C. H.] STScI, Baltimore, MD 21218 USA. [Morlok, A.] Open Univ, Dept Earth & Planetary Sci, Milton Keynes MK7 6AA, Bucks, England. [Watson, D. M.; Manoj, P.; Sheehan, P.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Currie, T. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thebault, P.] Observ Paris, F-92195 Meudon, France. [Sitko, M. L.] Space Sci Inst, Boulder, CO 80301 USA. RP Lisse, CM (reprint author), Johns Hopkins Univ, Dept Space, Appl Phys Lab, Planetary Explorat Grp, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM carey.lisse@jhuapl.edu; wyatt@ast.cam.ac.uk; cchen@stsci.edu; a.morlok@open.ac.uk; dmw@pas.rochester.edu; manoj@pas.rochester.edu; psheeha2@mail.rochester.edu; thayne.m.currie@nasa.gov; philippe.thebault@obspm.fr; sitko@spacescience.org RI Lisse, Carey/B-7772-2016 OI Lisse, Carey/0000-0002-9548-1526 FU National Science Foundation [AST-0908815]; NASA; JPL [1274485]; APL FX This paper was based on observations taken with the NASA Spitzer Space Telescope, operated by JPL/CalTech, and on observations taken with the SpeX 0.8-5.5 mu m Medium-Resolution Spectrograph and Imager, funded by the National Science Foundation and NASA and operated by the NASA Infrared Telescope Facility. The authors thank A. Bonsor (bonsor@ast.cam.ac.uk), G. Bryden (Geoffrey.Bryden@jpl.nasa.gov), E. Mamajek (emamajek@pas.rochester.edu), J. Emery (jemery2@utk.edu), G. Flynn (flynngj@plattsburgh.edu), J. Greaves (jsg5@st-andrews.ac.uk), T. Lohne (tloehne@astro.uni-jena.de), T. Mittal (mittal.tushar22@gmail.com), D. O'Brien (obrien@psi.edu), J. Plescia (Jeffrey.Plescia@jhuapl.edu), J. Rayner (rayner@irtf.ifa.hawaii.edu), A. Ross (aidan.ross@ucl.ac.uk), S. Sandford (Scott.A.Sandford@nasa.gov), C. Stark (christopher.c.stark@nasa.gov), G. Sloan (sloan@isc.astro.cornell.edu), R. Stroud (rms@anvil.nrl.navy.mil), and M. Zolensky (michael.e.zolensky@nasa.gov) for many useful discussions contributing to the analysis and discussion presented in this paper. C. Lisse gratefully acknowledges support for performing the modeling described herein from JPL contract 1274485, the APL Janney Fellowship program, and NSF Grant AST-0908815. NR 175 TC 41 Z9 42 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 93 DI 10.1088/0004-637X/747/2/93 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400009 ER PT J AU Mandell, AM Bast, J van Dishoeck, EF Blake, GA Salyk, C Mumma, MJ Villanueva, G AF Mandell, Avi M. Bast, Jeanette van Dishoeck, Ewine F. Blake, Geoffrey A. Salyk, Colette Mumma, Michael J. Villanueva, Geronimo TI FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE line: profiles; planets and satellites: formation; protoplanetary disks; stars: low-mass ID T-TAURI STARS; PLANET-FORMING REGION; MIDINFRARED MOLECULAR-EMISSION; SPITZER SPECTROSCOPIC SURVEY; PROTOPLANETARY DISKS; STELLAR OBJECTS; CO EMISSION; MASS STARS; AB-AURIGAE; GAS AB We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of similar to 500 at 3 mu m, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 degrees, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU). C1 [Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bast, Jeanette; van Dishoeck, Ewine F.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Blake, Geoffrey A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Salyk, Colette] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Villanueva, Geronimo] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Mandell, AM (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Avi.Mandell@nasa.gov RI Mandell, Avi/F-9361-2012; mumma, michael/I-2764-2013 FU Goddard Center for Astrobiology; Netherlands Organization of Scientific Research (NWO) [614.000.605]; Netherlands Research School for Astronomy (NOVA); W. M. Keck Foundation FX A.M.M. is supported by the Goddard Center for Astrobiology. J.E.B. is supported by grant 614.000.605 from Netherlands Organization of Scientific Research (NWO). E. v. D. acknowledges support from an NWO Spinoza Grant and from Netherlands Research School for Astronomy (NOVA). The authors are very grateful to Klaus Pontoppidan for his central role in the CRIRES observations and for making his RADLite program available. They also thank Daniel Harsono for help with the disk modeling, and the anonymous referee for helpful suggestions for improving the manuscript. This research made use of the ESO/ST-ECF Science Archive Facility. Some of the results herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 66 TC 32 Z9 32 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 92 DI 10.1088/0004-637X/747/2/92 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400008 ER PT J AU Seifina, E Titarchuk, L AF Seifina, Elena Titarchuk, Lev TI GX 3+1: THE STABILITY OF SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; radiation mechanisms: non-thermal; stars: individual (GX 3+1); stars: neutron ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; ENERGY CONCENTRATOR SPECTROMETER; NEUTRON-STAR; OBSERVATIONAL EVIDENCE; ASTRONOMY SATELLITE; TIMING-EXPLORER; BURST SOURCES; 4U 1744-26; BEPPOSAX AB We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and BeppoSAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component. We argue that the electron temperature kT(e) of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma = 2.00 +/- 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli & Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from the low state to the high state and then finally saturates at high values of mass accretion rate. C1 [Seifina, Elena] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Titarchuk, Lev] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Titarchuk, Lev] George Mason Univ, SPACS, Fairfax, VA 22030 USA. [Titarchuk, Lev] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Seifina, E (reprint author), Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Univ Sky Prospect 13, Moscow 119992, Russia. EM seif@sai.msu.ru; titarchuk@fe.infn.it NR 43 TC 12 Z9 12 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 99 DI 10.1088/0004-637X/747/2/99 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400015 ER PT J AU Welsch, BT Kusano, K Yamamoto, TT Muglach, K AF Welsch, B. T. Kusano, K. Yamamoto, T. T. Muglach, K. TI DECORRELATION TIMES OF PHOTOSPHERIC FIELDS AND FLOWS SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; methods: data analysis; Sun: evolution; Sun: granulation; Sun: photosphere; Sun: surface magnetism; techniques: image processing; turbulence ID SOLAR OPTICAL TELESCOPE; MAGNETIC INDUCTION EQUATION; LOCAL CORRELATION TRACKING; EFFICIENT METHOD; ACTIVE-REGION; HINODE; MOTION; FLUX; MAGNETOGRAMS; FOOTPOINTS AB We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier local correlation tracking (FLCT) to a sequence of high-resolution (0 ''.3), high-cadence (similar or equal to 2 minute) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the narrowband filter imager of the Solar Optical Telescope aboard the Hinode satellite over 2006 December 12 and 13. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau. For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t. C1 [Welsch, B. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kusano, K.; Yamamoto, T. T.] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Muglach, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Muglach, K.] ARTEP Inc, Ellicott City, MD 21042 USA. RP Welsch, BT (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. FU NSF [ATM-0752597, AGS-1024862]; Japan Society for the Promotion of Science FX B.T.W. gratefully acknowledges support from the NSF's SHINE program under award ATM-0752597, the NSF's National Space Weather Program under award AGS-1024862, and the Japan Society for the Promotion of Science. B.T.W. thanks Ed DeLuca for suggesting parts of the project. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA (USA), ESA, and NSC (Norway). NR 47 TC 6 Z9 6 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2012 VL 747 IS 2 AR 130 DI 10.1088/0004-637X/747/2/130 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 926UC UT WOS:000302856400046 ER PT J AU Larour, E Seroussi, H Morlighem, M Rignot, E AF Larour, E. Seroussi, H. Morlighem, M. Rignot, E. TI Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID FINITE-ELEMENT; BENCHMARK EXPERIMENTS; RADAR INTERFEROMETRY; HYPERBOLIC PROBLEMS; DATA ASSIMILATION; LINEAR-SYSTEMS; FLOW MODELS; ISMIP-HOM; HEAT-FLUX; SHELF AB Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow-Shelf Approximation (SSA), sometimes combined into so-called "hybrid" models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher-order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two-dimensional SSA to the three-dimensional full-Stokes formulation. It also relies on a massively parallelized architecture and state-of-the-art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice-bed interface from satellite radar interferometry-derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher-order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. C1 [Larour, E.; Seroussi, H.; Morlighem, M.; Rignot, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Seroussi, H.; Morlighem, M.] Ecole Cent Paris, CNRS, UMR 8579, Lab MSSMat, F-92295 Chatenay Malabry, France. [Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Larour, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-227, Pasadena, CA 91109 USA. EM eric.larour@jpl.nasa.gov RI Rignot, Eric/A-4560-2014; Morlighem, Mathieu/O-9942-2014 OI Rignot, Eric/0000-0002-3366-0481; Morlighem, Mathieu/0000-0001-5219-1310 FU National Aeronautics and Space Administration; Cryospheric Sciences Program; Modeling Analysis and Prediction Program; Jet Propulsion Laboratory Research Technology and Development; NASA through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NSF [ANT-0424589]; NASA [NNX10AT68G] FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, at the Department of Earth System Science, University of California Irvine, and at Laboratoire MSSMat, Ecole Centrale Paris, under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program and Modeling Analysis and Prediction Program, and a contract with the Jet Propulsion Laboratory Research Technology and Development Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. We would like to acknowledge Operation IceBridge data used in the study, as well as CReSIS data generated from NSF grant ANT-0424589 and NASA grant NNX10AT68G. We would like to thank the reviewers, among them M. Truffer, and the editor B. Hubbard, for their insightful comments. We also would like to thank F. Pattyn and J. Fishbaugh for providing the results and figures scripts of the ISMIP-HOM benchmark. NR 100 TC 81 Z9 81 U1 3 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD MAR 10 PY 2012 VL 117 AR F01022 DI 10.1029/2011JF002140 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 908FN UT WOS:000301476400001 ER PT J AU Ji, EY Moon, YJ Gopalswamy, N Lee, DH AF Ji, Eun-Young Moon, Y. -J. Gopalswamy, N. Lee, D. -H. TI Comparison of Dst forecast models for intense geomagnetic storms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID D-ST INDEX; SOLAR-WIND; RING-CURRENT; MAGNETOSPHERIC DYNAMICS; PREDICTION; DECAY; IDENTIFICATION; INJECTION AB We have compared six Dst forecast models using 63 intense geomagnetic storms (Dst <= -100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(min)) and the difference in the absolute value of Dst minimum time (Delta t(Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li (2002, 2006) gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(min) of 7.7 nT, and the absolute value of Delta t(Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee (2002, 2006) is better than the other models for the events having -100 <= Dst < -200 nT, and three recent models (the model of Wang et al. (2003), the model of Temerin and Li (2002, 2006), and the model of Boynton et al. (2011b)) are better than the other three models for the events having Dst <= -200 nT. C1 [Ji, Eun-Young] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. [Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moon, Y. -J.; Lee, D. -H.] Kyung Hee Univ, Sch Space Res, Yongin 446701, South Korea. RP Ji, EY (reprint author), Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. EM eyji@khu.ac.kr; moonyj@khu.ac.kr; gopals@fugee.gsfc.nasa.gov; dhlee@khu.ac.kr RI Gopalswamy, Nat/D-3659-2012; Moon, Yong-Jae/E-1711-2013 FU Kyung Hee University [KHU-20101183]; WCU (World Class University) through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31-10016]; Korea Research Foundation; Korean Government (MOEHRD) [KRF-2008-313-C00375, KRF-2008-314-C00158, 20090071744, 2010-0014501]; NASA [NNX10AL50A] FX This research was supported by the Kyung Hee University Research Fund (KHU-20101183) in 2010. This work has been also supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10016) and by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-313-C00375, KRF-2008-314-C00158, 20090071744, and 2010-0014501). Y.J.M. is also supported by NASA grant NNX10AL50A. We would like to thank to the WDC-Kyoto for the Dst and the ACE team for the solar wind data. NR 46 TC 8 Z9 8 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 10 PY 2012 VL 117 AR A03209 DI 10.1029/2011JA016872 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 908FZ UT WOS:000301477600003 ER PT J AU Lei, JH Burns, AG Thayer, JP Wang, WB Mlynczak, MG Hunt, LA Dou, XK Sutton, E AF Lei, Jiuhou Burns, Alan G. Thayer, Jeffrey P. Wang, Wenbin Mlynczak, Martin G. Hunt, Linda A. Dou, Xiankang Sutton, Eric TI Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GEOMAGNETIC STORM; SOLAR STORMS; ART. AB Infrared radiative emissions by carbon dioxide (CO2) and nitric oxide (NO) are the major cooling mechanisms of the lower thermosphere. During geomagnetically active periods, the NO density and cooling rate in the auroral regions increase significantly as a result of particle precipitation and Joule heating. Previous studies have shown that the time for NO density to recover to quiet time levels is longer than that of the thermosphere temperature or density recovery. This study explores the implications of these different recovery rates for the post-storm thermosphere. Thermosphere densities retrieved from the CHAMP and GRACE accelerometer measurements and NO cooling rates measured by TIMED/SABER are used to examine their variations during the post-storm period of the October 2003 geomagnetic storms. It was found that thermosphere densities at both CHAMP and GRACE altitudes recovered rapidly and continuously decreased below the quiet time densities during the post-storm period, especially at middle latitudes. Compared with the quiet time values, the maximum depletion in the CHAMP and GRACE densities after the storm is about 23-36%, and the estimated decrease of thermospheric temperature is as large as 70-110 K. Our analysis suggests that the elevated NO cooling rate, resulting from the slower recovery of NO densities in the post-storm period, is a plausible cause for this apparent post-storm overcooling of the thermosphere. C1 [Lei, Jiuhou; Dou, Xiankang] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. [Burns, Alan G.; Wang, Wenbin] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Hunt, Linda A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Mlynczak, Martin G.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Sutton, Eric] AFRL, Kirtland AFB, NM 87117 USA. [Lei, Jiuhou; Thayer, Jeffrey P.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. RP Lei, JH (reprint author), Univ Sci & Technol China, CAS Key Lab Geospace Environm, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. EM leijh@ustc.edu.cn RI Lei, Jiuhou/A-3015-2012; Mlynczak, Martin/K-3396-2012; Wang, Wenbin/G-2596-2013; Burns, Alan/L-1547-2013; Dou, xiankang/M-9106-2013; THAYER, JEFFREY P./B-7264-2016; Sutton, Eric/A-1574-2016 OI Lei, Jiuhou/0000-0002-4374-5083; Wang, Wenbin/0000-0002-6287-4542; THAYER, JEFFREY P./0000-0001-7127-8251; Sutton, Eric/0000-0003-1424-7189 FU National Natural Science Foundation of China [41174139, 41121003, 41025016, 40890165]; USTC; AFOSR MURI [FA9550-07-1-0565]; Center for Integrated Space Weather Modeling (CISM); STC [ATM-0120950]; NASA from NASA (NCAR) [NNX10AQ49G, NNH08AH37I]; National Science Foundation FX This work was supported by the National Natural Science Foundation of China (41174139, 41121003, 41025016, 40890165), Thousand Young Talents Program of China (USTC), the AFOSR MURI Award FA9550-07-1-0565 (CU), the Center for Integrated Space Weather Modeling (CISM), which is funded by the STC program under agreement ATM-0120950, and NASA grants NNX10AQ49G and NNH08AH37I from the NASA Guest Investigator Program (NCAR). The National Center for Atmospheric Research is sponsored by the National Science Foundation. Jiuhou Lei thanks referees' comments to improve the manuscript greatly and Gang Lu for providing the TIEGCM-AMIE simulations of the 2003 Halloween geomagnetic storms. NR 20 TC 11 Z9 12 U1 2 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 10 PY 2012 VL 117 AR A03314 DI 10.1029/2011JA016994 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 908FZ UT WOS:000301477600005 ER PT J AU Savage, SL McKenzie, DE Reeves, KK AF Savage, Sabrina L. McKenzie, David E. Reeves, Katharine K. TI RE-INTERPRETATION OF SUPRA-ARCADE DOWNFLOWS IN SOLAR FLARES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetic reconnection; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: magnetic topology; Sun: UV radiation ID QUANTITATIVE EXAMINATION; RECONNECTION; MODEL; EMISSIONS; MOTIONS; EVENTS AB Following the eruption of a filament from a flaring active region, sunward-flowing voids are often seen above developing post-eruption arcades. First discovered using the soft X-ray telescope aboard Yohkoh, these supra-arcade downflows (SADs) are now an expected observation of extreme ultra-violet and soft X-ray coronal imagers and spectrographs (e.g, TRACE, SOHO/SUMER, Hinode/XRT, SDO/AIA). Observations made prior to the operation of AIA suggested that these plasma voids (which are seen in contrast to bright, high-temperature plasma associated with current sheets) are the cross-sections of evacuated flux tubes retracting from reconnection sites high in the corona. The high temperature imaging afforded by AIA's 131, 94, and 193 angstrom channels coupled with the fast temporal cadence allows for unprecedented scrutiny of the voids. For a flare occurring on 2011 October 22, we provide evidence suggesting that SADs, instead of being the cross-sections of relatively large, evacuated flux tubes, are actually wakes (i.e., trailing regions of low density) created by the retraction of much thinner tubes. This re-interpretation is a significant shift in the fundamental understanding of SADs, as the features once thought to be identifiable as the shrinking loops themselves now appear to be "side effects" of the passage of the loops through the supra-arcade plasma. In light of the fact that previous measurements have attributed to the shrinking loops characteristics that may instead belong to their wakes, we discuss the implications of this new interpretation on previous parameter estimations and on reconnection theory. C1 [Savage, Sabrina L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McKenzie, David E.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Reeves, Katharine K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Savage, SL (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 671, Greenbelt, MD 20771 USA. RI Reeves, Katharine/P-9163-2014 FU NASA; Lockheed-Martin [SP02H3901R, SP02H1701R] FX S.L. Savage is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center administered by Oakridge Associated Universities through a contract with NASA and under the mentorship of G. Holman. D. E. McKenzie is supported under contract SP02H3901R from Lockheed-Martin to MSU. K.K. Reeves is supported under contract SP02H1701R from Lockheed-Martin to SAO. NR 26 TC 38 Z9 38 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2012 VL 747 IS 2 AR L40 DI 10.1088/2041-8205/747/2/L40 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 902SQ UT WOS:000301060900023 ER PT J AU Liu, JJ Fung, I Kalnay, E Kang, JS Olsen, ET Chen, L AF Liu, Junjie Fung, Inez Kalnay, Eugenia Kang, Ji-Sun Olsen, Edward T. Chen, Luke TI Simultaneous assimilation of AIRS Xco(2) and meteorological observations in a carbon climate model with an ensemble Kalman filter SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC CO2; MIDTROPOSPHERIC CO2; SURFACE; TRANSPORT; SYSTEM; CYCLE; SIMULATIONS; REANALYSIS; CONVECTION; PARAMETERIZATION AB This study is our first step toward the generation of 6 hourly 3-D CO2 fields that can be used to validate CO2 forecast models by combining CO2 observations from multiple sources using ensemble Kalman filtering. We discuss a procedure to assimilate Atmospheric Infrared Sounder (AIRS) column-averaged dry-air mole fraction of CO2 (Xco(2)) in conjunction with meteorological observations with the coupled Local Ensemble Transform Kalman Filter (LETKF)-Community Atmospheric Model version 3.5. We examine the impact of assimilating AIRS Xco(2) observations on CO2 fields by comparing the results from the AIRS-run, which assimilates both AIRS Xco(2) and meteorological observations, to those from the meteor-run, which only assimilates meteorological observations. We find that assimilating AIRS Xco(2) results in a surface CO2 seasonal cycle and the N-S surface gradient closer to the observations. When taking account of the CO2 uncertainty estimation from the LETKF, the CO2 analysis brackets the observed seasonal cycle. Verification against independent aircraft observations shows that assimilating AIRS Xco(2) improves the accuracy of the CO2 vertical profiles by about 0.5-2 ppm depending on location and altitude. The results show that the CO2 analysis ensemble spread at AIRS Xco(2) space is between 0.5 and 2 ppm, and the CO2 analysis ensemble spread around the peak level of the averaging kernels is between 1 and 2 ppm. This uncertainty estimation is consistent with the magnitude of the CO2 analysis error verified against AIRS Xco(2) observations and the independent aircraft CO2 vertical profiles. C1 [Liu, Junjie; Olsen, Edward T.; Chen, Luke] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fung, Inez] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kalnay, Eugenia; Kang, Ji-Sun] Univ Maryland, College Pk, MD 20742 USA. RP Liu, JJ (reprint author), CALTECH, Jet Prop Lab, 4500 Oak Grove Dr,MS 233-200, Pasadena, CA 91109 USA. EM junjie.liu@jpl.nasa.gov OI Kalnay, Eugenia/0000-0002-9984-9906 FU DOE [DEFG0207ER64337, ER64437]; NASA [NNH09ZDA001N-TERRAQUA] FX We dedicate this paper to the memory of Moustafa Chahine, without whose vision on the potential of AIRS to provide upper troposphere estimations of atmospheric CO2 and continuous leadership, this work could not have been done. We appreciate the help from Masao Kanamitsu, Kei Yoshimura from Scripps, Jack Woollen from NCEP, and Michael Wehner from DOE Lawrence Berkeley National Lab in setting up the DOE/NCEP Reanalysis 2 system and for the use of the supercomputers in the National Energy Research Scientific Computing Center (NERSC). We also thank Yu-Heng Tseng for initially porting the CAM3.5 onto the NERSC machines. All the calculations were carried out on the supercomputers in NERSC. This research was supported by DOE grants DEFG0207ER64337 and ER64437. It was also funded by NASA grant NNH09ZDA001N-TERRAQUA. We appreciate the detailed comments and suggestions from the anonymous reviewers. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 55 TC 15 Z9 15 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 9 PY 2012 VL 117 AR D05309 DI 10.1029/2011JD016642 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908OA UT WOS:000301498500003 ER PT J AU Zheng, M Ke, CH Bae, IT Park, C Smith, MW Jordan, K AF Zheng, Meng Ke, Changhong Bae, In-Tae Park, Cheol Smith, Michael W. Jordan, Kevin TI Radial elasticity of multi-walled boron nitride nanotubes SO NANOTECHNOLOGY LA English DT Article ID CARBON NANOTUBES; FORCE MICROSCOPY; DEFORMATION; GROWTH; COMPOSITES; DISPERSION; MODULUS; SILICON; ROPES AB We investigated the radial mechanical properties of multi-walled boron nitride nanotubes (MW-BNNTs) using atomic force microscopy. The employed MW-BNNTs were synthesized using pressurized vapor/condenser (PVC) methods and were dispersed in aqueous solution using ultrasonication methods with the aid of ionic surfactants. Our nanomechanical measurements reveal the elastic deformational behaviors of individual BNNTs with two to four tube walls in their transverse directions. Their effective radial elastic moduli were obtained through interpreting their measured radial deformation profiles using Hertzian contact mechanics models. Our results capture the dependences of the effective radial moduli of MW-BNNTs on both the tube outer diameter and the number of tube layers. The effective radial moduli of double-walled BNNTs are found to be several-fold higher than those of single-walled BNNTs within the same diameter range. Our work contributes directly to a complete understanding of the fundamental structural and mechanical properties of BNNTs and the pursuits of their novel structural and electronics applications. C1 [Zheng, Meng; Ke, Changhong] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Bae, In-Tae] SUNY Binghamton, Small Scale Syst Integrat & Packaging Ctr, Binghamton, NY 13902 USA. [Park, Cheol] Natl Inst Aerosp, Hampton, VA 23666 USA. [Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Smith, Michael W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Jordan, Kevin] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Zheng, M (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. EM cke@binghamton.edu RI Ke, Changhong/C-4064-2008; Zheng, Meng/D-3985-2011; OI Zheng, Meng/0000-0002-6769-3054; Ke, Changhong/0000-0002-5170-9859 FU US Air Force Office of Scientific Research [FA9550-11-1-0042, FA9550-10-1-0451]; American Chemistry Society-Petroleum Research Fund FX This work was funded by US Air Force Office of Scientific Research-low density materials program under Grant Nos FA9550-11-1-0042 and FA9550-10-1-0451, and was also partially supported by American Chemistry Society-Petroleum Research Fund. The SEM and HRTEM characterizations were performed using the facilities in the Analytical and Diagnostics Laboratory at Binghamton University's Small Scale Systems Integration and Packaging Center (S3IP). NR 56 TC 15 Z9 15 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAR 9 PY 2012 VL 23 IS 9 AR 095703 DI 10.1088/0957-4484/23/9/095703 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 896XV UT WOS:000300605600018 PM 22322464 ER PT J AU Song, YT Fukumori, I Shum, CK Yi, YC AF Song, Y. Tony Fukumori, Ichiro Shum, C. K. Yi, Yuchan TI Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DECEMBER 2004 TSUNAMI; AFTERSLIP; SLIP AB Tsunamis often travel long distances without losing power and severely devastate some coastal areas while leaving others with little damage. This unpredictable situation has been a major challenge for accurate and timely tsunami forecasting to facilitate early-warning and possible evacuations of affected coastal communities without disturbing the lives of others. Here we show evidence from satellite altimetry observations of the 2011 Tohoku-Oki earthquake-induced tsunami that sheds light on this issue. Three satellites observed the same tsunami front, and for the first time, one of them recorded a tsunami height about twice as high as that of the other two. Model simulations, based on the GPS-derived earthquake source and constrained by measurements of seafloor motions near the hypocenter, confirm that the amplified tsunami is one of several jets formed through topographic refraction when tsunamis travel along ocean ridges and seamount chains in the Pacific Ocean. This process caused the tsunami front to merge as it propagates, resulting in the doubling of the wave height and destructive potential in certain directions. We conclude that the potential of merging tsunamis should be emphasized in mapping tsunami hazards and assessing risk levels at key coastal facilities. Citation: Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., 39, L05606, doi:10.1029/2011GL050767. C1 [Song, Y. Tony; Fukumori, Ichiro] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Shum, C. K.; Yi, Yuchan] Ohio State Univ, Div Geodet Sci, Sch Earth Sci, Columbus, OH 43210 USA. RP Song, YT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tony.song@jpl.nasa.gov FU NASA FX The research described here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the National Aeronautics and Space Administration (NASA). The Ohio State University component of the research is supported under NASA's Physical Oceanography Program. We thank Alexander B. Rabinovich and four anonymous reviewers for their constructive comments, which have improved the paper. We thank the Geospatial Information Authority of Japan for providing the GPS data, NOAA for providing DART buoy data, and AVISO for the altimetry data. NR 26 TC 15 Z9 15 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 8 PY 2012 VL 39 AR L05606 DI 10.1029/2011GL050767 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 908QA UT WOS:000301503900001 ER PT J AU Choi, HJ Chun, HY Gong, J Wu, DL AF Choi, Hyun-Joo Chun, Hye-Yeong Gong, Jie Wu, Dong L. TI Comparison of gravity wave temperature variances from ray-based spectral parameterization of convective gravity wave drag with AIRS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MOMENTUM FLUX SPECTRUM; LARGE-SCALE MODELS; STRATOSPHERE; SATELLITE; CLIMATE; LIMB; GENERATION AB The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency. C1 [Choi, Hyun-Joo; Chun, Hye-Yeong] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea. [Gong, Jie; Wu, Dong L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Choi, HJ (reprint author), Yonsei Univ, Dept Atmospher Sci, 50 Yonsei Ro, Seoul 120749, South Korea. EM chunhy@yonsei.ac.kr RI Wu, Dong/D-5375-2012; Gong, Jie/H-2436-2011 FU Korean Meteorological Administration [RACS_2010-2008]; National Science Foundation FX This work was funded by the Korean Meteorological Administration Research and Development Program under grant RACS_2010-2008. The ECMWF ERA-Interim data used in this study were obtained from the ECMWF data server. The NCEP DCH data for this study were obtained from the Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation. The original data are available from the RDA (http://dss.ucar.edu) in data set ds091.0. NR 41 TC 18 Z9 18 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 8 PY 2012 VL 117 AR D05115 DI 10.1029/2011JD016900 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NX UT WOS:000301498200004 ER PT J AU Fritts, DC Iimura, H Lieberman, R Janches, D Singer, W AF Fritts, D. C. Iimura, H. Lieberman, R. Janches, D. Singer, W. TI A conjugate study of mean winds and planetary waves employing enhanced meteor radars at Rio Grande, Argentina (53.8 degrees S) and Juliusruh, Germany (54.6 degrees N) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LOWER THERMOSPHERE REGIONS; NONUNIFORM BACKGROUND CONFIGURATIONS; POLAR MESOSPHERIC CLOUDS; ROSSBY NORMAL-MODES; HEMISPHERIC-DIFFERENCES; ARCTIC MESOSPHERE; SOUTHERN LATITUDES; MIDDLE ATMOSPHERE; SEMIDIURNAL TIDE; SUMMER MESOPAUSE AB Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6 degrees N and 53.8 degrees S) are employed for interhemispheric comparisons of mean winds and planetary wave structures at periods of similar to 8 to 20 days. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from similar to 80 to 100 km. Monthly mean winds at 53.8 degrees S exhibit a stronger westward zonal jet in spring and early summer at lower altitudes and no westward winds at higher altitudes. In contrast, westward mean winds of similar to 5-10 ms(-1) at 54.6 degrees N extend to above 96 km during late winter and early spring each year. Equatorward mean winds extend approximately from spring to fall equinox at both latitudes with amplitudes of similar to 5-10 ms(-1). Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2 day mean data are episodic and variable at both sites, exhibit dominant periodicities of similar to 8-10 and 16-20 days and are more confined to late fall and winter at 54.6 degrees N. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6 degrees N (53.8 degrees S) during peak planetary wave responses. C1 [Fritts, D. C.; Iimura, H.; Lieberman, R.] NW Res Associates, Colorado Res Associates Div, Boulder, CO 80301 USA. [Janches, D.] NASA, Goddard Space Flight Ctr, Space Weather Div, Greenbelt, MD 20771 USA. [Singer, W.] Univ Rostock, Leibnitz Inst Atmospher Phys, D-18225 Kuhlungsborn, Germany. RP Fritts, DC (reprint author), NW Res Associates, Colorado Res Associates Div, 3380 Mitchell Ln, Boulder, CO 80301 USA. EM dave@cora.nwra.com RI Janches, Diego/D-4674-2012 OI Janches, Diego/0000-0001-8615-5166 FU NSF [ATM-0634650]; Estacion Astronomica Rio Grande (EARG) FX Research described here was performed under NSF grant ATM-0634650. The authors are very grateful for the valuable support of personnel at Estacion Astronomica Rio Grande (EARG) for their assistance with the operations and maintenance of SAAMER. We also thank Chris Hall and two anonymous reviewers for very valuable comments on the manuscript. NR 60 TC 2 Z9 2 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 8 PY 2012 VL 117 AR D05117 DI 10.1029/2011JD016305 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NX UT WOS:000301498200001 ER PT J AU Harrison, JJ Boone, CD Brown, AT Allen, NDC Toon, GC Bernath, PF AF Harrison, Jeremy J. Boone, Christopher D. Brown, Alexander T. Allen, Nicholas D. C. Toon, Geoffrey C. Bernath, Peter F. TI First remote sensing observations of trifluoromethane (HFC-23) in the upper troposphere and lower stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ABSORPTION CROSS-SECTIONS; PEROXYACETYL NITRATE PAN; MIPAS; CHF3 AB This work reports the first remote sensing measurements of atmospheric HFC-23 (CHF3) using solar occultation measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the Jet Propulsion Laboratory Mark IV (MkIV) balloon interferometer. A total of 8809 ACE occultations measured between 2004 and 2010 have been processed, along with 24 MkIV occultations measured between 1989 and 2007. ACE data (yearly averages over the 10-25 km altitude range) in the tropics/subtropics (40 degrees S-40 degrees N) reveal a trend of 4.0 +/- 1.6% per year in the growth of HFC-23 for 2004-2009 (or 3.9 +/- 1.2% per year for 2004-2010), slightly smaller than surface measurements from Cape Grim air archive samples over the same time period (4.7 +/- 0.3% per year). The northern midlatitude and high-latitude MkIV data (averaged over the 10-25 km altitude range) indicate a growth rate of 5.8 +/- 0.3% per year over the period 1989-2007 (5.3 +/- 0.4% per year for just the midlatitude data), similar to the Cape Grim surface trend of 5.7 +/- 0.1% per year over the same period. The absolute HFC-23 volume mixing ratios measured by ACE and MkIV in the upper troposphere/lower stratosphere are in good agreement (<5% bias) with each other but are similar to 30% larger than ground-based measurements. The source of this bias has not been definitively ascertained; however, spectroscopic errors are the most likely cause. C1 [Harrison, Jeremy J.; Brown, Alexander T.; Allen, Nicholas D. C.; Bernath, Peter F.] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Boone, Christopher D.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Toon, Geoffrey C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Harrison, JJ (reprint author), Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. EM jeremy.harrison@york.ac.uk RI Bernath, Peter/B-6567-2012; Harrison, Jeremy/L-1073-2016 OI Bernath, Peter/0000-0002-1255-396X; Harrison, Jeremy/0000-0001-5530-7104 FU UK Natural Environment Research Council (NERC) [NE/F002041/1, NE/I022663/1]; National Centre for Earth Observation (NCEO); NASA FX The authors wish to thank the UK Natural Environment Research Council (NERC) for supporting J.J.H. through grants NE/F002041/1 and NE/I022663/1, as well as N.D.C.A. and A.T.B. through the National Centre for Earth Observation (NCEO). The ACE satellite mission is funded primarily by the Canadian Space Agency (CSA). Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We thank the Columbia Scientific Balloon Facility (CSBF) and CNES, who performed the MkIV balloon launches, and K. Sung (JPL) for his help in obtaining the original HFC-23 spectra recorded by Y. K. Chung. NR 23 TC 8 Z9 8 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 8 PY 2012 VL 117 AR D05308 DI 10.1029/2011JD016423 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NX UT WOS:000301498200002 ER PT J AU Josset, D Pelon, J Garnier, A Hu, YX Vaughan, M Zhai, PW Kuehn, R Lucker, P AF Josset, Damien Pelon, Jacques Garnier, Anne Hu, Yongxiang Vaughan, Mark Zhai, Peng-Wang Kuehn, Ralph Lucker, Pat TI Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SATELLITE-BASED RETRIEVAL; BIMODAL SIZE SPECTRA; MULTIPLE-SCATTERING; PART I; RADIATIVE PROPERTIES; ROUGH SURFACE; ICE PARTICLES; BACKSCATTER; AIRBORNE; PARAMETERIZATION AB Ocean surface observations from the CloudSat radar and the spaceborne lidar aboard the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) platform are combined in the Synergized Optical Depth of Aerosol (SODA) algorithm and used to retrieve the optical depth of semitransparent single-layered cirrus clouds. In the operational CALIPSO data analysis, lidar-derived optical depths are typically estimated using a correction factor for multiple scattering effects and a single global mean lidar ratio. By combining the SODA approach with observations from the CALIPSO Imaging Infrared Radiometer, accurate values for both of these parameters can be derived directly from the measurements. Application of this approach yields a multiple scattering factor of 0.61 +/- 0.15 sr, which is essentially identical to the value used operationally. However, the standard lidar ratio used in the CALIPSO daytime operational analysis is found to be biased low by around 25%. As a consequence, the lidar-derived optical depths retrieved from the daytime operational analyses are more than 30% smaller than those derived using SODA. The lidar ratio for semitransparent cirrus is found to be rather stable over ocean (33 +/- 5 sr) with slight variations as a function of temperature and latitude. The geographic distribution shows a moderate decrease of average lidar ratio values over Indonesia during daytime, which may be attributed to a larger occurrence of high-altitude cirrus layers in this convectively active area. C1 [Josset, Damien; Zhai, Peng-Wang; Lucker, Pat] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Pelon, Jacques; Garnier, Anne] Univ Paris 06, LATMOS, IPSL, F-75252 Paris 05, France. [Hu, Yongxiang; Vaughan, Mark] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Kuehn, Ralph] Univ Wisconsin, CIMSS, Madison, WI 53706 USA. RP Josset, D (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM dbjosset@gmail.com RI Hu, Yongxiang/K-4426-2012 FU Science System and Application Inc. (SSAI); NASA-CNES FX The CALIPSO mission is a joint NASA-CNES program. Both agencies are acknowledged for their support of this study. CloudSat and AMSR-E projects are greatly acknowledged for data availability. Science System and Application Inc. (SSAI) is greatly acknowledged for its support. SODA project is developed at ICARE data center (http://www.icare.univ-lille1.fr/) in Lille (France), which is greatly acknowledged for technical support and skill in data colocation. We would like to thank M. Platt for fruitful discussions in the frame of the CALIPSO mission and the three anonymous reviewers for their helpful comments. NR 66 TC 18 Z9 18 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 8 PY 2012 VL 117 AR D05207 DI 10.1029/2011JD016959 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NX UT WOS:000301498200005 ER PT J AU Dalton, JB Shirley, JH Kamp, LW AF Dalton, J. B., III Shirley, J. H. Kamp, L. W. TI Europa's icy bright plains and dark linea: Exogenic and endogenic contributions to composition and surface properties SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID INFRARED MAPPING SPECTROMETER; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; HYDRATED SALT MINERALS; GALILEAN SATELLITES; WATER-ICE; SULFURIC-ACID; METAMORPHISM; RADIOLYSIS; STABILITY; SPECTRUM AB We compare linear spectral modeling solutions yielding surface abundance estimates and water ice grain size information from low-noise Galileo Near-Infrared Mapping Spectrometer (NIMS) observations for three widely spaced locations on Europa. Bright equatorial plains on the orbital leading side are dominated by fine-grained (similar to 50-75 mu m) water ice (> 80 wt%). This area shows a low abundance of hydrated salts and statistically insignificant amounts of hydrated sulfuric acid. A midlatitude northern hemisphere location on the trailing side exhibits strikingly different surface composition and properties for similar terrain. The modeled abundance of hydrated sulfuric acid exceeds 40% here; large-grained water ice (similar to 250 mu m diameter) dominates the ice grain size distribution. A third location at high southern latitudes on the leading side exhibits high abundances of water ice (> 67%) and no detectable sulfuric acid hydrate. Water ice grain sizes here are intermediate between those of the other locations, at 75-100 mu m. We resolve compositional differences between the darkest materials (at visible wavelengths) and the most hydrated materials (as evidenced by the distortion of water ice absorption bands) on Europa's leading side. Distinctive water ice grain size distributions are associated with visibly dark materials in all three locations. Our results help distinguish between exogenic and endogenic influences on Europa's present-day surface composition. The results are consistent with migration and redeposition of sputtered water ice molecules from trailing to leading side locations. C1 [Dalton, J. B., III; Shirley, J. H.; Kamp, L. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dalton, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dalton@jpl.nasa.gov FU NASA FX This work was performed at the Jet Propulsion Laboratory-California Institute of Technology under a grant from NASA. Software for continuum removal and calculation of absorption band parameters was implemented by G. Ruane. We thank T. B. McCord and an anonymous referee for comments that substantially improved this paper. The authors are grateful for support provided by NASA'S Outer Planets Research Program. NR 55 TC 17 Z9 17 U1 3 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 8 PY 2012 VL 117 AR E03003 DI 10.1029/2011JE003909 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 908OJ UT WOS:000301499400001 ER PT J AU Killen, RM Hurley, DM Farrell, WM AF Killen, R. M. Hurley, D. M. Farrell, W. M. TI The effect on the lunar exosphere of a coronal mass ejection passage SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID HIGHLY-CHARGED IONS; SOLAR-WIND; SODIUM ATMOSPHERE; POTASSIUM ATMOSPHERES; MERCURYS ATMOSPHERE; JANUARY 6; MOON; SURFACE; IMPACT; DISCOVERY AB Solar wind bombardment onto exposed surfaces in the solar system produces an energetic component to the exospheres about those bodies. The solar wind energy and composition are highly dependent on the origin of the plasma. Therefore, using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), we have estimated the total sputter yield for each type of solar wind. We show that the heavy ions, especially the He++ and O+7, can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. Folding in the flux with the yield of individual ions, we compute the source rate for several species during different types of solar wind. Finally, we use a Monte Carlo model developed to simulate the time-dependent evolution of the lunar exosphere to study the sputtering component of the exosphere under the influence of a CME passage. We simulate the background exosphere of Na, K, Ca, and Mg. Simulations indicate that sputtering increases the mass of those constituents in the exosphere more than ten times the background values. The escalation of atmospheric density occurs within an hour of onset. The decrease in atmospheric density after the CME passage is also rapid, although takes longer than the increase. Sputtered neutral particles have a high probability of escaping the Moon, by both leaving the Hill Sphere and photoionization. Density and spatial distribution of the exosphere can be tested with the LADEE mission. C1 [Killen, R. M.; Farrell, W. M.] NASA, Goddard Space Flight Ctr, Planetary Magnetospheres Branch, Greenbelt, MD 20771 USA. [Hurley, D. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Killen, R. M.; Hurley, D. M.; Farrell, W. M.] NASA, Lunar Sci Inst, Moffett Field, CA USA. RP Killen, RM (reprint author), NASA, Goddard Space Flight Ctr, Planetary Magnetospheres Branch, Code 695, Greenbelt, MD 20771 USA. EM rosemary.killen@nasa.gov RI Killen, Rosemary/E-7127-2012; Farrell, William/I-4865-2013; Hurley, Dana/F-4488-2015 OI Hurley, Dana/0000-0003-1052-1494 FU National Aeronautics and Space Administration [NNX09AH51G, NNG05GA80G]; NASA Lunar Science Institute [NNX09AH68A] FX This work was supported by the National Aeronautics and Space Administration under Grants NNX09AH51G and NNG05GA80G issued through the Planetary Atmospheres Program and by cooperative agreement NNX09AH68A to the DREAM team of the NASA Lunar Science Institute. The work was facilitated by the SSLAM Lunar Extreme Workshop conducted by William Farrell and enhanced through the participation of the DREAM team. We thank Walter Huebner for providing photoionization rates for calcium and magnesium. We thank Kevin Tennyson for performing model runs. NR 88 TC 12 Z9 12 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 8 PY 2012 VL 117 AR E00K02 DI 10.1029/2011JE004011 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 908OJ UT WOS:000301499400003 ER PT J AU Thejappa, G MacDowall, RJ Bergamo, M AF Thejappa, G. MacDowall, R. J. Bergamo, M. TI Phase coupling in Langmuir wave packets: Evidence of four wave interactions in solar type III radio bursts SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ELECTRON-PLASMA OSCILLATIONS; INTERPLANETARY PLASMA; SPATIAL COLLAPSE; TURBULENCE DATA; SOURCE REGIONS; WIND; EMISSION; STABILITY; DECAY; 1-AU AB It is reported that one of the Langmuir wave packets in a type III solar radio burst is observed as a localized field structure with a short duration similar to 3.2 ms and high intensity exceeding the strong turbulence thresholds. The peak intensity and short time scale well satisfy the criterion for the observed wave packet to be the collapsing Langmuir envelope soliton. The spectrum of this wave packet contains a resonant peak at the local electron plasma frequency, f(pe), a Stokes peak at a frequency slightly lower than f(pe), anti-Stokes peak at a frequency slightly higher than f(pe), and a low frequency enhancement below a few hundred Hz, which satisfy the frequency and wave number resonance conditions of the oscillating two stream instability (OTSI) type of four wave interaction. Here, for the first time, we apply the trispectral analysis technique, and show that the spectral components of this wave packet, namely, the beam-generated Langmuir wave, Stokes and anti-Stokes modes are coupled to each other with a high degree of phase coherency (high tricoherence). This conclusively shows that the observed characteristics of the wave packet provide evidence for the OTSI. Citation: Thejappa, G., R. J. MacDowall, and M. Bergamo (2012), Phase coupling in Langmuir wave packets: Evidence of four wave interactions in solar type III radio bursts, Geophys. Res. Lett., 39, L05103, doi:10.1029/2012GL051017. C1 [Thejappa, G.; Bergamo, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thejappa, G (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM thejappa.golla@nasa.gov RI MacDowall, Robert/D-2773-2012 FU NASA [NNX08AO02G, NNX09AB19G] FX The research of T. G. is supported by the NASA grants NNX08AO02G and NNX09AB19G. The SWAVES instruments include contributions from the Observatoire of Paris, University of Minnesota, University of California, Berkeley, and NASA/GSFC. We thank M. J. Reiner for calculating the electron beam speed. We also thank the referees for very constructive comments and helpful suggestions. NR 40 TC 10 Z9 10 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 7 PY 2012 VL 39 AR L05103 DI 10.1029/2012GL051017 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 908PX UT WOS:000301503600004 ER PT J AU Jin, ZH Lukachin, C Gopalan, A Sun, WB AF Jin, Zhonghai Lukachin, Constantin Gopalan, Arun Sun, Wenbo TI Correlation between SCIAMACHY, MODIS, and CERES reflectance measurements: Implications for CLARREO SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE-CHANGE; CALIBRATION AB We have analyzed the correlation between measurements by three different satellite sensors (SCIAMACHY, MODIS, and CERES) on two independent space platforms (Envisat and Terra). Though the instantaneous measurements from the two satellites are not collocated due to orbit offset, the monthly mean broadband and narrowband reflectances and their anomalies from the three instruments are highly correlated when averaged over large latitude regions. The mean reflectance from MODIS in each of those large domains is nearly the same as that derived from SCIAMACHY spectrum convolved with the filter function of the corresponding MODIS channel, with all correlation coefficients higher than 0.93. The interannual variability of monthly mean reflectance is also correlated with the variations of mean cloud and surface properties in large climate zones. The reflectance variation is correlated with the cloud fraction in low and middle latitude regions with correlation coefficients higher than 0.76 and with the snow and sea ice changes in the polar regions with correlation coefficients higher than 0.6. These correlations indicate that the nadir sampling strategy as proposed for CLARREO is sufficient for climate benchmarking of the reflected solar spectrum and provide the physical foundation for climate fingerprinting. However, the results also show the relatively large differences in trends in reflectance due to different instrument degradations and inconsistent calibrations which will affect the attribution of radiative signals of long-term climate change. C1 [Jin, Zhonghai; Gopalan, Arun; Sun, Wenbo] Sci Syst & Applicat, Hampton, VA 23666 USA. [Lukachin, Constantin] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Jin, ZH (reprint author), Sci Syst & Applicat, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM zhonghai.jin@nasa.gov RI Richards, Amber/K-8203-2015 FU NASA Langley Center FX We acknowledge the European Space Agency for providing the SCIAMACHY solar radiance data and all people who helped with SCIAMACHY data processing and the NASA Langley Atmospheric Science Data Center for the CERES/MODIS data. We appreciate the valuable comments and suggestions by Bruce Wielicki and David Young at NASA Langley Center and their support for this study. NR 21 TC 7 Z9 7 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 7 PY 2012 VL 117 AR D05114 DI 10.1029/2011JD017051 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NW UT WOS:000301498100004 ER PT J AU Martins, DK Stauffer, RM Thompson, AM Knepp, TN Pippin, M AF Martins, D. K. Stauffer, R. M. Thompson, A. M. Knepp, T. N. Pippin, M. TI Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHWESTERN UNITED-STATES; BOUNDARY-LAYER; AIR-POLLUTION; SEA-BREEZE; SATELLITE MEASUREMENTS; CLIMATE-CHANGE; URBAN AREAS; TEMPERATURE; TRENDS; HOUSTON AB Air quality and meteorological measurements were conducted at the Chemistry and Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site during the summers of 2009 and 2010 in Hampton, Virginia. Significant differences in surface ozone mixing ratios were observed between the two years and are correlated with meteorological parameters such as temperature, humidity, and cloud cover. The number of exceedance days for ozone set by the U. S. Environmental Protection Agency within this region has been decreasing for the past decade, especially in urban areas. There were no exceedance days with respect to ozone in 2009, and there were four exceedance days in 2010. The four highest ozone daily maxima and the two exceedance days observed during the 2010 measurement period were coincident with sea breeze phenomena. In one case, surface ozone increased at a rate of 14.6 ppb h(-1) with the passage of a sea breeze front. A comprehensive multilinear regression model as well as an operational forecast was unable to resolve the high ozone observed during sea breeze events. As the number of exceedance days per year within this region continues to decrease, accurately forecasting sea breezes may become more important for the forecasting of pollution events. C1 [Martins, D. K.; Stauffer, R. M.; Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Knepp, T. N.; Pippin, M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Martins, DK (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM dkm18@psu.edu RI Thompson, Anne /C-3649-2014; OI Thompson, Anne /0000-0002-7829-0920; Stauffer, Ryan/0000-0002-8583-7795 FU NASA [NNG05G062G, NNX09AF93G]; ASA Langley Research Center; PSU; Leosphere FX This work was supported by the NASA Aura Validation Program (NNG05G062G) and a NASA Geo-CAPE grant (NNX09AF93G). The authors would like to thank Jack Fishman and Doreen Neil (NASA Langley Research Center); Anders Jensen and David Doughty (PSU); and Laurent Sauvage, Alexander Sauvage, and Adrien Quesnel (Leosphere) for their support and contributions. NR 63 TC 19 Z9 19 U1 0 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 7 PY 2012 VL 117 AR D05306 DI 10.1029/2011JD016828 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NW UT WOS:000301498100003 ER PT J AU Siegler, M Aharonson, O Carey, E Choukroun, M Hudson, T Schorghofer, N Xu, S AF Siegler, Matthew Aharonson, Oded Carey, Elizabeth Choukroun, Mathieu Hudson, Troy Schorghofer, Norbert Xu, Steven TI Measurements of thermal properties of icy Mars regolith analogs SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID HEAT-PULSE METHOD; GROUND ICE; CONDUCTIVITY MEASUREMENTS; PARTICULATE MATERIALS; MARTIAN REGOLITH; PACKED-BEDS; SOIL; STABILITY; LUNAR; PRESSURE AB In a series of laboratory experiments, we measure thermal diffusivity, thermal conductivity, and heat capacity of icy regolith created by vapor deposition of water below its triple point and in a low pressure atmosphere. We find that an ice-regolith mixture prepared in this manner, which may be common on Mars, and potentially also present on the Moon, Mercury, comets and other bodies, has a thermal conductivity that increases approximately linearly with ice content. This trend differs substantially from thermal property models based of preferential formation of ice at grain contacts previously applied to both terrestrial and non-terrestrial subsurface ice. We describe the observed microphysical structure of ice responsible for these thermal properties, which displaces interstitial gases, traps bubbles, exhibits anisotropic growth, and bridges non-neighboring grains. We also consider the applicability of these measurements to subsurface ice on Mars and other solar system bodies. C1 [Siegler, Matthew] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Siegler, Matthew; Aharonson, Oded; Carey, Elizabeth; Xu, Steven] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Choukroun, Mathieu; Hudson, Troy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schorghofer, Norbert] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Xu, Steven] Univ So Calif, Dept Astronaut Engn, Los Angeles, CA USA. RP Siegler, M (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, 595 Charles Young Dr E,Box 951567, Los Angeles, CA 90095 USA. EM siegler@ucla.edu RI Schorghofer, Norbert/A-1194-2007; Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU Mars Fundamental Research Program; Jet Propulsion Laboratory, California Institute of Technology; NASA FX We thank Julie Castillo, Doug Cobos, Michael Hecht, Gerard Kluitenberg, Kenneth Libbrecht, Michael Mellon, David Paige, Marsha Presley, Al Slavin, and Steven Wood for their useful discussions and Axel Schmidt for aid in measuring grain surface roughness, Karen Wacker for the construction of and insightful discussion in designing our thermal properties probe, and Hermann Engelhardt, Liz Carey, and Kenny Oslund for years of guidance and dedication in the lab. This work was supported by the Mars Fundamental Research Program. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. NR 63 TC 4 Z9 4 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 7 PY 2012 VL 117 AR E03001 DI 10.1029/2011JE003938 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 908OH UT WOS:000301499200002 ER PT J AU Lenaerts, JTM van den Broeke, MR Dery, SJ van Meijgaard, E van de Berg, WJ Palm, SP Rodrigo, JS AF Lenaerts, J. T. M. van den Broeke, M. R. Dery, S. J. van Meijgaard, E. van de Berg, W. J. Palm, Stephen P. Rodrigo, J. Sanz TI Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SURFACE MASS-BALANCE; ICE-SHEET SURFACE; DRONNING MAUD LAND; BLOWING SNOW; EAST ANTARCTICA; ENERGY-BALANCE; SNOWDRIFT SUBLIMATION; TEMPORAL VARIABILITY; BLUE-ICE; MIZUHO STATION AB To simulate the impact of drifting snow on the lower atmosphere, surface characteristics and surface mass balance (SMB) of the Antarctic ice sheet regional atmospheric climate model (RACMO2.1/ANT) with horizontal resolution of 27 km is coupled to a drifting snow routine and forced by ERA-Interim fields at its lateral boundaries (1989-2009). This paper evaluates the near-surface and drifting snow climate of RACMO2.1/ANT. Modeled near-surface wind speed (squared correlation coefficient R-2 = 0.64) and temperature (R-2 = 0.93) agree well with observations. Wind speed is underestimated in topographically complex areas, where observed wind speeds are locally very high (>20 m s(-1)). Temperature is underestimated in winter in coastal areas due to an underestimation of downward longwave radiation. Near-surface temperature and wind speed are not significantly affected by the inclusion of drifting snow in the model. In contrast, relative humidity with respect to ice increases in regions with strong drifting snow and becomes more consistent with the observations. Drifting snow frequency is the only observable parameter to directly validate drifting snow results; therefore, we derived an empirical relation for fresh snow density, as a function of wind speed and temperature, which determines the threshold wind speed for drifting snow. Modeled drifting snow frequencies agree well with in situ measurements and novel estimates from remote sensing. Finally, we show that including drifting snow is essential to obtaining a realistic extent and spatial distribution of ablation (SMB < 0) areas. C1 [Lenaerts, J. T. M.; van den Broeke, M. R.; van de Berg, W. J.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, NL-3584 CC Utrecht, Netherlands. [Dery, S. J.] Univ No British Columbia, No Hydrometeorol Grp, Prince George, BC 000 000, Canada. [Palm, Stephen P.] NASA, Sci Syst & Applicat Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [van Meijgaard, E.] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [Rodrigo, J. Sanz] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium. RP Lenaerts, JTM (reprint author), Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. EM jtmlenaerts@gmail.com RI van de Berg, Willem Jan/H-4385-2011; Van den Broeke, Michiel/F-7867-2011; Lenaerts, Jan/D-9423-2012; OI Van den Broeke, Michiel/0000-0003-4662-7565; Lenaerts, Jan/0000-0003-4309-4011; Sanz Rodrigo, Javier/0000-0003-0291-6429 FU European Union [226375] FX We thank two anonymous reviewers for their valuable comments. This work was supported by funding from the ice2sea program from the European Union 7th Framework Programme, grant 226375. This is Ice2sea contribution number 059. NR 66 TC 40 Z9 40 U1 3 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 6 PY 2012 VL 117 AR D05108 DI 10.1029/2011JD016145 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NV UT WOS:000301498000002 ER PT J AU Risi, C Noone, D Worden, J Frankenberg, C Stiller, G Kiefer, M Funke, B Walker, K Bernath, P Schneider, M Bony, S Lee, J Brown, D Sturm, C AF Risi, Camille Noone, David Worden, John Frankenberg, Christian Stiller, Gabriele Kiefer, Michael Funke, Bernd Walker, Kaley Bernath, Peter Schneider, Matthias Bony, Sandrine Lee, Jeonghoon Brown, Derek Sturm, Christophe TI Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC DEUTERATED WATER; LARGE-SCALE ADVECTION; CENTER CLIMATE MODEL; SATELLITE-OBSERVATIONS; VERTICAL RESOLUTION; CUMULUS CONVECTION; RELATIVE-HUMIDITY; BOUNDARY-LAYER; TOGA COARE; SCHEME AB Evaluating the representation of processes controlling tropical and subtropical tropospheric relative humidity (RH) in atmospheric general circulation models (GCMs) is crucial to assess the credibility of predicted climate changes. GCMs have long exhibited a moist bias in the tropical and subtropical mid and upper troposphere, which could be due to the mis-representation of cloud processes or of the large-scale circulation, or to excessive diffusion during water vapor transport. The goal of this study is to use observations of the water vapor isotopic ratio to understand the cause of this bias. We compare the three-dimensional distribution of the water vapor isotopic ratio measured from space and ground to that simulated by several versions of the isotopic GCM LMDZ. We show that the combined evaluation of RH and of the water vapor isotopic composition makes it possible to discriminate the most likely cause of RH biases. Models characterized either by an excessive vertical diffusion, an excessive convective detrainment or an underestimated in situ cloud condensation will all produce a moist bias in the free troposphere. However, only an excessive vertical diffusion can lead to a reversed seasonality of the free tropospheric isotopic composition in the subtropics compared to observations. Comparing seven isotopic GCMs suggests that the moist bias found in many GCMs in the mid and upper troposphere most frequently results from an excessive diffusion during vertical water vapor transport. This study demonstrates the added value of water vapor isotopic measurements for interpreting shortcomings in the simulation of RH by climate models. C1 [Risi, Camille; Noone, David; Brown, Derek] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Risi, Camille; Noone, David; Brown, Derek] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Risi, Camille; Bony, Sandrine] CNRS, LMD IPSL, F-75252 Paris, France. [Worden, John; Frankenberg, Christian; Lee, Jeonghoon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stiller, Gabriele; Kiefer, Michael; Schneider, Matthias] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, IMK ASF, D-76021 Karlsruhe, Germany. [Funke, Bernd] Inst Astrofis Andalucia, E-18008 Granada, Spain. [Walker, Kaley] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bernath, Peter] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Schneider, Matthias] Agencia Estatal Meteorol, CIAI, Santa Cruz De Tenerife, Spain. [Lee, Jeonghoon] Korea Polar Res Inst, Inchon 406840, South Korea. [Sturm, Christophe] Stockholm Univ, Dept Geol & Geochem, SE-10961 Stockholm, Sweden. RP Risi, C (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Bldg 318,216 UCB,Main Campus, Boulder, CO 80309 USA. EM camille.risi@colorado.edu RI Bernath, Peter/B-6567-2012; Stiller, Gabriele/A-7340-2013; Kiefer, Michael/A-7254-2013; Schneider, Matthias/B-1441-2013; Funke, Bernd/C-2162-2008; Frankenberg, Christian/A-2944-2013; Sturm, Christophe/C-3055-2012; Lee, Jeonghoon/E-8116-2010 OI Bernath, Peter/0000-0002-1255-396X; Stiller, Gabriele/0000-0003-2883-6873; Funke, Bernd/0000-0003-0462-4702; Frankenberg, Christian/0000-0002-0546-5857; Bony, Sandrine/0000-0002-4791-4438; Lee, Jeonghoon/0000-0002-1256-4431 FU European Research Council under the European Community's/ERC [256961]; International Atomic Energy Agency; NASA Energy and Water-cycle Study [07-NEWS07-0020]; NASA [NNX08AR23G] FX We thank Debra Wunch, Vanessa Sherlock, Nicholas Deutscher, David Griffith, Paul Wennberg, Kimberly Strong, Sabine Barthlott, Frank Hase, Omaira Garcia, Dan Smale, Emmanuel Mahieu, Justus Notholt, Thorsten Warneke and Geofrey Toon for their roles in acquiring the ground-based remote-sensing data and developing the retrievals, for making the data available, for helping with the data processing and for their useful advice to develop the rigorous model-data comparison methodology used in this paper. We thank David Sayres for providing in situ and aircraft data. We also thank Debra Wunch, Vanessa Sherlock, Nicholas Deutscher, Paul Wennberg and Kimberly Strong for detailed comments on the manuscript. Level-1b data of MIPAS have been provided by ESA. The ACE mission is supported mainly by the Canadian Space Agency. We thank the Anderson Group at Harvard University for providing ICOS and Hoxotope in situ aircraft data. We acknowledge all FTIR activities as in P1. The mid-infrared FTIR retrievals have been performed in the framework of the project MUSICA (http://www.imk-asf.kit.edu/english/musica), which is funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 256961. We thank Omaira Garcia who was in charge of the FTIR activities at Izana. We thank all SWING2 members for producing and making available their model outputs. SWING2 was supported by the Isotopic Hydrology Programme at the International Atomic Energy Agency (more information on http://people.su.se/similar to cstur/SWING2). We thank Francoise Vimeux for discussions. This work was supported by NASA Energy and Water-cycle Study (07-NEWS07-0020) and NASA Atmospheric Composition program (NNX08AR23G). We thank anonymous reviewers for their constructive comments. NR 97 TC 42 Z9 42 U1 0 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 6 PY 2012 VL 117 AR D05304 DI 10.1029/2011JD016623 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NV UT WOS:000301498000004 ER PT J AU Risi, C Noone, D Worden, J Frankenberg, C Stiller, G Kiefer, M Funke, B Walker, K Bernath, P Schneider, M Wunch, D Sherlock, V Deutscher, N Griffith, D Wennberg, PO Strong, K Smale, D Mahieu, E Barthlott, S Hase, F Garcia, O Notholt, J Warneke, T Toon, G Sayres, D Bony, S Lee, J Brown, D Uemura, R Sturm, C AF Risi, Camille Noone, David Worden, John Frankenberg, Christian Stiller, Gabriele Kiefer, Michael Funke, Bernd Walker, Kaley Bernath, Peter Schneider, Matthias Wunch, Debra Sherlock, Vanessa Deutscher, Nicholas Griffith, David Wennberg, Paul O. Strong, Kimberly Smale, Dan Mahieu, Emmanuel Barthlott, Sabine Hase, Frank Garcia, Omaira Notholt, Justus Warneke, Thorsten Toon, Geoffrey Sayres, David Bony, Sandrine Lee, Jeonghoon Brown, Derek Uemura, Ryu Sturm, Christophe TI Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC DEUTERATED WATER; COLUMN OBSERVING NETWORK; SATELLITE-OBSERVATIONS; ISOTOPIC COMPOSITION; TROPICAL TROPOPAUSE; CUMULUS CONVECTION; HDO MEASUREMENTS; HDO/H2O RATIOS; CLIMATE MODELS; PRECIPITATION AB The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity. C1 [Risi, Camille; Noone, David; Brown, Derek] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Risi, Camille; Noone, David; Brown, Derek] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Risi, Camille; Bony, Sandrine] CNRS, LMD IPSL, F-75252 Paris, France. [Worden, John; Frankenberg, Christian; Toon, Geoffrey; Lee, Jeonghoon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stiller, Gabriele; Kiefer, Michael; Schneider, Matthias; Barthlott, Sabine; Hase, Frank] Karlsruhe Inst Technol, IMK ASF, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany. [Funke, Bernd] Inst Astrofis Andalucia, E-18008 Granada, Spain. [Walker, Kaley; Strong, Kimberly] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bernath, Peter] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Schneider, Matthias; Garcia, Omaira] Agencia Estatal Meteorol, Izana Atmospher Res Ctr, E-38001 Santa Cruz De Tenerife, Spain. [Wunch, Debra; Wennberg, Paul O.] CALTECH, Div Geol & Planetary Sci & Engn & Appl Sci, Pasadena, CA 91125 USA. [Sherlock, Vanessa; Smale, Dan] Natl Inst Water & Atmospher Res, Lauder, Central Otago, New Zealand. [Deutscher, Nicholas; Griffith, David] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW 2522, Australia. [Deutscher, Nicholas; Notholt, Justus; Warneke, Thorsten] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. [Mahieu, Emmanuel] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Sayres, David] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Lee, Jeonghoon] Korea Polar Res Inst, Inchon 406840, South Korea. [Uemura, Ryu] Univ Ryukyus, Fac Sci, Nishihara, Okinawa 9030213, Japan. [Sturm, Christophe] Stockholm Univ, Dept Geol & Geochem, SE-10691 Stockholm, Sweden. RP Risi, C (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Bldg 318,216 UCB,Main Campus, Boulder, CO 80309 USA. EM camille.risi@colorado.edu RI Frankenberg, Christian/A-2944-2013; Notholt, Justus/P-4520-2016; Barthlott, Sabine/B-1439-2013; Sturm, Christophe/C-3055-2012; Strong, Kimberly/D-2563-2012; Lee, Jeonghoon/E-8116-2010; Bernath, Peter/B-6567-2012; Stiller, Gabriele/A-7340-2013; Hase, Frank/A-7497-2013; Schneider, Matthias/B-1441-2013; Kiefer, Michael/A-7254-2013; Funke, Bernd/C-2162-2008; Garcia, Omaira/M-2896-2014; Deutscher, Nicholas/E-3683-2015 OI Frankenberg, Christian/0000-0002-0546-5857; Notholt, Justus/0000-0002-3324-885X; Uemura, Ryu/0000-0002-4236-0085; Mahieu, Emmanuel/0000-0002-5251-0286; Bony, Sandrine/0000-0002-4791-4438; Barthlott, Sabine/0000-0003-0258-9421; Lee, Jeonghoon/0000-0002-1256-4431; Bernath, Peter/0000-0002-1255-396X; Stiller, Gabriele/0000-0003-2883-6873; Funke, Bernd/0000-0003-0462-4702; Deutscher, Nicholas/0000-0002-2906-2577 FU Canadian Space Agency; NASA's Terrestrial Ecology Program; Orbiting Carbon Observatory; DOE/ARM; New Zealand Foundation for Research, Science and Technology [CO1X0204, CO1X0406]; Australian Research Council [DP0879468]; Federal German Ministry of Education and Research (BMBF); A3C project; Belgian Science Policy Office (BELSPO, Brussels); Atlantic Innovation Fund/Nova Scotia Research Innovation Trust; Canada Foundation for Innovation; Canadian Foundation for Climate and Atmospheric Sciences; Environment Canada; Government of Canada International Polar Year; Natural Sciences and Engineering Research Council; Northern Scientific Training Program; Ontario Innovation Trust; Polar Continental Shelf Program; Ontario Research Fund; European Research Council under the European Community's/ERC [256961]; International Atomic Energy Agency; NASA Energy and Water-cycle Study [07-NEWS07-0020]; NASA [NNX08AR23G] FX The ACE mission is supported mainly by the Canadian Space Agency. Level-1b data of MIPAS have been provided by ESA. U.S. funding for TCCON comes from NASA's Terrestrial Ecology Program, the Orbiting Carbon Observatory project and the DOE/ARM Program. The Lauder TCCON measurements are funded by New Zealand Foundation for Research, Science and Technology contracts CO1X0204 and CO1X0406. We thank J. Robinson, who acquires the FTS data at the Lauder site, and B. Connor, who was instrumental in setting up the Lauder TCCON measurements. TCCON measurements at Wollongong and Darwin are supported by Australian Research Council grant DP0879468. The Karlsruhe FTIR experiment has been funded by the Federal German Ministry of Education and Research (BMBF) via its program "Ausbau der wissenschaftlichen Infrastruktur fur die Klima-Initiative (HALO)". IMK-ASF would like to thank U. Raffalski, IRF, Kiruna, for assistance with the FTIR experiment in Kiruna. Research at the University of Liege has primarily been supported by the A3C project funded by the Belgian Science Policy Office (BELSPO, Brussels). Emmanuel Mahieu is Research Associate with the F.R.S.-FNRS We further acknowledge the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG, Bern) for supporting the facilities needed to perform the FTIR observations. The Bruker 125HR measurements at Eureka were made at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC), led by James R. Drummond, and in part by the Canadian Arctic ACE Validation Campaigns. They were supported by the Atlantic Innovation Fund/Nova Scotia Research Innovation Trust, Canada Foundation for Innovation, Canadian Foundation for Climate and Atmospheric Sciences, Canadian Space Agency, Environment Canada, Government of Canada International Polar Year funding, Natural Sciences and Engineering Research Council, Northern Scientific Training Program, Ontario Innovation Trust, Polar Continental Shelf Program, and Ontario Research Fund. The authors wish to thank Rodica Lindenmaier, Rebecca Batchelor, PEARL site manager Pierre F. Fogal, the CANDAC operators, and the staff at Environment Canada's Eureka weather station for their contributions to data acquisition, and logistical and on-site support. The mid-infrared FTIR retrievals have been performed in the framework of the project MUSICA (http://www.imk-asf.kit.edu/english/musica), which is funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 256961. We thank the Anderson Group at Harvard University for providing ICOS and Hoxotope in situ aircraft data. We thank all SWING2 members for producing and making available their model outputs. SWING2 was supported by the Isotopic Hydrology Programme at the International Atomic Energy Agency (more information on http://people.su.se/similar to cstur/SWING2). This work was supported by NASA Energy and Water-cycle Study (07-NEWS07-0020) and NASA Atmospheric Composition program (NNX08AR23G). We thank all reviewers for their fruitful comments. NR 89 TC 51 Z9 51 U1 2 U2 46 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 6 PY 2012 VL 117 AR D05303 DI 10.1029/2011JD016621 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 908NV UT WOS:000301498000003 ER PT J AU Aliu, E Archambault, S Arlen, T Aune, T Beilicke, M Benbow, W Bouvier, A Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Christiansen, JL Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Decerprit, G Dickherber, R Dumm, J Errando, M Falcone, A Feng, Q Ferrer, F Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Godambe, S Griffin, S Grube, J Gyuk, G Hanna, D Holder, J Huan, H Hughes, G Humensky, TB Kaaret, P Karlsson, N Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Lee, K Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Ong, RA Orr, M Otte, AN Park, N Perkins, JS Pohl, M Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Ruppel, J Saxon, DB Schroedter, M Sembroski, GH Senturk, GD Skole, C Smith, AW Staszak, D Telezhinsky, I Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Varlotta, A Vassiliev, VV Vincent, S Vivier, M Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Zitzer, B AF Aliu, E. Archambault, S. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bouvier, A. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Christiansen, J. L. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Decerprit, G. Dickherber, R. Dumm, J. Errando, M. Falcone, A. Feng, Q. Ferrer, F. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Godambe, S. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Holder, J. Huan, H. Hughes, G. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Lee, K. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Ong, R. A. Orr, M. Otte, A. N. Park, N. Perkins, J. S. Pohl, M. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Ruppel, J. Saxon, D. B. Schroedter, M. Sembroski, G. H. Sentuerk, G. D. Skole, C. Smith, A. W. Staszak, D. Telezhinsky, I. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Varlotta, A. Vassiliev, V. V. Vincent, S. Vivier, M. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Zitzer, B. TI VERITAS deep observations of the dwarf spheroidal galaxy Segue 1 SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER ANNIHILATION; LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; GALACTIC-CENTER; LOCAL GROUP; CHERENKOV TELESCOPES; EMPIRICAL-MODELS; MAGIC TELESCOPE; UPPER LIMITS; COSMIC-RAYS AB The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant gamma-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are (95%) (CL) less than or similar to 10(-23) cm(3) s(-1), improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of 2 for dark matter particle masses m(chi) greater than or similar to 300 GeV. The lower limits on the decay lifetime are at the level of tau(95%) (CL) greater than or similar to 10(24) s. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario. C1 [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Arlen, T.; Majumdar, P.; Ong, R. A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Ferrer, F.; Krawczynski, H.; Lee, K.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Collins-Hughes, E.; Khassen, Y.; Quinn, J.; Ward, J. E.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Connolly, M. P.] Natl Univ Ireland Univ Coll Galway, Sch Phys, Galway, Ireland. [Christiansen, J. L.; Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Decerprit, G.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Ruppel, J.; Skole, C.; Telezhinsky, I.] DESY, D-15738 Zeuthen, Germany. [Dumm, J.; Fortson, L.; Karlsson, N.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Kieda, D.; Smith, A. W.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gall, D.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Huan, H.; Park, N.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Humensky, T. B.; Sentuerk, G. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] DePauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland, Baltimore, MD 21250 USA. [Pohl, M.; Ruppel, J.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Bishopstown, Cork, Ireland. RP Vivier, M (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM mvivier@bartol.udel.edu RI Khassen, Yerbol/I-3806-2015; OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU US Department of Energy Office of Science; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the United Kingdom FX We thank Rouven Essig, Neelima Sehgal, and Louis E. Strigari for useful discussions about the Segue 1 dark matter distribution profile. VERITAS is supported by grants from the US Department of Energy Office of Science, the US National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (Grant No. SFI 10/RFP/AST2748), and by STFC in the United Kingdom. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. NR 99 TC 55 Z9 56 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 5 PY 2012 VL 85 IS 6 AR 062001 DI 10.1103/PhysRevD.85.062001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 903LC UT WOS:000301117000003 ER PT J AU Bergman, JW Jensen, EJ Pfister, L Yang, Q AF Bergman, John W. Jensen, Eric J. Pfister, Leonhard Yang, Qiong TI Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulationes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CIRRUS CLOUDS; LOWER STRATOSPHERE; RADIATIVE PROPERTIES; UPPER TROPOSPHERE; ACCURATE PARAMETERIZATION; ATMOSPHERIC TRANSPORT; ECMWF REANALYSES; CARBON-MONOXIDE; SUMMER MONSOON; CLIMATE MODELS AB Winter-summer differences in the transport of air from the boundary layer to the lower stratosphere at low latitudes are investigated with ensembles of back trajectory calculations that track parcels from the 380 K isentropic surface to their convective detrainment in the tropical tropopause layer (TTL) during the winter of 2006-2007 and summer of 2007. Horizontal displacements for the trajectories are calculated from reanalysis data; potential temperature displacements are calculated from radiative heating rates derived from observed cloud, water vapor, ozone, and temperature variations; and the locations' convective detrainments are determined by satellite observations of convective clouds. Weaker upwelling in the TTL during boreal summer compared with that of winter both slows the ascent through the TTL and raises the height threshold that convective detrainment must surpass in order for ascent to occur, restricting the injection of new air into the stratosphere during summer. In addition, anticyclonic circulations associated with convective activity contribute to vertical transport in the TTL by guiding detrained air parcels through regions with the strongest upwelling. These features combine to make monsoon-related convection over the Indian subcontinent the dominant source of new air during summer. In contrast, winter sources are spread over the southern continents and the western Pacific Ocean. These seasonal differences imply that air entering the tropical stratosphere during summer is older but might nevertheless be more polluted than air entering during winter. While poor data sampling in the TTL makes it difficult to validate our results, they are bolstered by favorable comparisons with previous studies of the TTL, by sensitivity tests that reveal important dynamical influences on surface-to-stratospheric transport, and by the robustness of dynamical interactions that systematically associate deep convection with anticyclonic circulations and strong radiative heating in the TTL. Sensitivity experiments suggest that the aforementioned seasonal differences are sensitive to strong "large-scale" (on global space scales and seasonal time scales) perturbations. In particular, uncertainties in the vertical motion fields constrain our ability to draw definitive conclusions. However, trajectory statistics are not sensitive to small-scale perturbations, with the encouraging implication that our results are primarily associated with those features of the circulation that are the most likely to be robust. C1 [Bergman, John W.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Bergman, John W.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Jensen, Eric J.; Pfister, Leonhard] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Yang, Qiong] N Carolina State Univ, Cooperat Inst Climate & Satellites, Asheville, NC 28801 USA. [Yang, Qiong] NOAA, Natl Climat Data Ctr, Asheville, NC USA. RP Bergman, JW (reprint author), Bay Area Environm Res Inst, 560 3rd St W, Sonoma, CA 95476 USA. EM bergman@ucar.edu NR 71 TC 28 Z9 28 U1 2 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 3 PY 2012 VL 117 AR D05302 DI 10.1029/2011JD016992 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 903PP UT WOS:000301130700008 ER PT J AU Khedun, CP Mishra, AK Bolten, JD Beaudoing, HK Kaiser, RA Giardino, JR Singh, VP AF Khedun, C. Prakash Mishra, Ashok K. Bolten, John D. Beaudoing, Hiroko K. Kaiser, Ronald A. Giardino, J. Richard Singh, Vijay P. TI Understanding changes in water availability in the Rio Grande/Rio Bravo del Norte basin under the influence of large-scale circulation indices using the Noah land surface model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA ASSIMILATION SYSTEM; PACIFIC DECADAL OSCILLATION; NINO SOUTHERN-OSCILLATION; NORTHEASTERN UNITED STATES; 1990-1995 EL-NINO; AMERICAN MONSOON; WAVELET ANALYSIS; SOIL HYDROLOGY; GREAT-PLAINS; TIME-SERIES AB Water availability plays an important role in the socio-economic development of a region. It is however, subject to the influence of large-scale circulation indices, resulting in periodic excesses and deficits. An assessment of the degree of correlation between climate indices and water availability, and the quantification of changes with respect to major climate events is important for long-term water resources planning and management, especially in transboundary basins as it can help in conflict avoidance. In this study we first establish the correlation of the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) with gauged precipitation in the Rio Grande basin, and then quantify the changes in water availability using runoff generated from the Noah land surface model. Both spatial and temporal variations are noted, with winter and spring being most influenced by conditions in the Pacific Ocean. Negative correlation is observed at the headwaters and positive correlation across the rest of the basin. The influence of individual ENSO events, classified using four different criteria, is also examined. El Ninos (La Ninas) generally cause an increase (decrease) in runoff, but the pattern is not consistent; percentage change in water availability varies across events. Further, positive PDO enhances the effect of El Nino and dampens that of La Nina, but during neutral/transitioning PDO, La Nina dominates meteorological conditions. Long El Ninos have more influence on water availability than short duration high intensity events. We also note that the percentage increase during El Ninos significantly offsets the drought-causing effect of La Ninas. C1 [Khedun, C. Prakash; Mishra, Ashok K.; Singh, Vijay P.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. [Bolten, John D.; Beaudoing, Hiroko K.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Beaudoing, Hiroko K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Kaiser, Ronald A.] Texas A&M Univ, Dept Recreat Pk & Tourism Sci, College Stn, TX 77843 USA. [Giardino, J. Richard] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. [Singh, Vijay P.] Texas A&M Univ, Dept Civil Engn, College Stn, TX 77843 USA. RP Khedun, CP (reprint author), Texas A&M Univ, Dept Biol & Agr Engn, 321 Scoates Hall,MS 2117, College Stn, TX 77843 USA. EM pkhedun@tamu.edu; akm.pce@gmail.com; john.bolten@nasa.gov; hiroko.kato-1@nasa.gov; rkaiser@tamu.edu; rickg@tamu.edu; vsingh@tamu.edu RI Bolten, John/F-9006-2012 FU Comision Estatal de Aguas y Saneamiento del Estado de Coahuila, Mexico through Texas AgriLIFE Research; USGS [2011TX395B] FX The authors thank Brent D. McRoberts and John W. Nielsen-Gammon of the Department of Atmospheric Science at Texas A&M University for providing the precipitation data set for the U. S. and Rosario Sanchez and the Comision Nacional del Agua for providing the data set for Mexico. Goddard Earth Sciences and Technology Center supported the first author's stay at NASA Goddard Space Flight Center, Greenbelt, Md. Thanks are due to the LIS software team, particularly Sujay Kumar and Jim Geiger, for their technical support. The authors are grateful to Sara C Pryor, the Editor, and three anonymous reviewers for their useful comments and suggestions. This research was partially funded by the Comision Estatal de Aguas y Saneamiento del Estado de Coahuila, Mexico through Texas AgriLIFE Research and USGS grant 2011TX395B. NR 97 TC 6 Z9 6 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 3 PY 2012 VL 117 AR D05104 DI 10.1029/2011JD016590 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 903PP UT WOS:000301130700004 ER PT J AU Andriyas, T Spencer, E Raj, A Sojka, J Mays, ML AF Andriyas, T. Spencer, E. Raj, A. Sojka, J. Mays, M. L. TI Forecasting the Dst index during corotating interaction region events using synthesized solar wind parameters SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; INTERPLANETARY MAGNETIC-FIELD; HIGH-SPEED STREAMS; GEOMAGNETIC-ACTIVITY; HOLES; STORMS; CYCLE; INHOMOGENEITIES; PERTURBATIONS; MORPHOLOGY AB Observations from SOHO, STEREO, and ACE during the declining phase of the solar cycle toward the deep minimum in 2008 are analyzed to establish the timing of corotating interaction region (CIR) activity. This analysis is then employed to synthesize signals of the z component of the interplanetary magnetic field (IMF) B-z, solar wind radial velocity v(x), and solar wind proton density N-p at 1 AU. The synthesized signals are used as a substitute for ACE measurements to represent solar wind forcing due to coronal hole driven CIR events occurring during multiple Bartel rotations (BR 2381 to BR 2393). The signals drive a low-order physics-based model of the magnetosphere called WINDMI, one of whose outputs is the ground-based measurement of the Dst index. Estimating the arrival of CIR events for future rotations using ACE and SOHO data during BR 2381 produced what we refer to as an uncalibrated yearly forecast. We next generated a video-calibrated estimate of the arrival times of CIR events in addition to information from BR 2381 using SOHO and STEREO images of the Sun in order to produce a simulated 3.5 day ahead forecast of possible geomagnetic activity. The time of arrival of CIR events is taken to be the travel time of density compressions as seen in a noninertial frame according to a radial solar wind speed of 500 km/s and a distance of 1 AU. We were able to forecast the timing of CIR-induced geomagnetic activity to within 12 h for 17 out of 28 events by using the expected recurrence of the events through multiple Bartel rotations together with SOHO and STEREO coronal hole sightings made 3.5 days before every event. The uncertainty in the IMF B-z led to a forecast of levels of geomagnetic activity on an ensemble basis, yielding a distribution of different possible Dst signatures. We used a 10-sample ensemble and a 50-sample ensemble to obtain typical representations of geomagnetic activity. Depending on the periodicity and intensity of fluctuations in B-z, we obtained higher or lower levels of activity and shorter or longer times for the recovery of the Dst to quiet levels. C1 [Andriyas, T.; Spencer, E.; Raj, A.] Utah State Univ, Ctr Space Engn, Logan, UT 84322 USA. [Mays, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sojka, J.] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. RP Andriyas, T (reprint author), Utah State Univ, Ctr Space Engn, Logan, UT 84322 USA. EM tushar.andriyas@aggiemail.usu.edu OI Raj, Arjun/0000-0002-2915-6960 FU NASA at the Goddard Space Flight Center; NASA FX The authors acknowledge the CalTech Web site for ACE data, the NASA Web site for images from SOHO and STEREO, and the Royal Observatory of Belgium for providing the processed images through the Solar Weather Browser (SWB). The authors also acknowledge the CME list provided by the CACTUS software at http://sidc.oma.be/cactus/ and synoptic maps provided on the CCMC STEREO support Web site. M. L. Mays is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 42 TC 0 Z9 0 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 3 PY 2012 VL 117 AR A03204 DI 10.1029/2011JA017018 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903RJ UT WOS:000301136200001 ER PT J AU Choi, KK Jhabvala, MD Forrai, DP Waczynski, A Sun, J Jones, R AF Choi, Kwong-Kit Jhabvala, Murzy D. Forrai, David P. Waczynski, Augustyn Sun, Jason Jones, Robert TI Electromagnetic Modeling of Quantum Well Infrared Photodetectors SO IEEE JOURNAL OF QUANTUM ELECTRONICS LA English DT Article DE Electromagnetic field modeling; infrared detector; quantum efficiency AB Rigorous electromagnetic field modeling is applied to calculate the quantum efficiency of various quantum well infrared photodetector (QWIP) geometries. We found quantitative agreement between theory and experiment for corrugated-QWIPs, grating-coupled QWIPs, and enhanced-QWIPs, and the model explains adequately the spectral lineshapes of the quantum grid infrared photodetectors. After establishing our theoretical approach, we used the model to optimize the detector structures for 12-micron pixel pitch focal plane arrays. C1 [Choi, Kwong-Kit; Sun, Jason] USA, Res Labs, Adelphi, MD 20833 USA. [Jhabvala, Murzy D.; Waczynski, Augustyn] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Forrai, David P.; Jones, Robert] L 3 Cincinnati Elect, Mason, OH 45040 USA. RP Choi, KK (reprint author), USA, Res Labs, Adelphi, MD 20833 USA. EM kwong.k.choi.civ@mail.mil; murzy.d.jhabvala@nasa.gov; dave.forrai@l-3com.com; augustyn.waczynski-1@nasa.gov; guifu.n.sun.civ@mail.mil; robert.jones@l-3com.com RI Choi, Kwong-Kit/K-9205-2013 NR 9 TC 13 Z9 16 U1 0 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9197 J9 IEEE J QUANTUM ELECT JI IEEE J. Quantum Electron. PD MAR PY 2012 VL 48 IS 3 BP 384 EP 393 DI 10.1109/JQE.2011.2175706 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 000SY UT WOS:000308410000005 ER PT J AU He, ZH Mangala, LS Theriot, CA Rohde, LH Wu, HL Zhang, Y AF He, Zhenhua Mangala, Lingegowda S. Theriot, Corey A. Rohde, Larry H. Wu, Honglu Zhang, Ye TI Cell Killing and Radiosensitizing Effects of Atorvastatin in PC3 Prostate Cancer Cells SO JOURNAL OF RADIATION RESEARCH LA English DT Article DE Statin; Radiosensitivity; Prostate cancer; PC3 cells; Gamma rays ID RADIATION-INDUCED AUTOPHAGY; MAMMALIAN TARGET; CARCINOMA-CELLS; T-CELLS; INHIBITION; APOPTOSIS; RADIORESISTANCE; CHOLESTEROL; EXPRESSION; CROSSTALK AB Recent studies have indicated that autophagy may be one of the important pathways induced by ionizing radiation. Atorvastatin (statin), an inhibitor of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, may exhibit anticancer effects as an autophagy inducer. In our study, the cell killing and radiosensitizing effects of statin were analyzed in PC3 cell line. Activation of the autophagy pathway was analyzed using the GFP-LC3 assay and western blot to determine LC3-II expression. The radiosensitivity of PC3 cells was determined using the clonal survival assay, TUNEL assay, and the Annexin V apoptosis assay. The expression profiles of autophagy related genes were analyzed using a pathway specific real-time polymerase chain reaction (PCR) array. Autophagic response was induced in PC3 cells after exposure to statin and/or gamma rays. Inhibition of the autophagic process using small interfering RNAs (siRNA) targeting Atg7 and/or Atg12 significantly reduced radiosensitivity of PC3 cells. Statin also exhibited a significant apoptosis-inducing effect in PC3 cells, which can be partially suppressed by Atg7 siRNA. Cells treated with statin and gamma irradiation showed significantly reduced colony forming efficiency and increased number of Annexin V positive early apoptotic cells. Analysis of autophagy and its regulatory gene profile showed that the expressions of 22 genes out of 86 genes assessed were significantly altered in the cells exposed to combined treatment or statin alone. The data indicate that activation of the autophagy pathway may be responsible for apoptosis inducing effect of statin. Furthermore, combined treatment with radiation and autophagic inducer, such as statin, may be synergistic in inducing cell death of PC3 cells. C1 [Mangala, Lingegowda S.; Theriot, Corey A.; Wu, Honglu; Zhang, Ye] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zhang, Ye] Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. [He, Zhenhua; Mangala, Lingegowda S.; Rohde, Larry H.] Univ Houston Clear Lake, Houston, TX 77058 USA. RP Zhang, Y (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM Ye.Zhang-1@nasa.gov FU University of Houston Institute for Space Systems Operations (ISSO) Post-Doctoral Aerospace Fellowship Program; NASA Postdoctoral Program FX We specially appreciated the technical assistance provided by Dr. Bulent Ozpolat and Dr. Ibrahim Tekedereli of MD Anderson Cancer Center. This work was supported in part by the University of Houston Institute for Space Systems Operations (ISSO) Post-Doctoral Aerospace Fellowship Program. Dr. Corey A. Theriot was supported by the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. NR 36 TC 19 Z9 23 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0449-3060 J9 J RADIAT RES JI J. Radiat. Res. PD MAR PY 2012 VL 53 IS 2 BP 225 EP 233 DI 10.1269/jrr.11114 PG 9 WC Biology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Radiology, Nuclear Medicine & Medical Imaging GA 984NG UT WOS:000307196400009 PM 22510595 ER PT J AU Garcia-Maldonado, JQ Bebout, BM Celis, LB Lopez-Cortes, A AF Garcia-Maldonado, Jose Q. Bebout, Brad M. Celis, Lourdes B. Lopez-Cortes, Alejandro TI Phylogenetic diversity of methyl-coenzyme M reductase (mcrA) gene and methanogenesis from trimethylamine in hypersaline environments SO INTERNATIONAL MICROBIOLOGY LA English DT Article DE Methanosarcinaceae; hypersaline environments; microbial mats; trimethylamine; gene mcrA ID 16S RIBOSOMAL-RNA; MICROBIAL MATS; METHANE PRODUCTION; SULFATE REDUCTION; COMMUNITY COMPOSITION; SOLAR SALTERN; SEDIMENTS; ARCHAEA; LINEAGE; SEQUENCES AB Methanogens have been reported in complex microbial communities from hypersaline environments, but little is known about their phylogenetic diversity. In this work, methane concentrations in environmental gas samples were determined while methane production rates were measured in microcosm experiments with competitive and non-competitive substrates. In addition, the phylogenetic diversity of methanogens in microbial mats from two geographical locations was analyzed: the well studied Guerrero Negro hypersaline ecosystem, and a site not previously investigated, namely Laguna San Ignacio, Baja California Sur, Mexico. Methanogenesis in these microbial mats was suspected based on the detection of methane (in the range of 0.00086 to 3.204 %) in environmental gas samples. Microcosm experiments confirmed methane production by the mats and demonstrated that it was promoted only by non-competitive substrates (trimethylamine and methanol), suggesting that methylotrophy is the main characteristic process by which these hypersaline microbial mats produce methane. Phylogenetic analysis of amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from natural and manipulated samples revealed various methylotrophic methanogens belonging exclusively to the family Methanosarcinaceae. Moderately halophilic microorganisms of the genus Methanohalophilus were predominant (>60 % of mcrA sequences retrieved). Slightly halophilic and marine microorganisms of the genera Methanococcoides and Methanolobus, respectively, were also identified, but in lower abundances. [Int Microbiol 2012; 15(1):33-41] C1 [Garcia-Maldonado, Jose Q.; Lopez-Cortes, Alejandro] NW Ctr Biol Res CIBNOR, Lab Mol Microbial Ecol, La Paz, Mexico. [Bebout, Brad M.] NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA USA. [Celis, Lourdes B.] Sci & Technol Res Inst San Luis Potosi IPICYT, Appl Geosci Div, San Luis Potosi, Mexico. RP Lopez-Cortes, A (reprint author), Ctr Invest Biol Noroeste CIBNOR, Mar Bermejo 195, La Paz 23096, Bcs, Mexico. EM alopez04@cibnor.mx FU CONACYT [105969-2008-2012]; CIB-NOR [PC0.18-2011]; NASA; NASA at the Marine Biological Laboratory, Woods Hole, MA FX We thank Ira Fogel and Manuel Trasvina of CIB-NOR for editorial improvements and sulfate determinations, respectively. This work was supported by CONACYT grant 105969-2008-2012, CIB-NOR grant PC0.18-2011 to A.L.C, and a grant from the NASA Exobiology Program to B.M.B. A grant from the NASA-Planetary Biology Internship Program 2009 at the Marine Biological Laboratory, Woods Hole, MA was received by J.Q.G.M.; he also has a CONACYT doctoral fellowship. We are grateful to Exportadora de Sal, S.A. de C.V. for access to the Guerrero Negro field site. We are thankful for the field and laboratory assistance of Jeff Chanton, Cheryl Kelley, Jennifer Poole, Amanda Tazaz, Angela Detweiler, and Natalia Trabal. NR 46 TC 7 Z9 8 U1 1 U2 18 PU VIGUERA EDITORES, S L PI BARCELONA PA PLAZA TETUAN, 7, BARCELONA, E-08010, SPAIN SN 1139-6709 J9 INT MICROBIOL JI Int. Microbiol. PD MAR PY 2012 VL 15 IS 1 BP 33 EP 41 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 972GC UT WOS:000306264300004 PM 22837150 ER PT J AU Wilson, JP Grotzinger, JP Fischer, WW Hand, KP Jensen, S Knoll, AH Abelson, J Metz, JM McLoughlin, N Cohen, PA Tice, MM AF Wilson, Jonathan P. Grotzinger, John P. Fischer, Woodward W. Hand, Kevin P. Jensen, Soeren Knoll, Andrew H. Abelson, John Metz, Joannah M. McLoughlin, Nicola Cohen, Phoebe A. Tice, Michael M. TI DEEP-WATER INCISED VALLEY DEPOSITS AT THE EDIACARAN-CAMBRIAN BOUNDARY IN SOUTHERN NAMIBIA CONTAIN ABUNDANT TREPTICHNUS PEDUM SO PALAIOS LA English DT Article ID CHAPEL-ISLAND FORMATION; NAMA GROUP; SEQUENCE STRATIGRAPHY; TRACE FOSSILS; PRIAPULID WORMS; FORELAND BASIN; FORTUNE HEAD; NEWFOUNDLAND; EVOLUTION; ORIGIN AB Valley-filling deposits of the Nama Group, southern Namibia, record two episodes of erosional downcutting and backfill, developed close together in time near the Ediacaran-Cambrian boundary. Geochronological constraints indicate that the older valley fill began 539.4 +/- 1 Ma or later; the younger of these deposits contains unusually well-preserved populations of the basal Cambrian trace fossil Treptichnus pedum. Facies analysis shows that T. pedum is closely linked to a nearshore sandstone deposit, indicating a close environmental or taphonomic connection to very shallow, mud-draped sandy seafloor swept by tidal currents. Facies restriction may limit the biostratigraphic potential of T. pedant in Namibia and elsewhere, but it also illuminates functional and ecological interpretation. The T. pedum tracemaker was a motile bilaterian animal that lived below the sediment-water interface-propelling itself forward in upward-curving projections that breached the sediment surface. The T. pedum animal, therefore, lived infaunally, perhaps to avoid predation, surfacing regularly to feed and take in oxygen. Alternatively, the T. pedum animal may have been a deposit feeder that surfaced largely for purposes of gas exchange, an interpretation that has some support in the observed association of T. pedum with mud drapes. Treptichnus pedum provides our oldest record of animals that combined anatomical and behavioral complexity. Insights from comparative biology suggest that basal Cambrian T. pedum animals already possessed the anatomical, neurological, and genetic complexity needed to enable the body plan and behavioral diversification recorded by younger Cambrian fossils. C1 [Wilson, Jonathan P.; Grotzinger, John P.; Fischer, Woodward W.; Metz, Joannah M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hand, Kevin P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jensen, Soeren] Univ Extremadura, Area Paleontol, Badajoz, Spain. [Knoll, Andrew H.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Abelson, John] CALTECH, Dept Biol, Pasadena, CA 91125 USA. [Abelson, John] Agouron Inst, Pasadena, CA 91125 USA. [McLoughlin, Nicola] Univ Bergen, Dept Earth Sci, N-5020 Bergen, Norway. [McLoughlin, Nicola] Univ Bergen, Ctr Geobiol, N-5020 Bergen, Norway. [Cohen, Phoebe A.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Tice, Michael M.] Texas A&M, Dept Geol & Geophys, College Stn, TX 77843 USA. RP Wilson, JP (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM jpwilson@caltech.edu; grotz@gps.caltech.edu; wfischer@caltech.edu; Kevin.P.Hand@jpl.nasa.gov; soren@unex.es; aknoll@oeb.harvard.edu; jabelson@biochem.ucsf.edu; joannah@its.caltech.edu; Nicola.Mcloughlin@geo.uib.no; pcohen@mit.edu; tice@geo.tamu.edu RI Jensen, Soren/H-9126-2015; OI Jensen, Soren/0000-0001-5136-9586; McLoughlin, Nicola/0000-0003-0410-5160 FU Agouron Foundation; Spanish Ministry of Science and Innovation [CGL-2008-0473]; Fondo Europeo de Desarrollo Regional [FEDER] FX We are grateful for support for this project from the Agouron Foundation. We thank Roger Swart and Wim Dewulf-Peijenborgh for essential logistic support, Cori Bargmann for discussion of behavioral biology, and Jennifer Griffes and Ralph Milliken for assistance with figure composition. Si acknowledges funding from the Spanish Ministry of Science and Innovation through grant CGL-2008-0473 (co-financed by Fondo Europeo de Desarrollo Regional [FEDER]) This manuscript was improved with helpful comments from Cornel Olariu and an anonymous reviewer. NR 65 TC 9 Z9 9 U1 0 U2 6 PU SEPM-SOC SEDIMENTARY GEOLOGY PI TULSA PA 6128 EAST 38TH ST, STE 308, TULSA, OK 74135-5814 USA SN 0883-1351 J9 PALAIOS JI Palaios PD MAR-APR PY 2012 VL 27 IS 3-4 BP 252 EP 273 DI 10.2110/palo.2011.p11-036r PG 22 WC Geology; Paleontology SC Geology; Paleontology GA 946FV UT WOS:000304337800011 ER PT J AU Shafto, MG Korsmeyer, DJ AF Shafto, Michael G. Korsmeyer, David J. TI Contributions to IT: A View from Ames Research Center SO IT PROFESSIONAL LA English DT Article ID SYSTEM AB Learn how NASA Ames Research Center has been contributing to IT over the decades and about its recent contributions in supercomputing, modeling, and simulation; next-generation air-traffic management; intelligent systems; and complex data analysis. C1 [Shafto, Michael G.; Korsmeyer, David J.] NASA, Ames Res Ctr, Washington, DC 20546 USA. RP Shafto, MG (reprint author), NASA, Ames Res Ctr, Washington, DC 20546 USA. EM mike.shafto@nasa.gov; david.j.korsmeyer@nasa.gov NR 23 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1520-9202 J9 IT PROF JI IT Prof. PD MAR-APR PY 2012 VL 14 IS 2 BP 13 EP 19 DI 10.1109/MITP.2011.115 PG 7 WC Computer Science, Information Systems; Computer Science, Software Engineering; Telecommunications SC Computer Science; Telecommunications GA 946IO UT WOS:000304345300005 ER PT J AU Biswas, R Dunbar, J Hardman, J Bailey, FR Wheeler, L Rogers, S AF Biswas, Rupak Dunbar, Jill Hardman, John Bailey, F. Ron Wheeler, Lorien Rogers, Stuart TI The Impact of High-End Computing on NASA Missions SO IT PROFESSIONAL LA English DT Article AB The NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency's science and engineering missions. For 30 years, NAS experts have influenced the state of the art in high-performance computing and related technologies. C1 [Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart] Ames Res Ctr, NASA Adv Supercomp NAS Div, Washington, DC USA. RP Biswas, R (reprint author), Ames Res Ctr, NASA Adv Supercomp NAS Div, Washington, DC USA. EM rupak.biswas@nasa.gov; jill.a.dunbar@nasa.gov; john.p.hardman@nasa.gov; frank.r.bailey@nasa.gov; lorien.f.weheeler@nasa.gov; stuart.e.rogers@nasa.gov NR 12 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1520-9202 J9 IT PROF JI IT Prof. PD MAR-APR PY 2012 VL 14 IS 2 BP 20 EP 28 DI 10.1109/MITP.2011.110 PG 9 WC Computer Science, Information Systems; Computer Science, Software Engineering; Telecommunications SC Computer Science; Telecommunications GA 946IO UT WOS:000304345300006 ER PT J AU Mattmann, CA Crichton, DJ Hart, AF Kelly, SC Goodale, CE Ramirez, P Hughes, JS Downs, RR Lindsay, F AF Mattmann, Chris A. Crichton, Daniel J. Hart, Andrew F. Kelly, Sean C. Goodale, Cameron E. Ramirez, Paul Hughes, J. Steven Downs, Robert R. Lindsay, Francis TI Understanding Open Source Software at NASA SO IT PROFESSIONAL LA English DT Article AB To provide a framework for comparing and understanding open source software at NASA, the authors describe a set of relevant dimensions and decision points that NASA and other government agencies can use in formulating an open source strategy. C1 [Mattmann, Chris A.; Kelly, Sean C.] NASA, Jet Prop Lab, Northrop Grumman Corp, Washington, DC 20546 USA. [Downs, Robert R.] Columbia Univ, CIESIN, New York, NY 10027 USA. [Lindsay, Francis] NASA, Earth Sci Data Syst working Grp, Goddard Space Flight Ctr, Washington, DC USA. RP Mattmann, CA (reprint author), NASA, Jet Prop Lab, Northrop Grumman Corp, Washington, DC 20546 USA. EM mattmann@jpl.nasa.gov; crichton@jpl.nasa.gov; andrew.f.hart@jpl.nasa.gov; sean.kelly@jpl.nasa.gov; cameron.e.goodale@jpl.nasa.gov; pramirez@jpl.nasa.gov; jshughes@jpl.nasa.gov; rdowns@ciesin.columbia.edu; francis.lindsay-1@nasa.gov RI Downs, Robert/B-4153-2013 OI Downs, Robert/0000-0002-8595-5134 FU NASA [NNG08HZ11C] FX This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. Support for Robert R. Downs was provided by NASA contract NNG08HZ11C. NR 12 TC 2 Z9 2 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1520-9202 EI 1941-045X J9 IT PROF JI IT Prof. PD MAR-APR PY 2012 VL 14 IS 2 BP 29 EP 35 DI 10.1109/MITP.2011.118 PG 7 WC Computer Science, Information Systems; Computer Science, Software Engineering; Telecommunications SC Computer Science; Telecommunications GA 946IO UT WOS:000304345300007 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Ajith, P Allen, B Allen, GS Ceron, EA Amariutei, D Amin, RS Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Behnke, B Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Brummit, A Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Chiummo, A Cho, HS Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R Debra, D Debreczeni, G Degallaix, J Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhillon, V Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MDP Di Virgilio, A Diaz, M Dietz, A DiGuglielmo, J Donovan, F Dooley, KL Dorsher, S Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Farr, W Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Fridriksson, JK Friedrich, D Fritschel, P Frolov, VV Fulda, PJ Fyffe, M Galimberti, M Gammaitoni, L Ganija, MR Garcia, J Garofoli, JA Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hage, B Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Homan, J Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M Jang, H Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kamaretsos, I Kandhasamy, S Kang, G Kanner, JB Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, D Kim, H Kim, K Kim, N Kim, YM King, PJ Kinsey, M Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Laas-Bourez, M Lam, PK Landry, M Lang, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HM Leindecker, N Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McDaniel, P McGuire, SC McIntyre, G McIver, J McKechan, DJA Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, D Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Moesta, P Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Nawrodt, R Necula, V Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Nolting, D Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, CR Rankins, B Rapagnani, P Rapoport, S Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Ryll, H Sainathan, P Sakosky, M Salemi, F Samblowski, A Sammut, L de la Jordana, LS Sandberg, V Sankar, S Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schlamminger, S Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Smith, RJE Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Tseng, K Ugolini, D Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Waldman, SJ Wallace, L Wan, Y Wang, X Wang, Z Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Akerlof, C Boer, M Fender, R Gehrels, N Klotz, A Ofek, EO Smith, M Sokolowski, M Stappers, BW Steele, I Swinbank, J Wijers, RAMJ Zheng, W AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Ajith, P. Allen, B. Allen, G. S. Ceron, E. Amador Amariutei, D. Amin, R. S. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Behnke, B. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Brummit, A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Degallaix, J. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhillon, V. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. DiGuglielmo, J. Donovan, F. Dooley, K. L. Dorsher, S. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Farr, W. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fridriksson, J. K. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. J. Fyffe, M. Galimberti, M. Gammaitoni, L. Ganija, M. R. Garcia, J. Garofoli, J. A. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Homan, J. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. Jang, H. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kamaretsos, I. Kandhasamy, S. Kang, G. Kanner, J. B. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, D. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinsey, M. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Laas-Bourez, M. Lam, P. K. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. M. Leindecker, N. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McDaniel, P. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Moesta, P. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueler-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Nawrodt, R. Necula, V. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Nolting, D. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. R. Rankins, B. Rapagnani, P. Rapoport, S. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Ryll, H. Sainathan, P. Sakosky, M. Salemi, F. Samblowski, A. Sammut, L. de la Jordana, L. Sancho Sandberg, V. Sankar, S. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schlamminger, S. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Smith, R. J. E. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Tseng, K. Ugolini, D. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Waldman, S. J. Wallace, L. Wan, Y. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Akerlof, C. Boer, M. Fender, R. Gehrels, N. Klotz, A. Ofek, E. O. Smith, M. Sokolowski, M. Stappers, B. W. Steele, I. Swinbank, J. Wijers, R. A. M. J. Zheng, W. TI Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational waves; methods: observational ID GAMMA-RAY BURSTS; COALESCING COMPACT BINARIES; GRB OPTICAL AFTERGLOWS; SWIFT-ERA; SCIENCE RUN; SKY SURVEY; ROTSE-III; TELESCOPE; GALAXIES; PROSPECTS AB Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with similar to 50% or better probability with a few pointings of wide-field telescopes. C1 [Blackburn, L.; Camp, J. B.; Cannizzo, J.; Kanner, J. B.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Santamaria, L.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Wiseman, A. G.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Calloni, E.; Campsie, P.; Cumming, A.; Cunningham, L.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Martin, I. W.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rolland, L.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Basti, A.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Gouaty, R.; Letendre, N.; Marion, F.; Rolland, L.; Tournefier, E.; Yvert, M.] Univ Savoie, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Accadia, T.; Barone, F.; Calloni, E.; DeRosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Romano, R.] INFN, Sezione Napoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Calloni, E.; DeRosa, R.; Garufi, F.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, Complesso Univ Monte S Ang, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Meier, T.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C. R.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wen, S.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; DiGuglielmo, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueler-Ebhardt, H.; Pickenpack, M.; Piergiovanni, F.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Ryll, H.; Salemi, F.; Samblowski, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Degallaix, J.; DiGuglielmo, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Mossavi, K.; Mueler-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Ryll, H.; Salemi, F.; Samblowski, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Ochsner, E.; Oldenburg, R. G.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wiseman, A. G.; Yu, P.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA. [Allen, G. S.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Leindecker, N.; Marandi, A.; Markosyan, A.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Agathos, M.; Aylott, B. E.; Chalkley, E.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Page, A.; Smith, R. J. E.; Vecchio, A.; Boer, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sezione Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Kawabe, K.; Landry, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Moesta, P.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Schulz, B.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Garofoli, J. A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barriga, P.; Blair, D.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Kim, D.; Laas-Bourez, M.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fridriksson, J. K.; Fritschel, P.; Harry, G. M.; Homan, J.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; McDaniel, P.; Mittleman, R.; Oelker, E.; Sankar, S.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Soto, J.; Stein, A. J.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, CNRS IN2P3, CEA Irfu, Observ Paris,APC, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Redwine, K.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Univ Pisa, INFN, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Heitmann, H.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, IN2P3 CNRS, LAL, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Kinsey, M.; Kopparapu, R.; Lang, M.; Lundgren, A. P.; Menendez, D.; Owen, B. J.; Titsler, C.; Williams, H. R.; Smith, M.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] IN2P3 CNRS, LMA, F-69622 Villeurbanne, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] INFN, Sezione Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Cagnoli, G.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sezione Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Hartman, M. T.; Leonor, I.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, UPMC, CNRS, Lab Kastler Brossel,ENS, F-75005 Paris, France. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Rosinska, D.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J. B.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Husa, S.; de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, Palma De Mallorca 07122, Spain. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Geng, R.; Li, J.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.; Akerlof, C.; Zheng, W.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sezione Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Rapoport, S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Kamaretsos, I.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] INFN, Sezione Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Mori, T.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Daw, E. J.; Dhillon, V.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, WIGNER RCP, H-1121 Budapest, Konkoly Thege M, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] INFN, Grp Collegato Trento, I-38050 Povo, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.] Univ Trento, I-38050 Povo, Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] INFN, Sezione Padova, I-35131 Padua, Italy. [Dhurandhar, S.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Drever, R. W. P.; Ofek, E. O.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Farr, W.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Ganija, M. R.; Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Gretarsson, A. M.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Jang, H.; Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Jones, D. I.; Fender, R.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Schlamminger, S.] Univ Washington, Seattle, WA 98195 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Klotz, A.] IRAP, F-31400 Toulouse, France. [Sokolowski, M.] Andrzej Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Stappers, B. W.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Steele, I.] Liverpool John Moores Univ, Liverpool L3 2AJ, Merseyside, England. [Swinbank, J.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. RP Kanner, JB (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jonah.kanner@ligo.org RI Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Sokolowski, Marcin/B-5584-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Neri, Igor/F-1482-2010; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Marchesoni, Fabio/A-1920-2008; Bell, Angus/E-7312-2011; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; OI Vetrano, Flavio/0000-0002-7523-4296; Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Husa, Sascha/0000-0002-0445-1971; Vocca, Helios/0000-0002-1200-3917; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Swinbank, John/0000-0001-9445-1846; Ward, Robert/0000-0001-5503-5241; Danilishin, Stefan/0000-0001-7758-7493; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Sokolowski, Marcin/0000-0001-5772-338X; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Milano, Leopoldo/0000-0001-9487-5876; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Marchesoni, Fabio/0000-0001-9240-6793; Bell, Angus/0000-0003-1523-0821; Ciani, Giacomo/0000-0003-4258-9338; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Gray, Norman/0000-0002-1941-9202; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298 FU Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Australian Research Council; Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration [NNX08AV63G, NNX09AL61G]; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; French Ministere des Affaires Etrangeres; Ministere de l'Enseignement Superieur et de la Recherche; NSF [PHY-0801007]; Polish Ministry of Science FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of gravitational wave research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by The Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. The authors acknowledge support for TAROT from the French Ministere des Affaires Etrangeres and Ministere de l'Enseignement Superieur et de la Recherche. The observations by ROTSE-III were supported by NASA grant NNX08AV63G and NSF grant PHY-0801007. The work with Swift was partially supported through a NASA grant/cooperative agreement number NNX09AL61G to the Massachusetts Institute of Technology. The contribution from the "Pi of the Sky" group was financed by the Polish Ministry of Science in 2008-2011 as a research project. We thank Joshua S. Bloom for useful discussions on the rates of PTF transients and their classification. This document has been assigned LIGO Laboratory document number LIGO-P1000061-v19. NR 102 TC 47 Z9 47 U1 3 U2 42 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A124 DI 10.1051/0004-6361/201118219 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000131 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Ackermann, M Adams, J Aguilar, JA Ahlers, M Allen, MM Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brown, AM Buitink, S Caballero-Mora, KS Carson, M Chirkin, D Christy, B Clevermann, F Cohen, S Colnard, C Cowen, DF Silva, AHC D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Degner, T Demirors, L Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Dunkman, M Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Han, K Hanson, K Heinen, D Helbing, K Hellauer, R Herquet, P Hickford, S Hill, GC Hoffman, KD Hoffmann, B Homeier, A Hoshina, K Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Johansson, H Kampert, KH Kappes, A Karg, T Karle, A Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Kroll, G Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lunemann, J Madsen, J Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L de Los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schonwald, A Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Stuer, M Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M Akerlof, CW Pandey, SB Yuan, F Zheng, W AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Allen, M. M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brown, A. M. Buitink, S. Caballero-Mora, K. S. Carson, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. Silva, A. H. Cruz D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Degner, T. Demiroers, L. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Dunkman, M. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Han, K. Hanson, K. Heinen, D. Helbing, K. Hellauer, R. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, B. Homeier, A. Hoshina, K. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Johansson, H. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Kroll, G. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Luenemann, J. Madsen, J. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. de Los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoenwald, A. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Stueer, M. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. Akerlof, C. W. Pandey, S. B. Yuan, F. Zheng, W. CA IceCube Collaboration ROTSE Collaboration TI Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE neutrinos; supernovae: general; gamma-ray burst: general ID GAMMA-RAY BURSTS; HIGH-ENERGY NEUTRINOS; MUON NEUTRINOS; SKY SURVEY; ROTSE-III; TELESCOPE; AMANDA; SYSTEM; PERFORMANCE AB Context. Transient neutrino sources such as gamma-ray bursts (GRBs) and supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of less than or similar to 100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 1051 erg, respectively, does not exceed 4.2% at 90% confidence. C1 [Altmann, D.; Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heinen, D.; Hoffmann, B.; Huelss, J. -P.; Laihem, K.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Akerlof, C. W.; Zheng, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Kiryluk, J.; Klein, S. R.; Miarecki, S.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Goldschmidt, A.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Degner, T.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Stueer, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown 11000, BB, Barbados. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Meures, T.; Petrovic, J.; Swillens, Q.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium. [Bose, D.; Buitink, S.; De Clercq, C.; Labare, M.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Gross, A.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Pandey, S. B.] Aryabhatta Res Inst Observat Sci ARIES, Naini Tal, India. [Bai, X.; Berghaus, P.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bai, X.; Berghaus, P.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Zoll, M.] Univ Stockholm, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Zoll, M.] Univ Stockholm, Dept Phys, S-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Allen, M. M.; Caballero-Mora, K. S.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Larson, M. J.; Meszaros, P.; Rutledge, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Engdegard, O.; Hallgren, A.; Miller, J.; de Los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Yuan, F.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Auffenberg, J.; Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Berg Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Han, K.; Jacobi, E.; Lauer, R.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Tosi, D.; Walter, M.; Wischnewski, R.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. RP Abbasi, R (reprint author), Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. EM franckowiak@physik.uni-bonn.de RI Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Taavola, Henric/B-4497-2011; OI Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Wiebusch, Christopher/0000-0002-6418-3008; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886 FU US National Science Foundation-Office of Polar Programs; US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG) grid infrastructure; US Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation; Ministry of Education of Brazil; GIF; NSF [PHY-0801007]; NASA [NNX08AV63G] FX We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Programs, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. The research of M. Voge was supported in part by a GIF grant. The ROTSE project is supported by NSF grant PHY-0801007 and NASA grant NNX08AV63G. We are grateful to Andre Phillips at Siding Spring Observatory, David Doss at the McDonald Observatory, Toni Hanke at the HESS Observatory and Tuncay Ozisik at TUBITAK National Observatory for their invaluable efforts in maintaining the ROTSE telescopes. NR 48 TC 18 Z9 18 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A60 DI 10.1051/0004-6361/201118071 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000067 ER PT J AU De Beck, E Lombaert, R Agundez, M Daniel, F Decin, L Cernicharo, J Muller, HSP Min, M Royer, P Vandenbussche, B de Koter, A Waters, LBFM Groenewegen, MAT Barlow, MJ Guelin, M Kahane, C Pearson, JC Encrenaz, P Szczerba, R Schmidt, MR AF De Beck, E. Lombaert, R. Agundez, M. Daniel, F. Decin, L. Cernicharo, J. Mueller, H. S. P. Min, M. Royer, P. Vandenbussche, B. de Koter, A. Waters, L. B. F. M. Groenewegen, M. A. T. Barlow, M. J. Guelin, M. Kahane, C. Pearson, J. C. Encrenaz, P. Szczerba, R. Schmidt, M. R. TI On the physical structure of IRC+10216 Ground-based and Herschel observations of CO and C2H SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: AGB and post-AGB; radiative transfer; astrochemistry; stars: mass-loss; stars: carbon; stars: individual: IRC+10216 ID MASS-LOSS-RATE; ROTATIONAL LINE-PROFILES; CARBON-CHAIN RADICALS; RED SUPERGIANT STARS; DUST FORMATION ZONE; VY CANIS MAJORIS; CIRCUMSTELLAR ENVELOPE; AGB STARS; RADIATIVE-TRANSFER; EVOLVED STARS AB Context. The carbon-rich asymptotic giant branch star IRC+10 216 undergoes strong mass loss, and quasi-periodic enhancements of the density of the circumstellar matter have previously been reported. The star's circumstellar environment is a well-studied and complex astrochemical laboratory, in which many molecular species have been proved to be present. CO is ubiquitous in the circumstellar envelope, while emission from the ethynyl (C2H) radical is detected in a spatially confined shell around IRC+10 216. We recently detected unexpectedly strong emission from the N = 4-3, 6-5, 7-6, 8-7, and 9-8 transitions of C2H with the IRAM 30m telescope and with Herschel/HIFI, which challenges the available chemical and physical models. Aims. We aim to constrain the physical properties of the circumstellar envelope of IRC+10 216, including the effect of episodic mass loss on the observed emission lines. In particular, we aim to determine the excitation region and conditions of C2H to explain the recent detections and to reconcile them with interferometric maps of the N = 1-0 transition of C2H. Methods. Using radiative-transfer modelling, we provide a physical description of the circumstellar envelope of IRC+10 216, constrained by the spectral-energy distribution and a sample of 20 high-resolution and 29 low-resolution CO lines - to date, the largest modelled range of CO lines towards an evolved star. We furthermore present the most detailed radiative-transfer analysis of C2H that has been done so far. Results. Assuming a distance of 150 pc to IRC+10 216, the spectral-energy distribution was modelled with a stellar luminosity of 11300 L-circle dot and a dust-mass-loss rate of 4.0 x 10(-8) M-circle dot yr(-1). Based on the analysis of the 20 high-frequency-resolution CO observations, an average gas-mass-loss rate for the last 1000 years of 1.5 x 10(-5) M-circle dot yr(-1) was derived. This results in a gas-to-dust-mass ratio of 375, typical for this type of star. The kinetic temperature throughout the circumstellar envelope is characterised by three power laws: T-kin(r) proportional to r(-0.58) for radii r <= 9 stellar radii, T-kin(r) proportional to r(-0.40) for radii 9 <= r <= 65 stellar radii, and T-kin(r) proportional to r(-1.20) for radii r >= 65 stellar radii. This model successfully describes all 49 observed CO lines. We also show the effect of density enhancements in the wind of IRC+10 216 on the C2H-abundance profile, and the close agreement we find of the model predictions with interferometric maps of the C2H N = 1-0 transition and with the rotational lines observed with the IRAM 30m telescope and Herschel/HIFI. We report on the importance of radiative pumping to the vibrationally excited levels of C2H and the significant effect this pumping mechanism has on the excitation of all levels of the C2H-molecule. C1 [De Beck, E.; Lombaert, R.; Decin, L.; Royer, P.; Vandenbussche, B.] Katholieke Univ Leuven, Dept Phys & Astron, Inst Astron, B-3001 Heverlee, Belgium. [Agundez, M.; Daniel, F.; Cernicharo, J.] CSIC, INTA, CAB, Madrid 28850, Spain. [Agundez, M.] Observ Paris, LUTH, F-92190 Meudon, France. [Decin, L.; de Koter, A.; Waters, L. B. F. M.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Min, M.; de Koter, A.] Univ Utrecht, Astron Inst Utrecht, NL-3508 TA Utrecht, Netherlands. [Waters, L. B. F. M.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Groenewegen, M. A. T.] Royal Observ Belgium, B-1180 Brussels, Belgium. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Guelin, M.] IRAM, F-38406 St Martin Dheres, France. [Guelin, M.; Encrenaz, P.] Observ Paris, CNRS, LERMA, UMR8112, F-75231 Paris 05, France. [Guelin, M.; Encrenaz, P.] Ecole Normale Super, F-75231 Paris 05, France. [Kahane, C.] Univ Grenoble 1, CNRS, UMR 5571, LAOG,Observ Grenoble, Grenoble, France. [Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Szczerba, R.; Schmidt, M. R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. RP De Beck, E (reprint author), Katholieke Univ Leuven, Dept Phys & Astron, Inst Astron, Celestijnenlaan 200D, B-3001 Heverlee, Belgium. EM elvire.debeck@ster.kuleuven.be RI Barlow, Michael/A-5638-2009; Agundez, Marcelino/I-5369-2012; OI Barlow, Michael/0000-0002-3875-1171; Agundez, Marcelino/0000-0003-3248-3564; Mueller, Holger/0000-0002-0183-8927; De Beck, Elvire/0000-0002-7441-7189 FU Fund for Scientific Research Flanders (FWO) [G.0470.07]; European Community [235753]; Spanish MICINN [AYA2006-14876, AYA2009-07304, CSD2009-03004]; Bundesministerium fur Bildung und Forschung (BMBF); Belgian Federal Science Policy Office via de PRODEX of ESA; National Science Center [N203 581040]; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX The authors wish to thank B. L. de Vries for calculating and providing dust opacities based on optical constants from the literature. E. D. B. acknowledges financial support from the Fund for Scientific Research Flanders (FWO) under grant number G.0470.07. M. A is supported by a Marie Curie Intra-European Individual Fellowship within the European Community 7th Framework under grant agreement No. 235753. L. D. acknowledges financial support from the FWO. J.C. thanks the Spanish MICINN for funding support under grants AYA2006-14876, AYA2009-07304 and CSD2009-03004. HSPM is very grateful to the Bundesministerium fur Bildung und Forschung (BMBF) for financial support aimed at maintaining the Cologne Database for Molecular Spectroscopy, CDMS. This support has been administered by the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). M. G. and P. R. acknowledge support from the Belgian Federal Science Policy Office via de PRODEX Programme of ESA. RSz and MSch ackowledge support from grant N203 581040 of National Science Center. The Herschel spacecraft was designed, built, tested, and launched under a contract to ESA managed by the Herschel/Planck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at spacecraft level, Thales Alenia Space (Turin) responsible for the service module, and Astrium (Toulouse) responsible for the telescope, with in excess of a hundred subcontractors. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributionAas from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio AstronAsmico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). PACS has been designed and built by a consortium of institutes and university departments from across Europe under the leadership of Principal Investigator Albrecht Poglitsch located at Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany. Consortium members are: Austria: UVIE; Belgium: IMEC, KUL, CSL; France: CEA, OAMP; Germany: MPE, MPIA; Italy: IFSI, OAP/OAT, OAA/CAISMI, LENS, SISSA; Spain: IAC. NR 86 TC 31 Z9 31 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A108 DI 10.1051/0004-6361/201117635 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000115 ER PT J AU Duddy, SR Lowry, SC Wolters, SD Christou, A Weissman, P Green, SF Rozitis, B AF Duddy, S. R. Lowry, S. C. Wolters, S. D. Christou, A. Weissman, P. Green, S. F. Rozitis, B. TI Physical and dynamical characterisation of the unbound asteroid pair 7343-154634 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE minor planets, asteroids: general ID NEAR-EARTH ASTEROIDS; MEAN MOTION RESONANCES; THERMAL-MODEL; ROTATIONAL FISSION; BINARY ASTEROIDS; 6070 RHEINLAND; MAIN BELT; ORIGIN AB Context. Models have shown that asteroids can undergo fission if their rate of rotation is steadily increased. The forces acting to pull the asteroid apart exceed the material strength and gravitational force holding the asteroid together and material can escape from the surface of the asteroid. Initially forming a binary asteroid system, the components are capable of decoupling at low relative velocity from their mutual orbit if their mass ratio is less than 0.2. A number of asteroids with very similar orbital elements have been shown to have had very recent (< 1Myr) encounters at distances smaller than the Hill sphere radius of the larger of the asteroids. The mass ratio of the asteroids in each pair is estimated to be less than 0.2, suggesting that these unbound pairs are the result of rotational fission. Aims. We determine whether the asteroids in one such unbound pair, (7343) Ockeghem and (154 634) 2003 XX28, share a common composition, indicative of asteroids formed from a common parent and further constrain a likely formation age for this pair. Methods. We have obtained spectroscopic observations of each asteroid covering the wavelength range 0.45 to 1.0 microns. Using thermal observations we have measured the size and albedo of (7343) Ockeghem. Combined with optical lightcurve data of both asteroids, we have constrained the size and density of the asteroids and estimated the strength of the Yarkovsky force experienced by both. This improved physical information has been used in new dynamical simulations of the asteroids' orbits to better constrain a formation time of this pair. Results. We find that the asteroids have very similar spectra consistent with an S-type taxonomy. The geometric albedo of (7343) Ockeghem, 0.20 +/- 0.06 is consistent with this classification. The mass ratio range of the asteroids assuming an equal density, 0.007 to 0.065, is consistent with models of unbound asteroid pair formation. A new dynamical analysis has indicated that an absolute lower limit for the age of this pair is 400 kyr with a more likely age around 560 kyr, lower than a previous estimate of 800 kyr. C1 [Duddy, S. R.; Lowry, S. C.] Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Wolters, S. D.; Green, S. F.; Rozitis, B.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Wolters, S. D.; Weissman, P.] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA. [Christou, A.] Armagh Observ, Armagh BT61 9DG, North Ireland. RP Duddy, SR (reprint author), Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. EM s.duddy@kent.ac.uk RI Green, Simon/C-7408-2009 FU UK Science and Technology Facilities Council FX Based on observations made with ESO telescopes at the La Silla and Paranal Observatories under programme ID 185. C-1033 and 185.1034. Observations were also obtained at the Palomar Observatory 200 '' Hale Telescope, operated by the California Institute of Technology. We acknowledge the financial support of the UK Science and Technology Facilities Council. A part of this work was supported by the NASA Planetary Astronomy Program and was performed at the Jet Propulsion Laboratory under contract with NASA. S. C. L. acknowledges support from SEPNet. The authors would like to thank David Vokrouhlicky for his useful and insightful comments supplied during the review process. This helped improve the final version of this paper. IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. We acknowledge JPLs Horizons online ephemeris generator for providing the asteroids position and rate of motion during the observations. NR 44 TC 8 Z9 8 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A36 DI 10.1051/0004-6361/201118302 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000043 ER PT J AU Fletcher, LN Swinyard, B Salji, C Polehampton, E Fulton, T Sidher, S Lellouch, E Moreno, R Orton, G Cavalie, T Courtin, R Rengel, M Sagawa, H Davis, GR Hartogh, P Naylor, D Walker, H Lim, T AF Fletcher, L. N. Swinyard, B. Salji, C. Polehampton, E. Fulton, T. Sidher, S. Lellouch, E. Moreno, R. Orton, G. Cavalie, T. Courtin, R. Rengel, M. Sagawa, H. Davis, G. R. Hartogh, P. Naylor, D. Walker, H. Lim, T. TI Sub-millimetre spectroscopy of Saturn's trace gases from Herschel/SPIRE SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Planets and satellites: atmospheres; submillimeter: general; planets and satellites: individual: Saturn; planets and satellites: composition ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; CASSINI/CIRS OBSERVATIONS; COMET SHOEMAKER-LEVY-9; VERTICAL-DISTRIBUTION; RADIATIVE-TRANSFER; HYDROGEN HALIDES; SPIRE INSTRUMENT; LINE PARAMETERS; CLOUD STRUCTURE; GIANT PLANETS AB Aims. We provide an extensive new sub-millimetre survey of the trace gas composition of Saturn's atmosphere using the broad spectral range (15-51 cm(-1)) and high spectral resolution (0.048 cm(-1)) offered by Fourier transform spectroscopy by the Herschel/SPIRE instrument (Spectral and Photometric Imaging REceiver). Observations were acquired in June 2010, shortly after equinox, with negligible contribution from Saturn's ring emission. Methods. Tropospheric temperatures and the vertical distributions of phosphine and ammonia are derived using an optimal estimation retrieval algorithm to reproduce the sub-millimetre data. The abundance of methane, water and upper limits on a range of different species are estimated using a line-by-line forward model. Results. Saturn's disc-averaged temperature profile is found to be quasi-isothermal between 60 and 300 mbar, with uncertainties of 7 K due to the absolute calibration of SPIRE. Modelling of PH3 rotational lines confirms the vertical profile derived in previous studies and shows that negligible PH3 is present above the 10- to 20-mbar level. The upper tropospheric abundance of NH3 appears to follow a vapour pressure distribution throughout the region of sensitivity in the SPIRE data, but the degree of saturation is highly uncertain. The tropospheric CH4 abundance and Saturn's bulk C/H ratio are consistent with Cassini studies. We improve the upper limits on several species (H2S, HCN, HCP and HI); provide the first observational constraints on others (SO2, CS, methanol, formaldehyde, CH3Cl); and confirm previous upper limits on HF, HCl and HBr. Stratospheric emission from H2O is suggested at 36.6 and 38.8 cm(-1) with a 1 sigma significance level, and these lines are used to derive mole fractions and column abundances consistent with ISO and SWAS estimations a decade earlier. C1 [Fletcher, L. N.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Swinyard, B.; Salji, C.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Swinyard, B.; Polehampton, E.; Sidher, S.; Walker, H.; Lim, T.] Rutherford Appleton Lab, Space Sci & Technol Dept, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Polehampton, E.; Naylor, D.] Univ Lethbridge, Inst Space Imaging Sci, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. [Fulton, T.] Blue Sky Spect, Lethbridge, AB T1J 0N9, Canada. [Lellouch, E.; Moreno, R.; Courtin, R.] Univ Paris Diderot, Univ Paris 06, CNRS, LESIA Observ Paris, F-92195 Meudon, France. [Orton, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cavalie, T.] Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France. [Cavalie, T.] CNRS, LAB, UMR 5804, F-33270 Floirac, France. [Rengel, M.; Sagawa, H.; Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Davis, G. R.] Joint Astron Ctr, Hilo, HI 96720 USA. RP Fletcher, LN (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Pk Rd, Oxford OX1 3PU, England. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011 OI Fletcher, Leigh/0000-0001-5834-9588 FU CSA (Canada); NAOC (China); CEA (France); CNES, (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA); University of Oxford; Centre National d'Etudes Spatiales (CNES); Jet Propulsion Laboratory, California Institute of Technology FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC and UKSA (UK); and NASA (USA). Fletcher was supported during this research by a Glasstone Science Fellowship at the University of Oxford. Cavalie acknowledges for funding from the Centre National d'Etudes Spatiales (CNES). We thank C. Ferrari for her assistance with the calculation of Saturn's ring emission spectrum; P. Irwin for the use of the radiative transfer and retrieval codes; and L. Brown and J. Hurley for discussion of Saturn's ammonia distribution. Orton conducted a portion of this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 83 TC 9 Z9 9 U1 1 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A44 DI 10.1051/0004-6361/201118415 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000051 ER PT J AU Lebreton, J Augereau, JC Thi, WF Roberge, A Donaldson, J Schneider, G Maddison, ST Menard, F Riviere-Marichalar, P Mathews, GS Kamp, I Pinte, C Dent, WRF Barrado, D Duchene, G Gonzalez, JF Grady, CA Meeus, G Pantin, E Williams, JP Woitke, P AF Lebreton, J. Augereau, J. -C. Thi, W. -F. Roberge, A. Donaldson, J. Schneider, G. Maddison, S. T. Menard, F. Riviere-Marichalar, P. Mathews, G. S. Kamp, I. Pinte, C. Dent, W. R. F. Barrado, D. Duchene, G. Gonzalez, J. -F. Grady, C. A. Meeus, G. Pantin, E. Williams, J. P. Woitke, P. TI An icy Kuiper belt around the young solar-type star HD 181327 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: HD 181327; circumstellar matter; infrared: planetary systems; radiative transfer ID MICROSCOPII DEBRIS DISK; RADIATION THERMOCHEMICAL MODELS; GENEVA-COPENHAGEN SURVEY; SPITZER-SPACE-TELESCOPE; HR 4796A DISK; PROTOPLANETARY DISKS; OPTICAL-CONSTANTS; INFRARED-EMISSION; DUST GRAINS; EVOLUTION AB Context. HD 181327 is a young main sequence F5/F6 V star belonging to the beta Pictoris moving group (age similar to 12 Myr). It harbors an optically thin belt of circumstellar material at radius similar to 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory(star), complemented by new 3.2 mm observations carried with the ATCA(star star) array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRATER to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of similar to 0.05 M-circle plus. (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than similar to 17 M-circle plus. Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets. C1 [Lebreton, J.; Augereau, J. -C.; Thi, W. -F.; Menard, F.; Pinte, C.; Duchene, G.] UJF Grenoble 1 CNRS INSU, Inst Planetol & Astrophys Grenoble IPAG UMR 5274, F-38041 Grenoble, France. [Roberge, A.] NASA Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Donaldson, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Schneider, G.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Maddison, S. T.] Swinburne Univ, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Riviere-Marichalar, P.; Barrado, D.] Ctr Astrobiol INTA CSIC, LAEX, Dept Astrofis, Villanueva De La Canada 28691, Spain. [Mathews, G. S.; Williams, J. P.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Kamp, I.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Dent, W. R. F.] ESO ALMA, Santiago, Chile. [Barrado, D.] Ctr Astron Hispano Aleman, Calar Alto Observ, Almeria 04004, Spain. [Duchene, G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Gonzalez, J. -F.] Univ Lyon, F-69003 Lyon, France. [Gonzalez, J. -F.] Univ Lyon 1, Observ Lyon, F-69230 St Genis Laval, France. [Gonzalez, J. -F.] Ctr Rech Astrophys Lyon, CNRS, UMR 5574, F-69007 Lyon, France. [Gonzalez, J. -F.] Ecole Normale Super Lyon, F-69007 Lyon, France. [Grady, C. A.] NASA Goddard Space Flight Ctr, Eureka Sci & Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Meeus, G.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain. [Pantin, E.] CEA IRFU SAp, AIM UMR 7158, F-91191 Gif Sur Yvette, France. [Woitke, P.] Univ Edinburgh, SUPA, Inst Astron, Royal Observ, Edinburgh EH8 9YL, Midlothian, Scotland. [Woitke, P.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Woitke, P.] UK Astron Technol Ctr, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Lebreton, J (reprint author), UJF Grenoble 1 CNRS INSU, Inst Planetol & Astrophys Grenoble IPAG UMR 5274, F-38041 Grenoble, France. EM jeremy.lebreton@obs.ujf-grenoble.fr RI Roberge, Aki/D-2782-2012; Gonzalez, Jean-Francois/B-7189-2008; Barrado Navascues, David/C-1439-2017; OI Roberge, Aki/0000-0002-2989-3725; Gonzalez, Jean-Francois/0000-0001-9423-6062; Barrado Navascues, David/0000-0002-5971-9242; Williams, Jonathan/0000-0001-5058-695X FU Programme National de Planetologie (PNP); CNES; French National Research Agency (ANR) [ANR-2010 BLAN-0505-01 (EXOZODI)]; NASA [NAS 5-26555]; NASA through STScI [10177] FX We wish to thank Paul Smith and Karl Stapelfeldt for their helpful comments regarding the Spitzer/MIPS-SED data, and Johan Olofsson for reducing the Spitzer/IRS spectrum. We are grateful to the anonymous referee who suggested improvement to the manuscript. We also thank the Programme National de Planetologie (PNP) and the CNES for supporting part of this research. J.L. and J.C.A. thank the French National Research Agency (ANR) for financial support through contract ANR-2010 BLAN-0505-01 (EXOZODI). This study is based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 10177. Support for program # 10177 was provided by NASA through a grant from the STScI. NR 58 TC 57 Z9 57 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A17 DI 10.1051/0004-6361/201117714 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000024 ER PT J AU Mayo, JH Vernet, J De Breuck, C Galametz, A Seymour, N Stern, D AF Mayo, J. H. Vernet, J. De Breuck, C. Galametz, A. Seymour, N. Stern, D. TI Overdensities of 24 mu m sources in the vicinities of high-redshift radio galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; infrared: galaxies; galaxies: clusters: general; galaxies: evolution; galaxies:formation ID ACTIVE GALACTIC NUCLEI; H-ALPHA EMITTERS; SPITZER-SPACE-TELESCOPE; STAR-FORMATION HISTORY; EXTREMELY RED OBJECTS; LYMAN-BREAK GALAXIES; SIMILAR-TO 2.5; PROTO-CLUSTER; 4C 23.56; PROTOCLUSTER AB We present a statistical study of the environments of 63 high- redshift radio galaxies ( HzRGs) between redshifts 1 <= z <= 5.2, using the 24 mu m waveband of the MIPS instrument aboard the Spitzer Space Telescope. Using a counts- in- cell analysis, a statistically significant source overdensity is found in 1.75 radius circular cells centred on the HzRGs when compared to reference fields. We report an average overdensity of d (= N-targets/ _ N (reference)) = 2.2 +/- 1.2 at a flux density cut of f24(mu m) = 0.3mJy. This result implies that HzRGs are likely to lie in protoclusters of active and star- forming galaxies at high redshift. Over 95% of our targeted HzRGs lie in higher than average density fields. Further, 20 ( 32%) of our selected fields are found to be overdense to at least a 3s significance, of which 9 are newly identified protocluster candidates. We observe a weak correlation between redshift and 24 mu m source density, and discuss the populations being probed at different redshifts. In our uniformly selected sample, which was designed to cover two orders of magnitude in radio luminosity throughout z = 1- 4, we find that the 24 mu m source density does not depend on radio luminosity. We also compare this result with recent work describing IRAC source overdensities around the same HzRGs and find correlations between the results. C1 [Mayo, J. H.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Vernet, J.; De Breuck, C.] European So Observ, D-85748 Garching, Germany. [Galametz, A.] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. RP Mayo, JH (reprint author), Univ Edinburgh, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM jhm@roe.ac.uk OI Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536 FU NASA FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. J.H.M. would like to thank the ESO DGDF for helping make this work possible. NR 57 TC 14 Z9 14 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A33 DI 10.1051/0004-6361/201118254 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000040 ER PT J AU Olivares, F Greiner, J Schady, P Rau, A Klose, S Kruhler, T Afonso, PMJ Updike, AC Nardini, M Filgas, R Guelbenzu, AN Clemens, C Elliott, J Kann, DA Rossi, A Sudilovsky, V AF Olivares E, F. Greiner, J. Schady, P. Rau, A. Klose, S. Kruhler, T. Afonso, P. M. J. Updike, A. C. Nardini, M. Filgas, R. Guelbenzu, A. Nicuesa Clemens, C. Elliott, J. Kann, D. A. Rossi, A. Sudilovsky, V. TI The fast evolution of SN 2010bh associated with XRF 100316D SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual: XRF 100316D; supernovae: individual: SN 2010bh; supernovae: general ID GAMMA-RAY BURST; SUPERNOVA SHOCK BREAKOUT; NEAR-INFRARED OBSERVATIONS; HUBBLE-SPACE-TELESCOPE; LIGHT CURVES; HOST GALAXY; GRB 970228; OPTICAL AFTERGLOW; BRIGHT SUPERNOVA; RED SUPERGIANT AB Context. The first observational evidence of a connection between supernovae (SNe) and gamma-ray bursts (GRBs) was found about a decade ago. Since then, only half a dozen spectroscopically confirmed associations have been discovered and XRF 100316D/SN 2010bh is among the latest. Aims. We constrain the progenitor radius, the host-galaxy extinction, and the physical parameters of the explosion of XRF 100316D and its associated SN 2010bh at z = 0.059. We study the brightness and colours of SN 2010bh in the context of GRB-SNe. Methods. We began observations 12 h after the GRB trigger and continued until 80 days after the burst. The Gamma-Ray burst Optical and Near-infrared Detector (GROND) provided excellent photometric data of XRF 100316D/SN 2010bh in six filter bands covering a wavelength range from approximately 350 to 1800 nm, significantly expanding the pre-existing data set for this event. Combining GROND and Swift data, the early broad-band spectral energy distribution (SED) is modelled with a blackbody and afterglow component attenuated by dust and gas absorption. The temperature and radius evolution of the thermal component are analysed and combined with earlier measurements available from the literature. Templates of SN 1998bw are fitted to the SN itself to directly compare the light-curve properties. Finally, a two-component parametrised model is fitted to the quasi-bolometric light curve, which delivers physical parameters of the explosion. Results. The best-fit models to the broad-band SEDs imply moderate reddening along the line of sight through the host galaxy (A(V,host) = 1.2 +/- 0.1 mag). Furthermore, the parameters of the blackbody component reveal a cooling envelope at an apparent initial radius of 7 x 10(11) cm, which is compatible with a dense wind surrounding a Wolf-Rayet star. A multicolour comparison shows that SN 2010bh is 60-70% as bright as SN 1998bw. It proves to be the most rapidly evolving GRB-SNe to date, reaching maximum brightness at 8-9 days after the burst in the blue bands. Modelling of the quasi-bolometric light curve yields M-Ni = 0.21 +/- 0.03 M-circle dot and M-ej = 2.6 +/- 0.2 M-circle dot, typical of values within the GRB-SN population. The kinetic energy is E-k = (2.4 +/- 0.7) x 10(52) erg, which is making this SN the second most energetic GRB-SN after SN 1998bw. Conclusions. This supernova has one of the earliest peaks ever recorded and thereafter fades more rapidly than other GRB-SNe, hypernovae, or typical type-Ic SNe. This implies that a thin envelope is possibly expanding at very high velocities and is, therefore, unable to retain the gamma-rays that would prolong the duration of the SN event. C1 [Olivares E, F.; Greiner, J.; Schady, P.; Rau, A.; Kruhler, T.; Afonso, P. M. J.; Nardini, M.; Filgas, R.; Clemens, C.; Elliott, J.; Sudilovsky, V.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Klose, S.; Guelbenzu, A. Nicuesa; Kann, D. A.; Rossi, A.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Kruhler, T.] Tech Univ Munich, D-85748 Garching, Germany. [Kruhler, T.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Updike, A. C.] NASA, Observat Cosmol Lab, GSFC, Greenbelt, MD 20771 USA. [Updike, A. C.] CRESST, Greenbelt, MD 20771 USA. [Updike, A. C.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Olivares, F (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM foe@mpe.mpg.de RI Rossi, Andrea/N-4674-2015; OI Olivares E., Felipe/0000-0002-5115-6377; Rossi, Andrea/0000-0002-8860-6538; Kruehler, Thomas/0000-0002-8682-2384 FU Deutsche Forschungsgemeinschaft (DFG) [HA 1850/28-1, Kl 766/16-1, SA 2001/2-1, SA 2001/1-1]; German Deutscher Akademischer Austausch Dienst, DAAD; Chilean Comision Nacional de Investigacion Cientifica y Tecnologica, CONICYT; European Commission; Danish National Research Foundation; MPE; NASA [NAS 5-26555] FX F.O.E. thanks Ferdinando Patat for stimulating discussion as well as for accurate comments and suggestions. We thank the referee and editors for accurate comments and useful suggestions. Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger, Deutsche Forschungsgemeinschaft (DFG) grant HA 1850/28-1. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The Ph.D. studies of F.O.E. are funded by the German Deutscher Akademischer Austausch Dienst, DAAD, and the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica, CONICYT. T. K. acknowledges support by the DFG cluster of excellence "Origin and Structure of the Universe" and by the European Commission under the Marie Curie Intra-European Fellowship Programme. The Dark Cosmology Centre is funded by the Danish National Research Foundation. S. K., A.N.G., A. Rossi, and D. A. K. acknowledge support by DFG grant Kl 766/16-1. M.N. acknowledges support by DFG grant SA 2001/2-1. P. S. acknowledges support by DFG grant SA 2001/1-1. A. C. U., A.N.G., D. A. K., and A. Rossi are grateful for travel funding support through MPE. Figure 1 is partially based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This research has made use of NASA's Astrophysics Data System. NR 148 TC 0 Z9 0 U1 2 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2012 VL 539 AR A76 DI 10.1051/0004-6361/201117929 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932AS UT WOS:000303262000083 ER PT J AU Melli, G Wu, XD Beinat, P Bonchi, F Cao, LB Duan, R Faloutsos, C Ghani, R Kitts, B Goethals, B Mclachlan, G Pei, J Srivastava, A Zaiane, O AF Melli, Gabor Wu, Xindong Beinat, Paul Bonchi, Francesco Cao, Longbing Duan, Rong Faloutsos, Christos Ghani, Rayid Kitts, Brendan Goethals, Bart Mclachlan, Geoff Pei, Jian Srivastava, Ashok Zaiane, Osmar TI TOP-10 DATA MINING CASE STUDIES SO INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING LA English DT Article DE Data mining; cost-benefit analysis; case study AB We report on the panel discussion held at the ICDM'10 conference on the top 10 data mining case studies in order to provide a snapshot of where and how data mining techniques have made significant real-world impact. The tasks covered by 10 case studies range from the detection of anomalies such as cancer, fraud, and system failures to the optimization of organizational operations, and include the automated extraction of information from unstructured sources. From the 10 cases we find that supervised methods prevail while unsupervised techniques play a supporting role. Further, significant domain knowledge is generally required to achieve a completed solution. Finally, we find that successful applications are more commonly associated with continual improvement rather than by single "aha moments" of knowledge ("nugget") discovery. C1 [Melli, Gabor] PredictionWorks Inc, Seattle, WA 98126 USA. [Wu, Xindong] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA. [Beinat, Paul] NeuronWorks Int, Hurstville, NSW 2220, Australia. [Bonchi, Francesco] Yahoo Res, Barcelona, Spain. [Cao, Longbing] Univ Technol Sydney, Sydney, NSW 2007, Australia. [Duan, Rong] AT&T Labs, Florham Pk, NJ USA. [Faloutsos, Christos] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA. [Ghani, Rayid] Accenture Technol Labs, Chicago, IL 60601 USA. [Kitts, Brendan] Lucid Commerce, Seattle, WA 98104 USA. [Goethals, Bart] Univ Antwerp, Dept Math & Comp Sci, Antwerp, Belgium. [Mclachlan, Geoff] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia. [Pei, Jian] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada. [Srivastava, Ashok] NASA, Washington, DC USA. [Zaiane, Osmar] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada. RP Melli, G (reprint author), PredictionWorks Inc, Seattle, WA 98126 USA. EM gmelli@predictionworks.com; xwu@cems.uvm.edu; PBeinat@neuronworks.com; bonchi@yahoo-inc.com; lbcao@it.uts.edu.au; rongduan@research.att.com; christos@cs.cmu.edu; rayid.ghani@gmail.com; bkitts@lucidcommerce.com; bart.goethals@ua.ac.be; gjm@maths.uq.edu.au; jpei@sfu.ca; ashok.srivastava@nasa.gov; zaiane@cs.ualberta.ca RI McLachlan, Geoffrey/A-1491-2008; OI McLachlan, Geoffrey/0000-0002-5921-3145; Goethals, Bart/0000-0001-9327-9554; cao, longbing/0000-0003-1562-9429 FU US National Science Foundation (NSF) [CCF-0905337] FX Xindong Wu is supported by the US National Science Foundation (NSF) under grant CCF-0905337. NR 16 TC 3 Z9 3 U1 1 U2 10 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-6220 J9 INT J INF TECH DECIS JI Int. J. Inf. Technol. Decis. Mak. PD MAR PY 2012 VL 11 IS 2 BP 389 EP 400 DI 10.1142/S021962201240007X PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 943EG UT WOS:000304102700007 ER PT J AU Grugel, RN Brush, LN Anilkumar, AV AF Grugel, Richard N. Brush, Lucien N. Anilkumar, Amrutur V. TI Disruption of an Aligned Dendritic Network by Bubbles During Re-melting in a Microgravity Environment SO MICROGRAVITY SCIENCE AND TECHNOLOGY LA English DT Article DE Microgravity; Thermocapillary convection; Directional solidification; Dendrite growth; Succinonitrile; International space station ID SINGLE-CRYSTAL SUPERALLOYS; NICKEL-BASE SUPERALLOYS; BINARY METALLIC ALLOYS; DIRECTIONAL SOLIDIFICATION; FLUID-FLOW; GROWTH; CONVECTION; SEGREGATION; MORPHOLOGY; MACROSEGREGATION AB The Pore Formation and Mobility Investigation (PFMI) utilized quartz tubes containing succinonitrile and 0.24 wt% water "alloys" for directional solidification (DS) experiments which were conducted in the microgravity environment aboard the International Space Station (ISS; 2002-2006). The sample mixture was initially melted back under controlled conditions in order to establish an equilibrium solid-liquid interface. During this procedure thermocapillary convection initiated when the directional melting exposed a previously trapped bubble. The induced fluid flow was capable of detaching and redistributing large arrays of aligned dendrite branches. In other cases, rapidly translating bubbles originating in the mushy zone dislodged dendrite fragments from the interface. The detrimental consequence of randomly oriented dendrite arms at the equilibrium interface upon reinitiating controlled solidification is discussed. C1 [Brush, Lucien N.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Anilkumar, Amrutur V.] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA. [Grugel, Richard N.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Brush, Lucien N.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Anilkumar, Amrutur V.] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA. RP Grugel, RN (reprint author), NASA, George C Marshall Space Flight Ctr, MS-EM31, Huntsville, AL 35812 USA. EM richard.n.grugel@nasa.gov FU PFMI team; Glovebox team; NASA/Marshall Space Flight Center Engineering Directorate; Telescience Support Center (TSC); Huntsville Operations Support Center (HOSC) FX The authors are grateful to Peggy Whitson, Mike Foale, and Ed Lu for conducting the experiments aboard the International Space Station. Support from the PFMI and Glovebox teams, the NASA/Marshall Space Flight Center Engineering Directorate, the Telescience Support Center (TSC), and the Huntsville Operations Support Center (HOSC) is gratefully acknowledged. NR 47 TC 1 Z9 1 U1 2 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-0108 EI 1875-0494 J9 MICROGRAVITY SCI TEC JI Microgravity Sci. Technol. PD MAR PY 2012 VL 24 IS 2 BP 93 EP 101 DI 10.1007/s12217-011-9297-y PG 9 WC Engineering, Aerospace; Thermodynamics; Mechanics SC Engineering; Thermodynamics; Mechanics GA 940BI UT WOS:000303864600003 ER PT J AU Allain, V Nicol, S Polovina, J Coll, M Olson, R Griffiths, S Dambacher, J Young, J Molina, JJ Hoyle, S Lawson, T AF Allain, Valerie Nicol, Simon Polovina, Jeffrey Coll, Marta Olson, Robert Griffiths, Shane Dambacher, Jeffrey Young, Jock Molina, Jesus Jurado Hoyle, Simon Lawson, Tim TI International workshop on opportunities for ecosystem approaches to fisheries management in the Pacific Ocean tuna fisheries SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Review C1 [Allain, Valerie; Nicol, Simon; Molina, Jesus Jurado; Hoyle, Simon; Lawson, Tim] Secretariat Pacific Community, Noumea, New Caledonia. [Polovina, Jeffrey] Natl Marine Fisheries Serv, Honolulu, HI 96822 USA. [Coll, Marta] Inst Ciencias Mar, Barcelona 08003, Spain. [Olson, Robert] Interamer Trop Tuna Commiss, La Jolla, CA 92093 USA. [Griffiths, Shane] Commonwealth Sci & Ind Res Org, Dutton Pk, Qld 4102, Australia. [Dambacher, Jeffrey; Young, Jock] Commonwealth Sci & Ind Res Org, Hobart, Tas 7001, Australia. RP Allain, V (reprint author), Secretariat Pacific Community, BPD5-98848, Noumea, New Caledonia. EM valeriea@spc.int RI Coll, Marta/A-9488-2012 OI Coll, Marta/0000-0001-6235-5868 NR 12 TC 6 Z9 6 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2012 VL 22 IS 1 BP 29 EP 33 DI 10.1007/s11160-011-9220-z PG 5 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 940NA UT WOS:000303895100004 ER PT J AU Baldwin, RE Banks, MA Jacobson, KC AF Baldwin, Rebecca E. Banks, Michael A. Jacobson, Kym C. TI Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax) SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Review DE Pacific sardine; Fish stock identity; Fisheries; Parasite biological tag ID HERRING CLUPEA-HARENGUS; MACKEREL TRACHURUS-TRACHURUS; ATLANTIC HORSE MACKEREL; DEEP-WATER REDFISH; COD GADUS-MORHUA; BIOLOGICAL TAGS; GENETIC-STRUCTURE; POPULATION-STRUCTURE; CALIFORNIA SARDINE; MARINE ECOSYSTEMS AB There is an urgent need to clarify how different stocks, or subpopulations of fish species, are vulnerable to fishing pressure and unfavorable ocean conditions because of the increasing demand on fisheries for human consumption. For marine fishes, the potential for high gene flow increases the difficulty in determining the number of subpopulations managed in a specific fishery. Although the use of molecular data has become a common method in the past 15 years to identify fish subpopulations, no single technique or suite of techniques has been established for fish stock structure studies. We review the use of fish morphometrics, artificial tags, fish genetics, parasite genetics, and parasites as biological tags to identify subpopulations of marine fishes with a focus on the Pacific sardine (Sardinops sagax) fishery off the west coast of North America. We suggest an integration of fish-and parasite-based techniques for future stock structure studies, particularly for pelagic fish species whose stock structure can be elusive. An integration of techniques may also resolve fish stock structure over small geographic areas by increasing the number of spatial and temporal scales studied simultaneously leading to methods for successful management of marine fish species. C1 [Baldwin, Rebecca E.; Banks, Michael A.] Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. [Banks, Michael A.] Oregon State Univ, Hatfield Marine Sci Ctr, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA. [Jacobson, Kym C.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, NOAA, Newport, OR 97365 USA. RP Baldwin, RE (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2R3, Canada. EM rebaldwi@ualberta.ca FU OSU-NOAA Cooperative Institute [NA17RJ1362]; BPA [1998-014-00]; Coastal Oregon Marine Experiment Station FX We would like to thank R. Emmett, M. Blouin, V. Lesser, J. Bolte, E. Casillas, J. Scheurer, and J. Butzen for providing comments on earlier versions of this manuscript. This research was supported through OSU-NOAA Cooperative Institute award #NA17RJ1362, BPA award #1998-014-00 and the Coastal Oregon Marine Experiment Station. NR 192 TC 15 Z9 16 U1 1 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 EI 1573-5184 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2012 VL 22 IS 1 BP 137 EP 156 DI 10.1007/s11160-011-9227-5 PG 20 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 940NA UT WOS:000303895100009 ER PT J AU Barnes, JW Lemke, L Foch, R McKay, CP Beyer, RA Radebaugh, J Atkinson, DH Lorenz, RD Le Mouelic, S Rodriguez, S Gundlach, J Giannini, F Bain, S Flasar, FM Hurford, T Anderson, CM Merrison, J Adamkovics, M Kattenhorn, SA Mitchell, J Burr, DM Colaprete, A Schaller, E Friedson, AJ Edgett, KS Coradini, A Adriani, A Sayanagi, KM Malaska, MJ Morabito, D Reh, K AF Barnes, Jason W. Lemke, Lawrence Foch, Rick McKay, Christopher P. Beyer, Ross A. Radebaugh, Jani Atkinson, David H. Lorenz, Ralph D. Le Mouelic, Stephane Rodriguez, Sebastien Gundlach, Jay Giannini, Francesco Bain, Sean Flasar, F. Michael Hurford, Terry Anderson, Carrie M. Merrison, Jon Adamkovics, Mate Kattenhorn, Simon A. Mitchell, Jonathan Burr, Devon M. Colaprete, Anthony Schaller, Emily Friedson, A. James Edgett, Kenneth S. Coradini, Angioletta Adriani, Alberto Sayanagi, Kunio M. Malaska, Michael J. Morabito, David Reh, Kim TI AVIATR-Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan airplane mission concept SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Titan; Mission concept; Airplane; UAV ID CASSINI RADAR OBSERVATIONS; HUYGENS LANDING SITE; MIDLATITUDE CLOUDS; LASER ANEMOMETER; SOUTH-POLE; SURFACE; ATMOSPHERE; METHANE; MODEL; ETHANE AB We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within a New Frontiers budget. C1 [Barnes, Jason W.; Atkinson, David H.; Kattenhorn, Simon A.] Univ Idaho, Moscow, ID 83844 USA. [Lemke, Lawrence; McKay, Christopher P.; Beyer, Ross A.; Colaprete, Anthony] NASA Ames Res Ctr, Moffett Field, CA USA. [Foch, Rick; Bain, Sean] USN, Res Lab, Washington, DC 20375 USA. [Beyer, Ross A.] SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. [Radebaugh, Jani] Brigham Young Univ, Provo, UT 84602 USA. [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, Silver Spring, MD USA. [Le Mouelic, Stephane] Univ Nantes, CNRS, Lab Planetol & Geodynam, UMR6112, Nantes, France. [Rodriguez, Sebastien] Univ Paris Diderot, Paris, France. [Gundlach, Jay; Giannini, Francesco] Aurora Flight Sci, Manassas, VA USA. [Flasar, F. Michael] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hurford, Terry; Anderson, Carrie M.] NASA GSFC, Greenbelt, MD 20771 USA. [Merrison, Jon] Univ Aarhus, Aarhus, Denmark. [Adamkovics, Mate] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Mitchell, Jonathan; Sayanagi, Kunio M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burr, Devon M.] Univ Tennessee, Knoxville, TN USA. [Schaller, Emily] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Friedson, A. James; Morabito, David; Reh, Kim] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Edgett, Kenneth S.] Malin Space Sci Syst, San Diego, CA USA. [Coradini, Angioletta; Adriani, Alberto] IFSI, INAF, Rome, Italy. [Malaska, Michael J.] SCYNEXIS Inc, Res Triangle Pk, NC USA. RP Barnes, JW (reprint author), Univ Idaho, Moscow, ID 83844 USA. EM jwbarnes@uidaho.edu RI Flasar, F Michael/C-8509-2012; Barnes, Jason/B-1284-2009; Hurford, Terry/F-2625-2012; Anderson, Carrie/C-8097-2012; Lorenz, Ralph/B-8759-2016; Rodriguez, Sebastien/H-5902-2016 OI Barnes, Jason/0000-0002-7755-3530; Lorenz, Ralph/0000-0001-8528-4644; Rodriguez, Sebastien/0000-0003-1219-0641 FU Idaho Space Grant Consortium; Idaho NASA EPSCoR; University of Idaho; University of Idaho College of Engineering; University of Idaho College of Science; California Institute of Technology Jet Propulsion Laboratory FX The authors acknowledge support from the Idaho Space Grant Consortium, Idaho NASA EPSCoR, the University of Idaho, the University of Idaho College of Engineering, the University of Idaho College of Science, and California Institute of Technology Jet Propulsion Laboratory. NR 168 TC 12 Z9 12 U1 4 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD MAR PY 2012 VL 33 IS 1 BP 55 EP 127 DI 10.1007/s10686-011-9275-9 PG 73 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934MF UT WOS:000303447700004 ER PT J AU Abbondanza, C Sarti, P AF Abbondanza, Claudio Sarti, Pierguido TI Impact of network geometry, observation schemes and telescope structure deformations on local ties: simulations applied to Sardinia Radio Telescope SO JOURNAL OF GEODESY LA English DT Article DE VLBI; Tie vector; Local tie; Geodetic network design; Indirect methods; Gravitational and thermal deformations ID POINT AB The 64-m Sardinia Radio Telescope (SRT) is currently under construction in Sardinia (Italy). To ensure future surveying and monitoring operations at an utmost level of accuracy, we aim at selecting the optimal design and the most cost-effective solution for the establishment of the local ground control network (LGCN). We simulate and test 45 data sets corresponding to 5 different network configurations. We investigate the influence of 2 LGCN geometries (14 or 8 ground markers) and 3 terrestrial observation schemes (based on redundant forward intersections or side shots) on the precision and accuracy of the conventional reference point (CRP) of SRT and the simulated tie vector with a global navigation satellite system (GNSS) station. In addition, thermal and gravitational deformations of the radio telescope structure are simulated as systematic errors introduced into the observations and their effects on the CRP estimates are quantified. The state-of-the-art of CRP surveying and computation, based on terrestrial indirect methods, is applied. We show how terrestrial indirect methods can estimate the position of the radio telescope CRP to the millimeter precision level. With our simulations, we prove that limiting the LGCN to a 8-point configuration ensures the same precision on the CRP obtained with a 14-point network. Furthermore, we demonstrate that in the absence of telescope deformations, side shots, despite the lower redundancy, preserve a precision similar to that of redundant forward intersections. We show that the deformations due to gravitational flexure and thermal expansion of the radio telescope cannot be neglected in the tie vector computation, since they may bias the CRP estimate by several millimeters degrading its accuracy but not impacting on its formal precision. We highlight the dependency of the correlation matrices of the solutions on the geometry of the network and the observation schemes. Similarly, varying the extent of telescope deformations, we show that the CRP estimate again depends on the combination of the network geometry and the observation schemes. C1 [Abbondanza, Claudio; Sarti, Pierguido] Ist Nazl Astrofis INAF, Ist Radioastron IRA, I-40129 Bologna, Italy. RP Abbondanza, C (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM c.abbondanza@ira.inaf.it RI Sarti, Pierguido/D-2391-2009 OI Sarti, Pierguido/0000-0003-1260-5587 FU INAF through the ASI FX The work of Claudio Abbondanza was funded by INAF through the ASI contract signed on 19 November 2007 with ASI for the completion of SRT. This work is partially based on observations with the Medicina telescope operated by INAF-Istituto di Radioastronomia. NR 26 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD MAR PY 2012 VL 86 IS 3 BP 181 EP 192 DI 10.1007/s00190-011-0507-6 PG 12 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 934OV UT WOS:000303454600002 ER PT J AU Mazarico, E Rowlands, DD Neumann, GA Smith, DE Torrence, MH Lemoine, FG Zuber, MT AF Mazarico, Erwan Rowlands, D. D. Neumann, G. A. Smith, D. E. Torrence, M. H. Lemoine, F. G. Zuber, M. T. TI Orbit determination of the Lunar Reconnaissance Orbiter SO JOURNAL OF GEODESY LA English DT Article DE Moon; Orbit determination; Gravity; Altimetric crossover; Geodesy ID MARS GLOBAL SURVEYOR; GRAVITY-FIELD; LASER ALTIMETRY; MISSION; KAGUYA; SHAPE AB We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100 m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from similar to 70 m to similar to 23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (similar to 20 m with only the radiometric data, and similar to 14 m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy. C1 [Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Mazarico, Erwan; Smith, D. E.; Zuber, M. T.] MIT, Cambridge, MA 02139 USA. [Torrence, M. H.] SGT Inc, Greenbelt, MD USA. RP Mazarico, E (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. EM erwan.m.mazarico@nasa.gov RI Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013; Rowlands, David/D-2751-2012; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X NR 37 TC 59 Z9 62 U1 2 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD MAR PY 2012 VL 86 IS 3 BP 193 EP 207 DI 10.1007/s00190-011-0509-4 PG 15 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 934OV UT WOS:000303454600003 ER PT J AU Burton, AS AF Burton, Aaron S. TI A "warm formamide" scenario for the origins of life might not be so hot Comment on "Formamide and the origin of life" by E. Di Mauro et al. SO PHYSICS OF LIFE REVIEWS LA English DT Editorial Material ID CARBONACEOUS METEORITES C1 NASA Goddard Space Flight Ctr, NASA Postdoctoral Program, Washington, DC USA. RP Burton, AS (reprint author), NASA Goddard Space Flight Ctr, NASA Postdoctoral Program, Washington, DC USA. EM aaron.s.burton@nasa.gov RI Burton, Aaron/H-2212-2011 OI Burton, Aaron/0000-0002-7137-1605 NR 8 TC 1 Z9 1 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1571-0645 J9 PHYS LIFE REV JI Phys. Life Rev. PD MAR PY 2012 VL 9 IS 1 BP 114 EP 115 DI 10.1016/j.plrev.2011.12.010 PG 2 WC Biology; Biophysics SC Life Sciences & Biomedicine - Other Topics; Biophysics GA 929QO UT WOS:000303080800023 PM 22222771 ER PT J AU Yu, A Yang, F Elsherbeni, AZ Huang, J Kim, Y AF Yu, A. Yang, F. Elsherbeni, A. Z. Huang, J. Kim, Y. TI An Offset-Fed X-Band Reflectarray Antenna Using a Modified Element Rotation Technique SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Circular polarization; element rotation technique; reflectarray antenna ID RING ELEMENTS AB An X-band circularly polarized reflectarray antenna with an offset feed is designed, fabricated, and measured. The proposed design features the use of split square ring elements with a modified element rotation technique for phase compensation, which allows the rotation of the slot instead of the element itself. This is crucial in single-layer multiband reflectarray antenna designs where it is desired to minimize the effectively occupied area by individual elements. A design flow chart of the reflectarray antenna is summarized, and the element/system design procedure is presented in details. A reflectarray prototype was measured in a near field measurement system, which operates at 8.4 GHz with a gain of 30.4 dB and an aperture efficiency of 53.7%. Both the axial ratio bandwidth (AR < 3 dB) and the 3 dB gain bandwidth are 6%. C1 [Yu, A.; Yang, F.; Elsherbeni, A. Z.; Kim, Y.] Univ Mississippi, Dept Elect Engn, University, MS 38677 USA. [Yang, F.] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. [Huang, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yu, A (reprint author), Univ Mississippi, Dept Elect Engn, University, MS 38677 USA. EM ayu@ole-miss.edu; fyang@ole-miss.edu; atef@olemiss.edu; john.huang3313@gmail.com; yhkim@ee.ucla.edu FU NASA/MS Space Grant Consortium [NNG05GJ72H]; NASA Stennis Space Center [NNX09AP18A] FX This work was supported in part by NASA/MS Space Grant Consortium under Contract NNG05GJ72H and in part by the NASA Stennis Space Center under Contract NNX09AP18A. NR 14 TC 17 Z9 20 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD MAR PY 2012 VL 60 IS 3 BP 1619 EP 1624 DI 10.1109/TAP.2011.2180299 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 924ZH UT WOS:000302729300049 ER PT J AU Veraverbeke, S Gitas, I Katagis, T Polychronaki, A Somers, B Goossens, R AF Veraverbeke, S. Gitas, I. Katagis, T. Polychronaki, A. Somers, B. Goossens, R. TI Assessing post-fire vegetation recovery using red-near infrared vegetation indices: Accounting for background and vegetation variability SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE Forestry; Vegetation; Forest fire; Landsat; Spectral ID LEAF-AREA INDEX; 2007 PELOPONNESE WILDFIRES; LANDSAT THEMATIC MAPPER; BURN SEVERITY; SPECTRAL INDEXES; FIRE SEVERITY; TIME-SERIES; SOUTHERN CALIFORNIA; MEDITERRANEAN BASIN; SATELLITE IMAGERY AB Post-fire vegetation cover is a crucial parameter in rangeland management. This study aims to assess the post-fire vegetation recovery 3 years after the large fires on the Peloponnese peninsula in southern Greece. In this context, 13 red-near infrared (R-NIR) vegetation indices (VIs) were evaluated. Some of these indices, the so called Soil-Adjusted VIs (SAVIs), attempt to minimize the influence of background variability, however, so far the impact of the variability in spectral response between different vegetation species on index performance has not yet been rigorously assessed. Using a combination of field and simulation techniques this study accounts for the impact of both background and vegetation variability on index performance. The field data included a spectral library (59 vegetation and 29 substrate signals) and 78 line transect plots. One Landsat Thematic Mapper (TM) scene of July 2010, 3 years after the fire event, was employed in the study. Results based on simulated mixtures of in situ measured reflectance showed that (i) SAVIs outperformed the Normalized Difference Vegetation Index (NDVI) in environments with a single vegetation type, (ii) the NDVI more accurately estimated vegetation cover in environments with heterogeneous vegetation layers and a single soil type and (iii) overall, when both vegetation and background variability is incorporated in the model, the NDVI was the most optimal index. Findings from the simulation experiment corroborated with the results from the Landsat application. The Landsat NDVI showed the highest correlation with the line transect field data of recovery (R-2 = 0.68) and the rank in performance of the Landsat-based indices was similar to that of the simulation experiment in which both vegetation and substrate variability was introduced. Results depend on the initial variability present in the study area, however, some trends can be generalized. Firstly, results support the use of SAVIs in environments with a single vegetation type. Secondly, for applications in environments to which natural vegetation variability is inherent, such as the post-fire recovery landscape of this study, we, however, recommend the use of the NDVI because its normalizing capacity minimizes the impact of vegetation variability on fractional cover estimates. (C) 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) All rights reserved. C1 [Veraverbeke, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Veraverbeke, S.; Goossens, R.] Univ Ghent, Dept Geog, BE-9000 Ghent, Belgium. [Gitas, I.; Katagis, T.; Polychronaki, A.] Aristotle Univ Thessaloniki, Lab Forest Management & Remote Sensing, GR-54124 Thessaloniki, Greece. [Somers, B.] Flemish Inst Technol Res VITO, Ctr Remote Sensing & Earth Observat Proc TAP, BE-2400 Mol, Belgium. RP Veraverbeke, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sander.S.Veraverbeke@jpl.nasa.gov; igitas@for.auth.gr; thkatag@for.auth.gr; anpolych@for.auth.gr; ben.somers@vito.be; rudi.goossens@ugent.be RI Veraverbeke, Sander/H-2301-2012; Gitas, Ioannis/C-3329-2008 OI Veraverbeke, Sander/0000-0003-1362-5125; Gitas, Ioannis/0000-0003-0056-5629 FU Ghent University; National Aeronautics and Space Administration FX The study was financed by the Ghent University special research funds (BOF: Bijzonder Onderzoeksfonds) Part of the work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Dr. Glynn Hulley of Jet Propulsion Laboratory is acknowledged for revising the linguistics of the paper. The authors would like to thank the anonymous reviewers for their constructive remarks. NR 88 TC 21 Z9 21 U1 6 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD MAR PY 2012 VL 68 BP 28 EP 39 DI 10.1016/j.isprsjprs.2011.12.007 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 929NQ UT WOS:000303072800003 ER PT J AU Castner, R AF Castner, Raymond TI Exhaust Nozzle Plume Effects on Sonic Boom SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 28th AIAA Applied Aerodynamics Conference CY JUN 28-JUL 01, 2010 CL Chicago, IL SP AIAA AB Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to research on the sonic boom. To make the sonic boom acceptable, both the leading and trailing shocks need to he reduced.. Progress has been made previously to reduce the leading shock through aircraft shaping. Analysis and testing for an isolated nozzle configuration was performed to study the trailing shock waves caused by the exhaust nozzle plume, Both computational fluid dynamics analysis and wind-tunnel testing show how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. Results demonstrate how underexpanded nozzle How can be associated with a reduction in the strength of the trailing shock wave. C1 NASA, John H Glenn Res Ctr Lewis Field, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. RP Castner, R (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Inlet & Nozzle Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. NR 7 TC 1 Z9 1 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2012 VL 49 IS 2 BP 415 EP 422 DI 10.2514/1.C031305 PG 8 WC Engineering, Aerospace SC Engineering GA 925JV UT WOS:000302758400008 ER PT J AU Chadegani, A Yang, C Smeltzer, SS AF Chadegani, Alireza Yang, Chihdar Smeltzer, Stanley S., III TI Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate SO JOURNAL OF AIRCRAFT LA English DT Article ID BI-MATERIAL BODIES; CRACK-TIP ELEMENT; SINGLE LAP JOINTS; INTERLAMINAR FRACTURE; ANALYTICAL-MODELS; TOUGHNESS AB This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test-specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system Of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed. C1 [Chadegani, Alireza; Yang, Chihdar] Wichita State Univ, Dept Aerosp Engn, Wichita, KS 67260 USA. [Smeltzer, Stanley S., III] NASA, Langley Res Ctr, Ares Project Off, Hampton, VA 23681 USA. RP Chadegani, A (reprint author), Wichita State Univ, Dept Aerosp Engn, Wichita, KS 67260 USA. EM chadegan@vt.edu; charles.yang@wichita.edu; stanley.s.smeltzer@nasa.gov FU Kansas NASA [NNX07A027A]; National Science Foundation [EIA-0216178, EPS-0236913]; State of Kansas; Wichita State University High Performance Computing Center FX This investigation was partially sponsored by Kansas NASA Experimental Program to Stimulate Competitive Research grant no. NNX07A027A. Support of the National Science Foundation under grant nos. EIA-0216178 and EPS-0236913, matching support from the State of Kansas, and the Wichita State University High Performance Computing Center is also acknowledged. NR 56 TC 3 Z9 3 U1 1 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2012 VL 49 IS 2 BP 503 EP 520 DI 10.2514/1.C031516 PG 18 WC Engineering, Aerospace SC Engineering GA 925JV UT WOS:000302758400016 ER PT J AU Lynn, KC Commo, SA Parker, PA AF Lynn, Keith C. Commo, Sean A. Parker, Peter A. TI Wind-Tunnel Balance Characterization for Hypersonic Research Applications SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 49th AIAA Aerospace Sciences Meeting/New Horizons Forum and Aerospace Exposition CY JAN 03-07, 2011 CL Orlando, FL SP AIAA ID SPLIT-PLOT DESIGNS AB Wind-tunnel research was recently conducted at the NASA Langley Research Center's 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory's aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration. C1 [Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.] NASA, Langley Res Ctr, Aeronaut Syst Engn Branch, Hampton, VA 23681 USA. RP Lynn, KC (reprint author), NASA, Langley Res Ctr, Aeronaut Syst Engn Branch, Mail Stop 238, Hampton, VA 23681 USA. NR 20 TC 8 Z9 9 U1 2 U2 14 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2012 VL 49 IS 2 BP 556 EP 565 DI 10.2514/1.C031567 PG 10 WC Engineering, Aerospace SC Engineering GA 925JV UT WOS:000302758400020 ER PT J AU Guruswamy, GP AF Guruswamy, Guru P. TI Aeroelasticity of a Helicopter Blade Using the Euler Equations SO JOURNAL OF AIRCRAFT LA English DT Article C1 NASA, Ames Res Ctr, NASA Adv Supercomp Div, Appl Modeling & Simulat Branch, Moffett Field, CA 94035 USA. RP Guruswamy, GP (reprint author), NASA, Ames Res Ctr, NASA Adv Supercomp Div, Appl Modeling & Simulat Branch, Moffett Field, CA 94035 USA. NR 18 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2012 VL 49 IS 2 BP 662 EP 664 DI 10.2514/1.C031571 PG 3 WC Engineering, Aerospace SC Engineering GA 925JV UT WOS:000302758400033 ER PT J AU Bunch, C Drawert, B Chohan, N Krintz, C Petzold, L Shams, K AF Bunch, Chris Drawert, Brian Chohan, Navraj Krintz, Chandra Petzold, Linda Shams, Khawaja TI Language and Runtime Support for Automatic Configuration and Deployment of Scientific Computing Software over Cloud Fabrics SO JOURNAL OF GRID COMPUTING LA English DT Article DE Cloud platform; Service placement; Domain specific language ID PERFORMANCE AB In this paper, we present the design and implementation of Neptune, a simple, domain-specific language based on the Ruby programming language. Neptune automates the configuration and deployment of scientific software frameworks over disparate cloud computing systems. Neptune integrates support for MPI, MapReduce, UPC, X10, StochKit, and others. We implement Neptune as a software overlay for the AppScale cloud platform and extend AppScale with support for elasticity and hybrid execution for scientific computing applications. Neptune imposes no overhead on application execution, yet significantly simplifies the application deployment process, enables portability across cloud systems, and promotes lock-in avoidance by specific cloud vendors. C1 [Bunch, Chris; Drawert, Brian; Chohan, Navraj; Krintz, Chandra; Petzold, Linda] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA. [Shams, Khawaja] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Bunch, C (reprint author), Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA. EM cgb@cs.ucsb.edu FU Google; IBM; NSF [CNS-CAREER-0546737, CNS-0905237] FX We thank the anonymous reviewers for their insightful comments. This work was funded in part by Google, IBM, and NSF grants CNS-CAREER-0546737 and CNS-0905237. NR 24 TC 8 Z9 9 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 EI 1572-9184 J9 J GRID COMPUT JI J. Comput. PD MAR PY 2012 VL 10 IS 1 BP 23 EP 46 DI 10.1007/s10723-012-9213-8 PG 24 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 926YN UT WOS:000302869400003 ER PT J AU Fesmire, JE Coffman, BE Sass, JP Williams, MK Smith, TM Meneghelli, BJ AF Fesmire, James E. Coffman, Brekke E. Sass, Jared P. Williams, Martha K. Smith, Trent M. Meneghelli, Barry J. TI Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Space 2008 Conference and Exposition CY SEP 08-12, 2008 CL San Diego, CA SP Amer Inst Aeronaut & Astronaut AB Rigid polyurethane or polyisocyanurate foams used for existing space launch vehicles such as the space shuttle and Delta 4, and planned for use on future space vehicles, were tested under cryogenic conditions and found to gain an extraordinary amount of water. A cryogenic moisture uptake apparatus was developed to determine the amount of water taken into the specimen under actual use propellant loading conditions. After 8 h of test duration with a simulated launch pad environment on one side and liquid nitrogen temperature on the other, these foams gained at least 30% (new condition) to 75% (weathered condition) by mass. This effect can translate into an additional mass of over 1000 kg for space vehicles at liftoff. To determine the thermal performance and moisture uptake of foam insulation systems, three different materials were tested, including NCFI 24-124, NCFI 27-68, and BX-265. Results are presented for testing of both aged specimens and weathered specimens. The trends of increasing mass gain are clear for both aging exposure and weathering exposure durations up to 24 months. The water accumulation in these flight quality, closed cell polyurethane foams is shown to be water vapor driving into the subsurface due to the extreme thermal gradient imposed by the cryogen. C1 [Fesmire, James E.; Coffman, Brekke E.; Sass, Jared P.] NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. [Williams, Martha K.; Smith, Trent M.] NASA, Polymer Sci & Technol Lab, Kennedy Space Ctr, FL 32899 USA. [Meneghelli, Barry J.] QinetiQ N Amer, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. RP Fesmire, JE (reprint author), NASA, Cryogen Test Lab, Mail Code NE F6, Kennedy Space Ctr, FL 32899 USA. NR 37 TC 2 Z9 3 U1 4 U2 11 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 220 EP 230 DI 10.2514/1.43776 PG 11 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100004 ER PT J AU Luchinsky, DG Hafiychuk, V Smelyanskiy, VN Kulikov, IC Hanson, JM Hill, AD Mathias, D Lawrence, S Werkheiser, M AF Luchinsky, Dmitry G. Hafiychuk, Vasyl Smelyanskiy, Vadim N. Kulikov, Igor C. Hanson, John M. Hill, Ashley D. Mathias, Donovan Lawrence, Scott Werkheiser, Mary TI Physics-Based Modeling for Stage Separation Recontact SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB Physics-based modeling for a stage separation recontact fault is presented. Numerical models and analytical estimations are applied to analyze the physics of the failure and reconstruct the following sequence of events: structural dynamics of the nozzle extension during impact, yielding and melting of the damaged nozzle under plume loadings during engine startup, reduction of the actual thrust and side loads in the steady burning regime, response of the thrust vector control system to the fault-induced torque, and rocket trajectory variations due to the fault. The obtained results are discussed in a context of engineering risk assessment and development of an onboard diagnostic and prognostic system for stage separation failure. Analysis using the models developed as part of this research shows that the damage results in three possible outcomes: actuator failure with resulting loss of control, loss of performance resulting in an inability to reach orbit, and effects that are sufficiently minor so that orbit is still attainable. In the case of crewed missions, abort triggers based on navigation and flight control data (as described in this paper) may be used to determine the need to abort immediately or to estimate the likelihood that orbit will be reachable. C1 [Luchinsky, Dmitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim N.; Kulikov, Igor C.] NASA, Ames Res Ctr, Appl Phys Grp, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Hanson, John M.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Hill, Ashley D.] Dynam Concepts Inc, Huntsville, AL 35806 USA. [Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary] NASA, Ames Res Ctr, Supercomp Div, Moffett Field, CA 94035 USA. RP Luchinsky, DG (reprint author), NASA, Ames Res Ctr, Appl Phys Grp, Intelligent Syst Div, Mail Stop 269-1, Moffett Field, CA 94035 USA. NR 14 TC 0 Z9 0 U1 1 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 231 EP 242 DI 10.2514/1.A32042 PG 12 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100005 ER PT J AU Ely, TA Heyne, M Riedel, JE AF Ely, Todd A. Heyne, Martin Riedel, Joseph E. TI Altair Navigation Performance During Translunar Cruise, Lunar Orbit, Descent, and Landing SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation, and Control Conference CY AUG 02-06, 2010 CL Toronto, CANADA SP Amer Inst Aeronaut & Astronaut (AIAA) AB The Altair lunar lander navigation system is driven by a set of requirements that specify a need to land within 100 m of a designated spot on the moon and to be capable of a safe return to an orbiting Orion capsule in the event of loss of Earth ground support. These requirements lead to a design for a capable onboard navigation system that works in conjunction with an Earth ground navigation system. The resulting system relies on combining a multiplicity of data types including navigation updates from the ground, passive optical imaging from a gimbaled camera, a stable inertial measurement unit, and a capable radar altimeter and velocimeter. It is shown that such a system is capable of a safe delivery to the moon and then a subsequent landing that meets the 100 in requirement. Furthermore, parametric trades on system components (i.e., onboard instruments not working, loss of the Earth ground system, etc.) demonstrate that the system is robust in the presence of failures and able to maintain sufficient knowledge of the trajectory for safe operations. C1 [Ely, Todd A.] CALTECH, Jet Prop Lab, Mission Design & Nav Sect, Pasadena, CA 91109 USA. [Heyne, Martin; Riedel, Joseph E.] CALTECH, Jet Prop Lab, Guidance & Control Sect, Pasadena, CA 91109 USA. RP Ely, TA (reprint author), CALTECH, Jet Prop Lab, Mission Design & Nav Sect, MS 301-121,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Todd.A.Ely@jpl.nasa.gov; Martin.C.Heyne@jpl.nasa.gov; Joseph.E.Riedel@jpl.nasa.gov NR 43 TC 8 Z9 10 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 295 EP 317 DI 10.2514/1.52233 PG 23 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100012 ER PT J AU Campagnola, S Kawakatsu, Y AF Campagnola, Stefano Kawakatsu, Yasuhiro TI Jupiter Magnetospheric Orbiter: Trajectory Design in the Jovian System SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 22nd International Symposium on Space Flight Dynamics CY FEB 28-MAR 04, 2011 CL Sao Jose dos Campos, BRAZIL ID GRAVITY-ASSIST AB This paper presents the trajectory design for the Jupiter Magnetospheric Orbiter (JMO) in the Jovian system. The JMO is the Japanese contribution to the Europa Jupiter System Mission, and its science objectives include in-situ exploration of different regions of the magnetosphere and the remote sensing of the plasma torus from high latitudes. These science objectives require placing the spacecraft into a low-inclination, high-apojove orbit, with subsequent gravity assists of the Galilean satellites to raise inclination and lower apojove. The trajectory design is the result of a complex multi-objective optimization problem: to minimize the mission cost and complexity, the spacecraft avoids high-radiation regions; at the same time, the trajectory minimizes the transfer time and the propellant mass and maximizes the final inclination to Jupiter's equator. The optimal strategy for the JMO consists of one Ganymede gravity assist followed by a sequence of gravity assists at Callisto. This design is also robust to changes in the trajectory requirements, which is an important feature in any preliminary design. The main result of this work is the analysis of the multidimensional solution space and the discussion of the trade-offs between solutions in the Pareto front. C1 [Campagnola, Stefano] Japan Aerosp Explorat Agcy, Japan Soc Promot Sci, Sagamihara, Kanagawa 2525210, Japan. [Kawakatsu, Yasuhiro] Japan Aerosp Explorat Agcy, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. RP Campagnola, S (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA. EM stefano.campagnola@jpl.nasa.gov NR 29 TC 5 Z9 5 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 318 EP 324 DI 10.2514/1.A32055 PG 7 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100013 ER PT J AU Hanson, JM Pinson, RM AF Hanson, John M. Pinson, Robin M. TI Calculating Launch-Vehicle Flight Performance Reserve SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB This paper analyzes different methods for determining the amount of extra propellant (flight performance reserve) that is necessary for a launch vehicle to reach orbit with a high probability of success. Vehicle and environmental uncertainty models are assumed to be available for a launch-day go/no-go decision that, in part; evaluates whether sufficient propellant is available. One approach for determining flight performance reserve involves assuming that the various influential parameters are independent and that the result behaves as a Gaussian. Alternatively, high-fidelity, closed-loop, Monte Carlo simulation determines the amount of propellant used with each random combination of parameters that are still unknown at the time of launch. Using the results of the Monte Carlo simulation, several methods may be used to calculate the flight performance reserve. The paper analyzes these different procedures and then develops in detail the final chosen solution. This method involves determining distributions for the pertinent outputs and running a separate Monte Carlo simulation to obtain a best estimate of the required flight performance reserve. This approach is significantly higher in fidelity than the other potential methods. Its result differs from the results obtained using the other methods sufficiently that the higher fidelity is warranted. C1 [Hanson, John M.] NASA, Marshall Space Flight Ctr, Flight Mech & Anal Div, Huntsville, AL 35812 USA. [Pinson, Robin M.] NASA, Marshall Space Flight Ctr, Guidance Nav & Mission Anal Branch, Huntsville, AL 35812 USA. EM john.m.hanson@nasa.gov; robin.m.pinson@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 353 EP 363 DI 10.2514/1.A32069 PG 11 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100016 ER PT J AU Mueller, E Bilimoria, KD Frost, C AF Mueller, Eric Bilimoria, Karl D. Frost, Chad TI Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation, and Control Conference CY AUG 02-06, 2010 CL Toronto, CANADA SP Amer Inst Aeronaut & Astronaut (AIAA) ID CONTROL POWER; MODULE AB A piloted simulation that studied the handling qualities for a precision lunar landing task from final approach to touchdown is presented. A vehicle model based on NASA's Altair lunar lander was used to study the combinations of factors that provide satisfactory pilot-vehicle performance and workload; control and propulsion system details not available for Altair were derived from Apollo lunar module data. Eight Space Shuttle and Apollo astronauts and three NASA test pilots served as evaluation pilots, providing Cooper Harper ratings, Task Load Index ratings, and qualitative comments. Pilots flew seven combinations of control response types along with two varieties of guidance and a nonguided approach. The response types included the rate command with attitude hold system used on the Apollo lunar module, a new velocity increment command response type, and three response types designed for precise horizontal maneuvering during terminal descent. It was found that velocity increment command improved handling qualities when compared with the baseline Apollo design, receiving predominantly Level 1 ratings. This response type could be flown without guidance cues, which was very difficult in the Apollo system design, and resulted in approximately equivalent touchdown accuracies and propellant burn. The terminal descent response types did not improve handling qualities. C1 [Mueller, Eric; Bilimoria, Karl D.] NASA, Ames Res Ctr, Flight Trajectory Dynam & Controls Branch, Moffett Field, CA 94035 USA. [Frost, Chad] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. RP Mueller, E (reprint author), NASA, Ames Res Ctr, Flight Trajectory Dynam & Controls Branch, M-S 210-10, Moffett Field, CA 94035 USA. EM Eric.Mueller@nasa.gov; Karl.Bilimoria@nasa.gov; chad.r.frost@nasa.gov NR 25 TC 1 Z9 1 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 378 EP 389 DI 10.2514/1.A32086 PG 12 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100018 ER PT J AU Park, RS Asmar, SW Fahnestock, EG Konopliv, AS Lu, WW Watkins, MM AF Park, Ryan S. Asmar, Sarni W. Fahnestock, Eugene G. Konopliv, Alex S. Lu, Wenwen Watkins, Mike M. TI Gravity Recovery and Interior Laboratory Simulations of Static and Temporal Gravity Field SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 21st AAS/AIAA Space Flight Mechanics Meeting CY FEB 13-17, 2011 CL New Orleans, LA SP AAS, AIAA AB This paper presents the results of simulations of a high-resolution and temporal lunar gravity field expected from the Gravity Recovery and Interior Laboratory mission. An overall mission capability is presented based on detailed error analysis of spacecraft dynamics and kinematics models, realistic ground-based and interspacecraft tracking measurement uncertainties, and length of data arcs. The largest source of dynamics unmodeled error comes from the spacecraft thermal radiation force and, in order to characterize its error contribution, an a priori error constraint model is derived based on orbit geometry and expected force magnitude. The result shows that estimating a lunar gravity field is robust against both dynamics and kinematics errors, and a nominal field of degree 300 or better can be determined assuming a 2.5 x 10(-4)/n(2) power law. The resolution of the gravity field is most sensitive to the interspacecraft Ka-band tracking accuracy. The core signature, however, is more sensitive to dynamic modeling errors, and satisfying the latter science requirements depends on how accurately the spacecraft dynamics can be modeled. C1 [Park, Ryan S.] CALTECH, Jet Prop Lab, Outer Planet Nav Grp, Pasadena, CA 91101 USA. [Asmar, Sarni W.] CALTECH, Jet Prop Lab, Radio Sci Syst Grp, Pasadena, CA 91101 USA. [Fahnestock, Eugene G.; Konopliv, Alex S.] CALTECH, Jet Prop Lab, Solar Syst Dynam Grp, Pasadena, CA 91101 USA. [Lu, Wenwen] CALTECH, Jet Prop Lab, Orbiter & Radiometr Syst Grp, Pasadena, CA 91101 USA. [Watkins, Mike M.] CALTECH, Jet Prop Lab, Grav Recovery & Interior Lab Mission, Pasadena, CA 91101 USA. RP Park, RS (reprint author), CALTECH, Jet Prop Lab, Outer Planet Nav Grp, 4800 Oak Grove Dr,Mail Stop 301-276, Pasadena, CA 91101 USA. NR 13 TC 12 Z9 12 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2012 VL 49 IS 2 BP 390 EP 400 DI 10.2514/1.A32117 PG 11 WC Engineering, Aerospace SC Engineering GA 925KM UT WOS:000302760100019 ER PT J AU Ackleh, AS Ioup, GE Ioup, JW Ma, BL Newcomb, JJ Pal, N Sidorovskaia, NA Tiemann, C AF Ackleh, Azmy S. Ioup, George E. Ioup, Juliette W. Ma, Baoling Newcomb, Joal J. Pal, Nabendu Sidorovskaia, Natalia A. Tiemann, Christopher TI Assessing the Deepwater Horizon oil spill impact on marine mammal population through acoustics: Endangered sperm whales SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID BEAKED-WHALES; SENSORS; CLICKS AB Long-term monitoring of endangered species abundance based on acoustic recordings has not yet been pursued. This paper reports the first attempt to use multi-year passive acoustic data to study the impact of the Deepwater Horizon oil spill on the population of endangered sperm whales. Prior to the spill the Littoral Acoustic Demonstration Center (LADC) collected acoustic recordings near the spill site in 2007. These baseline data now provide a unique opportunity to better understand how the oil spill affected marine mammals in the Gulf of Mexico. In September 2010, LADC redeployed recording buoys at previously used locations 9, 25, and 50 miles away from the incident site. A statistical methodology that provides point and interval estimates of the abundance of the sperm whale population at the two nearest sites is presented. A comparison of the 2007 and the 2010 recordings shows a decrease in acoustic activity and abundance of sperm whales at the 9-mile site by a factor of 2, whereas acoustic activity and abundance at the 25-mile site has clearly increased. This indicates that some sperm whales may have relocated farther away from the spill. Follow-up experiments will be important for understanding long-term impact. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3682042] C1 [Sidorovskaia, Natalia A.] Univ Louisiana Lafayette, Dept Phys, Lafayette, LA 70504 USA. [Ackleh, Azmy S.; Ma, Baoling; Pal, Nabendu] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA. [Ioup, George E.; Ioup, Juliette W.] Univ New Orleans, Dept Phys, New Orleans, LA 70148 USA. [Newcomb, Joal J.] Stennis Space Ctr, Naval Oceanog Off, Stennis Space Ctr, MS 39522 USA. [Tiemann, Christopher] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA. RP Sidorovskaia, NA (reprint author), Univ Louisiana Lafayette, Dept Phys, Lafayette, LA 70504 USA. EM nas@louisiana.edu FU U.S. National Science Foundation [DMS-1059753]; ONR; SPAWAR FX The authors thank the members of LADC who are not co-authoring this article for data collection in 2007 and 2010 and Sean Griffin of the Proteus Technologies for technical assistance in deployment and recovery of EARS in 2010. We also express our gratitude to Greenpeace for donating ship time and crew service for the 2010 experiment. Pre-spill data collection and research are supported by ONR and SPAWAR. The 2010 data collection and the work of the authors A.S.A., B.M., N.P., and N.A.S. are supported by the U.S. National Science Foundation under Grant No. DMS-1059753. All authors contributed equally to this work. NR 20 TC 11 Z9 11 U1 5 U2 67 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD MAR PY 2012 VL 131 IS 3 BP 2306 EP 2314 DI 10.1121/1.3682042 PN 1 PG 9 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 911LV UT WOS:000301719200058 PM 22423725 ER PT J AU Mauskopf, PD Horner, PF Aguirre, J Bock, JJ Egami, E Glenn, J Golwala, SR Laurent, G Nguyen, HT Sayers, J AF Mauskopf, P. D. Horner, P. F. Aguirre, J. Bock, J. J. Egami, E. Glenn, J. Golwala, S. R. Laurent, G. Nguyen, H. T. Sayers, J. TI A high signal-to-noise ratio map of the Sunyaev-Zel'dovich increment at 1.1-mm wavelength in Abell 1835 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; techniques: radial velocities; galaxies: clusters: individual: Abell 1835; cosmic background radiation; submillimetre: galaxies ID SOUTH-POLE TELESCOPE; MASSIVE GALAXY CLUSTERS; X-RAY; HUBBLE CONSTANT; LUMINOUS CLUSTERS; SCALING RELATIONS; BOLOCAM; COSMOLOGY; PROFILES; EMISSION AB We present an analysis of an 8-arcmin diameter map of the area around the galaxy cluster Abell 1835 from jiggle-map observations at a wavelength of 1.1mm using the Bolometric Camera (Bolocam) mounted on the Caltech Submillimeter Observatory (CSO). The data are well described by a model including a extended Sunyaev-Zel'dovich (SZ) emission from the cluster gas plus emission from the cluster central galaxy and two bright background submm galaxies magnified by the gravitational lensing of the cluster. We measure flux densities of the two bright point sources in the field: SMM J14011+0252 and SMM J14009+0252 to be 6.5 +/- 2.0 +/- 0.8 and 11.3 +/- 1.9 +/- 1.3 mJy, respectively. Fitting the map to a sky model consisting of the point sources and the SZ emission from the cluster gas with a beta model density profile with parameters, theta(c) = 33.6 arcsec and beta = 0.69, we find the peak surface brightness of the SZ emission to be I-c = 3.73 +/- 0.45 +/- 0.60 x 10(-21) W m(-2) sr(-1) Hz(-1), where the first error is the statistical uncertainty in the fit and the second error represents the calibration uncertainty and additional systematics. Assuming zero cluster peculiar velocity and an X-ray temperature of T-e = 9 keV, this surface brightness corresponds to a central Comptonization of y(0) = (4.41 +/- 0.53 +/- 0.70) x 10(-4). The cluster image represents one of the highest significance SZ detections of a cluster in the positive region of the thermal SZ spectrum to date. We compare the measured central intensity at 1.1mm to other SZ measurements of Abell 1835 at different wavelengths to obtain values for y(0) = (3.58 +/- 0.28) x 10(-4) and the cluster peculiar velocity nu(z) = -538 +/- 414 km s(-1). C1 [Mauskopf, P. D.; Horner, P. F.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bock, J. J.; Nguyen, H. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Egami, E.] Univ Arizona, Steward Observ, Dept Astron, Tucson, AZ 85721 USA. [Glenn, J.; Laurent, G.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Golwala, S. R.; Sayers, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Mauskopf, PD (reprint author), Cardiff Univ, Cardiff Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM Philip.Mauskopf@astro.cf.ac.uk FU NSF [AST-9980846, AST-0206158]; STFC [XXX] FX This work was supported by NSF grants AST-9980846 and AST-0206158 and by STFC grants XXX. We wish to acknowledge M. Zemcov for providing access to SCUBA archive data and for useful discussion, which improved the content of this paper significantly. We would also like to recognize and acknowledge the cultural role and reverence that the summit of Mauna Kea has within the Hawaiian community. We are fortunate and privileged to be able to conduct observations from this mountain. NR 50 TC 9 Z9 9 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 421 IS 1 BP 224 EP 234 DI 10.1111/j.1365-2966.2011.20295.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924LQ UT WOS:000302693600049 ER PT J AU Johnston, R Teodoro, L Hendry, M AF Johnston, Russell Teodoro, Luis Hendry, Martin TI Completeness - III. Identifying characteristic systematics and evolution in galaxy redshift surveys SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; galaxies: high-redshift; galaxies: luminosity function, mass function; large-scale structure of Universe ID ESTIMATING LUMINOSITY FUNCTIONS; PROBE WMAP OBSERVATIONS; DIGITAL-SKY-SURVEY; GAMMA-RAY BURSTS; NEARBY GALAXIES; TRUNCATED DATA; SPACE DENSITY; QUASAR SURVEY; RED-SEQUENCE; CATALOG AB This paper continues our development of non-parametric tests for analysing the completeness in apparent magnitude of magnitude-redshift surveys. The purpose of this third and final paper in our completeness series is twofold: first, we explore how certain forms of incompleteness for a given flux-limited galaxy redshift survey would manifest themselves in the 'robust' T-c and T-v completeness estimators introduced in our earlier papers; secondly, we provide a comprehensive error propagation for these estimators. This work was initiated by Rauzy and then extended and developed by Johnston, Teodoro & Hendry (Completeness I) and Teodoro, Johnston & Hendry (Completeness II). Here, we seek to consolidate the ideas laid out in these previous papers. In particular, our goal is to provide for the observational community statistical tools that will be more easily applicable to real survey data. By using both real surveys and Monte Carlo mock survey data, we have found distinct, characteristic behaviour of the T-c and T-v estimators which identify incompleteness in the form of e.g. missing objects within a particular magnitude range. Conversely, we have identified signatures of 'over' completeness, in cases where a survey contains a small region in apparent magnitude that may have too many objects relative to the rest of the data set. Identifying regions of incompleteness (in apparent magnitude) in this way provides a powerful means to e.g. improve weighting schemes for estimating luminosity functions, or for more accurately determining the selection function required to employ measures of galaxy clustering as a cosmological probe. We also demonstrate how incompleteness resulting from luminosity evolution can be identified and provide a framework for using our estimators as a robust tool for constraining models of luminosity evolution. Finally, we explore the error propagation for T-c and T-v. This builds on Completeness II by allowing the definition of these estimators, and their errors, via an adaptive procedure that accounts for the effects of sampling error on the observed distribution of apparent magnitude and redshift in a survey. C1 [Johnston, Russell] Univ Western Cape, Dept Phys, Cape Town, South Africa. [Teodoro, Luis; Hendry, Martin] Univ Glasgow, SUPA, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Teodoro, Luis] NASA, BAER Int, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Johnston, R (reprint author), Univ Western Cape, Dept Phys, Bellville 7535, Cape Town, South Africa. EM rjohnston@uwc.ac.za; luis.f.teodoro@nasa.gov; Martin.Hendry@glasgow.ac.uk FU National Research Foundation (South Africa); South African Square Kilometre Array; Particle Physics and Astronomy Research Council (UK); Australian Research Council (AUS) FX RJ would (once again) like to thank David Valls-Gabaud and also Mat Smith for their insightful comments and fruitful discussions, and also acknowledges support from the National Research Foundation (South Africa) and the South African Square Kilometre Array. MH would like to thank Tom Loredo and Woncheol Jang for useful discussions, and also acknowledges the Aspen Center for Physics where some of this research was carried out.; The Millennium Galaxy Catalogue consists of imaging data from the Isaac Newton Telescope and spectroscopic data from the Anglo Australian Telescope, the ANU 2.3-m, the ESO New Technology Telescope, the Telescopio Nazionale Galileo and the Gemini North Telescope. The survey has been supported through grants from the Particle Physics and Astronomy Research Council (UK) and the Australian Research Council (AUS). The data and data products are publicly available from http://www.eso.org/jliske/mgc/ or on request from J. Liske or S. P. Driver. NR 73 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 421 IS 1 BP 270 EP 283 DI 10.1111/j.1365-2966.2011.20300.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924LQ UT WOS:000302693600054 ER PT J AU Miller-Jones, JCA Sivakoff, GR Altamirano, D Coriat, M Corbel, S Dhawan, V Krimm, HA Remillard, RA Rupen, MP Russell, DM Fender, RP Heinz, S Kording, EG Maitra, D Markoff, S Migliari, S Sarazin, CL Tudose, V AF Miller-Jones, J. C. A. Sivakoff, G. R. Altamirano, D. Coriat, M. Corbel, S. Dhawan, V. Krimm, H. A. Remillard, R. A. Rupen, M. P. Russell, D. M. Fender, R. P. Heinz, S. Kording, E. G. Maitra, D. Markoff, S. Migliari, S. Sarazin, C. L. Tudose, V. TI Disc-jet coupling in the 2009 outburst of the black hole candidate H1743-322 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; stars: individual: H1743-322; ISM: jets and outflows; radio continuum: stars; X-rays: binaries ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; MICROQUASAR XTE J1550-564; RELATIVISTIC RADIO JET; GX 339-4; LOW/HARD STATE; GRS 1915+105; TRANSIENT H1743-322; LIGHT CURVES; LARGE-SCALE AB We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts, with a possible positive correlation with outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst, and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near the beginning and end of an outburst. C1 [Miller-Jones, J. C. A.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6845, Australia. [Miller-Jones, J. C. A.] NRAO Headquarters, Charlottesville, VA 22903 USA. [Sivakoff, G. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Sivakoff, G. R.; Sarazin, C. L.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Altamirano, D.; Russell, D. M.; Fender, R. P.; Markoff, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Coriat, M.; Corbel, S.; Kording, E. G.] Univ Paris Diderot, F-91191 Gif Sur Yvette, France. [Coriat, M.; Corbel, S.; Kording, E. G.] CEA Saclay, Serv Astrophys, UMR AIM, F-91191 Gif Sur Yvette, France. [Coriat, M.; Fender, R. P.] Univ Southampton, Sch Phys & Astron, Highfield SO17 IBJ, England. [Dhawan, V.; Rupen, M. P.] NRAO Domenici Sci Operat Ctr, Socorro, NM 87801 USA. [Krimm, H. A.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] USRA, Columbia, MD 21044 USA. [Remillard, R. A.] MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Heinz, S.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Kording, E. G.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6525 AJ Nijmegen, Netherlands. [Maitra, D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Migliari, S.] Univ Barcelona IEEC UB, Dept Astron & Meteorol, ICC, E-08028 Barcelona, Spain. [Tudose, V.] Netherlands Inst Radio Astron, NL-7991 PD Dwingeloo, Netherlands. RP Miller-Jones, JCA (reprint author), Curtin Univ, Int Ctr Radio Astron Res, GPO Box U1987, Perth, WA 6845, Australia. EM james.miller-jones@curtin.edu.au RI Tudose, Valeriu/F-8976-2010; Miller-Jones, James/B-2411-2013; Sivakoff, Gregory/G-9602-2011; OI Miller-Jones, James/0000-0003-3124-2814; Sivakoff, Gregory/0000-0001-6682-916X; Heinz, Sebastian/0000-0002-8433-8652 FU NSERC; Chandra Grants [GO0-11049X, GO0-11097X]; Hubble Grants [HST-GO-11679.01, HST-GO-12012.02-A]; NWO; European Community [ITN 215212]; Netherlands Organization for Scientific Research (NWO); Spanish Ministerio de Ciencia e Innovacion (MICINN) [AYA2010-21782-C03-01]; MICINN; European Social Funds through a Ramon y Cajal fellowship; Commonwealth of Australia FX We are very grateful to the NRAO, RXTE and Swift schedulers for their flexibility and prompt responses which have made these observing campaigns feasible. We also thank the referee, Ralph Spencer, for his constructive comments, which have helped to improve this work. GRS acknowledges the support of an NSERC Discovery Grant. GRS and CLS were partially supported by Chandra Grants GO0-11049X and GO0-11097X and Hubble Grants HST-GO-11679.01 and HST-GO-12012.02-A. DMR acknowledges support from a NWO Veni Fellowship. SC acknowledges partial funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215212 'Black Hole Universe'. SMa is grateful for support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship and from The European Community Seventh Framework Programme (FP7) under grant agreement number ITN 215212 'Black Hole Universe'. SMi acknowledges support by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant AYA2010-21782-C03-01, as well as financial support from MICINN and European Social Funds through a Ramon y Cajal fellowship. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work made use of the Swinburne University of Technology software correlator, developed as part of the Australian Major National Research Facilities Programme and operated under licence. This research has made use of NASA's Astrophysics Data System. NR 94 TC 52 Z9 52 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 421 IS 1 BP 468 EP 485 DI 10.1111/j.1365-2966.2011.20326.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924LQ UT WOS:000302693600070 ER PT J AU Stacy, A Pawlik, AH Bromm, V Loeb, A AF Stacy, Athena Pawlik, Andreas H. Bromm, Volker Loeb, Abraham TI Effect of Population III multiplicity on dark star formation SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: formation; stars: Population III; galaxies: formation; cosmology: theory; dark ages, reionization, first stars; early Universe ID SMOOTHED PARTICLE HYDRODYNAMICS; N-BODY CODES; 1ST STARS; MATTER ANNIHILATION; DWARF GALAXIES; EARLY UNIVERSE; COSMOLOGICAL SIMULATIONS; BARYONIC INFALL; GALACTIC HALOS; PRIMORDIAL GAS AB We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z similar to 100, which follows the evolution of gas and DM. We analyse the formation of the first minihalo at z similar to 20 and the subsequent collapse of the gas to densities of 10(12) cm(-3). We then use this simulation to initialize a set of smaller scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disc system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than similar to 5000 years. In addition, the star-disc system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars. C1 [Stacy, Athena] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker] Univ Texas Austin, Texas Cosmol Ctr, Austin, TX 78712 USA. [Bromm, Volker] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Loeb, Abraham] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. RP Stacy, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM athena.stacy@nasa.gov FU NASA [NNX08AL43G, NNA09DB30A]; NSF [AST-1009928, AST-0907890]; NASA ATFP [NNX09AJ33G]; JPL [1354840] FX The authors thank Aravind Natarajan, Fabio Iocco and Tanja Rindler-Daller for helpful discussions. AS is grateful for support from the NASA Postdoctoral Program (NPP). VB acknowledges support from NSF grant AST-1009928, NASA ATFP grant NNX09AJ33G and JPL Research Support Agreement 1354840. This work was supported in part by NSF grant AST-0907890 and NASA grants NNX08AL43G and NNA09DB30A (for AL). VB thanks the Max-Planck-Institut fur Astrophysik for its hospitality during part of the work on this paper. The simulations were carried out at the Texas Advanced Computing Center (TACC). NR 73 TC 9 Z9 9 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 421 IS 1 BP 894 EP 907 DI 10.1111/j.1365-2966.2011.20373.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924LQ UT WOS:000302693600102 ER PT J AU Evans, A van Loon, JT Woodward, CE Gehrz, RD Clayton, GC Helton, LA Rushton, MT Eyres, SPS Krautter, J Starrfield, S Wagner, RM AF Evans, A. van Loon, J. Th. Woodward, C. E. Gehrz, R. D. Clayton, G. C. Helton, L. A. Rushton, M. T. Eyres, S. P. S. Krautter, J. Starrfield, S. Wagner, R. M. TI Solid-phase C-60 in the peculiar binary XX Oph? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astrochemistry; binaries: symbiotic; circumstellar matter; stars: individual: XX Oph; infrared: stars ID SPITZER-SPACE-TELESCOPE; INFRARED-EMISSION; HYDROCARBON EMISSION; PLANETARY-NEBULA; STARS; MISSION; DUST; OPHIUCHI; SPECTRUM; CARBON AB We present infrared spectra of the binary XX Oph obtained with the Infrared Spectrograph on the Spitzer Space Telescope. The data show some evidence for the presence of solid C-60 - the first detection of C-60 in the solid phase - together with the well-known 'unidentified infrared' emission features. We suggest that, in the case of XX Oph, the C-60 is located close to the hot component, and that in general it is preferentially excited by stars having effective temperatures in the range 15 000-30 000 K. C-60 may be common in circumstellar environments, but unnoticed in the absence of a suitable exciting source. C1 [Evans, A.; van Loon, J. Th.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Woodward, C. E.; Gehrz, R. D.; Helton, L. A.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Clayton, G. C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Helton, L. A.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Rushton, M. T.; Eyres, S. P. S.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Krautter, J.] Heidelberg Univ, Zentrum Astron, Landessternwarte, D-69117 Heidelberg, Germany. [Starrfield, S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Wagner, R. M.] Large Binocular Telescope Observ, Tucson, AZ 85721 USA. RP Evans, A (reprint author), Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM ae@astro.keele.ac.uk FU National Aeronautics and Space Administration; NASA Spitzer/JPL; United States Air Force; NSF FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory California Institute of Technology, funded by the National Aeronautics and Space Administration. Based on observations with AKARI, a JAXA project with the participation of ESA. RDG, CEW and LAH were supported by various NASA Spitzer/JPL contracts and the United States Air Force. SS was supported by NASA and the NSF. NR 39 TC 9 Z9 10 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 421 IS 1 BP L92 EP L96 DI 10.1111/j.1745-3933.2012.01213.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 924LQ UT WOS:000302693600020 ER PT J AU Hemmati, H AF Hemmati, Hamid TI Free Space Optical Communications SO OPTICAL ENGINEERING LA English DT Editorial Material C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hemmati, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM hhemmati@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD MAR PY 2012 VL 51 IS 3 AR 031201 DI 10.1117/1.OE.51.3.031201 PG 1 WC Optics SC Optics GA 925SC UT WOS:000302780500005 ER PT J AU Lyon, RG Clampin, M AF Lyon, Richard G. Clampin, Mark TI Space telescope sensitivity and controls for exoplanet imaging (vol 51, 011002, 2012) SO OPTICAL ENGINEERING LA English DT Correction C1 [Lyon, Richard G.; Clampin, Mark] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lyon, RG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Richard.G.Lyon@nasa.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD MAR PY 2012 VL 51 IS 3 AR 039801 DI 10.1117/1.OE.51.3.039801 PG 1 WC Optics SC Optics GA 925SC UT WOS:000302780500040 ER PT J AU McKay, C AF McKay, Chris TI David Gilichinsky SO ASTROBIOLOGY LA English DT Editorial Material C1 NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP McKay, C (reprint author), NASA, Ames Res Ctr, Div Space Sci, MS 245-3, Moffett Field, CA 94035 USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAR PY 2012 VL 12 IS 3 BP 169 EP 169 DI 10.1089/ast.2012.2230 PG 1 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 922AH UT WOS:000302518700001 PM 22394098 ER PT J AU Smith, HD Duncan, AG Neary, PL Lloyd, CR Anderson, AJ Sims, RC McKay, CP AF Smith, H. D. Duncan, A. G. Neary, P. L. Lloyd, C. R. Anderson, A. J. Sims, R. C. McKay, C. P. TI In Situ Microbial Detection in Mojave Desert Soil Using Native Fluorescence SO ASTROBIOLOGY LA English DT Article DE Ultraviolet spectroscopy; Bacillus subtilis; spores; In situ measurement; Mars; Life detection ID BACILLUS-SUBTILIS; BACTERIA; WATER; ACID; CONTAMINATION; MARS; SIZE; LIFE; ICE AB We report on the use of a portable instrument for microbial detection in the Mojave Desert soil and the potential for its use on Mars. The instrument is based on native fluorescence and employs four excitation wavelengths combined with four emission wavelengths. A soil dilution series in which known numbers of Bacillus subtilis spores were added to soil was used to determine the sensitivity of the instrument. We found that the fluorescence of the biological and organic components of the desert soil samples studied can be as strong as the fluorescence of the mineral component of these soils. Using the calibration derived from B. subtilis spores, we estimated that microbial content at our primary sampling site was 10(7) bacteria per gram of soil, a level confirmed by phospholipid fatty acid analysis. At a nearby site, but in a slightly different geological setting, we tested the instrument's ability to map out microbial concentrations in situ. Over a similar to 50m diameter circle, soil microbial concentrations determined with the B. subtilis calibration indicate that the concentrations of microorganisms detected varies from 10(4) to 10(7) cells per gram of soil. We conclude that fluorescence is a promising method for detecting soil microbes in noncontact applications in extreme environments on Earth and may have applications on future missions to Mars. C1 [Smith, H. D.; Sims, R. C.] Utah State Univ, Dept Biol Engn, Logan, UT 84322 USA. [Anderson, A. J.] Utah State Univ, Dept Biol, Logan, UT 84322 USA. [Duncan, A. G.; Neary, P. L.] Utah State Univ, NCDMF, Logan, UT 84322 USA. [Lloyd, C. R.] MicroBioSystems, Logan, UT USA. [McKay, C. P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Smith, HD (reprint author), Utah State Univ, Dept Biol Engn, 4105 Old Main Hill, Logan, UT 84322 USA. EM hdsmith@aggiemail.usu.edu RI Anderson, Anne/B-7313-2014 FU NASA FX The authors would like to thank the participants of the NASA Spaceward Bound Mojave Field workshop for sample collection and valuable discussions. We thank Microbial Insights (Rockford, Tennessee, USA, www.microbe.com) for the phospholipid fatty acid soil analysis; Shayne Rich and Dr. Christopher Lloyd for helpful discussions and instrument operations; Dr. Pete Kolesar of the Utah State University Geology Department for soil mineralogy obtained via X-ray diffraction; Tiffany Evans of the Utah State University soil analytical lab for chemical and physical characterization of the soil; and three anonymous reviewers for improving the manuscript. H.D.S. acknowledges funding through the NASA Graduate Student Research Program to support this research. C.P.M. acknowledges support from the NASA Planetary Protection Program. NR 31 TC 7 Z9 7 U1 0 U2 14 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAR PY 2012 VL 12 IS 3 BP 247 EP 257 DI 10.1089/ast.2010.0549 PG 11 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 922AH UT WOS:000302518700005 PM 22352702 ER PT J AU Scholes, RJ Walters, M Turak, E Saarenmaa, H Heip, CHR Tuama, EO Faith, DP Mooney, HA Ferrier, S Jongman, RHG Harrison, IJ Yahara, T Pereira, HM Larigauderie, A Geller, G AF Scholes, Robert J. Walters, Michele Turak, Eren Saarenmaa, Hannu Heip, Carlo H. R. Tuama, Eamonn O. Faith, Daniel P. Mooney, Harold A. Ferrier, Simon Jongman, Rob H. G. Harrison, Ian J. Yahara, Tetsukazu Pereira, Henrique M. Larigauderie, Anne Geller, Gary TI Building a global observing system for biodiversity SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Article ID SOCIAL-ECOLOGICAL SYSTEMS; FRESH-WATER CONSERVATION; DIVERSITY AB The Group on Earth Observations Biodiversity Observation Network (GEO BON) has been in formal existence for three years, following several years of design and discussion. It is the realisation of the biodiversity societal benefit area envisaged in the GEO System of Systems (GEOSS). GEO BON links together existing networks, each covering particular aspects of biodiversity or parts of the world, and takes steps to help fill important gaps in the system. GEO BON focusses on coordination and harmonisation of the existing and emerging systems; advocacy and action to sustain the observing systems and to fill the identified gaps; and understanding and servicing user needs for biodiversity observations, particularly in the policy-making domain. C1 [Scholes, Robert J.; Walters, Michele] CSIR Nat Resources & Environm, ZA-0001 Pretoria, South Africa. [Turak, Eren] NSW Off Environm & Heritage, Dept Premier & Cabinet, Sydney S, NSW 1232, Australia. [Turak, Eren] Australian Museum, Sydney, NSW 2000, Australia. [Saarenmaa, Hannu] Univ Eastern Finland, Joensuu 80101, Finland. [Heip, Carlo H. R.] Netherlands Inst Ecol, Ctr Estuarine & Marine Ecol, NL-4400 AC Yerseke, Netherlands. [Tuama, Eamonn O.] Global Biodivers Informat Facil, DK-2100 Copenhagen O, Denmark. [Faith, Daniel P.] Australian Museum, Sydney, NSW 2010, Australia. [Mooney, Harold A.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA. [Ferrier, Simon] CSIRO Ecosyst Sci, Canberra, ACT 2601, Australia. [Jongman, Rob H. G.] Wageningen UR, NL-6700 AA Wageningen, Netherlands. [Harrison, Ian J.] Conservat Int, Arlington, VA 22202 USA. [Harrison, Ian J.] IUCN Biodivers Assessment Unit, Arlington, VA 22202 USA. [Yahara, Tetsukazu] Kyushu Univ, Ctr Asian Conservat Ecol, Dept Biol, Fukuoka 8128581, Japan. [Pereira, Henrique M.] Univ Lisbon, Fac Ciencias, Ctr Biol Ambiental, P-1749016 Lisbon, Portugal. [Larigauderie, Anne] Museum Natl Hist Nat, DIVERSITAS, F-75231 Paris 05, France. [Geller, Gary] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Scholes, RJ (reprint author), CSIR Nat Resources & Environm, POB 395, ZA-0001 Pretoria, South Africa. EM bscholes@csir.co.za RI Pereira, Henrique/B-3975-2009; Jongman, Robert/I-7692-2012; Ferrier, Simon/C-1490-2009; OI Pereira, Henrique/0000-0003-1043-1675; Ferrier, Simon/0000-0001-7884-2388; Turak, Eren/0000-0001-7383-9112; Geller, Gary/0000-0002-4490-6002; Scholes, Robert/0000-0001-5537-6935 FU National Aeronautics and Space Administration FX Some of the research described in this paper was carried our at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 41 TC 34 Z9 38 U1 3 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 J9 CURR OPIN ENV SUST JI Curr. Opin. Environ. Sustain. PD MAR PY 2012 VL 4 IS 1 BP 139 EP 146 DI 10.1016/j.cosust.2011.12.005 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 921WA UT WOS:000302507600018 ER PT J AU Cetinoneri, B Atesal, YA Fung, A Rebeiz, GM AF Cetinoneri, Berke Atesal, Yusuf A. Fung, Andy Rebeiz, Gabriel M. TI W-Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170-200-GHz Doublers in 45-nm CMOS SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE CMOS; frequency doubler; G-band; low-noise amplifiers; millimeter-wave integrated circuits; W-band ID POWER; TECHNOLOGY AB This paper presents low-noise W-band amplifiers and milliwatt-level 170-200-GHz output doublers in 45-nm semiconductor-on-insulator (SOI) CMOS technology. The transistors are modeled using R/C extraction and full electromagnetic modeling. The measured of a 30 1-mu m transistor is 200-210 GHz at a bias current of 0.3-0.5 mA/mu m. A three-stage W-band amplifier shows a record noise figure of 6.0 dB and a saturated output power of 7.5-8.0 dBm with a power-added efficiency of 9%, all at 95 GHz. The G-band balanced doubler results in an output power of 1 mW at 180 GHz. A W-band amplifier/G-band doubler chip is also demonstrated, with a peak output power of 0.5-1 mW at 170-195 GHz and a conversion gain from -2 to -1 dB. This paper shows that 45-nm SOI CMOS, built for digital and mixed-signal applications, results in state-of-the-art performance at W-and G-band. C1 [Cetinoneri, Berke; Atesal, Yusuf A.; Rebeiz, Gabriel M.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Fung, Andy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Cetinoneri, B (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. EM bcetinon@ucsd.edu; alperenatesal@gmail.com; rebeiz@ece.ucsd.edu FU C2S2 Focus Center, one of six research centers; Semiconductor Research Corporation entity; National Aeronautics and Space Administration (NASA) FX Manuscript received May 09, 2011; revised July 31, 2011; accepted August 09, 2011. Date of publication September 22, 2011; date of current version March 02, 2012. This work was supported by the C2S2 Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity, and by the Director's Research and Development Fund under a contract with the National Aeronautics and Space Administration (NASA). NR 25 TC 61 Z9 61 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD MAR PY 2012 VL 60 IS 3 SI SI BP 692 EP 701 DI 10.1109/TMTT.2011.2165964 PN 2 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 921UQ UT WOS:000302503800009 ER PT J AU Burt, E Gill, P AF Burt, Eric Gill, Patrick TI Introduction to the Special Issue on the 2011 Joint IEEE International Frequency Control Symposium and European Frequency and Time Forum SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Editorial Material C1 [Burt, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gill, Patrick] Natl Phys Lab, Teddington TW11 0LW, Middx, England. RP Burt, E (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD MAR PY 2012 VL 59 IS 3 BP 332 EP 333 DI 10.1109/TUFFC.2012.2201 PG 2 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 922OB UT WOS:000302556000001 PM 22481765 ER PT J AU Greenhall, CA AF Greenhall, Charles A. TI A Review of Reduced Kalman Filters for Clock Ensembles SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article; Proceedings Paper CT 5th Joint Conference of the 65th IEEE International Frequency Control Symposium / 25th European Frequency and Time Forum CY MAY 01-05, 2011 CL San Francisco, CA SP IEEE, IEEE UFFC, EFTF ID ADMITS MEASUREMENT NOISE; TIME-SCALE ALGORITHM; TIMESCALES; VARIANCE; MODEL; ALLAN AB This paper reviews the author's previous work on free-running timescales based on Kalman filters that act upon clock comparisons. The natural Kalman clock ensemble algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability. A new result on covariance matrix reduction is also stated. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Greenhall, CA (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM cgreenhall@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 18 TC 3 Z9 3 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD MAR PY 2012 VL 59 IS 3 BP 491 EP 496 DI 10.1109/TUFFC.2012.2219 PG 6 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 922OB UT WOS:000302556000019 PM 22481783 ER PT J AU Turyshev, SG Minazzoli, OL Toth, VT AF Turyshev, Slava G. Minazzoli, Olivier L. Toth, Viktor T. TI Accelerating relativistic reference frames in Minkowski space-time SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID POST-NEWTONIAN THEORY; CELESTIAL MECHANICS; REFERENCE SYSTEMS; MOTION; EQUATIONS; EXPANSIONS; TESTS AB We study accelerating relativistic reference frames in Minkowski space-time under the harmonic gauge. It is well-known that the harmonic gauge imposes constraints on the components of the metric tensor and also on the functional form of admissible coordinate transformations. These two sets of constraints are equivalent and represent the dual nature of the harmonic gauge. We explore this duality and show that the harmonic gauge allows presenting an accelerated metric in an elegant form that depends only on two harmonic potentials. It also allows reconstruction of the spatial structure of the post-Galilean coordinate transformation functions relating inertial and accelerating frames. The remaining temporal dependence of these functions together with corresponding equations of motion are determined from dynamical conditions, obtained by constructing the relativistic proper reference frame of an accelerated test particle. In this frame, the effect of external forces acting on the observer is balanced by the fictitious frame-reaction force that is needed to keep the test particle at rest with respect to the frame, conserving its relativistic linear momentum. We find that this approach is sufficient to determine all the terms of the coordinate transformation. The same method is then used to develop the inverse transformations. The resulting post-Galilean coordinate transformations extend the Poincare group on the case of accelerating observers. We present and discuss the resulting coordinate transformations, relativistic equations of motion, and the structure of the metric tensors corresponding to the relativistic reference frames involved. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692166] C1 [Turyshev, Slava G.; Minazzoli, Olivier L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM turyshev@jpl.nasa.gov RI Toth, Viktor/D-3502-2009; OI Toth, Viktor/0000-0003-3651-9843; Minazzoli, Olivier/0000-0002-3151-7593 FU Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA) FX We thank Sami W. Asmar, Curt J. Cutler, William M. Folkner, Michael M. Watkins, and James G. Williams of Jet Propulsion Laboratory (JPL) for their interest and support during the work and preparation of this manuscript. We also thank Sergei M. Kopeikin for his insightful comments and suggestions. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 25 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0022-2488 J9 J MATH PHYS JI J. Math. Phys. PD MAR PY 2012 VL 53 IS 3 AR 032501 DI 10.1063/1.3692166 PG 25 WC Physics, Mathematical SC Physics GA 917YV UT WOS:000302216300008 ER PT J AU Collinson, GA Dorelli, JC Avanov, LA Lewis, GR Moore, TE Pollock, C Kataria, DO Bedington, R Arridge, CS Chornay, DJ Gliese, U Mariano, A Barrie, AC Tucker, C Owen, CJ Walsh, AP Shappirio, MD Adrian, ML AF Collinson, Glyn A. Dorelli, John C. Avanov, Levon A. Lewis, Gethyn R. Moore, Thomas E. Pollock, Craig Kataria, Dhiren O. Bedington, Robert Arridge, Chris S. Chornay, Dennis J. Gliese, Ulrik Mariano, Al Barrie, Alexander C. Tucker, Corey Owen, Christopher J. Walsh, Andrew P. Shappirio, Mark D. Adrian, Mark L. TI The geometric factor of electrostatic plasma analyzers: A case study from the Fast Plasma Investigation for the Magnetospheric Multiscale mission SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DETECTION EFFICIENCY; INSTRUMENT; ELECTRONS; ABSOLUTE; DETECTOR AB We report our findings comparing the geometric factor (GF) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the GF have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687021] C1 [Collinson, Glyn A.; Dorelli, John C.; Avanov, Levon A.; Moore, Thomas E.; Pollock, Craig; Chornay, Dennis J.; Gliese, Ulrik; Mariano, Al; Barrie, Alexander C.; Tucker, Corey; Shappirio, Mark D.; Adrian, Mark L.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20071 USA. [Collinson, Glyn A.; Lewis, Gethyn R.; Kataria, Dhiren O.; Bedington, Robert; Arridge, Chris S.; Owen, Christopher J.; Walsh, Andrew P.] Univ Coll London, Mullard Space Sci Lab, Surrey, England. [Avanov, Levon A.] Innovim, Maryland Trade Ctr 3, Greenbelt, MD 20770 USA. [Arridge, Chris S.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Chornay, Dennis J.] Univ Maryland, College Pk, MD 20740 USA. [Gliese, Ulrik] SGT Inc, Lanham, MD 20706 USA. [Barrie, Alexander C.] Millennium Engn & Integrat, Arlington, VA 22202 USA. [Tucker, Corey] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. RP Collinson, GA (reprint author), NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20071 USA. EM glyn.a.collinson@nasa.gov RI Collinson, Glyn/D-5700-2012; Dorelli, John/C-9488-2012; Moore, Thomas/D-4675-2012; Owen, Christopher/C-2999-2008; Arridge, Christopher/A-2894-2009; NASA MMS, Science Team/J-5393-2013; OI Moore, Thomas/0000-0002-3150-1137; Owen, Christopher/0000-0002-5982-4667; Arridge, Christopher/0000-0002-0431-6526; NASA MMS, Science Team/0000-0002-9504-5214; Walsh, Andrew/0000-0002-1682-1212 FU NASA FX This work was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We also wish to thank the following members of the DES-ETU team who contributed to this paper through mechanical design, electronics design and testing, test software development, and assembly and testing of the ETU: Craig Auletti, Victor Bigio, Will Burrows, Nga Cao, Kent Christian, Nick Galassi, Kelvin Garcia, Jacob Haseman, Art Jaques, Joe Kajowski, Carol Lilly, Jim Lobell, Quang Nguyen, Lillian Reichenthal, Traci Rosnack, Alan Rucker, Chad Salo, Darrell Smith, David Steinfeld, Kimathi Tull, and Mike Zeuch. NR 34 TC 15 Z9 15 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2012 VL 83 IS 3 AR 033303 DI 10.1063/1.3687021 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 918CU UT WOS:000302227700017 PM 22462915 ER PT J AU Cable, ML Horst, SM Hodyss, R Beauchamp, PM Smith, MA Willis, PA AF Cable, Morgan L. Hoerst, Sarah M. Hodyss, Robert Beauchamp, Patricia M. Smith, Mark A. Willis, Peter A. TI Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era SO CHEMICAL REVIEWS LA English DT Review ID CAPILLARY-ELECTROPHORESIS SYSTEM; OUTER SOLAR-SYSTEM; PHOTOCHEMICAL FLOW REACTOR; LABORATORY SIMULATIONS; ATMOSPHERIC CHEMISTRY; AMINO-ACIDS; MASS-SPECTROMETRY; CORONA DISCHARGE; PRIMITIVE EARTH; OPTICAL-PROPERTIES C1 [Cable, Morgan L.; Hodyss, Robert; Beauchamp, Patricia M.; Willis, Peter A.] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. [Hoerst, Sarah M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Smith, Mark A.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Smith, Mark A.] Univ Houston, Coll Nat Sci & Math, Houston, TX 77004 USA. RP Willis, PA (reprint author), NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. EM Peter.A.Willis@jpl.nasa.gov RI Horst, Sarah/A-9906-2010; Willis, Peter/I-6621-2012 OI Horst, Sarah/0000-0003-4596-0702; FU NASA at the Jet Propulsion Laboratory; NASA [NNX08AX62H, NNX09AB586]; NSF [AST1102827]; NASA Astrobiology Institute (NAI); NASA Astrobiology Science and Technology Development (ASTID) FX The authors are grateful to Hiroshi Imanaka for help revising the manuscript, and we thank Joseph Westlake for improving our discussion on future directions in tholin research. We also acknowledge Jonathan Lunine and Amanda Stockton for fruitful discussions and suggestions. M.L.C. was funded through the NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. S.M.H. is supported by a NASA Earth and Space Sciences Fellowship (NNX08AX62H), a NASA Planetary Atmospheres Grant (NNX09AB586), and an NSF Astronomy and Astrophysics Postdoctoral Fellowship (AST1102827). R.H., P.M.B., M.A.S., and S.M.H. were supported through the NASA Astrobiology Institute (NAI). P.A.W. was funded through the NASA Astrobiology Science and Technology Development (ASTID) Program. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 239 TC 66 Z9 66 U1 6 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD MAR PY 2012 VL 112 IS 3 BP 1882 EP 1909 DI 10.1021/cr200221x PG 28 WC Chemistry, Multidisciplinary SC Chemistry GA 914YD UT WOS:000301988700018 PM 22091924 ER PT J AU Lunt, DJ Haywood, AM Schmidt, GA Salzmann, U Valdes, PJ Dowsett, HJ Loptson, CA AF Lunt, Daniel J. Haywood, Alan M. Schmidt, Gavin A. Salzmann, Ulrich Valdes, Paul J. Dowsett, Harry J. Loptson, Claire A. TI On the causes of mid-Pliocene warmth and polar amplification SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE mid-Pliocene; polar amplification; paleoclimate modelling ID SEA-SURFACE TEMPERATURES; LAST GLACIAL MAXIMUM; PLIOMIP EXPERIMENTAL-DESIGN; GENERAL-CIRCULATION MODELS; GREENLAND ICE-SHEET; PERMANENT EL-NINO; BOUNDARY-CONDITIONS; CONTINENTAL ICE; ATMOSPHERIC CO2; CLIMATE AB The mid-Pliocene (similar to 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to similar to 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes. (C) 2012 Elsevier B.V. All rights reserved. C1 [Lunt, Daniel J.; Valdes, Paul J.; Loptson, Claire A.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Haywood, Alan M.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Schmidt, Gavin A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Salzmann, Ulrich] Northumbria Univ, Sch Built & Nat Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. [Dowsett, Harry J.] US Geol Survey, Reston, VA 20192 USA. RP Lunt, DJ (reprint author), Univ Bristol, Sch Geog Sci, Univ Rd, Bristol BS8 1SS, Avon, England. EM d.j.lunt@bristol.ac.uk RI Lunt, Daniel/G-9451-2011; Schmidt, Gavin/D-4427-2012; Valdes, Paul/C-4129-2013; OI Lunt, Daniel/0000-0003-3585-6928; Schmidt, Gavin/0000-0002-2258-0486; Dowsett, Harry/0000-0003-1983-7524 FU RCUK; Leverhulme Trust; Natural Environment Research Council [NE/I016287/1, NE/G009112/1] FX DJL is funded by an RCUK fellowship. AMH acknowledges the Leverhulme Trust for the award of a Philip Leverhulme Prize. US received funding from the Natural Environment Research Council (NE/I016287/1). DJL and AMH received funding from the Natural Environment Research Council (NE/G009112/1). NR 70 TC 33 Z9 34 U1 9 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAR 1 PY 2012 VL 321 BP 128 EP 138 DI 10.1016/j.epsl.2011.12.042 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 913WX UT WOS:000301909200014 ER PT J AU Brower, LP Taylor, OR Williams, EH Slayback, DA Zubieta, RR Ramirez, MI AF Brower, Lincoln P. Taylor, Orley R. Williams, Ernest H. Slayback, Daniel A. Zubieta, Raul R. Isabel Ramirez, M. TI Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? SO INSECT CONSERVATION AND DIVERSITY LA English DT Letter DE Conservation; endangered biological phenomenon; habitat; Lepidoptera; migration; monitoring ID ASCLEPIAS-SYRIACA; FOREST; COLONIES AB . 1. During the 20092010 overwintering season and following a 15-year downward trend, the total area in Mexico occupied by the eastern North American population of overwintering monarch butterflies reached an all-time low. Despite an increase, it remained low in 20102011. 2. Although the data set is small, the decline in abundance is statistically significant using both linear and exponential regression models. 3. Three factors appear to have contributed to reduce monarch abundance: degradation of the forest in the overwintering areas; the loss of breeding habitat in the United States due to the expansion ofGM herbicide-resistant crops, with consequent loss of milkweed host plants, as well as continued land development; and severe weather. 4. This decline calls into question the long-term survival of the monarchs' migratory phenomenon. C1 [Williams, Ernest H.] Hamilton Coll, Dept Biol, Clinton, NY 13323 USA. [Brower, Lincoln P.] Sweet Briar Coll, Dept Biol, Sweet Briar, VA 24595 USA. [Taylor, Orley R.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS USA. [Slayback, Daniel A.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Zubieta, Raul R.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Isabel Ramirez, M.] Univ Nacl Autonoma Mexico, Ctr Invest Geog Ambiental, Morelia, Michoacan, Mexico. RP Williams, EH (reprint author), Hamilton Coll, Dept Biol, Clinton, NY 13323 USA. EM ewil-liam@hamilton.edu RI Ramirez, M. Isabel/D-3010-2012; OI Williams, Ernest/0000-0002-9438-103X NR 40 TC 56 Z9 60 U1 24 U2 205 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1752-458X J9 INSECT CONSERV DIVER JI Insect. Conserv. Divers. PD MAR PY 2012 VL 5 IS 2 BP 95 EP 100 DI 10.1111/j.1752-4598.2011.00142.x PG 6 WC Biodiversity Conservation; Entomology SC Biodiversity & Conservation; Entomology GA 907UC UT WOS:000301443200001 ER PT J AU Tapiador, FJ Tao, WK Shi, JJ Angelis, CF Martinez, MA Marcos, C Rodriguez, A Hou, A AF Tapiador, Francisco J. Tao, Wei-Kuo Shi, Jainn Jong Angelis, Carlos F. Martinez, Miguel A. Marcos, Cecilia Rodriguez, Antonio Hou, Arthur TI A Comparison of Perturbed Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in Spain SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID BRIGHTNESS TEMPERATURE; BULK PARAMETERIZATION; CONVECTIVE CLOUDS; MODEL PHYSICS; PART I; PRECIPITATION; STRATIFORM; SENSITIVITY; RAINFALL; SIMULATIONS AB Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while the other follows a perturbed initial conditions approach. The results show that, depending on the parameterizations, large differences can be expected in terms of storm location, spatial structure of the precipitation field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller than the dispersion due to physical parameterizations. This confirms that in severe weather situations operational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble approach, in addition to optimizing initial conditions. The results also provide insights into differences in simulations arising from ensembles of weather models using several combinations of different physical parameterizations. C1 [Tapiador, Francisco J.] Univ Castilla La Mancha, Inst Environm Sci, Dept Environm Sci, Toledo 45071, Spain. [Tao, Wei-Kuo; Shi, Jainn Jong] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Angelis, Carlos F.] Ctr Previsao Tempo & Estudos Climat, Inst Nacl Pesquisas Espaciais, Sao Paulo, Brazil. [Martinez, Miguel A.; Marcos, Cecilia; Rodriguez, Antonio] Agencia Estatal Meteorol, Madrid, Spain. [Hou, Arthur] NASA, Goddard Space Flight Ctr, Goddard Modeling Assimilat Off, Greenbelt, MD 20771 USA. RP Tapiador, FJ (reprint author), Univ Castilla La Mancha, Inst Environm Sci, Dept Environm Sci, Avda Carlos III S-N, Toledo 45071, Spain. EM francisco.tapiador@uclm.es RI Hou, Arthur/D-8578-2012; Marcos-Martin, Cecilia/O-4216-2014; Martinez, Miguel A./O-4623-2014; Measurement, Global/C-4698-2015 OI Marcos-Martin, Cecilia/0000-0002-8861-7376; Martinez, Miguel A./0000-0002-2216-663X; FU JCCM [PPII10-0162-5543]; Miami [CGL2010-20787-C02-01, CGL2010-20787-C02-02]; Cenit project Prometeo (CDTI); MiCInn [UNCM08-1E-086] FX Funding from projects PPII10-0162-5543 (JCCM), CGL2010-20787-C02-01, CGL2010-20787-C02-02 (Miami), Cenit project Prometeo (CDTI), and UNCM08-1E-086 (MiCInn) is gratefully acknowledged. The authors thankfully acknowledge the computer resources, technical expertise, and assistance provided by the RES. NR 45 TC 12 Z9 12 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAR PY 2012 VL 51 IS 3 BP 489 EP 504 DI 10.1175/JAMC-D-11-041.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910XT UT WOS:000301682600004 ER PT J AU Hogan, RJ Tian, L Brown, PRA Westbrook, CD Heymsfield, AJ Eastment, JD AF Hogan, Robin J. Tian, Lin Brown, Philip R. A. Westbrook, Christopher D. Heymsfield, Andrew J. Eastment, Jon D. TI Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID WATER-CONTENT; PARTICLE-SIZE; REFLECTIVITY MEASUREMENTS; POLARIMETRIC RADAR; ER-2 AIRCRAFT; PHASE CLOUDS; PRECIPITATION; CRYSTALS; LIDAR; RETRIEVAL AB The assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used "Brown and Francis" mass-size relationship has often been applied to maximum particle dimension observed by aircraft D-max rather than to the mean of the particle dimensions in two orthogonal directions D-mean, which was originally used by Brown and Francis. Analysis of particle images reveals that D-max similar or equal to 1.25D(mean), and therefore, for clouds for which this mass-size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass-size relationship with D-mean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh-Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4. C1 [Hogan, Robin J.; Westbrook, Christopher D.] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England. [Tian, Lin] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Brown, Philip R. A.] Met Off, Exeter, Devon, England. [Heymsfield, Andrew J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Eastment, Jon D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Hogan, RJ (reprint author), Univ Reading, Dept Meteorol, POB 243, Reading RG6 6BB, Berks, England. EM r.j.hogan@reading.ac.uk RI Heymsfield, Andrew/E-7340-2011; Brown, Philip/D-9819-2013; Westbrook, Christopher/H-9770-2013; Hogan, Robin/M-6549-2016 OI Brown, Philip/0000-0003-4643-4923; Hogan, Robin/0000-0002-3180-5157 FU National Science Foundation; NERC [NE/H003894/1]; NASA Precipitation Measurement Mission; NASA [NX07AQ85G, NNX08AH57G] FX The National Center for Atmospheric Research is sponsored by the National Science Foundation.; We thank Dr. Paul Field for assistance in processing some of the ice particle size distributions in section 4 and Dr. Aaron Bansemer for processing the DC-8 data in section 5. Author LT thanks Drs. Gerry Heymsfield and Lihua Li for discussions on airborne radar calibration and engineer support. RJH thanks Dr. Anthony Illingworth for discussions on Chilbolton radar calibration. The contributions of RJH and CDW were supported by NERC Grant NE/H003894/1, and LT is funded by the NASA Precipitation Measurement Mission. Financial support was provided to AJH by NASA Awards NX07AQ85G and NNX08AH57G (through Hal Maring). NR 59 TC 49 Z9 50 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAR PY 2012 VL 51 IS 3 BP 655 EP 671 DI 10.1175/JAMC-D-11-074.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 910XT UT WOS:000301682600015 ER PT J AU Burton, AS Elsila, JE Callahan, MP Martin, MG Glavin, DP Johnson, NM Dworkin, JP AF Burton, Aaron S. Elsila, Jamie E. Callahan, Michael P. Martin, Mildred G. Glavin, Daniel P. Johnson, Natasha M. Dworkin, Jason P. TI A propensity for n-omega-amino acids in thermally altered Antarctic meteorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR-SYSTEM; CARBON-ISOTOPE COMPOSITION; PARENT BODY PROCESSES; ORGANIC-COMPOUNDS; MURCHISON METEORITE; CHONDRITIC MATERIAL; UREILITES; DECARBOXYLATION; FRACTIONATION; DECOMPOSITION AB Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts-per-billion (ppb), generally much less abundant than in amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Streckercyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-?-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-?-amino acids measured in one of the CV chondrites (d13C approximately -25 parts per thousand) are consistent with 13C-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-?-amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids. C1 [Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.] Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Burton, Aaron S.] Oak Ridge Associated Univ, NASA, Postdoctoral Program Adm, Oak Ridge, TN 37831 USA. [Martin, Mildred G.] Catholic Univ Amer, Washington, DC 20064 USA. RP Burton, AS (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM aaron.s.burton@nasa.gov RI Callahan, Michael/D-3630-2012; Burton, Aaron/H-2212-2011; Elsila, Jamie/C-9952-2012; Johnson, Natasha/E-3093-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Burton, Aaron/0000-0002-7137-1605; Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU NASA; NASA Astrobiology Institute; Goddard Center for Astrobiology FX A. S. B. acknowledges support from the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. The authors acknowledge funding support from the NASA Astrobiology Institute and the Goddard Center for Astrobiology and the NASA Cosmochemistry Program. We thank K. Righter (NASA Johnson Space Center) for providing the Antarctic meteorites and for helpful discussions; the 2006 ANSMET team for providing the Antarctic ice sample; G. Matrajt for providing the sample of Allende; and an anonynmous reviewer and Z. Martins for helpful comments and criticisms of the manuscript. NR 58 TC 19 Z9 19 U1 5 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 374 EP 386 DI 10.1111/j.1945-5100.2012.01341.x PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300005 ER PT J AU Robinson, KL Treiman, AH Joy, KH AF Robinson, Katharine L. Treiman, Allan H. Joy, Katherine H. TI Basaltic fragments in lunar feldspathic meteorites: Connecting sample analyses to orbital remote sensing SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ALEXANDRA RANGE 93069; MARE BASALTS; PECORA ESCARPMENT-02007; REGOLITH BRECCIA; GEOCHEMISTRY; SURFACE; CRUST; PETROLOGY; MOON; PETROGRAPHY AB The feldspathic lunar meteorites contain rare fragments of crystalline basalts. We analyzed 16 basalt fragments from four feldspathic lunar meteorites (Allan Hills [ALHA] 81005, MacAlpine Hills [MAC] 88104/88105, Queen Alexandra Range [QUE] 93069, Miller Range [MIL] 07006) and utilized literature data for another (Dhofar [Dho] 1180). We compositionally classify basalt fragments according to their magmas estimated TiO2 contents, which we derive for crystalline basalts from pyroxene TiO2 and the mineral-melt Ti distribution coefficient. Overall, most of the basalt fragments are low-Ti basalts (16% TiO2), with a significant proportion of very-low-Ti basalts (<1% TiO2). Only a few basalt clasts were high-Ti or intermediate Ti types (>10% TiO2 and 610% TiO2, respectively). This distribution of basalt TiO2 abundances is nearly identical to that obtained from orbital remote sensing of the moon (both UV-Vis from Clementine, and gamma ray from Lunar Prospector). However, the distribution of TiO2 abundances is unlike those of the Apollo and Luna returned samples: we observe a paucity of high-Ti basalts. The compositional types of basalt differs from meteorite to meteorite, which implies that all basalt subtypes are not randomly distributed on the Moon, i.e., the basalt fragments in each meteorite probably represent basalts in the neighborhood of the meteorite launch site. These differences in basalt chemistry and classifications may be useful in identifying the source regions of some feldspathic meteorites. Some of the basalt fragments probably originate from ancient cryptomaria, and so may hold clues to the petrogenesis of the Moons oldest volcanism. C1 [Robinson, Katharine L.; Treiman, Allan H.; Joy, Katherine H.] NASA, Lunar Sci Inst, Ctr Lunar Sci & Explorat, Washington, DC 20546 USA. [Robinson, Katharine L.; Treiman, Allan H.; Joy, Katherine H.] Univ Space Res Assoc, Lunar & Planetary Inst, Houston, TX 77058 USA. [Joy, Katherine H.] Joint UCL Birkbeck Res Sch Earth Sci, Ctr Planetary Sci UCL Birkbeck, London WCIE 6BT, England. [Joy, Katherine H.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. RP Robinson, KL (reprint author), Univ Hawaii Manoa, HIGP UHNAI, 1680 E W Rd, Honolulu, HI 96822 USA. EM krobinson@higp.hawaii.edu OI Joy, Katherine/0000-0003-4992-8750 FU NASA [NNX08AH78G]; Leverhulme Trust FX Thin sections used in our study were loaned by the Antarctic Meteorite Curatorial Facility, Johnson Space Center. We are grateful to Anne Peslier, Loan Le, Kent Ross, GeorgAnn Robinson, John Spratt, and Anton Kearsley for assistance with electron microprobe and SEM analyses, and to Juliane Gross for her advice and help. We thank Drs Ryan Zeigler and Carle Pieters for their helpful reviews. This project was started in an LPI Summer Internship to the first author, and was continued under support from NASA Cosmochemistry grant NNX08AH78G to the second author. K. H. J. would like to thank the Leverhulme Trust and Ian Crawford for supporting research at the NHM London. Lunar and Planetary Institute Contribution # 1656. NR 84 TC 10 Z9 10 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 387 EP 399 DI 10.1111/j.1945-5100.2012.01344.x PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300006 ER PT J AU Sears, DWG AF Sears, Derek W. G. TI Oral histories in meteoritics and planetary science: A commentary SO METEORITICS & PLANETARY SCIENCE LA English DT Article C1 NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. RP Sears, DWG (reprint author), NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. EM derek.sears@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 414 EP 415 DI 10.1111/j.1945-5100.2012.01334.x PG 2 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300008 ER PT J AU Sears, DWG AF Sears, Derek W. G. TI Oral histories in meteoritics and planetary scienceuXVI: Donald D. Bogard SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID XENON; MESOSIDERITES; CHONDRITES; GASES; AGES AB Donald D. Bogard (Don, Fig. 1) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASAs Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zahringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar-Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Dons many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA-HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASAs Scientific Achievement and Exceptional Service Medals and the Meteoritical Societys Leonard Medal. C1 NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. RP Sears, DWG (reprint author), NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. EM derek.sears@nasa.gov FU NASA FX This interview was recorded on March 7, 2011, and edited by the author and D. B. I am grateful to NASA for financial support. I am also grateful to Tim Jull, Grenville Turner, and Hazel Sears for reviews and Hazel Sears for proofing. NR 21 TC 1 Z9 1 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 416 EP 433 DI 10.1111/j.1945-5100.2012.01333.x PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300009 ER PT J AU Sears, DWG AF Sears, Derek W. G. TI Oral Histories in Meteoritics and Planetary Science--XVI: Grenville Turner SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID AR-40-AR-39 LASER PROBE; SHOCK EMPLACED ARGON; CLINOPYROXENE INCLUSIONS; ECLOGITIC DIAMONDS; AGE-DETERMINATIONS; ANCIENT ZIRCONS; STONY METEORITE; NOBLE-GAS; CHONDRITES; HALOGEN AB In this interview, Grenville Turner (Fig. 1) recounts how he became interested in meteorites during postdoctoral research with John Reynolds at the University of California, Berkeley, after completing a DPhil with Ken Mayne at the University of Oxford. At Berkeley, he worked on xenon isotopes with fellow students Bob Pepin and Craig Merrihue, but Reynolds insistence that they analyze all the inert gases in their samples meant that they also made important contributions to Ne isotope studies and potassium-argon dating leading to the Ar-Ar technique. In 1964, Grenville obtained a teaching position at the University of Sheffield where he developed his own laboratory for inert gas isotope measurements. After the return of samples from the Moon by the Apollo program, he became involved in determining the chronology of volcanism and major impacts on the Moon. In 1988, Grenville and his team moved to the University of Manchester as part of a national reorganization of earth science departments. During the post Apollo years, Grenvilles interest turned to the development of new instrumentation (resonance ionization mass spectrometry and the ion microprobe), and to problems in terrestrial isotope geochemistry, particularly the source of inert gases in fluid inclusions. He received the Leonard Medal of the Meteoritical Society in 1999, and he has also received awards from the Royal Society, the European Association of Geochemistry, and the Royal Astronomical Society. C1 NASA, Ames Res Ctr, Mountain View, CA 94035 USA. RP Sears, DWG (reprint author), NASA, Ames Res Ctr, Mountain View, CA 94035 USA. EM derek.sears@nasa.gov FU NASA FX This interview was recorded on August 8th, 2011, and edited by the author and G. T. As of November 23, 2011, a CV, publication list, and other information appear on http://www.manchester.ac.uk/research/Grenville.turner/publications/. I am grateful to NASA for financial support. NR 31 TC 1 Z9 1 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2012 VL 47 IS 3 BP 434 EP 448 DI 10.1111/j.1945-5100.2012.01335.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 916CC UT WOS:000302073300010 ER PT J AU Kalapotharakos, C Contopoulos, I Kazanas, D AF Kalapotharakos, Constantinos Contopoulos, Ioannis Kazanas, Demos TI The extended pulsar magnetosphere SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE magnetic fields; MHD; radiation mechanisms: general; methods: numerical; pulsars: general ID MILLISECOND PULSARS; OBLIQUE ROTATORS; CRAB PULSAR; SLOT GAPS; RADIATION; EMISSION; MODEL AB We present the structure of the 3D ideal magnetohydrodynamics pulsar magnetosphere to a radius 10 times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero-charge surfaces on the current sheet, which shows a destabilizing behaviour more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern. C1 [Kalapotharakos, Constantinos] Univ Maryland, College Pk, MD 20742 USA. [Kalapotharakos, Constantinos; Kazanas, Demos] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron & Appl Math, Athens 11527, Greece. RP Kalapotharakos, C (reprint author), Univ Maryland, Coll Pk UMDCP CRESST, College Pk, MD 20742 USA. EM constantinos.kalapotharakos@nasa.gov; icontop@academyofathens.gr; demos.kazanas@nasa.gov NR 21 TC 30 Z9 30 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 4 BP 2793 EP 2798 DI 10.1111/j.1365-2966.2011.19884.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 901AW UT WOS:000300935100005 ER PT J AU Morishima, R AF Morishima, R. TI Gap opening beyond dead zones by photoevaporation SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; protoplanetary discs ID TAURI ACCRETION DISKS; PROTOPLANETARY DISKS; MAGNETOROTATIONAL-INSTABILITY; VERTICAL STRUCTURE; LAYERED ACCRETION; X-RAY; PRETRANSITIONAL DISKS; CIRCUMSTELLAR DISKS; TRANSITIONAL DISK; PLANET FORMATION AB We propose a new hypothesis for the origin of protoplanetary discs with large inner holes (or gaps), so-called transition discs. Our gas disc model takes into account layered accretion, in which poorly ionized low-viscosity dead zones are sandwiched by high-viscosity surface layers, and photoevaporative winds induced by X-rays from the central stars. We find that a gap opens at a radius outside a dead zone, if the mass-loss rate due to photoevaporative winds exceeds the mass accretion rate in the dead zone region. Since the dead zone survives even after the gap opens, mass accretion on to the central star continues for a long time. This model can reproduce large gap sizes and high mass accretion rates seen in observed transition discs. C1 [Morishima, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Morishima, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Morishima, R (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90024 USA. EM ryuji.morishima@jpl.nasa.gov NR 46 TC 13 Z9 13 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 4 BP 2851 EP 2858 DI 10.1111/j.1365-2966.2011.19940.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 901AW UT WOS:000300935100009 ER PT J AU Hinse, TC Lee, JW Gozdziewski, K Haghighipour, N Lee, CU Scullion, EM AF Hinse, T. C. Lee, J. W. Gozdziewski, K. Haghighipour, N. Lee, C. -U. Scullion, E. M. TI New light-travel time models and orbital stability study of the proposed planetary system HU Aquarii SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: close; binaries: eclipsing; stars: individual: HU Aquarii ID AQR AB In this work we propose a new orbital architecture for the two proposed circumbinary planets around the polar eclipsing binary HU Aquarii. We base the new two-planet, light-travel time model on the result of a Monte Carlo simulation driving a least-squares LevenbergMarquardt minimization algorithm on the observed eclipse egress times. Our best-fitting model with resulted in high final eccentricities for the two companions leading to an unstable orbital configuration. From a large ensemble of initial guesses, we examined the distribution of final eccentricities and semimajor axes for different parameter intervals and encountered qualitatively a second population of best-fitting parameters. The main characteristic of this population is described by low-eccentric orbits favouring long-term orbital stability of the system. We present our best-fitting model candidate for the proposed two-planet system and demonstrate orbital stability over one million years using numerical integrations. C1 [Hinse, T. C.; Lee, J. W.; Lee, C. -U.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Gozdziewski, K.] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland. [Haghighipour, N.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Scullion, E. M.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. RP Hinse, TC (reprint author), Korea Astron & Space Sci Inst, 776 Daedukdae Ro, Taejon 305348, South Korea. EM tchinse@gmail.com RI Gozdziewski, Krzysztof/D-6291-2014 OI Gozdziewski, Krzysztof/0000-0002-8705-1577 FU Korea Astronomy and Space Science Institute; Department of Culture, Arts and Leisure (DCAL); NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA04CC08A]; NASA EXOB [NNX09AN05G]; Polish Ministry of Science and Higher Education [N/N203/402739] FX The work by TCH were carried out under the Korea Astronomy and Space Science Institute Postdoctoral Research Fellowship Programme. Numerical simulations were carried out on the 'Beehive' computing cluster maintained at Armagh Observatory (UK) and the Centre for Scientific Computing at the University of Sheffield (UK) and St Andrews University (UK). TCH acknowledges Martin Murphy for assistance in using the Beehive cluster. Astronomical research at Armagh Observatory is funded by the Department of Culture, Arts and Leisure (DCAL). NH acknowledges support from NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii, and NASA EXOB grant NNX09AN05G. KG is supported by the Polish Ministry of Science and Higher Education through grant N/N203/402739. We would like to thank Barbara Funk for sharing early results on the stability of circumbinary two-planet systems. NR 22 TC 30 Z9 31 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 4 BP 3609 EP 3620 DI 10.1111/j.1365-2966.2011.20283.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 901AW UT WOS:000300935100065 ER PT J AU Sada, PV Deming, D Jennings, DE Jackson, BK Hamilton, CM Fraine, J Peterson, SW Haase, F Bays, K Lunsford, A O'Gorman, E AF Sada, Pedro V. Deming, Drake Jennings, Donald E. Jackson, Brian K. Hamilton, Catrina M. Fraine, Jonathan Peterson, Steven W. Haase, Flynn Bays, Kevin Lunsford, Allen O'Gorman, Eamon TI Extrasolar Planet Transits Observed at Kitt Peak National Observatory SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID LIGHT-CURVE PROJECT; GAS-GIANT PLANET; SOLAR-TYPE STAR; HIGH-PRECISION PHOTOMETRY; SPIN-ORBIT MISALIGNMENT; COROT SPACE MISSION; EARTH GJ 1214B; BRIGHT K-STAR; SUN-LIKE STAR; HOT JUPITER AB We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z'-band and B-band photometry (plus two H alpha filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO's 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being (R-p/R-*)(J) = 0.0017 + 0.979 (R-p/R-*)(vis). (2) We observe starspot crossings during the transit of WASP-11/HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27/WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems. C1 [Sada, Pedro V.] Univ Monterrey, Dept Fis & Matemat, San Pedro Garza Garcia 66238, Nuevo Leon, Mexico. [Deming, Drake; Fraine, Jonathan] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Jennings, Donald E.; Jackson, Brian K.; Lunsford, Allen] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Hamilton, Catrina M.] Dickinson Coll, Carlisle, PA 17013 USA. [Peterson, Steven W.; Haase, Flynn; Bays, Kevin] Natl Opt Astron Observ, Kitt Peak Natl Observ, Tucson, AZ 85719 USA. [Lunsford, Allen] Catholic Univ Amer, Washington, DC 20064 USA. [O'Gorman, Eamon] Trinity Coll Dublin, Dublin 2, Ireland. RP Sada, PV (reprint author), Univ Monterrey, Dept Fis & Matemat, Ave I Morones Prieto 4500 Poniente, San Pedro Garza Garcia 66238, Nuevo Leon, Mexico. EM pedro.valdes@udem.edu.mx; ddeming@astro.umd.edu; donald.e.jennings@nasa.gov; brian.k.jackson@nasa.gov; hamiltoc@dickinson.edu; jfraine@astro.umd.edu; speterson@noao.edu; fhaase@noao.edu; kbays@noao.edu; allen.w.lunsford@nasa.gov; eogorma@tdc.ie RI Jennings, Donald/D-7978-2012 NR 132 TC 35 Z9 36 U1 1 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAR PY 2012 VL 124 IS 913 BP 212 EP 229 DI 10.1086/665043 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916YQ UT WOS:000302139500003 ER PT J AU Howell, SB AF Howell, Steve B. TI Fringe Science: Defringing CCD Images with Neon Lamp Flat Fields SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID SPECTROGRAPH; SKY AB Fringing in CCD images is troublesome from the aspect of photometric quality and image flatness in the final reduced product. Additionally, defringing during calibration requires the inefficient use of time during the night to collect and produce a "supersky" fringe frame. The fringe pattern observed in a CCD image for a given near-IR filter is dominated by small thickness variations across the detector, with a second-order effect caused by the wavelength extent of the emission lines within the bandpass that produce the interference pattern. We show that essentially any set of emission lines that generally match the wavelength coverage of the night-sky emission lines within a bandpass will produce an identical fringe pattern. We present an easy, inexpensive, and efficient method that uses a neon lamp as a flat-field source and produces high-S/N fringe frames to use for defringing an image during the calibration process. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Howell, SB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 10 TC 6 Z9 9 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAR PY 2012 VL 124 IS 913 BP 263 EP 267 DI 10.1086/664741 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916YQ UT WOS:000302139500008 ER PT J AU Way, MJ Klose, CD AF Way, M. J. Klose, C. D. TI Can Self-Organizing Maps Accurately Predict Photometric Redshifts? SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; ARTIFICIAL NEURAL-NETWORKS; DATA RELEASE; SDSS; GALAXIES; CATALOG AB We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using Delta z = z(phot) - z(spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods. C1 [Way, M. J.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Way, M. J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Way, M. J.] Dept Space Phys & Astron, Uppsala, Sweden. RP Way, MJ (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. RI Way, Michael/D-5254-2012; OI Way, Michael/0000-0003-3728-0475 FU Alfred P. Sloan Foundation; National Aeronautics and Space Administration; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; University of Chicago; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Los Alamos National Laboratory; Max-Planck-Institute for Astronomy; Max-Planck-Institute for Astrophysics; New Mexico State University; University of Pittsburgh; Princeton University; US Naval Observatory; University of Washington FX M. J. W. would like to thank the Astrophysics Department at Uppsala University for their generous hospitality while part of this work was completed. C. D. K. thanks Think Geohazards for providing the computational resources needed for estimating photometric redshifts via self-organizing mapping. Thanks go to Joe Bredekamp and the NASA Applied Information Systems Research Program for support and encouragement. Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the participating institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS is managed by the Astrophysical Research Consortium for the participating institutions. The participating institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy, the Max-Planck-Institute for Astrophysics, New Mexico State University, University of Pittsburgh, Princeton University, the US Naval Observatory, and the University of Washington. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 43 TC 13 Z9 13 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAR PY 2012 VL 124 IS 913 BP 274 EP 279 DI 10.1086/664796 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 916YQ UT WOS:000302139500010 ER PT J AU Hilton, F Armante, R August, T Barnet, C Bouchard, A Camy-Peyret, C Capelle, V Clarisse, L Clerbaux, C Coheur, PF Collard, A Crevoisier, C Dufour, G Edwards, D Faijan, F Fourrie, N Gambacorta, A Goldberg, M Guidard, V Hurtmans, D Illingworth, S Jacquinet-Husson, N Kerzenmacher, T Klaes, D Lavanant, L Masiello, G Matricardi, M McNally, A Newman, S Pavelin, E Payan, S Pequignot, E Peyridieu, S Phulpin, T Remedios, J Schlussel, P Serio, C Strow, L Stubenrauch, C Taylor, J Tobin, D Wolf, W Zhou, D AF Hilton, Fiona Armante, Raymond August, Thomas Barnet, Chris Bouchard, Aurelie Camy-Peyret, Claude Capelle, Virginie Clarisse, Lieven Clerbaux, Cathy Coheur, Pierre-Francois Collard, Andrew Crevoisier, Cyril Dufour, Gaelle Edwards, David Faijan, Francois Fourrie, Nadia Gambacorta, Antonia Goldberg, Mitchell Guidard, Vincent Hurtmans, Daniel Illingworth, Samuel Jacquinet-Husson, Nicole Kerzenmacher, Tobias Klaes, Dieter Lavanant, Lydie Masiello, Guido Matricardi, Marco McNally, Anthony Newman, Stuart Pavelin, Edward Payan, Sebastien Pequignot, Eric Peyridieu, Sophie Phulpin, Thierry Remedios, John Schluessel, Peter Serio, Carmine Strow, Larrabee Stubenrauch, Claudia Taylor, Jonathan Tobin, David Wolf, Walter Zhou, Daniel TI HYPERSPECTRAL EARTH OBSERVATION FROM IASI Five Years of Accomplishments SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID NUMERICAL WEATHER PREDICTION; ATMOSPHERIC SOUNDING INTERFEROMETER; INFRARED OPTICAL DEPTH; SPECTROSCOPIC DATABASE; TROPOSPHERIC OZONE; GLOBAL DISTRIBUTIONS; MIDTROPOSPHERIC CO2; SATELLITE RADIANCES; CLOUD PROPERTIES; WATER-VAPOR AB HYPERSPECTRAL EARTH OBSERVATION FROM IASI FIVE YEARS OF ACCOMPLISHMENTS The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellites's (EUMETSAT's) Meteorological Operation (Metop)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produced in near real time, and short-lived species, such as ammonia or methanol, can be mapped, allowing the identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long-term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders and has demonstrated that such instruments have a vital role in the global observing system. (Page 347) C1 [Hilton, Fiona; Newman, Stuart; Pavelin, Edward; Taylor, Jonathan] Met Off, Exeter EX1 3PB, Devon, England. [Armante, Raymond; Capelle, Virginie; Crevoisier, Cyril; Jacquinet-Husson, Nicole; Peyridieu, Sophie; Stubenrauch, Claudia] CNRS, IPSL, Meteorol Dynam Lab, Paris, France. [August, Thomas; Klaes, Dieter; Schluessel, Peter] EUMETSAT, Darmstadt, Germany. [Barnet, Chris; Goldberg, Mitchell; Wolf, Walter] NOAA, NESDIS, Camp Springs, MD USA. [Bouchard, Aurelie; Fourrie, Nadia; Guidard, Vincent] CNRS, CNRM, GAME, Paris, France. [Camy-Peyret, Claude; Payan, Sebastien] Univ Paris 06, Paris, France. [Clarisse, Lieven; Clerbaux, Cathy; Coheur, Pierre-Francois; Hurtmans, Daniel] Univ Libre Bruxelles, Brussels, Belgium. [Clerbaux, Cathy] Univ Versailles St Quentin, Versailles, France. [Clerbaux, Cathy] CNRS, INSU, LATMOS, IPSL, Paris, France. [Collard, Andrew] NOAA, NCEP, EMC, IMSG, Camp Springs, MD USA. [Dufour, Gaelle] Univ Paris 12, CNRS, LISA, Paris, France. [Dufour, Gaelle] Univ Paris 07, Paris, France. [Edwards, David] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Faijan, Francois; Lavanant, Lydie] Meteo France, Ctr Meteorol Spatiale, Lannion, France. [Gambacorta, Antonia] Dell Inc, Round Rock, TX USA. [Illingworth, Samuel; Remedios, John] Univ Leicester, Leicester, Leics, England. [Kerzenmacher, Tobias] Belgian Inst Space Aeron, Brussels, Belgium. [Masiello, Guido; Serio, Carmine] Univ Basilicata, DIFA, I-85100 Potenza, Italy. [Matricardi, Marco; McNally, Anthony] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Pequignot, Eric; Phulpin, Thierry] CNES, Toulouse, France. [Strow, Larrabee] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Tobin, David] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Zhou, Daniel] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hilton, F (reprint author), Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England. EM fiona.hilton@metoffice.gov.uk RI Goldberg, Mitch/F-5589-2010; Gambacorta, Antonia/E-7937-2011; Barnet, Christopher/F-5573-2010; Wolf, Walter/E-7935-2011; Illingworth, Samuel/A-4899-2015; Taylor, Jonathan/B-3786-2013; Masiello, Guido/I-6459-2015; clerbaux, cathy/I-5478-2013 OI Gambacorta, Antonia/0000-0002-2446-9132; Wolf, Walter/0000-0002-2102-8833; Illingworth, Samuel/0000-0003-2551-0675; Masiello, Guido/0000-0002-7986-8296; NR 109 TC 124 Z9 126 U1 3 U2 38 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAR PY 2012 VL 93 IS 3 BP 347 EP 370 DI 10.1175/BAMS-D-11-00027.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 913XJ UT WOS:000301910400015 ER PT J AU Lee, CK Han, SC Bilitza, D Seo, KW AF Lee, Choon-Ki Han, Shin-Chan Bilitza, Dieter Seo, Ki-Weon TI Global characteristics of the correlation and time lag between solar and ionospheric parameters in the 27-day period SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Ionosphere; Electron density; GRACE; CHAMP ID MODELS; SYSTEM; FLUX AB The 27-day variations of topside ionosphere are investigated using the in situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of similar to 370 km and similar to 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic process that is not controlled by the solar extreme ultraviolet radiation. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Lee, Choon-Ki; Seo, Ki-Weon] Korea Polar Res Inst, Div Polar Earth Syst Sci, Inchon 406840, South Korea. [Han, Shin-Chan] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Han, Shin-Chan] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliophys Lab, Greenbelt, MD 20771 USA. [Bilitza, Dieter] George Mason Univ, Space Weather Lab, Fairfax, VA 22030 USA. RP Lee, CK (reprint author), Korea Polar Res Inst, Div Polar Earth Syst Sci, 12 Gaetbeol Ro, Inchon 406840, South Korea. EM cklee92@kopri.re.kr RI Han, Shin-Chan/A-2022-2009 FU NASA; GRACE; Korea Polar Research Institute (KOPRI) [PE11070] FX This work was supported by NASA Earth Surface and Interior program and GRACE projects and Korea Polar Research Institute (KOPRI) projects (PE11070). We thank DLR for providing the GRACE telemetry data and JPL for producing the high-quality Level-1B products. NR 19 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD MAR PY 2012 VL 77 BP 219 EP 224 DI 10.1016/j.jastp.2012.01.010 PG 6 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 916MQ UT WOS:000302108300024 ER PT J AU Hilker, T Coops, NC Newnham, GJ van Leeuwen, M Wulder, MA Stewart, J Culvenor, DS AF Hilker, Thomas Coops, Nicholas C. Newnham, Glenn J. van Leeuwen, Martin Wulder, Michael A. Stewart, Jim Culvenor, Darius S. TI Comparison of Terrestrial and Airborne LiDAR in Describing Stand Structure of a Thinned lodgepole Pine Forest SO JOURNAL OF FORESTRY LA English DT Article DE LiDAR; full waveform; structure; pine ID CANOPY STRUCTURE; DOUGLAS-FIR; WESTERN HEMLOCK; LEAF-AREA; MANAGEMENT AB Airborne LiDAR (ALS) has been widely used for measuring canopy structure, but much of the woody components of the canopy are not directly visible with this system. Terrestrial LiDAR (TLS) data may help fill this gap by helping to understand the relationship between above- and below-canopy architecture. In this study, we report on the potential for combining TLS and ALS, thereby focusing on forest inventory and wood quality related characteristics (such as number and dimension of branches). Our results show that both TLS and ALS were able to describe stand height using the top 10% of LiDAR returns at a high level of precision; however, TLS measurements were negatively biased by approximately 1 m (R-2 = 0.96 and 0.86 for ALS and TLS, respectively; P < 0.05). The distribution of foliage measured by ALS and TLS was strongly related to basal area (R-2 = 0.63 and 0.91 for ALS and TLS, respectively) and stand density (R-2 = 0.89 and 0.72 for ALS and TLS, respectively). Tree-level attributes were more accurately described by TLS (R-2 = 0.63) compared with ALS (R-2 = 0.37) for crown depth and a similar result applied to dbh with R-2 = 0.63 for TLS versus R-2 = 0.43 for ALS. C1 [Hilker, Thomas] Univ British Columbia, Dept Forest Resource Management, Forest Sci Ctr, Vancouver, BC V6T 1Z4, Canada. [Coops, Nicholas C.] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 2G2, Canada. [Newnham, Glenn J.; Culvenor, Darius S.] Commonwealth Sci & Res Org Australia, Clayton, Vic 3169, Australia. [Wulder, Michael A.] Forestry Canada, Pacific Forestry Ctr, Victoria, BC V8Z 1M5, Canada. [Stewart, Jim] Nat Resources Canada, Canadian Forest Serv, No Forestry Ctr, Edmonton, AB T6H 3S5, Canada. RP Hilker, T (reprint author), NASA, Goddard Space Flight Ctr, Code 618,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM thomas.hilker@ubc.ca; nicholas.coops@ubc.ca; Glenn.Newnham@csiro.au; vanleeuwen.martin@gmail.com; mwulder@pfc.cfs.nrcan.gc.ca; Jim.Stewart@NRCan-RNCan.gc.ca; Darius.Culvenor@csiro.au RI Newnham, Glenn/G-8115-2011; Coops, Nicholas/J-1543-2012; van Leeuwen, Martin/B-3947-2013; CSIRO, SAF/H-3134-2013; Wulder, Michael/J-5597-2016; OI Coops, Nicholas/0000-0002-0151-9037; van Leeuwen, Martin/0000-0003-2572-2088; Wulder, Michael/0000-0002-6942-1896; Stewart, James/0000-0003-1664-1083 FU National Sciences and Engineering Research Council of Canada (NSERC); Canadian Wood Fiber Centre, of the Canadian Forest Service of Natural Resources Canada FX A National Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to N Coops funded part of this work. The Canadian Wood Fiber Centre, of the Canadian Forest Service of Natural Resources Canada, provided additional funding support. NR 29 TC 10 Z9 10 U1 2 U2 24 PU SOC AMER FORESTERS PI BETHESDA PA 5400 GROSVENOR LANE, BETHESDA, MD 20814 USA SN 0022-1201 J9 J FOREST JI J. For. PD MAR PY 2012 VL 110 IS 2 BP 97 EP 104 DI 10.5849/jof.11-003 PG 8 WC Forestry SC Forestry GA 913RI UT WOS:000301894700005 ER PT J AU Valdivia-Silva, JE Navarro-Gonzalez, R de la Rosa, J McKay, CP AF Valdivia-Silva, Julio E. Navarro-Gonzalez, Rafael de la Rosa, Jose McKay, Christopher P. TI Decomposition of sodium formate and L- and D-alanine in the Pampas de La Joya soils: Implications as a new geochemical analogue to Martian regolith SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Mars-like soils; Pampas de La Joya; Atacama Desert; Labeled Release Experiment; Abiotic oxidation ID LABELED RELEASE EXPERIMENT; VIKING BIOLOGY EXPERIMENTS; MARS-LIKE SOILS; ATACAMA DESERT; NITRATE DEPOSITS; NORTHERN CHILE; LIFE; REACTIVITY; CHEMISTRY; MISSIONS AB The organic compounds on the Martian surface are still undetectable by the previous Viking mission that has been sent to Mars even though they are expected to be there by exogenous and/or endogenous synthesis. The high abiotic reactivity has been the most acceptable explanation for the apparently absence of organic matter in the regolith. Earth soils that have geochemical properties similar to those expected on the surface of Mars could help to decipher this question on the surface and shallow subsurface of the Red Planet. This work aims to demonstrate that the place known as the Pampas de La Soya desert in southern Peru, contains soils that have nonbiological chemical decomposition mechanisms of organic compounds under conditions of the Viking Labeled Release Experiment (LRx). We compare the organic decomposition kinetics of these hyper-arid soils with those seen in samples from arid and semiarid regions of the Atacama Desert, and data obtained by Viking LRx in the Martian regolith. (13)Carbon-labeled organic compounds (sodium formate, D-, and L-alanine) were added in aqueous solution to different soil samples in order to analyze the evolved carbon dioxide ((CO2)-C-13) generated during their degradation. As expected, there were significant differences in the evolved gas behavior between soil samples under similar experimental conditions. When sodium formate was added to hyper-arid samples, there was a peak of (CO2)-C-13 gas released demonstrating high oxidation activity in the soil. Heat treatment of soil samples did not completely eliminate the CO2 production. An increase in the decomposition rates 7 days after the first addition of organics showed a response consistent with biological activity. The addition of D- and L-alanine demonstrated that the production of (CO2)-C-13 due to biological decomposition began 5-8 days after incubation. Our results suggest that these soils from Pampas de La Joya present at least two types of oxidants, a thermostable one which is highly oxidative and survives heat-treatment, and other thermolabile oxidant which has light or moderate oxidizing activity and does not survives to the heat-treatment. So far the nature of oxidant(s) present in these soils is still unknown. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; de la Rosa, Jose] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Lab Quim Plasmas & Estudios Planetarios, Mexico City 04510, DF, Mexico. [Valdivia-Silva, Julio E.; McKay, Christopher P.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Valdivia-Silva, JE (reprint author), NASA, Ames Res Ctr, Space Sci Astrobiol Div, Bldg 245,M-S 245-3,Off 213A, Moffett Field, CA 94035 USA. EM julio.e.valdiviasilva@nasa.gov; navarrog@nucleares.unam.mx; jevs1612@yahoo.com; chris.mckay@nasa.gov RI Gonzalez, Rafael/D-1748-2009 FU Universidad Nacional Autonoma de Mexico [DGAPA IN107107, IN109110]; Consejo Nacional de Ciencia y Tecnologia de Mexico [CONACyT 45810-F, 98466, 121479]; Posgrado de Ciencias Biologicas of the Universidad Nacional Autonoma de Mexico; NASA FX Funding for this research comes from Grants from the Universidad Nacional Autonoma de Mexico (DGAPA IN107107, IN109110), Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACyT 45810-F, 98466, 121479), fellowship from Posgrado de Ciencias Biologicas of the Universidad Nacional Autonoma de Mexico, fellowship from NASA Postdoctoral Program, and by the National Aeronautics and Space Administration Astrobiology Science and Technology for Exploring Planets Program. NR 50 TC 3 Z9 3 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 1 PY 2012 VL 49 IS 5 BP 821 EP 833 DI 10.1016/j.asr.2011.12.012 PG 13 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 910AW UT WOS:000301610600001 ER PT J AU Li, S Potter, C AF Li, Shuang Potter, Christopher TI Patterns of Aboveground Biomass Regeneration in Post-Fire Coastal Scrub Communities SO GISCIENCE & REMOTE SENSING LA English DT Article ID SYNTHETIC-APERTURE RADAR; FOREST BIOMASS; SOUTHERN-CALIFORNIA; BOREAL FORESTS; SAR DATA; ADENOSTOMA-FASCICULATUM; IMAGING RADAR; AIRBORNE SAR; STEM VOLUME; BACKSCATTER AB An evaluation of ALOS PALSAR (Phased Array type L-band Synthetic Aperture Radar) data for shrub height and aboveground biomass (AGB) estimation has been performed in scrub-dominated ecosystems of central coastal California. Comparison between AGB field measurements and SAR estimations showed a correlation coefficient of R-2 = 0.53 for the HV polarization. Post-fire AGB regeneration was examined two years after the Big Sur Basin Complex fire of 2008. In 2009, the average patch size of AGB density classes between 20-40 Mg ha(-1) and 50-70 Mg ha(-1) was 0.49 ha and 0.09 ha, respectively. In 2010, patch sizes in these same two AGB density classes increased to averages of 0.8 ha to 0.15 ha, respectively. No strong saturation in the SAR-AGB relationship was found, which indicated the potential for more advanced applications of L-band SAR data for coastal ecosystem AGB mapping. C1 [Li, Shuang; Potter, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Li, Shuang] Henan Univ, Coll Environm & Planning, Kaifeng 475004, Henan, Peoples R China. RP Potter, C (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM chris.potter@nasa.gov FU NASA Ames Research Center FX This research was supported by an appointment of the first author to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors are grateful to the U. S. Forest Service, Los Padres National Forest (Ecosystem Manager Jeff Kwasny), for providing access to the Brazil Ranch property. NR 63 TC 8 Z9 8 U1 0 U2 14 PU BELLWETHER PUBL LTD PI COLUMBIA PA 8640 GUILFORD RD, STE 200, COLUMBIA, MD 21046 USA SN 1548-1603 J9 GISCI REMOTE SENS JI GISci. Remote Sens. PD MAR-APR PY 2012 VL 49 IS 2 BP 182 EP 201 DI 10.2747/1548-1603.49.2.182 PG 20 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA 908OK UT WOS:000301499500002 ER PT J AU Irwin, PGJ Teanby, NA Davis, GR Fletcher, LN Orton, GS Calcutt, SB Tice, DS Hurley, J AF Irwin, P. G. J. Teanby, N. A. Davis, G. R. Fletcher, L. N. Orton, G. S. Calcutt, S. B. Tice, D. S. Hurley, J. TI Further seasonal changes in Uranus' cloud structure observed by Gemini-North and UKIRT SO ICARUS LA English DT Article DE Uranus, Atmosphere; Radiative transfer; Atmospheres, Composition ID INFRARED-ABSORPTION SPECTRA; RADIATIVE-TRANSFER; METHANE; PAIRS; TEMPERATURES; ATMOSPHERE; BAND; PARAMETERS; DYNAMICS; CM(-1) AB Near-infrared observations of Uranus were made in October/November 2010 with the Gemini-North telescope in Hawaii, using NIFS, an integral field spectrograph, and the NIRI instrument in imaging mode. Observations were acquired using adaptive optics and have a spatial resolution of approximately 0.1-0.2". The observed spectra along Uranus' central meridian were analysed using a multiple-scattering retrieval algorithm to infer the vertical/latitudinal variation in cloud optical depth, which we compare with previous observations made by Gemini-North/NIFS in 2009 and UKIRT/UIST observations made between 2006 and 2008. Assuming a continuous distribution of small particles (r similar to 1 mu m, and refractive index of 1.4 + 0i) with the single scattering albedo set to 0.75 and using a Henyey-Greenstein phase function with asymmetry parameter set to 0.7 at all wavelengths and latitudes, the retrieved cloud density profiles show that the north polar zone at 45 degrees N has continued to steadily brighten while the south polar zone at 45 degrees S has continued to fade. As with our previous analyses we find that, assuming that the methane vertical profile is the same at all latitudes, the clouds forming these polar zones at 45 degrees N and 45 degrees S lie at slightly lower pressures than the clouds at more equatorial latitudes. However, we also find that the Gemini data can be reproduced by assuming that the main cloud remains fixed at similar to 2 bar at all latitudes and adjusting the relative humidity of methane instead. In this case we find that the deep cloud is still more opaque at the equator and at the zones at 45 degrees N and 45 degrees S and shows the same seasonal trends as when the methane humidity remain fixed. However, with this approach the relative humidity of methane is seen to rise sharply from approximately 20% at polar latitudes to values closer to 80% for latitudes equatorward of 45 degrees S and 45 degrees N, consistent with the analysis of 2002 HST observations by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-302), with a possible indication of seasonal variability. Overall, Uranus appeared to be less convectively active in 2010 than in the previous 4 years, supporting the conclusion that now the northern spring equinox (which occurred in 2007) has passed, the atmosphere is settling back into the more quiescent state seen by Voyager 2 in 1986. (C) 2011 Elsevier Inc. All rights reserved. C1 [Irwin, P. G. J.; Fletcher, L. N.; Calcutt, S. B.; Tice, D. S.; Hurley, J.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Teanby, N. A.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. [Davis, G. R.] Joint Astron Ctr, Hilo, HI 96720 USA. [Orton, G. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Irwin, PGJ (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM irwin@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; OI Fletcher, Leigh/0000-0001-5834-9588; Calcutt, Simon/0000-0002-0102-3170; Teanby, Nicholas/0000-0003-3108-5775; Irwin, Patrick/0000-0002-6772-384X FU United Kingdom Science and Technology Facilities Council; University of Oxford; NASA FX We are grateful to the United Kingdom Science and Technology Facilities Council for funding this research and also to our support astronomers: Richard McDermid (2009, 2010), Chad Trujillo (2009, 2010), Andy Adamson (2007, 2008), Watson Varricattu (2006), and also to Ilona Soechting in the UK Gemini Office. Fletcher was supported by a Glasstone fellowship at the University of Oxford. Glenn Orton was supported by a grant from NASA to the Jet Propulsion Laboratory, California Institute of Technology. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONI-CYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. NR 30 TC 7 Z9 7 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 47 EP 55 DI 10.1016/j.icarus.2011.12.001 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700003 ER PT J AU Imanaka, H Cruikshank, DP Khare, BN McKay, CP AF Imanaka, Hiroshi Cruikshank, Dale P. Khare, Bishun N. McKay, Christopher P. TI Optical constants of Titan tholins at mid-infrared wavelengths (2.5-25 mu m) and the possible chemical nature of Titan's haze particles SO ICARUS LA English DT Article DE Titan; Spectroscopy; Organic chemistry; Infrared observations ID AMORPHOUS-CARBON FILMS; A-C-H; REFRACTIVE-INDEX; THIN-FILMS; VIBRATIONAL PROPERTIES; INFRARED-ABSORPTION; CONDENSATE CLOUDS; ORGANIC AEROSOLS; UPPER-ATMOSPHERE; NITRIDE FILMS AB Complex organic materials may exist as haze layers in the atmosphere of Titan and as dark coloring agents on icy satellite surfaces. Laboratory measurements of optical constants of plausible complex organic materials are necessary for quantitative evaluation from remote sensing observations, and to document the existence of complex organic materials in the extraterrestrial environments. The recent Cassini VIMS and CIRS observations provide new constraints on Titan's haze properties in the mid-infrared wavelength region. Here, we present the optical constants (2.5-25 mu m) of Titan tholins generated with cold plasma irradiation of a N-2/CH4 (90/10) gas mixture at pressures of 0.26 mbar, 1.6 mbar, and 23 mbar. Our new optical constants of three types of Titan tholins suggest that no single Titan tholin in this study fulfills all the observational constraints of the Titan haze material. The discrepancy remains a challenge for future modeling and laboratory efforts that aim toward a better understanding of Titan's haze material. (C) 2011 Elsevier Inc. All rights reserved. C1 [Imanaka, Hiroshi] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Imanaka, Hiroshi; Khare, Bishun N.] SETI Inst, Mountain View, CA 94043 USA. [Cruikshank, Dale P.; Khare, Bishun N.; McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Imanaka, H (reprint author), Univ Arizona, Lunar & Planetary Lab, POB 210092,1629 E Univ Blvd, Tucson, AZ 85721 USA. EM himanaka@lpl.arizona.edu RI Imanaka, Hiroshi/E-7816-2012 FU NASA [NNX10AF08G, NNX09AM95G]; Cassini Project FX H.I. acknowledges John H. Jackson at Metricon Inc. for the opportunity to analyze our samples with the prism coupler. We also thank anonymous referees for helpful comments that led to the improvement of this manuscript. H.I. acknowledges funding supports from the NASA Cassini Data Analysis Program, NNX10AF08G, and from the NASA Exobiology Program, NNX09AM95G. D.P.C. was supported in part by the Cassini Project. NR 71 TC 19 Z9 19 U1 0 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 247 EP 261 DI 10.1016/j.icarus.2011.11.018 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700019 ER PT J AU Sutter, B Boynton, WV Ming, DW Niles, AB Morris, RV Golden, DC Lauer, HV Fellows, C Hamara, DK Mertzman, SA AF Sutter, B. Boynton, W. V. Ming, D. W. Niles, P. B. Morris, R. V. Golden, D. C. Lauer, H. V. Fellows, C. Hamara, D. K. Mertzman, S. A. TI The detection of carbonate in the martian soil at the Phoenix Landing site: A laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data SO ICARUS LA English DT Article DE Mars, Polar geology; Mars, Surface; Regoliths; Mineralogy; Instrumentation ID DIFFERENTIAL SCANNING CALORIMETRY; LONG-TERM EVOLUTION; CALCIUM-CARBONATE; SNC METEORITES; MARS; DECOMPOSITION; IDENTIFICATION; DOLOMITE; MECHANISMS; MINERALOGY AB Data collected by Phoenix Lander's Thermal and Evolved Gas Analyzer (Phoenix-TEGA) indicate carbonate thermal decomposition at both low and high temperatures. The high-temperature thermal decomposition is consistent with calcite, dolomite, or ankerite, (3-6 wt.%) or any combination of these phase or, presumably, solid solutions of these phases having intermediate composition. The low-temperature thermal decomposition is consistent with the presence of magnesite or siderite, their solid solutions, or any combination of magnesite and siderite, and possibly other carbon-bearing phases (e.g., organics). The carbonate concentration for the low temperature release, assuming magnesite-siderite, is similar to 1.0 wt.%. This revised interpretation of the Phoenix-TEGA data resulted from new laboratory measurements of carbonate decomposition at a Phoenix-like 12 mbar atmospheric pressure. Phoenix carbonate was inherited in ejecta from the Vastitas Borealis and Scandia regions, inherited from material deposited by aeolian processes, and/or formed in situ at the Phoenix Landing site (pedogenesis). Inherited carbonate implies multiple formation pathways may be represented by carbonates at the Phoenix Landing site. Soil carbonates and associated moderate alkalinity indicate that the soil pH is favorable for microbial activity at the Phoenix Landing site and presumably throughout the martian northern plains. (C) 2011 Elsevier Inc. All rights reserved. C1 [Sutter, B.] Jacobs ESCG, Houston, TX 77258 USA. [Boynton, W. V.; Fellows, C.; Hamara, D. K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Ming, D. W.; Niles, P. B.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Golden, D. C.] Hamilton Sunstrand ESCG, Houston, TX 77258 USA. [Lauer, H. V.] Barrios Technol ESCG, Houston, TX 77258 USA. [Mertzman, S. A.] Franklin & Marshall Coll, Dept Geosci, Lancaster, PA 17604 USA. RP Sutter, B (reprint author), Jacobs ESCG, POB 58447,Mail Code JE-23, Houston, TX 77258 USA. EM b.sutter-2@nasa.gov; wboynton@lpl.arizona.edu; douglas.w.ming@nasa.gov; paul.b.niles@nasa.gov; richard.v.morris@nasa.gov; d.c.golden@nasa.gov; howard.v.lauer@nasa.gov; cfellows@lpl.arizona.edu; dhamara@lpl.arizona.edu; stan.mertzman@fandm.edu FU NASA; Mars Data Analysis Program FX We would like to thank the Department of Mineral Sciences, Smithsonian Institution for providing sample NMNH-102956 Hollopatak, Hungary ankerite. W.V.B., D.W.M., R.V.M., and P.N.B. acknowledge support of the NASA Mars Phoenix Scout Program. B.S. and D.W.M. acknowledges support of the Mars Data Analysis Program. Critical reviews by two reviewers substantially improved the manuscript and is greatly appreciated. NR 60 TC 22 Z9 22 U1 1 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 290 EP 296 DI 10.1016/j.icarus.2011.12.002 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700022 ER PT J AU Rhoden, AR Wurman, G Huff, EM Manga, M Hurford, TA AF Rhoden, Alyssa Rose Wurman, Gilead Huff, Eric M. Manga, Michael Hurford, Terry A. TI Shell tectonics: A mechanical model for strike-slip displacement on Europa SO ICARUS LA English DT Article DE Europa; Tectonics; Rotational dynamics ID NONSYNCHRONOUS ROTATION; ICE SHELL; DRIVEN; SATELLITES; ENCELADUS; PATTERNS; STRESSES; REGION; PLANET; FAULTS AB We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history. (C) 2011 Elsevier Inc. All rights reserved. C1 [Rhoden, Alyssa Rose; Manga, Michael] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Wurman, Gilead] Seism Warning Syst Inc, Scotts Valley, CA 95066 USA. [Huff, Eric M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hurford, Terry A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rhoden, AR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM alyssa@eps.berkeley.edu RI Hurford, Terry/F-2625-2012; Manga, Michael/D-3847-2013; OI Manga, Michael/0000-0003-3286-4682 FU NASA NESSF FX The authors would like to thank Eric Dunham for helpful discussions during the development of the shell tectonics model. This work was funded by the NASA NESSF program. NR 26 TC 9 Z9 9 U1 2 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 297 EP 307 DI 10.1016/j.icarus.2011.12.015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700023 ER PT J AU Cessateur, G Lilensten, J Barthelemy, M de Wit, TD Wedlund, CS Gronoff, G Menager, H Kretzschmar, M AF Cessateur, Gael Lilensten, Jean Barthelemy, Mathieu de Wit, Thierry Dudok Wedlund, Cyril Simon Gronoff, Guillaume Menager, Helene Kretzschmar, Matthieu TI Photoabsorption in Ganymede's atmosphere SO ICARUS LA English DT Article DE Jupiter, Satellites; Satellites, Atmospheres; Ultraviolet observations ID SECONDARY-ION PRODUCTION; ELECTRON-TRANSPORT; FAST COMPUTATION; EUV; IONOSPHERE; LINES; PHOTODISSOCIATION; MODEL; IRRADIANCE; PREDICTION AB In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede's atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions. Using a Beer-Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede's atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric model. (ii) None of the common solar proxies satisfactorily describes the level of variability of the solar EUV irradiance. For future atmospheric planetary space missions, it would be more appropriate to derive the EUV flux from a small radiometer rather than from a full-fledged spectrometer. (C) 2011 Elsevier Inc. All rights reserved. C1 [Cessateur, Gael; de Wit, Thierry Dudok; Kretzschmar, Matthieu] LPC2E CNRS, UMR 6115, F-45071 Orleans 2, France. [Cessateur, Gael; de Wit, Thierry Dudok; Kretzschmar, Matthieu] Univ Orleans, F-45071 Orleans 2, France. [Cessateur, Gael; Lilensten, Jean; Barthelemy, Mathieu; Menager, Helene] Univ Grenoble 1, F-38041 Grenoble 9, France. [Cessateur, Gael; Lilensten, Jean; Barthelemy, Mathieu; Menager, Helene] IPAG CNRS, UMR 5274, F-38041 Grenoble 9, France. [Wedlund, Cyril Simon] BIRA IASB, Belgian Inst Space Aeronomy, Brussels, Belgium. [Gronoff, Guillaume] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Kretzschmar, Matthieu] ROB SIDC, B-1180 Brussels, Belgium. RP Cessateur, G (reprint author), LPC2E CNRS, UMR 6115, 3A Ave Rech Sci, F-45071 Orleans 2, France. EM gael.cessateur@cnrs-orleans.fr OI Gronoff, Guillaume/0000-0002-0331-7076 FU European Community [FP7/2007-2013, 218816, 228319]; NASA LaRC FX This study received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under the Grant Agreement Nr.218816 (SOTERIA project, www.soteria-space.eu) and under the Grant Agreement Nr. 228319 (Europlanet research infrastructure, www.europlanet-ri.eu). It is also part of the European COST-ES0803 project. The authors thank R. Viereck for providing EUVS data. The authors thank C.J. Mertens (NASA LaRC, USA), T. Woods, F. Eparvier (LASP, USA) and S. Aslam (NASA GSFC, USA) for useful discussions. The work of G.G. was supported by an appointment to the NASA Postdoctoral Program at NASA LaRC. The authors would like to thank two anonymous referees for comments and suggestions which helped improve this paper. NR 57 TC 3 Z9 3 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 308 EP 319 DI 10.1016/j.icarus.2011.11.025 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700024 ER PT J AU Schmidt, BE Castillo-Rogez, JC AF Schmidt, Britney Elyce Castillo-Rogez, Julie C. TI Water, heat, bombardment: The evolution and current state of (2) Pallas SO ICARUS LA English DT Article DE Asteroids; Planetesimals; Asteroids, Composition; Geophysics; Meteorites ID CHONDRITE PARENT BODIES; MAIN ASTEROID BELT; THERMAL EVOLUTION; 3200 PHAETHON; CERES; SHAPE; DIFFERENTIATION; METEORITES; SURFACE; ICE AB Using recent constraints on the shape and density of (2) Pallas, we model the thermal evolution of the body as a function of possible formation scenarios that differ in the time of formation and composition assumed for the protoplanet. We develop possible evolution scenarios for Pallas and compare these to available observations. Our models imply two distinct types of end states: those with a hydrosphere and silicate core, and those where the body is dominated by hydrated silicates. We show that for an initial ice-rock mixture with density 2400 kg/m(3), Pallas is likely to differentiate and form a rocky core and icy shell. If Pallas accreted from material with lower initial ice content, our models indicate that Pallas's interior is dominated by hydrated silicates, possibly with a core of anhydrous silicates. We also investigate the possibility that Pallas's initial density was similar to Ceres', i.e., that it formed from an ice-rock mixture of density 2100 kg/m(3). This implies that the object lost a significant fraction of its hydrosphere as a consequence of thermal oscillations and impacts, a distinct possibility given its density, evidence for impact excavation and current orbital parameters. Its blue spectral slope and observed surface variation may also be evidence for such a process (e.g. Jewitt, D.C. [2002]. Astron. J. 123, 1039-1049: Schmidt, B.E. et al. [2009]. Science 326, 275-279; Yang, B., Jewitt, D. [2010]. Astron. J. 140, 692-698). If Pallas still contains a thin layer of water ice, then that layer corresponds to the bottom of a former icy shell, and as such, could be enriched in non-ice materials such as organics. We evaluate the likeliness of each scenario and show the general magnitude of water loss processes for Pallas. Given a balance of observational and theoretical constraints, we favor a water-rich accretion for Pallas that implies that Pallas has lost a significant fraction of its initial water content through exogenic processes since its internal evolution ceased. We also discuss implications of this work to other hydrated asteroids. (C) 2011 Elsevier Inc. All rights reserved. C1 [Schmidt, Britney Elyce] Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA. [Castillo-Rogez, Julie C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Schmidt, BE (reprint author), Univ Texas Austin, Inst Geophys, 10100 Burnet Rd, Austin, TX 78758 USA. EM britneys@ig.utexas.edu; julie.c.castillo@jpl.nasa.gov OI Schmidt, Britney/0000-0001-7376-8510 FU Jet Propulsion Laboratory, California Institute of Technology FX The authors are grateful to M. Zolotov and an anonymous reviewer for thoughtful reviews, and to C.T. Russell who provided suggestions for the improvement of this manuscript. Part of this work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2011. All rights reserved. Government sponsorship acknowledged. NR 70 TC 5 Z9 5 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 478 EP 488 DI 10.1016/j.icarus.2011.11.019 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700037 ER PT J AU Bierhaus, EB Dones, L Alvarellos, JL Zahnle, K AF Bierhaus, Edward B. Dones, Luke Alvarellos, Jose Luis Zahnle, Kevin TI The role of ejecta in the small crater populations on the mid-sized saturnian satellites SO ICARUS LA English DT Article ID SOLAR-SYSTEM; GEOLOGICAL HISTORIES; GALILEAN SATELLITES; SECONDARY CRATERS; IMAGING SCIENCE; ECLIPTIC COMETS; KUIPER-BELT; SURFACE AGE; IMPACTS; ENCELADUS AB We find evidence, by both observation and analysis, that primary crater ejecta play an important role in the small crater (less than a few km) populations on the saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856-875) to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (upsilon(min)), and (iii) velocities less than upsilon(min). Although the vast majority of mass on each satellite is ejected at speeds less than upsilon(min), our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. In particular, Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface, see Dobrovolskis, A.R., Lissauer, J.J. [2004]. Icarus 169,462-473; Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill, P. [2005]. Icarus 178,104-123; Zahnle, K., Alvarellos, J.L, Dobrovolskis, A.R., Hamill, P. [2008]. Icarus 194, 660-674) is not yet well understood. Finally, our work provides further evidence for a "shallow" size-frequency distribution (slope index of similar to 2 for a differential power-law) for comets a few kilometers diameter and smaller. (C) 2012 Elsevier Inc. All rights reserved. C1 [Bierhaus, Edward B.] Lockheed Martin Space Syst Co, Denver, CO 80201 USA. [Dones, Luke] SW Res Inst, Boulder, CO 80302 USA. [Zahnle, Kevin] NASA Ames, Moffett Field, CA 94035 USA. RP Bierhaus, EB (reprint author), Lockheed Martin Space Syst Co, POB 179,Mail Stop S8110, Denver, CO 80201 USA. EM edward.b.bierhaus@lmco.com FU Cassini Data Analysis Program FX We thank Kevin Housen for helpful discussions of scaling law data. Michelle Kirchoff kindly provided detailed descriptions of her measurements. Two reviewers provided comments that improved the clarity of the manuscript. We thank Ross Beyer for helpful feedback on the use of his Icarus LaTeX templates. We thank the Cassini Data Analysis Program for supporting this research. NR 73 TC 16 Z9 16 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 602 EP 621 DI 10.1016/j.icarus.2011.12.011 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700048 ER PT J AU Paganini, L Mumma, MJ Bonev, BP Villanueva, GL DiSanti, MA Keane, JV Meech, KJ AF Paganini, L. Mumma, M. J. Bonev, B. P. Villanueva, G. L. DiSanti, M. A. Keane, J. V. Meech, K. J. TI The formation heritage of Jupiter Family Comet 10P/Tempel 2 as revealed by infrared spectroscopy SO ICARUS LA English DT Article DE Comets, Composition; Comets, Origin; Organic chemistry; Prebiotic chemistry ID C/1996 B2 HYAKUTAKE; ORTHO-PARA RATIO; VOLATILE COMPOSITION; PARENT VOLATILES; SOLAR-SYSTEM; CHEMICAL-COMPOSITION; SPIN TEMPERATURES; CARBON-MONOXIDE; INNER COMA; WATER AB We present spectral and spatial information for major volatile species in Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT 2010 July 26 (heliocentric distance R-h = 1.44 AU) and September 18 (R-h = 1.62 AU), following the comet's perihelion passage on UT 2010 July 04. The total production rate for water on July 26 was (1.90 +/- 0.12) x 10(28) molecules s(-1), and abundances of six trace gases (relative to water) were: CH3OH (1.58% +/- 0.23%), C2H6 (0.39% +/- 0.04%), NH3 (0.83% +/- 0.20%), and HCN (0.13% +/- 0.02%). A detailed analysis of intensities for water emission lines provided a rotational temperature of 35 +/- 3 K. The mean OPR is consistent with nuclear spin populations in statistical equilibrium (OPR = 3.01 +/- 0.18), and the (1 sigma) lower bound corresponds to a spin temperature >38 K. Our measurements were contemporaneous with a jet-like feature observed at optical wavelengths. The spatial profiles of four primary volatiles display strong enhancements in the jet direction, which favors release from a localized vent on the nucleus. The measured IR continuum is much more sharply peaked and is consistent with a dominant contribution from the nucleus itself. The peak intensities for H2O, CH3OH, and C2H6 are offset by similar to 200 km in the jet direction, suggesting the possible existence of a distributed source, such as the release of icy grains that subsequently sublimed in the coma. On UT September 18, no obvious emission lines were present in our spectra, nevertheless we obtained a 3 sigma upper limit Q(H2O) <2.86 x 10(27) molecules s(-1). (C) 2012 Elsevier Inc. All rights reserved. C1 [Paganini, L.; Mumma, M. J.; Bonev, B. P.; Villanueva, G. L.; DiSanti, M. A.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Bonev, B. P.; Villanueva, G. L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Keane, J. V.; Meech, K. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Paganini, L (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, MS 690, Greenbelt, MD 20771 USA. EM lucas.paganini@nasa.gov RI mumma, michael/I-2764-2013 FU University of Hawaii; NOAO; NSF [AST-0807939]; NASA; NASA Astrobiology Institute [RTOP 344-53-51, NNA09-DA77A]; NASA's Planetary Astronomy [344-32-98, 08-PAST08-0034]; Planetary Atmospheres Program [RTOP 344-33-55, 08-PATM08-0031] FX Keck telescope time was granted by the University of Hawaii and NOAO (through the Telescope System Instrumentation Program funded by NSF). L.P. thanks two anonymous referees and Michael S. Kelley for their useful comments, and gratefully acknowledges support from the NASA Postdoctoral Program. We also acknowledge support by the NSF Astronomy and Astrophysics Research Grants Program (AST-0807939, PI Bonev), by the NASA Astrobiology Institute (RTOP 344-53-51, PI Mumma; NNA09-DA77A, PI Meech), and by NASA's Planetary Astronomy (RTOP 344-32-98, PI DiSanti; 08-PAST08-0034, PI Villanueva), and Planetary Atmospheres Program (RTOP 344-33-55, PI DiSanti; 08-PATM08-0031, PI Villanueva). We thank the W.M. Keck Observatory staff for their support, especially Scott E. Dahm for his friendly advice and assistance. The authors acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. NR 69 TC 11 Z9 11 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 644 EP 653 DI 10.1016/j.icarus.2012.01.004 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700050 ER PT J AU Hermalyn, B Schultz, PH Shirley, M Ennico, K Colaprete, A AF Hermalyn, Brendan Schultz, Peter H. Shirley, Mark Ennico, Kimberly Colaprete, Anthony TI Scouring the surface: Ejecta dynamics and the LCROSS impact event SO ICARUS LA English DT Article DE Impact processes; Cratering; Moon; Collisional physics; Geological processes; Regoliths ID LUNAR RADIOMETER OBSERVATIONS; SAND; TARGETS; PLUME; WATER AB The Lunar CRater Observation and Sensing Satellite mission (LCROSS) impacted the moon in a permanently shadowed region of Cabeus crater on October 9th 2009, excavating material rich in water ice and volatiles. The thermal and spatial evolution of LCROSS ejecta is essential to interpretation of regolith properties and sources of released volatiles. The unique conditions of the impact, however, made analysis of the data based on canonical ejecta models impossible. Here we present the results of a series of impact experiments performed at the NASA Ames Vertical Gun Range designed to explore the LCROSS event using both high-speed cameras and LCROSS flight backup instruments. The LCROSS impact created a two-component ejecta plume: the usual inverted lampshade "low-angle" curtain, and a high speed, high-angle component. These separate components excavated to different depths in the regolith. Extrapolations from experiments match the visible data and the light curves in the spectrometers. The hollow geometry of the Centaur led to the formation of the high-angle plume, as was evident in the LCROSS visible and infrared measurements of the ejecta. Subsequent ballistic return of the sunlight-warmed ejecta curtain could scour the surface out to many crater radii, possibly liberating loosely bonded surface volatiles (e.g., H-2). Thermal imaging reveals a complex, heterogeneous distribution of heated material after crater formation that is present but unresolved in LCROSS data. This material could potentially serve as an additional source of energy for volatile release. (C) 2012 Elsevier Inc. All rights reserved. C1 [Hermalyn, Brendan; Schultz, Peter H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Shirley, Mark; Ennico, Kimberly; Colaprete, Anthony] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hermalyn, B (reprint author), Brown Univ, Dept Geol Sci, Box 1846, Providence, RI 02912 USA. EM brendan_hermalyn@brown.edu RI Ennico, Kimberly/L-9606-2014 FU NASA [NNX08AM45G, NNG05GG71H] FX We wish to acknowledge the work of the technical crew at the NASA Ames Vertical Gun Range: Donald Holt, Rick Smythe, and Donald Bowling. We also thank two anonymous reviewers for their helpful feedback, and J.T. Heineck and E.T. Schairer for advice and expertise with the imaging techniques used. This study could not have been possible without experiments and analysis carried out through NASA Planetary Geology and Geophysics Grant #NNX08AM45G. BH was supported by a NASA Rhode Island Space Grant Fellowship #NNG05GG71H. NR 36 TC 7 Z9 7 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 654 EP 665 DI 10.1016/j.icarus.2011.12.025 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700051 ER PT J AU Hedman, MM Nicholson, PD Showalter, MR Brown, RH Buratti, BJ Clark, RN Baines, K Sotin, C AF Hedman, M. M. Nicholson, P. D. Showalter, M. R. Brown, R. H. Buratti, B. J. Clark, R. N. Baines, K. Sotin, C. TI The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring (vol 215, pg 695, 2011) SO ICARUS LA English DT Correction C1 [Hedman, M. M.; Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Showalter, M. R.] SETI Inst, Mountain View, CA 94043 USA. [Brown, R. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Buratti, B. J.; Baines, K.; Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clark, R. N.] US Geol Survey, Lakewood, CO 80225 USA. RP Hedman, MM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM mmhedman@astro.cornell.edu NR 1 TC 0 Z9 0 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 735 EP 735 DI 10.1016/j.icarus.2011.11.023 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700057 ER PT J AU Vahidinia, S Cuzzi, JN Hedman, M Draine, B Clark, RN Roush, T Filacchione, G Nicholson, PD Brown, RH Buratti, B Sotin, C AF Vahidinia, Sanaz Cuzzi, Jeffrey N. Hedman, Matt Draine, Bruce Clark, Roger N. Roush, Ted Filacchione, Gianrico Nicholson, Philip D. Brown, Robert H. Buratti, Bonnie Sotin, Christophe TI Saturn's F ring grains: Aggregates made of crystalline water ice (vol 215, pg 682, 2011) SO ICARUS LA English DT Correction C1 [Vahidinia, Sanaz; Cuzzi, Jeffrey N.; Hedman, Matt; Draine, Bruce; Clark, Roger N.; Roush, Ted; Filacchione, Gianrico; Nicholson, Philip D.; Brown, Robert H.; Buratti, Bonnie; Sotin, Christophe] NASA, Post Doctoral Program, Div Space Sci, Ames Res Ctr, Nasa Moffett Field, CA 94035 USA. RP Vahidinia, S (reprint author), NASA, Post Doctoral Program, Div Space Sci, Ames Res Ctr, Mail Stop 245-3, Nasa Moffett Field, CA 94035 USA. EM svahidinia@yahoo.com NR 1 TC 1 Z9 1 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAR PY 2012 VL 218 IS 1 BP 736 EP 736 DI 10.1016/j.icarus.2011.11.022 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 910LH UT WOS:000301637700058 ER PT J AU Cooper, KB Llombart, N Chattopadhyay, G Dengler, B Cofield, RE Lee, C Filchenkov, S Koposova, E AF Cooper, Ken B. Llombart, Nuria Chattopadhyay, Goutam Dengler, Bob Cofield, Richard E. Lee, Choonsup Filchenkov, Sergey Koposova, Elena TI A Grating-Based Circular Polarization Duplexer for Submillimeter-Wave Transceivers SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS LA English DT Article DE Grating polarizer; quasioptical duplexing; submillimeter wave radar ID MILLIMETER-WAVE AB A quasioptical duplexer based on a metallic grating polarizer has been designed and demonstrated in a submillimeter-wave imaging radar system. The grating converts between linear and circular polarization with low loss and high isolation, and it is simple to manufacture by cutting grooves into a scanning sub-reflector. The grating profile and period were optimized to provide good polarizing efficiency over the radar's 4.5% bandwidth of 660-690 GHz, with two-way mismatch loss simulated to be better than 0.1 dB over an 8% bandwidth. Similarly negligible loss is also predicted for grating rotations of +/-3 degrees, which span the radar's field of view. The circular polarization grating duplexer is shown to improve the signal-to-noise ratio by 4.5 dB compared to a beam splitter. C1 [Cooper, Ken B.; Chattopadhyay, Goutam; Dengler, Bob; Cofield, Richard E.; Lee, Choonsup] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Llombart, Nuria] Univ Complutense Madrid, E-28040 Madrid, Spain. [Filchenkov, Sergey; Koposova, Elena] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia. RP Cooper, KB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ken.b.cooper@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration (NASA); Centre of Excellence [047.018.002]; RFBR [11-02-00554-a] FX This work was supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA), the Centre of Excellence grant 047.018.002, and RFBR Grant 11-02-00554-a. NR 10 TC 8 Z9 8 U1 1 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1531-1309 J9 IEEE MICROW WIREL CO JI IEEE Microw. Wirel. Compon. Lett. PD MAR PY 2012 VL 22 IS 3 BP 108 EP 110 DI 10.1109/LMWC.2012.2184273 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 908RE UT WOS:000301507000002 ER PT J AU Weissman, DE Stiles, BW Hristova-Veleva, SM Long, DG Smith, DK Hilburn, KA Jones, WL AF Weissman, D. E. Stiles, B. W. Hristova-Veleva, S. M. Long, D. G. Smith, D. K. Hilburn, K. A. Jones, W. L. TI Challenges to Satellite Sensors of Ocean Winds: Addressing Precipitation Effects SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID RADAR CROSS-SECTION; SCATTEROMETER DATA; QUALITY-CONTROL; RAIN RETRIEVAL; SEAWINDS; WAVES; BACKSCATTER; SPACE; MODEL; ASCAT AB Measurements of global ocean surface winds made by orbiting satellite radars have provided valuable information to the oceanographic and meteorological communities since the launch of the Seasat in 1978, by the National Aeronautics and Space Administration (NASA). When Quick Scatterometer (QuikSCAT) was launched in 1999, it ushered in a new era of dual-polarized, pencil-beam, higher-resolution scatterometers for measuring the global ocean surface winds from space. A constant limitation on the full utilization of scatterometer-derived winds is the presence of isolated rain events, which affect about 7% of the observations. The vector wind sensors, the Ku-band scatterometers [NASA's SeaWinds on the QuikSCAT and Midori-II platforms and Indian Space Research Organisation's (ISRO's) Ocean Satellite (Oceansat)-2], and the current C-band scatterometer [Advanced Wind Scatterometer (ASCAT), on the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)'s Meteorological Operation (MetOp) platform] all experience rain interference, but with different characteristics. Over this past decade, broad-based research studies have sought to better understand the physics of the rain interference problem, to search for methods to bypass the problem (using rain detection, flagging, and avoidance of affected areas), and to develop techniques to improve the quality of the derived wind vectors that are adversely affected by rain. This paper reviews the state of the art in rain flagging and rain correction and describes many of these approaches, methodologies, and summarizes the results. C1 [Weissman, D. E.] Hofstra Univ, Hempstead, NY 11550 USA. [Stiles, B. W.; Hristova-Veleva, S. M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Long, D. G.] Brigham Young Univ, Ctr Remote Sensing, Provo, UT 84602 USA. [Smith, D. K.; Hilburn, K. A.] Remote Sensing Syst, Santa Rosa, CA USA. [Jones, W. L.] Univ Cent Florida, Orlando, FL 32816 USA. RP Weissman, DE (reprint author), 133 Hofstra Univ, Dept Engn, 201B Weed Hall, Hempstead, NY 11549 USA. EM eggdew@hofstra.edu RI Long, David/K-4908-2015 OI Long, David/0000-0002-1852-3972 FU National Aeronautics and Space Administration (NASA); NASA OVWST; NASA/OSU FX Much of the work reported here was supported by the Physical Oceanography Program of the National Aeronautics and Space Administration (NASA) through grants to Brigham Young University, Remote Sensing Systems, Hofstra University, the University of Central Florida, and the Center for Ocean Atmospheric Prediction Studies, The Florida State University (through support by the NASA OVWST Project and the NASA/OSU SeaWinds Project). The QuikSCAT data were provided by the NASA Jet Propulsion Laboratory PO.DAAC. A portion of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 50 TC 22 Z9 22 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAR PY 2012 VL 29 IS 3 BP 356 EP 374 DI 10.1175/JTECH-D-11-00054.1 PG 19 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 911WO UT WOS:000301754700006 ER PT J AU Huang, XL Loeb, NG Chuang, HW AF Huang, Xianglei Loeb, Norman G. Chuang, Huiwen TI Assessing Stability of CERES-FM3 Daytime Longwave Unfiltered Radiance with AIRS Radiances SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID ATMOSPHERIC INFRARED SOUNDER; ANGULAR-DISTRIBUTION MODELS; ENERGY SYSTEM INSTRUMENT; CALIBRATION; SATELLITE; CLOUDS; VARIABILITY; AQUA AB Clouds and the Earth's Radiant Energy System (CERES) daytime long,wave (LW) radiances are determined from the difference between a total (TOT) channel (0.3-200 mu m) measurement and a shortwave (SW) channel (0.3-5 mu m) measurement, while nighttime LW radiances are obtained directly from the TOT channel. This means that a drift in the SW channel or the SW portion of the TOT channel could impact the daytime longwave radiances, but not the nighttime ones. This study evaluates daytime and nighttime CERES LW radiances for a possible secular drift in CERES LW observations using spectral radiances observed by Atmospheric Infrared Sounder (AIRS). By examining the coincidental AIRS and CERES Flight Model 3 (FM3) measurements over the tropical clear-sky oceans for all of January and July months since 2005, a secular drift of about -0.11% yr(-1) in the daytime CERES-FM3 longwave unfiltered radiance can be identified in the CERES Single Scanner Footprint (SSF) Edition 2 product. This provides an upper-bound estimation for the drift in daytime outgoing longwave radiation, which is approximately -0.323 W m(-2) yr(-1). This estimation is consistent with the independent assessment concluded by the CERES calibration team. Such secular drift has been greatly reduced in the latest CERES SSF Edition 3 product. Comparisons are conducted for the CERES window channel as well, and it shows essentially no drift. This study serves as a practical example illustrating how the measurements of spectrally resolved radiances can be used to help evaluate data products from other narrowband or broadband measurements. C1 [Huang, Xianglei; Chuang, Huiwen] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Loeb, Norman G.] NASA, Langley Res Ctr, Radiat & Climate Branch, Hampton, VA 23665 USA. RP Huang, XL (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM xianglei@umich.edu RI Huang, Xianglei/G-6127-2011; Richards, Amber/K-8203-2015 OI Huang, Xianglei/0000-0002-7129-614X; FU NSF [ATM 0755310]; NASA [NNX11AE68G] FX The first author wishes to thank Drs. G. Aumann, T. Pagano, and L. Strow for informative discussions on the AIRS radiance. We also wish to thank two anonymous reviewers for their thorough reviews and thoughtful comments. The research is supported by NSF ATM 0755310 and NASA NNX11AE68G awarded to the University of Michigan. The AIRS data were obtained from NASA GSFC DAAC and the CERES data from NASA Langley ASDC. NR 22 TC 1 Z9 1 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD MAR PY 2012 VL 29 IS 3 BP 375 EP 381 DI 10.1175/JTECH-D-11-00066.1 PG 7 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 911WO UT WOS:000301754700007 ER PT J AU Bridges, J Wernett, MP AF Bridges, James Wernett, Mark P. TI Validating Large-Eddy Simulation for Jet Aeroacoustics SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT 49th AIAA Aerospace Sciences Meeting/New Horizons Forum and Aerospace Exposition CY JAN 03-07, 2011 CL Orlando, FL SP AIAA ID LASER VELOCIMETER; SUPERSONIC JETS; TURBULENCE; NOISE; FLUCTUATIONS; TEMPERATURE; SCATTERING; RAYLEIGH; DENSITY; REGION AB Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound, and this dream is now coming true with the advent of large-eddy simulation. Two obvious challenges remain: validating the large-eddy-simulation codes at the resolution required to see the fluid acoustic coupling, and the interpretation of the massive data sets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create large-eddy-simulation solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of Modern data sets along with increased reporting of internal quality checks in particle image velocimetry analysis. Furthermore, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before they should be accepted for validation of large-eddy simulation. C1 [Wernett, Mark P.] NASA, John H Glenn Res Ctr, Lewis Field, Opt Instrumentat Branch, Cleveland, OH 44135 USA. [Bridges, James] NASA, John H Glenn Res Ctr, Lewis Field, Acoust Branch, Cleveland, OH 44135 USA. NR 42 TC 8 Z9 8 U1 1 U2 14 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAR-APR PY 2012 VL 28 IS 2 BP 226 EP 234 DI 10.2514/1.B34385 PG 9 WC Engineering, Aerospace SC Engineering GA 912UB UT WOS:000301825800002 ER PT J AU Goebel, DM Jameson, KK Hofer, RR AF Goebel, Dan M. Jameson, Kristina K. Hofer, Richard R. TI Hall Thruster Cathode Flow Impact on Coupling Voltage and Cathode Life SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID ION AB The cathode coupling voltage in Hall thrusters, which is the voltage difference between the cathode and the thruster beam plasma potential, is considered an indicator of the ease with which electrons flow from cathode to anode. Historically, the coupling voltage has been minimized by increasing the amount of propellant injected through the hollow cathode due to early observations that this maximizes the discharge (or anode) efficiency. However, recent experiments described here show that the total thruster efficiency is independent of the cathode flow over the range from 5 to 10% of the propellant injected into the thruster body through the anode. For this reason, cathode flow rates can be reduced closer to the classic plume mode limit characteristic of the hollow cathode design without impacting the total thruster efficiency. Such reductions in cathode flow rate can significantly extend the cathode life, especially for higher-power Hall thrusters with larger discharge currents, where the normal Hall thruster cathode flow split will significantly exceed the optimum level for cathode operation and life. C1 [Goebel, Dan M.] CALTECH, Jet Prop Lab, Prop & Mat Engn Sect, Pasadena, CA 91109 USA. [Hofer, Richard R.] CALTECH, Jet Prop Lab, Elect Prop Grp, Pasadena, CA 91109 USA. NR 32 TC 8 Z9 9 U1 0 U2 9 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAR-APR PY 2012 VL 28 IS 2 BP 355 EP 363 DI 10.2514/1.B34275 PG 9 WC Engineering, Aerospace SC Engineering GA 912UB UT WOS:000301825800014 ER PT J AU Snyder, JS Goebel, DM Hofer, RR Polk, JE Wallace, NC Simpson, H AF Snyder, John Steven Goebel, Dan M. Hofer, Richard R. Polk, James E. Wallace, Neil C. Simpson, Huw TI Performance Evaluation of the T6 Ion Engine SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 46th Joint Propulsion Conference and Exhibit CY JUL 25-29, 2010 CL Nashville, TN SP AIAA, ASME, SAE, ASEE AB The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type thruster that is baselined for the BepiColombo mission to Mercury and is being qualified for application on high-power communications satellite platforms. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5-4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes, were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. At full power, the T6 produced 143 mN of thrust at a specific impulse of 4120 s and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 s and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) thruster. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium. C1 [Snyder, John Steven; Hofer, Richard R.] CALTECH, Jet Prop Lab, Elect Prop Grp, Pasadena, CA 91109 USA. [Goebel, Dan M.; Polk, James E.] CALTECH, Jet Prop Lab, Prop & Mat Engn Sect, Pasadena, CA 91109 USA. [Simpson, Huw] QinetiQ Space Div, Elect Prop Team, Farnborough, Hants, England. RP Snyder, JS (reprint author), CALTECH, Jet Prop Lab, Elect Prop Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 17 TC 7 Z9 7 U1 2 U2 12 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAR-APR PY 2012 VL 28 IS 2 BP 371 EP 379 DI 10.2514/1.B34173 PG 9 WC Engineering, Aerospace SC Engineering GA 912UB UT WOS:000301825800016 ER PT J AU Cornejo-Garrido, H Nieto-Camacho, A Gomez-Vidales, V Ramirez-Apan, MT del Angel, P Montoya, JA Dominguez-Lopez, M Kibanova, D Cervini-Silva, J AF Cornejo-Garrido, Hilda Nieto-Camacho, Antonio Gomez-Vidales, Virginia Teresa Ramirez-Apan, Maria del Angel, Paz Ascencion Montoya, Jose Dominguez-Lopez, Mariana Kibanova, Dania Cervini-Silva, Javiera TI The anti-inflammatory properties of halloysite SO APPLIED CLAY SCIENCE LA English DT Article DE Vehicle-delivery drugs; lndomethacin; Naturally-occurring; Clays; Inexpensive ID LIPID-PEROXIDATION; OXIDATIVE STRESS; NITRIC-OXIDE; MOUSE EAR; CHEMISTRY; MACROPHAGES; SUSPENSIONS; PARTICLES; TISSUES; AGENTS AB Halloysite can serve as an alternative agent for drug delivery because its production is not tedious, hazardous, or expensive. In this study we show that halloysite presented anti-inflammatory properties comparable to indomethacin as evidenced by determination of the mieloperoxidase (MPO) enzymatic activity, a specific marker for migration and cellular infiltration. Edema reached maximum levels after 4 h. Cellular migration was noted to be low. After 24 h, however, cellular migration was noted to increase. Experiments conducted with mice primary peritoneal macrophages showed that halloysite (vs aminoguanidine) inhibited the production of nitric oxide. Halloysite inhibited oxidative stress via lipid peroxidation (ca. IC50 = 2023 ppm). (C) 2011 Elsevier B.V. All rights reserved. C1 [Kibanova, Dania; Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Mexico City 01120, DF, Mexico. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, Washington, DC USA. [Cervini-Silva, Javiera] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Nieto-Camacho, Antonio; Gomez-Vidales, Virginia; Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico. [Dominguez-Lopez, Mariana] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Mexico City 04510, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Artificios 40,6 Piso, Mexico City 01120, DF, Mexico. EM jcervinisilva@yahoo.com FU DGAPA-UNAM; Universidad Autonoma Metropolitana Unidad Cuajimalpa; ECACORE (SEMARNAT CONACYT) [23496] FX HC-G gratefully acknowledges the support of an undergraduate fellowship from DGAPA-UNAM. The authors thank Lic. Maria del Rocio Galindo Ortega (UAM-Cuajimalpa); M. in Sc. Claudia Rivera Cerecedo and Hector Malagon Rivero (Bioterio, Institut de Fisiologia Celular, UNAM); M. Sc. Pilar Fernandez Lomelin (Institut de Geografia, UNAM) for technical assistance. This project was supported in part by Universidad Autonoma Metropolitana Unidad Cuajimalpa and ECACORE 2020 (SEMARNAT CONACYT 23496). NR 39 TC 16 Z9 16 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 J9 APPL CLAY SCI JI Appl. Clay Sci. PD MAR PY 2012 VL 57 BP 10 EP 16 DI 10.1016/j.clay.2011.12.001 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA 911AI UT WOS:000301689300002 ER PT J AU Lanza, NL Clegg, SM Wiens, RC McInroy, RE Newsom, HE Deans, MD AF Lanza, Nina L. Clegg, Samuel M. Wiens, Roger C. McInroy, Rhonda E. Newsom, Horton E. Deans, Matthew D. TI Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars SO APPLIED OPTICS LA English DT Article ID DESERT VARNISH; GUSEV CRATER; SPIRIT ROVER; ORIGIN; WATER; EXPLORATION; DEPOSITION; BASALT; CLUE AB A laser-induced breakdown spectroscopy (LIBS) instrument is traveling to Mars as part of ChemCam on the Mars Science Laboratory rover. Martian rocks have weathered exteriors that obscure their bulk compositions. We examine weathered rocks with LIBS in a martian atmosphere to improve interpretations of ChemCam rock analyses on Mars. Profile data are analyzed using principal component analysis, and coatings and rinds are examined using scanning electron microscopy and electron probe microanalysis. Our results show that LIBS is sensitive to minor compositional changes with depth and correctly identifies rock type even if the series of laser pulses does not penetrate to unweathered material. (C) 2012 Optical Society of America C1 [Lanza, Nina L.] 1 Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Clegg, Samuel M.; McInroy, Rhonda E.] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87544 USA. [Deans, Matthew D.] NASA, Ames Res Ctr, Intelligent Robot Grp, Moffett Field, CA 94035 USA. RP Lanza, NL (reprint author), 1 Univ New Mexico, Inst Meteorit, MSC03 2050, Albuquerque, NM 87131 USA. EM nlanza@lanl.gov OI Lanza, Nina/0000-0003-4445-7996; Clegg, Sam/0000-0002-0338-0948 FU NASA FX Thanks to M. Spilde for assistance with EPMA work, to L. McFadden for valuable discussions, and to two anonymous reviewers for their very helpful comments. N. L. Lanza was supported by the NASA Graduate Student Research Program. Support at LANL was provided by NASA's Mars Exploration Program through the ChemCam project. NR 41 TC 16 Z9 16 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 1 PY 2012 VL 51 IS 7 BP B74 EP B82 DI 10.1364/AO.51.000B74 PG 9 WC Optics SC Optics GA 904JD UT WOS:000301190000012 PM 22410929 ER PT J AU Ferguson, FT Nuth, JA AF Ferguson, Frank T. Nuth, Joseph A., III TI Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article ID TRANSMISSION PROBABILITIES; SIO; SIMULATION; INTERFACE; SYSTEM AB The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 +/- 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 +/- 25) kJ.mol(-1) and (363.6 +/- 4.1) kJ.mol(-1), respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound. C1 [Ferguson, Frank T.] Catholic Univ, Dept Chem, Washington, DC 20064 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ferguson, FT (reprint author), Catholic Univ, Dept Chem, Washington, DC 20064 USA. EM frank.ferguson@nasa.gov RI Ferguson, Frank/C-9493-2012; Nuth, Joseph/E-7085-2012 NR 29 TC 4 Z9 4 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD MAR PY 2012 VL 57 IS 3 BP 721 EP 728 DI 10.1021/je200693d PG 8 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 904BZ UT WOS:000301169900008 ER PT J AU Doarn, CR Angotti, C Cooper, L AF Doarn, Charles R. Angotti, Catherine Cooper, Linda TI Development of Occupational Health at NASA Five Decades of Progress SO JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE LA English DT Article ID SERUM-CHOLESTEROL; COMBINED DIETARY; INTERVENTION; MEDICINE; DISEASE AB Objective: As NASA celebrates the 50th anniversary of human spaceflight, we reflect back on the individuals who forged a new way in the frontier of space. Methods: While much has been written about the astronauts and the systems that got them into space and safely home; less attention has been given to NASA employees and its contractors. NASA has always been conscious of the unique nature of its workforce and its importance to the space program. Results: NASA established a comprehensive occupational health program, which began as part of the Agency's Space Medicine function in the early 1960s. Over the years, this program grew in stature and capability. Conclusions: This paper traces the history and development of NASA's Occupational Health, highlighting the programs and people who focused their energies on ensuring the health and safety of its workforce. C1 [Doarn, Charles R.] Univ Cincinnati, Dept Family & Community Med, Cincinnati, OH 45267 USA. [Doarn, Charles R.; Angotti, Catherine; Cooper, Linda] NASA Headquarters, Off Chief Hlth & Med Officer, Washington, DC USA. RP Doarn, CR (reprint author), Univ Cincinnati, Dept Family & Community Med, 260 Stetson,Suite 4200,POB 670582,ML 0840, Cincinnati, OH 45267 USA. EM charles.doarn@uc.edu NR 19 TC 1 Z9 1 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1076-2752 J9 J OCCUP ENVIRON MED JI J. Occup. Environ. Med. PD MAR PY 2012 VL 54 IS 3 BP 336 EP 344 DI 10.1097/JOM.0b013e3182426ae1 PG 9 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 906QY UT WOS:000301363300015 PM 22286235 ER PT J AU Johnson, WR Hook, SJ Shoen, SM AF Johnson, William R. Hook, Simon J. Shoen, Steven M. TI Microbolometer imaging spectrometer SO OPTICS LETTERS LA English DT Article ID OPTICAL DESIGN; TEMPERATURE; EMISSIVITY AB Newly developed, high-performance, long-wave-and mid-wave-IR Dyson spectrometers offer a compact, low-distortion, broadband, imaging spectrometer design. The design is further accentuated when coupled to microbolometer array technology. This novel coupling allows radiometric and spectral measurements of high-temperature targets. It also serves to be unique since it allows for the system to be aligned warm. This eliminates the need for cryogenic temperature cycling. Proof of concept results are shown for a spectrometer with a 7.5 to 12.0 mu m spectral range and approximately 20 nm per spectral band (similar to 200 bands). Results presented in this Letter show performance for remote hot targets (>200 degrees C) using an engineering grade spectrometer and IR commercial lens assembly. (C) 2012 Optical Society of America C1 [Johnson, William R.; Hook, Simon J.; Shoen, Steven M.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnson, WR (reprint author), CALTECH, NASA Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM William.R.Johnson@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 13 TC 6 Z9 6 U1 2 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAR 1 PY 2012 VL 37 IS 5 BP 803 EP 805 PG 3 WC Optics SC Optics GA 904KS UT WOS:000301195100015 PM 22378399 ER PT J AU Thomas, OH Oshel, ER AF Thomas, Orrin H. Oshel, Edward R. TI Geometric Derivations Of Minimal Sets Of Sufficient Multiview Constraints SO PHOTOGRAMMETRIC RECORD LA English DT Article DE bundle adjustment; constraints; multilinear; multiview; photogrammetry and computer vision; quadlinear; trilinear AB Geometric interpretations of four of the most common determinant formulations of multiview constraints are given, showing that they all enforce the same geometry and that all of the forms commonly in use in the machine vision community are a subset of a more general form. Generalising the work of Yi Ma yields a new general 2 x 2 determinant trilinear and 3 x 3 determinant quadlinear. Geometric descriptions of degenerate multiview constraints are given, showing that it is necessary, but insufficient, that the determinant equals zero. Understanding the degeneracies leads naturally into proofs for minimum sufficient sets of bilinear, trilinear and quadlinear constraints for arbitrary numbers of conjugate observations. C1 [Thomas, Orrin H.; Oshel, Edward R.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Thomas, OH (reprint author), USGS Astrogeol, Flagstaff, AZ USA. EM othomas@usgs.gov; edward.r.oshel@nasa.gov NR 20 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0031-868X EI 1477-9730 J9 PHOTOGRAMM REC JI Photogramm. Rec. PD MAR PY 2012 VL 26 IS 137 SI SI BP 74 EP 93 DI 10.1111/j.1477-9730.2011.00653.x PG 20 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 908IP UT WOS:000301484400008 ER PT J AU Lipatov, AS Sittler, EC Hartle, RE Cooper, JF AF Lipatov, Alexander S. Sittler, Edward C., Jr. Hartle, Richard E. Cooper, John F. TI Short wavelength electromagnetic perturbations excited near the Solar Probe Plus spacecraft in the inner heliosphere: 2.5D hybrid modeling SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Solar wind; Spacecraft; Alfven waves; Whistlers; Induced magnetospheres; Magnetic barrier ID PLASMA; SIMULATIONS; WIND; WAKE AB A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bi-directional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to "shot" noise in absence of SPPSC are also discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lipatov, Alexander S.] UMBC NASA GSFC, Goddard Planetary Heliophys Inst, Greenbelt, MD 20771 USA. [Sittler, Edward C., Jr.; Hartle, Richard E.; Cooper, John F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lipatov, AS (reprint author), UMBC NASA GSFC, Goddard Planetary Heliophys Inst, Code 673,Bld 21,Rm 247,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Alexander.Lipatov-1@nasa.gov FU NASA through NASA GSFC [93672302010619]; GPHI/GEST Center UMBC; NASA [SMD-07-0458, SMD-08-0636] FX E.C. Sittler and A.S. Lipatov were supported in part by NASA Grant no. 93672302010619 (PI-E.C. Sittler) through NASA GSFC and GPHI/GEST Center UMBC, respectively. Computational resources were provided by the NASA's High-End Computing Center at NASA Goddard Center and Advanced Supercomputing Division at Ames Center through the NASA Computational Grants SMD-07-0458 and SMD-08-0636. NR 20 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAR PY 2012 VL 62 IS 1 BP 61 EP 68 DI 10.1016/j.pss.2011.12.008 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 908DB UT WOS:000301469500008 ER PT J AU Thompson, DR Bunte, M Castano, R Chien, S Greeley, R AF Thompson, David R. Bunte, Melissa Castano, Rebecca Chien, Steve Greeley, Ronald TI Image processing onboard spacecraft for autonomous plume detection SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Europa; Io; Enceladus; Plume detection; Spacecraft autonomy; Instruments and data processing AB Previous missions have imaged active plumes at Io and Enceladus, as well as outgassing by cometary nuclei. It is often difficult to predict where and when these transient events will occur, so characterizing them requires collecting long image sequences with many redundant frames. This demands a prohibitive fraction of the spacecraft's limited cache and bandwidth, and precludes sustained surveys of plume activity. Onboard processing could enable long-term plume monitoring campaigns with high imaging rates. Specifically, spacecraft can analyze image sequences onboard to identify plumes, with events triggering preferential storage, prioritized transmission, or follow up with coincident observations by Thermal or Visible Near-Infrared imagers. We propose a detection method based on horizon identification with Random Sample Consensus (RANSAC). The approach evidences reliable performance on a test set of plume images from Enceladus and Io. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Thompson, David R.; Castano, Rebecca; Chien, Steve] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bunte, Melissa; Greeley, Ronald] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.r.thompson@jpl.nasa.gov FU National Aeronautics and Space Administration FX We thank Brian Bue and Kiri Wagstaff for help with data, algorithms, and general advice. Richard Doyle and Tara Estlin provided additional ideas and counsel. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. Copyright 2011 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged. NR 14 TC 5 Z9 5 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAR PY 2012 VL 62 IS 1 BP 153 EP 159 DI 10.1016/j.pss.2011.11.006 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 908DB UT WOS:000301469500016 ER PT J AU Nishino, T Shariff, K AF Nishino, Takafumi Shariff, Karim TI Effect of Jet Nozzle Lip Momentum Loss on Circulation Control Airfoil Performance SO AIAA JOURNAL LA English DT Article AB Large eddy simulations of flow around a circulation control airfoil (using a Coanda jet blowing over its trailing surface) are performed to investigate the influence of jet nozzle lip thickness on airfoil performance. The airfoil geometry is only slightly changed from the authors' previous large eddy simulation study (Nishino, T., Hahn, S., and Shariff, K., "Large-Eddy Simulations of a Turbulent Coanda Jet on a Circulation Control Airfoil," Physics of Fluids, Vol. 22, No. 12, 2010. doi:10.1063/1.3526757) to study three different nozzle lip thickness cases; the geometry inside the nozzle is maintained as the same. The results show that the jet profile across the nozzle exit is insensitive to the nozzle lip thickness; however, the jet flow downstream of the nozzle exit decelerates more rapidly, and thus the circulation around the airfoil decreases as the nozzle lip thickness increases. It is subsequently shown that this effect is mostly cancelled out by adjusting the jet blowing rate in such a way that the difference of momentum loss arising from the nozzle lip is taken into account, demonstrating that the performance of a Coanda jet on a circulation control airfoil is determined not only by the jet momentum at the nozzle exit but also by the momentum loss behind the nozzle lip. These results suggest that it may be useful to define a new jet momentum coefficient that takes account of the momentum loss due to the nozzle lip, which can be roughly estimated once the velocity of the flow above the nozzle lip is known. C1 [Nishino, Takafumi; Shariff, Karim] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Nishino, T (reprint author), Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England. RI Nishino, Takafumi/A-2685-2012; OI Nishino, Takafumi/0000-0001-6306-7702; Shariff, Karim/0000-0002-7256-2497 FU NASA; NASA Advanced Supercomputing Division at Ames Research Center FX The present work was funded by the Subsonic Fixed Wing Project of the Fundamental Aeronautics Program at NASA. The first author was supported by the NASA Postdoctoral Program administrated by Oak Ridge Associated Universities. Computing resources and support were provided by the NASA Advanced Supercomputing Division at Ames Research Center. The authors would like to thank Seonghyeon Hahn of the Center for Turbulence Research at Stanford University for providing the computational code and Mike Rogers of Ames Research Center for helpful discussions. NR 10 TC 3 Z9 3 U1 1 U2 8 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAR PY 2012 VL 50 IS 3 BP 551 EP 558 DI 10.2514/1.J051196 PG 8 WC Engineering, Aerospace SC Engineering GA 904NJ UT WOS:000301204700004 ER PT J AU Balla, RJ Everhart, JL AF Balla, R. Jeffrey Everhart, Joel L. TI Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10 SO AIAA JOURNAL LA English DT Article ID WIND-TUNNEL; HOMOGENEOUS NUCLEATION; GAS CONCENTRATION; AIR; NITROGEN; CONDENSATION; LASER; LAYER; JET AB In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990 K at five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7 mm line measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed. C1 [Balla, R. Jeffrey] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Balla, R. Jeffrey] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Everhart, Joel L.] NASA, Aerothermodynam Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Balla, RJ (reprint author), NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Mail Stop 493, Hampton, VA 23681 USA. EM robert.j.balla@nasa.gov NR 42 TC 10 Z9 10 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAR PY 2012 VL 50 IS 3 BP 698 EP 707 DI 10.2514/1.J051334 PG 10 WC Engineering, Aerospace SC Engineering GA 904NJ UT WOS:000301204700017 ER PT J AU Gupta, KK Voelker, LS AF Gupta, K. K. Voelker, L. S. TI Aeroelastic Simulation of Hypersonic Flight Vehicles SO AIAA JOURNAL LA English DT Article ID IDENTIFICATION; FUTURE; FLOW; MESH AB This paper presents a study of various solution methodologies for simulation of aeroelastic characteristics of flight vehicles with application to the X-43 hypersonic aerospacecraft. The four computational fluid dynamics-based solution methodologies include direct time marching, systems identification-based autoregressive moving average, and two piston methods with a computational fluid dynamics-based steady state and an unsteady solution initiations approach. These solutions are compared for accuracy and relative computational efficiency. C1 [Gupta, K. K.; Voelker, L. S.] NASA, Dryden Flight Res Ctr, Res Engn Directorate, Edwards AFB, CA 93523 USA. RP Gupta, KK (reprint author), NASA, Dryden Flight Res Ctr, Res Engn Directorate, Edwards AFB, CA 93523 USA. NR 31 TC 5 Z9 7 U1 1 U2 10 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAR PY 2012 VL 50 IS 3 BP 717 EP 723 DI 10.2514/1.J051386 PG 7 WC Engineering, Aerospace SC Engineering GA 904NJ UT WOS:000301204700019 ER PT J AU Alonso-Garcia, J Mateo, M Sen, B Banerjee, M Catelan, M Minniti, D von Braun, K AF Alonso-Garcia, Javier Mateo, Mario Sen, Bodhisattva Banerjee, Moulinath Catelan, Marcio Minniti, Dante von Braun, Kaspar TI UNCLOAKING GLOBULAR CLUSTERS IN THE INNER GALAXY SO ASTRONOMICAL JOURNAL LA English DT Article DE dust, extinction; Galaxy: bulge; Galaxy: evolution; globular clusters: general; Hertzsprung-Russell and C-M diagrams; stars: horizontal-branch ID HUBBLE-SPACE-TELESCOPE; COLOR-MAGNITUDE DIAGRAM; DEEP ADVANCED CAMERA; NEAR-INFRARED PROPERTIES; HORIZONTAL-BRANCH STARS; RED GIANT BRANCH; PHOTOMETRIC STANDARD STARS; LARGE HOMOGENEOUS V; X-RAY SOURCES; CCD PHOTOMETRY AB Extensive photometric studies of the globular clusters located toward the center of the Milky Way have been historically neglected. The presence of patchy differential reddening in front of these clusters has proven to be a significant obstacle to their detailed study. We present here a well defined and reasonably homogeneous photometric database for 25 of the brightest Galactic globular clusters located in the direction of the inner Galaxy. These data were obtained in the B, V, and I bands using the Magellan 6.5 m Telescope and the Hubble Space Telescope. A new technique is extensively used in this paper to map the differential reddening in the individual cluster fields, and to produce cleaner, dereddened color-magnitude diagrams for all the clusters in the database. Subsequent papers will detail the astrophysical analysis of the cluster populations, and the properties of the obscuring material along the clusters' lines of sight. C1 [Alonso-Garcia, Javier; Catelan, Marcio; Minniti, Dante] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 7820436, Chile. [Alonso-Garcia, Javier; Mateo, Mario] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Sen, Bodhisattva] Columbia Univ, Dept Stat, New York, NY 10027 USA. [Banerjee, Moulinath] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. [Minniti, Dante] Vatican Observ, I-00120 Vatican City, Vatican. [Minniti, Dante] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [von Braun, Kaspar] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Alonso-Garcia, J (reprint author), Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 7820436, Chile. EM jalonso@astro.puc.cl; mmateo@umich.edu; bodhi@stat.columbia.edu; moulib@umich.edu; mcatelan@astro.puc.cl; dante@astro.puc.cl; kaspar@ipac.caltech.edu RI Alonso-Garcia, Javier/I-2723-2015 OI Alonso-Garcia, Javier/0000-0003-3496-3772 FU National Aeronautics and Space Administration [NAS 5-26555]; National Science Foundation [0206081]; STScI [GO10573.01-A]; Ministry for the Economy, Development, and Tourism's Programa Iniciativa Cientifica Milenio [P07-021-F]; Basal [PFB-06]; FONDAP [15010003]; Anillos [ACT-86]; Canadian Space Agency FX Based partly on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This paper also includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.; This study was supported by grants 0206081 from NSF and GO10573.01-A from STScI. STScI is operated by NASA under contract to AURA. Support was also provided by the Ministry for the Economy, Development, and Tourism's Programa Iniciativa Cientifica Milenio through grant P07-021-F, awarded to The Milky Way Millennium Nucleus, by Proyecto Fondecyt Regular 1110326, by Basal PFB-06, FONDAP 15010003, and Anillos ACT-86. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. NR 127 TC 33 Z9 33 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAR PY 2012 VL 143 IS 3 AR 70 DI 10.1088/0004-6256/143/3/70 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 898IK UT WOS:000300735600016 ER PT J AU Kunder, A Koch, A Rich, RM de Propris, R Howard, CD Stubbs, SA Johnson, CI Shen, JT Wang, YG Robin, AC Kormendy, J Soto, M Frinchaboy, P Reitzel, DB Zhao, HS Origlia, L AF Kunder, Andrea Koch, Andreas Rich, R. Michael de Propris, Roberto Howard, Christian D. Stubbs, Scott A. Johnson, Christian I. Shen, Juntai Wang, Yougang Robin, Annie C. Kormendy, John Soto, Mario Frinchaboy, Peter Reitzel, David B. Zhao, HongSheng Origlia, Livia TI THE BULGE RADIAL VELOCITY ASSAY (BRAVA). II. COMPLETE SAMPLE AND DATA RELEASE SO ASTRONOMICAL JOURNAL LA English DT Article DE Galaxy: center; stars: abundances; stars: distances; stars: Population II; surveys ID 1ST DETAILED ABUNDANCES; GALACTIC BULGE; BAADES WINDOW; M-GIANTS; STELLAR PARAMETERS; MILKY-WAY; INFRARED-SPECTROSCOPY; PLANETARY-NEBULAE; GALAXY FORMATION; BARRED GALAXIES AB We present new radial velocity measurements from the Bulge Radial Velocity Assay, a large-scale spectroscopic survey of M-type giants in the Galactic bulge/bar region. The sample of similar to 4500 new radial velocities, mostly in the region -10 degrees < l < +10 degrees and b approximate to -6 degrees, more than doubles the existent published data set. Our new data extend our rotation curve and velocity dispersion profile to +20 degrees, which is similar to 2.8 kpc from the Galactic center. The new data confirm the cylindrical rotation observed at -6 degrees and -8 degrees and are an excellent fit to the Shen et al. N-body bar model. We measure the strength of the TiO epsilon molecular band as a first step toward a metallicity ranking of the stellar sample, from which we confirm the presence of a vertical abundance gradient. Our survey finds no strong evidence of previously unknown kinematic streams. We also publish our complete catalog of radial velocities, photometry, TiO band strengths, and spectra, which is available at the Infrared Science Archive as well as at UCLA. C1 [Kunder, Andrea; de Propris, Roberto; Stubbs, Scott A.] Cerro Tololo Interamer Observ, La Serena, Chile. [Koch, Andreas] Univ Heidelberg, Zentrum Astron, Heidelberg, Germany. [Rich, R. Michael; Johnson, Christian I.; Reitzel, David B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Howard, Christian D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Shen, Juntai] Chinese Acad Sci, Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China. [Wang, Yougang] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. [Robin, Annie C.] Univ Besancon, Observ Sci, F-25030 Besancon, France. [Kormendy, John] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Soto, Mario] Univ La Serena, Dept Fis, La Serena, Chile. [Frinchaboy, Peter] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Reitzel, David B.] Griffith Observ, Los Angeles, CA 90027 USA. [Zhao, HongSheng] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Origlia, Livia] INAF, Osservatorio Astron Bologna, I-40127 Bologna, Italy. RP Kunder, A (reprint author), Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. EM akunder@ctio.noao.edu RI he, shuyi/K-2082-2014; ORIGLIA, LIVIA/O-9883-2015; OI ORIGLIA, LIVIA/0000-0002-6040-5849; Kunder, Andrea/0000-0002-2808-1370; Koch, Andreas/0000-0002-9859-4956; Shen, Juntai/0000-0001-5604-1643 FU National Science Foundation [1066293, AST-0709479, AST-1003201]; Emmy-Noether [Ko 4161/1]; National Natural Science Foundation of China [11073037]; 973 Program of China [2009CB824800] FX It is our pleasure to thank Inma Martinez-Valpuesta and Ortwin Gerhard for helpful discussions. A. Kunder, R. M. Rich, C. I. Johnson, J. Shen, A. C. Robin, M. Soto, P. Frinchaboy, Y. Wang, and L. Origlia wish to acknowledge the hospitality of the Aspen Center for Physics, which is supported by the NSF Grant 1066293, and where much dialogue and exchange of ideas took place. A. Kunder thanks Dan Phillips for his work on the BRAVA Web site. A. Koch thanks the Deutsche Forschungsgemeinschaft for funding from Emmy-Noether grant Ko 4161/1. This material is based upon work supported by the National Science Foundation under award AST-0709479 to R. M. Rich and award AST-1003201 to C.I.J. The research presented here is partially supported by the National Natural Science Foundation of China under grant no. 11073037 to J. Shen and by 973 Program of China under grant no. 2009CB824800 to J. Shen. We thank the anonymous referee for suggestions that strengthened our analysis. NR 58 TC 88 Z9 88 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAR PY 2012 VL 143 IS 3 AR 57 DI 10.1088/0004-6256/143/3/57 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 898IK UT WOS:000300735600003 ER PT J AU Walker, LM Johnson, KE Gallagher, SC Charlton, JC Hornschemeier, AE Hibbard, JE AF Walker, Lisa May Johnson, Kelsey E. Gallagher, Sarah C. Charlton, Jane C. Hornschemeier, Ann E. Hibbard, John E. TI EXAMINING THE ROLE OF ENVIRONMENT IN A COMPREHENSIVE SAMPLE OF COMPACT GROUPS SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: evolution; galaxies: interactions; galaxies: statistics; infrared: galaxies ID STAR-FORMATION RATES; CLUSTER GALAXIES; SPITZER; ULTRAVIOLET; EVOLUTION; RADIO; GAS AB Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 mu m) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission. C1 [Walker, Lisa May; Johnson, Kelsey E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Gallagher, Sarah C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Charlton, Jane C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Hornschemeier, Ann E.] NASA, Lab Xray Astrophys, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hibbard, John E.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Walker, LM (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. FU NSF through CAREER [0548103]; David and Lucile Packard Foundation; National Science and Engineering Research Council of Canada; The Ontario Early Researcher Award Program; National Science Foundation [0908984]; National Aeronautics and Space Administration FX K.E.J. gratefully acknowledges support for this paper provided by NSF through CAREER award 0548103 and the David and Lucile Packard Foundation through a Packard Fellowship. S.C.G. thanks the National Science and Engineering Research Council of Canada and The Ontario Early Researcher Award Program for support. J.C.C. was supported by the National Science Foundation through award 0908984. L.M.W thanks David Whelan for helpful discussions. We also thank the anonymous referee for their constructive comments. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 28 TC 19 Z9 19 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAR PY 2012 VL 143 IS 3 AR 69 DI 10.1088/0004-6256/143/3/69 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 898IK UT WOS:000300735600015 ER PT J AU Kong, AKH Huang, RHH Cheng, KS Takata, J Yatsu, Y Cheung, CC Donato, D Lin, LCC Kataoka, J Takahashi, Y Maeda, K Hui, CY Tam, PHT AF Kong, A. K. H. Huang, R. H. H. Cheng, K. S. Takata, J. Yatsu, Y. Cheung, C. C. Donato, D. Lin, L. C. C. Kataoka, J. Takahashi, Y. Maeda, K. Hui, C. Y. Tam, P. H. T. TI DISCOVERY OF AN UNIDENTIFIED FERMI OBJECT AS A BLACK WIDOW-LIKE MILLISECOND PULSAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; gamma rays: stars; pulsars: general; stars: individual (1FGL J2339.7-0531, SDSS J233938.74-053305.2); X-rays: stars ID GAMMA-RAY PULSARS; LARGE-AREA TELESCOPE; HIGH-ENERGY EMISSION; 1ST J102347.6+003841; CATALOG; TRANSITION; GAPS AB The Fermi gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a "radio-quiet" gamma-ray-emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63 hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a similar to 0.1 M-circle dot late-type companion star. Based on the profile of the optical and X-ray light curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intrabinary shock. No radio detection of the source has been reported yet, and although no gamma-ray/radio pulsation has been found we estimate that the spin period of the MSP is similar to 3-5 ms based on the inferred gamma-ray luminosity. C1 [Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.] Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan. [Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Cheng, K. S.; Takata, J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yatsu, Y.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Cheung, C. C.] Natl Acad Sci, Natl Res Council, Res Associate, Washington, DC 20001 USA. [Donato, D.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA. [Donato, D.] NASA GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Donato, D.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kataoka, J.; Takahashi, Y.; Maeda, K.] China Med Univ, Gen Educ Ctr, Taichung 40402, Taiwan. [Kataoka, J.; Takahashi, Y.; Maeda, K.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Hui, C. Y.] Chungnam Natl Univ, Dept Astron & Space Sci, Taejon, South Korea. RP Kong, AKH (reprint author), Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan. EM akong@phys.nthu.edu.tw RI Cheng, Kwong Sang/D-3073-2009 FU National Science Council of the Republic of China (Taiwan) [NSC100-2628-M-007-002-MY3, NSC100-2923-M-007-001-MY3]; Kenda Foundation; Chandra award [GO0-11022A]; National Research Foundation of Korea [2011-0023383]; GRF [HKU 700911P] FX We thank the supporting staff at the Lulin Observatory for arranging the service observations. The Lulin Observatory is operated by the Graduate Institute of Astronomy in National Central University, Taiwan. We also thank Roger Romani for providing insights and useful comments as well as his quick-look optical spectroscopic results. This project is supported by the National Science Council of the Republic of China (Taiwan) through grants NSC100-2628-M-007-002-MY3 and NSC100-2923-M-007-001-MY3. A. K. H. K. gratefully acknowledges support from a Kenda Foundation Golden Jade Fellowship. C. C. C. and D. D. were supported in part by Chandra award GO0-11022A. C.Y.H. is supported by the National Research Foundation of Korea through grant 2011-0023383. K. S. C. and J.T. are supported by the GRF grant HKU 700911P. NR 34 TC 23 Z9 23 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2012 VL 747 IS 1 AR L3 DI 10.1088/2041-8205/747/1/L3 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 904KB UT WOS:000301192800003 ER PT J AU Ly, C Malkan, MA Kashikawa, N Ota, K Shimasaku, K Iye, M Currie, T AF Ly, Chun Malkan, Matthew A. Kashikawa, Nobunari Ota, Kazuaki Shimasaku, Kazuhiro Iye, Masanori Currie, Thayne TI DUST ATTENUATION AND H alpha STAR FORMATION RATES OF z similar to 0.5 GALAXIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; galaxies: distances and redshifts; galaxies: evolution; galaxies: high-redshift; galaxies: photometry ID SUBARU DEEP FIELD; EMISSION-LINE GALAXIES; LUMINOSITY FUNCTION; STARBURST GALAXIES; REIONIZATION EPOCH; FORMING GALAXIES; IMAGING DATA; EXTINCTION; EMITTERS; SPECTROGRAPH AB Using deep narrowband and broadband imaging, we identify 401 z approximate to 0.40 and 249 z approximate to 0.49 H alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H alpha surveys at similar redshifts, our samples are unique since they probe lower H alpha luminosities, are augmented with multi-wavelength (rest-frame 1000 angstrom-1.5 mu m) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H beta detected above 5 sigma. The Balmer decrements indicate an average extinction of A(H alpha) = 0.7(-0.7)(+1.4) mag. We find that the Balmer decrement systematically increases with higher H alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the star formation rates (SFRs) estimated from modeling the spectral energy distribution (SED) are reliable-we derived an "intrinsic" H alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H alpha luminosity agrees with H alpha narrowband measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically based dust corrections for H alpha and find that adopting 1 mag of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argues that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H alpha measurements at z similar to 0.5. C1 [Ly, Chun] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Malkan, Matthew A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Kashikawa, Nobunari; Iye, Masanori] Natl Astron Observ, Opt & Infrared Astron Div, Tokyo 181, Japan. [Kashikawa, Nobunari] Grad Univ Adv Studies, Dept Astron, Sch Sci, Tokyo, Japan. [Ota, Kazuaki] Kyoto Univ, Dept Astron, Kyoto, Japan. [Shimasaku, Kazuhiro] Univ Tokyo, Dept Astron, Sch Sci, Bunkyo Ku, Tokyo 113, Japan. [Shimasaku, Kazuhiro] Univ Tokyo, Res Ctr Early Universe, Sch Sci, Tokyo 113, Japan. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ly, C (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM chunly@stsci.edu NR 36 TC 18 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2012 VL 747 IS 1 AR L16 DI 10.1088/2041-8205/747/1/L16 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 904KB UT WOS:000301192800016 ER PT J AU Rho, J Onaka, T Cami, J Reach, WT AF Rho, J. Onaka, T. Cami, J. Reach, W. T. TI SPECTROSCOPIC DETECTION OF CARBON MONOXIDE IN THE YOUNG SUPERNOVA REMNANT CASSIOPEIA A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; ISM: molecules; ISM: supernova remnants; molecular processes ID INFRARED CAMERA IRC; EARLY UNIVERSE; DUST; EXPLOSION; EJECTA; DATABASE; SPECTRA; 1987A; AKARI AB We report the detection of carbon monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A) at wavelengths corresponding to the fundamental vibrational mode at 4.65 mu m. We obtained AKARI Infrared Camera spectra toward four positions which unambiguously reveal the broad characteristic CO ro-vibrational band profile. The observed positions include unshocked ejecta at the center, indicating that CO molecules form in the ejecta at an early phase. We extracted a dozen spectra across Cas A along the long 1' slits and compared these to simple CO emission models in local thermodynamic equilibrium to obtain first-order estimates of the excitation temperatures and CO masses involved. Our observations suggest that significant amounts of carbon may have been locked up in CO since the explosion 330 years ago. Surprisingly, CO has not been efficiently destroyed by reactions with ionized He or the energetic electrons created by the decay of the radiative nuclei. Our CO detection thus implies that less carbon is available to form carbonaceous dust in supernovae than is currently thought and that molecular gas could lock up a significant amount of heavy elements in supernova ejecta. C1 [Rho, J.; Reach, W. T.] NASA, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Onaka, T.] Univ Tokyo, Dept Astron, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Cami, J.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Cami, J.] SETI Inst, Mountain View, CA 94043 USA. RP Rho, J (reprint author), NASA, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Ames Res Ctr, MS 211-3, Moffett Field, CA 94035 USA. EM jrho@sofia.usra.edu; onaka@astron.s.u-tokyo.ac.jp; jcami@uwo.ca; wreach@sofia.usra.edu RI ONAKA, TAKASHI/G-5058-2014; OI Reach, William/0000-0001-8362-4094 NR 30 TC 12 Z9 12 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2012 VL 747 IS 1 AR L6 DI 10.1088/2041-8205/747/1/L6 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 904KB UT WOS:000301192800006 ER PT J AU Thejappa, G MacDowall, RJ Bergamo, M Papadopoulos, K AF Thejappa, G. MacDowall, R. J. Bergamo, M. Papadopoulos, K. TI EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE radiation mechanisms: general; solar wind; Sun: radio radiation ID INTERPLANETARY PLASMA; STRONG TURBULENCE; SOURCE REGIONS; EMISSION; WIND; ELECTRONS; NUCLEATION; DECAY AB We present observational evidence for the oscillating two stream instability (OTSI) and spatial collapse of Langmuir waves in the source region of a solar type III radio burst. High time resolution observations from the STEREO A spacecraft show that Langmuir waves excited by the electron beam occur as isolated field structures with short durations similar to 3.2 ms and with high intensities exceeding the strong turbulence thresholds. These short duration events are identified as the envelope solitons which have collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets contain an intense peak and two sidebands, corresponding to beam-resonant Langmuir waves, and down-shifted and up-shifted daughter Langmuir waves, respectively, and low-frequency enhancements below a few hundred Hz. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI. The observed high intensities, short scale lengths, sideband spectral structures, and low-frequency enhancements strongly suggest that the OTSI and spatial collapse of Langmuir waves probably control the nonlinear beam-plasma interactions in type III radio bursts. C1 [Thejappa, G.; Bergamo, M.; Papadopoulos, K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thejappa, G (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM thejappa.golla@nasa.gov; Robert.MacDowall@nasa.gov; mbergamo@umd.edu; kp@astro.umd.edu RI MacDowall, Robert/D-2773-2012 FU NASA [NNX08AO02G, NNX09AB19G] FX The research of T. G. is supported by the NASA grants NNX08AO02G and NNX09AB19G. The SWAVES instruments include contributions from the Observatoire of Paris, University of Minnesota, University of California, Berkeley, and NASA/GSFC. We thank M. J. Reiner for calculating the electron beam speed, and Prof. P. J. Kellogg for clarifying a question regarding the Low Frequency Receiver. We also thank the referee for very insightful comments and suggestions. NR 46 TC 17 Z9 18 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2012 VL 747 IS 1 AR L1 DI 10.1088/2041-8205/747/1/L1 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 904KB UT WOS:000301192800001 ER PT J AU Zitrin, A Moustakas, J Bradley, L Coe, D Moustakas, LA Postman, M Shu, X Zheng, W Benitez, N Bouwens, R Broadhurst, T Ford, H Host, O Jouvel, S Koekemoer, A Meneghetti, M Rosati, P Donahue, M Grillo, C Kelson, D Lemze, D Medezinski, E Molino, A Nonino, M Ogaz, S AF Zitrin, A. Moustakas, J. Bradley, L. Coe, D. Moustakas, L. A. Postman, M. Shu, X. Zheng, W. Benitez, N. Bouwens, R. Broadhurst, T. Ford, H. Host, O. Jouvel, S. Koekemoer, A. Meneghetti, M. Rosati, P. Donahue, M. Grillo, C. Kelson, D. Lemze, D. Medezinski, E. Molino, A. Nonino, M. Ogaz, S. TI CLASH: DISCOVERY OF A BRIGHT z similar or equal to 6.2 DWARF GALAXY QUADRUPLY LENSED BY MACS J0329.6-0211 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dark matter; galaxies: clusters: general; galaxies: clusters: individual (MACS J0329.6-0211); galaxies: high-redshift; gravitational lensing: strong ID STRONG-LENSING ANALYSIS; LYMAN BREAK GALAXIES; INITIAL MASS FUNCTION; STAR-FORMATION RATES; DEEP ADVANCED CAMERA; PHOTOMETRIC REDSHIFTS; PHYSICAL-PROPERTIES; STELLAR MASSES; LEGACY SURVEY; CLUSTERS AB We report the discovery of a z(phot) = 6.18(-0.07)(+0.05) (95% confidence level) dwarf galaxy, lensed into four images by the galaxy cluster MACS J0329.6-0211 (z(l) = 0.45). The galaxy is observed as a high-redshift dropout in HST/ACS/WFC3 CLASH and Spitzer/IRAC imaging. Its redshift is securely determined due to a clear detection of the Lyman break in the 18-band photometry, making this galaxy one of the highest-redshift multiply lensed objects known to date with an observed magnitude of F125W = 24.00 +/- 0.04 AB mag for its most magnified image. We also present the first strong-lensing analysis of this cluster uncovering 15 additional multiply imaged candidates of five lower-redshift sources spanning the range z(s) similar or equal to 2-4. The mass model independently supports the high photometric redshift and reveals magnifications of 11.6(-4.1)(+8.9), 17.6(-3.9)(+6.2), 3.9(-1.7)(+3.0), and 3.7(-0.2)(+1.3), respectively, for the four images of the high-redshift galaxy. By delensing the most magnified image we construct an image of the source with a physical resolution of similar to 200 pc when the universe was similar to 0.9 Gyr old, where the z similar or equal to 6.2 galaxy occupies a source-plane area of approximately 2.2 kpc(2). Modeling the observed spectral energy distribution using population synthesis models, we find a demagnified stellar mass of similar to 10(9) M-circle dot, subsolar metallicity (Z/Z(circle dot) similar to 0.5), low dust content (A(V) similar to 0.1 mag), a demagnified star formation rate (SFR) of similar to 3.2 M-circle dot yr(-1), and a specific SFR of similar to 3.4 Gyr (1), all consistent with the properties of local dwarf galaxies. C1 [Zitrin, A.] Univ Heidelberg, Inst Theoret Phys, Heidelberg, Germany. [Moustakas, J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92103 USA. [Bradley, L.; Coe, D.; Postman, M.; Koekemoer, A.; Ogaz, S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Shu, X.] Univ Sci & Technol China, Dept Astron, Hefei 230026, Anhui, Peoples R China. [Zheng, W.; Ford, H.; Lemze, D.; Medezinski, E.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Benitez, N.; Molino, A.] Inst Astrofis Andalucia CSIC, Granada, Spain. [Bouwens, R.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Broadhurst, T.] Univ Basque Country, Dept Theoret Phys, Bilbao, Spain. [Broadhurst, T.] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain. [Host, O.; Jouvel, S.] UCL, Dept Phys & Astron, London, England. [Meneghetti, M.] Osservatorio Astron Bologna, INAF, Bologna, Italy. [Meneghetti, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Rosati, P.] European So Observ, D-8046 Garching, Germany. [Donahue, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Grillo, C.] Tech Univ Munich, Munich, Germany. [Kelson, D.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Nonino, M.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. RP Zitrin, A (reprint author), Univ Heidelberg, Inst Theoret Phys, Heidelberg, Germany. EM adizitrin@gmail.com RI Molino Benito, Alberto/F-5298-2014; Grillo, Claudio/E-6223-2015; Meneghetti, Massimo/O-8139-2015; Shu, Xinwen/D-7294-2017; OI Grillo, Claudio/0000-0002-5926-7143; Meneghetti, Massimo/0000-0003-1225-7084; Shu, Xinwen/0000-0002-7020-4290; Nonino, Mario/0000-0001-6342-9662; Moustakas, Leonidas/0000-0003-3030-2360; Koekemoer, Anton/0000-0002-6610-2048; Benitez, Narciso/0000-0002-0403-7455 FU NASA [NAS 5-26555]; CLASH Multi-Cycle Treasury Program [GO-12065] FX The authors thank Saurabh Jha for useful discussions, and the anonymous referee for valuable comments. The CLASH Multi-Cycle Treasury Program (GO-12065) is based on observations made with the NASA/ESA Hubble Space Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We thank the hospitality of Institut fur Theoretische Astrophysik, Universitat Heidelberg, where part of this work took place, and the Baden-Wuerttemberg Stiftung. NR 46 TC 30 Z9 30 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2012 VL 747 IS 1 AR L9 DI 10.1088/2041-8205/747/1/L9 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 904KB UT WOS:000301192800009 ER PT J AU Goldstein, A Burgess, JM Preece, RD Briggs, MS Guiriec, S van der Horst, AJ Connaughton, V Wilson-Hodge, CA Paciesas, WS Meegan, CA von Kienlin, A Bhat, PN Bissaldi, E Chaplin, V Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, M Giles, M Greiner, J Gruber, D Kippen, RM Kouveliotou, C McBreen, S McGlynn, S Rau, A Tierney, D AF Goldstein, Adam Burgess, J. Michael Preece, Robert D. Briggs, Michael S. Guiriec, Sylvain van der Horst, Alexander J. Connaughton, Valerie Wilson-Hodge, Colleen A. Paciesas, William S. Meegan, Charles A. von Kienlin, Andreas Bhat, P. N. Bissaldi, Elisabetta Chaplin, Vandiver Diehl, Roland Fishman, Gerald J. Fitzpatrick, Gerard Foley, Suzanne Gibby, Melissa Giles, Misty Greiner, Jochen Gruber, David Kippen, R. Marc Kouveliotou, Chryssa McBreen, Sheila McGlynn, Sinead Rau, Arne Tierney, Dave TI THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: THE FIRST TWO YEARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general; methods: data analysis ID PEAK ENERGY; BATSE OBSERVATIONS; MONITOR; TIME; SPECTROSCOPY AB We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center. C1 [Goldstein, Adam; Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Guiriec, Sylvain; Connaughton, Valerie; Paciesas, William S.; Bhat, P. N.; Chaplin, Vandiver] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [van der Horst, Alexander J.; Meegan, Charles A.] Univ Space Res Assoc, Huntsville, AL 35805 USA. [Wilson-Hodge, Colleen A.; Fishman, Gerald J.; Kouveliotou, Chryssa] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [von Kienlin, Andreas; Bissaldi, Elisabetta; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; McGlynn, Sinead; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Fitzpatrick, Gerard; McBreen, Sheila; Tierney, Dave] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gibby, Melissa; Giles, Misty] Jacobs Technol, Huntsville, AL 35806 USA. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McGlynn, Sinead] Tech Univ Munich, Exzellenzcluster Univ, D-85748 Garching, Germany. RP Goldstein, A (reprint author), Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35805 USA. RI Diehl, Roland/K-4496-2016; Bissaldi, Elisabetta/K-7911-2016; OI Diehl, Roland/0000-0002-8337-9022; Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; McBreen, Sheila/0000-0002-1477-618X FU Graduate Student Researchers Program; NASA; European Union [PERG04-GA-2008-239176]; Irish Research Council for Science, Engineering, and Technology; Marie Curie Actions; German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502] FX A.G. acknowledges the support of the Graduate Student Researchers Program funded by NASA. S. M.B. acknowledges support of the European Union Marie Curie Reintegration Grant within the 7th Program under contract number PERG04-GA-2008-239176. S.F. acknowledges the support of the Irish Research Council for Science, Engineering, and Technology, co-funded by Marie Curie Actions under FP7. The GBM project is supported by the German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. NR 36 TC 77 Z9 78 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 19 DI 10.1088/0067-0049/199/1/19 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800019 ER PT J AU Paciesas, WS Meegan, CA von Kienlin, A Bhat, PN Bissaldi, E Briggs, MS Burgess, JM Chaplin, V Connaughton, V Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, M Giles, M Goldstein, A Greiner, J Gruber, D Guiriec, S van der Horst, AJ Kippen, RM Kouveliotou, C Lichti, G Lin, L McBreen, S Preece, RD Rau, A Tierney, D Wilson-Hodge, C AF Paciesas, William S. Meegan, Charles A. von Kienlin, Andreas Bhat, P. N. Bissaldi, Elisabetta Briggs, Michael S. Burgess, J. Michael Chaplin, Vandiver Connaughton, Valerie Diehl, Roland Fishman, Gerald J. Fitzpatrick, Gerard Foley, Suzanne Gibby, Melissa Giles, Misty Goldstein, Adam Greiner, Jochen Gruber, David Guiriec, Sylvain van der Horst, Alexander J. Kippen, R. Marc Kouveliotou, Chryssa Lichti, Giselher Lin, Lin McBreen, Sheila Preece, Robert D. Rau, Arne Tierney, Dave Wilson-Hodge, Colleen TI THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general ID SPECTRAL PROPERTIES; MONITOR; SPECTROSCOPY; BRIGHTEST; EVOLUTION; TRIGGER AB The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center. C1 [Paciesas, William S.; Bhat, P. N.; Briggs, Michael S.; Burgess, J. Michael; Chaplin, Vandiver; Connaughton, Valerie; Goldstein, Adam; Guiriec, Sylvain; Lin, Lin; Preece, Robert D.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. [Meegan, Charles A.; van der Horst, Alexander J.] Univ Space Res Assoc, Huntsville, AL 35805 USA. [von Kienlin, Andreas; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; Lichti, Giselher; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bissaldi, Elisabetta] Univ Innsbruck, Inst Astro & Particle Phys, A-6176 Innsbruck, Austria. [Fishman, Gerald J.; Kouveliotou, Chryssa; Wilson-Hodge, Colleen] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Fitzpatrick, Gerard; McBreen, Sheila; Tierney, Dave] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gibby, Melissa; Giles, Misty] Jacobs Technol Inc, Huntsville, AL 35806 USA. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Paciesas, WS (reprint author), Univ Alabama, Ctr Space Plasma & Aeron Res, 320 Sparkman Dr, Huntsville, AL 35805 USA. RI Diehl, Roland/K-4496-2016; Bissaldi, Elisabetta/K-7911-2016; OI Diehl, Roland/0000-0002-8337-9022; Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; McBreen, Sheila/0000-0002-1477-618X FU NASA; German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502]; European Union [PERG04-GA-2008-239176]; Irish Research Council for Science, Engineering, and Technology; Marie Curie Actions FX The GBM project is supported by NASA and by the German Bundesministeriums fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. A.G. acknowledges the support of the Graduate Student Researchers Program funded by NASA. S.M.B. acknowledges support of the European Union Marie Curie Reintegration Grant within the 7th Program under contract number PERG04-GA-2008-239176. S.F. acknowledges the support of the Irish Research Council for Science, Engineering, and Technology, co-funded by Marie Curie Actions under FP7. NR 22 TC 61 Z9 62 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 18 DI 10.1088/0067-0049/199/1/18 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800018 ER PT J AU Pueyo, L Crepp, JR Vasisht, G Brenner, D Oppenheimer, BR Zimmerman, N Hinkley, S Parry, I Beichman, C Hillenbrand, L Roberts, LC Dekany, R Shao, M Burruss, R Bouchez, A Roberts, J Soummer, R AF Pueyo, Laurent Crepp, Justin R. Vasisht, Gautam Brenner, Douglas Oppenheimer, Ben R. Zimmerman, Neil Hinkley, Sasha Parry, Ian Beichman, Charles Hillenbrand, Lynne Roberts, Lewis C., Jr. Dekany, Richard Shao, Mike Burruss, Rick Bouchez, Antonin Roberts, Jenny Soummer, Remi TI APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE instrumentation: adaptive optics; techniques: high angular resolution; techniques: spectroscopic ID HR 8799; SUBSTELLAR COMPANION; INFRARED-SPECTRUM; ADAPTIVE OPTICS; IMAGING SURVEY; SPECKLE NOISE; DYNAMIC-RANGE; STREHL RATIO; BROWN DWARFS; MU-M AB High-contrast imaging instruments are now being equipped with integral field spectrographs (IFSs) to facilitate the detection and characterization of faint substellar companions. Algorithms currently envisioned to handle IFS data, such as the Locally Optimized Combination of Images (LOCI) algorithm, rely on aggressive point-spread function (PSF) subtraction, which is ideal for initially identifying companions but results in significantly biased photometry and spectroscopy owing to unwanted mixing with residual starlight. This spectrophotometric issue is further complicated by the fact that algorithmic color response is a function of the companion's spectrum, making it difficult to calibrate the effects of the reduction without using iterations involving a series of injected synthetic companions. In this paper, we introduce a new PSF calibration method, which we call "damped LOCI," that seeks to alleviate these concerns. By modifying the cost function that determines the weighting coefficients used to construct PSF reference images, and also forcing those coefficients to be positive, it is possible to extract companion spectra with a precision that is set by calibration of the instrument response and transmission of the atmosphere, and not by post-processing. We demonstrate the utility of this approach using on-sky data obtained with the Project 1640 IFS at Palomar. Damped LOCI does not require any iterations on the underlying spectral type of the companion, nor does it rely on priors involving the chromatic and statistical properties of speckles. It is a general technique that can readily be applied to other current and planned instruments that employ IFSs. C1 [Pueyo, Laurent] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pueyo, Laurent; Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Crepp, Justin R.; Hinkley, Sasha; Hillenbrand, Lynne; Dekany, Richard; Bouchez, Antonin; Roberts, Jenny] CALTECH, Pasadena, CA 91125 USA. [Vasisht, Gautam; Roberts, Lewis C., Jr.; Shao, Mike; Burruss, Rick] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brenner, Douglas; Oppenheimer, Ben R.; Zimmerman, Neil] Amer Museum Nat Hist, New York, NY 10024 USA. [Parry, Ian] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Beichman, Charles] NASA Exoplanet Sci Inst, Pasadena, CA 91225 USA. [Pueyo, Laurent] NASA, Washington, DC USA. RP Pueyo, L (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 366 Bloomberg Ctr,3400 N Charles St, Baltimore, MD 21218 USA. EM lap@pha.jhu.edu OI Zimmerman, Neil/0000-0001-5484-1516 FU National Aeronautics and Space Administration; National Science Foundation [AST-0520822, AST-0804417, AST-0908484, AST-0908497, AST-0619922, AST-1007046]; NASA ROSES Origins of Solar Systems [NMO710830/102190]; Carl Sagan Fellowship Program FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Project 1640 is funded by National Science Foundation grants AST-0520822, AST-0804417, and AST-0908484. This work was partially funded through the NASA ROSES Origins of Solar Systems Grant NMO710830/102190, the NSF AST-0908497 Grant. The adaptive optics program at Palomar is supported by NSF grants AST-0619922 and AST-1007046. L.P. was supported by an appointment to the NASA Postdoctoral Program at the JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA. L.P. and S.H. acknowledge support from the Carl Sagan Fellowship Program. NR 51 TC 37 Z9 37 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 6 DI 10.1088/0067-0049/199/1/6 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800006 ER PT J AU Rutkowski, MJ Cohen, SH Kaviraj, S O'Connell, RW Hathi, NP Windhorst, RA Ryan, RE Crockett, RM Yan, H Kimble, RA Silk, J McCarthy, PJ Koekemoer, A Balick, B Bond, HE Calzetti, D Disney, MJ Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Paresce, F Saha, A Trauger, JT Walker, AR Whitmore, BC Young, ET AF Rutkowski, M. J. Cohen, S. H. Kaviraj, S. O'Connell, R. W. Hathi, N. P. Windhorst, R. A. Ryan, R. E., Jr. Crockett, R. M. Yan, H. Kimble, R. A. Silk, J. McCarthy, P. J. Koekemoer, A. Balick, B. Bond, H. E. Calzetti, D. Disney, M. J. Dopita, M. A. Frogel, J. A. Hall, D. N. B. Holtzman, J. A. Paresce, F. Saha, A. Trauger, J. T. Walker, A. R. Whitmore, B. C. Young, E. T. TI A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: stellar content; ultraviolet: galaxies ID DIGITAL SKY SURVEY; STAR-FORMATION HISTORY; ULTRAVIOLET-UPTURN PHENOMENON; EVOLVED STELLAR POPULATIONS; COLOR-MAGNITUDE RELATIONS; BACK TIME EVOLUTION; ORIGINS DEEP SURVEY; GOODS-SOUTH FIELD; ELLIPTIC GALAXIES; SAURON PROJECT AB In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 less than or similar to z less than or similar to 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10(11) < M-*[M-circle dot]< 10(12). By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1 sigma standard deviations similar or equal to 1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (less than or similar to 50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed. C1 [Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Kaviraj, S.; Crockett, R. M.; Silk, J.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Kaviraj, S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Hathi, N. P.; McCarthy, P. J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Ryan, R. E., Jr.; Koekemoer, A.; Bond, H. E.; Whitmore, B. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Yan, H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kimble, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Balick, B.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, D.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Disney, M. J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, M. A.] Australian Natl Univ, Res Sch Phys & Astron, Weston, ACT 2611, Australia. [Dopita, M. A.; Frogel, J. A.] King Abdulaziz Univ, Dept Astron, Jeddah 21413, Saudi Arabia. [Frogel, J. A.] Galaxies Unlimited, Potomac, MD 20854 USA. [Hall, D. N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, J. A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Paresce, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Saha, A.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Trauger, J. T.] NASA Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Young, E. T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Rutkowski, MJ (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RI Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014; OI Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090; silk, joe/0000-0002-1566-8148; Koekemoer, Anton/0000-0002-6610-2048 FU NASA through Space Telescope Science Institute; Association of Universities for Research Inc., under NASA [NAS 5-26555] FX This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We thank the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. We thank an anonymous referee for comments and suggestions that have improved the scientific outline of this manuscript. Finally, we are deeply indebted to the crew of STS-125 for refurbishing and repairing HST. Support for program 11359 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research Inc., under NASA contract NAS 5-26555. NR 101 TC 5 Z9 5 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 4 DI 10.1088/0067-0049/199/1/4 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800004 ER PT J AU Tenenbaum, P Christiansen, JL Jenkins, JM Rowe, JF Seader, S Caldwell, DA Clarke, BD Li, J Quintana, EV Smith, JC Stumpe, MC Thompson, SE Twicken, JD Van Cleve, J Borucki, WJ Cote, MT Haas, MR Sanderfer, DT Girouard, FR Klaus, TC Middour, CK Wohler, B Batalha, NM Barclay, T Nickerson, JE AF Tenenbaum, Peter Christiansen, Jessie L. Jenkins, Jon M. Rowe, Jason F. Seader, Shawn Caldwell, Douglas A. Clarke, Bruce D. Li, Jie Quintana, Elisa V. Smith, Jeffrey C. Stumpe, Martin C. Thompson, Susan E. Twicken, Joseph D. Van Cleve, Jeffrey Borucki, William J. Cote, Miles T. Haas, Michael R. Sanderfer, Dwight T. Girouard, Forrest R. Klaus, Todd C. Middour, Christopher K. Wohler, Bill Batalha, Natalie M. Barclay, Thomas Nickerson, James E. TI DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST THREE QUARTERS OF Kepler MISSION DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE planetary systems; planets and satellites: detection ID PLANETS; SYSTEM; STAR AB We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only one or two quarters. From this set of targets we find a total of 5392 detections which meet the Kepler detection criteria: those criteria are periodicity of signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain nonphysical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1 sigma, which is the lower cutoff for detections, to over 10,000 sigma, and periods ranging from 0.5 days, which is the lower cutoff used in the procedure, to 109 days, which is the upper limit of achievable periods given the length of the data set and the criteria used for detections. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included. C1 [Tenenbaum, Peter; Christiansen, Jessie L.; Jenkins, Jon M.; Rowe, Jason F.; Seader, Shawn; Caldwell, Douglas A.; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Stumpe, Martin C.; Thompson, Susan E.; Twicken, Joseph D.; Van Cleve, Jeffrey] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94305 USA. [Girouard, Forrest R.; Klaus, Todd C.; Middour, Christopher K.; Wohler, Bill] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94305 USA. [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Barclay, Thomas] NASA, BAER Inst, Ames Res Ctr, Moffett Field, CA 94305 USA. [Nickerson, James E.] NASA, Logyx Incorp, Ames Res Ctr, Moffett Field, CA 94305 USA. RP Tenenbaum, P (reprint author), NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94305 USA. EM peter.tenenbaum@nasa.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Space Mission Directorate FX Funding for this mission is provided by NASA's Space Mission Directorate. The contributions of Hema Chandrasekaran, Chris Burke, Jennifer Hall, Khadeejah Ibrahim, and Kamal Uddin have been essential in the studies documented here. NR 18 TC 37 Z9 37 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2012 VL 199 IS 1 AR 24 DI 10.1088/0067-0049/199/1/24 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 903ME UT WOS:000301119800024 ER PT J AU Naud, CM Miller, JR Landry, C AF Naud, Catherine M. Miller, James R. Landry, Chris TI Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SURFACE-LEVEL HUMIDITY; PRECIPITABLE WATER; TIBETAN PLATEAU; TEMPERATURE TRENDS; CLIMATE-CHANGE; MODIS; CLOUDS; MODEL; PARAMETERIZATION; MOUNTAINS AB Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so. C1 [Naud, Catherine M.] Columbia Univ, NASA, GISS, New York, NY 10025 USA. [Landry, Chris] Ctr Snow & Avalanche Studies, Silverton, CO 81433 USA. [Miller, James R.] Rutgers State Univ, New Brunswick, NJ 08901 USA. RP Naud, CM (reprint author), Columbia Univ, NASA, GISS, 2880 Broadway, New York, NY 10025 USA. EM cn2140@columbia.edu FU NSF [1064281, 1064326]; New Jersey Agricultural Experiment Station [32103] FX The Senator Beck Basin observations are provided by the Center for Snow and Avalanche Studies (http://www.snowstudies.org/). CERES data are provided by the Atmospheric Science Data Center at NASA Langley Research Center. MODIS MOD07/MYD07 files are provided by the Level 1 and Atmospheric Archive Distribution System at the NASA Goddard Space Flight Center. Weather station observations were obtained from the NCDC Climate Data Online archive at www7.ncdc.noaa.gov/CDO/cdo. This work is funded by the NSF grants 1064281 and 1064326, and partial support for JRM was provided by Project 32103 of the New Jersey Agricultural Experiment Station. We thank Imtiaz Rangwala for his help with the CSAS observations and manuscript and Yonghua Chen for helpful discussions. We are grateful to three anonymous reviewers for greatly improving this manuscript. NR 37 TC 7 Z9 7 U1 2 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 1 PY 2012 VL 117 AR D05101 DI 10.1029/2011JD016917 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 903PL UT WOS:000301130200005 ER PT J AU Winker, DM Liu, Z Omar, A Tackett, J Fairlie, D AF Winker, D. M. Liu, Z. Omar, A. Tackett, J. Fairlie, D. TI CALIOP observations of the transport of ash from the Eyjafjallajokull volcano in April 2010 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INITIAL ASSESSMENT; LIDAR; CLOUD; PINATUBO; AIR; ERUPTION; PERFORMANCE; EXTINCTION; SCATTERING; RETRIEVAL AB The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is an elastic backscatter lidar carried on the CALIPSO satellite. CALIOP observations between 15 and 20 April 2010 of volcanic ash plumes following the eruption of the Icelandic Eyjafjallajokull volcano are reported here. While CALIOP has limited spatial coverage due to nadir-only sampling, ash plumes were observed by CALIOP over a wide region - from the North Atlantic Ocean to eastern Europe - during both day and night. Due to its nadir-only view, however, CALIOP did not sample the densest ash plumes which were observed by passive satellite sensors and ground-based lidar. Lidar depolarization and spectral backscatter signatures are used to discriminate ash layers from clouds. Most ash was observed in thin layers of laminar appearance with thicknesses ranging from 0.4 km to a little more than 1 km and at relatively low altitudes, between 1 and 7 km. Most layers reported here produced strong lidar depolarization, indicating a predominance of ash over sulfate aerosol in the plumes. Estimates of lidar extinction-to-backscatter ratio allow the retrieval of profiles of ash optical properties. Layers were observed with mean optical extinction ranging from 0.03 km(-1) to nearly 1 km(-1). Combined with an estimate of mass extinction efficiency, mass concentration profiles can also be estimated. These observations of the three-dimensional dispersion of the plume are complementary to observations from passive satellite instruments and ground-based lidars, and can be useful for verification of dispersion models such as those used by the Volcanic Ash Advisory Centers. C1 [Winker, D. M.; Omar, A.; Fairlie, D.] NASA, Div Atmospher Sci, Langley Res Ctr, Hampton, VA 23681 USA. [Liu, Z.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Tackett, J.] SSAI, Hampton, VA 23666 USA. RP Winker, DM (reprint author), NASA, Div Atmospher Sci, Langley Res Ctr, Hampton, VA 23681 USA. EM dmwinker@gmail.com RI Liu, Zhaoyan/B-1783-2010; Omar, Ali/D-7102-2017 OI Liu, Zhaoyan/0000-0003-4996-5738; Omar, Ali/0000-0003-1871-9235 FU CALIPSO mission from the Earth Science Division of the National Aeronautics and Space Administration FX This work was performed under support for the CALIPSO mission from the Earth Science Division of the National Aeronautics and Space Administration. NR 48 TC 32 Z9 32 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 1 PY 2012 VL 117 AR D00U15 DI 10.1029/2011JD016499 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 903PL UT WOS:000301130200004 ER PT J AU Zwart, SR Gibson, CR Mader, TH Ericson, K Ploutz-Snyder, R Heer, M Smith, SM AF Zwart, Sara R. Gibson, C. Robert Mader, Thomas H. Ericson, Karen Ploutz-Snyder, Robert Heer, Martina Smith, Scott M. TI Vision Changes after Spaceflight Are Related to Alterations in Folate- and Vitamin B-12-Dependent One-Carbon Metabolism SO JOURNAL OF NUTRITION LA English DT Article ID GENETIC RISK-FACTOR; METHYLENETETRAHYDROFOLATE REDUCTASE; SPACE-FLIGHT; HOMOCYSTEINE; MTHFR; POLYMORPHISMS; ASSOCIATION; ASTRONAUTS; MUTATION; DISEASE AB Approximately 20% (7 of 38) of astronauts on International Space Station (ISS) missions have developed measurable ophthalmic changes after flight. This study was conducted to determine if the folate- and vitamin B-12-dependent 1-carbon metabolic pathway is altered in these individuals. Since 2006, we have conducted experiments on the ISS to evaluate nutritional status and related biochemical indices of astronauts before, during, and after flight. Data were modeled to evaluate differences between individuals with ophthalmic changes (n = 5) and those without them (n = 15), all of whom were on ISS missions of 48-215 d. We also determined whether mean preflight serum concentrations of the 1-carbon metabolites and changes in measured cycloplegic refraction after flight were associated. Serum homocysteine (Hcy), cystathionine, 2-methylcitric acid (2MCA), and methylmalonic acid concentrations were 25-45% higher (P < 0.001) in astronauts with ophthalmic changes than in those without them. These differences existed before, during, and after flight. Preflight serum concentrations of Hcy and cystathionine, and mean in-flight serum folate, were correlated with change (postflight relative to preflight) values in refraction (P < 0.05), and preflight serum concentrations of 2MCA tended to be associated (P = 0.06) with ophthalmic changes. The biochemical differences observed in crewmembers with vision issues strongly suggest that their folate- and vitamin B-12-dependent 1-carbon transfer metabolism was affected before and during flight. The consistent differences in markers of 1-carbon metabolism between those who did and those who did not develop changes in vision suggest that polymorphisms in enzymes of this pathway may interact with microgravity to cause these pathophysiologic changes. J. Nutr. 142: 427-431, 2012. C1 [Smith, Scott M.] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Space Life Sci Directorate, Houston, TX 77058 USA. [Zwart, Sara R.; Ploutz-Snyder, Robert] Univ Space Res Assoc, Div Space Life Sci, Houston, TX USA. [Gibson, C. Robert] Wyle Sci Technol & Engn Grp, Houston, TX USA. [Gibson, C. Robert] Coastal Eye Associates, Webster, TX USA. [Mader, Thomas H.] Alaska Native Med Ctr, Anchorage, AK USA. [Ericson, Karen] Indiana Univ Purdue Univ, Dept Chem, Ft Wayne, IN 46805 USA. [Heer, Martina] Protil Inst Metab Res GmbH, Neuss, Germany. [Heer, Martina] Univ Bonn, Bonn, Germany. RP Smith, SM (reprint author), NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Space Life Sci Directorate, Houston, TX 77058 USA. EM scott.m.smith@nasa.gov FU NASA FX Supported by the NASA Human Research Program. NR 25 TC 16 Z9 17 U1 2 U2 10 PU AMER SOC NUTRITION-ASN PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-3166 J9 J NUTR JI J. Nutr. PD MAR PY 2012 VL 142 IS 3 BP 427 EP 431 DI 10.3945/jn.111.154245 PG 5 WC Nutrition & Dietetics SC Nutrition & Dietetics GA 899KX UT WOS:000300815900004 PM 22298570 ER PT J AU Park, IH Gangupomu, V Wagner, J Jain, A Vaidehi, N AF Park, In-Hee Gangupomu, Vamshi Wagner, Jeffrey Jain, Abhinandan Vaidehi, Nagarajan TI Structure Refinement of Protein Low Resolution Models Using the GNEIMO Constrained Dynamics Method SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS; FORCE-FIELD; SIMULATION; RESTRAINTS; PARAMETERS; PROGRAMS; NMR AB The challenge in protein structure prediction using homology modelling is the lack of reliable methods to refine the low resolution homology models. Unconstrained all-atom molecular dynamics (MD) does not serve well for structure refinement due to its limited conformational search. We have developed and tested the constrained MD method, based on the generalized Newton-Euler inverse mass operator (GNEIMO) algorithm for protein structure refinement. In this method, the high-frequency degrees of freedom are replaced with hard holonomic constraints and a protein is modeled as a collection of rigid body clusters connected by flexible torsional hinges. This allows larger integration time steps and enhances the conformational search space. In this work, we have demonstrated the use of torsional GNEIMO method without using any experimental data as constraints, for protein structure refinement starting from low-resolution decoy sets derived from homology methods. In the eight protein with the three decoys for reach, we observed an improvement of similar to 2 angstrom in the rmsd in coordinates to the known experimental structures of these proteines. The GNEIMO trajectories also showed enrichment in the population density of native-like conformations. In addition, we demonstrated structural refinement using a "freeze and thaw" clustering scheme with the GNEIMO framework as a viable tool for enhancing localized confirmational search. We have derived a robust protocol based on the GNEIMO replica exchange method for protein structure refinement that can be readily extended to other proteins and possibly applicable for high throughput protein structure refinement. C1 [Park, In-Hee; Gangupomu, Vamshi; Wagner, Jeffrey; Vaidehi, Nagarajan] Beckman Res Inst City Hope, Div Immunol, Duarte, CA 91010 USA. [Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vaidehi, N (reprint author), Beckman Res Inst City Hope, Div Immunol, Duarte, CA 91010 USA. RI Park, In-Hee/D-5364-2013 FU National Institutes of Health [RO1GM082896]; National Aeronautics and Space Administration FX This project has been supported by Grant No. RO1GM082896 from the National Institutes of Health. We thank Dr. Karin Remington and Dr. Paul Brazhnik for their support and encouragement. We thank Simbios for providing us with the GB/SA solvation module and Mark Friedrichs for his help with validating our GB/SA module. The Simbios software was made freely available on https://simtk.org/home/openmm by the Simbios NIH National Center for Biomedical Computing. We used the force module of LAMMPS, an open-source code available from LAMMPS WWW Site. Part of the research described in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 40 TC 11 Z9 11 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 1 PY 2012 VL 116 IS 8 BP 2365 EP 2375 DI 10.1021/jp209657n PG 11 WC Chemistry, Physical SC Chemistry GA 900TD UT WOS:000300911900004 PM 22260550 ER PT J AU Stott, JE Shtessel, YB AF Stott, James E. Shtessel, Yuri B. TI Launch vehicle attitude control using sliding mode control and observation techniques SO JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS LA English DT Article ID SYSTEMS; ORDER; OBSERVER; DESIGN AB In determining flight controls for launch vehicle systems, several uncertain factors must be taken into account, including a variety of payloads, a wide range of flight conditions and different mission profiles, wind disturbances and plant uncertainties. Crewed vehicles must adhere to human rating requirements, which limit the angular rates. Sliding mode control algorithms that are inherently robust to external disturbances and plant uncertainties are very good candidates for improving the robustness and accuracy of the flight control systems. Recently emerging Higher Order Sliding Mode (HOSM) control is even more powerful than the classical Sliding Mode Controls (SMC), including the capability to handle systems with arbitrary relative degree. This paper proposes sliding mode launch vehicle flight controls using classical SMC driven by the sliding mode disturbance observer (SMDO) and higher-order multiple and single loop designs. A case study on the SLV-X Launch Vehicle studied under a joint DARPA/Air Force program called the Force Application and Launch from CONtinental United States (FALCON) program is shown. The intensive simulations demonstrate efficacy of the proposed HOSM and SMC-SMDO control algorithms for launch vehicle attitude control. (c) 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. C1 [Shtessel, Yuri B.] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA. [Stott, James E.] NASA, Safety & Miss Assurance Directorate, QD33, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Shtessel, YB (reprint author), Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA. EM James.E.Stott@nasa.gov; Shtessel@ece.uah.edu NR 28 TC 16 Z9 19 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-0032 J9 J FRANKLIN I JI J. Frankl. Inst.-Eng. Appl. Math. PD MAR PY 2012 VL 349 IS 2 SI SI BP 397 EP 412 DI 10.1016/j.jfranklin.2011.07.020 PG 16 WC Automation & Control Systems; Engineering, Multidisciplinary; Engineering, Electrical & Electronic; Mathematics, Interdisciplinary Applications SC Automation & Control Systems; Engineering; Mathematics GA 901ZY UT WOS:000301009600002 ER PT J AU Beaudoin, AJ Obstalecki, M Storer, R Tayon, W Mach, J Kenesei, P Lienert, U AF Beaudoin, A. J. Obstalecki, M. Storer, R. Tayon, W. Mach, J. Kenesei, P. Lienert, U. TI Validation of a crystal plasticity model using high energy diffraction microscopy SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID MECHANICAL THRESHOLD; METAL POLYCRYSTALS; GRAIN; FRACTURE; ALLOYS; DEFORMATION; STRESS; STRAIN; BEHAVIOR; SPACE AB High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al-Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation. C1 [Beaudoin, A. J.; Obstalecki, M.; Storer, R.] Univ Illinois, Dept Mech Sci & Engn, Champaign, IL 61820 USA. [Tayon, W.] NASA Langley, Hampton, VA USA. [Mach, J.] ATK Small Caliber Syst, Independence, MO USA. [Kenesei, P.; Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Beaudoin, AJ (reprint author), Univ Illinois, Dept Mech Sci & Engn, Champaign, IL 61820 USA. EM abeaudoi@illinois.edu FU NASA FX We extend appreciation to Dr Carlos Tome for his long-term research attending to model development, experimental validation and in providing codes that have assisted so many people in their study and research on crystal plasticity. Dr Juliette Chevy set up some of the initial realizations of the model. This work was supported through support from NASA NR 28 TC 8 Z9 8 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR 1 PY 2012 VL 20 IS 2 AR 024006 DI 10.1088/0965-0393/20/2/024006 PG 14 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 904ED UT WOS:000301175900007 ER PT J AU Barnett, IL Lignell, A Gudipati, MS AF Barnett, Irene Li Lignell, Antti Gudipati, Murthy S. TI SURVIVAL DEPTH OF ORGANICS IN ICES UNDER LOW-ENERGY ELECTRON RADIATION (<= 2 keV) SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; astrochemistry; dust, extinction; Kuiper Belt general; planets and satellites surfaces; radiation mechanisms non-thermal ID AMORPHOUS SOLID WATER; INTERSTELLAR ICE; EXCITED-STATES; SOLAR-SYSTEM; COSMIC-RAYS; AROMATIC-HYDROCARBONS; STIMULATED PRODUCTION; OPTICAL SPECTROSCOPY; HYDROGEN-PEROXIDE; FACILE GENERATION AB Icy surfaces in our solar system are continually modified and sputtered with electrons, ions, and photons from solar wind, cosmic rays, and local magnetospheres in the cases of Jovian and Saturnian satellites. In addition to their prevalence, electrons specifically are expected to be a principal radiolytic agent on these satellites. Among energetic particles (electrons and ions), electrons penetrate by far the deepest into the ice and could cause damage to organic material of possible prebiotic and even biological importance. To determine if organic matter could survive and be detected through remote sensing or in situ explorations on these surfaces, such as water ice-rich Europa, it is important to obtain accurate data quantifying electron-induced chemistry and damage depths of organics at varying incident electron energies. Experiments reported here address the quantification issue at lower electron energies (100 eV-2 keV) through rigorous laboratory data analysis obtained using a novel methodology. A polycyclic aromatic hydrocarbon molecule, pyrene, embedded in amorphous water ice films of controlled thicknesses served as an organic probe. UV-VIS spectroscopic measurements enabled quantitative assessment of organic matter survival depths in water ice. Eight ices of various thicknesses were studied to determine damage depths more accurately. The electron damage depths were found to be linear, approximately 110 nm keV(-1), in the tested range which is noticeably higher than predictions by Monte Carlo simulations by up to 100%. We conclude that computational simulations underestimate electron damage depths in the energy region <= 2 keV. If this trend holds at higher electron energies as well, present models utilizing radiation-induced organic chemistry in icy solar system bodies need to be revisited. For interstellar ices of a few micron thicknesses, we conclude that low-energy electrons generated through photoionization processes in the interstellar medium could penetrate through ice grains significantly and trigger organic reactions several hundred nanometers deep-bulk chemistry thus competing with surface chemistry of astrophysical ice grains. C1 [Barnett, Irene Li; Lignell, Antti; Gudipati, Murthy S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gudipati, Murthy S.] Univ Maryland, IPST, College Pk, MD 20742 USA. RP Barnett, IL (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM gudipati@jpl.nasa.gov RI Gudipati, Murthy/F-7575-2011; Lignell, Antti/C-2146-2009 OI Lignell, Antti/0000-0001-7664-5583 FU NASA; JPL's DRDF; RTD; Academy of Finland FX This research was enabled through partial funding from the following: NASA (Planetary Atmospheres, Discovery Data Analysis, Cassini Data Analysis Programs, Spitzer Science Center, Astrobiology Institute Nodes "Icy Worlds" and "Titan Prebiotic Chemistry") and JPL's DRDF and R&TD funding for infrastructure of the "ice spectroscopy laboratory" at JPL. We thank Dr. Wousik Kim (JPL/Caltech) for helpful discussions regarding modeling electron-stopping ranges. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.; California Institute of Technology Post-doctoral Fellow at the Jet Propulsion Laboratory, Pasadena, CA 91109, USA. A part of this work was done during Academy of Finland fellowship. NR 99 TC 14 Z9 14 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 13 DI 10.1088/0004-637X/747/1/13 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300013 ER PT J AU Bauer, JM Mainzer, AK Grav, T Walker, RG Masiero, JR Blauvelt, EK McMillan, RS Fernandez, YR Meech, KJ Lisse, CM Cutri, RM Dailey, JW Tholen, DJ Riesen, T Urban, L Khayat, A Pearman, G Scotti, JV Kramer, E Cherry, D Gautier, T Gomillion, S Watkins, J Wright, EL AF Bauer, James M. Mainzer, A. K. Grav, Tommy Walker, Russell G. Masiero, Joseph R. Blauvelt, Erin K. McMillan, Robert S. Fernandez, Yan R. Meech, Karen J. Lisse, Carey M. Cutri, Roc M. Dailey, John W. Tholen, David J. Riesen, Timm Urban, Laurie Khayat, Alain Pearman, George Scotti, James V. Kramer, Emily Cherry, De'Andre Gautier, Thomas Gomillion, Stephanie Watkins, Jessica Wright, Edward L. CA WISE Team TI WISE/NEOWISE OBSERVATIONS OF ACTIVE BODIES IN THE MAIN BELT SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; minor planets, asteroids: general ID ASTEROID P/2010 A2; THERMAL-MODEL CALIBRATION; INFRARED-SURVEY-EXPLORER; NEAR-EARTH ASTEROIDS; 596 SCHEILA; PHYSICAL-PROPERTIES; DEEP-IMPACT; COMETS; DUST; 133P/ELST-PIZARRO AB We report results based on mid-infrared photometry of five active main belt objects (AMBOs) detected by the Wide-field Infrared Survey Explorer (WISE) spacecraft. Four of these bodies, P/2010 R2 (La Sagra), 133P/Elst-Pizarro, (596) Scheila, and 176P/LINEAR, showed no signs of activity at the time of the observations, allowing the WISE detections to place firm constraints on their diameters and albedos. Geometric albedos were in the range of a few percent, and on the order of other measured comet nuclei. P/2010 A2 was observed on 2010 April 2-3, three months after its peak activity. Photometry of the coma at 12 and 22 mu m combined with ground-based visible-wavelength measurements provides constraints on the dust particle mass distribution (PMD), dlog n/dlog m, yielding power-law slope values of alpha = -0.5 +/- 0.1. This PMD is considerably more shallow than that found for other comets, in particular inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. It is similar to the PMD seen for 9P/Tempel 1 in the immediate aftermath of the Deep Impact experiment. Upper limits for CO2 and CO production are also provided for each AMBO and compared with revised production numbers for WISE observations of 103P/Hartley 2. C1 [Bauer, James M.; Mainzer, A. K.; Masiero, Joseph R.; Blauvelt, Erin K.; Cherry, De'Andre; Gautier, Thomas; Gomillion, Stephanie; Watkins, Jessica] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bauer, James M.; Cutri, Roc M.; Dailey, John W.; Pearman, George] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Grav, Tommy] Planetary Sci Inst, Tucson, AZ 85719 USA. [Walker, Russell G.] Monterey Inst Res Astron, Marina, CA 93933 USA. [McMillan, Robert S.; Scotti, James V.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Fernandez, Yan R.; Kramer, Emily] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Meech, Karen J.; Tholen, David J.; Riesen, Timm; Urban, Laurie; Khayat, Alain] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Meech, Karen J.; Riesen, Timm] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Wright, Edward L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Bauer, JM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-401, Pasadena, CA 91109 USA. EM bauer@scn.jpl.nasa.gov RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Blauvelt, Erin/0000-0002-2944-5818; Masiero, Joseph/0000-0003-2638-720X; Fernandez, Yanga/0000-0003-1156-9721 FU National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration; NASA through the NASA Astrobiology Institute through the Office of Space Science [NNA09DA77A] FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. NEAT archive data were provided through NASA's Planetary Mission Data Analysis Program. Observing time was allocated at Steward Observatory's 0.9 m (Spacewatch) telescope on Kitt Peak. J. Bauer also thanks Drs. Hsieh and Jewitt for their valuable discussions regarding AMBOs. This material is based in part upon work supported by the NASA through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science. NR 49 TC 17 Z9 17 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 49 DI 10.1088/0004-637X/747/1/49 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300049 ER PT J AU Berta, ZK Charbonneau, D Desert, JM Kempton, EMR McCullough, PR Burke, CJ Fortney, JJ Irwin, J Nutzman, P Homeier, D AF Berta, Zachory K. Charbonneau, David Desert, Jean-Michel Kempton, Eliza Miller-Ricci McCullough, Peter R. Burke, Christopher J. Fortney, Jonathan J. Irwin, Jonathan Nutzman, Philip Homeier, Derek TI THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; planets and satellites: atmospheres; planets and satellites: individual (GJ1214b); stars: low-mass; techniques: spectroscopic ID EXOPLANET HD 189733B; TIME-SERIES PHOTOMETRY; TRANSITING HOT JUPITER; METAL-RICH ATMOSPHERE; GIANT PLANET TRANSITS; GJ 1214B; EXTRASOLAR PLANET; LOW-MASS; STELLAR VARIABILITY; INFRARED-EMISSION AB Capitalizing on the observational advantage offered by its tiny M dwarf host, we present Hubble Space Telescope/Wide Field Camera 3 (WFC3) grism measurements of the transmission spectrum of the super-Earth exoplanet GJ1214b. These are the first published WFC3 observations of a transiting exoplanet atmosphere. After correcting for a ramp-like instrumental systematic, we achieve nearly photon-limited precision in these observations, finding the transmission spectrum of GJ1214b to be flat between 1.1 and 1.7 mu m. Inconsistent with a cloud-free solar composition atmosphere at 8.2 sigma, the measured achromatic transit depth most likely implies a large mean molecular weight for GJ1214b's outer envelope. A dense atmosphere rules out bulk compositions for GJ1214b that explain its large radius by the presence of a very low density gas layer surrounding the planet. High-altitude clouds can alternatively explain the flat transmission spectrum, but they would need to be optically thick up to 10 mbar or consist of particles with a range of sizes approaching 1 mu m in diameter. C1 [Berta, Zachory K.; Charbonneau, David; Desert, Jean-Michel; Irwin, Jonathan] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kempton, Eliza Miller-Ricci; Fortney, Jonathan J.; Nutzman, Philip] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [McCullough, Peter R.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [McCullough, Peter R.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Burke, Christopher J.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Homeier, Derek] Univ Lyon, Ecole Normale Super Lyon, CNRS, Ctr Rech Astrophys Lyon,UMR 5574, F-69364 Lyon 07, France. [Homeier, Derek] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. RP Berta, ZK (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM zberta@cfa.harvard.edu OI Berta-Thompson, Zachory/0000-0002-3321-4924; Fortney, Jonathan/0000-0002-9843-4354; Homeier, Derek/0000-0002-8546-9128; Charbonneau, David/0000-0002-9003-484X FU NASA [HST-GO-12251, NAS 5-26555]; David and Lucile Packard Fellowship for Science and Engineering; National Science Foundation [AST-0807690] FX We thank Jacob Bean, Bryce Croll, Ian Crossfield, Leslie Rogers, Drake Deming, Avi Mandell, Martin Kummel, Ron Gilliand, Tom Wheeler, and the CfA Summer Statistics Club for valuable discussions regarding this work. We are extremely grateful to our Program Coordinator Patricia Royle, Contact Scientist Howard Bushhouse, the WFC3 instrument team, the entire staff at STScI and NASA, and the crew of STS-125 for their crucial roles in enabling these observations. We thank the anonymous referee for a thorough reading and thoughtful comments that improved the manuscript. E. K. acknowledges funding from NASA through the Sagan Fellowship Program. P. R. M. thanks CfA director Charles Alcock for enabling a sabbatical at SAO. We gratefully acknowledge funding from the David and Lucile Packard Fellowship for Science and Engineering (awarded to D. C.), the National Science Foundation (grant AST-0807690, awarded to D. C.), and NASA (grant HST-GO-12251, awarded to Z.K.B.). This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. GO-12251. This research has made use of NASA's Astrophysics Data System. NR 92 TC 151 Z9 152 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 35 DI 10.1088/0004-637X/747/1/35 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300035 ER PT J AU Bulbul, GE Smith, RK Foster, A Cottam, J Loewenstein, M Mushotzky, R Shafer, R AF Bulbul, G. Esra Smith, Randall K. Foster, Adam Cottam, Jean Loewenstein, Michael Mushotzky, Richard Shafer, Richard TI HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (A3112); X-rays: galaxies: clusters ID WIND CHARGE-EXCHANGE; RAY EXCESS EMISSION; MASSIVE GALAXY CLUSTERS; INTRACLUSTER MEDIUM; EMITTING GAS; SUZAKU OBSERVATIONS; TURBULENT VELOCITY; CENTAURUS CLUSTER; ELLIPTIC GALAXIES; CONSTRAINTS AB We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r(500). The gas mass fraction f(gas) = 0.149(-0.032)(+0.036) at r(500) is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38 '' (similar to 52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s(-1)). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters. C1 [Bulbul, G. Esra; Smith, Randall K.; Foster, Adam] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bulbul, GE (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM ebulbul@cfa.harvard.edu FU NASA XMM [NNX09AP92G]; NASA ROSES-ADP [NNX09AC71G] FX The authors thank Steve Snowden and Helen Russell for kindly providing help on the ESAS software and deprojection methods. We also thank the anonymous referee, Maxim Markevitch, Paul Nulsen, Max Bonamente, and Jelle de Plaa for providing useful suggestions and comments on the manuscript. We gratefully acknowledge support for this research from NASA XMM-Newton grant NNX09AP92G and NASA ROSES-ADP grant NNX09AC71G. NR 59 TC 23 Z9 23 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 32 DI 10.1088/0004-637X/747/1/32 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300032 ER PT J AU Cowan, NB Machalek, P Croll, B Shekhtman, LM Burrows, A Deming, D Greene, T Hora, JL AF Cowan, Nicolas B. Machalek, Pavel Croll, Bryce Shekhtman, Louis M. Burrows, Adam Deming, Drake Greene, Tom Hora, Joseph L. TI THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: planetary systems; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: individual (WASP-12b); planet-star interactions; techniques: photometric ID SPITZER-SPACE-TELESCOPE; TRANSIT LIGHT CURVES; HD 189733B; EXTRASOLAR PLANET; HOT JUPITERS; SECONDARY ECLIPSE; MU-M; TRANSMISSION SPECTRUM; EXOPLANET WASP-12B; MODEL ATMOSPHERES AB We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 mu m. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planet's previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared-(R-p/R-*)(2) = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 mu m, respectively-indicate that the atmospheric opacity is greater at 3.6 than at 4.5 mu m, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F-day/F-* = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 mu m, respectively. We do not detect ellipsoidal variations at 3.6 mu m, but our parameter uncertainties-estimated via prayer-bead Monte Carlo-keep this non-detection consistent with model predictions. At 4.5 mu m, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3: 2 ratio for the planet's longest: shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 mu m ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 mu m transit depth becomes commensurate with the 3.6 mu m depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 mu m eclipse depth, consistent with a solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios. C1 [Cowan, Nicolas B.; Shekhtman, Louis M.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. [Cowan, Nicolas B.; Shekhtman, Louis M.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Machalek, Pavel] SETI Inst, Mountain View, CA 94043 USA. [Machalek, Pavel; Greene, Tom] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Croll, Bryce] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Croll, Bryce] MIT, Dept Phys, Cambridge, MA 02139 USA. [Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Deming, Drake] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Hora, Joseph L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Cowan, NB (reprint author), Northwestern Univ, CIERA, 2131 Tech Dr, Evanston, IL 60208 USA. EM n-cowan@northwestern.edu OI Hora, Joseph/0000-0002-5599-4650 FU NASA; NASA through JPL/Caltech FX Much of this work was completed while N.B.C. was at the Aspen Center for Physics. N.B.C. acknowledges useful conversations with F. A. Rasio, W. M. Farr, H. A. Knutson, N. Lewis, and J. Budaj, as well as countless fruitful discussions at the Future of Astronomy, Extreme Solar Systems II, and joint EPSC/DPS meetings. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 77 TC 74 Z9 74 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 82 DI 10.1088/0004-637X/747/1/82 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300082 ER PT J AU Dorodnitsyn, A Kallman, T Bisnovatyi-Kogan, GS AF Dorodnitsyn, A. Kallman, T. Bisnovatyi-Kogan, G. S. TI AGN OBSCURATION THROUGH DUSTY, INFRARED-DOMINATED FLOWS. II. MULTIDIMENSIONAL, RADIATION-HYDRODYNAMICS MODELING SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; galaxies: active; hydrodynamics; methods: numerical ID ACTIVE GALACTIC NUCLEI; FLUX-LIMITED DIFFUSION; X-RAY; CIRCINUS GALAXY; OBSCURING TORUS; PRESSURE; SPECTROPOLARIMETRY; UNIFICATION; DIMENSIONS; NGC-1068 AB We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global flow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1 pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation-hydrodynamics simulations in a flux-limited diffusion approximation we find that the external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure in AGN with luminosities greater than 0.05 L-edd and Compton optical depth, tau(T) greater than or similar to 1. C1 [Dorodnitsyn, A.; Kallman, T.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. [Dorodnitsyn, A.] Univ Maryland, CRESST, Dept Astron, College Pk, MD 20742 USA. [Bisnovatyi-Kogan, G. S.] Moscow Space Res Inst, Moscow 117810, Russia. RP Dorodnitsyn, A (reprint author), NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. FU Russian Foundation for Basic Research (RFBR) [11-02-00602]; NASA Goddard Space Flight Center; NASA [10-ATP10-0171] FX This research was supported by an appointment at the NASA Goddard Space Flight Center, administered by CRESST/UMD through a contract with NASA, and by grants from the NASA Astrophysics Theory Program 10-ATP10-0171. G.B.-K. acknowledges the support from the Russian Foundation for Basic Research (RFBR grant 11-02-00602). NR 37 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 8 DI 10.1088/0004-637X/747/1/8 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300008 ER PT J AU Eke, VR Teodoro, LFA Lawrence, DJ Elphic, RC Feldman, WC AF Eke, V. R. Teodoro, L. F. A. Lawrence, D. J. Elphic, R. C. Feldman, W. C. TI A QUANTITATIVE COMPARISON OF LUNAR ORBITAL NEUTRON DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; Moon ID DETECTOR EXPERIMENT LEND; POLAR HYDROGEN DEPOSITS; PROSPECTOR GAMMA-RAY; SOUTH-POLE; RECONNAISSANCE ORBITER; SPATIAL-DISTRIBUTION; EPITHERMAL NEUTRONS; WATER ICE; MOON; SURFACE AB Data from the Lunar Exploration Neutron Detector (LEND) Collimated Sensors for Epithermal Neutrons (CSETN) are used in conjunction with a model based on results from the Lunar Prospector (LP) mission to quantify the extent of the background in the LEND CSETN. A simple likelihood analysis implies that at least 90% of the lunar component of the LEND CSETN flux results from high-energy epithermal (HEE) neutrons passing through the walls of the collimator. Thus, the effective FWHM of the LEND CSETN field of view is comparable to that of the omni-directional LP Neutron Spectrometer. The resulting map of HEE neutrons offers the opportunity to probe the hydrogen abundance at low latitudes and to provide constraints on the distribution of lunar water. C1 [Eke, V. R.] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Teodoro, L. F. A.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Planetary Syst Branch,BAER, Moffett Field, CA 94035 USA. [Lawrence, D. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Feldman, W. C.] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Eke, VR (reprint author), Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. EM v.r.eke@durham.ac.uk RI Lawrence, David/E-7463-2015 OI Lawrence, David/0000-0002-7696-6667 FU United States National Science Foundation [ANT-0739620, ANT-0838839]; University of Delaware, Department of Physics and Astronomy; NASA Lunar Science Institute; Bartol Research Institute FX The Bartol Research Institute neutron monitor program is supported by the United States National Science Foundation under grants ANT-0739620 and ANT-0838839, and by the University of Delaware, Department of Physics and Astronomy and Bartol Research Institute. V.E. acknowledges helpful discussions with C. Frenk and A. Jenkins. D.L. acknowledges the support of the NASA Lunar Science Institute. NR 46 TC 12 Z9 12 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 6 DI 10.1088/0004-637X/747/1/6 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300006 ER PT J AU Liu, K Wex, N Kramer, M Cordes, JM Lazio, TJW AF Liu, K. Wex, N. Kramer, M. Cordes, J. M. Lazio, T. J. W. TI PROSPECTS FOR PROBING THE SPACETIME OF Sgr A* WITH PULSARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; Galaxy: center; pulsars: general ID SUPERMASSIVE BLACK-HOLE; RELATIVISTIC GRAVITATIONAL COLLAPSE; STRONG-FIELD TESTS; GALACTIC-CENTER; BINARY PULSARS; NONSPHERICAL PERTURBATIONS; GENERAL-RELATIVITY; TIMING FORMULA; STELLAR ORBITS; RADIO PULSARS AB The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of this supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 mu s precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below similar to 0.3 yr is there the possibility of having negligible external perturbations. For such orbits, we expect a similar to 10(-3) test of the frame dragging and a similar to 10(-2) test of the no-hair theorem within five years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R-0. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R-0. C1 [Liu, K.; Wex, N.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Liu, K.; Kramer, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Cordes, J. M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Lazio, T. J. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Liu, K (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. FU Max-Planck-Institut fur Radioastronomie FX We are grateful to K. J. Lee and G. X. Li for valuable discussions, and would like to thank J. P. W. Verbiest for carefully reading the paper and providing detailed comments. We also thank the anonymous referee for his careful review of this manuscript, and for his useful comments. This research has made use of NASA's Astrophysics Data System Bibliographic Services. K.L. is funded by a stipend of the Max-Planck-Institut fur Radioastronomie. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 73 TC 58 Z9 58 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 1 DI 10.1088/0004-637X/747/1/1 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300001 ER PT J AU Peeters, E Tielens, AGGM Allamandola, LJ Wolfire, MG AF Peeters, Els Tielens, Alexander G. G. M. Allamandola, Louis J. Wolfire, Mark G. TI THE 15-20 mu m EMISSION IN THE REFLECTION NEBULA NGC 2023 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: ISM; ISM: lines and bands; ISM: molecules; line: identification; molecular data; techniques: spectroscopic ID POLYCYCLIC AROMATIC-HYDROCARBONS; MOLECULAR-HYDROGEN EMISSION; FAR-INFRARED SPECTROSCOPY; BLIND SIGNAL SEPARATION; SPITZER-SPACE-TELESCOPE; PHOTODISSOCIATION REGIONS; PHYSICAL CONDITIONS; IRS SPECTROSCOPY; PAH MOLECULES; BENDING MODES AB We present 15-20 mu m spectral maps toward the reflection nebula NGC 2023 obtained with the Infrared Spectrograph in short-wavelength, high-resolution mode on board the Spitzer Space Telescope. These spectra reveal emission from polycyclic aromatic hydrocarbons (PAHs), C-60, and H-2 superposed on a dust continuum. These emission components exhibit distinct spatial distributions: with increasing distance from the illuminating star, we observe the PAH emission followed by the dust continuum emission and the H-2 emission. The C-60 emission is located closest to the illuminating star in the south, while in the north it seems to be associated with the H/H-2 transition. Emission from PAHs and PAH-related species produces features at 15.8, 16.4, 17.4, and 17.8 mu m and the 15-18 mu m plateau. These different PAH features show distinct spatial distributions. The 15.8 mu m band and 15-18 mu m plateau correlate with the 11.2 mu m PAH band and with each other, and are attributed to large, neutral PAHs. Conversely, the 16.4 mu m feature correlates with the 12.7 mu m PAH band, suggesting that both arise from species that are favored by the same conditions that favor PAH cations. The PAH contribution to the 17.4 mu m band is displaced toward the illuminating star with respect to the 11.2 and 12.7 mu m emission and is assigned to doubly ionized PAHs and/or a subset of cationic PAHs. The spatial distribution of the 17.8 mu m band suggests that it arises from both neutral and cationic PAHs. In contrast to their intensities, the profiles of the PAH bands and the 15-18 mu m plateau do not vary spatially. Consequently, we conclude that the carrier of the 15-18 mu m plateau is distinct from that of the PAH bands. C1 [Peeters, Els] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Peeters, Els] SETI Inst, Mountain View, CA 94043 USA. [Tielens, Alexander G. G. M.] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Allamandola, Louis J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Wolfire, Mark G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Peeters, E (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM epeeters@uwo.ca; tielens@strw.leidenuniv.nl; Louis.J.Allamandola@nasa.gov; mwolfire@astro.umd.edu FU NASA; European Research Council [246976] FX E.P. owes her genuine gratitude to Martin Houde for his help and support throughout this project. We thank the referee Dr. K. Sellgren whose comments have helped to improve the paper. We very gratefully acknowledge sustained support from the NASA Spitzer Space Telescope General Observer Program. Studies of interstellar PAHs at Leiden Observatory are supported through advanced-ERC grant 246976 from the European Research Council. L.J.A. gratefully acknowledges sustained support from NASA's Laboratory Astrophysics and Astrobiology Programs. NR 71 TC 20 Z9 20 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 44 DI 10.1088/0004-637X/747/1/44 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300044 ER PT J AU Rawle, TD Edge, AC Egami, E Rex, M Smith, GP Altieri, B Fiedler, A Haines, CP Pereira, MJ Perez-Gonzalez, PG Portouw, J Valtchanov, I Walth, G van der Werf, PP Zemcov, M AF Rawle, T. D. Edge, A. C. Egami, E. Rex, M. Smith, G. P. Altieri, B. Fiedler, A. Haines, C. P. Pereira, M. J. Perez-Gonzalez, P. G. Portouw, J. Valtchanov, I. Walth, G. van der Werf, P. P. Zemcov, M. TI THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: elliptical and lenticular, cD; galaxies: star formation; infrared: galaxies ID RAY-LUMINOUS CLUSTERS; INFRARED SURVEY; FLOW CLUSTERS; MOLECULAR-HYDROGEN; CENTAURUS CLUSTER; EMISSION-LINES; BULLET CLUSTER; XMM-NEWTON; SKY SURVEY; GAS AB We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 mu m), we calculate the obscured star formation rate (SFR). 22(-5.3)(+6.2) % of the BCGs are detected in the far-infrared, with SFR = 1-150 M-circle dot yr(-1). The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time < 1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H alpha emission is also correlated with obscured star formation. For all but the most luminous BCGs (L-TIR > 2 x 10(11) L-circle dot), only a small (less than or similar to 0.4 mag) reddening correction is required for SFR(H alpha) to agree with SFRFIR. The relatively low H alpha extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss. C1 [Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Edge, A. C.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Smith, G. P.; Haines, C. P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Altieri, B.; Valtchanov, I.] ESA, ESAC, Herschel Sci Ctr, Madrid 28691, Spain. [Perez-Gonzalez, P. G.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [van der Werf, P. P.] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Zemcov, M.] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Zemcov, M.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rawle, TD (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM trawle@as.arizona.edu RI Perez-Gonzalez, Pablo/J-2871-2016; OI Perez-Gonzalez, Pablo/0000-0003-4528-5639; Edge, Alastair/0000-0002-3398-6916; Haines, Christopher/0000-0002-8814-8960; Altieri, Bruno/0000-0003-3936-0284 FU NASA through JPL/Caltech; National Aeronautics and Space Administration; National Science Foundation; Royal Society FX This work is partially based on observations made with the Herschel Space Observatory, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We also thank the HSC and NHSC consortia for support with data reduction. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. G. P. S. acknowledges support from the Royal Society. NR 63 TC 45 Z9 45 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 29 DI 10.1088/0004-637X/747/1/29 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300029 ER PT J AU Scowcroft, V Freedman, WL Madore, BF Monson, AJ Persson, SE Seibert, M Rigby, JR Sturch, L AF Scowcroft, Victoria Freedman, Wendy L. Madore, Barry F. Monson, Andrew J. Persson, S. E. Seibert, Mark Rigby, Jane R. Sturch, Laura TI THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 mu m and 4.5 mu m IN THE LARGE MAGELLANIC CLOUD (vol 743, pg 76, 2011) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Rigby, Jane R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sturch, Laura] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Scowcroft, V (reprint author), Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. EM vs@obs.carnegiescience.edu; wendy@obs.carnegiescience.edu; barry@obs.carnegiescience.edu; amonson@obs.carnegiescience.edu; persson@obs.carnegiescience.edu; mseibert@obs.carnegiescience.edu; jane.r.rigby@nasa.gov; lsturch@bu.edu RI Rigby, Jane/D-4588-2012 OI Rigby, Jane/0000-0002-7627-6551 NR 1 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 84 DI 10.1088/0004-637X/747/1/84 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300084 ER PT J AU Villanueva, GL DiSanti, MA Mumma, MJ Xu, LH AF Villanueva, G. L. DiSanti, M. A. Mumma, M. J. Xu, L. -H. TI A QUANTUM BAND MODEL OF THE nu(3) FUNDAMENTAL OF METHANOL (CH3OH) AND ITS APPLICATION TO FLUORESCENCE SPECTRA OF COMETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; comets: general; infrared: planetary systems; line: identification; planets and satellites: atmospheres; radiative transfer ID VOLATILE COMPOSITION; 103P/HARTLEY 2; EMISSION FEATURE; HITRAN DATABASE; TORSION; TRANSITIONS; ASSIGNMENTS; 8P/TUTTLE; C/2001-A2; LEE AB Methanol (CH3OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the nu(3) fundamental band of methanol at 2844 cm(-1) (3.52 mu m) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K. We validated the model by comparing simulations of CH3OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the nu(3) band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths. C1 [Villanueva, G. L.; DiSanti, M. A.; Mumma, M. J.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villanueva, G. L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Xu, L. -H.] Univ New Brunswick, Dept Phys, St John, NB E2L 4L5, Canada. [Xu, L. -H.] Univ New Brunswick, Ctr Laser Atom & Mol Sci, St John, NB E2L 4L5, Canada. RP Villanueva, GL (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Mailstop 690-3, Greenbelt, MD 20771 USA. EM Geronimo.Villanueva@nasa.gov RI mumma, michael/I-2764-2013; Xu, Li-Hong/J-5095-2015 FU NASA [08-PATM08-0031, 09-PATM09-0080, 08-PAST08-0033/34, 09-PAST09-0034]; NASA's Astrobiology Institute [NAI5/NNH08ZDA002C]; Natural Sciences and Engineering Research Council of Canada FX G.L.V., M.A.D., and M.J.M. acknowledge support from NASA's Planetary Atmospheres and Astronomy Programs (08-PATM08-0031 (PI: G. L. V.), 09-PATM09-0080 (PI: M. A. D.), 08-PAST08-0033/34 (PI: M.J.M.), 09-PAST09-0034 (PI: M. A. D.)), NASA's Astrobiology Institute (NAI5/NNH08ZDA002C, PI: M.J.M.). L. H. X. gratefully acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada. We thank Dr. Eva Wirstrom for helpful discussions. NR 42 TC 25 Z9 25 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2012 VL 747 IS 1 AR 37 DI 10.1088/0004-637X/747/1/37 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897EK UT WOS:000300627300037 ER PT J AU Taylor, SR Contu, F Calle, LM Curran, JP Li, W AF Taylor, S. R. Contu, F. Calle, L. M. Curran, J. P. Li, W. TI Predicting the Long-Term Field Performance of Coating Systems on Steel Using a Rapid Electrochemical Test: The Damage Tolerance Test SO CORROSION LA English DT Article; Proceedings Paper CT Conference of CORROSION/Research Topical Symposium on Advanced Protection Concepts in Coatings CY 2010 CL Houston, TX DE atmospheric exposure; coating performance; corrosion; damage tolerance test; electrochemical tests; rapid assessment ID PROTECTIVE ORGANIC COATINGS; IMPEDANCE SPECTROSCOPY; ATMOSPHERIC CORROSION; IONIC PATHWAYS; AC IMPEDANCE; SALT SPRAY; ALUMINUM; RADIATION; EXPOSURE; BEHAVIOR AB The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step forward from past studies and correlates the corrosion performance of protective coatings assessed by a series of short-term electrochemical measurements with 18 month and 60 month beachside atmospheric exposure results of coated panels. A series of 11 coating systems on A36 steel (UNS K02600) substrates were tested in a blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electrochemical characteristics of the defect are then monitored over the next 1 to 7 days while immersed in 0.5 M sodium chloride (NaCl). The results from open-circuit potential, anodic potentiostatic polarization, and electrochemical impedance spectroscopy tests were used to characterize the corrosion behavior of the coating systems. The beachside exposure tests were conducted at the Kennedy Space Center (Kennedy Space Center, Florida) according to ASTM D610-01. It was found that the short-term changes in the open-circuit potential and in the charge delivered during a sequence of potentiostatic pulses showed high correlation and even higher correlation to 60 month beachside atmospheric exposure with correlations approaching 100%. C1 [Taylor, S. R.; Contu, F.] Natl Corros Ctr, Houston, TX 77005 USA. [Calle, L. M.] NASA, Corros Technol Lab, Kennedy Space Ctr, FL 32899 USA. [Curran, J. P.; Li, W.] ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA. RP Taylor, SR (reprint author), Natl Corros Ctr, Houston, TX 77005 USA. EM S.Ray.Taylor@uth.tmc.edu NR 62 TC 0 Z9 0 U1 2 U2 9 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD MAR PY 2012 VL 68 IS 3 AR 035007 DI 10.5006/1.3693698 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 899TK UT WOS:000300838900008 ER PT J AU Amitai, E Petersen, W Llort, X Vasiloff, S AF Amitai, Eyal Petersen, Walter Llort, Xavier Vasiloff, Steve TI Multiplatform Comparisons of Rain Intensity for Extreme Precipitation Events SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Extreme precipitation events; meteorological radar; multi sensor quantitative precipitation estimation; precipitation; probability distribution function; rainfall intensity; spaceborne radar; Tropical Rainfall Measuring Mission (TRMM) ID PROFILING ALGORITHM; MEASURING MISSION; RADAR; TRMM; VALIDATION; FLORIDA AB Rainfall intensities during heavy rain events over the continental U. S. are compared for several advanced radar products. These products include the following: 1) Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) near-surface estimates; 2) NOAA Quantitative Precipitation Estimation very high resolution (1 km, instantaneous) radar-only national mosaics (Q2); 3) very high resolution gauge-adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products; and 4) several independent C-band dual-polarimetric radar-estimated rainfall samples collected with the Advanced C-band Radar for Meteorological and Operational Research (ARMOR) radar in Alabama. These instantaneous rainfall rate fields [i.e., 1)-3)] can be considered as radar products with the largest coverage currently available from space- and ground-based radar observations. Although accumulated rainfall amounts are often similar, we find the PR and Q2 rain-rate histograms quite different. PR rain-rate histograms are shifted toward lower rain rates, implying a much larger stratiform/convective rain ratio than do products such as Q2. The shift is more evident during strong continental convective storms and not as pronounced in tropical rain. A "continental/maritime regime" behavior is also observed upon adjusting the Q2 products to rain gauges, yet the rain amount more closely agrees with that of PR. The independent PR/ARMOR comparisons confirm this systematic regime behavior. In addition, comparisons are performed over central Florida where PR, Q2, and the NASA TRMM ground validation products are available. These comparisons show large discrepancies among all three products. Resolving the large discrepancies between the products presents an important set of challenges related to improving remote-sensing estimates of precipitation in general and during extreme events in particular. C1 [Amitai, Eyal] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Amitai, Eyal] Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA. [Petersen, Walter] NASA Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Llort, Xavier] Hydrometeorol Innovate Solut HYDS, Barcelona 08034, Spain. [Vasiloff, Steve] NOAA Natl Severe Storms Lab, Norman, OK 73072 USA. RP Amitai, E (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Eyal.Amitai@nasa.gov FU NASA [NNX07AK47G, NNX07AK39G, NNX10AJ12G]; Spanish MICINN [ESP2007-62417] FX The work of E. Amitai and W. Petersen was supported by Dr. Ramesh Kakar via the NASA Precipitation Measurement Missions Project under Grants NNX07AK47G, NNX07AK39G, and NNX10AJ12G. The work of X. Llort was supported by the Spanish MICINN-Project ESP2007-62417. NR 21 TC 17 Z9 17 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2012 VL 50 IS 3 BP 675 EP 686 DI 10.1109/TGRS.2011.2162737 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 898FV UT WOS:000300724300001 ER PT J AU Neumann, M Saatchi, SS Ulander, LMH Fransson, JES AF Neumann, Maxim Saatchi, Sassan S. Ulander, Lars M. H. Fransson, Johan E. S. TI Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Biomass estimation; boreal forest; interferometry; linear regression (LR); polarimetry; random forest (RF); support vector machine (SVM); synthetic aperture radar (SAR) ID STEM VOLUME; SCATTERING MODEL; POL-INSAR; RADAR; RETRIEVAL; BACKSCATTER; INVERSION; HEIGHT AB Biomass estimation performance using polarimetric interferometric synthetic aperture radar (PolInSAR) data is evaluated at L- and P-band frequencies over boreal forest. PolInSAR data are decomposed into ground and volume contributions, retrieving vertical forest structure and polarimetric layer characteristics. The sensitivity of biomass to the obtained parameters is analyzed, and a set of these parameters is used for biomass estimation, evaluating one parametric and two non-parametric methodologies: multiple linear regression, support vector machine, and random forest. The methodology is applied to airborne SAR data over the Krycklan Catchment, a boreal forest test site in northern Sweden. The average forest biomass is 94 tons/ha and goes up to 183 tons/ha at forest stand level (317 tons/ha at plot level). The results indicate that the intensity at HH-VV is more sensitive to biomass than any other polarization at L-band. At P-band, polarimetric scattering mechanism type indicators are the most correlated with biomass. The combination of polarimetric indicators and estimated structure information, which consists of forest height and ground-volume ratio, improved the root mean square error (rmse) of biomass estimation by 17%-25% at L-band and 5%-27% at P-band, depending on the used parameter set. Together with additional ground and volume polarimetric characteristics, the rmse was improved up to 27% at L-band and 43% at P-band. The cross-validated biomass rmse was reduced to 20 tons/ha in the best case. Non-parametric estimation methods did not improve the cross-validated rmse of biomass estimation, but could provide a more realistic distribution of biomass values. C1 [Neumann, Maxim; Saatchi, Sassan S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ulander, Lars M. H.] Chalmers, Dept Radio & Space Sci, S-41296 Gothenburg, Sweden. [Fransson, Johan E. S.] Swedish Univ Agr Sci, Dept Forest Resource Management, S-90183 Umea, Sweden. RP Neumann, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM maxim.neumann@jpl.nasa.gov; sassan.s.saatchi@jpl.nasa.gov; ulander@foi.se; johan.fransson@slu.se FU NASA at the Jet Propulsion Laboratory; National Aeronautics and Space Administration FX This work was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with the National Aeronautics and Space Administration. NR 40 TC 38 Z9 38 U1 1 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2012 VL 50 IS 3 BP 714 EP 726 DI 10.1109/TGRS.2011.2176133 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 898FV UT WOS:000300724300004 ER PT J AU Sharp, PW Castillo-Rogez, JC Grazier, KR AF Sharp, P. W. Castillo-Rogez, J. C. Grazier, K. R. TI The performance of phase-lag enhanced explicit Runge-Kutta Nystrom pairs on N-body problems SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE Explicit Runge-Kutta Nystrom; High phase-lag order; N-body ID OUTER SOLAR-SYSTEM; DYNAMICAL EVOLUTION; PLANETESIMALS; FORMULAS AB Explicit Runge-Kutta Nystrom methods with enhanced phase-lag order are intended for long integrations of initial value ordinary differential equations describing free oscillations or free oscillations of high frequency and forced oscillations of low frequency. Numerical comparisons by others of RKN4(3). RKN6(4) and RKN8(6) pairs has established that the pairs with enhanced phase-lag order are more efficient on the intended problems than general purpose pairs. We investigate if these gains in efficiency extend to N-body problems used to model the orbital dynamics of the Solar System. The emphasis in our comparisons is on the RKN8(6) pairs because we are interested in long, accurate integrations. We have included the RKN4(3) and RKN6(4) pairs principally to gain insight about how the gains in efficiency depend on the order. Our main finding is that the gains for the RKN8(6) pair extend to the system of major planets except at severe accuracy requirements, and to the system of regular satellites of these planets. In addition, we found for Kepler's two-body problem that the gains can be sensitive to small changes in eccentricity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sharp, P. W.] Univ Auckland, Dept Math, Auckland, New Zealand. [Castillo-Rogez, J. C.; Grazier, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Sharp, PW (reprint author), Univ Auckland, Dept Math, Private Bag 92019, Auckland, New Zealand. EM sharp@math.auckland.ac.nz; julie.c.castillo@jpl.nasa.gov; kevin.grazier@jpl.nasa.gov OI Sharp, Philip/0000-0001-9550-0910 FU National Aeronautics and Space Administration FX This work has been conducted in part at the jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged. NR 12 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 EI 1879-1778 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD MAR PY 2012 VL 236 IS 9 BP 2378 EP 2386 DI 10.1016/j.cam.2011.11.024 PG 9 WC Mathematics, Applied SC Mathematics GA 900CI UT WOS:000300863800012 ER PT J AU Tory, KJ Kepert, JD Sippel, JA Nguyen, CM AF Tory, K. J. Kepert, J. D. Sippel, J. A. Nguyen, C. M. TI On the Use of Potential Vorticity Tendency Equations for Diagnosing Atmospheric Dynamics in Numerical Models SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article AB This study critically assesses potential vorticity (PV) tendency equations used for analyzing atmospheric convective systems. A generic PV tendency format is presented to provide a framework for comparing PV tendency equations, which isolates the contributions to PV tendency from wind and mass field changes. These changes are separated into forcing terms (e.g., diabatic or friction) and flow adjustment and evolution terms (i.e., adiabatic motions). One PV tendency formulation analyzed separates PV tendency into terms representing PV advection and diabatic and frictional PV sources. In this form the PV advection is shown to exhibit large cancellation with the diabatic forcing term when used to analyze deep convective systems, which compromises the dynamical insight that the PV tendency analysis should provide. The isentropic PV substance tendency formulation of Haynes and McIntyre does not suffer from this cancellation problem. However, while the Haynes and McIntyre formulation may be appropriate for many convective system applications, there are likely to be some applications in which the formulation is difficult to apply or is not ideal. This study introduces a family of PV tendency equations in geometric coordinates that is free from the deficiencies of the above formulations. Simpler forms are complemented by more complex forms that expand the vorticity tendency term to offer additional insight into flow dynamics. The more complex forms provide insight similar to the influential Haynes and McIntyre isentropic formulation. C1 [Tory, K. J.; Kepert, J. D.] Ctr Australian Weather & Climate Res, Melbourne, Vic 3001, Australia. [Sippel, J. A.] Morgan State Univ, Baltimore, MD 21239 USA. [Sippel, J. A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Nguyen, C. M.] Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia. RP Tory, KJ (reprint author), Ctr Australian Weather & Climate Res, GPO Box 1289, Melbourne, Vic 3001, Australia. EM k.tory@bom.gov.au RI Kepert, Jeffrey/I-6786-2013 OI Kepert, Jeffrey/0000-0001-6771-0769 FU Oak Ridge Associated Universities; NASA FX We thank Yi Xiao, Greg Roff, and Noel Davidson for their persistence with the ACCESS modeling, and John McBride for insightful comments on an earlier manuscript. We thank Tim Dunkerton and one anonymous reviewer for a detailed critique of the paper, and for restructuring suggestions that have significantly improved the manuscript. The third author contributed to this study while under the NASA Postdoctoral Program, which is sponsored by Oak Ridge Associated Universities through a contract with NASA, and while working for the Goddard Earth Sciences and Technology Center under a cooperative agreement between NASA and the University of Maryland, Baltimore County. NR 15 TC 9 Z9 9 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAR PY 2012 VL 69 IS 3 BP 942 EP 960 DI 10.1175/JAS-D-10-05005.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 901IN UT WOS:000300960700011 ER PT J AU Torres, O Jethva, H Bhartia, PK AF Torres, Omar Jethva, Hiren Bhartia, P. K. TI Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SAFARI 2000; SATELLITE MEASUREMENTS; SPECTRAL DEPENDENCE; MULTIPLE-SCATTERING; LIGHT-ABSORPTION; WATER CLOUDS; ART.; SMOKE; ATMOSPHERES; TRANSPORT AB A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originating in arid and semiarid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top-of-the-atmosphere direct effect of absorbing aerosols may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. This paper discusses the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol cloud separation. The technique was applied to above-cloud aerosol events over the southern Atlantic Ocean, yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value. C1 [Torres, Omar; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jethva, Hiren] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. RP Torres, O (reprint author), NASA, Goddard Space Flight Ctr, Code 6140, Greenbelt, MD 20771 USA. EM omar.o.torres@nasa.gov RI Jethva, Hiren/H-2258-2012; Torres, Omar/G-4929-2013; Bhartia, Pawan/A-4209-2016 OI Jethva, Hiren/0000-0002-5408-9886; Bhartia, Pawan/0000-0001-8307-9137 NR 55 TC 51 Z9 52 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAR PY 2012 VL 69 IS 3 BP 1037 EP 1053 DI 10.1175/JAS-D-11-0130.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 901IN UT WOS:000300960700017 ER PT J AU Madura, TI Gull, TR Owocki, SP Groh, JH Okazaki, AT Russell, CMP AF Madura, T. I. Gull, T. R. Owocki, S. P. Groh, J. H. Okazaki, A. T. Russell, C. M. P. TI Constraining the absolute orientation of eta Carinae's binary orbit: a 3D dynamical model for the broad [Fe III] emission SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE hydrodynamics; line: formation; binaries: close; stars: individual: Eta Carinae; stars: mass-loss; stars: winds, outflows ID WIND-WIND COLLISION; SMOOTHED PARTICLE HYDRODYNAMICS; X-RAY MINIMUM; PERIASTRON PASSAGE; HOMUNCULUS-NEBULA; COLLIDING WINDS; RATE COEFFICIENTS; EDDINGTON LIMIT; STELLAR WINDS; IRON PROJECT AB We present a three-dimensional (3D) dynamical model for the broad [Fe iii] emission observed in ? Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (STIS). This model is based on full 3D smoothed particle hydrodynamics simulations of ? Cars binary colliding winds. Radiative transfer codes are used to generate synthetic spectroimages of [Fe iii] emission-line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA ? that the orbital plane projection of the line of sight makes with the apastron side of the semimajor axis and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3D orientation of the binary orbit. To simultaneously reproduce the blueshifted emission arcs observed at orbital phase 0.976, STIS slit PA =+38 degrees and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approximate to 130 degrees to 145 degrees, approximate to-15 degrees to +30 degrees and an orbital axis projected on the sky at a PA approximate to 302 degrees to 327 degrees east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3D. The companion star, ?B, thus orbits clockwise on the sky and is on the observers side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modelling to determine the stellar masses. C1 [Madura, T. I.; Groh, J. H.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Gull, T. R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Owocki, S. P.; Russell, C. M. P.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Okazaki, A. T.] Hokkai Gakuen Univ, Fac Engn, Toyohira Ku, Sapporo, Hokkaido 0628605, Japan. RP Madura, TI (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM tmadura@mpifr-bonn.mpg.de RI Gull, Theodore/D-2753-2012 OI Gull, Theodore/0000-0002-6851-5380 FU NASA [7302, 8036, 8483, 8619, 9083, 9337, 9420, 9973, 10957, 11273, NAS 5-26555]; Space Telescope Science Institute; Max Planck Society; NASA ATP [NNK11AC40G] FX Based on observations made with the NASA/ESA Hubble Space Telescope. Support for programs 7302, 8036, 8483, 8619, 9083, 9337, 9420, 9973, 10957 and 11273 was provided by NASA directly to the STIS Science Team and through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.; TIM and CMPR were supported through the NASA Graduate Student Researchers Program. TIM and JHG also thank the Max Planck Society for financial support for this work. All SPH simulations were performed on NASA Advanced Supercomputing (NAS) facilities using NASA High End Computing (HEC) time. SPO acknowledges partial support from NASA ATP grant NNK11AC40G. TRG acknowledges the hospitality of the MPIfR during the completion of this paper. NR 101 TC 29 Z9 29 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2012 VL 420 IS 3 BP 2064 EP 2086 DI 10.1111/j.1365-2966.2011.20165.x PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 897ZI UT WOS:000300702200017 ER PT J AU Savin, DW Brickhouse, NS Cowan, JJ Drake, RP Federman, SR Ferland, GJ Frank, A Gudipati, MS Haxton, WC Herbst, E Profumo, S Salama, F Ziurys, LM Zweibel, EG AF Savin, D. W. Brickhouse, N. S. Cowan, J. J. Drake, R. P. Federman, S. R. Ferland, G. J. Frank, A. Gudipati, M. S. Haxton, W. C. Herbst, E. Profumo, S. Salama, F. Ziurys, L. M. Zweibel, E. G. TI The impact of recent advances in laboratory astrophysics on our understanding of the cosmos SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID METAL-POOR STARS; ACTIVE GALACTIC NUCLEI; X-RAY-SPECTRUM; VY CANIS MAJORIS; ATOMIC TRANSITION-PROBABILITIES; DIFFUSE INTERSTELLAR CLOUDS; FINITE-DENSITY PLASMAS; R-PROCESS-RICH; T-TAURI STARS; EXPERIMENTAL OSCILLATOR-STRENGTHS AB An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling. C1 [Savin, D. W.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Brickhouse, N. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cowan, J. J.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Drake, R. P.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Federman, S. R.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Ferland, G. J.] Univ Kentucky, Dept Phys, Lexington, KY 40506 USA. [Frank, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Gudipati, M. S.] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA 91109 USA. [Haxton, W. C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Haxton, W. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Herbst, E.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Profumo, S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Salama, F.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Ziurys, L. M.] Univ Arizona, Arizona Radio Observ, Dept Chem, Tucson, AZ 85721 USA. [Ziurys, L. M.] Univ Arizona, Arizona Radio Observ, Dept Astron, Tucson, AZ 85721 USA. [Ziurys, L. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Zweibel, E. G.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Zweibel, E. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Herbst, E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Herbst, E.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Savin, DW (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. RI Savin, Daniel/B-9576-2012; Gudipati, Murthy/F-7575-2011; Salama, Farid/A-8787-2009; Drake, R Paul/I-9218-2012; OI Savin, Daniel/0000-0002-1111-6610; Salama, Farid/0000-0002-6064-4401; Drake, R Paul/0000-0002-5450-9844; Brickhouse, Nancy/0000-0002-8704-4473; Ferland, Gary/0000-0003-4503-6333 FU NASA [NAS8-03060, 07-ATFP07-0124, 10-ATP10-0053, 10-ADAP10-0073]; National Science Foundation [AST 0707447, 0908877, PHY-0757911, PHY-0821899]; DOE/NNSA Defense Sciences and Advanced Scientific Computing from DOE/Science Office of Fusion Energy Sciences; Defense Threat Reduction Agency; STScI [HST-AR-12125.01, HST-GO-12309]; NASA Astrobiology Institute 'Icy Worlds'; Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration; US Department of Energy [DE-SC00046548, DE-FG02-04ER41268]; NASA Science Mission Directorate; NSF Division of Astronomical Sciences Astronomy and Astrophysics FX The authors thank their many colleagues including J E Bailey, P Beiersdorfer, G V Brown, J R Crespo Lopez-Urrutia, H Ji, H Kreckel, J E Lawler, M Medvedev, T Plewa, D Sasselov, R K Smith, C Sneden, B J Wargelin and S Widicus Weaver for stimulating conversations. NSB was supported in part by the NASA contract NAS8-03060 to the Smithsonian Astrophysical Observatory for the Chandra X-ray Center. JJC is supported in part by the National Science Foundation through grant AST 0707447. RPD acknowledges support from DOE/NNSA Defense Sciences and Advanced Scientific Computing, from DOE/Science Office of Fusion Energy Sciences and from the Defense Threat Reduction Agency. GJF acknowledges support by NSF (0908877), NASA (07-ATFP07-0124, 10-ATP10-0053 and 10-ADAP10-0073) and STScI (HST-AR-12125.01 and HST-GO-12309). MSG acknowledges funding from NASA Astrobiology Institute 'Icy Worlds' and support from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. WCH was supported in part by the US Department of Energy under grant DE-SC00046548 to the University of California at Berkeley. EH acknowledges the support of NASA through its program in laboratory astrophysics and through the Herschel program. SP is partly supported by the US Department of Energy with an Outstanding Junior Investigator Award and by Contract DE-FG02-04ER41268 and by NSF Grant PHY-0757911. FS acknowledges the support of the Astrophysics Research and Analysis Program of NASA Science Mission Directorate. DWS is supported in part by the NASA Astronomy and Physics Research and Analysis program, the NASA Solar Heliospheric Physics program and the NSF Division of Astronomical Sciences Astronomy and Astrophysics Grants program. EGZ was supported in part by the NSF grant PHY-0821899 to the University of Wisconsin. NR 673 TC 26 Z9 26 U1 4 U2 42 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAR PY 2012 VL 75 IS 3 AR 036901 DI 10.1088/0034-4885/75/3/036901 PG 36 WC Physics, Multidisciplinary SC Physics GA 898JC UT WOS:000300737700006 PM 22790424 ER PT J AU Mohindra, P Sinha, RN Andrews, RJ Khuntia, D AF Mohindra, P. Sinha, R. N. Andrews, R. J. Khuntia, D. TI Non-Cytotoxic Radiosensitizers in Brain Radiotherapy: Journey Till the First Decade of this Millennium SO CURRENT CANCER DRUG TARGETS LA English DT Review DE Astrocytoma; brain; glioma; glioblastoma; metastasis; radiosensitizers; radiotherapy ID HIGH-GRADE GLIOMAS; PHASE-III TRIAL; STEREOTACTIC RADIOSURGERY BOOST; O2 TENSION MEASUREMENTS; HIGH-DOSE METRONIDAZOLE; THERAPY-ONCOLOGY-GROUP; CENTRAL-NERVOUS-SYSTEM; HUMAN CEREBRAL GLIOMA; STRAND BREAK REPAIR; RADIATION-THERAPY AB Brain tumors, primary and metastatic, are a cause of significant mortality and morbidity. Radiotherapy (RT) forms an integral part of the treatment of brain tumors. Intrinsic relative tumor radio-resistance, normal tissue tolerance and impact on neurocognitive function, all limit the efficacy of RT. Radiosensitizers can potentially increase efficacy on tumors while maintaining normal tissue toxicity, with or without inherent cytotoxicity. This article reviews the evolution of evidence with use of non-cytotoxic radiosensitizers in brain radiotherapy and their status at the end of the first decade of this millennium. Considering, the era of development and mechanism of action, these agents are classified as first, second and third-generation non-cytotoxic radiosensitizers. The last millennium involved elaboration of first-generation compounds including halogenated pyrimidines, hypoxic cell sensitizers (e. g. imidazoles) and glycolytic inhibitors (e. g. lonidamine). The first decade of this millennium has highlighted redox modulators like motexafin gadolinium and newer hypoxic cell sensitizers like efaproxiral, which have shown promise. However, phase III trials and meta-analyses have not identified a clear winner though the second-generation has shown some rays of hope. Recent research has focused on expanding the horizon by studying modulation of newer molecular pathways like DNA repair, microtubule stabilization, cytokine function and nuclear factor-kappa beta (NF-KB) in order to increase RT efficacy. The review concludes by summarizing the class of evidence and the level of recommendation available for use of non-cytotoxic radiosensitizers in brain RT. C1 [Sinha, R. N.; Khuntia, D.] Western Radiat Oncol, Mountain View, CA 94040 USA. [Mohindra, P.] Univ Wisconsin, Madison, WI USA. [Andrews, R. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Khuntia, D (reprint author), Western Radiat Oncol, 125 South Dr, Mountain View, CA 94040 USA. EM khuntia@wradonc.com RI Mohindra, Pranshu/N-2781-2013 OI Mohindra, Pranshu/0000-0002-4873-7496 FU Tomotherapy, Inc. FX Dr. Khuntia serves as a speaker and has received grants from Tomotherapy, Inc. He is on the advisory board for Radion Global and has also served as a consultant for Procertis, Inc. NR 152 TC 2 Z9 2 U1 1 U2 11 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1568-0096 J9 CURR CANCER DRUG TAR JI Curr. Cancer Drug Targets PD MAR PY 2012 VL 12 IS 3 BP 260 EP 278 PG 19 WC Oncology SC Oncology GA 897FZ UT WOS:000300633600008 PM 22268387 ER PT J AU Hurst, TP Moss, JH Miller, JA AF Hurst, Thomas P. Moss, Jamal H. Miller, Jessica A. TI Distributional patterns of 0-group Pacific cod (Gadus macrocephalus) in the eastern Bering Sea under variable recruitment and thermal conditions SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Bering Sea; density-dependence; distribution; habitat; Pacific cod; temperature ID POLLOCK THERAGRA-CHALCOGRAMMA; DEPENDENT HABITAT SELECTION; IDEAL FREE DISTRIBUTION; CLIMATE-CHANGE; WALLEYE POLLOCK; SPATIAL-DISTRIBUTION; FISH POPULATIONS; SCOTIAN SHELF; MARINE FISHES; LARVAL AB Despite the importance of Pacific cod in Bering Sea fisheries and foodwebs, little is known about the habitat use and the distribution of early life stages. We analysed 6 years of catch data for 0-group Pacific cod in fishery-independent surveys of the Bering Sea shelf. Juvenile cod were most commonly captured on the middle shelf over depths of 50-80 m and were rarely captured north of 58 degrees N. Consistently high catches were observed east of the Pribilof Islands and north of Port Moller along the Alaska Peninsula. There was evidence of density-dependent habitat selection at the local scale as the frequency of occurrence increased with regional catch per unit effort. At the basin scale, the southerly distribution of the weak 2009 cohort suggested the possibility of a range contraction for small cohorts. There was no consistent shift in the distribution of juvenile Pacific cod in response to interannual climate variability. These results for Pacific cod contrast with those observed for walleye pollock, which appears to exhibit greater variance in distribution, but are similar to patterns observed for juvenile Atlantic cod. Future work should focus on distribution in nearshore habitats and examine the patterns of dispersal and the connectivity of the Bering Sea and Gulf of Alaska populations. C1 [Hurst, Thomas P.] Natl Ocean & Atmospher Adm, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, Newport, OR 97365 USA. [Moss, Jamal H.] Natl Ocean & Atmospher Adm, Alaska Fisheries Sci Ctr, Auke Bay Labs, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Miller, Jessica A.] Oregon State Univ, Dept Fisheries & Wildlife, Hatfield Marine Sci Ctr, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA. RP Hurst, TP (reprint author), Natl Ocean & Atmospher Adm, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, 2030 SE Marine Sci Dr, Newport, OR 97365 USA. EM thomas.hurst@noaa.gov RI Hurst, Thomas/N-1401-2013 FU Bering Sea Fishermen's Association; Arctic Yukon Kuskokwim Sustainable Salmon Initiative; Bering Sea Integrated Ecosystem Research Program; North Pacific Research Board [R0816] FX We thank the staff of the Ecosystem Monitoring and Assessment Program and the crews of the FV "Sea Storm", FV "Northwest Explorer", and RV "Oscar Dyson" for assistance with field sampling. Ed Farley and Jim Murphy assisted with data management. Alex Andrews and Mara Spencer prepared maps of juvenile cod distribution. Grant Thompson provided updated estimates of 0-group Pacific cod recruitment in the Bering Sea. Alec MacCall provided analytical advice. Al Stoner, Ben Laurel, and Alec MacCall provided valuable comments on this research manuscript. Field sampling was conducted as part of the BASIS programme and was supported in part by the Bering Sea Fishermen's Association, The Arctic Yukon Kuskokwim Sustainable Salmon Initiative, and the Bering Sea Integrated Ecosystem Research Program. Data analysis was supported in part by a grant from the North Pacific Research Board (# R0816). This is publication number 325 of the North Pacific Research Board. NR 63 TC 11 Z9 11 U1 5 U2 30 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD MAR PY 2012 VL 69 IS 2 BP 163 EP 174 DI 10.1093/icesjms/fss011 PG 12 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA 895JA UT WOS:000300491200003 ER PT J AU Hulson, PJF Hanselman, DH Quinn, TJ AF Hulson, Peter-John F. Hanselman, Dana H. Quinn, Terrance J., II TI Determining effective sample size in integrated age-structured assessment models SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE age-structured assessment; Dirichlet distribution; effective sample size ID CATCH-AT-AGE; STOCK-ASSESSMENT; MULTIFAN AB Effective sample size (ESS) is a quantity that allows for overdispersion of variance and is used commonly in integrated age-structured fishery assessment models to fit age-and-length-composition datasets. Owing to the sources of measurement, observation, process, and model-specification errors, the ESS is smaller than the actual sample size. In this study, methods to set a priori or to estimate the ESS when confronted with datasets that include these sources of error were investigated. In general, a number of methods previously proposed to incorporate the ESS resulted in accurate estimation of population quantities and parameters when different sources of error were included in the data on age and length compositions. Three objective methods to incorporate the ESS resulted in unbiased population quantities: (i) using sampling theory to derive the ESS from actual age and length compositions, (ii) iteratively estimating the ESS with the age-structured assessment model, and (iii) estimating the ESS as a parameter with the Dirichlet distribution. C1 [Hulson, Peter-John F.; Quinn, Terrance J., II] Univ Alaska Fairbanks, Juneau Ctr, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. [Hulson, Peter-John F.; Hanselman, Dana H.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. RP Hulson, PJF (reprint author), Univ Alaska Fairbanks, Juneau Ctr, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA. EM phulson@alaska.edu FU Alaska Sea Grant; National Oceanic and Atmospheric Administration Office of Sea; Department of Commerce [NA06OAR4170013, R/31-16]; University of Alaska; Cooperative Institute for Arctic Research/Alaska Fisheries Science Center (CIFAR/AFSC) FX This publication is the result of research sponsored by Alaska Sea Grant with funds from the National Oceanic and Atmospheric Administration Office of Sea Grant, Department of Commerce, under grant NA06OAR4170013 (project number R/31-16) and from the University of Alaska with funds appropriated by the state and the Cooperative Institute for Arctic Research/Alaska Fisheries Science Center (CIFAR/AFSC) Fellowship Program. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. We thank Milo Adkison, Brenda Norcross, and Gary Marty for helpful comments and advice, and Doug Butterworth and an anonymous reviewer for their insightful reviews of an earlier version of this manuscript. NR 29 TC 10 Z9 10 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD MAR PY 2012 VL 69 IS 2 BP 281 EP 292 DI 10.1093/icesjms/fsr189 PG 12 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA 895JA UT WOS:000300491200016 ER PT J AU Fore, A Haddad, ZS Krishnamurti, TN Rodgridez, E AF Fore, Alex Haddad, Ziad S. Krishnamurti, T. N. Rodgridez, Ernesto TI Improving Scatterometry Retrievals of Wind in Hurricanes Using Non-Simultaneous Passive Microwave Estimates of Precipitation and a Split-Step Advection/Convection Model SO PURE AND APPLIED GEOPHYSICS LA English DT Article ID RAIN AB One of the current problems in the accurate estimation of over-ocean wind from scatterometry observations is the proper accounting for precipitation. Specific cases such as hurricanes are particularly difficult, because precipitation in the eye wall and rain bands can be quite heavy, and therefore, affect the scatterometer signatures so drastically that a category-4 hurricane can appear, to the scatterometer, to have category-1 winds. We have developed an approach to infer and account for the signature of the precipitation from non-simultaneous passive-microwave measurements of rain, with the help of geostationary IR measurements. In this note, we describe the basic approach, and the results of applying it to the data taken by the Tropical Rainfall Measurement Mission Microwave Imager measurements several hours before and after the QuikSCAT observation of Hurricane Rita in September 2005. We also describe how we are enhancing the approach with more realism in the assimilation of the IR information. C1 [Fore, Alex; Haddad, Ziad S.; Rodgridez, Ernesto] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Krishnamurti, T. N.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. RP Fore, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM zsh@jpl.nasa.gov FU National Aeronautics and Space Administration; Florida State University under National Science Foundation [0533108] FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and at Florida State University under National Science Foundation grant number 0533108. NR 9 TC 4 Z9 5 U1 0 U2 2 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD MAR PY 2012 VL 169 IS 3 SI SI BP 415 EP 424 DI 10.1007/s00024-011-0378-z PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 897OP UT WOS:000300661900009 ER PT J AU Banks, HT Cioranescu, D Criner, AK Winfree, WP AF Banks, H. T. Cioranescu, D. Criner, A. K. Winfree, W. P. TI MODELING THE FLASH-HEAT EXPERIMENT ON POROUS DOMAINS SO QUARTERLY OF APPLIED MATHEMATICS LA English DT Article DE Modeling porous media; thermal diffusion; homogenization ID IDENTIFICATION AB We discuss a mathematical model for the flash-heat experiment in homogeneous isotropic media. We then use this model to investigate the use of homogenization techniques in approximating models for interrogation via, flash-heating in porous materials. We represent porous materials as both randomly perforated domains and periodically perforated domains. C1 [Banks, H. T.; Criner, A. K.] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA. [Cioranescu, D.] Univ Paris 06, Lab JL Lions, F-75013 Paris, France. [Winfree, W. P.] NASA, Nondestruct Evaluat Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Banks, HT (reprint author), N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Box 8205, Raleigh, NC 27695 USA. FU National Science Foundation [DMS-0636590]; Air Force Office of Scientific Research [FA9550-09-1-0226] FX This research was supported in part by the National Science Foundation under Research Training Grant (RTG) DMS-0636590 and in part by the Air Force Office of Scientific Research under grant number FA9550-09-1-0226. NR 15 TC 0 Z9 0 U1 0 U2 2 PU BROWN UNIV PI BOSTON PA AMER MATH SOC, PO BOX 845904, BOSTON, MA 02284-5904 USA SN 0033-569X EI 1552-4485 J9 Q APPL MATH JI Q. Appl. Math. PD MAR PY 2012 VL 70 IS 1 BP 53 EP 67 AR PII S0033-569X(2011)01230-8 PG 15 WC Mathematics, Applied SC Mathematics GA 896TJ UT WOS:000300594000004 ER PT J AU Lim, T Lee, S Meyyappan, M Ju, S AF Lim, Taekyung Lee, Sumi Meyyappan, M. Ju, Sanghyun TI Tin oxide and indium oxide nanowire transport characteristics: influence of oxygen concentration during synthesis SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID FIELD-EFFECT TRANSISTORS; IN2O3 NANOWIRES; GROWTH; ARRAYS; NANOSTRUCTURES; SENSORS; FILMS; NO2 AB This study has analyzed the effects of varying oxygen flow rates on the formation of SnO2 and In2O3 nanowires using a vapor-liquid-solid technique and transistor characteristics. SnO2 nanowires grow regardless of the change in the O-2 flow rate, whereas In2O3 nanowire formation occurs only for an O-2 ratio below 0.2% in argon and transitions to nanoflakes or thin film at higher oxygen fractions. The oxygen fraction in the input gas stream also affects the transistor characteristics when these nanowires are used for device fabrication, particularly the threshold voltage. In2O3 nanowires appear to be more sensitive to O-2 compared to SnO2 nanowires in terms of growth and transistor characteristics. C1 [Lim, Taekyung; Lee, Sumi; Ju, Sanghyun] Kyonggi Univ, Dept Phys, Suwon 443760, Gyeonggi Do, South Korea. [Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Meyyappan, M.] POSTECH, IT Convergence Eng, Pohang, South Korea. RP Lim, T (reprint author), Kyonggi Univ, Dept Phys, Suwon 443760, Gyeonggi Do, South Korea. EM shju@kgu.ac.kr FU National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2011-0023219, 2011-0019133, 2011K000627, R31-2008-000-10100-0] FX This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0023219, 2011-0019133 and 2011K000627). The WCU-ITCE Program at POSTECH through the NRF funded by the Ministry of Education, Science and Technology (R31-2008-000-10100-0) is also acknowledged. NR 38 TC 8 Z9 8 U1 3 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD MAR PY 2012 VL 27 IS 3 AR 035018 DI 10.1088/0268-1242/27/3/035018 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 897DS UT WOS:000300624000020 ER PT J AU Cavalieri, DJ Parkinson, CL DiGirolamo, N Ivanoff, A AF Cavalieri, Donald J. Parkinson, Claire L. DiGirolamo, Nicolo Ivanoff, Alvaro TI Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Climate data records; sea ice; microwave remote sensing ID TIME-SERIES AB An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea ice extents and areas for a full year of overlap is undertaken preparatory to extending the 1979-2007 National Aeronautics and Space Administration (NASA) Goddard Space Flight Center NASA Team algorithm time series of global sea ice extents and areas. The 1979-2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in northern hemisphere (NH) sea ice extents is -0.0156%, with a standard deviation (SD) of the differences of 0.6204%, and the yearly mean difference in NH sea ice areas is 0.5433%, with an SD of 0.3519%. For the southern hemisphere, the yearly mean difference in sea ice extents is 0.0304% +/- 0.4880%, and the mean difference in sea ice areas is 0.1550% +/- 0.3753%. This F13/F17 intercalibration enables the extension of the 29-year 1979-2007 SMMR/SSMI sea ice time series for as long as there are stable F17 SSMIS brightness temperatures available. C1 [Cavalieri, Donald J.] D J Cavalieri Consulting, Sandy Spring, MD 20860 USA. [Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DiGirolamo, Nicolo] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Ivanoff, Alvaro] ADNET Syst Inc, Rockville, MD 20852 USA. RP Cavalieri, DJ (reprint author), D J Cavalieri Consulting, Sandy Spring, MD 20860 USA. RI Parkinson, Claire/E-1747-2012 OI Parkinson, Claire/0000-0001-6730-4197 FU National Aeronautics and Space Administration Headquarters FX This work was supported by the Cryosphere Program at the National Aeronautics and Space Administration Headquarters. NR 10 TC 26 Z9 27 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD MAR PY 2012 VL 9 IS 2 BP 233 EP 236 DI 10.1109/LGRS.2011.2166754 PG 4 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 891AB UT WOS:000300187400018 ER EF