FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Wright, SK Byrd, GV Renner, HM Sowls, AL AF Wright, Sadie K. Byrd, G. Vernon Renner, Heather M. Sowls, Arthur L. TI Breeding ecology of Red-faced Cormorants in the Pribilof Islands, Alaska SO JOURNAL OF FIELD ORNITHOLOGY LA English DT Article DE Alaska Maritime National Wildlife Refuge; Bering Sea; endemic; long-term monitoring; Phalacrocorax urile; reproductive parameters; seabird; sensitive species ID PISCIVOROUS SEABIRDS AB Red-faced Cormorants (Phalacrocorax urile) are North Pacific endemics recognized as a vulnerable species, but little is known about their breeding ecology. We studied Red-faced Cormorants on St. Paul Island, Alaska, from 1975 to 2009, with more detailed data collected in 2004 and 2005. Mean clutch sizes in 2004 (3.2 +/- 0.8 [SD] eggs) and 2005 (3.1 +/- 0.8 eggs) were similar to the long-term average (2.9 +/- 0.3 eggs from 1976 to 2009). The mean laying interval in 2004 and 2005 was 2.15 +/- 0.80 d (N= 407), and the mean egg period (number of days between laying of an egg and hatching) was 31.1 +/- 1.4 d (N= 158). Approximately 64 +/- 17% of eggs hatched during the period from 1975 to 2009. The mean number of chicks per nest in 2004 and 2005 was 2.8 +/- 0.8 (N= 232), and the mean number of fledglings per initiated nest in all years was 1.22 +/- 0.52. Chicks fledged 46 to 66 d posthatching. In 2004 and 2005, the primary causes of egg loss were predation by Arctic foxes (Vulpes lagopus) and destruction of eggs and abandonment of nests due to storms. Starvation was the primary cause of nestling mortality in both years. Because chicks are dependent on parents to provide food for over 45 d, consistent near-shore foraging opportunities must be available. From 1975 to 2009, Red-faced Cormorants experienced only 1 yr of complete reproductive failure (1984). The consistent reproductive success of Red-faced Cormorants suggests that conditions may be relatively stable for this species on St. Paul Island, or that the variability in their breeding ecology (e.g., phenology, clutch sizes, and incubation strategies) provides the flexibility needed to successfully fledge some chicks nearly every year. RESUMEN Phalacrocorax urile es una especies endemica del Pacifico norte y reconocida como vulnerable, pero poco se conoce sobre su ecologia reproductiva. Estudiamos P. urile en la isla St. Paul, Alaska, desde 1975 hasta 2009, con datos colectados mas detalladamente en 2004 y 2005. El tamano promedio de la nidada en el 2004 (3.2 +/- 0.8 [SD] huevos) y en el 2005 (3.1 +/- 0.8 huevos) fueron similares a el promedio a lo largo del estudio (2.9 +/- 0.3 huevos desde 19762009). El intervalo promedio de la puesta en 2004 y 2005 fue 2.15 +/- 0.80 d (N= 407), y el promedio del periodo de huevos (numero de dias entre la puesta del primer huevo y la eclosion) fue 31.1 +/- 1.4 d (N= 158). Aproximadamente 64 +/- 17% de los huevo eclosionaron exitosamente en el periodo comprendido entre 1975 y 2009. El numero promedio de polluelos por nido en 2004 y 2005 fue de 2.8 +/- 0.8 (N= 232), y el numero promedio de volantones que salieron por nido activo en todos los anos fue de 1.22 +/- 0.52. Los polluelos salieron del nido entre 46 y 66 dias despues de haber eclosionado. En 2004 y 2005, la principal causa de perdida de huevos fue la depredacion por parte del zorro artico (Vulpes lagopus), y destruccion de huevos y abandono de nidos debido a tormentas. Desnutricion fue la primera causa de mortalidad de polluelos en ambos anos. Debido a que los polluelos dependen de los padres para alimentarse por mas de 45 dias, la disponibilidad de areas para buscar alimento cerca a la orilla es importante. Desde 1975 hasta 2009, P. urile experimento un solo ano de completo fracaso reproductivo (1984). El constante exito reproductivo de P. urile sugiere que las condiciones para esta especie son relativamente estables en la isla St. Paul o que la variabilidad en su ecologia reproductiva (e.g. , fenologia, tamano de la nidada y estrategias de incubacion) provee la flexibilidad necesaria para que salgan exitosamente algunos polluelos del nido cada ano. C1 [Wright, Sadie K.; Byrd, G. Vernon; Renner, Heather M.; Sowls, Arthur L.] Alaska Maritime Natl Wildlife Refuge, Homer, AK 99603 USA. RP Wright, SK (reprint author), Natl Marine Fisheries Serv, Protected Resources Div, 709 West 9th St, Juneau, AK 99801 USA. EM sadie.wright@noaa.gov NR 33 TC 2 Z9 2 U1 3 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0273-8570 J9 J FIELD ORNITHOL JI J. Field Ornithol. PD MAR PY 2013 VL 84 IS 1 BP 49 EP 57 DI 10.1111/jofo.12005 PG 9 WC Ornithology SC Zoology GA 095IX UT WOS:000315329000006 ER PT J AU Tennyson, J Bernath, PF Brown, LR Campargue, A Csaszar, AG Daumont, L Gamache, RR Hodges, JT Naumenko, OV Polyansky, OL Rothman, LS Vandaele, AC Zobov, NF Al Derzi, AR Fabri, C Fazliev, AZ Furtenbacher, T Gordon, IE Lodi, L Mizus, II AF Tennyson, Jonathan Bernath, Peter F. Brown, Linda R. Campargue, Alain Csaszar, Attila G. Daumont, Ludovic Gamache, Robert R. Hodges, Joseph T. Naumenko, Olga V. Polyansky, Oleg L. Rothman, Laurence S. Vandaele, Ann Carine Zobov, Nikolai F. Al Derzi, Afaf R. Fabri, Csaba Fazliev, Alexander Z. Furtenbacher, Tibor Gordon, Iouli E. Lodi, Lorenzo Mizus, Irina I. TI IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for (H2O)-O-16 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels; MARVEL; Information system; Database; W@DIS; Infrared spectra; Microwave spectra ID MOLECULAR SPECTROSCOPIC DATABASE; HIGH-RESOLUTION SPECTRUM; THZ FREQUENCY REGION; FOURIER-TRANSFORM SPECTROSCOPY; PADE HAMILTONIAN OPERATOR; EMPIRICAL LINE PARAMETERS; RING-DOWN SPECTROSCOPY; HIGHLY EXCITED-STATES; LAMB-DIP TECHNIQUE; MU-M AB This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, (H2O)-O-16. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to g determine the rovibrational energy levels of the electronic ground state of (H2O)-O-16 from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of (H2O)-O-16 contains two components, an ortho (o) and a para (p) one. For o-(H2O)-O-16 and p-(H2O)-O-16, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-(H2O)-O-16 and p-(H2O)-O-16, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Tennyson, Jonathan; Polyansky, Oleg L.; Al Derzi, Afaf R.; Lodi, Lorenzo] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England. [Bernath, Peter F.] Old Dominion Univ, Norfolk, VA USA. [Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Campargue, Alain] Univ Grenoble 1, Grenoble, France. [Csaszar, Attila G.; Fabri, Csaba; Furtenbacher, Tibor] Eotvos Lorand Univ, Budapest, Hungary. [Daumont, Ludovic] Univ Reims, Reims, France. [Gamache, Robert R.] Univ Massachusetts, Lowell, MA USA. [Hodges, Joseph T.] NIST, Gaithersburg, MD 20899 USA. [Naumenko, Olga V.; Fazliev, Alexander Z.] Russian Acad Sci, Inst Atmospher Opt, Tomsk, Russia. [Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Vandaele, Ann Carine] Inst Aeron Spatiale Belg, Brussels, Belgium. [Zobov, Nikolai F.; Mizus, Irina I.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia. RP Tennyson, J (reprint author), Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM j.tennyson@ucl.ac.UK RI Csaszar, Attila/A-5241-2009; Bernath, Peter/B-6567-2012; Tennyson, Jonathan/I-2222-2012; Lodi, Lorenzo/C-6009-2013; Fabri, Csaba/D-3858-2017; OI Rothman, Laurence/0000-0002-3837-4847; Bernath, Peter/0000-0002-1255-396X; Tennyson, Jonathan/0000-0002-4994-5238; Gordon, Iouli/0000-0003-4763-2841 FU International Union of Pure and Applied Chemistry [2004-035-1-100]; European Research Council [267219]; Scientific Research Fund of Hungary [OTKA K77825, NK83583]; National Science Foundation of the U.S.A. [ATM-0803135]; Belgian Federal Science Policy Office [EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)]; NASA Earth Observing System [NAG5-13534]; Groupement de Recherche International SAMIA (Spectroscopie d'Absorption des Molecules d'Interet Atmospherique) FX We all thank the International Union of Pure and Applied Chemistry for funding under Project 2004-035-1-100 (a database of water transitions from experiment and theory). In addition, this work has received partial support from the UK Natural Environment Research Council, the Royal Society, the European Research Council under Advanced Investigator Project 267219, the Scientific Research Fund of Hungary (Grant OTKA K77825 and NK83583), NATO, the National Science Foundation of the U.S.A. through Grant No. ATM-0803135, the Russian Foundation for Basic Research, the Belgian Federal Science Policy Office (contracts EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)), the Belgian National Fund for Scientific Research (FRFC contracts), the Communaute de Belgique (Action de Recherche Concertees), NASA Earth Observing System (EOS), under Grant NAG5-13534, and the Programme National LEFE (CHAT) of CNRS (INSU). This work is partly supported by the Groupement de Recherche International SAMIA (Spectroscopie d'Absorption des Molecules d'Interet Atmospherique) between CNRS (France) and RFBR (Russia). Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and grants with the National Aeronautics and Space Administration. Dr. Semen N. Mikhailenko is thanked for his help collecting experimental sources of measured transitions. NR 231 TC 73 Z9 78 U1 6 U2 88 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2013 VL 117 BP 29 EP 58 DI 10.1016/j.jqsrt.2012.10.002 PG 30 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 095VF UT WOS:000315362400005 ER PT J AU Xu, F West, RA Davis, AB AF Xu, Feng West, Robert A. Davis, Anthony B. TI A hybrid method for modeling polarized radiative transfer in a spherical-shell planetary atmosphere SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Polarized radiative transfer; Spherical-shell atmosphere; Picard iteration; Pseudo-spherical approximation; Titan haze ID MARKOV-CHAIN FORMALISM; PICARD ITERATIVE APPROXIMATION; TRANSFER CODE; PHASE FUNCTIONS; SCATTERING; PARTICLES; RETRIEVAL; GEOMETRY; EQUATION; LIGHT AB The Markov chain method is developed for polarized radiative transfer in a pseudo-spherical atmosphere with solar illumination. This solution is then used as an initial guess of the radiation field for a spherical atmosphere. By use of the short characteristic method, a convergent radiation field throughout the atmosphere is achieved after a few Picard iterations. We verified this hybrid method by comparing numerical results to those obtained by a backward Monte Carlo calculation. We carried out a demonstration calculation by simulating the Titan haze reflected intensity land Stokes parameter Q and degree of linear polarization at 934.8 nm wavelength. Comparison of the I and Q images to those measured by the Imaging Science Subsystem instrument on the Cassini spacecraft shows the hybrid method to be useful for radiative transfer analyses for (both optically and physically) thick spherical atmospheres. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Xu, Feng; West, Robert A.; Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Xu, Feng] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. RP Xu, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Feng.Xu@jpl.nasa.gov RI Xu, Feng/G-3673-2013 FU National Aeronautics and Space Administration FX This work was done at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. One of the authors (F. Xu) is grateful to Professor Larry Esposito at the University of Colorado for assistance during his pursuit of developing the Markov chain formalism for polarized reflectance computation for plane-parallel atmosphere, and Dr. Philip Dumont at the Jet Propulsion Laboratory for some helpful discussions regarding the iterative method for modeling radiative transfer in Titan's atmosphere. We thank the anonymous reviewers for their thorough evaluation and constructive comments for improving the paper. NR 36 TC 4 Z9 4 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2013 VL 117 BP 59 EP 70 DI 10.1016/j.jqsrt.2012.10.013 PG 12 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 095VF UT WOS:000315362400006 ER PT J AU Norbury, JW AF Norbury, John W. TI Light ion and multiple nucleon removal due to electromagnetic dissociation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electromagnetic dissociation; Light ions; Space radiation ID PHOTONEUTRON CROSS-SECTIONS; RELATIVISTIC HEAVY-IONS; GIANT DIPOLE RESONANCE; AU-197 TARGETS; PHOTO-NEUTRON; COULOMB DISSOCIATION; FRAGMENTATION MODEL; COLLISIONS; PROJECTILES; EMISSION AB Light ion (H and He isotopes) and neutron production in galactic cosmic ray interactions are important for space radiation analyses. They occur via strong or electromagnetic dissociation (EMD) interactions. A parameterization for single nucleon, multiple nucleon and light ion production in EMD is developed in this paper. It supersedes the previous work in the following ways. Firstly, the calculations are compared to a more extensive set of experimental data. Secondly, EMD calculations for alpha particle production are in better agreement with experiment. Thirdly, a parameterization of multiple nucleon removal is developed and compared to data. Overall, the present work includes more reactions and compares better to experimental data than previous work. Published by Elsevier B.V. C1 NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Norbury, JW (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM john.w.norbury@nasa.gov NR 57 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2013 VL 703 BP 220 EP 243 DI 10.1016/j.nima.2012.10.027 PG 24 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 086KY UT WOS:000314683700032 ER PT J AU Little, MP Azizova, TV Bazyka, D Bouffler, SD Cardis, E Chekin, S Chumak, VV Cucinotta, FA de Vathaire, F Hall, P Harrison, JD Hildebrandt, G Ivanov, V Kashcheev, VV Klymenko, SV Laurent, O Ozasa, K Tapio, S Taylor, AM Tzoulaki, I Vandoolaeghe, WL Wakeford, R Zablotska, L Zhang, W Lipshultz, SE AF Little, Mark P. Azizova, Tamara V. Bazyka, Dimitry Bouffler, Simon D. Cardis, Elisabeth Chekin, Sergey Chumak, Vadim V. Cucinotta, Francis A. de Vathaire, Florent Hall, Per Harrison, John D. Hildebrandt, Guido Ivanov, Victor Kashcheev, Valeriy V. Klymenko, Sergiy V. Laurent, Olivier Ozasa, Kotaro Tapio, Soile Taylor, Andrew M. Tzoulaki, Ioanna Vandoolaeghe, Wendy L. Wakeford, Richard Zablotska, Lydia Zhang, Wei Lipshultz, Steven E. TI Comment on "Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors" (Radiat. Environ. Biophys (2012) 51:165-178) by Schollnberger et al. SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Letter ID CIRCULATORY DISEASE; IONIZING-RADIATION; EXPOSURE C1 [Little, Mark P.] NCI, Radiat Epidemiol Branch, Rockville, MD 20852 USA. [Azizova, Tamara V.] Southern Urals Biophys Inst, Ozyorsk, Russia. [Bouffler, Simon D.; Chumak, Vadim V.; Klymenko, Sergiy V.] Res Ctr Radiat Med, Kiev, Ukraine. [Bouffler, Simon D.; Harrison, John D.; Zhang, Wei] Hlth Protect Agcy, Ctr Radiat Chem & Environm Hazards, Chilton, England. [Cardis, Elisabeth] Ctr Res Environm Epidemiol CREAL, Barcelona, Spain. [Chekin, Sergey; Ivanov, Victor; Kashcheev, Valeriy V.] Russian Acad Med Sci, Med Radiol Res Ctr, Obninsk, Russia. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Radiat Hlth Off, Houston, TX 77058 USA. [de Vathaire, Florent] Inst Gustave Roussy, INSERM, Unite U1018, Radiat Epidemiol Grp, F-94805 Villejuif, France. [Hall, Per] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden. [Hildebrandt, Guido] Univ Rostock, Dept Radiotherapy & Radiat Oncol, D-18055 Rostock, Germany. [Laurent, Olivier] Univ Calif Irvine, Coll Hlth Sci, Program Publ Hlth, Irvine, CA USA. [Laurent, Olivier] LEPID, SRBE, PRP HOM, IRSN,Lab Epidemiol, Fontenay Aux Roses, France. [Ozasa, Kotaro] Radiat Effects Res Fdn, Dept Epidemiol, Hiroshima, Japan. [Tapio, Soile] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Radiat Biol ISB, Oberschleissheim, Germany. [Taylor, Andrew M.] UCL Inst Cardiovasc Sci, London, England. [Taylor, Andrew M.] Great Ormond St Hosp Sick Children, London WC1N 3JH, England. [Tzoulaki, Ioanna; Vandoolaeghe, Wendy L.] Univ London Imperial Coll Sci Technol & Med, Fac Med, Dept Epidemiol & Biostat, London, England. [Wakeford, Richard] Univ Manchester, Dalton Nucl Inst, Manchester, Lancs, England. [Zablotska, Lydia] Univ Calif San Francisco, Sch Med, Dept Epidemiol & Biostat, San Francisco, CA USA. [Lipshultz, Steven E.] Univ Miami, Dept Pediat, Leonard M Miller Sch Med, Miami, FL 33152 USA. RP Little, MP (reprint author), NCI, Radiat Epidemiol Branch, Executive Plaza South,6120 Executive Blvd MSC 723, Rockville, MD 20852 USA. EM mark.little@nih.gov RI Tapio, Soile/M-7358-2014; Kashcheev, Valeriy/L-7794-2015; Chumak, Vadim/N-6960-2015; Ivanov, Victor/R-9385-2016; Cardis, Elisabeth/C-3904-2017; OI Klymenko, Sergiy/0000-0002-9758-7316; Little, Mark/0000-0003-0980-7567; Tapio, Soile/0000-0001-9860-3683; Kashcheev, Valeriy/0000-0003-4108-9761; Chumak, Vadim/0000-0001-6045-9356; Ivanov, Victor/0000-0003-1372-0018; Bazyka, Dimitry/0000-0001-9982-5990; Wakeford, Richard/0000-0002-2934-0987 NR 10 TC 6 Z9 6 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD MAR PY 2013 VL 52 IS 1 BP 157 EP 159 DI 10.1007/s00411-012-0453-6 PG 3 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 096DU UT WOS:000315385100017 PM 23296519 ER PT J AU Aartsen, MG Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beattie, K Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohaichuk, S Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Bruijn, R Brunner, J Carson, M Casey, J Casier, M Chirkin, D Christy, B Clark, K Clevermann, F Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C De Ridder, S Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Dunkman, M Eagan, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Goodman, JA Gora, D Grant, D Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Hanson, K Heereman, D Heimann, P Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jlelati, O Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Landsman, H Larson, MJ Lauer, R Lesiak-Bzdak, M Unemann, JL Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L Pepper, JA de los Heros, CP Pieloth, D Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonherr, L Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Seo, SH Sestayo, Y Seunarine, S Sheremata, C Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zilles, A Zoll, M AF Aartsen, M. G. Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beattie, K. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohaichuk, S. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Bruijn, R. Brunner, J. Carson, M. Casey, J. Casier, M. Chirkin, D. Christy, B. Clark, K. Clevermann, F. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. De Ridder, S. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Dunkman, M. Eagan, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Goodman, J. A. Gora, D. Grant, D. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heimann, P. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jlelati, O. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Landsman, H. Larson, M. J. Lauer, R. Lesiak-Bzdak, M. Unemann, J. L. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Pepper, J. A. de los Heros, C. Perez Pieloth, D. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenherr, L. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Seo, S. H. Sestayo, Y. Seunarine, S. Sheremata, C. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Stroem, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zilles, A. Zoll, M. CA IceCube Collaboration TI OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; cosmic rays ID ARRIVAL DIRECTIONS; ICECUBE; ASTRONOMY; SPECTRUM AB We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10(-3) level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46(stat) +/- 0.52(sys)) x 10(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38(stat) +/- 0.96(sys)) x 10(-3). C1 [Aartsen, M. G.; Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; De Ridder, S.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Baum, V.; Koepke, L.; Kroll, G.; Unemann, J. L.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium. [Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bell, M.; Clark, K.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Boersma, D. J.; Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bohaichuk, S.; Grant, D.; Nowicki, S. C.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bose, D.; Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund, Dept Phys, D-44221 Dortmund, Germany. [Cowen, D. F.; Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Aartsen, MG (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. RI Taavola, Henric/B-4497-2011; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Hallgren, Allan/A-8963-2013; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015 OI Taavola, Henric/0000-0002-2604-2810; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236 FU US National Science Foundation-Office of Polar Programs; US National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; US Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Programs, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. NR 26 TC 39 Z9 40 U1 1 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 55 DI 10.1088/0004-637X/765/1/55 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900055 ER PT J AU Ackerman, AS Marley, MS AF Ackerman, Andrew S. Marley, Mark S. TI PRECIPITATING CONDENSATION CLOUDS IN SUBSTELLAR ATMOSPHERES (vol 556, pg 872, 2001) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Ackerman, Andrew S.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Marley, Mark S.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. RP Ackerman, AS (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM andrew.ackerman@nasa.gov; mark.s.marley@nasa.gov RI Marley, Mark/I-4704-2013; Ackerman, Andrew/D-4433-2012 OI Ackerman, Andrew/0000-0003-0254-6253 NR 3 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 75 DI 10.1088/0004-637X/765/1/75 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900075 ER PT J AU Ackermann, M Ajello, M Allafort, A Asano, K Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bloom, ED Bonamente, E Borgland, AW Bottacini, E Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Burnett, TH Busetto, G Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Charles, E Chaty, S Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Conrad, J Cutini, S D'Ammando, F de Palma, F Dermer, CD Silva, EDE Drell, S Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Hou, X Hughes, RE Jackson, MS Jogler, T Johannesson, G Johnson, RP Johnson, AS Kamae, T Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Lavalley, C Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Mazziotta, MN McConville, W McEnery, JE Mehault, J Michelson, PF Mignani, RP Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nemmen, R Nishino, S Norris, JP Nuss, E Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Panetta, JH Pelassa, V Perkins, JS Pesce-Rollins, M Pierbattista, M Piron, F Pivato, G Poon, H Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reyes, LC Ritz, S Rochester, LS Romoli, C Roth, M Sanchez, DA Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Snyder, A Spandre, G Spinelli, P Stephens, TE Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tibolla, O Tinivella, M Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V von Kienlin, A Waite, AP Wallace, E Weltevrede, P Winer, BL Wood, KS Wood, M Yang, Z Zimmer, S AF Ackermann, M. Ajello, M. Allafort, A. Asano, K. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Busetto, G. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Charles, E. Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Conrad, J. Cutini, S. D'Ammando, F. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hou, X. Hughes, R. E. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, R. P. Johnson, A. S. Kamae, T. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lavalley, C. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McConville, W. McEnery, J. E. Mehault, J. Michelson, P. F. Mignani, R. P. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nemmen, R. Nishino, S. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Pelassa, V. Perkins, J. S. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pivato, G. Poon, H. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reyes, L. C. Ritz, S. Rochester, L. S. Romoli, C. Roth, M. Sanchez, D. A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Snyder, A. Spandre, G. Spinelli, P. Stephens, T. E. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tibolla, O. Tinivella, M. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. von Kienlin, A. Waite, A. P. Wallace, E. Weltevrede, P. Winer, B. L. Wood, K. S. Wood, M. Yang, Z. Zimmer, S. TI DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: halos; gamma rays: galaxies; instrumentation: detectors; intergalactic medium ID EXTRAGALACTIC MAGNETIC-FIELDS; VHE GAMMA-RAYS; TEV BLAZARS; BACKGROUND LIGHT; SPACE-TELESCOPE; SOURCE CATALOG; 1ES 0229+200; PULSAR; CONSTRAINTS; DISCOVERY AB The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from approximate to 20 MeV to > 300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of gamma rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of gamma-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low-and high-redshift BL Lac AGNs and the TeV blazars 1ES0229 + 200 and 1ES0347-121. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Snyder, A.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Snyder, A.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Razzano, M.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Razzano, M.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Pivato, G.; Poon, H.; Rando, R.; Romoli, C.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; D'Ammando, F.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Brandt, T. J.; Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, F-31028 Toulouse, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.] Inst Ciencies Espai IEEE CSIC, E-08193 Barcelona, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cillis, A. N.] Inst Astron & Fis Espacio, Parbellon IAFE, RA-1428 Buenos Aires, DF, Argentina. [Cillis, A. N.; Ferrara, E. C.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Nemmen, R.; Perkins, J. S.; Stephens, T. E.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Lavalley, C.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France. [Colafrancesco, S.; Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Conrad, J.; Larsson, S.; Yang, Z.; Zimmer, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Larsson, S.; Yang, Z.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Fukazawa, Y.; Nishino, S.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grandi, P.] INAF IASF Bologna, I-40129 Bologna, Italy. [Guiriec, S.; Pelassa, V.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hou, X.; Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.] Royal Inst Technol KTH, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mignani, R. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.; Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA. [Sanchez, D. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stephens, T. E.] Wyle Labs, El Segundo, CA 90245 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM mar0@uw.edu; mdwood@slac.stanford.edu RI Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Orlando, E/R-5594-2016; Tosti, Gino/E-9976-2013; Moskalenko, Igor/A-1301-2007; Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012 OI orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Mazziotta, Mario /0000-0001-9325-4672; Stephens, Thomas/0000-0003-3065-6871; Grandi, Paola/0000-0003-1848-6013; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Moskalenko, Igor/0000-0001-6141-458X; Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888 FU K. A. Wallenberg Foundation; Commonwealth Government; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. We thank our colleagues for their assistance with the radio timing observations.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 41 TC 25 Z9 25 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 54 DI 10.1088/0004-637X/765/1/54 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900054 ER PT J AU Burlaga, LF Ness, NF AF Burlaga, L. F. Ness, N. F. TI MAGNETIC FIELD STRENGTH FLUCTUATIONS AND THE q-TRIPLET IN THE HELIOSHEATH: VOYAGER 2 OBSERVATIONS FROM 91.0 TO 94.2 AU AT LATITUDE 30 degrees S SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; turbulence; waves ID NONEXTENSIVE STATISTICAL-MECHANICS; SOLAR-WIND; TURBULENCE; MULTIFRACTALS; ACCELERATION; HELIOSPHERE; FRACTALS; PLASMA; MODEL AB Voyager 2 (V2) was in the heliosheath during 2010, at (91.0-94.2) AU from the Sun and at the latitudes (28 degrees.8-29 degrees.3 S) AU, observing solar wind that left the Sun during 2009, when solar activity was very low. There was no feature in B(t) associated with the changes in the plasma parameters observed near 2010.4. The CR-B relation was satisfied. The fluctuations of daily averages of B showed (1) a Gaussian distribution of B, (2) a q-Gaussian of the daily increments of B with q = 1.6, (3) a power-law correlation of B on scales from 1 to 16 days, (4) multifractal structure of B on scales from 1 to 8 days, and (5) a 1/f spectrum of B on scales from 1 to 100 days. The amplitude of the compressive microscale fluctuations of B during several hours on each day is described by the standard deviation (SD) of the 48 s averages of B during the day. Items 2, 3, and 4 determine a "q-triplet" in the heliosheath. Large-scale fluctuations of SD show (1) a lognormal distribution of SD; (2) an average value of SD = 0.19, 20% of the average B; (3) a q-Gaussian distribution of the increments of SD with q = 1.4; (4) a power-law correlation on scales from 1 to 16 days; and (5) a 1/f spectrum on scales from 1 to 100 days. The heliosheath was in a quasi-stationary, metastable equilibrium state with well-defined structure over a wide range of scales near V2 during 2010. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Code 673, Greenbelt, MD 20771 USA. EM lburlagahsp@verizon.net; nfnudel@yahoo.com FU [NNX10AU53G] FX The data in this paper are from the magnetic field experiment on Voyager 2. N.F.N. was partially supported by grant NNX10AU53G to the Catholic University of America. McClanahan and S. Kramer carried out the processing of the data. The mag-rolls and "0-offset tables" were computed by D. Berdichevsky. NR 48 TC 10 Z9 10 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 35 DI 10.1088/0004-637X/765/1/35 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900035 ER PT J AU Howard, TA Tappin, SJ Odstrcil, D DeForest, CE AF Howard, T. A. Tappin, S. J. Odstrcil, D. DeForest, C. E. TI THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; solar-terrestrial relations; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: heliosphere ID CORONAL MASS EJECTIONS; SOLAR-WIND; STREAMER BLOBS; IMAGER SMEI; BRIGHTNESS; TRANSIENTS AB In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features. C1 [Howard, T. A.; DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA. [Tappin, S. J.] Natl Solar Observ, Sunspot, NM 88349 USA. [Odstrcil, D.] George Mason Univ, Fairfax, VA 22030 USA. [Odstrcil, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Howard, TA (reprint author), SW Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM howard@boulder.swri.edu FU Southwest Research institute; NSF/SHINE Competition [0849916]; USAF; AFOSR/MURI project FX Support for this work was provided by an internal grant from the Southwest Research institute and partly by the NSF/SHINE Competition, Award 0849916. S.J.T. is supported at NSO by the USAF under a Memorandum of Agreement. D.O. was partially supported by the AFOSR/MURI project. NR 36 TC 10 Z9 10 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 45 DI 10.1088/0004-637X/765/1/45 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900045 ER PT J AU Menanteau, F Sifon, C Barrientos, LF Battaglia, N Bond, JR Crichton, D Das, S Devlin, MJ Dicker, S Dunner, R Gralla, M Hajian, A Hasselfield, M Hilton, M Hincks, AD Hughes, JP Infante, L Kosowsky, A Marriage, TA Marsden, D Moodley, K Niemack, MD Nolta, MR Page, LA Partridge, B Reese, ED Schmitt, BL Sievers, J Spergel, DN Staggs, ST Switzer, E Wollack, EJ AF Menanteau, Felipe Sifon, Cristobal Felipe Barrientos, L. Battaglia, Nicholas Bond, J. Richard Crichton, Devin Das, Sudeep Devlin, Mark J. Dicker, Simon Duenner, Rolando Gralla, Megan Hajian, Amir Hasselfield, Matthew Hilton, Matt Hincks, Adam D. Hughes, John P. Infante, Leopoldo Kosowsky, Arthur Marriage, Tobias A. Marsden, Danica Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Partridge, Bruce Reese, Erik D. Schmitt, Benjamin L. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Switzer, Eric Wollack, Edward J. TI THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES OF SUNYAEV-ZEL'DOVICH EFFECT CLUSTERS ON THE CELESTIAL EQUATOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: distances and redshifts; large-scale structure of Universe ID DIGITAL SKY SURVEY; DARK-ENERGY CONSTRAINTS; MASSIVE GALAXY CLUSTERS; GREATER-THAN 1; DATA RELEASE; SCALING RELATIONS; ABELL CLUSTERS; SQUARE DEGREES; T RELATION; SAMPLE AB We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg(2) centered on the celestial equator, is divided into two regions. The main region uses 270 deg(2) of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z approximate to 1.3, of which 22 (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z approximate to 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT(X) = 7.9 +/- 1.0 keV and combined mass of M-200a = 8.2(-2.5)(+3.3) x 10(14) h(70)(-1) M-circle dot, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M-200a = 1.9(-0.4)(+0.6) x 10(15) h(70)(-1) M-circle dot, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster. C1 [Menanteau, Felipe; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Sifon, Cristobal; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Battaglia, Nicholas] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R.; Switzer, Eric] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Crichton, Devin; Gralla, Megan; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Das, Sudeep] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Devlin, Mark J.; Dicker, Simon; Reese, Erik D.; Schmitt, Benjamin L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Durban, South Africa. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Marsden, Danica] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Niemack, Michael D.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Page, Lyman A.; Sievers, Jon; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Menanteau, F (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. RI Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Sifon, Cristobal/0000-0002-8149-1352 FU U.S. National Science Foundation [AST-0408698, AST-0965625]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); CONICYT; Chandra grants [GO1-12008X, GO1-13156X]; NASA ADAP [NNX11AJ48G]; CFI under Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; SDSS-III Collaboration; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); [PHY-0855887]; [PHY-1214379]; [AST-0707731] FX This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, and PHY-0855887, PHY-1214379, and AST-0707731. Funding was also provided by Princeton University, the University of Pennsylvania, a Canada Foundation for Innovation (CFI) award to UBC, and CONICYT awards to PUC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Chandra and XMM-Newton X-ray studies on ACT clusters at Rutgers are supported by Chandra grants GO1-12008X, GO1-13156X and NASA ADAP grant NNX11AJ48G, respectively. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and the University of Toronto.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 91 TC 18 Z9 18 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 67 DI 10.1088/0004-637X/765/1/67 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900067 ER PT J AU Moyerman, S Bierman, E Ade, PAR Aiken, R Barkats, D Bischoff, C Bock, JJ Chiang, HC Dowell, CD Duband, L Hivon, EF Holzapfel, WL Hristov, VV Jones, WC Kaufman, J Keating, BG Kovac, JM Kuo, CL Leitch, EM Mason, PV Matsumura, T Nguyen, HT Ponthieu, N Pryke, C Richter, S Rocha, G Sheehy, C Takahashi, YD Tolan, JE Wollack, E Yoon, KW AF Moyerman, S. Bierman, E. Ade, P. A. R. Aiken, R. Barkats, D. Bischoff, C. Bock, J. J. Chiang, H. C. Dowell, C. D. Duband, L. Hivon, E. F. Holzapfel, W. L. Hristov, V. V. Jones, W. C. Kaufman, J. Keating, B. G. Kovac, J. M. Kuo, C. L. Leitch, E. M. Mason, P. V. Matsumura, T. Nguyen, H. T. Ponthieu, N. Pryke, C. Richter, S. Rocha, G. Sheehy, C. Takahashi, Y. D. Tolan, J. E. Wollack, E. Yoon, K. W. TI SCIENTIFIC VERIFICATION OF FARADAY ROTATION MODULATORS: DETECTION OF DIFFUSE POLARIZED GALACTIC EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: structure; instrumentation: polarimeters; techniques: polarimetric ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND TEMPERATURE; ANGULAR SCALE INTERFEROMETER; SOUTH-POLE TELESCOPE; POWER SPECTRUM; 2003 FLIGHT; ANISOTROPY; QUAD; POLARIMETRY; MAPS AB The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs. C1 [Moyerman, S.; Bierman, E.; Kaufman, J.; Keating, B. G.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92037 USA. [Ade, P. A. R.] Univ Wales Coll Cardiff, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Aiken, R.; Hristov, V. V.; Jones, W. C.; Mason, P. V.; Richter, S.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Barkats, D.] ESO, Joint ALMA Observ, Santiago, Chile. [Bischoff, C.; Kovac, J. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bock, J. J.; Dowell, C. D.; Nguyen, H. T.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chiang, H. C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Duband, L.] Commissariat Energie Atom Apostrophe, SBT, F-38054 Grenoble, France. [Hivon, E. F.] Inst Astrophys, F-75014 Paris, France. [Holzapfel, W. L.; Takahashi, Y. D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kuo, C. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Palo Alto, CA 94305 USA. [Kuo, C. L.; Tolan, J. E.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Leitch, E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Matsumura, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Ponthieu, N.] Univ Paris 11, Inst Astrophys Spaciale, F-91405 Orsay, France. [Pryke, C.; Sheehy, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Moyerman, S (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92037 USA. EM smoyerma@ucsd.edu RI Holzapfel, William/I-4836-2015; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Barkats, Denis/0000-0002-8971-1954; Bischoff, Colin/0000-0001-9185-6514; Hivon, Eric/0000-0003-1880-2733 FU American Association of University Women; NSF PECASE Award [AST-0548262]; NASA Science Mission Directorate via the US Planck project; NSF [OPP-0230438]; Caltech Discovery Fund; Caltech Presidents Fund [PF-471]; JPL Research and Technology Fund FX S.M. gratefully acknowledges the American Association of University Women for a fellowship supporting this research. B. G. K. also acknowledges NSF PECASE Award No. AST-0548262. G. R. gratefully acknowledges support by the NASA Science Mission Directorate via the US Planck project.; BICEP is supported by NSF grant OPP-0230438, Caltech Discovery Fund, Caltech Presidents Fund PF-471, JPL Research and Technology Fund, and the late J. Robinson. NR 57 TC 8 Z9 8 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 64 DI 10.1088/0004-637X/765/1/64 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900064 ER PT J AU Skillman, SW Xu, H Hallman, EJ O'Shea, BW Burns, JO Li, H Collins, DC Norman, ML AF Skillman, Samuel W. Xu, Hao Hallman, Eric J. O'Shea, Brian W. Burns, Jack O. Li, Hui Collins, David C. Norman, Michael L. TI COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF GALAXY CLUSTER RADIO RELICS: INSIGHTS AND WARNINGS FOR OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; cosmology: theory; magnetohydrodynamics (MHD); methods: numerical; radiation mechanisms: non-thermal ID ADAPTIVE MESH REFINEMENT; LARGE-SCALE STRUCTURE; ACTIVE GALACTIC NUCLEI; FIELD POWER SPECTRUM; MAGNETIC-FIELD; COSMIC-RAYS; SHOCK-WAVES; COMA CLUSTER; PARTICLE-ACCELERATION; FARADAY-ROTATION AB Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 x 10(7) K, rho similar to 10(-28)-10(-27) g cm(-3), with magnetic field strengths of 0.1-1.0 mu G, and shock Mach numbers of M similar to 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations. C1 [Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Xu, Hao; Li, Hui; Collins, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Hallman, Eric J.; Burns, Jack O.] NASA, LUNAR, Lunar Sci Inst, Ames Res Ctr, Moffett Field, CA 94089 USA. [Hallman, Eric J.] Tech X Corp, Boulder, CO 80303 USA. [O'Shea, Brian W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [O'Shea, Brian W.] Michigan State Univ, Lyman Briggs Coll, E Lansing, MI 48824 USA. [O'Shea, Brian W.] Michigan State Univ, Inst Cyber Enabled Res, E Lansing, MI 48824 USA. [Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Skillman, SW (reprint author), DOE Computat Sci, Washington, DC 20585 USA. EM samuel.skillman@colorado.edu RI Xu, Hao/B-8734-2014; Hui, Li/B-4166-2009 OI Xu, Hao/0000-0003-4084-9925; Hui, Li/0000-0002-7574-048X FU US National Science Foundation [AST-0807215, AST-1106437]; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308]; NASA ATFP program [NNX09AD80G, NNX12AC98G]; LANL; DOE/Office of Fusion Energy Science through CMSO; Advanced Simulation and Computing Program (ASC); NSF [AST-0808184]; NASA Lunar Science Institute [NNA09DB30A] FX The authors thank the referee for in-depth comments that led to a much improved paper. S. W. S thanks Matthias Hoeft and Marcus Bruggen for making their radio emission model available. E.J.H. and J.O.B. have been supported in part by grants from the US National Science Foundation (AST-0807215, AST-1106437). S. W. S. has been supported by a DOE Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308. B.W.O. has been supported in part by a grants from the NASA ATFP program (NNX09AD80G and NNX12AC98G). H. X. and H. L. are supported by the LDRD and IGPP programs at LANL and by DOE/Office of Fusion Energy Science through CMSO. D. C. gratefully acknowledges support from the Advanced Simulation and Computing Program (ASC) and LANL, which is operated by LANS, LLC for the NNSA. M.L.N. acknowledges NSF AST-0808184, which supported the MHD algorithm development. The computations utilized the institutional computing resources at LANL. Computations described in this work were performed using the Enzo code developed by the Laboratory for Computational Astrophysics at the University of California in San Diego (http://lca.ucsd.edu) and by a community of developers from numerous other institutions. We thank all the developers of the yt analysis toolkit and, in particular, Matthew Turk for developing the off-axis projection tool. We have used the cubehelix color scheme from Green (2011). The LUNAR Consortium (http://lunar.colorado.edu), headquartered at the University of Colorado, is funded by the NASA Lunar Science Institute (via cooperative agreement NNA09DB30A), and partially supported this research. NR 101 TC 39 Z9 39 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 21 DI 10.1088/0004-637X/765/1/21 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900021 ER PT J AU Weisskopf, MC Tennant, AF Arons, J Blandford, R Buehler, R Caraveo, P Cheung, CC Costa, E de Luca, A Ferrigno, C Fu, H Funk, S Habermehl, M Horns, D Linford, JD Lobanov, A Max, C Mignani, R O'Dell, SL Romani, RW Striani, E Tavani, M Taylor, GB Uchiyama, Y Yuan, YJ AF Weisskopf, Martin C. Tennant, Allyn F. Arons, Jonathan Blandford, Roger Buehler, Rolf Caraveo, Patrizia Cheung, Chi C. Costa, Enrico de Luca, Andrea Ferrigno, Carlo Fu, Hai Funk, Stefan Habermehl, Moritz Horns, Dieter Linford, Justin D. Lobanov, Andrei Max, Claire Mignani, Roberto O'Dell, Stephen L. Romani, Roger W. Striani, Edoardo Tavani, Marco Taylor, Gregory B. Uchiyama, Yasunobu Yuan, Yajie TI CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE 2011-APRIL GAMMA-RAY FLARE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: ISM; infrared: ISM; ISM: individual objects (Crab Nebula, M1); magnetic reconnection; radio continuum: ISM; X-rays: individual (Crab Nebula, M1) ID PULSAR WIND NEBULAE; MAGNETIC RECONNECTION; TERMINATION SHOCK; PARTICLE-ACCELERATION; SUPERNOVA-REMNANTS; SYNCHROTRON NEBULA; STANDARD CANDLE; PROPER MOTION; CURRENT SHEET; 2011 APRIL AB We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the gamma-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the "inner knot," i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the gamma-ray flares and suggest that the most dramatic gamma-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar. C1 [Weisskopf, Martin C.; Tennant, Allyn F.; O'Dell, Stephen L.] NASA, George C Marshall Space Flight Ctr, Astrophys Off ZP12, Huntsville, AL 35812 USA. [Arons, Jonathan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Arons, Jonathan] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Blandford, Roger; Funk, Stefan; Romani, Roger W.; Uchiyama, Yasunobu; Yuan, Yajie] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Blandford, Roger; Funk, Stefan; Romani, Roger W.; Uchiyama, Yasunobu; Yuan, Yajie] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Buehler, Rolf] DESY, D-15738 Zeuthen, Germany. [Caraveo, Patrizia; de Luca, Andrea] INAF IASF Milano, I-20133 Milan, Italy. [Caraveo, Patrizia; de Luca, Andrea] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Cheung, Chi C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Costa, Enrico; Striani, Edoardo; Tavani, Marco] INFN Roma Tor Vergata, I-00133 Rome, Italy. [Ferrigno, Carlo] Univ Geneva, Data Ctr Astrophys, ISDC, CH-1290 Versoix, Switzerland. [Fu, Hai] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Habermehl, Moritz; Horns, Dieter] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Linford, Justin D.; Taylor, Gregory B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lobanov, Andrei] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Max, Claire] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Mignani, Roberto] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mignani, Roberto] Univ Zielona Gora, Kepler Inst Astron, PL-65265 Zielona Gora, Poland. RP Weisskopf, MC (reprint author), NASA, George C Marshall Space Flight Ctr, Astrophys Off ZP12, Huntsville, AL 35812 USA. RI Funk, Stefan/B-7629-2015; OI Funk, Stefan/0000-0002-2012-0080; Max, Claire/0000-0003-0682-5436; O'Dell, Stephen/0000-0002-1868-8056; Caraveo, Patrizia/0000-0003-2478-8018; Costa, Enrico/0000-0003-4925-8523; De Luca, Andrea/0000-0001-6739-687X; Tavani, Marco/0000-0003-2893-1459 FU Chandra Program; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; NASA; NASA DPR [S-15633-Y] FX The work of M. C. W., S. L. O., and A. F. T. is supported by the Chandra Program. The Chandra data was obtained in response to a pre-approved target of opportunity request granted under Chandra Director's Discretionary Time. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. C. C. C., G. B. T., and J.D.L. thank Tim Hankins for useful discussions, and the NRAO scheduling committee for alerting us to the VLA TEST data and for their prompt consideration of our Director's Discretionary Time observations. C. C. C., G. B. T., and J.B.L. were supported in part by NASA through a Fermi cycle-3 guest investigator grant. In addition, work by C. C. C. at NRL is supported in part by NASA DPR S-15633-Y. Our analyses utilized software tools provided by the Chandra X-ray Center (CXC) in the application package CIAO and from the High-Energy Astrophysics Science Archive Research Center (HEASARC, operated by the NASA Goddard Space Flight Center, Greenbelt, MD, and by the Smithsonian Astrophysical Observatory, Cambridge, MA). NR 54 TC 22 Z9 23 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2013 VL 765 IS 1 AR 56 DI 10.1088/0004-637X/765/1/56 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 090CZ UT WOS:000314957900056 ER PT J AU Zhang, C Binienda, WK Morscher, GN Martin, RE Kohlman, LW AF Zhang, Chao Binienda, Wieslaw K. Morscher, Gregory N. Martin, Richard E. Kohlman, Lee W. TI Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Polymer-matrix composites (PMCs); Environmental degradation; Impact behaviour; Transverse cracking ID EPOXY COMPOSITES; MATRIX CRACKING; DAMAGE; ENVIRONMENTS; STRESSES AB The microcrack distribution and mass change in T700s/PR520 and T700s/3502 carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between 55 degrees C and 120 degrees C. Transverse microcrack morphology was investigated using X-ray computed tomography. The differing performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. By accounting for the obtained reduction of mechanical properties, a macro-mechanical finite element model was utilized to investigate the influence of microcracking on the high-speed impact behavior. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Zhang, Chao; Binienda, Wieslaw K.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. [Morscher, Gregory N.] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA. [Martin, Richard E.] Cleveland State Univ, Dept Mech Engn, Cleveland, OH 44115 USA. [Kohlman, Lee W.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zhang, C (reprint author), Univ Akron, Dept Civil Engn, 302 Buchtel Common, Akron, OH 44325 USA. EM cz14@zips.uakron.edu; wieslaw@uakron.edu; gm33@uakron.edu; Richard.e.martin-1@nasa.gov; lee.w.kohlman@nasa.gov RI Zhang, Chao/H-3397-2013 FU NASA Glenn Research Center FX We would like to thank NASA Glenn Research Center for their support on this work. The authors thank Dr. Robert Goldberg for his constructive comments on this manuscript. NR 27 TC 18 Z9 21 U1 7 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD MAR PY 2013 VL 46 BP 34 EP 44 DI 10.1016/j.compositesa.2012.10.006 PG 11 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 093EN UT WOS:000315174600005 ER PT J AU Simacek, P Advani, SG Gruber, M Jensen, B AF Simacek, Pavel Advani, Suresh G. Gruber, Mark Jensen, Brian TI A non-local void filling model to describe its dynamics during processing thermoplastic composites SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Polymer-matrix composites; Porosity; Tape ID TOW-PLACEMENT; CONSOLIDATION AB A model is developed to describe the void dynamics within thermoplastic composite tape during the tape placement process. The model relates the volatile pressure in voids, the applied compaction load, fiber bed response and the resin pressure due to squeeze-flow of resin from resin-rich regions to fill void regions. This model relies on some geometric simplifications, but incorporates the relevant physical phenomena. This void consolidation model was implemented in a numerical code which predicts the void development during the process. The initial void geometry can be introduced either manually, using a random generation algorithm or from actual processed tape micrographs. The model predicts that the final void content depends on the original void content but also on the initial void distribution. Presented results analyze the influence of void distribution on tape consolidation. Limitations of the consolidation process rate by the resin squeeze flow pressures are clearly demonstrated. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Simacek, Pavel; Advani, Suresh G.] Univ Delaware, Ctr Composite Mat, Newark, DE 19716 USA. [Simacek, Pavel; Advani, Suresh G.] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA. [Gruber, Mark] Accudyne Syst Inc, Newark, DE 19702 USA. [Jensen, Brian] Natl Aeronaut & Space Adm Hampton, Langley Res Ctr, Hampton, VA 23681 USA. RP Simacek, P (reprint author), Univ Delaware, Ctr Composite Mat, Newark, DE 19716 USA. EM psimacek@udel.edu FU Accudyne Systems, Inc.; National Aeronautics and Space Administration [NNX090371C] FX The material is based upon work supported by Accudyne Systems, Inc. and the National Aeronautics and Space Administration under Contract No. NNX090371C. NR 13 TC 5 Z9 5 U1 2 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD MAR PY 2013 VL 46 BP 154 EP 165 DI 10.1016/j.compositesa.2012.10.015 PG 12 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 093EN UT WOS:000315174600019 ER PT J AU Stueken, EE Anderson, RE Bowman, JS Brazelton, WJ Colangelo-Lillis, J Goldman, AD Som, SM Baross, JA AF Stueeken, E. E. Anderson, R. E. Bowman, J. S. Brazelton, W. J. Colangelo-Lillis, J. Goldman, A. D. Som, S. M. Baross, J. A. TI Did life originate from a global chemical reactor? SO GEOBIOLOGY LA English DT Review ID MID-ATLANTIC RIDGE; BANDED IRON FORMATIONS; TRANSITION-METAL SULFIDES; CITY HYDROTHERMAL FIELD; EARLY EARTH ATMOSPHERE; PRIMORDIAL OIL-SLICK; AMINO-ACIDS; PREBIOTIC SYNTHESIS; WESTERN-AUSTRALIA; PILBARA-CRATON AB Many decades of experimental and theoretical research on the origin of life have yielded important discoveries regarding the chemical and physical conditions under which organic compounds can be synthesized and polymerized. However, such conditions often seem mutually exclusive, because they are rarely encountered in a single environmental setting. As such, no convincing models explain how living cells formed from abiotic constituents. Here, we propose a new approach that considers the origin of life within the global context of the Hadean Earth. We review previous ideas and synthesize them in four central hypotheses: (i) Multiple microenvironments contributed to the building blocks of life, and these niches were not necessarily inhabitable by the first organisms; (ii) Mineral catalysts were the backbone of prebiotic reaction networks that led to modern metabolism; (iii) Multiple local and global transport processes were essential for linking reactions occurring in separate locations; (iv) Global diversity and local selection of reactants and products provided mechanisms for the generation of most of the diverse building blocks necessary for life. We conclude that no single environmental setting can offer enough chemical and physical diversity for life to originate. Instead, any plausible model for the origin of life must acknowledge the geological complexity and diversity of the Hadean Earth. Future research may therefore benefit from identifying further linkages between organic precursors, minerals, and fluids in various environmental contexts. C1 [Stueeken, E. E.; Som, S. M.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Stueeken, E. E.; Anderson, R. E.; Bowman, J. S.; Brazelton, W. J.; Colangelo-Lillis, J.; Goldman, A. D.; Som, S. M.; Baross, J. A.] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. [Anderson, R. E.; Bowman, J. S.; Brazelton, W. J.; Colangelo-Lillis, J.; Baross, J. A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Goldman, A. D.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Colangelo-Lillis, J.] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2T5, Canada. [Goldman, A. D.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. [Som, S. M.] Blue Marble Space Inst Sci, Seattle, WA USA. [Som, S. M.] NASA, Exobiol Branch, Ames Res Ctr, Mountain View, CA USA. RP Stueken, EE (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. EM evast@u.washington.edu FU NSF; NASA Astrobiology Institute [NNA04CC09A] FX Funding was provided by an NSF Interdisciplinary Graduate Education and Research Training (IGERT) grant and a NASA Astrobiology Institute grant through Cooperative Agreement NNA04CC09A to the Geophysical Laboratory at the Carnegie Institution for Science. We thank Roger Buick for helpful comments on an earlier version of this manuscript, as well as Bob Hazen and two anonymous reviewers whose input greatly improved the paper. NR 274 TC 19 Z9 23 U1 7 U2 169 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD MAR PY 2013 VL 11 IS 2 BP 101 EP 126 DI 10.1111/gbi.12025 PG 26 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 090HZ UT WOS:000314971400001 PM 23331348 ER PT J AU Radhakrishnan, S Bellan, J AF Radhakrishnan, Senthilkumaran Bellan, Josette TI Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of two-phase volumetrically dilute flow with evaporation SO JOURNAL OF FLUID MECHANICS LA English DT Article DE multiphase and particle-laden flows; turbulence modelling; turbulence simulation ID DIRECT NUMERICAL-SIMULATION; MIXING LAYER LADEN; SUBGRID-SCALE; BOUNDARY-CONDITIONS; DROPS; PARTICLES; STRESS; MODELS AB Predictions from conventional large-eddy simulation (LES) are known to be grid-spacing and spatial-discretization-order dependent. In a previous article (Radhakrishnan & Bellan, J. Fluid Mech., vol. 697, 2012 a, pp. 399-435), we reformulated LES for compressible single-phase flow by explicitly filtering the nonlinear terms in the governing equations so as to render the solution grid-spacing and discretization-order independent. Having shown in Radhakrishnan & Bellan (2012 a) that the reformulated LES, which we call EFLES, yields grid-spacing-independent and discretization-order-independent solutions for compressible single-phase flow, we explore here the potential of EFLES for evaporating two-phase flow where the small scales have an additional origin compared to single-phase flow. Thus, we created a database through direct numerical simulation (DNS) that when filtered serves as a template for comparisons with both conventional LES and EFLES. Both conventional LES and EFLES are conducted with two gas-phase SGS models; the drop-field SGS model is the same in all these simulations. For EFLES, we also compared simulations performed with the same SGS model for the gas phase but two different drop-field SGS models. Moreover, to elucidate the influence of explicit filtering versus gas-phase SGS modelling, EFLES with two drop-field SGS models but no gas-phase SGS models were conducted. The results from all these simulations were compared to those from DNS and from the filtered DNS (FDNS). Similar to the single-phase flow findings, the conventional LES method yields solutions which are both grid-spacing and spatial-discretization-order dependent. The EFLES solutions are found to be grid-spacing independent for sufficiently large filter-width to grid-spacing ratio, although for the highest discretization order this ratio is larger in the two-phase flow compared to the single-phase flow. For a sufficiently fine grid, the results are also discretization-order independent. The absence of a gas-phase SGS model leads to build-up of energy near the filter cut-off indicating that while explicit filtering removes energy above the filter width, it does not provide the correct dissipation at the scales smaller than this width. A wider viewpoint leads to the conclusion that although the minimum filter-width to grid-spacing ratio necessary to obtain the unique grid-independent solution might be different for various discretization-order schemes, the grid-independent solution thus obtained is also discretization-order independent. C1 [Radhakrishnan, Senthilkumaran; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bellan, Josette] CALTECH, Pasadena, CA 91125 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM josette.bellan@jpl.nasa.gov RI Radhakrishnan, Senthilkumaran/E-6101-2010 OI Radhakrishnan, Senthilkumaran/0000-0001-7595-4210 FU NASA Glenn Research Center; NASA Exploration Systems Mission Directorate/Advanced Capabilities Division FX This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology and sponsored by the National Aeronautics and Space Administration (NASA) under the Fundamental Aeronautics Program, Subsonic Wing Program from NASA Glenn Research Center with Drs D. Bulzan and N.-S. Liu serving as program monitors and by the NASA Exploration Systems Mission Directorate/Advanced Capabilities Division under the LASER program. The computational resources were provided by the JPL Supercomputing Center and by the NASA AMES Supercomputing Center. NR 40 TC 3 Z9 4 U1 2 U2 18 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD MAR PY 2013 VL 719 BP 230 EP 267 DI 10.1017/jfm.2013.3 PG 38 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 091XB UT WOS:000315082000011 ER PT J AU Jahanshahi, MR Masri, SF AF Jahanshahi, Mohammad R. Masri, Sami F. TI A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation SO SMART MATERIALS AND STRUCTURES LA English DT Article ID CONCRETE STRUCTURES; IMAGES; CLASSIFICATION; INSPECTION; SYSTEM AB In mechanical, aerospace and civil structures, cracks are important defects that can cause catastrophes if neglected. Visual inspection is currently the predominant method for crack assessment. This approach is tedious, labor-intensive, subjective and highly qualitative. An inexpensive alternative to current monitoring methods is to use a robotic system that could perform autonomous crack detection and quantification. To reach this goal, several image-based crack detection approaches have been developed; however, the crack thickness quantification, which is an essential element for a reliable structural condition assessment, has not been sufficiently investigated. In this paper, a new contact-less crack quantification methodology, based on computer vision and image processing concepts, is introduced and evaluated against a crack quantification approach which was previously developed by the authors. The proposed approach in this study utilizes depth perception to quantify crack thickness and, as opposed to most previous studies, needs no scale attachment to the region under inspection, which makes this approach ideal for incorporation with autonomous or semi-autonomous mobile inspection systems. Validation tests are performed to evaluate the performance of the proposed approach, and the results show that the new proposed approach outperforms the previously developed one. C1 [Jahanshahi, Mohammad R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Masri, Sami F.] Univ So Calif, Sonny Astani Dept Civil & Environm Engn, Los Angeles, CA 90089 USA. RP Jahanshahi, MR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mohammad@caltech.edu; masri@usc.edu FU US National Science Foundation FX This study was supported in part by grants from the US National Science Foundation. NR 36 TC 7 Z9 7 U1 3 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 J9 SMART MATER STRUCT JI Smart Mater. Struct. PD MAR PY 2013 VL 22 IS 3 AR 035019 DI 10.1088/0964-1726/22/3/035019 PG 12 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 091AA UT WOS:000315019900020 ER PT J AU Mandelman, JW Cicia, AM Ingram, GW Driggers, WB Coutre, KM Sulikowski, JA AF Mandelman, J. W. Cicia, A. M. Ingram, G. W., Jr. Driggers, W. B., III Coutre, K. M. Sulikowski, J. A. TI Short-term post-release mortality of skates (family Rajidae) discarded in a western North Atlantic commercial otter trawl fishery SO FISHERIES RESEARCH LA English DT Article DE Skate; Trawl; Tow; Post-release; Discard; Mortality ID PACIFIC HALIBUT; SURVIVAL; EXPOSURE; BYCATCH; CAUGHT; AGE; GROWTH; MAINE; GULF; AIR AB Due to market and regulatory factors, Rajidae skates are routinely discarded by commercial otter trawlers in the western North Atlantic. Accounting for post-release mortality is therefore essential to total fishing mortality estimates, stock status and management of this group of fishes. However, despite a presumed species-specific range in tolerance, few studies have investigated the short-term post-release mortality among skates indigenous to the western North Atlantic following capture by mobile fishing gears, and never in the Gulf of Maine. This study addresses this shortfall for the prohibited thorny skate, Amblyraja radiate and smooth skate, Malacoraja senta, and the targeted winter skate, Leucoraja ocellata, and little skate, Leucoraja erinacea. Of 1288 skates evaluated, negligible immediate mortality was observed at the time of capture, even in relation to the largest catches and/or most prolonged tows. However, injury frequency was moderate, with highest levels in the smooth (60%) and thorny (52%) skates. Aside from the smooth skate (59%), 72 h mortality rates were low overall (19% across all species when accounting tow durations indicative of the fishery), with the winter skate (8%) exhibiting the lowest levels. Logistic regression modeling revealed tow duration as the most universal predictor of condition and 72 h mortality, while catch biomass, sex, temperature changes, and animal size also held influence in certain species. Although in general the studied species appear more resilient to trawl capture and handling than previously estimated, interspecific differences must be accounted for when managing this group. (C) 2012 Elsevier B.V. All rights reserved. C1 [Mandelman, J. W.] New England Aquarium, John H Prescott Marine Lab, Boston, MA 02110 USA. [Cicia, A. M.; Coutre, K. M.; Sulikowski, J. A.] Univ New England, Ctr Marine Sci, Biddeford, ME 04005 USA. [Ingram, G. W., Jr.; Driggers, W. B., III] Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39568 USA. RP Mandelman, JW (reprint author), New England Aquarium, John H Prescott Marine Lab, Boston, MA 02110 USA. EM jmandelman@neaq.org FU NOAA National Marine Fisheries Service Northeast Region (Saltonstall-Kennedy (S-K) award); National Science Foundation Graduate Research Fellowship [DGE-1144249] FX The authors wish to thank the numerous undergraduate, post-graduate, and graduate students from the Sulikowski Lab at the University of New England (UNE) and New England Aquarium (NEAq) for assistance in fieldwork during the course of the study. Deckhands aboard the F/V Mystique Lady and F/V Lady Victoria also provided invaluable support during field operations. Funding for this work was provided by NOAA National Marine Fisheries Service Northeast Region (Saltonstall-Kennedy (S-K) award to J.W.M.). In addition, A.M.C. was partially supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144249. Animal care and use for various portions of this work was sanctioned by both UNE (IACUC approval # UNE03-2010) and the NEAq (IACUC approval # 08-05). NR 34 TC 8 Z9 8 U1 1 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD MAR PY 2013 VL 139 BP 76 EP 84 DI 10.1016/j.fishres.2012.09.020 PG 9 WC Fisheries SC Fisheries GA 081OI UT WOS:000314331100012 ER PT J AU Williford, KH Ushikubo, T Schopf, JW Lepot, K Kitajima, K Valley, JW AF Williford, Kenneth H. Ushikubo, Takayuki Schopf, J. William Lepot, Kevin Kitajima, Kouki Valley, John W. TI Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NEOPROTEROZOIC CHICHKAN MICROBIOTA; DIATOM PHAEODACTYLUM-TRICORNUTUM; WESTERN-AUSTRALIA; CO2 CONCENTRATION; SOUTH KAZAKSTAN; RAMAN IMAGERY; FRACTIONATION; MICROSCOPY; DIVERSITY; BIOMARKER AB Here we present techniques for, and new data from, in situ carbon isotope (delta C-13) analysis of Precambrian permineralized microscopic fossils with a reproducibility of 1-2 parts per thousand using secondary ion mass spectrometry (SIMS). Individual microfossils, selected for their excellent preservation, were analyzed in petrographic thin sections of stromatolitic cherts from the Proterozoic Gunflint (similar to 1880 Ma), Bitter Springs (similar to 830 Ma), Min'yar (similar to 740 Ma), and Chichkan (similar to 775 Ma) Formations. The range of delta C-13 values (similar to 34.6 parts per thousand to similar to 22.1 parts per thousand VPDB) among the 46 individuals analyzed falls within that expected for photoautotrophic carbon fixation by ribulose bisphosphate carboxylase (RuBisCO), consistent with morphology-based taxonomic assignments for these specimens. Microfossils classified as cyanobacteria from the Gunflint, Bitter Springs, and Min'yar Formations (for which published carbonate carbon isotope data can be used to estimate the delta C-13 of the original dissolved inorganic carbon substrate) exhibit a consistent similar to 19 parts per thousand total fractionation (delta C-13 of dissolved inorganic carbon - delta C-13 of biomass) similar to that observed in living cyanobacteria, over a wide range of delta C-13(carb) values (similar to 2.9 parts per thousand to 3.4 parts per thousand). In stromatolitic chert of the Min'yar Formation, morphologically diverse microfossils preserved in a similar to 1 mm(2) part of a microbial mat exhibit systematic isotopic differences among and within taxa that correlate with their morphologically inferred biological affinities and suggest that isotopic signatures of their original biosynthetic processes (e. g., lipid and peptidoglycan synthesis) are preserved. Isotopic offsets consistent with the different RuBisCO-based fractionations typical of cyanobacteria and photosynthetic eukaryotes are documented by the differing delta C-13 values of a colonial cyanobacterium (-22.6 +/- 0.5 parts per thousand) and a phytoplanktonic protistan acritarch (-28.9 +/- 1.0 parts per thousand) situated < 1 cm apart in the stromatolitic Chichkan chert. These findings show for the first time the possibility of using in situ isotopic microanalysis of fossil microbial mats and ancient sediments in order to distinguish metabolic fingerprints within complex microbial ecosystems and consortia. Published by Elsevier Ltd. C1 [Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Kitajima, Kouki; Valley, John W.] Univ Wisconsin, Dept Geosci, WiscSIMS, NASA Astrobiol Inst, Madison, WI 53706 USA. [Schopf, J. William] Univ Calif Los Angeles, Dept Earth & Space Sci, Ctr Study Evolut & Origin Life, Los Angeles, CA 90095 USA. [Schopf, J. William] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Schopf, J. William] Penn State Astrobiol Res Ctr, NASA Astrobiol Inst, University Pk, PA 16802 USA. RP Williford, KH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Kenneth.H.Williford@jpl.nasa.gov RI Lepot, Kevin/C-7072-2014; Valley, John/B-3466-2011 OI Lepot, Kevin/0000-0003-0556-0405; Valley, John/0000-0003-3530-2722 FU NASA Astrobiology Institute; NSF-EAR [0319230, 0744079, 1053466] FX We thank Noriko Kita, Jim Kern, and Reinhard Kozdon for assistance with the ion microprobe, John Fournelle for assistance with the SEM, Andy Czaja and Clark Johnson for helpful discussions, and Brian Hess for expert sample preparation. The loan of carbonaceous chert sample PPRG 215-1 by Christopher H. House (Penn State University) was critical to the completion of this study. We thank Andrew Schauer and IsoLab in the Department of Earth and Space Sciences at the University of Washington for providing the carbon and oxygen isotope analyses of the Chichkan Formation carbonates. Constructive comments from Profs. Trevor Ireland (A. E.), Malcom Walter, David Fike, and one anonymous reviewer improved the manuscript. Funding for this study was provided by the NASA Astrobiology Institute. The WiscSIMS Lab is partially funded by NSF-EAR (0319230, 0744079, 1053466). NR 54 TC 23 Z9 23 U1 8 U2 77 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAR 1 PY 2013 VL 104 BP 165 EP 182 DI 10.1016/j.gca.2012.11.005 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 086DV UT WOS:000314664500012 ER PT J AU Sasaki, TT Hornbuckle, BC Noebe, RD Bigelow, GS Weaver, ML Thompson, GB AF Sasaki, Taisuke T. Hornbuckle, B. Chad Noebe, Ronald D. Bigelow, Glen S. Weaver, Mark L. Thompson, Gregory B. TI Effect of Aging on Microstructure and Shape Memory Properties of a Ni-48Ti-25Pd (At. Pct) Alloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT International Symposium on the Environmental Damage under Static and Cyclic Loads in Structural Materials at Ambient Temperatures-II CY AUG 14-19, 2011 CL Krakow, POLAND ID MARTENSITIC-TRANSFORMATION; TI-NI; PHASE-TRANSFORMATIONS; PRECIPITATION; LOAD AB The microstructure and properties of a precipitation-hardenable Ni-48Ti-25Pd (at. pct) shape memory alloy have been investigated as a function of various aging conditions. Both the hardness and martensitic transformation temperatures increased with increasing aging time up to 100 hours at 673 K (400 A degrees C), while no discernable differences were observed after heat treatment at 823 K (550 A degrees C), except for a slight decrease in hardness. For aging at 673 K (400 A degrees C), these effects were attributed to the formation of nano-scale precipitates, while precipitation was absent in the 823 K (550 A degrees C) heat-treated specimens. The precipitation-strengthened alloy exhibited stable pseudoelastic behavior and load-biased-shape memory response with little or no residual strains. The precipitates had a monoclinic base-centered structure, which is the same structure as the P-phase recently reported in Ni(Pt)-rich NiTiPt alloys. 3D atom probe analysis revealed that the precipitates were slightly enriched in Ni and deficient in Pd and Ti as compared with the bulk alloy. The increase in martensitic transformation temperatures and the superior dimensional stability during shape memory and pseudoelastic testing are attributed to the fine precipitate phase and its effect on matrix chemistry, local stress state because of the coherent interface, and the ability to effectively strengthen the alloy against slip. C1 [Sasaki, Taisuke T.; Hornbuckle, B. Chad; Weaver, Mark L.; Thompson, Gregory B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. [Noebe, Ronald D.; Bigelow, Glen S.] NASA, Struct & Mat Div, Glenn Res Ctr, Cleveland, OH USA. RP Sasaki, TT (reprint author), Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan. EM gthompson@eng.ua.edu FU NASA [NNX09AO61A]; NASA FAP Aeronautical Sciences project, Dale Hopkins, API; University of Alabama FX The authors gratefully acknowledge funding for this research under NASA grant NNX09AO61A and from the NASA FAP Aeronautical Sciences project, Dale Hopkins, API. This study used the Central Analytical Facility, which is supported by The University of Alabama. NR 58 TC 9 Z9 9 U1 1 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2013 VL 44A IS 3 BP 1388 EP 1400 DI 10.1007/s11661-012-1481-1 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 082BK UT WOS:000314366500023 ER PT J AU Thomas, LD Hanley, JM Rhatigan, JL Neubek, D AF Thomas, L. Dale Hanley, Jeffrey M. Rhatigan, Jennifer L. Neubek, Deborah TI NASA's Constellation Program: The final word SO SYSTEMS ENGINEERING LA English DT Article DE program management; requirements development; system design methodologies; risk informed design; decision making AB NASA's Constellation Program, formulated in 2005 to achieve the objectives of maintaining American presence in low Earth orbit, returning to the Moon for purpose of establishing an outpost, and exploring Mars and beyond in the first half of the 21st century, was cancelled in 2010 [US Congress, NASA Authorization Act, Public Law 11-267, 2010]. This paper describes the lessons learned developed by the staff of the Constellation Program to advise future programs, as well as program and system engineering managers of similar national efforts. These lessons learned are offered by those who experienced the day-to-day challenges of managing an effort planned as a multidecade undertaking. This effort spanned all 10 NASA Centers, multiple large-scale acquisitions, and required modernizing an infrastructure designed and sized largely for the Apollo program in the 1960s. Moreover, it required leading a workforce generationally removed from the previous human spacecraft launch and entry development challenges. Key lessons learned from the Constellation Program are addressed and cover program elements in which systems engineers provide leadership and/or assistance to program management, including program planning, requirements development, system design methodology, management structure, decision-making, and communications in a national program. (C) 2012 Wiley Periodicals, Inc. Syst Eng 16: C1 [Thomas, L. Dale] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Hanley, Jeffrey M.; Rhatigan, Jennifer L.; Neubek, Deborah] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Rhatigan, JL (reprint author), USN, Postgrad Sch, Space Syst Acad Grp, Monterey, CA 93943 USA. EM dale.thomas@nasa.gov; jeffrey.m.hanley@nasa.gov; jennifer.l.rhatigan@nasa.gov; debo-rah.j.neubek@nasa.gov NR 40 TC 1 Z9 1 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1098-1241 J9 SYSTEMS ENG JI Syst. Eng. PD SPR PY 2013 VL 16 IS 1 BP 71 EP 86 DI 10.1002/sys.21219 PG 16 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 076VT UT WOS:000313987700005 ER PT J AU Foster, PP Pollock, NW Conkin, J Dervay, JP Caillot, N Chhikara, RS Vann, RD Butler, BD Gemhardt, ML AF Foster, Philip P. Pollock, Neal W. Conkin, Johnny Dervay, Joseph P. Caillot, Nicolas Chhikara, Raj S. Vann, Richard D. Butler, Bruce D. Gemhardt, Michael L. TI Protective Mechanisms in Hypobaric Decompression SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE decompression sickness; light exercise; near infrared spectroscopy ID NEAR-INFRARED SPECTROSCOPY; SKELETAL-MUSCLE; ALTITUDE DECOMPRESSION; BUBBLE FORMATION; BLOOD-FLOW; 100-PERCENT OXYGEN; INERT-GAS; EXERCISE; SICKNESS; WASHOUT AB Background: To reduce bubble formation and growth during hypobaric exposures, a denitrogenation or nitrogen "washout" procedure is performed. This procedure consists of prebreathing oxygen fractions as close to one as possible (oxygen prebreathe) prior to depressurization before ascending to the working altitude or low spacesuit pressures. During the NASA prebreathe reduction program (PRP), it was determined that the addition of a light arm exercise to short, individually designed, performance-based heavy exercise (dual cycle ergometry) during an abbreviated 2-h prebreathe (F1O2 similar to 1.0) reduced the occurrence of decompression sickness (DCS). Heavy-exercise-induced DCS reduction is likely to be related to the enhancement of the tissue nitrogen washout during the oxygen prebreathe. In addition to the heavy-exercise-induced microcirculatory adaptation, we hypothesized that the light exercise would not cause sufficient microcirculatory changes in the limbs to explain alone this further DCS protection. We evaluated microcirculatory changes as minimal by replicating the exercise characteristics of the PRP trials in 13 healthy subjects. Methods: Noninvasive near infrared spectroscopy (NIRS) allowed observation of instantaneous variations of total, oxygenated, and deoxygenated hemoglobin/myoglobin concentrations in the microcirculatory networks (probes facing the vastus lateralis and deltoid muscles) of active limbs during dynamic exercise. Results: The high-intensity leg exercise alone produced the changes in NIRS parameters; the light arm exercise induced minimal microcirculatory volume changes. However, this coupling appeared to be critical in previous altitude PRP chamber studies by reducing DCS. Discussion: With only minimal microcirculatory blood volume changes, it is unlikely that light exercise alone causes significant nitrogen tissue washout. Therefore, our results suggest that in addition to nitrogen tissue washout, another unknown exercise-induced effect may have further enhanced the DCS protection, possibly mediated via the anti-inflammatory effect of exercise, gas micronuclei reduction, NO pathways, or other molecular mechanisms. C1 [Foster, Philip P.] Univ Texas Hlth Sci Ctr Houston, Dept Internal Med Pulm, Houston, TX 77030 USA. [Foster, Philip P.] Univ Texas Hlth Sci Ctr Houston, Dept Nanomed & Biomed Engn, Houston, TX 77030 USA. [Foster, Philip P.] Univ Texas Med Branch, Dept Internal Med Pulm, Galveston, TX 77555 USA. [Pollock, Neal W.; Vann, Richard D.] Duke Univ, Med Ctr, Dept Anesthesiol, Durham, NC 27710 USA. [Pollock, Neal W.; Vann, Richard D.] Duke Univ, Med Ctr, Ctr Hyperbar Med & Environm Physiol, Durham, NC USA. [Conkin, Johnny] Univ Space Res Assoc, Houston, TX USA. [Dervay, Joseph P.; Gemhardt, Michael L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Caillot, Nicolas] Ctr Hosp Univ, Clermont Ferrand, France. [Chhikara, Raj S.] Univ Houston Clear Lake City, Div Comp & Math, Houston, TX 77058 USA. [Butler, Bruce D.] Univ Texas Hlth Sci Ctr Houston, Dept Anesthesiol, Houston, TX 77030 USA. RP Foster, PP (reprint author), Univ Texas Hlth Sci Ctr Houston, Brown Fdn, Inst Mol Med IMM Prevent Human Dis, Dept Internal Med,Dept Pulm & NanoMed, 1825 Pressler St,SRB 205, Houston, TX 77030 USA. EM philip.p.foster@uth.tmc.edu FU NASA FX The NASA prebreathe reduction program (PRP) and the exercise sessions (PRP trials) were originally designed and/or implemented by B.D.B, J.C., J.P.D., P.P.F., N.W.P., R.D.V., M.L.G. (Head of the PRP project) through a multicenter experiment sponsored by NASA conducted at NASA-JSC and various institutions in North America. We cannot list here all other numerous contributors to the original project from basic science to operational implementation. PPF (PI) designed and conducted the current NIRS study presented here; it was performed later, after the completion of PRP, during P.P.F.'s one-year temporary tenure at the School of Medicine of Clermont-Ferrand (University-Hospital Gabriel Montpied, France) with the help of N.C. and was also part of N.C.'s Ph.D. curriculum at University of Auvergne. The statistical analysis was conducted and described by R.S.C., Division of Computing, Statistics and Mathematics, University of Houston - Clear Lake, Houston, TX. This paper passed the NASA Export Control process (# DAA 22,107). NR 41 TC 3 Z9 3 U1 0 U2 4 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 EI 1943-4448 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD MAR PY 2013 VL 84 IS 3 BP 212 EP 225 DI 10.3357/ASEM.3314.2013 PG 14 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA AD1LP UT WOS:000332995800006 PM 23513282 ER PT J AU Komorowski, M Watkins, SD Lebuffe, G Clark, JB AF Komorowski, Matthieu Watkins, Sharmila D. Lebuffe, Gilles Clark, Jonathan B. TI Potential Anesthesia Protocols for Space Exploration Missions SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Review DE anesthesiology; regional anesthesia; general anesthesia; total intravenous anesthesia; ketamine; long-duration spaceflight ID TOTAL INTRAVENOUS ANESTHESIA; REGIONAL ANESTHESIA; BISPECTRAL INDEX; CARDIOVASCULAR REACTIONS; PROPOFOL ANESTHESIA; FENTANYL ANESTHESIA; KETAMINE SEDATION; RACEMIC KETAMINE; PREHOSPITAL USE; HEAD-INJURY AB In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments. C1 [Komorowski, Matthieu] ESA, European Astronaut Ctr, Crew Med Support Off, Cologne, Germany. [Lebuffe, Gilles] Claude Huriez Univ Hosp, Dept Anesthesiol & Intens Care, Sect Pain, Lille, France. [Watkins, Sharmila D.] NASA, Explorat Med Capabil, Human Res Program, Houston, TX USA. [Clark, Jonathan B.] Baylor Coll Med, Ctr Space Med, Houston, TX 77030 USA. RP Komorowski, M (reprint author), Hop Claude Huriez, Dept Anesthesie Reanimat, Rue Michel Polonovski, F-59037 Lille, France. EM matthieu.komorowski@gmail.com OI Clark, Jonathan/0000-0002-1162-1238 NR 89 TC 5 Z9 5 U1 2 U2 7 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 EI 1943-4448 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD MAR PY 2013 VL 84 IS 3 BP 226 EP 233 DI 10.3357/ASEM.3427.2013 PG 8 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA AD1LP UT WOS:000332995800007 PM 23513283 ER PT J AU Doarn, CR AF Doarn, Charles R. TI An Historical Summary of Advisory Boards for Aerospace Medicine at NASA SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE NASA; aerospace medicine; advisory committees AB Over the past 50 years, the National Aeronautics and Space Administration (NASA) has interacted with numerous advisory committees. These committees include those established by NASA, the National Academy of Sciences, the Institute of Medicine, or through Congressional oversight. Such groups have had a relatively passive role while providing sage advice on a variety of important issues. While these groups cover a wide range of disciplines, the focus of this paper is on those that impacted aerospace medicine and human spaceflight from NASA's beginning to the present time. The intent is to provide an historical narrative of the committees, their purpose, their outcome, and how they influenced the development of aerospace medicine within NASA. Aerospace medicine and life sciences have been closely aligned and intertwined from NASA's beginning. While several committees overlap life sciences within NASA, life sciences will not be presented unless it is in direct reference to aerospace medicine. This paper provides an historical summary chronicling those individuals and the groups they led when aerospace medicine was emerging as a discipline for human spaceflight beginning in 1957. C1 [Doarn, Charles R.] Univ Cincinnati, Dept Family & Community Med, Cincinnati, OH 45267 USA. [Doarn, Charles R.] NASA Headquarters, Off Chief Hlth & Med Officer, Washington, DC USA. RP Doarn, CR (reprint author), Univ Cincinnati, Coll Med, Dept Family & Community Med, POB 670566,ML 0566, Cincinnati, OH 45267 USA. EM charles.doarn@uc.edu NR 14 TC 0 Z9 0 U1 0 U2 1 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 EI 1943-4448 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD MAR PY 2013 VL 84 IS 3 BP 252 EP 259 DI 10.3357/ASEM.3515.2013 PG 8 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA AD1LP UT WOS:000332995800012 PM 23513288 ER PT J AU Le Moigne, J Grubb, TG Milner, BC AF Le Moigne, Jacqueline Grubb, Thomas G. Milner, Barbara C. TI IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article AB NASA Earth and space images have traditionally been difficult to mine by non-remote sensing researchers; often only available in specialized, non-generic formats, they also do not always provide sufficient context for users unfamiliar with the NASA domain to understand their content and their challenges. This paper describes a new database and its associated website, called IMAGESEER (IMAGEs for Science, Education, Experimentation and Research), that seeks to address these issues. Through a graphical web site for browsing and downloading data, IMAGESEER provides a widely accessible database of NASA-centric, easy to read image data for teaching or validating new Image Processing algorithms. Although other NASA image databases exist, none is focused on the goal of providing validation of new and old image processing algorithms. The first IMAGESEER prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are represented with techniques such as cloud detection, image registration, and classification. For each technique, corresponding data are selected from different geographic regions representing different image features (e.g., mountains, urban, water coastal, and agriculture areas). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data. C1 [Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.] NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD USA. RP Le Moigne, J (reprint author), NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD USA. FU National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) under Internal Research and Development (IRAD) FX This work was supported by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) under Internal Research and Development (IRAD) funding. NR 9 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD MAR PY 2013 VL 1 IS 1 BP 44 EP 58 DI 10.1109/MGRS.2013.2244694 PG 15 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA V45AR UT WOS:000209790000004 ER PT J AU Jedlovec, G AF Jedlovec, Gary TI Transitioning Research Satellite Data to the Operational Weather Community: The SPoRT Paradigm SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article C1 [Jedlovec, Gary] NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA. RP Jedlovec, G (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA. NR 12 TC 5 Z9 5 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD MAR PY 2013 VL 1 IS 1 BP 62 EP 66 DI 10.1109/MGRS.2013.2244704 PG 5 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA V45AR UT WOS:000209790000006 ER PT J AU Dichmann, DJ Lebois, R Carrico, JP AF Dichmann, Donald J. Lebois, Ryan Carrico, John P., Jr. TI Dynamics of Orbits Near 3:1 Resonance in the Earth-Moon System SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article DE Resonant orbit; Periodic orbit; Stability; Bifurcation AB The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next 20 years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study. C1 [Dichmann, Donald J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lebois, Ryan; Carrico, John P., Jr.] Appl Def Solut, Columbia, MD 21004 USA. RP Dichmann, DJ (reprint author), NASA, Goddard Space Flight Ctr, Code 595-0,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM donald.j.dichmann@nasa.gov; RLebois@applieddefense.com; JCarrico@applieddefense.com FU Southwest Research Institution (SwRI) FX This research was performed at Applied Defense Solutions and was supported in part by a contract with the Southwest Research Institution (SwRI). The authors thank Mark Tapley of SwRI, Trevor Williams of NASA Goddard and an anonymous reviewer for their valuable comments. We thank Kathleen Howell and Mar Vaquero at Purdue University for sharing their research into resonance orbits. We thank George Ricker at MIT and our colleagues at the NASA Goddard Navigation and Mission Design Branch for pointing us to the Lidov-Kozai mechanism. DID thanks Randy Paffenroth at Numerica Corporation for valuable discussions on the structure of the bifurcation diagram. NR 49 TC 2 Z9 2 U1 1 U2 1 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD MAR PY 2013 VL 60 IS 1 BP 51 EP 86 DI 10.1007/s40295-014-0009-x PG 36 WC Engineering, Aerospace SC Engineering GA V38QT UT WOS:000209358600003 ER PT J AU Yeomans, DK AF Yeomans, Donald K. TI A Hit and a Miss SO NATURAL HISTORY LA English DT Article C1 [Yeomans, Donald K.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Yeomans, Donald K.] NASA, Near Earth Object Program Off, Pasadena, CA USA. [Yeomans, Donald K.] NASA, Solar Syst Dynam Grp, Pasadena, CA USA. RP Yeomans, DK (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU NATURAL HISTORY MAGAZINE PI NEW YORK PA 36 WEST 25TH STREET, FIFTH FLOOR, NEW YORK, NY 10010 USA SN 0028-0712 J9 NAT HIST JI Nat. Hist. PD MAR PY 2013 VL 121 IS 2 BP 18 EP 25 PG 8 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA V40FI UT WOS:000209464100012 ER PT J AU Brinley, AA Theriot, CA Nelman-Gonzalez, M Crucian, B Stowe, RP Barrett, ADT Pierson, DL AF Brinley, Alaina A. Theriot, Corey A. Nelman-Gonzalez, Mayra Crucian, Brian Stowe, Raymond P. Barrett, Alan D. T. Pierson, Duane L. TI Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system SO JOURNAL OF CELLULAR BIOCHEMISTRY LA English DT Article DE EPSTEIN-BARR VIRUS; EBV; RADIATION; BIOREACTOR; MICROGRAVITY; REACTIVATION ID PROMOTES GENOMIC INSTABILITY; DNA-DAMAGE; SIMULATED-MICROGRAVITY; IONIZING-RADIATION; BURKITTS-LYMPHOMA; HUMAN-LYMPHOCYTES; CELL-DEATH; RAJI CELLS; REPAIR; ATM AB EpsteinBarr virus (EBV) is the causative agent of mononucleosis and is also associated with several malignancies, including Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, among others. EBV reactivates during spaceflight, with EBV shedding in saliva increasing to levels ten times those observed pre-and post-flight. Although stress has been shown to increase reactivation of EBV, other factors such as radiation and microgravity have been hypothesized to contribute to reactivation in space. We used a modeled spaceflight environment to evaluate the influence of radiation and microgravity on EBV reactivation. BJAB (EBV-negative) and Raji (EBV-positive) cell lines were assessed for viability/apoptosis, viral antigen and reactive oxygen species expression, and DNA damage and repair. EBV-infected cells did not experience decreased viability and increased apoptosis due to modeled spaceflight, whereas an EBV-negative cell line did, suggesting that EBV infection provided protection against apoptosis and cell death. Radiation was the major contributor to EBV ZEBRA upregulation. Combining modeled microgravity and radiation increased DNA damage and reactive oxygen species while modeled microgravity alone decreased DNA repair in Raji cells. Additionally, EBV-infected cells had increased DNA damage compared to EBV-negative cells. Since EBV-infected cells do not undergo apoptosis as readily as uninfected cells, it is possible that virus-infected cells in EBV seropositive individuals may have an increased risk to accumulate DNA damage during spaceflight. More studies are warranted to investigate this possibility. J. Cell. Biochem. 114: 616624, 2013. (C) 2012 Wiley Periodicals, Inc. C1 [Brinley, Alaina A.; Theriot, Corey A.] Univ Texas Med Branch, Dept Prevent Med, Galveston, TX 77555 USA. [Brinley, Alaina A.; Theriot, Corey A.; Nelman-Gonzalez, Mayra; Crucian, Brian; Pierson, Duane L.] NASA, Johnson Space Ctr, Human Hlth & Performance Directorate, Houston, TX 77058 USA. [Nelman-Gonzalez, Mayra] Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA. [Stowe, Raymond P.] Microgen Labs, La Marque, TX USA. [Barrett, Alan D. T.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA. RP Pierson, DL (reprint author), NASA, Johnson Space Ctr, Dept Human Hlth & Performance Directorate, 2101 NASA Pkwy, Houston, TX 77058 USA. EM duane.l.pierson@nasa.gov FU NASA GSRP; NASA Human Research; NASA Habitability and Environmental Factors; NASA GSRP Fellowship program; NASA Human Research Program; NASA Habitability and Environmental Factors division FX Grant sponsor: NASA GSRP; Grant sponsor: NASA Human Research; Grant sponsor: NASA Habitability and Environmental Factors.; The authors wish to thank the JSC Microbiology, Immunology, Radiation, and Bioanalytical Core Facilities for reagents, equipment, and expertise. Thanks to Al Feiveson, James Fiedler, and Laura Rudkin for assistance with statistical analyses, and Janapriya Saha for help with DNA repair assays. This research was funded by the NASA GSRP Fellowship program, the NASA Human Research Program, and the NASA Habitability and Environmental Factors division. NR 40 TC 1 Z9 1 U1 0 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-2312 J9 J CELL BIOCHEM JI J. Cell. Biochem. PD MAR PY 2013 VL 114 IS 3 BP 616 EP 624 DI 10.1002/jcb.24403 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 075QC UT WOS:000313900600015 PM 22991253 ER PT J AU Fan, ZS Shi, XG Liu, AK Liu, HL Li, PL AF Fan Zhisong Shi Xingang Liu, Antony K. Liu Hailong Li Peiliang TI Effects of tidal currents on nonlinear internal solitary waves in the South China Sea SO JOURNAL OF OCEAN UNIVERSITY OF CHINA LA English DT Article DE internal solitary waves; tidal current; fission process; the South China Sea ID SULU SEA; MODEL; TRANSFORMATION; GENERATION; NORTH; OCEAN; TIDES; PROPAGATION; SIMULATION; EVOLUTION AB The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) equation under continuous stratification. More attention is paid to the effects of the ebb and flood background currents on the fission process of ISWs. This kind of background current is provided by the composed results simulated in terms of monthly mean baroclinic circulation and barotropic tidal current. It is found that the obtained relation of the number of fission solitons to the water depth and stratification is roughly in accordance with the fission law derived by Djordjevic and Redekopp in 1978; however, there exists obvious difference between the effects of the ebb and flood background currents on the wave-lengths of fission solitons (defined as the distance between two neighboring peaks of ISWs). The difference in nonlinearity coefficient alpha between the ebb and flood background currents is a main cause for the different wave-lengths of fission solitons. C1 [Fan Zhisong; Li Peiliang] Ocean Univ China, Coll Phys & Environm Oceanog, Qingdao 266100, Peoples R China. [Shi Xingang] CNOOC Energy Technol & Serv Ltd, Beijing Branch, Beijing 100027, Peoples R China. [Liu, Antony K.] NASA, Goddard Space Flight Ctr, Ocean Sci Branch, Greenbelt, MD 20771 USA. [Liu Hailong] Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China. RP Fan, ZS (reprint author), Ocean Univ China, Coll Phys & Environm Oceanog, Qingdao 266100, Peoples R China. EM fanzhs@hotmail.com RI Hailong, Liu/C-9566-2013 OI Hailong, Liu/0000-0002-8780-0398 FU National Natural Science Foundation of China [41030855] FX This work is supported by the Key Program of National Natural Science Foundation of China under contract No. 41030855. NR 40 TC 3 Z9 4 U1 1 U2 20 PU OCEAN UNIV CHINA PI QINGDAO PA 5 YUSHAN RD, QINGDAO, 266003, PEOPLES R CHINA SN 1672-5182 J9 J OCEAN U CHINA JI J. OCEAN UNIV. PD MAR PY 2013 VL 12 IS 1 BP 13 EP 22 DI 10.1007/s11802-013-1870-0 PG 10 WC Oceanography SC Oceanography GA 076QZ UT WOS:000313973800003 ER PT J AU Ahn, KY Denney, E AF Ahn, Ki Yung Denney, Ewen TI A framework for testing first-order logic axioms in program verification SO SOFTWARE QUALITY JOURNAL LA English DT Article DE Model-based testing; Program verification; Automated theorem proving; Property-based testing; Constraint solving AB Program verification systems based on automated theorem provers rely on user-provided axioms in order to verify domain-specific properties of code. However, formulating axioms correctly (that is, formalizing properties of an intended mathematical interpretation) is non-trivial in practice, and avoiding or even detecting unsoundness can sometimes be difficult to achieve. Moreover, speculating soundness of axioms based on the output of the provers themselves is not easy since they do not typically give counterexamples. We adopt the idea of model-based testing to aid axiom authors in discovering errors in axiomatizations. To test the validity of axioms, users define a computational model of the axiomatized logic by giving interpretations to the function symbols and constants in a simple declarative programming language. We have developed an axiom testing framework that helps automate model definition and test generation using off-the-shelf tools for meta-programming, property-based random testing, and constraint solving. We have experimented with our tool to test the axioms used in AUTO-CERT, a program verification system that has been applied to verify aerospace flight code using a first-order axiomatization of navigational concepts, and were able to find counterexamples for a number of axioms. C1 [Ahn, Ki Yung] Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA. [Denney, Ewen] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ahn, KY (reprint author), Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA. EM kya@pdx.edu; Ewen.Denney@nasa.gov RI Ahn, Ki Yung/A-9713-2016 OI Ahn, Ki Yung/0000-0002-7171-7979 NR 25 TC 1 Z9 1 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0963-9314 J9 SOFTWARE QUAL J JI Softw. Qual. J. PD MAR PY 2013 VL 21 IS 1 BP 159 EP 200 DI 10.1007/s11219-011-9168-1 PG 42 WC Computer Science, Software Engineering SC Computer Science GA 074MB UT WOS:000313815500008 ER PT J AU Laxon, SW Giles, KA Ridout, AL Wingham, DJ Willatt, R Cullen, R Kwok, R Schweiger, A Zhang, JL Haas, C Hendricks, S Krishfield, R Kurtz, N Farrell, S Davidson, M AF Laxon, Seymour W. Giles, Katharine A. Ridout, Andy L. Wingham, Duncan J. Willatt, Rosemary Cullen, Robert Kwok, Ron Schweiger, Axel Zhang, Jinlun Haas, Christian Hendricks, Stefan Krishfield, Richard Kurtz, Nathan Farrell, Sinead Davidson, Malcolm TI CryoSat-2 estimates of Arctic sea ice thickness and volume SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB Satellite records show a decline in ice extent over more than three decades, with a record minimum in September 2012. Results from the Pan-Arctic Ice-Ocean Modelling and Assimilation system (PIOMAS) suggest that the decline in extent has been accompanied by a decline in volume, but this has not been confirmed by data. Using new data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, we generate estimates of ice volume for the winters of 2010/11 and 2011/12. We compare these data with current estimates from PIOMAS and earlier (2003-8) estimates from the National Aeronautics and Space Administration ICESat mission. Between the ICESat and CryoSat-2 periods, the autumn volume declined by 4291 km(3) and the winter volume by 1479 km(3). This exceeds the decline in ice volume in the central Arctic from the PIOMAS model of 2644 km(3) in the autumn, but is less than the 2091 km(3) in winter, between the two time periods. Citation: Laxon S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R. Cullen, R. Kwok, A. Schweiger, J. Zhang, C. Haas, S. Hendricks, R. Krishfield, N. Kurtz, S. Farrell and M. Davidson (2013), CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732-737, doi:10.1002/grl.50193. C1 [Laxon, Seymour W.; Giles, Katharine A.; Ridout, Andy L.; Wingham, Duncan J.; Willatt, Rosemary] UCL, Ctr Polar Observat & Modelling, Dept Earth Sci, London WC1E 6BT, England. [Cullen, Robert; Davidson, Malcolm] European Space Agcy, EOP PY, Estec, Noordwijk, Netherlands. [Kwok, Ron] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Schweiger, Axel; Zhang, Jinlun] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Haas, Christian] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 2R7, Canada. [Hendricks, Stefan] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany. [Krishfield, Richard] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Kurtz, Nathan] Morgan State Univ, Sch Comp Math & Nat Sci, Baltimore, MD 21239 USA. [Farrell, Sinead] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Giles, KA (reprint author), UCL, Ctr Polar Observat & Modelling, Gower St, London WC1E 6BT, England. EM katharine.giles@ucl.ac.uk RI Kwok, Ron/A-9762-2008; Farrell, Sinead/F-5586-2010; Hendricks, Stefan/D-5168-2011; Haas, Christian/L-5279-2016 OI Kwok, Ron/0000-0003-4051-5896; Farrell, Sinead/0000-0003-3222-2751; Hendricks, Stefan/0000-0002-1412-3146; Haas, Christian/0000-0002-7674-3500 FU UK's Natural Environment Research Council; European Space Agency; German Aerospace Center (DLR); Alberta Ingenuity; National Science Foundation (NSF) FX This work was funded by the UK's Natural Environment Research Council, the European Space Agency, the German Aerospace Center (DLR), Alberta Ingenuity, National Science Foundation (NSF). Thanks to Kenn Borek and the NASA IceBridge team. NR 23 TC 163 Z9 172 U1 17 U2 122 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2013 VL 40 IS 4 BP 732 EP 737 DI 10.1002/grl.50193 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129IE UT WOS:000317831800014 ER PT J AU Volkov, DL Belonenko, TV Foux, VR AF Volkov, Denis L. Belonenko, Tatyana V. Foux, Victor R. TI Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NORDIC SEAS; TOPEX/POSEIDON ALTIMETER; SURFACE CIRCULATION; NORTH-ATLANTIC; PATHWAYS; DRIFTERS; WATER AB A sub-Arctic "hot spot" of intense synoptic-scale variability is observed in the Lofoten Basin (LB) of the Norwegian Sea. Using ERS-1/2 and Envisat satellite altimetry measurements, we discover a cyclonic propagation of the synoptic-scale sea surface height anomalies around the center of the LB. Surface drifter trajectories do not reveal an associated coherent near-surface cyclonic flow suggesting that the propagating signals have a wavelike nature. We identify a dipole and a quadrupole wave modes rotating around the center of the LB, obtain analytic dispersion relations for these modes, and demonstrate that the observed propagation is a manifestation of topographic Rossby waves. Most of the observed waves have a wavelength of about 500 km and phase speeds ranging from 2 to 10 km/day. We show that these waves are largely responsible for the localization and amplification of sea surface height variability in the center of the LB. Citation: Volkov, D. L., T. V. Belonenko, and V. R. Foux (2013), Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 40, 738-743, doi:10.1002/grl.50126. C1 [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Volkov, Denis L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Belonenko, Tatyana V.; Foux, Victor R.] St Petersburg State Univ, Dept Oceanol, St Petersburg, Russia. RP Volkov, DL (reprint author), CALTECH, Jet Prop Lab, MS 300-323,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011; Belonenko, Tatyana/K-2162-2013; Foux, Victor/M-9135-2013 OI Volkov, Denis/0000-0002-9290-0502; Belonenko, Tatyana/0000-0003-4608-7781; Foux, Victor/0000-0002-4805-293X FU CNES; NASA Physical Oceanography program FX The altimeter products were produced by SSALTO/DUACS and distributed by AVISO with support from CNES (http://www.aviso.oceanobs.com/duacs/). The surface drifter data, corrected for ageostrophic effects, were kindly provided by Marie-Helene Rio of C.L. S. Space Oceanography Division. The authors thank Prof. Peter Rhines and an anonymous reviewer for their comments and suggestions that helped to improve the manuscript. D. Volkov was supported by the NASA Physical Oceanography program. NR 25 TC 13 Z9 16 U1 4 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2013 VL 40 IS 4 BP 738 EP 743 DI 10.1002/grl.50126 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129IE UT WOS:000317831800015 ER PT J AU Folland, CK Colman, AW Smith, DM Boucher, O Parker, DE Vernier, JP AF Folland, Chris K. Colman, Andrew W. Smith, Doug M. Boucher, Olivier Parker, David E. Vernier, Jean-Paul TI High predictive skill of global surface temperature a year ahead SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE-CHANGE; MODEL; CYCLES AB We discuss 13 real-time forecasts of global annual-mean surface temperature issued by the United Kingdom Met Office for 1 year ahead for 2000-2012. These involve statistical, and since 2008, initialized dynamical forecasts using the Met Office DePreSys system. For the period when the statistical forecast system changed little, 2000-2010, issued forecasts had a high correlation of 0.74 with observations and a root mean square error of 0.07 degrees C. However, the HadCRUT data sets against which issued forecasts were verified were biased slightly cold, especially from 2004, because of data gaps in the strongly warming Arctic. This observational cold bias was mainly responsible for a statistically significant warm bias in the 2000-2010 forecasts of 0.06 degrees C. Climate forcing data sets used in the statistical method, and verification data, have recently been modified, increasing hindcast correlation skill to 0.80 with no significant bias. Dynamical hindcasts for 2000-2011 have a similar correlation skill of 0.78 and skillfully hindcast annual mean spatial global surface temperature patterns. Such skill indicates that we have a good understanding of the main factors influencing global mean surface temperature. Citation: Folland, C. K., A. W. Colman, D. M. Smith, O. Boucher, D. E. Parker, and J.-P. Vernier (2013), High predictive skill of global surface temperature a year ahead, Geophys. Res. Lett., 40, 761-767, doi:10.1002/grl.50169. C1 [Folland, Chris K.; Colman, Andrew W.; Smith, Doug M.; Boucher, Olivier; Parker, David E.] Met Off, Met Off Hadley Ctr Climate Change, Exeter EX1 3PB, Devon, England. [Folland, Chris K.] Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden. [Boucher, Olivier] UPMC, Meteorol Dynam Lab, IPSL, CNRS, Paris, France. [Vernier, Jean-Paul] Sci Syst & Applicat Inc, Hampton, VA USA. [Vernier, Jean-Paul] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Folland, CK (reprint author), Met Off, Met Off Hadley Ctr Climate Change, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM chris.folland@metoffice.gov.uk RI sebastianovitsch, stepan/G-8507-2013; Folland, Chris/I-2524-2013 FU Joint DECC/Defra Met Office Hadley Centre Climate Programme, UK [GA01101] FX Met Office authors were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), UK. The new satellite stratospheric aerosol record was constructed with the help of the CALIPSO, GOMOS, and SAGE II science teams. Thanks also go to two anonymous reviewers who much improved the paper and to Rosie Eade, who helped with Figure 4. NR 21 TC 12 Z9 12 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2013 VL 40 IS 4 BP 761 EP 767 DI 10.1002/grl.50169 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 129IE UT WOS:000317831800019 ER PT J AU Bedka, ST Minnis, P Duda, DP Chee, TL Palikonda, R AF Bedka, Sarah T. Minnis, Patrick Duda, David P. Chee, Thad L. Palikonda, Rabindra TI Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLOUD PROPERTIES; OPTICAL DEPTH; AVHRR-DATA; CIRRUS; CHANNELS AB Understanding the role of contrails in the Earth's radiation budget requires an accurate characterization of their macrophysical and microphysical properties, such as cloud top temperature, optical depth, and effective particle size. These properties are derived from 2006 MODerate-resolution Imaging Spectroradiometer data over the Northern Hemisphere using a bi-spectral, infrared-only retrieval technique. Contrail temperature is estimated using a quadratic relationship of flight track pressure with latitude. The results reveal distinct seasonal trends in contrail microphysical properties, with slightly greater mean optical depths and slightly smaller particle sizes during summer. The average contrail optical depth and particle effective diameter are 0.216 and 35.7 mu m, respectively. Although fewer contrails occurred at night, there are no appreciable diurnal differences in their retrieved properties. These results should help to fill the gap in our knowledge of contrail properties and will be valuable for model validation. Citation: Bedka, S. T., P. Minnis, D. P. Duda, T. L. Chee, and R. Palikonda (2013), Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations, Geophys. Res. Lett., 40, 772-777, doi: 10.1029/2012GL054363. C1 [Bedka, Sarah T.; Duda, David P.; Chee, Thad L.; Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Bedka, ST (reprint author), 1 Enterprise Pkwy, Hampton, VA 23666 USA. EM sarah.t.bedka@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 NR 19 TC 9 Z9 9 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 28 PY 2013 VL 40 IS 4 BP 772 EP 777 DI 10.1029/2012GL054363 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129IE UT WOS:000317831800021 ER PT J AU Risaliti, G Harrison, FA Madsen, KK Walton, DJ Boggs, SE Christensen, FE Craig, WW Grefenstette, BW Hailey, CJ Nardini, E Stern, D Zhang, WW AF Risaliti, G. Harrison, F. A. Madsen, K. K. Walton, D. J. Boggs, S. E. Christensen, F. E. Craig, W. W. Grefenstette, B. W. Hailey, C. J. Nardini, E. Stern, Daniel Zhang, W. W. TI A rapidly spinning supermassive black hole at the centre of NGC 1365 SO NATURE LA English DT Article ID ACTIVE GALACTIC NUCLEI; EMISSION-LINES; 1H 0707-495; ABSORPTION; REGION; MODEL; MCG-6-30-15; REFLECTION; NGC-1365; SIZE AB Broad X-ray emission lines from neutral and partially ionized iron observed in active galaxies have been interpreted as fluorescence produced by the reflection of hard X-rays off the inner edge of an accretion disk(1-7). In this model, line broadening and distortion result from rapid rotation and relativistic effects near the black hole, the line shape being sensitive to its spin. Alternative models in which the distortions result from absorption by intervening structures provide an equally good description of the data(8,9), and there has been no general agreement on which is correct. Recent claims(10) that the black hole(11,12) (2 X 10(6) solar masses) at the centre of the galaxy NGC 1365 is rotating at close to its maximum possible speed rest on the assumption of relativistic reflection. Here we report X-ray observations of NGC 1365 that reveal the relativistic disk features through broadened Fe-line emission and an associated Compton scattering excess of 10-30 kiloelectronvolts. Using temporal and spectral analyses, we disentangle continuum changes due to time-variable absorption from reflection, which we find arises from a region within 2.5 gravitational radii of the rapidly spinning black hole. Absorption-dominated models that do not include relativistic disk reflection can be ruled out both statistically and on physical grounds. C1 [Risaliti, G.] INAF Osservatoria Astrofis Arcetri, I-50125 Florence, Italy. [Risaliti, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Harrison, F. A.; Madsen, K. K.; Walton, D. J.; Grefenstette, B. W.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Nardini, E.] Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Risaliti, G (reprint author), INAF Osservatoria Astrofis Arcetri, Largo Enrico Fermi 5, I-50125 Florence, Italy. EM risaliti@arcetri.astro.it; fiona@srl.caltech.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Risaliti, Guido/0000-0002-3556-977X FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ESA Member States FX This work was supported under NASA grant number NNG08FD60C, and made use of data from the Nuclear Spectroscopic Telescope Array (NuSTAR) mission, a project led by Caltech, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with execution and analysis of these observations. This work also made use of observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 27 TC 118 Z9 118 U1 1 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 28 PY 2013 VL 494 IS 7438 BP 449 EP 451 DI 10.1038/nature11938 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 099YI UT WOS:000315661500031 PM 23446416 ER PT J AU Barclay, T Rowe, JF Lissauer, JJ Huber, D Fressin, F Howell, SB Bryson, ST Chaplin, WJ Deseret, JM Lopez, ED Marcy, GW Mullally, F Ragozzine, D Torres, G Adams, ER Agol, E Barrado, D Basu, S Bedding, TR Buchhave, LA Charbonneau, D Christiansen, JL Christensen-Dalsgaard, J Ciardi, D Cochran, WD Dupree, AK Elsworth, Y Everett, M Fischer, DA Ford, EB Fortney, JJ Geary, JC Haas, MR Handberg, R Hekker, S Henze, CE Horch, E Howard, AW Hunter, RC Isaacson, H Jenkins, JM Karoff, C Kawaler, SD Kjeldsen, H Klaus, TC Latham, DW Li, J Lillo-Box, J Lund, MN Lundkvist, M Metcalfe, TS Miglio, A Morris, RL Quintana, EV Stello, D Smith, JC Still, M Thompson, SE AF Barclay, Thomas Rowe, Jason F. Lissauer, Jack J. Huber, Daniel Fressin, Francois Howell, Steve B. Bryson, Stephen T. Chaplin, William J. Deseret, Jean-Michel Lopez, Eric D. Marcy, Geoffrey W. Mullally, Fergal Ragozzine, Darin Torres, Guillermo Adams, Elisabeth R. Agol, Eric Barrado, David Basu, Sarbani Bedding, Timothy R. Buchhave, Lars A. Charbonneau, David Christiansen, Jessie L. Christensen-Dalsgaard, Jorgen Ciardi, David Cochran, William D. Dupree, Andrea K. Elsworth, Yvonne Everett, Mark Fischer, Debra A. Ford, Eric B. Fortney, Jonathan J. Geary, John C. Haas, Michael R. Handberg, Rasmus Hekker, Saskia Henze, Christopher E. Horch, Elliott Howard, Andrew W. Hunter, Roger C. Isaacson, Howard Jenkins, Jon M. Karoff, Christoffer Kawaler, Steven D. Kjeldsen, Hans Klaus, Todd C. Latham, David W. Li, Jie Lillo-Box, Jorge Lund, Mikkel N. Lundkvist, Mia Metcalfe, Travis S. Miglio, Andrea Morris, Robert L. Quintana, Elisa V. Stello, Dennis Smith, Jeffrey C. Still, Martin Thompson, Susan E. TI A sub-Mercury-sized exoplanet SO NATURE LA English DT Article ID TRANSITING PLANET; EXTRASOLAR PLANETS; BLEND SCENARIOS; MULTIPLE SYSTEM; KEPLER-MISSION; LIGHT CURVES; ASTEROSEISMOLOGY; METALLICITIES; VALIDATION; CANDIDATES AB Since the discovery of the first exoplanets(1,2), it has been known that other planetary systems can look quite unlike our own(3). Until fairly recently, we have been able to probe only the upper range of the planet size distribution(4,5), and, since last year, to detect planets that are the size of Earth(6) or somewhat smaller(7). Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury(8). This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury. C1 [Barclay, Thomas; Rowe, Jason F.; Lissauer, Jack J.; Huber, Daniel; Howell, Steve B.; Bryson, Stephen T.; Mullally, Fergal; Christiansen, Jessie L.; Haas, Michael R.; Henze, Christopher E.; Hunter, Roger C.; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Quintana, Elisa V.; Smith, Jeffrey C.; Still, Martin; Thompson, Susan E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, Thomas; Still, Martin] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Rowe, Jason F.; Mullally, Fergal; Christiansen, Jessie L.; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.] SETI Inst, Mountain View, CA 94043 USA. [Fressin, Francois; Deseret, Jean-Michel; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R.; Charbonneau, David; Dupree, Andrea K.; Geary, John C.; Latham, David W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chaplin, William J.; Elsworth, Yvonne; Hekker, Saskia; Miglio, Andrea] Univ Birmingham, Sch Phys & Astron, Edgbaston B15 2TT, England. [Lopez, Eric D.; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Marcy, Geoffrey W.; Isaacson, Howard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ragozzine, Darin; Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32111 USA. [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Barrado, David] Ctr Astron Hispano Aleman, Calar Alto Observ, E-04004 Almeria, Spain. [Barrado, David; Lillo-Box, Jorge] Ctr Astrobiol, Dept Astrofis, E-28691 Villanueva De La Canada, Spain. [Basu, Sarbani; Fischer, Debra A.] Yale Univ, New Haven, CT 06520 USA. [Bedding, Timothy R.; Stello, Dennis] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Christensen-Dalsgaard, Jorgen; Handberg, Rasmus; Karoff, Christoffer; Kjeldsen, Hans; Lund, Mikkel N.; Lundkvist, Mia] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Ciardi, David] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Everett, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Hekker, Saskia] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Horch, Elliott] So Connecticut State Univ, New Haven, CT 06515 USA. [Howard, Andrew W.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Kawaler, Steven D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Klaus, Todd C.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Metcalfe, Travis S.] White Dwarf Res Corp, Boulder, CO 80301 USA. RP Barclay, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM thomas.barclay@nasa.gov; jason.rowe@nasa.gov RI Karoff, Christoffer/L-1007-2013; Basu, Sarbani/B-8015-2014; Lillo-Box, Jorge/I-2841-2015; Barrado Navascues, David/C-1439-2017; OI Lund, Mikkel Norup/0000-0001-9214-5642; Lundkvist, Mia Sloth/0000-0002-8661-2571; Fischer, Debra/0000-0003-2221-0861; Handberg, Rasmus/0000-0001-8725-4502; Kawaler, Steven/0000-0002-6536-6367; Karoff, Christoffer/0000-0003-2009-7965; Basu, Sarbani/0000-0002-6163-3472; Lillo-Box, Jorge/0000-0003-3742-1987; Barrado Navascues, David/0000-0002-5971-9242; Bedding, Timothy/0000-0001-5943-1460; Fortney, Jonathan/0000-0002-9843-4354; /0000-0002-0802-9145; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Bedding, Tim/0000-0001-5222-4661; Metcalfe, Travis/0000-0003-4034-0416 FU NASA's Science Mission Directorate; NASA; JPL/Caltech; Danish National Research Foundation; ASTERISK; European Research Council; NSF FX Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. Some of this work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award. issued by JPL/Caltech. Kepler flux time series data presented in this paper are available from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI). Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation. The research is supported by the ASTERISK project funded by the European Research Council. E.A. acknowledges support through an NSF Career grant. D.H. is supported by an appointment to the NASA Postdoctoral Program at Ames Research Center. NR 30 TC 92 Z9 92 U1 2 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 28 PY 2013 VL 494 IS 7438 BP 452 EP 454 DI 10.1038/nature11914 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 099YI UT WOS:000315661500032 PM 23426260 ER PT J AU Hein, JD Al-Khazraji, H Tiessen, CJ Lukic, D Trocchi, JA McConkey, JW AF Hein, J. D. Al-Khazraji, H. Tiessen, C. J. Lukic, D. Trocchi, J. A. McConkey, J. W. TI Excited atomic fragments following electron dissociation of pyrimidine SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CROSS-SECTIONS; ULTRAVIOLET EMISSION; IMPACT DISSOCIATION; MOLECULAR-HYDROGEN; H-2; DNA; SCATTERING; PURINE AB A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of pyrimidine into excited atomic fragments in the impact energy range from threshold to 375 eV. Data have been made absolute using Lyman-alpha from H-2 as a secondary standard. The main features in the spectrum are the H Lyman series lines. The emission cross section of Lyman-alpha is measured to be (2.44 +/- 0.25) 10(-18) cm(2) at 100 eV impact energy. The probability of extracting C or N atoms from the ring is shown to be very small. Possible dissociation channels and excitation mechanisms in the parent molecule are discussed. C1 [Hein, J. D.; Al-Khazraji, H.; Tiessen, C. J.; Lukic, D.; Trocchi, J. A.; McConkey, J. W.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. RP Hein, JD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mcconk@uwindsor.ca RI Hein, Jeffrey/A-7171-2013 FU Natural Sciences and Engineering Research Council of Canada; University of Windsor 'Outstanding Scholars' program FX Financial support for this work from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. HA, CJT, DL and JAT acknowledge support from the University of Windsor 'Outstanding Scholars' program. Expert technical help was obtained from the University of Windsor, Physics Department mechanical and electronic shops. NR 31 TC 4 Z9 4 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD FEB 28 PY 2013 VL 46 IS 4 AR 045202 DI 10.1088/0953-4075/46/4/045202 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 088EG UT WOS:000314816000006 ER PT J AU Gu, SY Li, T Dou, XK Wu, Q Mlynczak, MG Russell, JM AF Gu, Sheng-Yang Li, Tao Dou, Xiankang Wu, Qian Mlynczak, M. G. Russell, J. M., III TI Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID QUASI 2-DAY WAVE; MIDDLE ATMOSPHERE; PLANETARY-WAVES; LOWER THERMOSPHERE; WIND MEASUREMENTS; LONG-TERM; SUMMER; TEMPERATURE; MESOSPHERE; STRATOSPHERE AB Seasonal and interannual variations of the Quasi-Two-Day wave s = -3 (W3) and s = -4 (W4) modes were studied with global temperature and wind data sets during 2002-2012, observed respectively by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and TIMED Doppler Imager (TIDI) instruments onboard the Thermosphere Ionosphere and Mesosphere Electric Dynamics (TIMED) satellite. The amplitudes of W3 and W4 are significantly enhanced during austral and boreal summer respectively. Strong W3 amplitudes are observed during January 2006 in all three components of temperature, meridional wind, and zonal wind. This is most likely related to the intensive winter planetary wave activity that led to a strong sudden stratosphere warming (SSW) event. The maximum amplitudes of W4 during the 10 years are similar to 8-9 K, similar to 40 m/s, and similar to 20 m/s for temperature, meridional, and zonal components respectively, nearly half as large as those of W3, with similar to 15 K, similar to 65 m/s, and similar to 35 m/s. In January 2008 and 2009, unusually weak W3 but strong W4 oscillations were observed, corresponding to the much weaker summer easterly jets (westward wind) than those in other years. This suggests that relatively weak summer easterly may not be able to provide sufficiently strong barotropic/baroclinic instability to amplify W3 but is favorable for the amplification of W4. The weaker magnitude values, lower peak heights, and longer life intervals of W4 than those of W3 suggest that the W4 may suffer a greater damping rate than the W3. The observations of W4 show good agreement with Rossby-gravity (4, 0) mode, which is more easily trapped in both latitude and altitude because of its lower group velocity than that of Rossby-gravity (3, 0) mode. Citation: Gu, S.-Y, T. Li, X. Dou, Q. Wu, M. G. Mlynczak, and J. M. Russell (2013), Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI, J. Geophys. Res. Atmos., 118, 1624-1639, doi:10.1002/jgrd.50191. C1 [Gu, Sheng-Yang; Li, Tao; Dou, Xiankang] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Wu, Qian] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Russell, J. M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. RP Li, T (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China. EM litao@ustc.edu.cn RI Dou, xiankang/M-9106-2013; Li, Tao/J-8950-2014 OI Li, Tao/0000-0002-5100-4429 FU National Natural Science Foundation of China [41225017, 41074108, 41127901, 41025016, 41121003]; Chinese Academy of Sciences Key Research Program [KZZD-EW-01]; National Basic Research Program of China [2012CB825605]; National Science Foundation FX This work was carried out at the University of Science and Technology of China, with support from the National Natural Science Foundation of China (grants 41225017, 41074108, 41127901, 41025016, 41121003), the Chinese Academy of Sciences Key Research Program KZZD-EW-01, and the National Basic Research Program of China grant 2012CB825605. The National Center for Atmospheric Research is supported by the National Science Foundation. We thank Dr. C.-Y. She and Dr. H.-L. Liu for their helpful comments on the manuscript. The SABER temperature data set, TIDI wind data set, and UKMO zonal wind data set were downloaded from http://www.timed.jhuapl.edu/, http://timed.hao.ucar.edu/tidi/, and http://badc.nerc.ac.uk/browse/badc/ukmo-assim/, respectively. The authors would also like to thank three anonymous reviewers for their constructive comments and suggestions. NR 51 TC 17 Z9 19 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2013 VL 118 IS 4 BP 1624 EP 1639 DI 10.1002/jgrd.50191 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LM UT WOS:000317841000004 ER PT J AU Cook, BI Seager, R AF Cook, B. I. Seager, R. TI The response of the North American Monsoon to increased greenhouse gas forcing SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE-CHANGE; SOIL-MOISTURE; VARIABILITY; PRECIPITATION; GENERATION; TRANSITION; DROUGHT; SYSTEM; SHIFTS AB We analyze the response of the North American Monsoon (NAM) to increased greenhouse gas (GHG) forcing (emissions scenario RCP 8.5) using new simulations available through the Coupled Model Intercomparison Project version 5 (CMIP5). Changes in total monsoon season rainfall with GHG warming are small and insignificant. The models do, however, show significant declines in early monsoon season precipitation (June-July) and increases in late monsoon season (September-October) precipitation, indicating a shift in seasonality toward delayed onset and withdrawal of the monsoon. Early in the monsoon season, tropospheric warming increases vertical stability, reinforced by reductions in available surface moisture, inhibiting precipitation and delaying the onset of the monsoon. By the end of the monsoon season, moisture convergence is sufficient to overcome the warming induced stability increases, and precipitation is enhanced. Even with no change in total NAM rainfall, shifts in the seasonal distribution of precipitation within the NAM region are still likely to have significant societal and ecological consequences, reinforcing the need to not only understand the magnitude, but also the timing, of future precipitation changes. Citation: Cook, B. I., and R. Seager (2013), The response of the North American Monsoon to increased greenhouse gas forcing, J. Geophys. Res. Atmos, 118, 1690-1699, doi:10.1002/jgrd.50111. C1 [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, B. I.; Seager, R.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM benjamin.i.cook@nasa.gov RI Cook, Benjamin/H-2265-2012 FU NOAA [NAOAR4310137, NA08OAR4320912]; NSF [AGS0804107] FX We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also gratefully acknowledge Naomi Henderson and Haibo Liu for collecting, managing, and serving the CMIP5 data at Lamont. RS was supported by NOAA awards NAOAR4310137 (Global Decadal Hydroclimate Variability and Change) and NA08OAR4320912 and NSF award AGS0804107. Three anonymous reviewers provided valuable comments that improved the quality of this manuscript. We thank Richard Zou of Hunter High School for assistance on an earlier version of this work. Lamont contribution #7659. NR 30 TC 46 Z9 47 U1 1 U2 58 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2013 VL 118 IS 4 BP 1690 EP 1699 DI 10.1002/jgrd.50111 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LM UT WOS:000317841000009 ER PT J AU Dodson, JB Randall, DA Suzuki, K AF Dodson, Jason B. Randall, David A. Suzuki, Kentaroh TI Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SEA-SURFACE TEMPERATURE; MADDEN-JULIAN OSCILLATION; DEEP CONVECTION; WATER-VAPOR; A-TRAIN; VERTICAL STRUCTURE; RESOLVING MODEL; VARIABILITY; SCALE; OCEANS AB We use CloudSat observations of boreal summer tropical ocean cumuliform clouds to evaluate the behavior of the non-parameterized cumuliform clouds in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), with a particular emphasis on deep convective clouds (DCCs). The CloudSat cloud mask and radar reflectivity profiles for cumuliform clouds are sorted by large-scale environmental variables taken from the Aqua satellite and NCEP/NCAR reanalysis. The variables are total precipitable water (TPW), sea surface temperature (SST), and 500 hPa vertical velocity (W500), representing the dynamical and thermodynamical environment in which the clouds form. The sorted CloudSat profiles are then compared with NICAM profiles simulated with the Quickbeam CloudSat simulator. We first use the cloud mask to examine the transition between shallow clouds and deep clouds rooted in the planetary boundary layer. We find that NICAM simulates this transition fairly realistically. However, the transition occurs at slightly higher TPW and W500 values than the observations show. This may be indication of NICAM's inability to represent the formation of isolated narrow DCCs in marginally favorable environments. We then use simple metrics of the DCC-only radar reflectivity profiles (cloud top height, cloud top reflectivity gradient, maximum reflectivity) to quantitatively compare the observations with NICAM. The results show that while the observed and simulated results agree generally, there are some disagreements in key respects. There is disagreement on the sensitivity of cloud top height to environmental conditions and on the transition between shallow and deep clouds in environments marginally suitable for deep convection. Citation: Dodson, J. B., D. A. Randall, and K. Suzuki (2013), Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM, J. Geophys. Res. Atmos., 118, 1852-1867, doi:10.1002/jgrd.50121. C1 [Dodson, Jason B.; Randall, David A.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Suzuki, Kentaroh] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Dodson, JB (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM jbdodson@lamar.colostate.edu RI Suzuki, Kentaroh/C-3624-2011; Randall, David/E-6113-2011 OI Randall, David/0000-0001-6935-4112 FU National Science Foundation Science and Technology Center for MultiScale Modeling of Atmospheric Processes [ATM-0425247]; National Aeronautics and Space Administration; CloudSat award [NAS5-99237]; Department of Atmospheric Science, Colorado State University FX This work has been supported by the National Science Foundation Science and Technology Center for MultiScale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement. No. ATM-0425247. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. In addition, this work has been supported by the CloudSat award #NAS5-99237, and the Department of Atmospheric Science, Colorado State University. NR 49 TC 3 Z9 3 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2013 VL 118 IS 4 BP 1852 EP 1867 DI 10.1002/jgrd.50121 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LM UT WOS:000317841000020 ER PT J AU Park, M Randel, WJ Kinnison, DE Emmons, LK Bernath, PF Walker, KA Boone, CD Livesey, NJ AF Park, Mijeong Randel, William J. Kinnison, Douglas E. Emmons, Louisa K. Bernath, Peter F. Walker, Kaley A. Boone, Chris D. Livesey, Nathaniel J. TI Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-MONOXIDE DISTRIBUTIONS; BIOMASS BURNING EMISSIONS; CHEMISTRY EXPERIMENT ACE; IN-SITU MEASUREMENTS; ATMOSPHERIC CHEMISTRY; SPECTROSCOPIC MEASUREMENTS; SPACEBORNE OBSERVATIONS; GLOBAL DISTRIBUTIONS; MONSOON ANTICYCLONE; HYDROGEN-CYANIDE AB Satellite measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) are used to examine the global, seasonal variations of several hydrocarbons, including carbon monoxide (CO), ethane (C2H6), acetylene (C2H2), and hydrogen cyanide (HCN). We focus on quantifying large-scale seasonal behavior from the middle troposphere to the stratosphere, particularly in the tropics, and furthermore make detailed comparisons with the Whole Atmosphere Community Climate Model (WACCM) chemistry climate model (incorporating tropospheric photochemistry, time-varying hydrocarbon emissions, and meteorological fields nudged from reanalysis). Comparisons with Microwave Limb Sounder (MLS) measurements of CO are also included to understand sampling limitations of the ACE-FTS data and biases among observational data sets. Results show similar overall variability for CO, C2H6, and C2H2, with a semiannual cycle in the tropical upper troposphere related to seasonallyvarying sources and deep tropical convection, plus a maximum during Northern Hemisphere summer tied to the Asian monsoon anticyclone. These species also reveal a strong annual cycle above the tropical tropopause, tied to annual variations in the upward branch of Brewer-Dobson circulation. HCN reveals substantial differences from the other species, due to a longer photochemical lifetime and a chemical sink associated with ocean surface contact, which produces a minimum in the tropical upper troposphere not observed in the other species. For HCN, transport to the stratosphere occurs primarily through the Asian summer monsoon anticyclone. Overall, the WACCM simulation is able to reproduce most of the large-scale features observed in the ACE-FTS data, suggesting a reasonable simulation of sources and large-scale transport. The model is too low in the Southern Hemisphere subtropics during Austral spring, which indicates underestimate of biomass burning emissions and/or insufficient vertical transport in the model. Citation: Park, M., W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and N. J. Livesey (2013), Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM, J. Geophys. Res. Atmos., 118, 1964-1980, doi: 10.1029/2012JD018327. C1 [Park, Mijeong; Randel, William J.; Kinnison, Douglas E.; Emmons, Louisa K.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bernath, Peter F.] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA USA. [Walker, Kaley A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Boone, Chris D.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Livesey, Nathaniel J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Park, M (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM mijeong@ucar.edu RI Bernath, Peter/B-6567-2012; Randel, William/K-3267-2016; Emmons, Louisa/R-8922-2016 OI Bernath, Peter/0000-0002-1255-396X; Randel, William/0000-0002-5999-7162; Emmons, Louisa/0000-0003-2325-6212 FU NASA Aura Science Program [NNX11AE59G]; Canadian Space Agency; National Science Foundation FX We thank Steve Massie and Charles Bardeen for discussions and comments on the manuscript and three anonymous reviewers for constructive comments that improved the paper. This work was partially supported under the NASA Aura Science Program under grant NNX11AE59G. The ACE mission is funded primarily by the Canadian Space Agency. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research, under sponsorship of the National Science Foundation. NR 87 TC 16 Z9 16 U1 2 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2013 VL 118 IS 4 BP 1964 EP 1980 DI 10.1029/2012JD018327 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LM UT WOS:000317841000028 ER PT J AU Shiga, YP Michalak, AM Kawa, SR Engelen, RJ AF Shiga, Yoichi P. Michalak, Anna M. Kawa, S. Randolph Engelen, Richard J. TI In-situ CO2 monitoring network evaluation and design: A criterion based on atmospheric CO2 variability SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-DIOXIDE; ASSIMILATION SYSTEM; TRANSPORT MODELS; GAS EMISSIONS; INVERSIONS; SINKS; OPTIMIZATION; CYCLE AB Estimates of surface fluxes of carbon dioxide (CO2) can be derived from atmospheric CO2 concentration measurements through the solution of an inverse problem, but the sparseness of the existing CO2 monitoring network is often cited as a main limiting factor in constraining fluxes. Existing methods for assessing or designing monitoring networks either primarily rely on expert knowledge, or are sensitive to the large number of modeling choices and assumptions inherent to the solution of inverse problems. This study proposes a monitoring network evaluation and design approach based on the quantification of the spatial variability in modeled atmospheric CO2. The approach is used to evaluate the 2004-2008 North American network expansion and to create two hypothetical further expansions. The less stringent expansion guarantees a monitoring tower within one correlation length (CL) of each location (1 CL), requiring an additional eight towers relative to 2008. The more stringent network includes a tower within one half of a CL (1/2 CL) and requires 35 towers beyond the 1 CL network. The two proposed networks are evaluated against the network in 2008, which temporarily had the most continuous monitoring sites in North America thanks to the Mid-Continent Intensive project. Evaluation using a synthetic data inversion shows a marked improvement in the ability to constrain both continental-and biome-scale fluxes, especially in areas that are currently under-sampled. The proposed approach is flexible, computationally inexpensive, and provides a quantitative design tool that can be used in concert with existing tools to inform atmospheric monitoring needs. Citation: Shiga, Y. P., A. M. Michalak, S. Randolph Kawa, and R. J. Engelen (2013), In-situ CO2 monitoring network evaluation and design: A criterion based on atmospheric CO2 variability, J. Geophys. Res. Atmos., 118, 2007-2018, doi: 10.1002/jgrd.50168. C1 [Shiga, Yoichi P.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Kawa, S. Randolph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Engelen, Richard J.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. RP Michalak, AM (reprint author), Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. EM michalak@stanford.edu RI Kawa, Stephan/E-9040-2012 FU National Aeronautics and Space Administration [NNX12A890G]; University of Michigan Rackham Merit Fellowship; European Commission under the Seventh Research Framework Program [218793] FX This manuscript is based upon work supported by the National Aeronautics and Space Administration under grant NNX12A890G. Partial support for Yoichi Shiga was also provided by the University of Michigan Rackham Merit Fellowship. The ECMWF-ORCHIDEE model simulation was done as part of the MACC project, which was funded by the European Commission under the Seventh Research Framework Program, contract number 218793. We would like to acknowledge Anna Agusti-Panareda for her support with the ECMWF-ORCHIDEE model simulations; Abhishek Chatterjee, Dorit Hammerling, Kim Mueller, Sharon Gourdji, Deborah Huntzinger, and Vineet Yadav for their invaluable expertise, patience, and assistance; Arlyn Andrews for her insights and expertise regarding the in-situ CO2 measurement network; Thomas Nehrkorn, John Henderson, and Janusz Eluszkiewicz for completing the WRF simulations; and three anonymous reviewers for valuable input on the manuscript. NR 57 TC 2 Z9 2 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2013 VL 118 IS 4 BP 2007 EP 2018 DI 10.1002/jgrd.50168 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LM UT WOS:000317841000031 ER PT J AU Jiang, Z Jones, DBA Worden, HM Deeter, MN Henze, DK Worden, J Bowman, KW Brenninkmeijer, CAM Schuck, TJ AF Jiang, Zhe Jones, Dylan B. A. Worden, Helen M. Deeter, Merritt N. Henze, Daven K. Worden, John Bowman, Kevin W. Brenninkmeijer, C. A. M. Schuck, T. J. TI Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BIOMASS BURNING EMISSIONS; CARBON-MONOXIDE; NETWORK OBSERVATIONS; DATA ASSIMILATION; UPPER TROPOSPHERE; GEOS-CHEM; SYSTEM; AIRCRAFT; ADJOINT; ASIA AB Estimates of surface fluxes of carbon monoxide (CO) inferred from remote sensing observations or free tropospheric trace gas measurements using global chemical transport models can have significant uncertainties because of discrepancies in the vertical transport in the models, which make it challenging to unequivocally relate the observations back to the surface fluxes in the models. The new Measurement of Pollution in the Troposphere (MOPITT) version 5 retrievals provide greater sensitivity to lower tropospheric CO over land relative to the previous versions and are, therefore, useful for evaluating vertical transport in models. We have assimilated the new MOPITT CO retrievals, using the Goddard Earth Observing System (GEOS)-Chem model, to study the influence of vertical transport errors on inferred CO sources. We compared the source estimates obtained by assimilating the CO profiles, the column amounts, and the surface level retrievals for June-August 2006. The three different inversions produced large differences in the source estimates in regions of convection and strong CO emissions. The inversion using the CO profiles suggested an 85% increase in emissions in India/Southeast Asia, which exacerbated the model bias in the lower and middle troposphere, whereas using the surface level retrievals produced a 37% decrease in Indian/Southeast Asian emissions, which exacerbated the underestimate of CO in the upper troposphere. Globally, the inversion with the surface retrievals suggested a 22% reduction in emissions from the a priori estimate of 161 Tg CO/month (from combustion and the oxidation of biogenic volatile organic compounds), averaged in June-August 2006. The analysis results were validated with independent surface CO measurements from NOAA Global Monitoring Division (GMD) network and upper troposphere CO measurements from the Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrumented Container (CARIBIC). We found that the inversion with the surface retrievals agreed best with surface CO data but produced the largest discrepancy with the CARIBIC aircraft data in the upper troposphere, suggesting the influence of vertical transport errors in the model. Our results show that the comparison of the a posteriori CO distributions obtained from the inversions using the surface and profile retrievals provides a means of characterizing the potential impact of the vertical transport biases on the source estimates and the CO distribution. Citation: Jiang, Z., D. B. A. Jones, H. M. Worden, M. N. Deeter, D. K. Henze, J. Worden, K. W. Bowman, C. A. M. Brenninkmeijer, and T. J. Schuck (2013), Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals, J. Geophys. Res. Atmos., 118, 2073-2083, doi: 10.1002/jgrd.50216. C1 [Jiang, Zhe; Jones, Dylan B. A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Jones, Dylan B. A.; Bowman, Kevin W.] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA. [Worden, Helen M.; Deeter, Merritt N.] NCAR, Boulder, CO USA. [Henze, Daven K.] Univ Colorado, Boulder, CO 80309 USA. [Worden, John; Bowman, Kevin W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Brenninkmeijer, C. A. M.; Schuck, T. J.] Max Planck Inst Chem, Air Chem Div, D-55128 Mainz, Germany. RP Jiang, Z (reprint author), Univ Toronto, 100 Coll St, Toronto, ON M5S 1A7, Canada. EM zjiang@atmosp.physics.utoronto.ca RI Jones, Dylan/O-2475-2014; Deeter, Merritt/O-6078-2016; Chem, GEOS/C-5595-2014 OI Jones, Dylan/0000-0002-1935-3725; Deeter, Merritt/0000-0002-3555-0518; FU Natural Science and Engineering Research Council of Canada; Canadian Space Agency; NASA [NNX10AT42G, NNX09AN77G] FX This work was supported by funding from the Natural Science and Engineering Research Council of Canada, the Canadian Space Agency, and NASA grants NNX10AT42G and NNX09AN77G. We thank NOAA ESRL for providing their CO flask data. We also acknowledge useful discussions with Susan Kulawik. NR 42 TC 22 Z9 22 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2013 VL 118 IS 4 BP 2073 EP 2083 DI 10.1002/jgrd.50216 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LM UT WOS:000317841000036 ER PT J AU Palmieri, FL Watson, KA Morales, G Williams, T Hicks, R Wohl, CJ Hopkins, JW Connell, JW AF Palmieri, Frank L. Watson, Kent A. Morales, Guillermo Williams, Thomas Hicks, Robert Wohl, Christopher J. Hopkins, John W. Connell, John W. TI Laser Ablative Surface Treatment for Enhanced Bonding of Ti-6Al-4V Alloy SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE Adhesion; Failure mode; Roughness; X-ray photoelectron spectroscopy (XPS); lap shear; PETI-5 ID COMPOSITES; TITANIUM; ADHESION; PHENYLETHYNYL; JOINTS AB Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable adhesive bonds. Surface preparation by laser ablation provides an alternative to the expensive, hazardous, polluting, and less precise practices used currently such as chemical-dip, manual abrasion and grit blast. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Surface roughness and surface chemical composition were characterized using interference microscopy and X-ray photoelectron spectroscopy, respectively. A technique for fluorescence visualization was developed which allowed for quantitative failure mode analysis. Wedge crack extension testing in a hot, humid environment indicated the relative effectiveness of various surface treatments. Increasing ablation duty cycle reduced crack propagation and adhesive failure. Single lap shear testing showed an increase in strength and durability as laser ablation duty cycle and power were increased. Chemical analyses showed trends for surface chemical species, which correlated with improved bond strength and durability. C1 [Palmieri, Frank L.; Watson, Kent A.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Morales, Guillermo] NASA Langley Res Summer Scholar, Hampton, VA 23681 USA. [Williams, Thomas; Hicks, Robert] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Wohl, Christopher J.; Hopkins, John W.; Connell, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Palmieri, FL (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM frank.l.palmieri@nasa.gov NR 22 TC 8 Z9 9 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD FEB 27 PY 2013 VL 5 IS 4 BP 1254 EP 1261 DI 10.1021/am302293m PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 099KE UT WOS:000315619100012 PM 23317556 ER PT J AU Itoh, R Fukazawa, Y Chiang, J Hanabata, Y Hayashida, M Hayashi, K Mizuno, T Ohno, M Ohsugi, T Perkins, JS Raino, S Reyes, LC Takahashi, H Tanaka, Y Tosti, G Akitaya, H Arai, A Kino, M Ikejiri, Y Kawabata, KS Komatsu, T Sakimoto, K Sasada, M Sato, S Uemura, M Ui, T Yamanaka, M Yoshida, M AF Itoh, Ryosuke Fukazawa, Yasushi Chiang, James Hanabata, Yoshitaka Hayashida, Masaaki Hayashi, Katsuhiro Mizuno, Tsunefumi Ohno, Masanori Ohsugi, Takashi Perkins, Jeremy S. Raino, Silvia Reyes, Luis C. Takahashi, Hiromitsu Tanaka, Yasuyuki Tosti, Gino Akitaya, Hiroshi Arai, Akira Kino, Masaru Ikejiri, Yuki Kawabata, Koji S. Komatsu, Tomoyuki Sakimoto, Kiyoshi Sasada, Mahito Sato, Shuji Uemura, Makoto Ui, Takahiro Yamanaka, Masayuki Yoshida, Michitoshi TI A Study of the Long-Term Spectral Variations of 3C 66A Observed with the Fermi and Kanata Telescopes SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE galaxies: BL Lacertae objects: general; gamma rays: observations ID LARGE-AREA TELESCOPE; GAMMA-RAY FLARE; MULTIWAVELENGTH OBSERVATIONS; SOURCE CATALOG; BLAZAR; POLARIZATION; OUTBURST; EMISSION AB 3C 66A is an intermediate-frequency-peaked BL Lac object detected by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. We present a study of the long-term variations of this blazar seen over similar to 2 yr at GeV energies with Fermi and in the optical (flux and polarization) and near infrared with the Kanata telescope. In 2008, the first year of the study, we find a correlation between the gamma-ray flux and the measurements taken with the Kanata telescope. This is in contrast to the later measurements performed during 2009-2010 which show only a weak correlation along with a gradual increase of the optical flux. We calculate an external seed photon energy density assuming that the gamma-ray emission is due to external Compton scattering. The energy density of the external photons is found to be higher by a factor of two in 2008 compared to 2009-2010. We conclude that the different behaviors observed between the first year and the later years might be explained by postulating two different emission components. C1 [Itoh, Ryosuke; Fukazawa, Yasushi; Hanabata, Yoshitaka; Hayashi, Katsuhiro; Ohno, Masanori; Ohsugi, Takashi; Takahashi, Hiromitsu; Ikejiri, Yuki; Komatsu, Tomoyuki; Sakimoto, Kiyoshi; Ui, Takahiro] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Chiang, James; Hayashida, Masaaki] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Chiang, James] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chiang, James] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Hayashida, Masaaki] Kyoto Univ, Dept Astron, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Mizuno, Tsunefumi; Tanaka, Yasuyuki; Akitaya, Hiroshi; Kawabata, Koji S.; Uemura, Makoto; Yoshida, Michitoshi] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Perkins, Jeremy S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Perkins, Jeremy S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Perkins, Jeremy S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Perkins, Jeremy S.] CRESST, Greenbelt, MD 20771 USA. [Perkins, Jeremy S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Raino, Silvia] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Raino, Silvia] Politecn Bari, I-70126 Bari, Italy. [Raino, Silvia] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Reyes, Luis C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA. [Tosti, Gino] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Tosti, Gino] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Arai, Akira] Kyoto Sangyo Univ, Dept Phys, Kita Ku, Kyoto 6038555, Japan. [Kino, Masaru; Sato, Shuji] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Sasada, Mahito] Kyoto Univ, Dept Phys, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Yamanaka, Masayuki] Kyoto Univ, Kwasan Observ, Yamashina Ku, Kyoto 6078471, Japan. RP Itoh, R (reprint author), Hiroshima Univ, Dept Phys Sci, 1-3-1 Kagamiyama, Hiroshima 7398526, Japan. EM itoh@hep01.hepl.hiroshima-u.ac.jp; fukazawa@hep01.hepl.hiroshima-u.ac.jp RI Tosti, Gino/E-9976-2013 FU Japan Society for the Promotion of Science (JSPS) FX This work was supported by the Japan Society for the Promotion of Science (JSPS). NR 28 TC 2 Z9 2 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 25 PY 2013 VL 65 IS 1 AR UNSP 18 DI 10.1093/pasj/65.1.18 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 123FU UT WOS:000317374600018 ER PT J AU Ngo-Duc, TT Gacusan, J Kobayashi, NP Sanghadasa, M Meyyappan, M Oye, MM AF Tam-Triet Ngo-Duc Gacusan, Jovi Kobayashi, Nobuhiko P. Sanghadasa, Mohan Meyyappan, M. Oye, Michael M. TI Controlled growth of vertical ZnO nanowires on copper substrate SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; NANOSTRUCTURES; NANORODS; ARRAYS; MOCVD AB We present an approach for diameter control of vertically aligned ZnO nanowires (NWs) grown directly on copper substrates. Vapor-solid growth was done at 550 degrees C with solid Zn precursor under Ar/O-2 flow, and the resulting nanowires with in situ-controllable diameters ranged between 50 to 500 nm. The nanowires were observed to elongate in tip growth and diameters were directly controlled by varying the oxygen concentration. Direct growth of vertical wires on metal substrates is expected to be useful to construct piezoelectric devices and applications involving sensors and detectors. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793758] C1 [Tam-Triet Ngo-Duc; Gacusan, Jovi; Meyyappan, M.; Oye, Michael M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Tam-Triet Ngo-Duc; Gacusan, Jovi; Oye, Michael M.] NASA, Ames Res Ctr, ELORET Corp, Moffett Field, CA 94035 USA. [Tam-Triet Ngo-Duc; Gacusan, Jovi; Kobayashi, Nobuhiko P.; Oye, Michael M.] NASA, Ames Res Ctr, UCSC NASA ARC Adv Studies Labs, Moffett Field, CA 94035 USA. [Kobayashi, Nobuhiko P.; Oye, Michael M.] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. [Sanghadasa, Mohan] USA, Weap Sci Directorate, Aviat & Missile RDEC, RDECOM, Redstone Arsenal, AL 35898 USA. RP Oye, MM (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM Michael.M.Oye@nasa.gov RI Kobayashi, Nobuhiko/E-3834-2012 FU DARPA [W31P4Q-11-c-0230]; NASA [NNX09AQ44A] FX This work was partially supported by DARPA contract W31P4Q-11-c-0230 to ELORET Corp. A NASA grant NNX09AQ44A to University of California Santa Cruz is acknowledged for instruments in the UCSC MACS Facility within the UCSC/NASA-ARC ASL. NR 23 TC 9 Z9 9 U1 1 U2 64 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2013 VL 102 IS 8 AR 083105 DI 10.1063/1.4793758 PG 4 WC Physics, Applied SC Physics GA 099CN UT WOS:000315597000066 ER PT J AU Yew, AG Pinero, D Hsieh, AH Atencia, J AF Yew, A. G. Pinero, D. Hsieh, A. H. Atencia, J. TI Low Peclet number mass and momentum transport in microcavities SO APPLIED PHYSICS LETTERS LA English DT Article ID ON-A-CHIP; CELL-CULTURE; BIOLOGY; CAVITY; FLOW; DIFFERENTIATION; PLATFORM; WALL AB For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for applications that may include microfluidic cell culture devices. We present equations to estimate the transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs, to travel from the microchannel to a given length into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, low Peclet number environments with minimal fluid shear stress. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794058] C1 [Yew, A. G.; Pinero, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yew, A. G.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Hsieh, A. H.; Atencia, J.] Univ Maryland, Dept Bioengn, College Pk, MD 20742 USA. [Hsieh, A. H.] Univ Maryland, Dept Orthopaed, Baltimore, MD 21201 USA. [Atencia, J.] NIST, Div Biochem Sci, Gaithersburg, MD 20899 USA. RP Yew, AG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Alvin.G.Yew@nasa.gov; Javier.Atencia@nist.gov OI Hsieh, Adam/0000-0003-3162-1152 FU NASA GSFC; NIST [70NANB11H191] FX Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology (NIST) nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose. Neither does such identification imply a recommendation, endorsement, or best practice by the National Aeronautics and Space Administration (NASA). This work was funded by NASA GSFC and NIST Grant 70NANB11H191. NR 24 TC 2 Z9 2 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2013 VL 102 IS 8 AR 084108 DI 10.1063/1.4794058 PG 4 WC Physics, Applied SC Physics GA 099CN UT WOS:000315597000095 ER PT J AU Venkatraman, V Mohanty, S AF Venkatraman, Vijaysree Mohanty, Susmita TI One minute with ... Susmita Mohanty SO NEW SCIENTIST LA English DT Editorial Material C1 [Mohanty, Susmita] Earth2Orbit, San Francisco, CA USA. [Mohanty, Susmita] NASA, Washington, DC USA. [Mohanty, Susmita] Boeing Co, Chicago, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION LTD PI SUTTON PA QUADRANT HOUSE THE QUADRANT, SUTTON SM2 5AS, SURREY, ENGLAND SN 0262-4079 J9 NEW SCI JI New Sci. PD FEB 23 PY 2013 VL 217 IS 2905 SI SI BP 27 EP 27 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 095VU UT WOS:000315363900018 ER PT J AU Brotton, SJ Kaiser, RI AF Brotton, Stephen J. Kaiser, Ralf I. TI In Situ Raman Spectroscopic Study of Gypsum (CaSO4 center dot 2H(2)O) and Epsomite (MgSO4 center dot 7H(2)O) Dehydration Utilizing an Ultrasonic Levitator SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ACOUSTIC LEVITATION; AIRBORNE CHEMISTRY; SURFACE; DYNAMICS; NANOPARTICLE; TEMPERATURES; PARTICLES; COLLISION; SCIENCE; GROWTH AB We present an original apparatus combining an acoustic levitator and a pressure-compatible process chamber. To characterize in situ the chemical and physical modifications of a levitated, single particle while heated to well-defined temperatures using a carbon dioxide laser, the chamber is interfaced to a Raman spectroscopic probe. As a proof-of-concept study, by gradually increasing the heating temperature, we observed the variations in the Raman spectra as 150 mu g of crystals of gypsum and epsomite were dehydrated in anhydrous nitrogen gas. We display spectra showing the decreasing intensities of the nu(1) symmetric and nu(3) asymmetric stretching modes of water with time and the simultaneous shift of the nu(1)(SO42-) symmetric stretch mode to higher wavenumbers. Our results demonstrate that the new apparatus is well suited to study the dehydration of levitated species such as minerals and offers potential advantages compared with previous experiments, on bulk samples. C1 [Brotton, Stephen J.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Brotton, SJ (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. FU UH NASA Astrobiology Institute FX This work was supported by the UH NASA Astrobiology Institute (R.I.K., S.J.B.). NR 35 TC 9 Z9 9 U1 2 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 21 PY 2013 VL 4 IS 4 BP 669 EP 673 DI 10.1021/jz301861a PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 096VE UT WOS:000315432000019 PM 26281883 ER PT J AU Brandt, TD McElwain, MW Turner, EL Abe, L Brandner, W Carson, J Egner, S Feldt, M Golota, T Goto, M Grady, CA Guyon, O Hashimoto, J Hayano, Y Hayashi, M Hayashi, S Henning, T Hodapp, KW Ishii, M Iye, M Janson, M Kandori, R Knapp, GR Kudo, T Kusakabe, N Kuzuhara, M Kwon, J Matsuo, T Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suto, H Suzuki, R Takami, M Takato, N Terada, H Thalmann, C Tomono, D Watanabe, M Wisniewski, JP Yamada, T Takami, H Usuda, T Tamura, M AF Brandt, Timothy D. McElwain, Michael W. Turner, Edwin L. Abe, L. Brandner, W. Carson, J. Egner, S. Feldt, M. Golota, T. Goto, M. Grady, C. A. Guyon, O. Hashimoto, J. Hayano, Y. Hayashi, M. Hayashi, S. Henning, T. Hodapp, K. W. Ishii, M. Iye, M. Janson, M. Kandori, R. Knapp, G. R. Kudo, T. Kusakabe, N. Kuzuhara, M. Kwon, J. Matsuo, T. Miyama, S. Morino, J. -I. Moro-Martin, A. Nishimura, T. Pyo, T. -S. Serabyn, E. Suto, H. Suzuki, R. Takami, M. Takato, N. Terada, H. Thalmann, C. Tomono, D. Watanabe, M. Wisniewski, J. P. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI NEW TECHNIQUES FOR HIGH-CONTRAST IMAGING WITH ADI: THE ACORNS-ADI SEEDS DATA REDUCTION PIPELINE SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; planetary systems; techniques: high angular resolution; techniques: image processing ID DEEP PLANET SURVEY; STAR; EXOPLANETS; TELESCOPE; CANDIDATE; PROJECT; SEARCH; DISKS; TOOL AB We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to similar to 20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license. C1 [Brandt, Timothy D.; Turner, Edwin L.; Janson, M.; Knapp, G. R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [McElwain, Michael W.; Grady, C. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Turner, Edwin L.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba, Japan. [Abe, L.] Lab Hippolyte Fizeau, Nice, France. [Brandner, W.; Feldt, M.; Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Carson, J.] Coll Charleston, Charleston, SC 29401 USA. [Egner, S.; Golota, T.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.; Takami, H.; Usuda, T.] Subaru Telescope, Hilo, HI USA. [Goto, M.] Univ Munich, Univ Sternwarte Munchen, Munich, Germany. [Hashimoto, J.; Hayashi, M.; Iye, M.; Kandori, R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J. -I.; Suto, H.; Suzuki, R.; Tamura, M.] Natl Astron Observ Japan, Tokyo, Japan. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan. [Kwon, J.] Grad Univ Adv Studies, Dept Astron Sci, Tokyo, Japan. [Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, Madrid, Spain. [Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Thalmann, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido, Japan. [Wisniewski, J. P.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan. RP Brandt, TD (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RI MIYAMA, Shoken/A-3598-2015; Watanabe, Makoto/E-3667-2016 OI Watanabe, Makoto/0000-0002-3656-4081 FU National Science Foundation Graduate Research Fellowship [DGE-0646086] FX The authors thank the anonymous referee for many helpful comments and suggestions that clarified this manuscript. This research is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatories of Japan. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE-0646086. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 37 TC 29 Z9 29 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 183 DI 10.1088/0004-637X/764/2/183 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600071 ER PT J AU Drake, JJ Cohen, O Yashiro, S Gopalswamy, N AF Drake, Jeremy J. Cohen, Ofer Yashiro, Seiji Gopalswamy, Nat TI IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: flare; stars: winds, outflows; Sun: coronal mass ejections (CMEs); X-rays: stars ID SOLAR PARTICLE EVENTS; EARTH-LIKE EXOPLANETS; IN HABITABLE ZONES; X-RAY-EMISSION; ANGULAR-MOMENTUM; TERRESTRIAL EXOPLANETS; STELLAR CORONAE; PROTON EVENTS; FLARE ENERGY; CME ACTIVITY AB Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 angstrom flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE(-alpha). For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of alpha and are very large: (M) over dot similar to 5 x 10(-10) M-circle dot yr(-1) and (E) over dot similar to 0.1 L-circle dot. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence greater than or similar to 10(31) erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10(-3) L-bol X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L-bol, the CME mass loss rate is about 5 x 10(-11) M-circle dot yr(-1). C1 [Drake, Jeremy J.; Cohen, Ofer] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Yashiro, Seiji] Interferometrics Inc, Herndon, VA 20171 USA. [Yashiro, Seiji; Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Drake, JJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jdrake@cfa.harvard.edu OI Gopalswamy, Nat/0000-0001-5894-9954; Cohen, Ofer/0000-0003-3721-0215 FU NASA [NAS8-03060]; Chandra Grant [TM2-13001X] FX J.J.D. was funded by NASA contract NAS8-03060 to the Chandra X-Ray Center (CXC) and thanks the CXC director, H. Tananbaum, and the CXC science team for continuing advice and support. O.C. was supported by Chandra Grant TM2-13001X. J.J.D. also thanks David Soderblom for organizing a workshop on the Faint Early Sun that provided the impetus for this study, and Vinay Kashyap for fruitful discussion. Finally, we thank the referee for a very helpful report that enabled us to improve the manuscript significantly. NR 75 TC 20 Z9 20 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 170 DI 10.1088/0004-637X/764/2/170 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600058 ER PT J AU Eggl, S Haghighipour, N Pilat-Lohinger, E AF Eggl, Siegfried Haghighipour, Nader Pilat-Lohinger, Elke TI DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; celestial mechanics; methods: analytical; planet-star interactions ID ALPHA-CENTAURI-B; HIERARCHICAL TRIPLE-SYSTEMS; CIRCUMBINARY PLANET; EXTRASOLAR PLANETS; ORBITAL PARAMETERS; EVOLUTION; STELLAR; STABILITY; MISSION AB Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the alpha Centauri system. C1 [Eggl, Siegfried; Pilat-Lohinger, Elke] Univ Vienna, Inst Astrophys, A-1180 Vienna, Austria. [Eggl, Siegfried] Observ Paris, IMCCE, F-75014 Paris, France. [Haghighipour, Nader] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Eggl, S (reprint author), Univ Vienna, Inst Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria. EM siegfried.eggl@univie.ac.at FU FWF [AS11608-N16, P20216-N16, P22603-N16]; University of Vienna's Forschungsstipendium; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA09DA77A]; NASA EXOB [NNX09AN05G] FX S.E. and E. P.-L. acknowledge support from FWF through projects AS11608-N16 (EP-L and SE), P20216-N16 (SE and EP-L), and P22603-N16 (EP-L). S. E. acknowledges support from the University of Vienna's Forschungsstipendium 2012. N.H. acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA09DA77A at the Institute for Astronomy, University of Hawaii, and NASA EXOB grant NNX09AN05G. S. E. and E. P-L. also thank the Institute for Astronomy and NASA Astrobiology Institute at the University of Hawaii-Manoa for their kind hospitality during the course of this project. The authors are thankful to Nikolaos Georgakarakos for his valuable suggestions and to the anonymous referee for constructive comments. NR 50 TC 6 Z9 6 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 130 DI 10.1088/0004-637X/764/2/130 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600018 ER PT J AU Gladders, MD Rigby, JR Sharon, K Wuyts, E Abramson, LE Dahle, H Persson, SE Monson, AJ Kelson, DD Benford, DJ Murphy, D Bayliss, MB Finkelstein, KD Koester, BP Bans, A Baxter, EJ Helsby, JE AF Gladders, Michael D. Rigby, Jane R. Sharon, Keren Wuyts, Eva Abramson, Louis E. Dahle, Hakon Persson, S. E. Monson, Andrew J. Kelson, Daniel D. Benford, Dominic J. Murphy, David Bayliss, Matthew B. Finkelstein, Keely D. Koester, Benjamin P. Bans, Alissa Baxter, Eric J. Helsby, Jennifer E. TI SGAS 143845.1+145407: A BIG, COOL STARBURST AT REDSHIFT 0.816 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; gravitational lensing: strong ID SPECTRAL ENERGY-DISTRIBUTIONS; LENSED SUBMILLIMETER GALAXIES; STAR-FORMING GALAXIES; LYMAN BREAK GALAXIES; SOUTH-POLE TELESCOPE; GIANT ARCS SURVEY; INFRARED GALAXIES; INTERNAL KINEMATICS; STELLAR POPULATION; HERSCHEL-ATLAS AB We present the discovery and detailed multi-wavelength study of a strongly lensed luminous infrared galaxy at z = 0.816. Unlike most known lensed galaxies discovered at optical or near-infrared wavelengths, this lensed source is red, (r - K-s)(AB) = 3.9, which the data presented here demonstrate is due to ongoing dusty star formation. The overall lensing magnification (a factor of 17) facilitates observations from the blue optical through to 500 mu m, fully capturing both the stellar photospheric emission and the re-processed thermal dust emission. We also present optical and near-IR spectroscopy. These extensive data show that this lensed galaxy is in many ways typical of IR-detected sources at z similar to 1, with both a total luminosity and size in accordance with other (albeit much less detailed) measurements for samples of galaxies observed in deep fields with the Spitzer telescope. Its far-infrared spectral energy distribution is well fit by local templates that are an order of magnitude less luminous than the lensed galaxy; local templates of comparable luminosity are too hot to fit. Its size (D similar to 7 kpc) is much larger than local luminous infrared galaxies, but in line with sizes observed for such galaxies at z similar to 1. The star formation appears uniform across this spatial scale. In this source, the luminosity of which is typical of sources that dominate the cosmic infrared background, we find that star formation is spatially extended and well organized, quite unlike the compact merger-driven starbursts that are typical for sources of this luminosity at z similar to 0. C1 [Gladders, Michael D.; Wuyts, Eva; Abramson, Louis E.; Bans, Alissa; Baxter, Eric J.; Helsby, Jennifer E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gladders, Michael D.; Sharon, Keren; Wuyts, Eva; Abramson, Louis E.; Helsby, Jennifer E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Rigby, Jane R.; Benford, Dominic J.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dahle, Hakon] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Persson, S. E.; Monson, Andrew J.; Kelson, Daniel D.; Murphy, David] Carnegie Observ, Pasadena, CA 91101 USA. [Bayliss, Matthew B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bayliss, Matthew B.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Finkelstein, Keely D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Koester, Benjamin P.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Gladders, MD (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM gladders@oddjob.uchicago.edu RI Rigby, Jane/D-4588-2012; Benford, Dominic/D-4760-2012 OI Rigby, Jane/0000-0002-7627-6551; Benford, Dominic/0000-0002-9884-4206 FU Research Corporation; National Aeronautics and Space Administration (NASA); NASA through JPL/Caltech; NASA Keck PI Data Award; W. M. Keck Foundation; NASA; NSF; UVES Paranal Observatory Project [266.D-5655] FX M.D.G. thanks the Research Corporation for support of this work through a Cottrell Scholars award.; This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration (NASA).; This work made use of observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Partial support for this work was provided by NASA through an award issued by JPL/Caltech.; This work includes observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina).; This work was partially supported by a NASA Keck PI Data Award, administered by the NASA Exoplanet Science Institute. This work includes data obtained at the W. M. Keck Observatory from telescope time allocated to NASA through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF.; We acknowledge the use of data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655). This paper makes use of the ROSAT Data Archive of the Max-Planck-Institut fur extraterrestrische Physik (MPE) at Garching, Germany. NR 80 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 177 DI 10.1088/0004-637X/764/2/177 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600065 ER PT J AU Reep, JW Bradshaw, SJ Klimchuk, JA AF Reep, J. W. Bradshaw, S. J. Klimchuk, J. A. TI DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona ID SOLAR PLASMAS. APPLICATION; CORONAL LOOPS; ATOMIC DATABASE; MAGNETIC-FIELD; DYNAMICS; EXPLANATION; IONIZATION; ACCURACY; SPECTRUM; CHIANTI AB The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a "nanoflare train" and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration Delta(H) to the post-train cooling and draining timescale Delta(C), where Delta(H) depends on the number of heating events, the event duration and the time interval between successive events (tau(C)); (3) tau(C) may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for Delta(H) to be uniquely extracted from the ratio Delta(H)/Delta(C). C1 [Reep, J. W.; Bradshaw, S. J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Reep, JW (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM jeffrey.reep@rice.edu; stephen.bradshaw@rice.edu; james.a.klimchuk@nasa.gov RI Klimchuk, James/D-1041-2012; OI Klimchuk, James/0000-0003-2255-0305; Reep, Jeffrey/0000-0003-4739-1152 FU NASA SRT program FX S.J.B. and J.A.K. acknowledge support for this work by the NASA SR&T program. We thank the International Space Science Institute (ISSI) for hosting the International Team led by S.J.B. and Helen Mason, and the team members for the fruitful discussions that took place during the meeting held there in 2012 February. Our thanks to the referee for their comments and suggestions which improved the original manuscript. NR 37 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 193 DI 10.1088/0004-637X/764/2/193 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600081 ER PT J AU Sayers, J Mroczkowski, T Czakon, NG Golwala, SR Mantz, A Ameglio, S Downes, TP Koch, PM Lin, KY Molnar, SM Moustakas, L Muchovej, SJC Pierpaoli, E Shitanishi, JA Siegel, S Umetsu, K AF Sayers, J. Mroczkowski, T. Czakon, N. G. Golwala, S. R. Mantz, A. Ameglio, S. Downes, T. P. Koch, P. M. Lin, K. -Y. Molnar, S. M. Moustakas, L. Muchovej, S. J. C. Pierpaoli, E. Shitanishi, J. A. Siegel, S. Umetsu, K. TI THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general; radio continuum: galaxies ID ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; STAR-FORMATION; SOURCE CATALOG; SCALING RELATIONS; IMAGING SURVEY; SKY SURVEY; SAMPLE; FIELD; EVOLUTION AB We describe in detail our characterization of the compact radio source population in 140 GHz Bolocam observations of a set of 45 massive galaxy clusters. We use a combination of 1.4 and 30 GHz data to select a total of 28 probable cluster-member radio galaxies and also to predict their 140 GHz flux densities. All of these galaxies are steep-spectrum radio sources and they are found preferentially in the cool-core clusters within our sample. In particular, 11 of the 12 brightest cluster-member radio sources are associated with cool-core systems. Although none of the individual galaxies are robustly detected in the Bolocam data, the ensemble-average flux density at 140 GHz is consistent with, but slightly lower than, the extrapolation from lower frequencies assuming a constant spectral index. In addition, our data indicate an intrinsic scatter of similar or equal to 30% around the power-law extrapolated flux densities at 140 GHz, although our data do not tightly constrain this scatter. For our cluster sample, which is composed of high-mass and moderate-redshift systems, we find that the maximum fractional change in the Sunyaev-Zel'dovich signal integrated over any single cluster due to the presence of these radio sources is similar or equal to 20%, and only similar or equal to 1/4 of the clusters show a fractional change of more than 1%. The amount of contamination is strongly dependent on cluster morphology, and nearly all of the clusters with >= 1% contamination are cool-core systems. This result indicates that radio contamination is not significant compared with current noise levels in 140 GHz images of massive clusters and is in good agreement with the level of radio contamination found in previous results based on lower frequency data or simulations. C1 [Sayers, J.; Mroczkowski, T.; Czakon, N. G.; Golwala, S. R.; Downes, T. P.; Muchovej, S. J. C.; Siegel, S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Mroczkowski, T.; Moustakas, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mantz, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ameglio, S.; Pierpaoli, E.; Shitanishi, J. A.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Koch, P. M.; Lin, K. -Y.; Umetsu, K.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Molnar, S. M.] Natl Taiwan Univ, LeCosPA Ctr, Taipei 10617, Taiwan. RP Sayers, J (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM jack@caltech.edu OI Umetsu, Keiichi/0000-0002-7196-4822; Moustakas, Leonidas/0000-0003-3030-2360; Pierpaoli, Elena/0000-0002-7957-8993 FU NASA Graduate Student Research Fellowship; NASA Postdoctoral Program Fellowship; NASA through the Einstein Fellowship Program [PF0-110077]; Academia Sinica Career Development Award; National Science Foundation [NSF/AST-0838261]; [NASA/NNX11AB07G]; [NSF/AST-0838187]; [NASA/NNX07AH59G] FX We acknowledge the assistance of the day crew and Hilo staff of the Caltech Submillimeter Observatory, who provided invaluable assistance during data taking for this data set; Mike Zemcov, Dan Marrone, and John Carlstrom for useful discussions; Max Bonamente, John Carlstrom, Thomas Culverhouse, Christopher Greer, Marshall Joy, James Lamb, Erik Leitch, Dan Marrone, Amber Miller, Thomas Plagge, Matthew Sharp, and David Woody for providing OVRO/BIMA and/or SZA data for our analysis; Kathy Deniston, Barbara Wertz, and Diana Bisel, who provided effective administrative support at Caltech and in Hilo; Matt Hollister and Matt Ferry, who assisted in the collection of these data; and the referee for useful suggestions that significantly improved our manuscript. The Bolocam observations were supported by the Gordon and Betty Moore Foundation. J.S. was supported by a NASA Graduate Student Research Fellowship, a NASA Postdoctoral Program Fellowship, NSF/AST-0838261 and NASA/NNX11AB07G; T.M. was supported by NASA through the Einstein Fellowship Program grant PF0-110077; N.C. was partially supported by a NASA Graduate Student Research Fellowship; A.M. was partially supported by NSF/AST-0838187; S.A., E.P., and J.A.S. were partially supported by NASA/NNX07AH59G; and K.U. acknowledges support from the Academia Sinica Career Development Award. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research made use of the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation (NSF/AST-0838261). The operation of the SZA was supported by NSF/AST-0838187, and CARMA operations were supported by the CARMA partner universities under a cooperative agreement with the National Science Foundation. NR 62 TC 13 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 152 DI 10.1088/0004-637X/764/2/152 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600040 ER PT J AU Scargle, JD Norris, JP Jackson, B Chiang, J AF Scargle, Jeffrey D. Norris, Jay P. Jackson, Brad Chiang, James TI STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: statistical ID GAMMA-RAY BURSTS; BINARY REGRESSION AB This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material. C1 [Scargle, Jeffrey D.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Norris, Jay P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Jackson, Brad] San Jose State Univ, Dept Math, Ctr Appl Math & Comp Sci, San Jose, CA 95192 USA. [Chiang, James] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Chiang, James] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RP Scargle, JD (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. EM jeffrey.d.scargle@nasa.gov FU NASA Applied Information Systems Research Program; Center for Applied Mathematics, Computation and Statistics (CAMCOS) in the Department of Mathematics, San Jose State University through the Henry Woodward Fund FX This work was supported by Joe Bredekamp and the NASA Applied Information Systems Research Program. We especially recognize the Center for Applied Mathematics, Computation and Statistics (CAMCOS) in the Department of Mathematics, San Jose State University for support through the Henry Woodward Fund. J.D.S. is grateful for the hospitality of the following institutions during various phases of this work: the Institute for Pure and Applied Mathematics at the University of California at Los Angeles, the Banff International Research Station, the Keck Institute for Space Studies at Caltech, the Kavli Institute for Particle Astrophysics at Stanford University and the Statistical and Mathematical Sciences Institute at Duke University. We are grateful to Tom Loredo, Glen MacLachlan, Erik Petigura, Jake Vanderplas, Zeljko Ivezic, Ery Arias-Castro, Sam Kou, Lin Lin, Talvikki Hovatta, and Marc Coram for helpful comments, and to Alice Allen for help with the posting at "The Engineering Deck: Astrophysics Source Code Library" on the Starship Asterisk Web site: http://asterisk.apod.com/. We are also grateful to the anonymous referee for useful suggestions. NR 43 TC 68 Z9 68 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 167 DI 10.1088/0004-637X/764/2/167 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600055 ER PT J AU Stark, CC Boss, AP Weinberger, AJ Jackson, BK Endl, M Cochran, WD Johnson, M Caldwell, C Agol, E Ford, EB Hall, JR Ibrahim, KA Li, J AF Stark, Christopher C. Boss, Alan P. Weinberger, Alycia J. Jackson, Brian K. Endl, Michael Cochran, William D. Johnson, Marshall Caldwell, Caroline Agol, Eric Ford, Eric B. Hall, Jennifer R. Ibrahim, Khadeejah A. Li, Jie TI A SEARCH FOR EXOZODIACAL CLOUDS WITH KEPLER SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; interplanetary medium; methods: observational; planet-disk interactions; techniques: photometric ID DEBRIS DISKS; RESONANT SIGNATURES; TRANSITING PLANETS; DUST RING; CANDIDATES; SYSTEMS; EARTH AB Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here, we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3 sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by similar to 90 degrees with optical depths greater than or similar to 5 x 10(-6), which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud. C1 [Stark, Christopher C.; Boss, Alan P.; Weinberger, Alycia J.; Jackson, Brian K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Endl, Michael; Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Johnson, Marshall; Caldwell, Caroline] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Hall, Jennifer R.; Ibrahim, Khadeejah A.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Li, Jie] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Stark, CC (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM cstark@dtm.ciw.edu OI /0000-0002-0802-9145; /0000-0001-6545-639X; Weinberger, Alycia/0000-0001-6654-7859 FU Carnegie Institution of Washington FX The authors thank Guillem Anglada-Escude and Evgenya Shkolnik for helpful discussions. This work was supported by the Carnegie Institution of Washington. NR 30 TC 1 Z9 1 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 195 DI 10.1088/0004-637X/764/2/195 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600083 ER PT J AU Winkler, PF Williams, BJ Blair, WP Borkowski, KJ Ghavamian, P Long, KS Raymond, JC Reynolds, SP AF Winkler, P. Frank Williams, Brian J. Blair, William P. Borkowski, Kazimierz J. Ghavamian, Parviz Long, Knox S. Raymond, John C. Reynolds, Stephen P. TI THE FIRST REPORTED INFRARED EMISSION FROM THE SN 1006 REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (SNR SN1006); ISM: kinematics and dynamics; ISM: supernova remnants; shock waves ID LARGE-MAGELLANIC-CLOUD; GALACTIC SUPERNOVA-REMNANTS; BALMER-DOMINATED SHOCKS; SPITZER-SPACE-TELESCOPE; DUST DESTRUCTION; IA SUPERNOVA; NONRADIATIVE SHOCKS; OPTICAL REMNANT; PROPER MOTIONS; SN-1006 AB We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 mu m image from Multiband Imaging Photometer for Spitzer clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 mu m emission traces the Balmer filaments almost perfectly but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lower-a relic effect from an earlier epoch when the shock was encountering a lower density-but higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the Infrared Spectrometer instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium (ISM) is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other supernova remnants, but whose cause remains unclear. As with other Type Ia supernova (SN Ia) remnants, SN 1006 shows no evidence for dust grain formation in the SN ejecta. C1 [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Williams, Brian J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, William P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Ghavamian, Parviz] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Raymond, John C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Winkler, PF (reprint author), Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. EM winkler@middlebury.edu; brian.j.williams@nasa.gov; wpb@pha.jhu.edu; kborkow@ncsu.edu; pghavamian@towson.edu; long@stsci.edu; jraymond@cfa.harvard.edu; reynolds@ncsu.edu FU NASA [RSA 1330031, NNX11AB14G]; NSF [AST-0908566] FX This research is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We are grateful to the support staff at IPAC for their guidance with some of the subtleties of Spitzer data analysis. We also acknowledge thoughtful comments from the anonymous referee, which have prompted us to, we hope, clarify much of this paper. Primary financial support for this project has been provided by NASA through RSA 1330031. P.F.W. acknowledges additional support from the NSF through grant AST-0908566, and K.J.B. acknowledges additional support from NASA through grant NNX11AB14G. NR 67 TC 10 Z9 10 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2013 VL 764 IS 2 AR 156 DI 10.1088/0004-637X/764/2/156 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088CY UT WOS:000314812600044 ER PT J AU Caballero, I Pottschmidt, K Marcu, DM Barragan, L Ferrigno, C Klochkov, D Heras, JAZ Suchy, S Wilms, J Kretschmar, P Santangelo, A Kreykenbohm, I Furst, F Rothschild, R Staubert, R Finger, MH Camero-Arranz, A Makishima, K Enoto, T Iwakiri, W Terada, Y AF Caballero, I. Pottschmidt, K. Marcu, D. M. Barragan, L. Ferrigno, C. Klochkov, D. Heras, J. A. Zurita Suchy, S. Wilms, J. Kretschmar, P. Santangelo, A. Kreykenbohm, I. Fuerst, F. Rothschild, R. Staubert, R. Finger, M. H. Camero-Arranz, A. Makishima, K. Enoto, T. Iwakiri, W. Terada, Y. TI A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH INTEGRAL, RXTE, AND SUZAKU SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: individual (A 0535+26); stars: magnetic field; X-rays: binaries; X-rays: stars ID RAY-TIMING-EXPLORER; AUGUST/SEPTEMBER 2005 OUTBURST; CYCLOTRON-RESONANCE ENERGIES; LINE ENERGY; LUMINOSITY; A0535+262; SPECTROSCOPY; HERCULES-X-1; PERFORMANCE; PULSARS AB The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of similar to 450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst. C1 [Caballero, I.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,INSU,CEA DSM,SAp, F-91191 Gif Sur Yvette, France. [Pottschmidt, K.; Marcu, D. M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, K.; Marcu, D. M.] NASA, CRESST, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Barragan, L.; Wilms, J.; Kreykenbohm, I.] FAU Erlangen Nuremberg, Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Barragan, L.; Wilms, J.; Kreykenbohm, I.] FAU Erlangen Nuremberg, ECAP, D-96049 Bamberg, Germany. [Ferrigno, C.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Klochkov, D.; Suchy, S.; Santangelo, A.; Staubert, R.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Heras, J. A. Zurita] Univ Paris Diderot, Francois Arago Ctr, APC, CNRS,IN2P3,CEA,DSM,Observ Paris,UMR 7164, F-75205 Paris 13, France. [Kretschmar, P.] ESAC, Sci Operat Dept, ESA, E-28080 Madrid, Spain. [Fuerst, F.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Rothschild, R.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Finger, M. H.] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Camero-Arranz, A.] CSIC, Fac Ciencies, Inst Ciencies Espai IEEC, E-08193 Barcelona, Spain. [Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Makishima, K.; Enoto, T.] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Iwakiri, W.; Terada, Y.] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan. RP Caballero, I (reprint author), Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,INSU,CEA DSM,SAp, F-91191 Gif Sur Yvette, France. EM isabel.caballero@cea.fr RI Wilms, Joern/C-8116-2013; Terada, Yukikatsu/A-5879-2013; Kreykenbohm, Ingo/H-9659-2013; XRAY, SUZAKU/A-1808-2009; OI Wilms, Joern/0000-0003-2065-5410; Terada, Yukikatsu/0000-0002-2359-1857; Kreykenbohm, Ingo/0000-0001-7335-1803; Kretschmar, Peter/0000-0001-9840-2048 FU French Space Agency CNES through CNRS; NASA [NNXIOAJ47G, NNXIOAJ48G]; Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1113]; Formosa program [TW2010005]; iLINK program [2011-0303]; [AYA2009-07391]; [SGR2009-811] FX We thank the anonymous referee for useful comments, the RXTE, INTEGRAL, and Suzaku teams for the scheduling of the observations, and ISSI (Bern) for their hospitality during our collaboration meetings. I. C. thanks Philippe Laurent for the help with the INTEGRAL analysis, Yuuki Moritani for useful discussions, and acknowledges financial support from the French Space Agency CNES through CNRS. K.P. and D.M.M. acknowledge support from NASA guest observer grants NNXIOAJ47G for INTEGRAL cycle 6 and NNXIOAJ48G for Suzaku cycle 4. J.W. and I.K. acknowledge partial funding from the Deutsches Zentrum fur Luft- und Raumfahrt under contract number 50 OR 1113. A.C.-A. is supported by the grants AYA2009-07391 and SGR2009-811, as well as the Formosa program TW2010005 and iLINK program 2011-0303. NR 42 TC 10 Z9 10 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2013 VL 764 IS 2 AR L23 DI 10.1088/2041-8205/764/2/L23 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088EX UT WOS:000314817700005 ER PT J AU Morris, BM Mandell, AM Deming, D AF Morris, Brett M. Mandell, Avi M. Deming, Drake TI KEPLER'S OPTICAL SECONDARY ECLIPSE OF HAT-P-7b AND PROBABLE DETECTION OF PLANET-INDUCED STELLAR GRAVITY DARKENING SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE eclipses; planets and satellites: fundamental parameters; planets and satellites: individual (HAT-P-7b); stars: atmospheres; stars: individual (HAT-P-7) ID LIGHT CURVES; EXTRASOLAR PLANETS; EXOPLANET HAT-P-7B; PHOTOMETRY; MASSES; STARS AB We present observations spanning 355 orbital phases of HAT-P-7 observed by Kepler from 2009 May to 2011 March (Q1-9). We find a shallower secondary eclipse depth than initially announced, consistent with a low optical albedo and detection of nearly exclusively thermal emission, without a reflected light component. We find an approximately 10 ppm perturbation to the average transit light curve near phase -0.02 that we attribute to a temperature decrease on the surface of the star, phased to the orbit of the planet. This cooler spot is consistent with planet-induced gravity darkening, slightly lagging the sub-planet position due to the finite response time of the stellar atmosphere. The brightness temperature of HAT-P-7b in the Kepler bandpass is T-B = 2733 +/- 21 K and the amplitude of the deviation in stellar surface temperature due to gravity darkening is approximately -0.18 K. The detection of the spot is not statistically unequivocal due its small amplitude, though additional Kepler observations should be able to verify the astrophysical nature of the anomaly. C1 [Morris, Brett M.; Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morris, Brett M.; Mandell, Avi M.; Deming, Drake] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Morris, BM (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. OI Morris, Brett/0000-0003-2528-3409 FU Goddard Center for Astrobiology; NASA Astrobiology Institute; NASA Science Mission directorate; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX B.M.M. and A.M.M. acknowledge support from the Goddard Center for Astrobiology and the NASA Astrobiology Institute, with administrative support from the University of Maryland. This Letter includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented in this Letter were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. We thank the referee for insightful recommendations on the manuscript. NR 18 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2013 VL 764 IS 2 AR L22 DI 10.1088/2041-8205/764/2/L22 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088EX UT WOS:000314817700004 ER PT J AU Stern, D Assef, RJ AF Stern, Daniel Assef, Roberto J. TI REVISITING THE GAMMA-RAY SOURCE 2FGL J1823.8+4312 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects: individual (2FGL J1823.8+4312) ID ACTIVE GALACTIC NUCLEI; ALL-SKY SURVEY; MIDINFRARED SELECTION; SOURCE CATALOG; BLAZARS; GALAXIES; DISCOVERY; CLUSTERS; QUASARS; COLORS AB One of the great challenges of gamma-ray astronomy is identifying the lower energy counterparts to these high-energy sources. Recently, in this journal, Massaro et al. attempted to find the counterpart of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus (AGN) of uncertain type from the Second Fermi Large Area Telescope catalog. After considering mid-infrared data in the field from the Wide-field Infrared Survey Explorer (WISE), those authors conclude that the preferred identification of 2FGL J1823.8+4312 is WISE J182352.33+431452.5, despite the fact that the mid-infrared source is undetected at radio energies. They claim that WISE J182352.33+431452.5 constitutes the discovery of a new class of extragalactic X-ray source, either a radio-faint blazar or the prototype of a new class of active galaxy with an enigmatic spectral energy distribution. This conclusion is claimed to be independent of whether or not the WISE source is the actual counterpart to 2FGL J1823.8+4312. Based on a re-analysis of public data in this field and new spectroscopy from Palomar, we conclude that WISE J182352.33+431452.5 is a dust-reddened quasar at z = 0.560, a representative example of a very common extragalactic AGN class. Were WISE J182352.33+431452.5 to be associated with the gamma-ray emission, this would be an unusual and exciting discovery. However, we argue that 2FGL J1823.8+4312 is more likely associated with either WISE J182409.25+431404.7 or, more likely, WISE J182419.04+430949.6, two radio-loud sources in the field. The former is a radio-loud quasar and the latter is an optically variable source with a featureless blue spectrum. C1 [Stern, Daniel; Assef, Roberto J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stern, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA. EM daniel.k.stern@jpl.nasa.gov FU National Aeronautics and Space Administration FX We thank both Francesco Massaro and the anonymous referee for useful feedback on our manuscript. We thank Eric Bellm for introducing us to publicly accessible synoptic resources, and gratefully acknowledge Mislav Balokovic, Kristen Boydstun, Ting-Ni Lu, and Dominika Wylezalek for assisting with the Palomar observations. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 31 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2013 VL 764 IS 2 AR L30 DI 10.1088/2041-8205/764/2/L30 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088EX UT WOS:000314817700012 ER PT J AU Millet, DB Apel, E Henze, DK Hill, J Marshall, JD Singh, HB Tessum, CW AF Millet, Dylan B. Apel, Eric Henze, Daven K. Hill, Jason Marshall, Julian D. Singh, Hanwant B. Tessum, Christopher W. TI Response to Comment on "Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use" SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Letter C1 [Millet, Dylan B.; Hill, Jason; Marshall, Julian D.; Tessum, Christopher W.] Univ Minnesota, Minneapolis, MN 55455 USA. [Apel, Eric] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Henze, Daven K.] Univ Colorado, Boulder, CO 80309 USA. [Singh, Hanwant B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Millet, DB (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM dbm@umn.edu RI Hill, Jason/A-8919-2008; Millet, Dylan/G-5832-2012 OI Hill, Jason/0000-0001-7609-6713; NR 3 TC 0 Z9 0 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 19 PY 2013 VL 47 IS 4 BP 2141 EP 2141 DI 10.1021/es305112s PG 1 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 095IA UT WOS:000315326700046 PM 23244221 ER PT J AU Berger, KJ Anand, A Metzger, PT Hrenya, CM AF Berger, Kyle J. Anand, Anshu Metzger, Philip T. Hrenya, Christine M. TI Role of collisions in erosion of regolith during a lunar landing SO PHYSICAL REVIEW E LA English DT Article ID SPHERICAL-PARTICLE; FLOWS; MODEL AB The supersonic gas plume of a landing rocket entrains lunar regolith, which is the layer of loose solids covering the lunar surface. This ejection is problematic due to scouring and dust impregnation of surrounding hardware, reduction in visibility for the crew, and spoofing of the landing sensors. To date, model predictions of erosion and ejection dynamics have been based largely on single-trajectory models in which the role of interparticle collisions is ignored. In the present work, the parameters affecting the erosion rate of monodisperse solids are investigated using the discrete element method (DEM). The drag and lift forces exerted by the rocket exhaust are incorporated via one-way coupling. The results demonstrate that interparticle collisions are frequent in the region immediately above the regolith surface; as many as 20% of particles are engaged in a collision at a given time. These collisions play an important role both in the erosion dynamics and in the final trajectories of particles. In addition, a direct assessment of the influence of collisions on the erosion rate is accomplished via a comparison between a "collisionless" DEM model and the original DEM model. This comparison shows that the erosion dynamics change drastically when collisions are considered and that the erosion rate is dependent on the collision parameters (coefficient of restitution and coefficient of friction). Physical explanations for these trends are provided. DOI: 10.1103/PhysRevE.87.022205 C1 [Berger, Kyle J.; Anand, Anshu; Hrenya, Christine M.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA. [Metzger, Philip T.] NASA, Kennedy Space Ctr, Granular Mech & Regolith Operat Lab, Kennedy Space Ctr, FL 32899 USA. RP Hrenya, CM (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA. EM hrenya@colorado.edu RI Metzger, Philip/R-3136-2016 OI Metzger, Philip/0000-0002-6871-5358 FU MFiX; National Aeronautics and Space Administration [NNX09AD07A]; NASA Office of the Chief Technologist's Space Technology Research Fellowship [NNX11AM71H] FX A.A. is grateful to Sofiane Benyahia at NETL for his support with MFiX. The authors are grateful to Xiaoayi Li for the CFD work used to generate the plume velocity profile. Funding for this work was provided by the National Aeronautics and Space Administration (Grant No. NNX09AD07A). This work was also supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (Grant No. NNX11AM71H). NR 28 TC 8 Z9 9 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB 19 PY 2013 VL 87 IS 2 AR 022205 DI 10.1103/PhysRevE.87.022205 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 092VG UT WOS:000315150500006 PM 23496503 ER PT J AU Wang, L Derksen, C Brown, R Markus, T AF Wang, L. Derksen, C. Brown, R. Markus, T. TI Recent changes in pan-Arctic melt onset from satellite passive microwave measurements SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SNOWMELT; F11 AB A new satellite passive microwave (PMW) melt onset retrieval algorithm based on temporal variations in the differences of the brightness temperature between 19 and 37 GHz is shown to be as effective as radar (e. g., QuikScat) measurements. The PMW technique shows improved melt estimates that are more closely linked to observed snow-off dates than previous studies. An integrated pan-Arctic (north of 50 degrees N) melt onset date (MOD) dataset is produced by combining estimates on land and sea ice for the entire satellite PMW record. During the 1979-2011 period, significant trends of 2 similar to 3 days (decade)(-1) to earlier MOD are mainly concentrated over the Eurasian land sector of the Arctic, consistent with changes in spring snow cover extent observed with visible satellite data. The variability and change in melt onset are largely driven by spring surface air temperature, with insignificant influence from low-frequency modes of atmospheric circulation. Citation: Wang, L., C. Derksen, R. Brown and T. Markus (2013), Recent changes in pan-Arctic melt onset from satellite passive microwave measurements, Geophys. Res. Lett., 40, 522-528, doi:10.1002/grl.50098. C1 [Wang, L.; Derksen, C.] Environm Canada, Div Climate Res, Atmospher Sci & Technol Directorate, Toronto, ON M3H 5T4, Canada. [Brown, R.] Environm Canada, Climate Res Div, Ouranos, Montreal, PQ, Canada. [Markus, T.] NASA Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD USA. RP Wang, L (reprint author), Environm Canada, Div Climate Res, Atmospher Sci & Technol Directorate, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada. EM Libo.Wang@ec.gc.ca NR 27 TC 12 Z9 12 U1 5 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 522 EP 528 DI 10.1002/grl.50098 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000012 ER PT J AU Landerer, FW Volkov, DL AF Landerer, Felix W. Volkov, Denis L. TI The anatomy of recent large sea level fluctuations in the Mediterranean Sea SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DATA ASSIMILATION SYSTEM; OCEAN CIRCULATION; VARIABILITY; GRACE; TOPEX/POSEIDON; GIBRALTAR; PRESSURE; ATLANTIC; STRAIT; WIND AB During the boreal winter months of 2009/2010 and 2010/2011, Mediterranean mean sea level rose 10 cm above the average monthly climatological values. The non-seasonal anomalies were observed in sea surface height (from altimetry), as well as ocean mass (from gravimetry), indicating they were mostly of barotropic nature. These relatively rapid basin-wide fluctuations occurred over time scales of 1-5 months. Here we use observations and re-analysis data to attribute the non-seasonal sea level and ocean mass fluctuations in the Mediterranean Sea to concurrent wind stress anomalies over the adjacent subtropical Northeast Atlantic Ocean, just west of the Strait of Gibraltar, and extending into the strait itself. The observed Mediterranean sea level fluctuations are strongly anti-correlated with the monthly North-Atlantic-Oscillation (NAO) index. Citation: Landerer, F. W., and D. L. Volkov (2013), The anatomy of recent large sea level fluctuations in the Mediterranean Sea, Geophys. Res. Lett., 40, 553-557, doi:10.1002/grl.50140. C1 [Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90024 USA. RP Landerer, FW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 238-600, Pasadena, CA 91109 USA. EM Felix.W.Landerer@jpl.nasa.gov RI Volkov, Denis/A-6079-2011; OI Volkov, Denis/0000-0002-9290-0502; Landerer, Felix/0000-0003-2678-095X FU NASA's Physical Oceanography Program; CNES FX This work represents one phase of research carried out at the Jet Propulsion Laboratory/California Institute of Technology. FWL and DV were supported by NASA's Physical Oceanography Program. SSH observations are processed by SSALTO/DUACS and distributed by AVISO with support from CNES; ERA-Interim Re-analysis data are provided by the European Center for Medium Range Weather Forecast (ECMWF). We thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE satellites. NR 35 TC 17 Z9 17 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 553 EP 557 DI 10.1002/grl.50140 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000017 ER PT J AU Fukumori, I Wang, O AF Fukumori, Ichiro Wang, Ou TI Origins of heat and freshwater anomalies underlying regional decadal sea level trends SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PACIFIC-OCEAN; VARIABILITY; PATTERNS; TEMPERATURE; CIRCULATION; GYRE AB Regional sea level changes often differ from global mean changes due to geographic variations in surface fluxes and to changes in ocean circulation. Here we study such regional sea level trends from 1993 to 2004 using a synthesis of observations and an ocean general circulation model. Unlike the global mean, steric changes dominate regional trends with negligible contributions from column-integrated mass variations. Regional heat and freshwater anomalies underlying steric changes are in turn distinguished between redistribution of pre-existing anomalies within the ocean and contributions from additional surface fluxes external to the ocean. Internal redistribution accounts for most regional trends but exceptions are found, most notably in the western tropical Pacific Ocean where a warming of external origin dominates the trend. On average, external thermosteric sea level trends are found to be positive in temperate regions while negative at higher latitudes with opposite trends found in halosteric anomalies of external origin. Citation: Fukumori, I., and O. Wang (2013), Origins of heat and freshwater anomalies underlying regional decadal sea level trends, Geophys. Res. Lett., 40, 563-567, doi:10.1002/grl.50164. C1 [Fukumori, Ichiro; Wang, Ou] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Fukumori, I (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM fukumori@jpl.nasa.gov NR 24 TC 12 Z9 12 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 563 EP 567 DI 10.1002/grl.50164 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000019 ER PT J AU Fyfe, JC von Salzen, K Cole, JNS Gillett, NP Vernier, JP AF Fyfe, J. C. von Salzen, K. Cole, J. N. S. Gillett, N. P. Vernier, J. -P. TI Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE-CHANGE; CIRCULATION; ERUPTIONS; CO2 AB Previous work with a simple climate model has suggested a global cooling impact of increasing stratospheric aerosol. Here we use a comprehensive Earth System Model including coupled atmosphere and ocean components to show that increasing stratospheric aerosol since the late 1990s has reduced global warming by at least 0.07 C to present and that a further global cooling impact will occur if the observed stratospheric aerosol trend continues to the end of this decade. This result confirms the previous work and suggests that climate models that do not account for stratospheric aerosol increase will overestimate global warming to a small but notable degree. An additional new finding is that increasing stratospheric aerosol since the late 1990s has reduced the rise in global mean precipitation. [2] Finally, regional patterns of change in simulations with stratospheric aerosol increase to year 2020 show similar to 40% less equatorial precipitation increase and similar to 60% greater surface pressure decrease around Antarctica, relative to simulations without such stratospheric aerosol changes. Citation: Fyfe J. C., K. von Salzen, J. N. S. Cole, N. P. Gillett, and J.-P. Vernier (2013), Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model, Geophys. Res. Lett., 40, 584-588, doi:10.1002/grl.50156. C1 [Fyfe, J. C.; von Salzen, K.; Cole, J. N. S.; Gillett, N. P.] Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada. [Vernier, J. -P.] Sci Syst & Applicat Inc, Hampton, VA USA. [Vernier, J. -P.] NASA Langley Res Ctr, Hampton, VA USA. RP Fyfe, JC (reprint author), Univ Victoria, Canadian Ctr Climate Modelling & Anal, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. EM john.fyfe@ec.gc.ca OI Cole, Jason/0000-0003-0450-2748 NR 23 TC 34 Z9 35 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 584 EP 588 DI 10.1002/grl.50156 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000023 ER PT J AU Spangenberg, DA Minnis, P Bedka, ST Palikonda, R Duda, DP Rose, FG AF Spangenberg, Douglas A. Minnis, Patrick Bedka, Sarah T. Palikonda, Rabindra Duda, David P. Rose, Fred G. TI Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE MODELS; CIRRUS CLOUDS; ACCURATE PARAMETERIZATION AB Radiative forcing due to linear-shaped jet contrails is calculated over the Northern Hemisphere for four seasonal months using 2006 Aqua Moderate-resolution Imaging Spectroradiometer cloud and contrail property retrieval data in a radiative transfer model. The 4 month mean shortwave, longwave, and net radiative forcings normalized to 100% contrail cover are -5.7, 14.2, and 8.5 W m(-2). Mean total net forcing over the northern half of the globe varies from 9.1 mW m(-2) during October to 12.1 mW m(-2) in January and is only representative at 01:30 and 13:30 LT in nonpolar regions. In some dense flight traffic corridors, the mean net forcing approaches 80 mW m(-2). Scaling the 4 month average of 10.6 mW m(-2) to the Southern Hemisphere air traffic yields global mean net forcing of 5.7 mW m(-2), which is smaller than most model estimates. Nighttime net forcing is 3.6 times greater than during daytime, when net forcing is greatest over low clouds. Effects from contrail cirrus clouds that evolve from linear contrails are not considered in these results. Citation: Spangenberg, D. A., P. Minnis, S. T. Bedka, R. Palikonda, D. P. Duda and F. G. Rose (2013), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data, Geophys. Res. Lett., 40, 595-600, doi:10.1002/grl.50168. C1 [Spangenberg, Douglas A.; Bedka, Sarah T.; Palikonda, Rabindra; Duda, David P.; Rose, Fred G.] Sci Syst & Applicat Inc, Hampton, VA USA. [Minnis, Patrick] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Minnis, P (reprint author), NASA Langley Res Ctr, MS 420, Hampton, VA 23681 USA. EM p.minnis@nasa.gov RI Minnis, Patrick/G-1902-2010; OI Minnis, Patrick/0000-0002-4733-6148; Rose, Fred G/0000-0003-0769-0772 FU Aviation Climate Change Research Initiative (ACCRI) [DTRT57-10-X-70020]; DOT FX This work was supported by the Aviation Climate Change Research Initiative (ACCRI) under contract DTRT57-10-X-70020 with the DOT. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US DOT Volpe Center, the US FAA, or EUROCONTROL. NR 26 TC 8 Z9 8 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 595 EP 600 DI 10.1002/grl.50168 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000025 ER PT J AU Duda, DP Minnis, P Khlopenkov, K Chee, TL Boeke, R AF Duda, David P. Minnis, Patrick Khlopenkov, Konstantin Chee, Thad L. Boeke, Robyn TI Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID AVHRR-DATA; OPTICAL DEPTH; UNITED-STATES; CIRRUS AB A modified automated contrail detection algorithm (CDA) using five infrared channels available from the Moderate Resolution Imaging Spectrometer onboard the Aqua satellite is used to determine linear contrail coverage over the Northern Hemisphere during 2006. Commercial aircraft flight data are employed to filter false contrail detections by the CDA. The Northern Hemisphere annual mean linear contrail coverage ranges from 0.07% to 0.40% for three different CDA sensitivities. Based on visual analyses, the medium sensitivity CDA provides the best estimate of linear contrail coverage, which averages 0.13%. If scaled to the Southern Hemisphere, the global mean coverage would be 0.07%. Coverage is greatest during winter and least during the summer with maximum coverage over the North Atlantic. Less coverage is observed over heavy European and American traffic areas, likely as a result of difficulties in detecting linear contrails that overlap with each other and with older contrail cirrus. These results are valuable for evaluating the representation of contrails and contrail cirrus within global climate models and for retrieving contrail optical properties and radiative forcing. Citation: Duda, D. P., P. Minnis, K. Khlopenkov, T. L. Chee and R. Boeke (2013), Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data, Geophys. Res. Lett., 40, 612-617, doi: 10.1002/grl.50097. C1 [Duda, David P.; Khlopenkov, Konstantin; Chee, Thad L.; Boeke, Robyn] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Duda, DP (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM david.p.duda@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU Aviation Climate Change Research Initiative [DOT DTRT57-10-X-70020] FX The waypoint data used for this work were provided by U.S. DOT Volpe Center and are based on data provided by the U.S. FAA and EUROCONTROL in support of the objectives of the International Civil Aviation Organization Committee on Aviation Environmental Protection CO2 Task Group. Support for this research is provided by the Aviation Climate Change Research Initiative under contract DOT DTRT57-10-X-70020. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the U.S. DOT Volpe Center, the U.S. FAA, EUROCONTROL, or ICAO. NR 23 TC 11 Z9 11 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 612 EP 617 DI 10.1002/grl.50097 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000028 ER PT J AU Ottaviani, M Knobelspiesse, K Cairns, B Mishchenko, M AF Ottaviani, M. Knobelspiesse, K. Cairns, B. Mishchenko, M. TI Information content of aerosol retrievals in the sunglint region SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SATELLITE RETRIEVAL; CLOUD PROPERTIES; ABSORPTION; POLARIZATION; WAVELENGTHS; INTENSITY; EMISSIONS; CAMPAIGN; OCEANS; LIGHT AB We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type. Citation: Ottaviani, M., K. Knobelspiesse, B. Cairns, and M. Mishchenko (2013), Information content of aerosol retrievals in the sunglint region, Geophys. Res. Lett., 40, 631-634, doi: 10.1002/grl.50148. C1 [Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ottaviani, M.] Stevens Inst Technol, Hoboken, NJ 07030 USA. [Knobelspiesse, K.] NASA, Postdoctoral Program, Oak Ridge, TN USA. RP Ottaviani, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM mottavia@stevens.edu RI Mishchenko, Michael/D-4426-2012; Knobelspiesse, Kirk/S-5902-2016; OI Knobelspiesse, Kirk/0000-0001-5986-1751; Cairns, Brian/0000-0002-1980-1022 FU Glory Mission Project; Radiation Sciences Program FX This work is dedicated to the memory of Yoram Kaufman. Partial support from the Glory Mission Project and the Radiation Sciences Program managed by Hal Maring is gratefully acknowledged. NR 29 TC 4 Z9 4 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 631 EP 634 DI 10.1002/grl.50148 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000031 ER PT J AU Mast, J Mlynczak, MG Hunt, LA Marshall, BT Mertens, CJ Russell, JM Thompson, RE Gordley, LL AF Mast, Jeffrey Mlynczak, Martin G. Hunt, Linda A. Marshall, B. Thomas Mertens, Christoper J. Russell, James M., III Thompson, R. Earl Gordley, Larry L. TI Absolute concentrations of highly vibrationally excited OH(upsilon=9+8) in the mesopause region derived from the TIMED/SABER instrument SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB Absolute concentrations (cm(-3)) of highly vibrationally excited hydroxyl (OH) are derived from measurements of the volume emission rate of the upsilon = 9 + 8 states of the OH radical made by the SABER instrument on the TIMED satellite. SABER has exceptionally sensitive measurement precision that corresponds to an ability to detect changes in volume emission rate on the order of similar to 5 excited OH molecules per cm(3). Peak zonal annual mean concentrations observed by SABER exceed 1000 cm-3 at night and 225 cm-3 during the day. Measurements since 2002 show an apparent altitude-dependent variation of the night OH(. = 9 + 8) concentrations with the 11 year solar cycle, with concentrations decreasing below similar to 95 km from 2002 to 2008. These observations provide a global database for evaluating photochemical model computations of OH abundance, reaction kinetics, and rates and mechanisms responsible for maintaining vibrationally excited OH in the mesopause region. Citation: Mast, J., M. G. Mlynczak, L. A. Hunt, B. T. Marshall, C. J. Mertens, J. M. Russell III, R. E. Thompson, and L. L. Gordley (2013), Absolute concentrations of highly vibrationally excited OH(upsilon = 9 + 8) in the mesopause region derived from the TIMED/SABER instrument, Geophys. Res. Lett., 40, 646-650, doi: 10.1002/grl.50167. C1 [Mast, Jeffrey; Hunt, Linda A.] SSAI Inc, Hampton, VA USA. [Mlynczak, Martin G.; Mertens, Christoper J.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Marshall, B. Thomas; Thompson, R. Earl; Gordley, Larry L.] G&A Tech Software, Newport News, VA USA. [Russell, James M., III] Hampton Univ, Hampton, VA 23668 USA. RP Mlynczak, MG (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM m.g.mlynczak@nasa.gov FU NASA Heliophysics Division FX The authors wish to acknowledge continued support from the NASA Heliophysics Division through the TIMED Project. NR 8 TC 3 Z9 3 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 16 PY 2013 VL 40 IS 3 BP 646 EP 650 DI 10.1002/grl.50167 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 129HX UT WOS:000317831000034 ER PT J AU Kort, EA Angevine, WM Duren, R Miller, CE AF Kort, Eric A. Angevine, Wayne M. Duren, Riley Miller, Charles E. TI Surface observations for monitoring urban fossil fuel CO2 emissions: Minimum site location requirements for the Los Angeles megacity SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-DIOXIDE; ATMOSPHERIC OBSERVATIONS; GAS EMISSIONS; STILT MODEL; FLUXES AB The contemporary global carbon cycle is dominated by perturbations from anthropogenic CO2 emissions. One approach to identify, quantify, and monitor anthropogenic emissions is to focus on intensely emitting urban areas. In this study, we compare the ability of different CO2 observing systems to constrain anthropogenic flux estimates in the Los Angeles megacity. We consider different observing system configurations based on existing observations and realistic near-term extensions of the current ad hoc network. We use a high-resolution regional model (Stochastic Time-Inverted Lagrangian Transport-Weather Research and Forecasting) to simulate different observations and observational network designs within and downwind of the Los Angeles (LA) basin. A Bayesian inverse method is employed to quantify the relative ability of each network to improve constraints on flux estimates. Ground-based column CO2 observations provide useful complementary information to surface observations due to lower sensitivity to localized dynamics, but column CO2 observations from a single site do not appear to provide sensitivity to emissions from the entire LA megacity. Surface observations from remote, downwind sites contain weak, sporadic urban signals and are complicated by other source/sink impacts, limiting their usefulness for quantifying urban fluxes in LA. We find a network of eight optimally located in-city surface observation sites provides the minimum sampling required for accurate monitoring of CO2 emissions in LA, and present a recommended baseline network design. We estimate that this network can distinguish fluxes on 8 week time scales and 10 km spatial scales to within similar to 12 g C m(-2) d(-1) (similar to 10% of average peak fossil CO2 flux in the LA domain). Citation: Kort, E. A., W. M. Angevine, R. Duren, and C. E. Miller (2013), Surface observations for monitoring urban fossil fuel CO2 emissions: Minimum site location requirements for the Los Angeles megacity, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50135. C1 [Kort, Eric A.] CALTECH, WM Keck Inst Space Studies, Pasadena, CA 91125 USA. [Kort, Eric A.; Duren, Riley; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Angevine, Wayne M.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Angevine, Wayne M.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Kort, EA (reprint author), CALTECH, WM Keck Inst Space Studies, Pasadena, CA 91125 USA. EM Eric.A.Kort@jpl.nasa.gov RI Angevine, Wayne/H-9849-2013; Kort, Eric/F-9942-2012; Manager, CSD Publications/B-2789-2015 OI Angevine, Wayne/0000-0002-8021-7116; Kort, Eric/0000-0003-4940-7541; FU W. M. Keck Institute for Space Studies; NASA FX E.A.K. thanks the W. M. Keck Institute for Space Studies for support. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The author's would also like to thank the Megacity Carbon project team for useful discussion and feedback. NR 27 TC 15 Z9 15 U1 1 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2013 VL 118 IS 3 BP 1 EP 8 DI 10.1002/jgrd.50135 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LC UT WOS:000317839700032 ER PT J AU McGrath-Spangler, EL Denning, AS AF McGrath-Spangler, Erica L. Denning, A. Scott TI Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID VARIABILITY; HEIGHT AB We present a new global analysis of the depth of the planetary boundary layer (PBL) and consider regional variations throughout the year. PBL depth is estimated from the vertical variance of CALIPSO space-borne LIDAR backscatter associated with aerosol and shallow clouds during midday satellite overpasses and is only retrieved in the absence of optically thick clouds. The resulting analysis of over 100 million retrievals per year is therefore only a sample with higher frequency over deserts and other regions of strong subsidence, and lower frequency over regions of deep convection such as the ITCZ, tropical rainforests, and the Asian Monsoon. The mean of sampled PBL depths ranges from 500 m over cold oceans to more than 3000 m over hot deserts. The seasonal cycle of analyzed PBL depth is stronger over land than over water, and seasonality over land and midlatitude oceans is of opposite sign. Wintertime storm tracks and stratocumulus regions over subtropical oceans are prominent features of the analysis. Although evaluation of the new analysis is difficult due to previous sparse sampling by other methods, comparison of LIDAR-retrieved PBL depth with data collected by commercial aircraft generally shows good agreement. C1 [McGrath-Spangler, Erica L.] Univ Space Res Assoc, Columbia, MD USA. [McGrath-Spangler, Erica L.] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD 20771 USA. [Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP McGrath-Spangler, EL (reprint author), NASA, Goddard Space Flight Ctr, GMAO, Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM erica.l.mcgrath-spangler@nasa.gov OI McGrath-Spangler, Erica/0000-0002-8540-5423 FU National Aeronautics and Space Administration [NNX11AB87G, NNX08AV04H] FX This study was made possible in part due to the data made available to the National Oceanic and Atmospheric Administration by the following commercial airlines: American, Delta, Federal Express, Northwest, Southwest, United, and United Parcel Service. We would like to thank Nikisa Jordan and Mark Vaughan for their assistance with the CALIPSO data and the PBL depth algorithm. Additionally, we would like to thank three anonymous reviewers for their helpful comments. This research was supported by National Aeronautics and Space Administration grants NNX11AB87G and NNX08AV04H. NR 23 TC 16 Z9 16 U1 2 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2013 VL 118 IS 3 BP 1226 EP 1233 DI 10.1002/jgrd.50198 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LC UT WOS:000317839700008 ER PT J AU Han, M Braun, SA Matsui, T Williams, CR AF Han, Mei Braun, Scott A. Matsui, Toshihisa Williams, Christopher R. TI Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SATELLITE-OBSERVATIONS; PART II; MICROWAVE-FREQUENCIES; CONVECTIVE SYSTEMS; PRECIPITATION; MODEL; ICE; SNOW; TRMM; PARAMETERIZATION AB Using observations from a space-borne radiometer and a ground-based precipitation profiling radar, the impact of cloud microphysics schemes in the WRF model on the simulation of microwave brightness temperature (T-b), radar reflectivity, and Doppler velocity (V-dop) is studied for a winter storm in California. The unique assumptions of particles size distributions, number concentrations, shapes, and fall speeds in different microphysics schemes are implemented into a satellite simulator and customized calculations for the radar are performed to ensure consistent representation of precipitation properties between the microphysics schemes and the radiative transfer models. [ 2] Simulations with four different schemes in the WRF model, including the Goddard scheme (GSFC), the WRF single-moment 6-class scheme (WSM6), the Thompson scheme (THOM), and the Morrison double-moment scheme (MORR), are compared directly with measurements from the sensors. Results show large variations in the simulated radiative properties. General biases of similar to 20 K or larger are found in (polarization-corrected) T-b, which is linked to an overestimate of the precipitating ice aloft. The simulated reflectivity with THOM appears to agree well with the observations, while high biases of similar to 5-10 dBZ are found in GSFC, WSM6 and MORR. Peak reflectivity in MORR exceeds other schemes. These biases are attributable to the snow intercept parameters or the snow number concentrations. Simulated V-dop values based on GSFC agree with the observations well, while other schemes appear to have a similar to 1 m s(-1) high bias in the ice layer. In the rain layer, the model representations of Doppler velocity vary at different sites. C1 [Han, Mei] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Han, Mei; Braun, Scott A.; Matsui, Toshihisa] NASA GSFC, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA. [Matsui, Toshihisa] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Williams, Christopher R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Williams, Christopher R.] NOAA Earth Syst Res Lab, Boulder, CO USA. RP Han, M (reprint author), NASA GSFC, Mesoscale Atmospher Proc Lab, Code 612, Greenbelt, MD 20771 USA. EM Mei.Han@nasa.gov RI Williams, Christopher/A-2723-2015 OI Williams, Christopher/0000-0001-9394-8850 FU NASA Precipitation Measurement Mission science program FX The author wants to thank Drs. Lin Tian, Liang Liao, Xiaowen Li, and Bill Olson at NASA/GSFC for many beneficial discussions related to radar algorithms and cloud modeling. Model simulations were performed on the NASS Discover Cluster. Comments from three anonymous reviewers were very helpful on improving the manuscript. This work was supported by Dr. Ramesh Kakar at NASA Headquarters with funds from the NASA Precipitation Measurement Mission science program. NR 55 TC 9 Z9 10 U1 4 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2013 VL 118 IS 3 BP 1401 EP 1419 DI 10.1002/jgrd.50115 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LC UT WOS:000317839700021 ER PT J AU Oshchepkov, S Bril, A Yokota, T Wennberg, PO Deutscher, NM Wunch, D Toon, GC Yoshida, Y O'Dell, CW Crisp, D Miller, CE Frankenberg, C Butz, A Aben, I Guerlet, S Hasekamp, O Boesch, H Cogan, A Parker, R Griffith, D Macatangay, R Notholt, J Sussmann, R Rettinger, M Sherlock, V Robinson, J Kyro, E Heikkinen, P Feist, DG Morino, I Kadygrov, N Belikov, D Maksyutov, S Matsunaga, T Uchino, O Watanabe, H AF Oshchepkov, Sergey Bril, Andrey Yokota, Tatsuya Wennberg, Paul O. Deutscher, Nicholas M. Wunch, Debra Toon, Geoffrey C. Yoshida, Yukio O'Dell, Christopher W. Crisp, David Miller, Charles E. Frankenberg, Christian Butz, Andre Aben, Ilse Guerlet, Sandrine Hasekamp, Otto Boesch, Hartmut Cogan, Austin Parker, Robert Griffith, David Macatangay, Ronald Notholt, Justus Sussmann, Ralf Rettinger, Markus Sherlock, Vanessa Robinson, John Kyro, Esko Heikkinen, Pauli Feist, Dietrich G. Morino, Isamu Kadygrov, Nikolay Belikov, Dmitry Maksyutov, Shamil Matsunaga, Tsuneo Uchino, Osamu Watanabe, Hiroshi TI Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOURIER-TRANSFORM SPECTROMETER; VECTOR RADIATIVE-TRANSFER; COLUMN OBSERVING NETWORK; REFLECTED SUNLIGHT; INFRARED-SPECTRA; DIFFERENTIAL ABSORPTION; LINE PARAMETERS; CARBON-DIOXIDE; ICE CLOUDS; SATELLITE AB This report is the second in a series of companion papers describing the effects of atmospheric light scattering in observations of atmospheric carbon dioxide (CO2) by the Greenhouse gases Observing SATellite (GOSAT), in orbit since 23 January 2009. Here we summarize the retrievals from six previously published algorithms; retrieving column-averaged dry air mole fractions of CO2 (X-CO2) during 22 months of operation of GOSAT from June 2009. First, we compare data products from each algorithm with ground-based remote sensing observations by Total Carbon Column Observing Network (TCCON). Our GOSAT-TCCON coincidence criteria select satellite observations within a 5 degrees radius of 11 TCCON sites. We have compared the GOSAT-TCCON X-CO2 regression slope, standard deviation, correlation and determination coefficients, and global and station-to-station biases. The best agreements with TCCON measurements were detected for NIES 02.xx and RemoTeC. Next, the impact of atmospheric light scattering on X-CO2 retrievals was estimated for each data product using scan by scan retrievals of light path modification with the photon path length probability density function (PPDF) method. After a cloud pre-filtering test, approximately 25% of GOSAT soundings processed by NIES 02.xx, ACOS B2.9, and UoL-FP: 3G and 35% processed by RemoTeC were found to be contaminated by atmospheric light scattering. This study suggests that NIES 02.xx and ACOS B2.9 algorithms tend to overestimate aerosol amounts over bright surfaces, resulting in an underestimation of X-CO2 for GOSAT observations. Cross-comparison between algorithms shows that ACOS B2.9 agrees best with NIES 02.xx and UoL-FP: 3G while RemoTeC X-CO2 retrievals are in a best agreement with NIES PPDF-D. Citation: Oshchepkov, S., et al. (2013), Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites, J. Geophys. Res. Atmos., 118, 1493-1512, doi:10.1002/jgrd.50146. C1 [Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Morino, Isamu; Belikov, Dmitry; Maksyutov, Shamil; Matsunaga, Tsuneo; Uchino, Osamu; Watanabe, Hiroshi] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Wennberg, Paul O.; Wunch, Debra] CALTECH, Pasadena, CA 91125 USA. [Deutscher, Nicholas M.; Griffith, David; Macatangay, Ronald] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia. [Deutscher, Nicholas M.; Griffith, David; Macatangay, Ronald] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Deutscher, Nicholas M.; Notholt, Justus] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Toon, Geoffrey C.; Crisp, David; Miller, Charles E.; Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA USA. [O'Dell, Christopher W.] Colorado State Univ, Ft Collins, CO 80523 USA. [Butz, Andre] Karlsruhe Inst Technol, IMK ASF, D-76021 Karlsruhe, Germany. [Aben, Ilse; Guerlet, Sandrine; Hasekamp, Otto] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Boesch, Hartmut; Cogan, Austin; Parker, Robert] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Sussmann, Ralf; Rettinger, Markus] Karlsruhe Inst Technol, IMK IFU, Garmisch Partenkirchen, Germany. [Sherlock, Vanessa; Robinson, John] Natl Inst Water & Atmospher Res, Wellington, New Zealand. [Kyro, Esko; Heikkinen, Pauli] FMI Arctic Res Ctr, Sodankylii, Finland. [Feist, Dietrich G.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Kadygrov, Nikolay] SNRS, UVSQ, CEA, Lab Sci Climat & Environm, Gif Sur Yvette, France. RP Oshchepkov, S (reprint author), Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. EM sergey.oshchepkov@nies.go.jp RI Maksyutov, Shamil/G-6494-2011; Sussmann, Ralf/K-3999-2012; Boesch, Hartmut/G-6021-2012; Belikov, Dmitry/I-9877-2016; Frankenberg, Christian/A-2944-2013; Butz, Andre/A-7024-2013; Wennberg, Paul/A-5460-2012; Heikkinen, Pauli/G-3478-2014; Garmisch-Pa, Ifu/H-9902-2014; Morino, Isamu/K-1033-2014; Feist, Dietrich/B-6489-2013; Deutscher, Nicholas/E-3683-2015; Notholt, Justus/P-4520-2016 OI Maksyutov, Shamil/0000-0002-1200-9577; Frankenberg, Christian/0000-0002-0546-5857; Butz, Andre/0000-0003-0593-1608; Morino, Isamu/0000-0003-2720-1569; Feist, Dietrich/0000-0002-5890-6687; Deutscher, Nicholas/0000-0002-2906-2577; Notholt, Justus/0000-0002-3324-885X FU NASA; NASA's Terrestrial Ecology Program [NNX11AG01G]; Orbiting Carbon Observatory Program; Atmospheric CO2 Observations from Space (ACOS) Program; Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Program; OCO project; OCO-2 project; Australian Research Council [LE0668470, DP0879468, DP110103118, LP0562346]; New Zealand Foundation of Research Science and Technology [C01X0204, CO1X0406]; Senate of Bremen; EU; NIES GOSAT project; EC-INGOS project; ESA through the GHG-CCI project; Deutsche Forschungsgemeinschaft (DFG) [BU2599/1-1] FX GOSAT is a joint effort of the Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES), and the Ministry of the Environment (MOE), Japan. Part of this work on ACOS B2.9 was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. GOSAT spectra were kindly provided to the California Institute of Technology through a memorandum of understanding between JAXA and NASA. U.S. funding for TCCON is provided by NASA's Terrestrial Ecology Program (grant number NNX11AG01G), the Orbiting Carbon Observatory Program, the Atmospheric CO2 Observations from Space (ACOS) Program, and the Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Program. The Darwin TCCON site was built at Caltech with funding from the OCO project and is operated by the University of Wollongong, with travel funds for maintenance and equipment costs funded by the OCO-2 project. We acknowledge funding to support Darwin and Wollongong from the Australian Research Council, Projects LE0668470, DP0879468, DP110103118, and LP0562346. Lauder TCCON measurements are funded by New Zealand Foundation of Research Science and Technology contracts C01X0204 and CO1X0406. We acknowledge financial support of the Bialystok and Orleans TCCON sites from the Senate of Bremen and EU projects IMECC, GEOMON and InGOS as well as maintenance and logistical work provided by AeroMeteo Service (Bialystok) and the RAMCES team at LSCE (Gif-sur-Yvette, France) and additional operational funding from the NIES GOSAT project. The Garmisch TCCON team acknowledges funding by the EC-INGOS project. Development of RemoTeC was partly funded by ESA through the GHG-CCI project (S. Guerlet) and by Deutsche Forschungsgemeinschaft (DFG) through grant BU2599/1-1 (A. Butz). The JRA-25/JCDAS data sets used for atmospheric transport modeling were provided by the cooperative, long-term reanalysis project by the Japan Meteorological Agency (JMA) and Central Research Institute of Electric Power Industry (CRIEPI). The authors thank Dr. Sasano, Director of the Center for Global Environmental Research at the NIES, the members of the NIES GOSAT and NASA ACOS projects. NR 72 TC 20 Z9 23 U1 0 U2 36 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2013 VL 118 IS 3 BP 1493 EP 1512 DI 10.1002/jgrd.50146 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LC UT WOS:000317839700026 ER PT J AU Strahan, SE Douglass, AR Newman, PA AF Strahan, S. E. Douglass, A. R. Newman, P. A. TI The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HALOGEN OCCULTATION EXPERIMENT; POLAR VORTEX; STRATOSPHERE; MODEL; DEPLETION; CHLORINE; HCL AB Stratospheric and total columns of Arctic O-3 (63-90 degrees N) in late March 2011 averaged 320 and 349 DU, respectively, 50-100 DU lower than any of the previous 6 years. We use Aura Microwave Limb Sounder (MLS) O-3 observations to quantify the roles of chemistry and transport and find there are two major reasons for low O-3 in March 2011: heterogeneous chemical loss and a late final warming that delayed the resupply of O-3 until April. Daily vortex-averaged partial columns in the lowermost stratosphere (p > 133 hPa) and middle stratosphere (p < 29 hPa) are largely unaffected by local heterogeneous chemistry, according to model calculations. Very weak transport into the vortex between late January and late March contributes to the observed low ozone. The lower stratospheric (LS) column (133-29 hPa, similar to 370-550 K) is affected by both heterogeneous chemistry and transport. Because MLS N2O data show strong isolation of the vortex, we estimate the contribution of vertical transport to LS O-3 using the descent of vortex N2O profiles. Simulations with the Global Modeling Initiative (GMI) chemistry and transport model (CTM) with and without heterogeneous chemical reactions show 73 DU vortex averaged O-3 loss; the loss derived from MLS O-3 is 84 +/- 12 DU. The GMI simulation reproduces the observed O-3 and N2O with little error and demonstrates credible transport and chemistry. Without heterogeneous chemical loss, March 2011 vortex O-3 would have been at least 40 DU lower than climatology due to the late final warming that did not resupply O-3 until mid-April. Citation: Strahan, S. E., A. R. Douglass, and P. A. Newman (2013), The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations, J. Geophys. Res. Atmos., 118, 1563-1576, doi:10.1002/jgrd.50181. C1 [Strahan, S. E.] Univ Space Res Assoc, Columbia, MD USA. [Douglass, A. R.; Newman, P. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Strahan, SE (reprint author), NASA, Goddard Space Flight Ctr, Code 614, Greenbelt, MD 20771 USA. EM Susan.e.strahan@nasa.gov RI Douglass, Anne/D-4655-2012; Newman, Paul/D-6208-2012 OI Newman, Paul/0000-0003-1139-2508 FU NASA Modeling, Analysis, and Prediction Program; NASA Atmospheric Composition Modeling and Analysis Program FX We thank the diligent efforts of the reviewers whose comments and suggestions substantially strengthened this paper. We thank Stephen Steenrod for running the GMI CTM simulations. This work was supported by the NASA Modeling, Analysis, and Prediction Program and the NASA Atmospheric Composition Modeling and Analysis Program. NR 35 TC 21 Z9 22 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 16 PY 2013 VL 118 IS 3 BP 1563 EP 1576 DI 10.1002/jgrd.50181 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129LC UT WOS:000317839700031 ER PT J AU Craft, SP Stern, A AF Craft, Stephen P. Stern, Alan TI One minute with ... Alan Stern SO NEW SCIENTIST LA English DT Editorial Material C1 [Stern, Alan] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION LTD PI SUTTON PA QUADRANT HOUSE THE QUADRANT, SUTTON SM2 5AS, SURREY, ENGLAND SN 0262-4079 J9 NEW SCI JI New Sci. PD FEB 16 PY 2013 VL 217 IS 2904 BP 29 EP 29 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 091RQ UT WOS:000315067900018 ER PT J AU Murphy, T Chatterjee, S Kaplan, DL Banyer, J Bell, ME Bignall, HE Bower, GC Cameron, RA Coward, DM Cordes, JM Croft, S Curran, JR Djorgovski, SG Farrell, SA Frail, DA Gaensler, BM Galloway, DK Gendre, B Green, AJ Hancock, PJ Johnston, S Kamble, A Law, CJ Lazio, TJW Lo, KK Macquart, JP Rea, N Rebbapragada, U Reynolds, C Ryder, SD Schmidt, B Soria, R Stairs, IH Tingay, SJ Torkelsson, U Wagstaff, K Walker, M Wayth, RB Williams, PKG AF Murphy, Tara Chatterjee, Shami Kaplan, David L. Banyer, Jay Bell, Martin E. Bignall, Hayley E. Bower, Geoffrey C. Cameron, Robert A. Coward, David M. Cordes, James M. Croft, Steve Curran, James R. Djorgovski, S. G. Farrell, Sean A. Frail, Dale A. Gaensler, B. M. Galloway, Duncan K. Gendre, Bruce Green, Anne J. Hancock, Paul J. Johnston, Simon Kamble, Atish Law, Casey J. Lazio, T. Joseph W. Lo, Kitty K. Macquart, Jean-Pierre Rea, Nanda Rebbapragada, Umaa Reynolds, Cormac Ryder, Stuart D. Schmidt, Brian Soria, Roberto Stairs, Ingrid H. Tingay, Steven J. Torkelsson, Ulf Wagstaff, Kiri Walker, Mark Wayth, Randall B. Williams, Peter K. G. TI VAST: An ASKAP Survey for Variables and Slow Transients SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA LA English DT Article DE galaxies: general; ISM: general; radio continuum: general; stars: general; surveys; telescopes ID GAMMA-RAY BURST; RADIO-FREQUENCY INTERFERENCE; EXTREME SCATTERING EVENTS; FOLLOW-UP OBSERVATIONS; ACCRETING BLACK-HOLES; SCINTILLATION-INDUCED VARIABILITY; REAL-TIME CLASSIFICATION; TIDAL DISRUPTION EVENTS; HIGH GALACTIC LATITUDE; WIDE-FIELD SURVEY AB The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae, and orphan afterglows of gamma-ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of 5 s and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST. C1 [Murphy, Tara; Banyer, Jay; Bell, Martin E.; Farrell, Sean A.; Gaensler, B. M.; Green, Anne J.; Hancock, Paul J.; Lo, Kitty K.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Murphy, Tara; Curran, James R.] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia. [Murphy, Tara; Banyer, Jay; Bell, Martin E.; Farrell, Sean A.; Gaensler, B. M.; Green, Anne J.; Hancock, Paul J.; Lo, Kitty K.; Macquart, Jean-Pierre; Schmidt, Brian; Tingay, Steven J.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW 2016, Australia. [Chatterjee, Shami; Cordes, James M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Kaplan, David L.; Kamble, Atish] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. [Bignall, Hayley E.; Macquart, Jean-Pierre; Reynolds, Cormac; Soria, Roberto; Tingay, Steven J.; Wayth, Randall B.] ICRAR Curtin Univ, Perth, WA 6845, Australia. [Bower, Geoffrey C.; Croft, Steve; Law, Casey J.; Williams, Peter K. G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Cameron, Robert A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Coward, David M.] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia. [Djorgovski, S. G.] CALTECH, Pasadena, CA 91125 USA. [Frail, Dale A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Galloway, Duncan K.] Monash Univ, Sch Phys, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Galloway, Duncan K.] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia. [Gendre, Bruce] ASI Sci Data Ctr, I-00044 Frascati, RM, Italy. [Johnston, Simon] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Lazio, T. Joseph W.; Rebbapragada, Umaa; Wagstaff, Kiri] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rea, Nanda] Inst Ciencies Espai CSIC IEEC, Barcelona 08193, Spain. [Ryder, Stuart D.] Australian Astron Observ, Epping, NSW 1710, Australia. [Schmidt, Brian] Australian Natl Univ, Mt Stromlo Observ, RSAA, Weston, ACT 2611, Australia. [Stairs, Ingrid H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Torkelsson, Ulf] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. [Walker, Mark] Manly Astrophys, Manly 2095, Australia. RP Murphy, T (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. EM tara@physics.usyd.edu.au RI Wayth, Randall/B-2444-2013; Bignall, Hayley/B-2867-2013; gendre, bruce/O-2923-2013; Rea, Nanda/I-2853-2015; OI Wayth, Randall/0000-0002-6995-4131; Williams, Peter/0000-0003-3734-3587; Bignall, Hayley/0000-0001-6247-3071; gendre, bruce/0000-0002-9077-2025; Rea, Nanda/0000-0003-2177-6388; Murphy, Tara/0000-0002-2686-438X; Galloway, Duncan/0000-0002-6558-5121; Schmidt, Brian/0000-0001-6589-1287; Gaensler, Bryan/0000-0002-3382-9558; Croft, Steve/0000-0003-4823-129X FU Australian Research Council (ARC); Science Leveraging Fund of the New South Wales Office for Science and Medical Research; ARC Postdoctoral Fellowship [DP110102889]; University of Sydney International Program Development Fund; US National Science Foundation (NSF) [AST-1008213]; NSF [AST-1008353, AST-0908884, AST-0407448, AST-0909182, IIS-1118041]; National Aeronautics and Space Administration (NASA) [08-AISR08-0085]; NSERC Discovery Grant; NASA; US Government; [FS100100033]; [DP110102034]; [CE110001020] FX This research has been supported in part by the Australian Research Council (ARC). TM, BMG, PJH, JB, and MEB acknowledge support through grants FS100100033 and DP110102034, and through the Science Leveraging Fund of the New South Wales Office for Science and Medical Research. SAF is the recipient of an ARC Postdoctoral Fellowship, DP110102889. TM, BMG, and S. Croft acknowledge funding from the University of Sydney International Program Development Fund. The Centre for All-sky Astrophysics is an Australian Research Council Centre of Excellence, funded by grant CE110001020.; S. Chatterjee acknowledges support from the US National Science Foundation (NSF) through the award AST-1008213. DLK was partially supported by NSF awards AST-1008353 and AST-0908884. SGD acknowledges partial support from the NSF grants AST-0407448, AST-0909182, and IIS-1118041, and the National Aeronautics and Space Administration (NASA) grant 08-AISR08-0085. IHS is supported by an NSERC Discovery Grant. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. US Government sponsorship is acknowledged. NR 245 TC 21 Z9 21 U1 2 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1323-3580 EI 1448-6083 J9 PUBL ASTRON SOC AUST JI Publ. Astron. Soc. Aust. PD FEB 15 PY 2013 VL 30 AR UNSP e006 DI 10.1017/pasa.2012.006 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 161ZL UT WOS:000320233500001 ER PT J AU Richardson, JA Bleacher, JE Glaze, LS AF Richardson, Jacob A. Bleacher, Jacob E. Glaze, Lori S. TI The volcanic history of Syria Planum, Mars SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Mars; Tharsis; Syria Planum; Volcanoes; Shields; Spatial statistics; Alignment statistics ID POINT-LIKE FEATURES; THARSIS PROVINCE; TECTONIC HISTORY; ALBA PATERA; FIELD; MEXICO; DISTRIBUTIONS; ALIGNMENTS; EVOLUTION; REGION AB A field of small (10s of km in diameter) volcanoes in the Syria Planum region of Mars is mapped to determine abundance, distribution, and alignments of vents. These data are used to assess possible variations in eruption style across space and time. Each eruption site is assigned a point location. Nearest neighbor and two-point azimuth analyses are conducted to assess the spacing and orientations between vents across the study area. Two vent fields are identified as unique volcanic units along with the previously identified Syria Mons volcano. Superposition relationships and crater retention rates indicate that these three volcanic episodes span similar to 900 Ma, beginning in the early Hesperian and ending in the Early Amazonian. No clear hiatus in eruptive activity is identified between these events, although a progression from eruptions at Syria Mons, to regionally distributed eruptions that form the bulk of the Syria Planum plains, to a final migration of dispersed eruptions to Syria's northwest is identified. Nearest neighbor analyses suggest a non-random distribution among the entire population of Syria Planum, which is interpreted as resulting from the interaction of independent magma bodies ascending through the crust during different stress regimes throughout the region's eruptive history. Two-point azimuth results identify three orientations of enhanced alignments, which match well with radial extensions of three major tectonic centers to the south, east, and northwest of the study area. As such, Syria Planum volcanism evolved from a central vent volcano to dispersed shield field development over several hundred million years, during which the independent magma bodies related to each small volcano interacted to some extent with one or more of at least three buried tectonic patterns in the older crust. These results show a strong relationship between independent mapping efforts of tectonic and volcanic features. Continued integration of volcano-tectonic mapping should provide direct constraints for future geodynamic models of magma production and thermal evolution of the Tharsis province. (C) 2012 Elsevier B.V. All rights reserved. C1 [Richardson, Jacob A.] Univ S Florida, Dept Geol, Tampa, FL 33620 USA. [Bleacher, Jacob E.; Glaze, Lori S.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Richardson, JA (reprint author), Univ S Florida, Dept Geol, 4202 E Fowler Ave SCA528, Tampa, FL 33620 USA. EM jarichardson@mail.usf.edu RI Bleacher, Jacob/D-1051-2012; Glaze, Lori/D-1314-2012 OI Bleacher, Jacob/0000-0002-8499-4828; FU NASA FX Funding for this project was provided to all three authors by NASA's Mars Data Analysis Program. Additional support for J. Richardson was provided by NASA's Undergraduate Student Research Program funding through Goddard Space Flight Center. We thank Nick Schmerr for insightful comments that improved the content of this report. NR 65 TC 10 Z9 10 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD FEB 15 PY 2013 VL 252 BP 1 EP 13 DI 10.1016/j.jvolgeores.2012.11.007 PG 13 WC Geosciences, Multidisciplinary SC Geology GA 111IJ UT WOS:000316514700001 ER PT J AU Gan, YX Dynys, FW AF Gan, Yong X. Dynys, Frederick W. TI Joining highly conductive and oxidation resistant silver-based electrode materials to silicon for high temperature thermoelectric energy conversions SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Surfaces; Annealing; Electrical properties; Thermoelectric effects ID ADHESIVES; PARTICLES; SYSTEM AB joining silicon thermoelectric elements using silver-based alloys and adhesive was investigated. Selective etching silicon with HF and KOH was performed to increase the interface area. Physical vapor deposition was used to coat Ti, Cr, Pt and Ag on silicon surface to form transition layers for the enhancement of interface bonding. Sound joints using the silver adhesive were obtained and they can withstand the highest temperature of 925 degrees C. Contact resistance of the joints under both thermal cycling and isothermal heat treatment was measured from 500 degrees C to 920 degrees C. It is found that the contact resistance of the silver/silicon joints is about 1 Omega at room temperature. At the elevated temperature of 920 degrees C, the contact resistance is less than 2.5 Omega. We conclude that the silver adhesive has excellent adhesion to silicon surface and the contact resistance is considerably low. Therefore, it is suitable for joining silicon thermoelectric elements for energy conversion at high temperatures. (C) 2012 Elsevier B.V. All rights reserved. C1 [Gan, Yong X.] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA. [Gan, Yong X.] Calif State Polytech Univ Pomona, Dept Mech Engn, Pomona, CA 91768 USA. [Dynys, Frederick W.] NASA, Mat & Struct Div, Ceram Branch RXC0, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Gan, YX (reprint author), Calif State Polytech Univ Pomona, Dept Mech Engn, 3801 W Temple Ave, Pomona, CA 91768 USA. EM yxgan@csupomona.edu FU NASA Glenn Faculty Fellowship Program (NGFFP); Ohio Space Grant Consortium (OSGC) through Ohio Aerospace Institute (OAI); United States Environmental Protection Agency (EPA) [83529701] FX This work was sponsored by NASA Glenn Faculty Fellowship Program (NGFFP) and Ohio Space Grant Consortium (OSGC) through Ohio Aerospace Institute (OAI). The support from United States Environmental Protection Agency (EPA) under grant number 83529701 is also gratefully acknowledged. NR 24 TC 5 Z9 5 U1 1 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD FEB 15 PY 2013 VL 138 IS 1 BP 342 EP 349 DI 10.1016/j.matchemphys.2012.11.066 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 107SQ UT WOS:000316241500046 ER PT J AU Svensson, T Savo, R Alerstam, E Vynck, K Burresi, M Wiersma, DS AF Svensson, T. Savo, R. Alerstam, E. Vynck, K. Burresi, M. Wiersma, D. S. TI Exploiting breakdown of the similarity relation for diffuse light transport: simultaneous retrieval of scattering anisotropy and diffusion constant SO OPTICS LETTERS LA English DT Article ID TIME-RESOLVED REFLECTANCE; OPTICAL-PROPERTIES; PHOTON MIGRATION; ABSORBING MEDIA; TURBID MEDIA; SPECTROSCOPY; TRANSMITTANCE; ABSORPTION; APPROXIMATION; TRANSITION AB As manifested in the similarity relation of diffuse light transport, it is difficult to assess single scattering characteristics from multiply scattered light. We take advantage of the limited validity of the diffusion approximation of light transport and demonstrate, experimentally and numerically, that even deep into the multiple scattering regime, time-resolved detection of transmitted light allows simultaneous assessment of both single scattering anisotropy and scattering mean free path, and therefore also macroscopic parameters like the diffusion constant and the transport mean free path. This is achieved via careful assessment of early light and matching against Monte Carlo simulations of radiative transfer. (c) 2013 Optical Society of America C1 [Svensson, T.; Savo, R.; Vynck, K.; Burresi, M.; Wiersma, D. S.] Univ Florence, European Lab Nonlinear Spect, I-50019 Sesto Fiorentino, Italy. [Alerstam, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vynck, K.] ESPCI ParisTech, Inst Langevin, F-75005 Paris, France. [Burresi, M.] Ist Nazl Ott CNR INO, I-50125 Florence, FI, Italy. RP Svensson, T (reprint author), Univ Florence, European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy. EM svensson@lens.unifi.it RI Burresi, Matteo/B-4174-2009 FU Swedish Research Council; European Network of Excellence on Nanophotonics for Energy Efficieny; ERC-Photbot grant FX The authors acknowledge support from the Swedish Research Council, the European Network of Excellence on Nanophotonics for Energy Efficieny, and the ERC-Photbot grant. NR 30 TC 12 Z9 13 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD FEB 15 PY 2013 VL 38 IS 4 BP 437 EP 439 PG 3 WC Optics SC Optics GA 099EB UT WOS:000315601700017 PM 23455094 ER PT J AU Kurum, M AF Kurum, Mehmet TI Quantifying scattering albedo in microwave emission of vegetated terrain SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Albedo; Microwave; Emission; Vegetation; Soil moisture ID SURFACE SOIL-MOISTURE; L-MEB MODEL; DIELECTRIC DISKS; DECIDUOUS FOREST; CROP FIELDS; RETRIEVAL; RADIOMETRY; SENSITIVITY; CALIBRATION; ROUGHNESS AB This study provides a theoretical/physical framework to quantify the vegetation scattering effects on radiometric microwave measurements of soil moisture. The model development and analysis is presented to assess the limitations of the existing tau - omega (tau-omega) model with respect to vegetated landscapes and thus to extend the usefulness of the tau - omega model to a wider range of vegetation conditions. An explicit expression is driven for an effective albedo of vegetated terrain from the zero- and multiple-order radiative transfer solutions. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. Evaluation of the derived albedo for corn canopies (stem-dominated vegetation) with data taken during the Huntsville 1998 field experiment (Hsv98) are shown and discussed. The simulation results are in good agreement with the data and show that the effective albedo values are significantly smaller than the single-scattering albedo values and increase monotonically as soil moisture increases. The model is also used to simulate effective albedo from a soybean canopy (leaf dominated vegetation) at L-band. Both results illustrate that the fitted albedo values, which are found in the literature, represent effective albedo values rather than the single-scattering albedo values. (C) 2012 Elsevier Inc. All rights reserved. C1 [Kurum, Mehmet] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Kurum, Mehmet] Univ Maryland Coll Pk, ESSIC, College Pk, MD USA. RP Kurum, M (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA. EM mehmet.kurum@nasa.gov FU NASA [NNH09ZDA001N] FX The work was supported by a NASA grant NNH09ZDA001N under the Research Opportunities in Space and Earth Science (ROSES) Remote Sensing Theory program. NR 58 TC 17 Z9 17 U1 1 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB 15 PY 2013 VL 129 BP 66 EP 74 DI 10.1016/j.rse.2012.10.021 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 095BA UT WOS:000315308300006 ER PT J AU Gamon, JA Huemmrich, KF Stone, RS Tweedie, CE AF Gamon, John A. Huemmrich, K. Fred Stone, Robert S. Tweedie, Craig E. TI Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Growing season length; Snowmelt; Arctic tundra productivity; Drought; NDVI; Spectral reflectance; Remote sensing; Temperature ID ARCTIC TUNDRA; CLIMATE-CHANGE; NORTHERN ALASKA; SOIL-MOISTURE; CO2 EXCHANGE; CARBON-CYCLE; TEMPERATURE; ECOSYSTEMS; COMMUNITIES; RESPONSES AB In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone. (C) 2012 Elsevier Inc. All rights reserved. C1 [Gamon, John A.; Huemmrich, K. Fred] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Gamon, John A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Huemmrich, K. Fred] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Joint Ctr Earth Syst Technol JCET, Greenbelt, MD 20771 USA. [Stone, Robert S.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. [Stone, Robert S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Tweedie, Craig E.] Univ Texas El Paso, Dept Biol, Syst Ecol Lab, El Paso, TX 79968 USA. RP Gamon, JA (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada. EM gamon@ualberta.ca RI Gamon, John/A-2641-2014 OI Gamon, John/0000-0002-8269-7723 FU IARC through the Desert Research Institute, Reno, Nevada; NASA; NSF; NSERC; iCORE/AITF FX We wish to thank Stan Houston, Erika Anderson, and Jean Van Dalen for assistance in field data collection. Dan Endres and other BRW staff provided helpful discussions and temperature data, David Longenecker and Ellsworth Dutton provided radiation data, Gina Sturm at the National Weather Service's Barrow office provided precipitation data, Cathy Seybold at the United States Department of Agriculture provided technical details of the soil moisture measurements, Suresh-Kumar Santhana-Vannan at ORNL DAAC provided advice on MODIS NDVI products, and the staff of the Barrow Arctic Science Consortium provided field logistical support. We are grateful to the Ukpeagvik Inupiat Corporation (UIC) for permitting access. Funding for the field component of this study was provided by IARC to J.A. Gamon and K.F. Huemmrich through the Desert Research Institute, Reno, Nevada. Additional support was provided by NASA and NSF, and final data analysis was supported by NSERC and iCORE/AITF grants to J.A. Gamon. NR 52 TC 25 Z9 27 U1 12 U2 171 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB 15 PY 2013 VL 129 BP 144 EP 153 DI 10.1016/j.rse.2012.10.030 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 095BA UT WOS:000315308300013 ER PT J AU Peterson, D Wang, J Ichoku, C Hyer, E Ambrosia, V AF Peterson, David Wang, Jun Ichoku, Charles Hyer, Edward Ambrosia, Vincent TI A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 Algorithm development and initial assessment SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Fire; Wildfire; Biomass burning; Fire radiative power (FRP); MODIS; Fire area; Fire temperature; Sub-pixel; Fire detection; Airborne ID SPECTRAL MIXTURE ANALYSIS; BOREAL FOREST-FIRES; INFRARED DATA; SENSOR DATA; EOS-MODIS; SATELLITE; TEMPERATURE; AVHRR; PRODUCTS; WILDFIRE AB Developed as a quantitative measurement of fire intensity, fire radiative power (FRP) and the potential applications to smoke plume injection heights, are currently limited by the pixel resolution of a satellite sensor. As a result, this study, the first in a two-part series, develops a new sub-pixel-based calculation of fire radiative power (FRPf) for fire pixels detected at 1 km(2) nominal spatial resolution by the MODerate Resolution Imaging Spectroradiometer (MODIS) fire detection algorithm (collection 5), which is subsequently applied to several large wildfire events in California. The methodology stems from the heritage of earlier bi-spectral retrievals of sub-pixel fire area and temperature. However, in the current investigation, a radiative transfer model is incorporated to remove solar effects and account for atmospheric effects as a function of Earth-satellite geometry at 3.96 and 11 mu m (MODIS fire detection channels). The retrieved sub-pixel fire (flaming) area is assessed via the multispectral, high-resolution data (3-50 m) obtained from the Autonomous Modular Sensor (AMS), flown aboard the NASA Ikhana unmanned aircraft. With fire sizes ranging from 0.001 to 0.02 km(2), pixel-level fire area comparisons between MODIS and AMS are highly variable, regardless of the viewing zenith angle, and show a low bias with a modest correlation (R=0.59). However, when lower confidence fire pixels and point-spread-function effects (fire hot spots on the pixel edge) are removed, the correlation becomes much stronger (R=0.84) and the variability between MODIS and AMS is reduced. To account for these random errors via averaging, two clustering techniques are employed and the resulting AMS and MODIS comparisons of fire area, after correcting for overlapping MODIS pixels, are even more encouraging (R=0.91). Drawing from the retrieved fire area and temperature, the FRPf is calculated and compared to the current MODIS pixel area-based FRP. While the two methods are strongly correlated (R=0.93), the FRPf, in combination with retrieved fire cluster area, allows a large fire burning at a low intensity to be separated from a small fire burning at a high intensity. Similarly, the flux of FRPf over the retrieved fire area can be calculated, allowing for improved estimates of smoke plume injection heights in modeling studies and creating potential applications for the future VIIRS and GOES-R fire detection algorithms. (C) 2012 Elsevier Inc. All rights reserved. C1 [Peterson, David; Wang, Jun] Univ Nebraska, Lincoln, NE 68588 USA. [Ichoku, Charles] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hyer, Edward] USN, Res Lab, Monterey, CA 93940 USA. [Ambrosia, Vincent] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Peterson, D (reprint author), Univ Nebraska, Dept Earth & Atmospher Sci, 130 Bessey Hall, Lincoln, NE 68588 USA. EM david.peterson@huskers.unl.edu; jwang7@unl.edu; charles.m.ichoku@nasa.gov; edward.hyer@nrlmry.navy.mil; vincent.g.ambrosia@nasa.gov RI Ichoku, Charles/E-1857-2012; Wang, Jun/A-2977-2008; Hyer, Edward/E-7734-2011; peterson, david/L-2350-2016 OI Ichoku, Charles/0000-0003-3244-4549; Wang, Jun/0000-0002-7334-0490; Hyer, Edward/0000-0001-8636-2026; FU NASA Applied Science award [NNX09AT09G]; NASA RA award [NNH07AF47I] FX We are grateful to the AMS wildfire measurement team at the NASA Ames Research Center for providing the airborne (AMS) fire data used in this study. We thank Luke Ellison at the NASA Goddard Space Flight Center for his work with overlapping MODIS pixels. We also thank Dr. Mark Anderson, Dr. John Lenters, and Dr. Bob Oglesby at the University of Nebraska - Lincoln and Dr. Wilfrid Schroeder at the University of Maryland - College Park for their constructive comments. The project was funded by the NASA Earth and Space Science Fellowship (to D. Peterson) and the NASA New Investigator Program (to Dr. Jun Wang). Dr. Hyer's participation was funded by NASA Applied Science award #NNX09AT09G and NASA R&A award #NNH07AF47I. NR 78 TC 22 Z9 22 U1 2 U2 45 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB 15 PY 2013 VL 129 BP 262 EP 279 DI 10.1016/j.rse.2012.10.036 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 095BA UT WOS:000315308300021 ER PT J AU Bilitza, D Reinisch, B AF Bilitza, Dieter Reinisch, Bodo TI Representation of the auroral and polar ionosphere in the International Reference Ionosphere (IRI) Preface SO ADVANCES IN SPACE RESEARCH LA English DT Editorial Material C1 [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Sci Lab, Greenbelt, MD 20771 USA. [Reinisch, Bodo] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA. [Reinisch, Bodo] Lowell Digisonde Int LLC, Lowell, MA 01854 USA. RP Bilitza, D (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA. EM dieter.bilitza-1@nasa.gov; bodo.reinisch@digisonde.com NR 0 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 15 PY 2013 VL 51 IS 4 BP 535 EP 535 DI 10.1016/j.asr.2012.12.006 PG 1 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 090YI UT WOS:000315015500001 ER PT J AU Mertens, CJ Xu, XJ Bilitza, D Mlynczak, MG Russell, JM AF Mertens, Christopher J. Xu, Xiaojing Bilitza, Dieter Mlynczak, Martin G. Russell, James M., III TI Empirical STORM-E model: I. Theoretical and observational basis SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Auroral particle precipitation; Ionosphere; E-region; Magnetic storm; Infrared remote sensing; SABER ID 4.3 MU-M; RADIATIVE-TRANSFER MODEL; EARTH LIMB EMISSION; KINETIC TEMPERATURE; CARBON-DIOXIDE; CO2; ATMOSPHERE; TIMED/SABER; ALGORITHMS; EXCITATION AB Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 mu m channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 mu m VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 mu m VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 pm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO(v) VER is presented. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Mertens, Christopher J.; Mlynczak, Martin G.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Xu, Xiaojing] Sci Syst & Applicat Inc, Hampton, VA USA. [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23688 USA. RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 401B, Hampton, VA 23681 USA. EM Christopher.J.Mertens@nasa.gov; xiaojing.xu@ssaihq.com; dbilitza@gmu.edu; Martin.G.Mlynczak@nasa.gov; James.Russell@hamptonu.edu NR 40 TC 3 Z9 3 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 15 PY 2013 VL 51 IS 4 BP 554 EP 574 DI 10.1016/j.asr.2012.09.009 PG 21 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 090YI UT WOS:000315015500004 ER PT J AU Mertens, CJ Xu, XJ Bilitza, D Mlynczak, MG Russell, JM AF Mertens, Christopher J. Xu, Xiaojing Bilitza, Dieter Mlynczak, Martin G. Russell, James M., III TI Empirical STORM-E model: II. Geomagnetic corrections to nighttime ionospheric E-region electron densities SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Aurora; Auroral particle precipitation; Ionosphere; E-region; Magnetic storm; Infrared remote sensing ID AURORAL-ZONE; ART. AB Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) Volume Emission Rates (VER) derived from the TIMED/SABER 4.3 mu m channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 mu m VER is most sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 mu m VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known nighttime quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part I of this series gives a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 mu m limb emission measurements. In this paper, Part II of the series, the development of the E-region electron density storm-time correction factor is described. The STORM-E storm-time correction factor is fit to a single geomagnetic index. There are four versions of the STORM-E model, which are currently independent of magnetic local time. Each version is fit to one of the following indices: HP, AE, Ap, or Dst. High-latitude Incoherent Scatter Radar (ISR) E-region electron density measurements are compared to STORM-E predictions for various geomagnetic storm periods during solar cycle 23. These comparisons show that STORM-E significantly improves the prediction of E-region electron density enhancements due to auroral particle precipitation, in comparison to the nominal IRI model or to the quiet-time baseline electron density concentrations measured by ISR. The STORM-E/ISR comparisons indicate that the STORM-E fits to the Ap-, AE-, and HP-indices are comparable in both absolute accuracy and relative dynamical response. Contrarily, the Dst-index does not appear to be a suitable input driver to parameterize the E-region electron density response to geomagnetic activity. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Mertens, Christopher J.; Mlynczak, Martin G.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Xu, Xiaojing] Sci Syst & Applicat Inc, Hampton, VA USA. [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23688 USA. RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 401B, Hampton, VA 23681 USA. EM Christopher.J.Mertens@nasa.gov; xiaojing.xu@ssaihq.com; dbilitza@gmu.edu; Martin.G.Mlynczak@nasa.gov; James.Russell@hamptonu.edu NR 27 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 15 PY 2013 VL 51 IS 4 BP 575 EP 598 DI 10.1016/j.asr.2012.09.014 PG 24 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 090YI UT WOS:000315015500005 ER PT J AU Zakharenkova, IE Krankowski, A Bilitza, D Cherniak, IV Shagimuratov, II Sieradzki, R AF Zakharenkova, I. E. Krankowski, A. Bilitza, D. Cherniak, Iu V. Shagimuratov, I. I. Sieradzki, R. TI Comparative study of foF2 measurements with IRI-2007 model predictions during extended solar minimum SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; F2 region critical frequency; International Reference Ionosphere; Solar cycle dependence AB The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Zakharenkova, I. E.; Cherniak, Iu V.; Shagimuratov, I. I.] IZMIRAN, West Dept, Kaliningrad 236010, Russia. [Zakharenkova, I. E.; Krankowski, A.; Sieradzki, R.] Univ Warmia & Mazury, Geodynam Res Lab, Olsztyn, Poland. [Bilitza, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bilitza, D.] George Mason Univ, Space Weather Lab, Fairfax, VA 22030 USA. RP Zakharenkova, IE (reprint author), IZMIRAN, West Dept, 41 Av Pobeda, Kaliningrad 236010, Russia. EM zakharenkova@mail.ru; kand@uwin.edu.pl; dieter.bilitza-1@nasa.gov OI Zakharenkova, Irina/0000-0002-7878-7275 FU NASA [NNX09AJ74G] FX We acknowledge the IRI Working group for providing and evaluating the IRI model FORTRAN code. The authors are grateful to the European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' data. DB acknowledges support through NASA Grant NNX09AJ74G. NR 10 TC 8 Z9 8 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 15 PY 2013 VL 51 IS 4 BP 620 EP 629 DI 10.1016/j.asr.2011.11.015 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 090YI UT WOS:000315015500008 ER PT J AU Talaat, ER Yee, JH Hsieh, SY Paxton, LJ DeMajistre, R Christensen, AB Bilitza, D AF Talaat, E. R. Yee, J. -H. Hsieh, S. -Y. Paxton, L. J. DeMajistre, R. Christensen, A. B. Bilitza, D. TI The quiet nighttime low-latitude ionosphere as observed by TIMED/GUVI SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; TIMED; Electron density; GUVI; IRI ID INTERNATIONAL REFERENCE IONOSPHERE; ULTRAVIOLET IMAGER GUVI; MISSION AB In this paper, we examine the nighttime ionosphere climatology structure in the low latitude region and discrepancies between Global Ultraviolet Imager (GUVI) observations and the IRI model predictions using (1) the magnetic zonal mean of electron number density as a function of altitude and magnetic latitude, (2) vertical electron density profiles at various levels of F10.7 index, (3) nighttime descent and magnitude decrease of the ionosphere, (4) point-to-point comparisons of F-peak height (hmF2) and density (NmF2), and (5) the magnetic longitudinal variations of hmF2 and NmF2. The data collected from the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) mission since its launch in December 2001 have provided great opportunities for many scientific investigations of the ionosphere. In this analysis, we investigate the climatology of the nighttime low-latitude ionosphere under low geomagnetic activity (kp <= 4) using the electron density profiles inferred from the airglow measurements obtained by the GUVI aboard the TIMED spacecraft and compared with the results obtained from IRI (International Reference Ionosphere) model-2001. The observed climatology is an essential tool for further understanding the electrodynamics in the low-latitude region and improving the model's prediction capability. The time range of the GUVI data used in this study is from 2002 (day 053) to 2006 (day 304), and the IRI model predictions were produced at every GUVI location. The ionosphere observed is generally of greater density than what IRI predicts throughout the night for all four seasons for low and moderate solar activity while the model over-predicts the electron density near the F-region peak at high solar activity before midnight. Observations show that the height of the F-region peak has a steep descent from dusk to midnight and near midnight the height of layer is insensitive to solar conditions, significantly different than what is predicted by IRI. Longitudinal features shown in GUVI data are present in the low-latitude ionosphere after sunset and continue through to midnight after which the low-latitude ionosphere is largely zonally symmetric. (C) 2012 Published by Elsevier Ltd. on behalf of COSPAR. C1 [Talaat, E. R.; Yee, J. -H.; Hsieh, S. -Y.; Paxton, L. J.; DeMajistre, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Christensen, A. B.] Dixie State Coll Utah, St George, UT 84770 USA. [Bilitza, D.] NASA, GFSC, Heliospher Lab, Greenbelt, MD 20771 USA. [Bilitza, D.] George Mason Univ, CDS, COS, Fairfax, VA 22030 USA. RP Talaat, ER (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM elsayed.talaat@jhuapl.edu RI Paxton, Larry/D-1934-2015 OI Paxton, Larry/0000-0002-2597-347X FU NASA [NNG05GE43G, NAS5-97179, NAG5-6000]; TIMED FX This work has been supported by NASA Grant NNG05GE43G and by the TIMED project sponsored by NASA under contract NAS5-97179 and NASA grant NAG5-6000 to The Johns Hopkins University Applied Physics Laboratory. The authors would like to thank the editor and three anonymous reviewers for their valuable and helpful comments to improve the quality of this paper. NR 21 TC 1 Z9 1 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 15 PY 2013 VL 51 IS 4 BP 661 EP 676 DI 10.1016/j.asr.2012.11.012 PG 16 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 090YI UT WOS:000315015500013 ER PT J AU Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bottacini, E Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Busetto, G Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chaty, S Chaves, RCG Chekhtman, A Cheung, CC Chiang, J Chiaro, G Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Corbel, S Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Drlica-Wagner, A Falletti, L Favuzzi, C Ferrara, EC Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hayashi, K Hays, E Hewitt, JW Hill, AB Hughes, RE Jackson, MS Jogler, T Johannesson, G Johnson, AS Kamae, T Kataoka, J Katsuta, J Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lovellette, MN Lubrano, P Madejski, GM Massaro, F Mayer, M Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mignani, RP Mitthumsiri, W Mizuno, T Moiseev, AA Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nemmen, R Nuss, E Ohno, M Ohsugi, T Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Ritz, S Romoli, C Sanchez-Conde, M Schulz, A Sgro, C Simeon, PE Siskind, EJ Smith, DA Spandre, G Spinelli, P Stecker, FW Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Tinivella, M Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Werner, M Winer, BL Wood, KS Wood, M Yamazaki, R Yang, Z Zimmer, S AF Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Busetto, G. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, O. Charles, E. Chaty, S. Chaves, R. C. G. Chekhtman, A. Cheung, C. C. Chiang, J. Chiaro, G. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbel, S. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Falletti, L. Favuzzi, C. Ferrara, E. C. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hayashi, K. Hays, E. Hewitt, J. W. Hill, A. B. Hughes, R. E. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Kataoka, J. Katsuta, J. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Madejski, G. M. Massaro, F. Mayer, M. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mignani, R. P. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nemmen, R. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ritz, S. Romoli, C. Sanchez-Conde, M. Schulz, A. Sgro, C. Simeon, P. E. Siskind, E. J. Smith, D. A. Spandre, G. Spinelli, P. Stecker, F. W. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Tinivella, M. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Werner, M. Winer, B. L. Wood, K. S. Wood, M. Yamazaki, R. Yang, Z. Zimmer, S. TI Detection of the Characteristic Pion-Decay Signature in Supernova Remnants SO SCIENCE LA English DT Article ID GAMMA-RAY EMISSION; LARGE-AREA TELESCOPE; IC 443; COSMIC-RAYS; FERMI LAT; SNR W44; ACCELERATION; CLOUDS; DISCOVERY; RADIATION AB Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs. C1 [Ackermann, M.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Franckowiak, A.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Kamae, T.; Katsuta, J.; Lande, J.; Madejski, G. M.; Massaro, F.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Sanchez-Conde, M.; Simeon, P. E.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Franckowiak, A.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Kamae, T.; Katsuta, J.; Lande, J.; Madejski, G. M.; Massaro, F.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Sanchez-Conde, M.; Simeon, P. E.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Chaves, R. C. G.; Corbel, S.; Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, Lab AIM, CEA Saclay,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sezione Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Busetto, G.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Chiaro, G.; Pivato, G.; Rando, R.; Romoli, C.; Tibaldo, L.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bonamente, E.; Cecchi, C.; D'Ammando, F.; Germani, S.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Celik, O.; Cillis, A. N.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Stecker, F. W.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, O.; Moiseev, A. A.; Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA. [Celik, O.; Moiseev, A. A.; Perkins, J. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.; Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.; Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Chekhtman, A.; Cheung, C. C.; Razzaque, S.] USN, Res Lab, Washington, DC 20375 USA. [Cheung, C. C.] USN, Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Chiaro, G.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Cillis, A. N.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Falletti, L.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Universe & Particules Montpellier, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Larsson, S.; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Larsson, S.; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, Stockholm, Sweden. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [Cutini, S.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Fukazawa, Y.; Hanabata, Y.; Hayashi, K.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Grondin, M. -H.] Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, F-31028 Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lemoine-Goumard, M.; Smith, D. A.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mignani, R. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ohno, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stecker, F. W.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tanaka, T.] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Thorsett, S. E.] Willamette Univ, Dept Phys, Salem, OR 97031 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Troja, E.] NASA, Postdoctoral Program, Washington, DC USA. [Vianello, G.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Yamazaki, R.] Aoyama Gakuin Univ, Dept Phys & Math, Sagamihara, Kanagawa 2525258, Japan. RP Funk, S (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM funk@slac.stanford.edu; ttanaka@cr.scphys.kyoto-u.ac.jp; uchiyama@slac.stanford.edu RI Sgro, Carmelo/K-3395-2016; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Massaro, Francesco/L-9102-2016; Orlando, E/R-5594-2016; OI Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Massaro, Francesco/0000-0002-1704-9850; Thorsett, Stephen/0000-0002-2025-9613; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; Baldini, Luca/0000-0002-9785-7726 FU NASA; U.S. Department of Energy (United States); CEA/Irfu; IN2P3/CNRS (France); ASI; INFN (Italy); MEXT; KEK; JAXA (Japan); K. A. Wallenberg Foundation; Swedish Research Council; National Space Board (Sweden) FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and the U.S. Department of Energy (United States); CEA/Irfu and IN2P3/CNRS (France); ASI and INFN (Italy); MEXT, KEK, and JAXA (Japan); and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board (Sweden). Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. Fermi LAT data are available from the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). NR 29 TC 185 Z9 190 U1 2 U2 76 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 15 PY 2013 VL 339 IS 6121 BP 807 EP 811 DI 10.1126/science.1231160 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 088YS UT WOS:000314874400045 PM 23413352 ER PT J AU Polhamus, A Fisher, JB Tu, KP AF Polhamus, Aaron Fisher, Joshua B. Tu, Kevin P. TI What controls the error structure in evapotranspiration models? SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Evapotranspiration; Decoupling; Stomatal resistance; Machine learning; Error; Uncertainty ID PRIESTLEY-TAYLOR PARAMETER; ATMOSPHERE WATER FLUX; REGRESSION TREES; PENMAN-MONTEITH; MODIS; EVAPORATION; SITES; HEAT; TRANSPIRATION; ALGORITHM AB Evapotranspiration models allow climate modelers to describe surface-atmosphere interactions, ecologists to understand the impact that global temperature change and increased radiation budgets will have on ecosystems, and farmers to decide how much irrigation to give their crops. Physically based algorithms for estimating evapotranspiration must manage a trade-off between physical realism and the difficulty of parameterizing key inputs, namely resistance factors associated with water vapor transport through the canopy and turbulent transport of water vapor from the canopy to ambient air. In this study we calculate predicted evapotranspiration at 42 AmeriFlux sites using two types of dedicated evapotranspiration models-one using physical resistances from the Penman-Monteith equation (Monteith, 1965) (Mu et al., 2007, 2011) and another based on the Priestley-Taylor (1972) equation, substituting functional constraints for resistances (Fisher et al., 2008). We analyze the structure of the residual series with respect to various meteorological and biophysical inputs, specifically Jarvis and McNaughton's (1986) decoupling coefficient, Omega, which is designed to represent the degree of control that plant stomata versus atmospheric demand and net radiation exercise over transpiration. We find that vegetation indices, magnitude of daytime fluxes, and bulk canopy resistance (r(c))-which largely drives Omega-are strong predictors of patterns in model bias for all flux products. Though our analysis suggests a consistently negative relationship between Omega and mean predicted error for all evapotranspiration models, we found that vegetation indices and flux magnitudes were the most significant drivers of model error. Before addressing error associated with canopy resistance and Omega, refinements to existing models should focus on correcting biases with respect to flux magnitudes and canopy indices. We suggest a dual-model approach for backsolving r(c) (rather than estimating it from lookup tables and canopy indices), and increased attention to water availability, which largely drives stomatal opening and closure. (C) 2012 Elsevier B.V. All rights reserved. C1 [Polhamus, Aaron; Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tu, Kevin P.] Pioneer Hibred Intl, Woodland, CA 95695 USA. RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jbfisher@jpl.nasa.gov OI Fisher, Joshua/0000-0003-4734-9085 FU National Aeronautics and Space Administration FX We thank Qiaozhen Mu for the time and energy she invested in helping us code her model and develop this paper's analysis; Robert McCulloch, maintainer of the R package BayesTree (Chipman and McCulloch, 2010) for contributing the code used to generate the variable importance plots in the BART analysis section; and Ameri-Flux Principal Investigators and for their diligent efforts to provide high-quality flux data to the environment science community. Two anonymous reviewers provided helpful suggestions for improving the manuscript. The Jet Propulsion Laboratory, California Institute of Technology carried out the research described in this paper, under a contract with the National Aeronautics and Space Administration. NR 59 TC 5 Z9 6 U1 1 U2 79 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD FEB 15 PY 2013 VL 169 BP 12 EP 24 DI 10.1016/j.agrformet.2012.10.002 PG 13 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 078GT UT WOS:000314087400002 ER PT J AU Aasi, J Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adams, T Addesso, P Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Allocca, A Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Araya, MC Ast, S Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Bao, Y Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Bell, C Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bhadbade, T Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bond, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cagnoli, G Calloni, E Camp, JB Campsie, P Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Charlton, P Chassande-Mottin, E Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, JA Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Damjanic, M Danilishin, SL D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Degallaix, J Del Pozzo, W Dent, T Dergachev, V DeRosa, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MDP Di Virgilio, A Diaz, M Dietz, A Dietz, A Donovan, F Dooley, KL Doravari, S Dorsher, S Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Farr, BF Favata, M Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Ferrini, F Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Foley, S Forsi, E Fotopoulos, N Fournier, JD Franc, J Franco, S Frasca, S Frasconi, F Frede, M Frei, MA Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gelencser, G Gemme, G Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gray, C Greenhalgh, RJS Gretarsson, AM Griffo, C Grote, H Grover, K Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Evans, T Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, B Kasprzack, M Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kaufman, K Kawabe, K Kawamura, S Kawazoe, F Keitel, D Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, J Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnan, B Krolak, A Kuehn, G Kumar, P Kumar, R Kurdyumov, R Kwee, P Lam, PK Landry, M Langley, A Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Lhuillier, V Li, J Li, TGF Lindquist, PE Litvine, V Liu, Y Liu, Z Lockerbie, NA Lodhia, D Logue, J Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Lubinski, M Lueck, H Lundgren, AP Macarthur, J Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, C McIntyre, G McIver, J Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mingarelli, CMF Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Oldenberg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Palladino, L Palomba, C Pan, Y Paoletti, F Paoletti, R Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Pedraza, M Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pihlaja, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Poux, C Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, C Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, M Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Salemi, F Sammut, L Sandberg, V Sankar, S Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Saracco, E Sathyaprakash, BS Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siemens, X Sigg, D Simakov, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Speirits, FC Sperandio, L Stefszky, M Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szeifert, G Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, R Ter Braack, APM Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, CV Torrie, CI Tournefier, E Travasso, F Traylor, G Tse, M Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, T Whitcomb, SE White, DJ Whiting, BF Wiesner, K Wilkinson, C Willems, PA Williams, LWR Williams, R Willke, B Wimmer, M Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhao, C Zotov, N Zucker, ME Zweizig, J Anderson, DP Anderson, DP AF Aasi, J. Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adams, T. Addesso, P. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Allocca, A. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Ast, S. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Bao, Y. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Bell, C. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bhadbade, T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bond, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. A. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Damjanic, M. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Degallaix, J. Del Pozzo, W. Dent, T. Dergachev, V. DeRosa, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Dietz, A. Donovan, F. Dooley, K. L. Doravari, S. Dorsher, S. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Farr, B. F. Favata, M. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Ferrini, F. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Foley, S. Forsi, E. Fotopoulos, N. Fournier, J. -D. Franc, J. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, M. A. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gelencser, G. Gemme, G. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Griffo, C. Grote, H. Grover, K. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Heurs, M. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, B. Kasprzack, M. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kaufman, K. Kawabe, K. Kawamura, S. Kawazoe, F. Keitel, D. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnan, B. Krolak, A. Kuehn, G. Kumar, P. Kumar, R. Kurdyumov, R. Kwee, P. Lam, P. K. Landry, M. Langley, A. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Lhuillier, V. Li, J. Li, T. G. F. Lindquist, P. E. Litvine, V. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Logue, J. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macarthur, J. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, C. McIntyre, G. McIver, J. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mingarelli, C. M. F. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Oldenberg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Palladino, L. Palomba, C. Pan, Y. Paoletti, F. Paoletti, R. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pihlaja, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Poux, C. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, M. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Salemi, F. Sammut, L. Sandberg, V. Sankar, S. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Saracco, E. Sathyaprakash, B. S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siemens, X. Sigg, D. Simakov, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Sperandio, L. Stefszky, M. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szeifert, G. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, R. Ter Braack, A. P. M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. V. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tse, M. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wiesner, K. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Wimmer, M. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Anderson, D. P. Anderson, D. P. CA LIGO Sci Collaboration Virgo Collaboration TI Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data SO PHYSICAL REVIEW D LA English DT Article ID NEUTRON-STAR; HOUGH TRANSFORM; PULSAR; RADIATION; EMISSION AB This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data. C1 [Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Daudert, B.; Dergachev, V.; Doravari, S.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Litvine, V.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Pedraza, M.; Phelps, M.; Poux, C.; Price, L. R.; Privitera, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Griffo, C.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Bell, C.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Logue, J.; Macarthur, J.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Scott, S. M.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Acernese, F.; Barone, F.; Bebronne, M.; Buskulic, D.; Calloni, E.; De Rosa, R.; Dietz, A.; Fiori, I.; Garufi, F.; Gouaty, R.; Letendre, N.; Marion, F.; Messenger, C.; Milano, L.; Mosca, S.; Mours, B.; Parisi, M.; Persichetti, G.; Rolland, L.; Romano, R.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Addesso, P.; Conte, R.; Pierro, V.; Pinto, I. M.; Postiglione, F.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Complesso Univ Monte S Angelo, Univ Naples Federico II, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Dent, T.; Edwards, M.; Fairhurst, S.; Macleod, D. M.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, Wales. [Addesso, P.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; Ter Braack, A. P. M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Mori, T.; Nishizawa, A.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Favata, M.; Giampanis, S.; Hammer, D.; Hughey, B.; Kline, J.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; Oldenberg, R. G.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allocca, A.; Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Paoletti, R.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Amariutei, D.; Bao, Y.; Ciani, G.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Smith-Lefebvre, N. D.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lhuillier, V.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Aylott, B. E.; Bond, C.; Carbone, L.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Grover, K.; Hallam, J. M.; Lodhia, D.; Mandel, I.; Mingarelli, C. M. F.; Page, A.; Sidery, T. L.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Genin, E.; Kasprzack, M.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] European Gravitat Observ, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Harry, I. W.; Kelley, D.; Kumar, P.; Lough, J.; Nitz, A.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Katsavounidis, E.; Kissel, J. S.; Kwee, P.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Sankar, S.; Shapiro, B.; Shoemaker, D. H.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Ward, R. L.] Univ Paris Diderot, Observ Paris, CEA Irfu, APC,CNRS,IN2P3, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Raffai, P.; Tse, M.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Beck, D.; Bhadbade, T.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Kurdyumov, R.; Lantz, B.; Markosyan, A.; Roberts, M.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Cagnoli, G.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.; Torres, C. V.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Kasprzack, M.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, IN2P3, CNRS, LAL, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Kanner, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Dumas, J. -C.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Menendez, D. F.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Cagnoli, G.; Degallaix, J.; Flaminio, R.; Franc, J.; Galimberti, M.; Granata, M.; Michel, C.; Morgado, N.; Pinard, L.; Saracco, E.] CNRS, IN2P3, LMA, Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, UPMC, ENS, Lab Kastler Brossel, F-75005 Paris, France. [Buonanno, A.; Capano, C. D.; Kanner, B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Jang, Y. J.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Cadonati, L.; Clark, J. A.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Zhang, F.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kokeyama, K.; Mullavey, A.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Dietz, A.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Kaufman, K.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Morgia, A.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Costa, C. A.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, WIGNER RCP, H-1121 Budapest, Hungary. [Dhurandhar, S.; Gupta, R.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Pihlaja, M.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Drago, M.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38123 Povo, Trento, Italy. [Drago, M.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Drever, R. W. P.; Harms, J.; Langley, A.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Raymond, V.; Rodriguez, C.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M. A.; Whelan, T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Gelencser, G.; Raffai, P.; Szeifert, G.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hanna, C.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Harry, G. M.] American Univ, Washington, DC 20016 USA. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [McGuire, C.] So Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Anderson, D. P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Aasi, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Howell, Eric/H-5072-2014; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Ward, Robert/I-8032-2014; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Chen, Yanbei/A-2604-2013; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Vicere, Andrea/J-1742-2012; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Bao, Yiliang/G-9848-2016; Ott, Christian/G-2651-2011; Kumar, Prem/B-6691-2009; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Costa, Cesar/G-7588-2012; Puppo, Paola/J-4250-2012; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; prodi, giovanni/B-4398-2010; Salemi, Francesco/F-6988-2014; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Bell, Angus/E-7312-2011; Gemme, Gianluca/C-7233-2008; Marchesoni, Fabio/A-1920-2008; Lam, Ping Koy/A-5276-2008; Ciani, Giacomo/G-1036-2011; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Strigin, Sergey/I-8337-2012; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Vyatchanin, Sergey/J-2238-2012; Gorodetsky, Michael/C-5938-2008; CONTE, ANDREA/J-6667-2012; Strain, Kenneth/D-5236-2011; OI Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Milano, Leopoldo/0000-0001-9487-5876; Papa, M.Alessandra/0000-0002-1007-5298; Aulbert, Carsten/0000-0002-1481-8319; Jaranowski, Piotr/0000-0001-8085-3414; calloni, enrico/0000-0003-4819-3297; Ricci, Fulvio/0000-0001-5475-4447; Vetrano, Flavio/0000-0002-7523-4296; Prix, Reinhard/0000-0002-3789-6424; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Naticchioni, Luca/0000-0003-2918-0730; Ward, Robert/0000-0001-5503-5241; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Vicere, Andrea/0000-0003-0624-6231; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Pitkin, Matthew/0000-0003-4548-526X; Puppo, Paola/0000-0003-4677-5015; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; prodi, giovanni/0000-0001-5256-915X; Bell, Angus/0000-0003-1523-0821; Gemme, Gianluca/0000-0002-1127-7406; Marchesoni, Fabio/0000-0001-9240-6793; Lam, Ping Koy/0000-0002-4421-601X; Ciani, Giacomo/0000-0003-4258-9338; Steinlechner, Sebastian/0000-0003-4710-8548; Gorodetsky, Michael/0000-0002-5159-2742; Strain, Kenneth/0000-0002-2066-5355; Kanner, Jonah/0000-0001-8115-0577; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; Vocca, Helios/0000-0002-1200-3917; Fairhurst, Stephen/0000-0001-8480-1961; Addesso, Paolo/0000-0003-0895-184X; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Wette, Karl/0000-0002-4394-7179; Husa, Sascha/0000-0002-0445-1971; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Swinkels, Bas/0000-0002-3066-3601; Pierro, Vincenzo/0000-0002-6020-5521; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Nishizawa, Atsushi/0000-0003-3562-0990; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Page, Amanda/0000-0002-7086-5865 FU Einstein@Home volunteers; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max Planck Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Einstein@Home volunteers, by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory Document No. LIGO-P1200026. NR 53 TC 61 Z9 61 U1 9 U2 105 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 13 PY 2013 VL 87 IS 4 AR 042001 DI 10.1103/PhysRevD.87.042001 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 089AE UT WOS:000314879200001 ER PT J AU Sola, F Niu, J Xia, ZH AF Sola, F. Niu, J. Xia, Z. H. TI Heating induced microstructural changes in graphene/Cu nanocomposites SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; COPPER NANOPARTICLES; METAL NANOPARTICLES; SHAPE EVOLUTION; GRAPHITE OXIDE; NANOCRYSTALS; SHEETS; COALESCENCE; GROWTH; NANOSTRUCTURES AB Dynamic heating experiments on graphene/Cu nanocomposites by in situ scanning electron microscopy were conducted to observe the evolution of the morphology and size of the Cu nanoparticles. Microstructural characterization showed that the graphene/Cu nanocomposites system consists of graphene sheets decorated with Cu-based nanoparticles with different chemistries (Cu, Cu2O), shapes (cube, rod, triangle, etc) and sizes. Evidence of neck evolution, coalescence, sublimation and Ostwald ripening were observed. Interestingly, some of the events occurred at the edges of the graphene sheets. The quantitative data of necking evolution deviates from the classical continuum theory indicating that intrinsic faceting and the shape of the nanoparticles played an important role in the necking process. This was supported by molecular dynamics simulations. Experimental data of liquid-spherical nanoparticles on graphene suggested that Cu did not wet graphene. Based on sublimation experiments and surface stability, we propose that graphene decorated with Cu nanoparticles enclosed by {1 1 1} facets are the most stable nanocomposite at high temperatures. The growth mechanism of nanoparticles on graphene is discussed. C1 [Sola, F.] NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. [Niu, J.; Xia, Z. H.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Niu, J.; Xia, Z. H.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Sola, F (reprint author), NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. EM francisco.sola-lopez@nasa.gov; Zhenhai.Xia@unt.edu NR 50 TC 6 Z9 6 U1 1 U2 107 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD FEB 13 PY 2013 VL 46 IS 6 AR 065309 DI 10.1088/0022-3727/46/6/065309 PG 7 WC Physics, Applied SC Physics GA 078JB UT WOS:000314093500021 ER PT J AU DeLeon-Rodriguez, N Lathem, TL Rodriguez-R, LM Barazesh, JM Anderson, BE Beyersdorf, AJ Ziemba, LD Bergin, M Nenes, A Konstantinidis, KT AF DeLeon-Rodriguez, Natasha Lathem, Terry L. Rodriguez-R, Luis M. Barazesh, James M. Anderson, Bruce E. Beyersdorf, Andreas J. Ziemba, Luke D. Bergin, Michael Nenes, Athanasios Konstantinidis, Konstantinos T. TI Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ice nucleation; cloud condensation nuclei; microbial community; pyrosequencing; biogeography ID ICE NUCLEI; BIOLOGICAL PARTICLES; AEROSOL-PARTICLES; AFIPIA-FELIS; MICROORGANISMS; BIOGEOGRAPHY; COMMUNITIES; BACTERIA; CLIMATE; WATER AB The composition and prevalence of microorganisms in the middle-to-upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth's surface. Here we report on the microbiome of low-and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-mu m diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate. C1 [DeLeon-Rodriguez, Natasha; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Lathem, Terry L.; Bergin, Michael; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Barazesh, James M.; Bergin, Michael; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Anderson, Bruce E.; Beyersdorf, Andreas J.; Ziemba, Luke D.] NASA, Chem & Dynam Branch, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Nenes, A (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM athanasios.nenes@gatech.edu; kostas@ce.gatech.edu RI Beyersdorf, Andreas/N-1247-2013; Barazesh, James/L-5680-2013; OI Rodriguez-R, Luis M/0000-0001-7603-3093 FU National Aeronautics and Space Administration (NASA) [NNX10AM63G]; US Department of Education; NASA Earth and Space Science Fellowship; National Science Foundation; Georgia Tech Presidential Fellowship FX We thank the personnel of the Emory University Genomics Facility for their assistance with sequencing of the Genesis and Rapid Intensification Processes samples. This research was supported, in part, by the National Aeronautics and Space Administration (NASA) (Grant NNX10AM63G). N.D.-R. acknowledges the support of a Graduate Assistance in Areas of National Need Fellowship from the US Department of Education and a NASA Earth and Space Science Fellowship. T.L.L. acknowledges support from a National Science Foundation Graduate Research Fellowship and a Georgia Tech Presidential Fellowship. No additional external funding was received for this study. NR 35 TC 96 Z9 97 U1 9 U2 164 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 12 PY 2013 VL 110 IS 7 BP 2575 EP 2580 DI 10.1073/pnas.1212089110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 101ZL UT WOS:000315812800044 PM 23359712 ER PT J AU Hansen, J Sato, M Ruedy, R AF Hansen, James Sato, Makiko Ruedy, Reto TI Reply to Rhines and Huybers: Changes in the frequency of extreme summer heat SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Hansen, James; Sato, Makiko] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Hansen, James; Sato, Makiko] Columbia Univ, Earth Inst, New York, NY 10025 USA. [Ruedy, Reto] Trinnovim Ltd, Liability Co, New York, NY 10025 USA. RP Hansen, J (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM james.e.hansen@nasa.gov NR 4 TC 2 Z9 2 U1 0 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 12 PY 2013 VL 110 IS 7 BP E547 EP E548 DI 10.1073/pnas.1220916110 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 101ZL UT WOS:000315812800002 PM 23530273 ER PT J AU Kim, JW Kim, HR von Frese, R Taylor, P Rangelova, E AF Kim, Jeong Woo Kim, Hyung Rae von Frese, Ralph Taylor, Patrick Rangelova, Elena TI Geopotential field anomaly continuation with multi-altitude observations SO TECTONOPHYSICS LA English DT Article DE Anomaly continuation; Equivalent point source inversion; Fourier transform; Spherical cap harmonic analysis ID CAP HARMONIC-ANALYSIS; LEGENDRE QUADRATURE INTEGRATION; STABLE DOWNWARD CONTINUATION; GEOMAGNETIC REFERENCE FIELD; MAGNETIC-ANOMALIES; EARTH GRAVITY; UNITED-STATES; SATELLITE; MODEL; REPRESENTATION AB Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available which are constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (equivalent point source) inversion and the FT (Fourier transform), as well as by SCHA (spherical cap harmonic analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as those covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation. (c) 2012 Elsevier B.V. All rights reserved. C1 [Kim, Jeong Woo; Rangelova, Elena] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada. [Kim, Hyung Rae] Kongju Natl Univ, Dept Geoenvironm Sci, Kong Ju 314701, South Korea. [von Frese, Ralph] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Taylor, Patrick] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kim, JW (reprint author), Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada. EM jw.kim@ucalgary.ca FU National Science and Engineering Research Council (NSERC) of Canada [355477-2008]; Science Research Program through National Research Foundation of Korea; MEST [20120003941] FX The National Science and Engineering Research Council (NSERC) of Canada supported this study under Discovery Grant #355477-2008. Elements of this research were performed at NASA's Goddard Space Flight Center in Greenbelt, MD while JWK held a US National Research Council Senior Research Associateship Award. HRK's study was supported by the Science Research Program through National Research Foundation of Korea, funded by MEST (#20120003941). The authors thank Drs. M.F. Asgharzadeh and J.S. Hwang for help with obtaining the simulation results. NR 44 TC 2 Z9 3 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD FEB 11 PY 2013 VL 585 SI SI BP 34 EP 47 DI 10.1016/j.tecto.2012.07.016 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 094BU UT WOS:000315238800005 ER PT J AU Aliu, E Archambault, S Arlen, T Aune, T Beilicke, M Benbow, W Bouvier, A Buckley, JH Bugaev, V Cesarini, A Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dickherber, R Duke, C Dumm, J Dwarkadas, VV Errando, M Falcone, A Federici, S Feng, Q Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Gotthelf, EV Griffin, S Grube, J Gyuk, G Hanna, D Holder, J Hughes, G Humensky, TB Kaaret, P Kargaltsev, O Karlsson, N Khassen, Y Kieda, D Krawczynski, H Krennrich, F Lang, MJ Lee, K Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Nelson, T de Bhroithe, AO Ong, RA Orr, M Otte, AN Park, N Perkins, JS Pohl, M Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Roberts, M Saxon, DB Schroedter, M Sembroski, GH Slane, P Smith, AW Staszak, D Telezhinsky, I Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Tyler, J Varlotta, A Vassiliev, VV Vincent, S Vivier, M Wakely, SP Weekes, TC Weinstein, A Welsing, R Williams, DA Zitzer, B AF Aliu, E. Archambault, S. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bouvier, A. Buckley, J. H. Bugaev, V. Cesarini, A. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dickherber, R. Duke, C. Dumm, J. Dwarkadas, V. V. Errando, M. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Gotthelf, E. V. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Holder, J. Hughes, G. Humensky, T. B. Kaaret, P. Kargaltsev, O. Karlsson, N. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. Lee, K. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Nelson, T. de Bhroithe, A. O'Faolain Ong, R. A. Orr, M. Otte, A. N. Park, N. Perkins, J. S. Pohl, M. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Roberts, M. Saxon, D. B. Schroedter, M. Sembroski, G. H. Slane, P. Smith, A. W. Staszak, D. Telezhinsky, I. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Tyler, J. Varlotta, A. Vassiliev, V. V. Vincent, S. Vivier, M. Wakely, S. P. Weekes, T. C. Weinstein, A. Welsing, R. Williams, D. A. Zitzer, B. TI DISCOVERY OF TeV GAMMA-RAY EMISSION FROM CTA 1 BY VERITAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-rays: stars; pulsars: individual (PSR J0007+7303); supernovae: individual (G119.5+10.2); X-rays: individual (RX J0007.0+7303) ID PULSAR-WIND NEBULAE; ATMOSPHERIC CHERENKOV TELESCOPES; SUPERNOVA REMNANT CTA-1; X-RAY; HESS J1825-137; CRAB-NEBULA; CATALOG; PULSATIONS; EVOLUTION; ASTRONOMY AB We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0.degrees 30 (0.degrees 24) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N-0(E/3 TeV)(-Gamma), with a differential spectral index of Gamma = 2.2 +/- 0.2(stat) +/- 0.3(sys), and normalization N-0 = (9.1 +/- 1.3(stat) +/- 1.7(sys)) x 10(-14) cm(-2) s(-1) TeV-1. The integral flux, F-gamma = 4.0 x 10(-12) erg cm(-2) s(-1) above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1. C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Staszak, D.; Tesic, G.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Arlen, T.; Majumdar, P.; Ong, R. A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; Lee, K.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Collins-Hughes, E.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Dumm, J.; Fortson, L.; Karlsson, N.; Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Federici, S.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany. [Federici, S.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Finnegan, G.; Godambe, S.; Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gall, D.; Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kargaltsev, O.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Kargaltsev, O.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Otte, A. N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Otte, A. N.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Perkins, J. S.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. [Perkins, J. S.] NASA, Astroparticle Phys Lab, GSFC, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland, Dept Astron, Baltimore, MD 21250 USA. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Roberts, M.] Eureka Sci Inc, Oakland, CA 94602 USA. [Slane, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Aliu, E (reprint author), Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. EM smcarthur@ulysses.uchicago.edu; muk@astro.columbia.edu RI Khassen, Yerbol/I-3806-2015; OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Roberts, Mallory/0000-0002-9396-9720; Lang, Mark/0000-0003-4641-4201 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K.; National Science Foundation [AST0908733]; NASA [NAS8-03060] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748) and by STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.; O.K. was supported through the National Science Foundation grant No. AST0908733. P. S. acknowledges support from NASA contract NAS8-03060. NR 54 TC 10 Z9 10 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 38 DI 10.1088/0004-637X/764/1/38 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200038 ER PT J AU Beichman, C Gelino, CR Kirkpatrick, JD Barman, TS Marsh, KA Cushing, MC Wright, EL AF Beichman, C. Gelino, Christopher R. Kirkpatrick, J. Davy Barman, Travis S. Marsh, Kenneth A. Cushing, Michael C. Wright, E. L. TI THE COLDEST BROWN DWARF (OR FREE-FLOATING PLANET)?: THE Y DWARF WISE 1828+2650 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; brown dwarfs; infrared: stars; parallaxes; proper motions; stars: distances; stars: low-mass; solar neighborhood ID EXTRASOLAR GIANT PLANETS; ADAPTIVE OPTICS SYSTEM; SURVEY-EXPLORER WISE; SKY SURVEY 2MASS; SPECTRAL TYPE-L; PROPER MOTIONS; T-DWARFS; STAR; MASS; YOUNG AB We have monitored the position of the cool Y dwarf WISEPA J182831.08+265037.8 using a combination of ground- and space-based telescopes and have determined its distance to be 11.2(-1.0)(+1.3) pc. Its absolute H magnitude, M-H = 22.21(-0.22)(+0.25) mag, suggests a mass in the range 0.5-20 M-Jup for ages of 0.1-10 Gyr with an effective temperature in the range 250-400 K. The broad range in mass is due primarily to the unknown age of the object. Since the high tangential velocity of the object, 51 +/- 5 km s(-1), is characteristic of an old disk population, a plausible age range of 2-4 Gyr leads to a mass range of 3-6 M-Jup based on fits to the (highly uncertain) COND evolutionary models. The range in temperature is due to the fact that no single model adequately represents the 1-5 mu m spectral energy distribution (SED) of the source, failing by factors of up to five at either the short or long wavelength portions of the SED. The appearance of this very cold object may be affected by non-equilibrium chemistry or low temperature condensates forming clouds, two atmospheric processes that are known to be important in brown dwarf atmospheres but have proven difficult to model. Finally, we argue that there would have to be a very steep upturn in the number density of late-type Y-dwarfs to account for the putative population of objects suggested by recent microlensing observations. Whether WISE 1828+2650 sits at the low-mass end of the brown dwarf population or is the first example of a large number of "free-floating" planets is not yet known. C1 [Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Marsh, Kenneth A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Beichman, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91107 USA. [Beichman, C.; Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Barman, Travis S.] Lowell Observ, Flagstaff, AZ 86001 USA. [Marsh, Kenneth A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Cushing, Michael C.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Wright, E. L.] UCLA Phys & Astron, Los Angeles, CA 90095 USA. RP Beichman, C (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. EM chas@ipac.caltech.edu FU National Aeronautics and Space Administration [NAS 5-26555]; NASA through JPL/Caltech [70062, 80109]; NASA through Space Telescope Science Institute [12330]; W. M. Keck Foundation FX The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued to program 70062 and 80109 by JPL/Caltech. This work is also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12330. Support for program 12330 was provided by NASA through a grant from the Space Telescope Science Institute. Some data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. In addition, we acknowledge the generosity of Jay Anderson in sending HST data for the clusters M15 and M92 and useful discussions with Andy Gould. The RECONS database of nearby stars remains an invaluable resource. We used the IRSA archive at IPAC to access the 2MASS catalogs. NR 68 TC 21 Z9 21 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 101 DI 10.1088/0004-637X/764/1/101 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200101 ER PT J AU Bourdin, H Mazzotta, P Markevitch, M Giacintucci, S Brunetti, G AF Bourdin, H. Mazzotta, P. Markevitch, M. Giacintucci, S. Brunetti, G. TI SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: individual (A521); galaxies: clusters: intracluster medium; shock waves ID LARGE-SCALE STRUCTURE; XMM-NEWTON; X-RAY; RADIO HALO; CHANDRA OBSERVATION; BOW SHOCK; WAVES; ACCELERATION; SIMULATIONS; EMISSION AB A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism. C1 [Bourdin, H.; Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Mazzotta, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Markevitch, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Markevitch, M.; Giacintucci, S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Giacintucci, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brunetti, G.] INAF Ist Radioastron, I-40129 Bologna, Italy. RP Bourdin, H (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. EM herve.bourdin@roma2.infn.it RI Mazzotta, Pasquale/B-1225-2016; OI Mazzotta, Pasquale/0000-0002-5411-1748; Brunetti, Gianfranco/0000-0003-4195-8613 FU ESA Member States; USA (NASA); NASA [NNX09AP45G, NNX09AP36G]; ASI-INAF [I/088/06/0, I/009/10/0]; NASA through Einstein Postdoctoral Fellowship [PF0-110071]; Chandra X-ray Center; PRIN-INAF FX We thank the reviewer for constructive comments and suggestions aimed at improving the manuscript. H. B. thanks the Harvard-Smithsonian Centre for Astrophysics, where this work was initiated, for its hospitality. We thank Chiara Ferrari for providing us with a map of the projected galaxy density distribution in A521, derived from photometric observations performed at the CFH telescope. This work is based on observations obtained with XMM-Newton, an ESA science mission funded by ESA Member States and the USA (NASA). H. B and P. M. acknowledge support by grants NASA grant NNX09AP45G and NNX09AP36G grant ASI-INAF I/088/06/0 and ASI-INAF I/009/10/0. S. G. acknowledges the support of NASA through Einstein Postdoctoral Fellowship PF0-110071 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory. G. B. acknowledges partial support from PRIN-INAF2009. NR 44 TC 29 Z9 29 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 82 DI 10.1088/0004-637X/764/1/82 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200082 ER PT J AU Fragos, T Lehmer, B Tremmel, M Tzanavaris, P Basu-Zych, A Belczynski, K Hornschemeier, A Jenkins, L Kalogera, V Ptak, A Zezas, A AF Fragos, T. Lehmer, B. Tremmel, M. Tzanavaris, P. Basu-Zych, A. Belczynski, K. Hornschemeier, A. Jenkins, L. Kalogera, V. Ptak, A. Zezas, A. TI X-RAY BINARY EVOLUTION ACROSS COSMIC TIME SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; galaxies: stellar content; stars: evolution; X-rays: binaries; X-rays: diffuse background; X-rays: galaxies ID STAR-FORMING GALAXIES; DEEP FIELD-SOUTH; BLACK-HOLE BINARIES; STELLAR MASS; LUMINOSITY FUNCTION; GLOBULAR-CLUSTERS; EXPLOSION MECHANISM; ELLIPTIC GALAXIES; FORMATION HISTORY; COMPACT BINARIES AB High-redshift galaxies permit the study of the formation and evolution of X-ray binary (XRB) populations on cosmological timescales, probing a wide range of metallicities and star formation rates (SFRs). In this paper, we present results from a large-scale population synthesis study that models the XRB populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II cosmological simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from XRB populations with properties such as SFR and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from XRBs in our universe today is dominated by low-mass XRBs, and it is only at z greater than or similar to 2.5 that high-mass XRBs become dominant. We also find that there is a delay of similar to 1.1Gyr between the peak of X-ray emissivity from low-mass XRBs (at z similar to 2.1) and the peak of SFR density (at z similar to 3.1). The peak of the X-ray luminosity from high-mass XRBs (at z similar to 3.9) happens similar to 0.8Gyr before the peak of the SFR density, which is due to the metallicity evolution of the universe. C1 [Fragos, T.; Zezas, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lehmer, B.; Tzanavaris, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Lehmer, B.; Tzanavaris, P.; Basu-Zych, A.; Hornschemeier, A.; Jenkins, L.; Ptak, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tremmel, M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Belczynski, K.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Kalogera, V.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Zezas, A.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. [Zezas, A.] Fdn Res & Technol, IESL, Iraklion 71110, Crete, Greece. RP Fragos, T (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM tfragos@cfa.harvard.edu RI Zezas, Andreas/C-7543-2011; Fragos, Tassos/A-3581-2016 OI Zezas, Andreas/0000-0001-8952-676X; Fragos, Tassos/0000-0003-1474-1523 FU CfA; ITC; NASA ADAP [09-ADP09-0071]; Einstein Fellowship Program; NASA Postdoctoral Program Fellowship at Goddard Space Flight Center; MSHE [N203 404939] FX The authors thank the anonymous referee whose careful report has helped to improve this paper. T. F. acknowledges support from the CfA and the ITC prize fellowship programs. This work was partially supported from NASA ADAP grant 09-ADP09-0071 (PI: A. H.). B. L. thanks the Einstein Fellowship Program. P. T. acknowledges support through a NASA Postdoctoral Program Fellowship at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. K. B. acknowledges support from MSHE grant N203 404939. Computational resources supporting this work were provided by Northwestern University Quest HPC cluster and the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. NR 80 TC 54 Z9 54 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 41 DI 10.1088/0004-637X/764/1/41 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200041 ER PT J AU Helder, EA Broos, PS Dewey, D Dwek, E McCray, R Park, S Racusin, JL Zhekov, SA Burrows, DN AF Helder, E. A. Broos, P. S. Dewey, D. Dwek, E. McCray, R. Park, S. Racusin, J. L. Zhekov, S. A. Burrows, D. N. TI CHANDRA OBSERVATIONS OF SN 1987A: THE SOFT X-RAY LIGHT CURVE REVISITED SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: supernova remnants; radiation mechanisms: thermal; supernovae: individual (SN 1987A); X-rays: individual (SN 1987A) ID CCD IMAGING SPECTROMETER; SUPERNOVA REMNANT 1987A; XMM-NEWTON OBSERVATIONS; CIRCUMSTELLAR RING; EVOLUTION; NEBULA; RESOLUTION; LETG AB We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by similar to 6 x 10(-13) erg s(-1) cm(-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring. C1 [Helder, E. A.; Broos, P. S.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Dewey, D.] MIT Kavli Inst, Cambridge, MA 02139 USA. [Dwek, E.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCray, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [McCray, R.] NIST, Boulder, CO 80309 USA. [Park, S.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Racusin, J. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhekov, S. A.] Space Res & Technol Inst, Sofia 1113, Bulgaria. RP Helder, EA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. FU ACIS Instrument Team [SV4-74018]; Chandra X-Ray Center; NASA [NAS8-03060]; SAO [GO1-12070X, GO2-13064X] FX We thank Frank Haberl and Pierre Maggi for providing us with the XMM-Newton EPIC pn fluxes in advance of publication. We also thank Herman Marshall, Paul Plucinsky, Konstatin Getman, Bettina Posselt, Zachary Prieskorn, Jonathan Gelbord, and Binbin Zhang for discussions about statistics, calibration, and pileup corrections. This work is supported by the ACIS Instrument Team contract SV4-74018 (PI: G. Garmire), issued by the Chandra X-Ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. E. A. H. and D.N.B. are supported by SAO grants GO1-12070X and GO2-13064X. NR 39 TC 18 Z9 18 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 11 DI 10.1088/0004-637X/764/1/11 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200011 ER PT J AU Lal, DV Kraft, RP Randall, SW Forman, WR Nulsen, PEJ Roediger, E ZuHone, JA Hardcastle, MJ Jones, C Croston, JH AF Lal, Dharam V. Kraft, Ralph P. Randall, Scott W. Forman, William R. Nulsen, Paul E. J. Roediger, Elke ZuHone, John A. Hardcastle, Martin J. Jones, Christine Croston, Judith H. TI GAS SLOSHING AND RADIO GALAXY DYNAMICS IN THE CORE OF THE 3C 449 GROUP SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (3C 449); hydrodynamics; intergalactic medium; X-rays: galaxies: clusters ID XMM-NEWTON OBSERVATIONS; X-RAY; CHANDRA OBSERVATION; CENTAURUS-A; COLD-FRONT; INTERSTELLAR-MEDIUM; GASEOUS ATMOSPHERE; PERSEUS CLUSTER; VIRGO CLUSTER; SHOCKS AB We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last less than or similar to 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge. We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation. C1 [Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E. J.; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Roediger, Elke] Jacobs Univ Bremen, D-28725 Bremen, Germany. [ZuHone, John A.] NASA GSFC, Greenbelt, MD 20771 USA. [Hardcastle, Martin J.] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield AL10 9AB, Herts, England. [Croston, Judith H.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1SJ, Hants, England. RP Lal, DV (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. OI Randall, Scott/0000-0002-3984-4337; Nulsen, Paul/0000-0003-0297-4493; Hardcastle, Martin/0000-0003-4223-1117 FU National Aeronautics and Space Administration through Chandra by the Chandra X-Ray Observatory Center [GO9-9111X]; National Aeronautics Space Administration [NAS8-03060]; South-East Physics Network (SEP-Net) FX D.V.L. thanks R. Johnson for many fruitful conversations and is grateful to N. P. Lee for repeated helpwith the "crude" temperature map. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO9-9111X issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. J.H.C. acknowledges support from the South-East Physics Network (SEP-Net). This research has made use of software provided by the Chandra X-Ray Center in the application packages CIAO and Sherpa. This research has made use of the NASA/IPAC Extra-galactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This research has made use of NASA's Astrophysics Data System. NR 48 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 83 DI 10.1088/0004-637X/764/1/83 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200083 ER PT J AU Melbourne, J Boyer, ML AF Melbourne, J. Boyer, Martha L. TI THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 mu m SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: fundamental parameters; galaxies: stellar content; stars: AGB and post-AGB ID HIGH-REDSHIFT GALAXIES; MASS-LOSS RATES; RICH AGB-STARS; STELLAR MASS; TP-AGB; NEARBY GALAXIES; LOW METALLICITY; CENTIMETER EXCESS; FORMATION HISTORY; SPACE-TELESCOPE AB We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at similar to 3-4 mu m, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at similar to 3-4 mu m and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 mu m, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1-4 mu m. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e. g., at 0.8-1 mu m). At longer wavelengths (>= 8 mu m), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 mu m, TP-AGB and RSG contribute less than 4% of the 8 mu m flux. However, 19% of the SMC 8 mu m flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 mu m flux (e. g., observed-frame 24 mu m at z = 2), may be biased modestly high, especially for galaxies with little PAH emission. C1 [Melbourne, J.] CALTECH, Caltech Opt Observ, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Boyer, Martha L.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boyer, Martha L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Melbourne, J (reprint author), CALTECH, Caltech Opt Observ, Div Phys Math & Astron, Mail Stop 301-17, Pasadena, CA 91125 USA. EM jmel@caltech.edu; martha.l.boyer@nasa.gov NR 57 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 30 DI 10.1088/0004-637X/764/1/30 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200030 ER PT J AU Mohanty, S Ercolano, B Turner, NJ AF Mohanty, Subhanjoy Ercolano, Barbara Turner, Neal J. TI DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; brown dwarfs; stars: formation; stars: low-mass ID CIRCUMSTELLAR DUST DISKS; SURFACE-LAYER ACCRETION; T-TAURI DISKS; MAGNETOROTATIONAL-INSTABILITY; PROTOPLANETARY DISKS; X-RAY; NONLINEAR EVOLUTION; AMBIPOLAR DIFFUSION; IONIZATION STATE; SATURATION LEVEL AB We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M-* = 0.7M(circle dot) and 0.1M(circle dot). In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with M-disk/M-* = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L-X/L-* approximate to 10(-3.5), as observed. Ionization rates are calculated with the moccasin Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 mu m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only similar to 5%-10% of the total disk mass; (3) the accretion rate (M.) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10(-2); and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii. C1 [Mohanty, Subhanjoy] Univ London Imperial Coll Sci Technol & Med, Blackett Lab 1010, London SW7 2AZ, England. [Ercolano, Barbara] Univ Sternwarte Munchen, Univ Munich, D-81679 Munich, Germany. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mohanty, S (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab 1010, Prince Consort Rd, London SW7 2AZ, England. EM s.mohanty@imperial.ac.uk; ercolano@usm.lmu.de; neal.turner@jpl.nasa.gov OI Turner, Neal/0000-0001-8292-1943 FU STFC [ST/H00307X/1]; Alexander von Humboldt Foundation; NASA FX We thank Xue-Ning Bai, Daniel Perez-Becker, Eugene Chiang, and Raquel Salmeron for invigorating discussions and very useful insights. We also thank the anonymous referee for a very thoughtful report, which helped improve the paper considerably. S. M. is very grateful to the International Summer Institute for Modeling in Astrophysics (ISIMA) for affording him the time, research environment and interactions necessary to take this work forward, and acknowledges the funding support of the STFC grant ST/H00307X/1. N.J.T. was a guest at MPIA Heidelberg when this work began, and especially thanks Thomas Henning for pointing out the importance of the topic. N.J.T. was supported by the Alexander von Humboldt Foundation under a Fellowship for Experienced Researchers and by the NASA Origins of Solar Systems program. He is employed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 61 TC 26 Z9 26 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 65 DI 10.1088/0004-637X/764/1/65 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200065 ER PT J AU Palamara, DP Brown, MJI Jannuzi, BT Dey, A Stern, D Pimbblet, KA Weiner, BJ Ashby, MLN Kochanek, CS Gonzalez, A Brodwin, M Le Floc'h, E Rieke, M AF Palamara, David P. Brown, Michael J. I. Jannuzi, Buell T. Dey, Arjun Stern, Daniel Pimbblet, Kevin A. Weiner, Benjamin J. Ashby, Matthew L. N. Kochanek, C. S. Gonzalez, Anthony Brodwin, Mark Le Floc'h, Emeric Rieke, Marcia TI THE CLUSTERING OF EXTREMELY RED OBJECTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: starburst; galaxies: statistics; large-scale structure of universe ID GALAXY REDSHIFT SURVEY; HALO OCCUPATION DISTRIBUTION; WIDE-FIELD SURVEY; PHOTOMETRIC REDSHIFTS; STAR-FORMATION; HIERARCHICAL UNIVERSE; STATISTICAL-ANALYSIS; NUMBER COUNTS; LBDS 53W091; EVOLUTION AB We measure the clustering of extremely red objects (EROs) in approximate to 8 deg(2) of the NOAO Deep Wide Field Survey Bootes field in order to establish robust links between ERO(z approximate to 1.2) and local galaxy (z < 0.1) populations. Three different color selection criteria from the literature are analyzed to assess the consequences of using different criteria for selecting EROs. Specifically, our samples are (R - K-s) > 5.0 (28,724 galaxies), (I - K-s) > 4.0 (22,451 galaxies), and (I - [3.6]) > 5.0 (64,370 galaxies). Magnitude-limited samples show the correlation length (r(0)) to increase for more luminous EROs, implying a correlation with stellar mass. We can separate star-forming and passive ERO populations using the (K-s - [24]) and ([3.6]-[24]) colors to K-s = 18.4 and [3.6] = 17.5, respectively. Star-forming and passive EROs in magnitude-limited samples have different clustering properties and host dark halo masses and cannot be simply understood as a single population. Based on the clustering, we find that bright passive EROs are the likely progenitors of greater than or similar to 4L* elliptical galaxies. Bright EROs with ongoing star formation were found to occupy denser environments than star-forming galaxies in the local universe, making these the likely progenitors of greater than or similar to L* local ellipticals. This suggests that the progenitors of massive greater than or similar to 4L* local ellipticals had stopped forming stars by z greater than or similar to 1.2, but that the progenitors of less massive ellipticals (down to L*) can still show significant star formation at this epoch. C1 [Palamara, David P.; Brown, Michael J. I.; Pimbblet, Kevin A.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Palamara, David P.; Brown, Michael J. I.; Pimbblet, Kevin A.] Monash Univ, Monash Ctr Astrophys MoCA, Clayton, Vic 3800, Australia. [Jannuzi, Buell T.; Dey, Arjun] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Jannuzi, Buell T.; Weiner, Benjamin J.; Rieke, Marcia] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ashby, Matthew L. N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kochanek, C. S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Gonzalez, Anthony] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Le Floc'h, Emeric] Univ Paris Diderot, Lab AIM, CEA Saclay, CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. RP Palamara, DP (reprint author), Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. RI Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Weiner, Benjamin/0000-0001-6065-7483 FU National Optical Astronomy Observatory; Australian postgraduate award (APA); J.L. William postgraduate award; Australian Research Council (ARC) FX This work is based in part on observations made with the Spitzer Space Telescope, Spitzer/IRAC, and Spitzer/MIPS, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work is based in part on observations made with the Kitt Peak National Observatory (KPNO). This research was supported by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation. We thank our colleagues on the NDWFS, SDWFS, and MAGES teams. We thank Renbin Yan for providing the DEEP2 EGS spectroscopic data used in this work, Mark Dickinson for providing the FIDEL EGS catalog used in this work, Xu Kong for providing the COSMOS ERO surface density data from Kong et al. (2009), and Chris Conselice for providing the DEEP2 ERO surface density data from Conselice et al. (2008). D. P. P. acknowledges support from an Australian postgraduate award (APA) and a J.L. William postgraduate award. M. J. I. B. acknowledges support from an Australian Research Council (ARC) Future Fellowship. NR 68 TC 4 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 31 DI 10.1088/0004-637X/764/1/31 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200031 ER PT J AU Pasham, DR Strohmayer, TE AF Pasham, Dheeraj R. Strohmayer, Tod E. TI EVIDENCE FOR QUASI-PERIODIC X-RAY DIPS FROM AN ULTRALUMINOUS X-RAY SOURCE: IMPLICATIONS FOR THE BINARY MOTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; methods: data analysis; X-rays: binaries ID NGC 5408 X-1; STREAM-DISK IMPACT; ACCRETION DISK; GRO J1655-40; LIGHT CURVES; BLACK-HOLES; INTERACTING BINARIES; TIME-SERIES; CYGNUS X-1; XMM-NEWTON AB We report results from long-term (approximate to 1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination greater than or similar to 70 degrees. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations. C1 [Pasham, Dheeraj R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Strohmayer, Tod E.] NASAs Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Pasham, DR (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM dheeraj@astro.umd.edu; tod.strohmayer@nasa.gov FU NASA's Swift Guest Investigator program FX We acknowledge support through NASA's Swift Guest Investigator program, and we thank the referee for detailed comments which helped us improve this paper. NR 56 TC 14 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 93 DI 10.1088/0004-637X/764/1/93 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200093 ER PT J AU Pereira, TMD De Pontieu, B Carlsson, M AF Pereira, Tiago M. D. De Pontieu, Bart Carlsson, Mats TI THE EFFECTS OF SPATIO-TEMPORAL RESOLUTION ON DEDUCED SPICULE PROPERTIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: atmosphere; Sun: chromosphere; Sun: transition region ID SOLAR OPTICAL TELESCOPE; TRANSITION REGION; MAGNETIC CHROMOSPHERE; H-ALPHA; HINODE; ATMOSPHERE; MISSION; MOTTLES; MODELS AB Spicules have been observed on the Sun for more than a century, typically in chromospheric lines such as Ha and Ca II H. Recent work has shown that so-called "type II" spicules may have a role in providing mass to the corona and the solar wind. In chromospheric filtergrams these spicules are not seen to fall back down, and they are shorter lived and more dynamic than the spicules that have been classically reported in ground-based observations. Observations of type II spicules with Hinode show fundamentally different properties from what was previously measured. In earlier work we showed that these dynamic type II spicules are the most common type, a view that was not properly identified by early observations. The aim of this work is to investigate the effects of spatio-temporal resolution in the classical spicule measurements. Making use of Hinode data degraded to match the observing conditions of older ground-based studies, we measure the properties of spicules with a semi-automated algorithm. These results are then compared to measurements using the original Hinode data. We find that degrading the data has a significant effect on the measured properties of spicules. Most importantly, the results from the degraded data agree well with older studies (e. g., mean spicule duration more than 5 minutes, and upward apparent velocities of about 25 km s(-1)). These results illustrate how the combination of spicule superposition, low spatial resolution and cadence affect the measured properties of spicules, and that previous measurements can be misleading. C1 [Pereira, Tiago M. D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pereira, Tiago M. D.; De Pontieu, Bart] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Carlsson, Mats] Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Carlsson, Mats] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway. RP Pereira, TMD (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Pereira, Tiago/G-4079-2014 OI Pereira, Tiago/0000-0003-4747-4329 FU NASA Postdoctoral Program at Ames Research Center [NNH06CC03B]; NASA [NNX08AH45G, NNX08BA99G, NNX11AN98G]; Research Council of Norway; European Research Council under the European Union [291058] FX T.M.D.P. was supported by the NASA Postdoctoral Program at Ames Research Center (NNH06CC03B). B. D. P. was supported by NASA (NNX08AH45G, NNX08BA99G, and NNX11AN98G). This research was supported by the Research Council of Norway. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 291058. Hinode is a Japanese mission developed by ISAS/JAXA, with the NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated in cooperation with ESA and NSC (Norway). We thank Silje Bjolseth and Anne Fox for help with data reduction. NR 33 TC 16 Z9 17 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 69 DI 10.1088/0004-637X/764/1/69 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200069 ER PT J AU Sokolov, IV van der Holst, B Oran, R Downs, C Roussev, II Jin, M Manchester, WB Evans, RM Gombosi, TI AF Sokolov, Igor V. van der Holst, Bart Oran, Rona Downs, Cooper Roussev, Ilia I. Jin, Meng Manchester, Ward B. Evans, Rebekah M. Gombosi, Tamas I. TI MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: corona; Sun: transition region; Sun: UV radiation ID FAST SOLAR-WIND; HELIOSPHERIC MAGNETIC-FIELD; FREQUENCY ALFVEN WAVES; SPACE WEATHER EVENT; INTERPLANETARY PROPAGATION; TRANSITION REGION; SUN; ACCELERATION; FLUX; SIMULATION AB We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107. C1 [Sokolov, Igor V.; van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B.; Gombosi, Tamas I.] Univ Michigan, Dept AOSS, Ann Arbor, MI 48109 USA. [Downs, Cooper] Predict Sci Inc, San Diego, CA 92121 USA. [Roussev, Ilia I.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Evans, Rebekah M.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. RP Sokolov, IV (reprint author), Univ Michigan, Dept AOSS, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM igorsok@umich.edu RI Jin, Meng/D-7269-2013; Sokolov, Igor/H-9860-2013; Manchester, Ward/I-9422-2012; Gombosi, Tamas/G-4238-2011; van der Holst, Bart/A-3557-2013; OI Jin, Meng/0000-0002-9672-3873; Sokolov, Igor/0000-0002-6118-0469; Gombosi, Tamas/0000-0001-9360-4951; van der Holst, Bart/0000-0001-5260-3944; Oran, Rona/0000-0001-6419-552X FU NSF CDI grant [AGS-1027192]; NASA LWS grant [NNX09AJ78G]; NSF grant [ATM-0639335]; NASA Postdoctoral Program at GSFC FX We are grateful to Zoran Mikic and Steve Cranmer for invaluable discussions and their instructive advice, as well as to Prof. W. H. Mattheus and Prof. A. Ruzmaikin for their comments. The work was supported by the NSF CDI grant AGS-1027192 and the NASA LWS grant NNX09AJ78G. I. I. R. would like to acknowledge support from NSF grant ATM-0639335 (CAREER). R. M. E. is supported through an appointment to the NASA Postdoctoral Program at GSFC, administered by Oak Ridge Associated Universities through a contract with NASA. NR 50 TC 32 Z9 33 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 23 DI 10.1088/0004-637X/764/1/23 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200023 ER PT J AU Veilleux, S Trippe, M Hamann, F Rupke, DSN Tripp, TM Netzer, H Lutz, D Sembach, KR Krug, H Teng, SH Genzel, R Maiolino, R Sturm, E Tacconi, L AF Veilleux, S. Trippe, M. Hamann, F. Rupke, D. S. N. Tripp, T. M. Netzer, H. Lutz, D. Sembach, K. R. Krug, H. Teng, S. H. Genzel, R. Maiolino, R. Sturm, E. Tacconi, L. TI THE SURPRISING ABSENCE OF ABSORPTION IN THE FAR-ULTRAVIOLET SPECTRUM OF Mrk 231 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; ISM: jets and outflows; line: formation; quasars: absorption lines; quasars: individual (Mrk 231) ID ULTRALUMINOUS INFRARED GALAXIES; ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; QUASAR OUTFLOW CONTRIBUTION; STAR-FORMING GALAXIES; ACCRETION DISK WINDS; X-RAY; LINE QUASARS; ECHELLE SPECTROSCOPY; ENERGY-DISTRIBUTION AB Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering similar to 1150-1470 angstrom with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (less than or similar to 2% of predictions based on H alpha), broad (greater than or similar to 10,000 km s(-1) at the base), and highly blueshifted (centroid at similar to -3500 km s(-1)) Ly alpha emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F-lambda proportional to lambda(1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly alpha emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (A(V) similar to 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results. C1 [Veilleux, S.; Trippe, M.; Krug, H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Veilleux, S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Veilleux, S.] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Veilleux, S.; Lutz, D.; Genzel, R.; Sturm, E.; Tacconi, L.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Hamann, F.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Rupke, D. S. N.] Rhodes Coll, Dept Phys, Memphis, TN 38112 USA. [Tripp, T. M.] Univ Massachussetts, Dept Astron, Amherst, MA 01003 USA. [Netzer, H.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Netzer, H.] Tel Aviv Univ, Wise Observ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Sembach, K. R.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Teng, S. H.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Maiolino, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Maiolino, R.] Kavli Inst Cosmol, Cambridge CB3 0HA, England. RP Veilleux, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM veilleux@astro.umd.edu; trippe@astro.umd.edu; hkrug@astro.umd.edu FU NASA [HST GO-1256901A, GO-1256901B]; Senior NPP Award at NASA Goddard Space Flight Center; Humboldt Foundation; National Science Foundation [AST-0908910] FX Support for this work was provided to S. V., M. T., and T. M. T. by NASA through contracts HST GO-1256901A and GO-1256901B. S. V. also acknowledges support from a Senior NPP Award held at the NASA Goddard Space Flight Center, where most of this paper was written, and from the Humboldt Foundation to provide funds for a long-term visit at MPE in 2012. F. H. acknowledges support from the National Science Foundation through grant AST-0908910. We thank the referee, Patrick Hall, for a thorough report and thoughtful suggestions which improved the paper. S. V., F. H., and D. L. also thank A. Laor and H. Netzer for organizing an excellent AGN meeting in Haifa, where many of the ideas presented here germinated. This work has made use of NASA's Astrophysics Data System Abstract Service and the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 96 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2013 VL 764 IS 1 AR 15 DI 10.1088/0004-637X/764/1/15 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081PV UT WOS:000314335200015 ER PT J AU Cordiner, MA Fossey, SJ Smith, AM Sarre, PJ AF Cordiner, M. A. Fossey, S. J. Smith, A. M. Sarre, P. J. TI SMALL-SCALE STRUCTURE OF THE INTERSTELLAR MEDIUM TOWARD rho Oph STARS: DIFFUSE BAND OBSERVATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: clouds; ISM: lines and bands; ISM: structure; stars: individual (rho Oph) ID FORMING REGIONS; OPTICAL OBSERVATIONS; PHYSICAL CONDITIONS; CLOUD STRUCTURE; OPHIUCHI CLOUD; GAS; SPECTROSCOPY; ABSORPTION; MOLECULES; FAMILIES AB We present an investigation of small-scale structure in the distribution of large molecules/dust in the interstellar medium through observations of diffuse interstellar bands (DIBs). High signal-to-noise optical spectra were recorded toward the stars rho Oph A, B, C, and DE using the University College London Echelle Spectrograph on the Anglo-Australian Telescope. The strengths of some of the DIBs are found to differ by about 5%-9% between the close binary stars rho Oph A and B, which are separated by a projected distance on the sky of only c. 344 AU. This is the first star system in which such small-scale DIB strength variations have been reported. The observed variations are attributed to differences between a combination of carrier abundance and the physical conditions present along each sightline. The sightline toward rho Oph C contains relatively dense, molecule-rich material and has the strongest. lambda lambda 5850 and 4726 DIBs. The gas toward DE is more diffuse and is found to exhibit weak "C-2" (blue) DIBs and strong yellow/red DIBs. The differences in diffuse band strengths between lines of sight are, in some cases, significantly greater in magnitude than the corresponding variations among atomic and diatomic species, indicating that the DIBs can be sensitive tracers of interstellar cloud conditions. C1 [Cordiner, M. A.; Smith, A. M.; Sarre, P. J.] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England. [Fossey, S. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Cordiner, MA (reprint author), NASA, Astrochem Lab, Goddard Space Flight Ctr, Mailstop 691,8800 Greenbelt Rd, Greenbelt, MD 20770 USA. EM martin.cordiner@nasa.gov FU T S, EPSRC; STFC FX We thank PATT for the allocation of AAT time and T & S, EPSRC for studentships, and STFC for a visitor grant. M.A.C. thanks the NASA Astrobiology Institute through The Goddard Center for Astrobiology. S.J.F. thanks M. M. Dworetsky and I. D. Howarth for discussions on photospheric line-profile variations in rho Oph C. NR 30 TC 8 Z9 9 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 10 PY 2013 VL 764 IS 1 AR L10 DI 10.1088/2041-8205/764/1/L10 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 081UA UT WOS:000314346700010 ER PT J AU Zuber, MT Smith, DE Watkins, MM Asmar, SW Konopliv, AS Lemoine, FG Melosh, HJ Neumann, GA Phillips, RJ Solomon, SC Wieczorek, MA Williams, JG Goossens, SJ Kruizinga, G Mazarico, E Park, RS Yuan, DN AF Zuber, Maria T. Smith, David E. Watkins, Michael M. Asmar, Sami W. Konopliv, Alexander S. Lemoine, Frank G. Melosh, H. Jay Neumann, Gregory A. Phillips, Roger J. Solomon, Sean C. Wieczorek, Mark A. Williams, James G. Goossens, Sander J. Kruizinga, Gerhard Mazarico, Erwan Park, Ryan S. Yuan, Dah-Ning TI Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission SO SCIENCE LA English DT Article ID LUNAR PROSPECTOR; INTERNAL STRUCTURE; MARE VOLCANISM; EVOLUTION; TOPOGRAPHY AB Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies. C1 [Zuber, Maria T.; Smith, David E.; Mazarico, Erwan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Watkins, Michael M.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Kruizinga, Gerhard; Park, Ryan S.; Yuan, Dah-Ning] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lemoine, Frank G.; Neumann, Gregory A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Melosh, H. Jay] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Phillips, Roger J.] SW Res Inst, Boulder, CO 80302 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Wieczorek, Mark A.] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, F-75205 Paris 13, France. [Goossens, Sander J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. RP Zuber, MT (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM zuber@mit.edu RI Wieczorek, Mark/G-6427-2010; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; Goossens, Sander/K-2526-2015 OI Wieczorek, Mark/0000-0001-7007-4222; Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X; Goossens, Sander/0000-0002-7707-1128 FU NASA FX The GRAIL mission is supported by NASA's Discovery Program and is performed under contract to the Massachusetts Institute of Technology and the Jet Propulsion Laboratory, California Institute of Technology. We are grateful to the GRAIL spacecraft, instrument, and operations teams for outstanding support. We thank J. Andrews-Hanna, J. Head, W. Kiefer, P. McGovern, F. Nimmo, J. Soderblom, and M. Sori for helpful comments on the manuscript. The data used in this study have been submitted to the Geosciences Node of the NASA Planetary Data System. NR 26 TC 117 Z9 130 U1 1 U2 54 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 8 PY 2013 VL 339 IS 6120 BP 668 EP 671 DI 10.1126/science.1231507 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 085BM UT WOS:000314585600034 PM 23223395 ER PT J AU Wieczorek, MA Neumann, GA Nimmo, F Kiefer, WS Taylor, GJ Melosh, HJ Phillips, RJ Solomon, SC Andrews-Hanna, JC Asmar, SW Konopliv, AS Lemoine, FG Smith, DE Watkins, MM Williams, JG Zuber, MT AF Wieczorek, Mark A. Neumann, Gregory A. Nimmo, Francis Kiefer, Walter S. Taylor, G. Jeffrey Melosh, H. Jay Phillips, Roger J. Solomon, Sean C. Andrews-Hanna, Jeffrey C. Asmar, Sami W. Konopliv, Alexander S. Lemoine, Frank G. Smith, David E. Watkins, Michael M. Williams, James G. Zuber, Maria T. TI The Crust of the Moon as Seen by GRAIL SO SCIENCE LA English DT Article ID LUNAR COMPOSITION; GIANT IMPACT; MODEL; CONSTITUTION; INVERSION; INTERIOR; DENSITY; SURFACE; EARTH AB High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth. C1 [Wieczorek, Mark A.] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, F-75205 Paris 13, France. [Neumann, Gregory A.; Lemoine, Frank G.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Kiefer, Walter S.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Taylor, G. Jeffrey] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Melosh, H. Jay] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Asmar, Sami W.; Konopliv, Alexander S.; Watkins, Michael M.; Williams, James G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Wieczorek, MA (reprint author), Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, 5 Rue Thomas Mann, F-75205 Paris 13, France. EM wieczor@ipgp.fr RI Wieczorek, Mark/G-6427-2010; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013; OI Wieczorek, Mark/0000-0001-7007-4222; Neumann, Gregory/0000-0003-0644-9944; Kiefer, Walter/0000-0001-6741-5460 FU NASA; French Space Agency (CNES); Centre National de la Recherche Scientifique; UnivEarthS LabEx project of Sorbonne Paris Cite FX The GRAIL mission is supported by the Discovery Program of NASA and is performed under contract to the Massachusetts Institute of Technology and the Jet Propulsion Laboratory, California Institute of Technology. Additional support for this work was provided by the French Space Agency (CNES), the Centre National de la Recherche Scientifique, and the UnivEarthS LabEx project of Sorbonne Paris Cite. Data products will be made available from the authors upon request. NR 34 TC 193 Z9 200 U1 2 U2 74 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 8 PY 2013 VL 339 IS 6120 BP 671 EP 675 DI 10.1126/science.1231530 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 085BM UT WOS:000314585600035 PM 23223394 ER PT J AU Andrews-Hanna, JC Asmar, SW Head, JW Kiefer, WS Konopliv, AS Lemoine, FG Matsuyama, I Mazarico, E McGovern, PJ Melosh, HJ Neumann, GA Nimmo, F Phillips, RJ Smith, DE Solomon, SC Taylor, GJ Wieczorek, MA Williams, JG Zuber, MT AF Andrews-Hanna, Jeffrey C. Asmar, Sami W. Head, James W., III Kiefer, Walter S. Konopliv, Alexander S. Lemoine, Frank G. Matsuyama, Isamu Mazarico, Erwan McGovern, Patrick J. Melosh, H. Jay Neumann, Gregory A. Nimmo, Francis Phillips, Roger J. Smith, David E. Solomon, Sean C. Taylor, G. Jeffrey Wieczorek, Mark A. Williams, James G. Zuber, Maria T. TI Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry SO SCIENCE LA English DT Article ID EVOLUTION; ROCKS; EARTH AB The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models. C1 [Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Ctr Space Resources, Golden, CO 80401 USA. [Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Head, James W., III] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Kiefer, Walter S.; McGovern, Patrick J.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Matsuyama, Isamu] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Mazarico, Erwan; Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Melosh, H. Jay] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Taylor, G. Jeffrey] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Wieczorek, Mark A.] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, F-75205 Paris 13, France. RP Andrews-Hanna, JC (reprint author), Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. EM jcahanna@mines.edu RI Wieczorek, Mark/G-6427-2010; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; OI Kiefer, Walter/0000-0001-6741-5460; Wieczorek, Mark/0000-0001-7007-4222; Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X; Matsuyama, Isamu/0000-0002-2917-8633; McGovern, Patrick/0000-0001-9647-3096 FU NASA GRAIL Guest Scientist Program FX The GRAIL mission is a component of the NASA Discovery Program and is performed under contract to the Massachusetts Institute of Technology and the Jet Propulsion Laboratory. J.C.A.-H., J.W.H., W. S. K., I. M., P.J.M., F.N., and G.J.T. were supported by grants from the NASA GRAIL Guest Scientist Program. The data used in this study will have been archived in the Geosciences Node of the NASA Planetary Data System by the time of publication. NR 29 TC 51 Z9 54 U1 0 U2 27 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 8 PY 2013 VL 339 IS 6120 BP 675 EP 678 DI 10.1126/science.1231753 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 085BM UT WOS:000314585600036 PM 23223393 ER PT J AU Vernier, JP Thomason, LW Fairlie, TD Minnis, P Palikonda, R Bedka, KM AF Vernier, J. -P. Thomason, L. W. Fairlie, T. D. Minnis, P. Palikonda, R. Bedka, K. M. TI Comment on "Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport" SO SCIENCE LA English DT Editorial Material AB Bourassa et al. (Reports, 6 July 2012, p. 78) have suggested that deep convection associated with the Asian monsoon played a critical role in transporting sulfur dioxide associated with the Nabro volcanic eruption (13 June 2011) from the upper troposphere (9 to 14 kilometers) into the lower stratosphere. An analysis of the CALIPSO lidar data indicates, however, that the main part of the Nabro volcanic plume was injected directly into the lower stratosphere during the initial eruption well before reaching the Asian monsoon deep convective region. C1 [Vernier, J. -P.; Palikonda, R.; Bedka, K. M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Thomason, L. W.; Fairlie, T. D.; Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Vernier, JP (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM jeanpaul.vernier@nasa.gov RI Minnis, Patrick/G-1902-2010; OI Minnis, Patrick/0000-0002-4733-6148; Thomason, Larry/0000-0002-1902-0840 NR 7 TC 22 Z9 22 U1 2 U2 29 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 8 PY 2013 VL 339 IS 6120 DI 10.1126/science.1227817 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 085BM UT WOS:000314585600020 PM 23393247 ER PT J AU Giusarma, E de Putter, R Mena, O AF Giusarma, Elena de Putter, Roland Mena, Olga TI Testing standard and nonstandard neutrino physics with cosmological data SO PHYSICAL REVIEW D LA English DT Article ID DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; BIG-BANG NUCLEOSYNTHESIS; DATA RELEASE; HUBBLE CONSTANT; POWER SPECTRUM; TELESCOPE; PARAMETERS AB Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude. DOI: 10.1103/PhysRevD.87.043515 C1 [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain. [de Putter, Roland] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [de Putter, Roland] CALTECH, Pasadena, CA 91125 USA. RP Giusarma, E (reprint author), Univ Valencia, CSIC, IFIC, Valencia 46071, Spain. FU Consolider Ingenio [CSD2007-00060, PROMETEO/2009/116]; Spanish Ministry Science Project [FPA2011-29678]; ITN Invisibles [PITN-GA-2011-289442] FX We gratefully acknowledge Antonio Cuesta for providing the modified version of COSMOMC with the recent BAO measurements included. We also thank Signe Riemer-Sorensen and Chris Blake for their help with the cross comparison of results. O. M. is supported by the Consolider Ingenio Project No. CSD2007-00060, by PROMETEO/2009/116, by the Spanish Ministry Science Project No. FPA2011-29678 and by the ITN Invisibles PITN-GA-2011-289442. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 54 TC 17 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 7 PY 2013 VL 87 IS 4 AR 043515 DI 10.1103/PhysRevD.87.043515 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 087MN UT WOS:000314765800001 ER PT J AU Guida, VG Valentine, PC Gallea, LB AF Guida, Vincent G. Valentine, Page C. Gallea, Leslie B. TI Semidiurnal Temperature Changes Caused by Tidal Front Movements in the Warm Season in Seabed Habitats on the Georges Bank Northern Margin and Their Ecological Implications SO PLOS ONE LA English DT Article ID PROGNOSTIC NUMERICAL-MODEL; WESTERN IRISH SEA; CONTINENTAL-SHELF; HORIZONTAL TRANSPORT; CYCLIC TEMPERATURE; PHYSICAL MODEL; BRITISH-ISLES; US COAST; SEDIMENT; ECOSYSTEM AB Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along similar to 100 km of the bank margin. The seabed "frontal zone", where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This "frontal boundary zone" was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0 degrees C in the frontal zone to 0.0 degrees C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1 degrees C. The greatest rate of change (-2.48 degrees C hr(-1)) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats. C1 [Guida, Vincent G.] NOAA, NE Fisheries Sci Ctr, JJ Howard Lab, Natl Marine Fisheries Serv, Highlands, NJ 07732 USA. [Valentine, Page C.; Gallea, Leslie B.] US Geol Survey, Woods Hole Coastal & Marine Sci Ctr, Woods Hole, MA 02543 USA. RP Guida, VG (reprint author), NOAA, NE Fisheries Sci Ctr, JJ Howard Lab, Natl Marine Fisheries Serv, Highlands, NJ 07732 USA. EM Vincent.Guida@noaa.gov FU Northeast Fisheries Science Center (NEFSC); United States Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH CMSC); NEFSC FX This study was supported by salary funds from the regular annual salary budget from Northeast Fisheries Science Center (NEFSC) and United States Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH C&MSC), respectively; ship time funds from the NEFSC annual budget for days-at-sea ship operations; equipment from the NEFSC and USGS WH C&MSC annual equipment budgets. The funding offices (NEFSC and USGS WH C& MSC) played the following roles in this study: approval of research plans and allocation of assets, e.g. ship time and personnel travel and overtime payments, and review and approval of manuscript release for publication. This is standard agency practice in both cases. NR 57 TC 0 Z9 0 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 6 PY 2013 VL 8 IS 2 AR e55273 DI 10.1371/journal.pone.0055273 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 092WJ UT WOS:000315153400074 PM 23405129 ER PT J AU Walker, SI Davies, PCW AF Walker, Sara Imari Davies, Paul C. W. TI The algorithmic origins of life SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Review DE origins of life; emergence; astrobiology; top-down causation ID RNA WORLD; GENETIC INFORMATION; DEFINING LIFE; EVOLUTION; EMERGENCE; EVOLVABILITY; CAUSATION; EFFICIENCY; CHEMISTRY; PROGRAM AB Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation-where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies-may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e. g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems. C1 [Walker, Sara Imari] NASA, Astrobiol Inst, Mountain View, CA 94035 USA. [Walker, Sara Imari; Davies, Paul C. W.] Arizona State Univ, BEYOND Ctr Fundamental Concepts Sci, Tempe, AZ USA. [Walker, Sara Imari] Blue Marble Space Inst Sci, Seattle, WA USA. RP Walker, SI (reprint author), NASA, Astrobiol Inst, Mountain View, CA 94035 USA. EM sara.i.walker@asu.edu RI Walker, Sara/J-5829-2015 OI Walker, Sara/0000-0001-5779-2772 FU NASA Astrobiology Institute through the NASA Postdoctoral Fellowship Programme; National Science Foundation [PHY-1066293]; NIH [U54 CA143682] FX S.I.W. gratefully acknowledges support from the NASA Astrobiology Institute through the NASA Postdoctoral Fellowship Programme. S. I. W. also thanks the hospitality of the Aspen Center for Physics, supported in part by the National Science Foundation under grant no. PHY-1066293. P. C. W. D. was supported by NIH grant no. U54 CA143682. We thank Andrew Briggs, Luis Cisneros, John Doyle and George Ellis for stimulating conversations as well as the manuscript's anonymous reviewers for constructive comments. NR 81 TC 14 Z9 14 U1 11 U2 45 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 EI 1742-5662 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD FEB 6 PY 2013 VL 10 IS 79 AR 20120869 DI 10.1098/rsif.2012.0869 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AA5EI UT WOS:000331118500006 PM 23235265 ER PT J AU Wang, SH Li, KF Pongetti, TJ Sander, SP Yung, YL Liang, MC Livesey, NJ Santee, ML Harder, JW Snow, M Mills, FP AF Wang, Shuhui Li, King-Fai Pongetti, Thomas J. Sander, Stanley P. Yung, Yuk L. Liang, Mao-Chang Livesey, Nathaniel J. Santee, Michelle L. Harder, Jerald W. Snow, Martin Mills, Franklin P. TI Midlatitude atmospheric OH response to the most recent 11-y solar cycle SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE decadal variability; odd hydrogen ID TABLE MOUNTAIN FACILITY; COLUMN ABUNDANCE; MIDDLE ATMOSPHERE; MESOSPHERIC HOX; IRRADIANCE; CALIFORNIA; OZONE; MODEL; STRATOSPHERE; VARIABILITY AB The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O-3) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O-3 chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration's Aura satellite suggest an similar to 7-10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-alpha index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (similar to 3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (similar to 6-7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O-3 SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O-3 further. C1 [Wang, Shuhui; Pongetti, Thomas J.; Sander, Stanley P.; Livesey, Nathaniel J.; Santee, Michelle L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Li, King-Fai; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Li, King-Fai; Mills, Franklin P.] Australian Natl Univ, Res Sch Phys & Engn, Atom & Mol Phys Labs, Canberra, ACT 0200, Australia. [Mills, Franklin P.] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia. [Liang, Mao-Chang] Acad Sinica, Res Ctr Environm Changes, Taipei 115, Taiwan. [Harder, Jerald W.; Snow, Martin] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. RP Wang, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shuhui.wang@jpl.nasa.gov OI SNOW, MARTIN/0000-0001-9106-1332 FU NASA Aura Science Team; Upper Atmosphere Research and Tropospheric Chemistry programs; NASA; Australian Research Council FX We thank the NASA Aura Science Team and the Upper Atmosphere Research and Tropospheric Chemistry programs for their support. We thank R. C. Willson for providing the ACRIM TSI composite (www.acrim.com) and the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter for composites of Lyman-alpha and Mg-II indices (http://lasp.colorado.edu/lisird/). We also acknowledge receipt of a TSI dataset from the PMOD (www.pmodwrc.ch/) and receipt of unpublished data from the Variability of Solar Irradiance and Gravity Oscillations on board the Solar and Heliospheric Observatory. Some FTUVS OH data from early years were collected by R. P. Cageao. We thank H. M. Pickett, the principal investigator (retired) for the MLS OH measurements and a NASA Aura Science Team project. We also thank R.-L. Shia and S. Newman for help with the models and error analysis and insightful discussions. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract to NASA. Support from an Australian Research Council Linkage International grant is gratefully acknowledged. NR 49 TC 11 Z9 11 U1 1 U2 28 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 5 PY 2013 VL 110 IS 6 BP 2023 EP 2028 DI 10.1073/pnas.1117790110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 093RQ UT WOS:000315209800023 PM 23341617 ER PT J AU Jensen, EJ Diskin, G Lawson, RP Lance, S Bui, TP Hlavka, D McGill, M Pfister, L Toon, OB Gao, RS AF Jensen, Eric J. Diskin, Glenn Lawson, R. Paul Lance, Sara Bui, T. Paul Hlavka, Dennis McGill, Matthew Pfister, Leonhard Toon, Owen B. Gao, Rushan TI Ice nucleation and dehydration in the Tropical Tropopause Layer SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ATTREX; ice nuclei ID STRATOSPHERIC WATER-VAPOR; SUBVISIBLE CIRRUS; WAVE-CLOUDS; AEROSOLS; OZONE; TEMPERATURES; TRANSPORT; AIRCRAFT; HUMIDITY; CLIMATE AB Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to similar to 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as similar to 1.7 times the ice saturation mixing ratio. C1 [Jensen, Eric J.; Bui, T. Paul; Pfister, Leonhard] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Lawson, R. Paul; Lance, Sara] SPEC Inc, Boulder, CO 80301 USA. [Hlavka, Dennis] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [McGill, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80302 USA. [Toon, Owen B.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80302 USA. [Gao, Rushan] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov RI Gao, Ru-Shan/H-7455-2013; Manager, CSD Publications/B-2789-2015 FU NASA Airborne Tropical Tropopause Experiment; NASA Radiation Sciences Program FX We thank the Dryden Flight Research Center Global Hawk crew and pilots for making these measurements possible. This research was funded by the NASA Airborne Tropical Tropopause Experiment and the NASA Radiation Sciences Program. NR 39 TC 39 Z9 40 U1 5 U2 46 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 5 PY 2013 VL 110 IS 6 BP 2041 EP 2046 DI 10.1073/pnas.1217104110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 093RQ UT WOS:000315209800026 PM 23341619 ER PT J AU Harko, T Lobo, FSN Minazzoli, O AF Harko, Tiberiu Lobo, Francisco S. N. Minazzoli, Olivier TI Extended f(R, L-m) gravity with generalized scalar field and kinetic term dependences SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; MACHS PRINCIPLE; GRAVITATIONAL LAGRANGIANS; RELATIVISTIC THEORY; DARK ENERGY; MATTER; UNIVERSE; SUPERNOVAE AB We generalize previous work by considering a novel gravitational model with an action given by an arbitrary function of the Ricci scalar, the matter Lagrangian density, a scalar field and a kinetic term constructed from the gradients of the scalar field, respectively. The gravitational field equations in the metric formalism are obtained, as well as the equations of motion for test particles, which followfrom the covariant divergence of the stress-energy tensor. Specific models with a nonminimal coupling between the scalar field and the matter Lagrangian are further explored. We emphasize that these models are extremely useful for describing an interaction between dark energy and dark matter, and for explaining the late-time cosmic acceleration. DOI: 10.1103/PhysRevD.87.047501 C1 [Harko, Tiberiu] UCL, Dept Math, London WC1E 6BT, England. [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal. [Minazzoli, Olivier] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Harko, T (reprint author), UCL, Dept Math, Gower St, London WC1E 6BT, England. EM harko@hkucc.hku.hk; flobo@cii.fc.ul.pt; ominazzo@caltech.edu RI Lobo, Francisco/C-9732-2012; OI Lobo, Francisco/0000-0002-9388-8373; Minazzoli, Olivier/0000-0002-3151-7593 FU Fundacao para a Ciencia e Tecnologia [CERN/FP/123615/2011, CERN/FP/123618/2011]; NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology; NASA FX F. S. N. L. acknowledges financial support of the Fundacao para a Ciencia e Tecnologia through the Grants No. CERN/FP/123615/2011 and No. CERN/FP/123618/2011. O. M. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. NR 73 TC 32 Z9 32 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 5 PY 2013 VL 87 IS 4 AR 047501 DI 10.1103/PhysRevD.87.047501 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 086LS UT WOS:000314685900023 ER PT J AU Han, JW Kim, B Li, J Meyyappan, M AF Han, Jin-Woo Kim, Beomseok Li, Jing Meyyappan, M. TI Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge SO APPLIED PHYSICS LETTERS LA English DT Article ID POLYDIMETHYLSILOXANE PDMS SPONGE; SURFACES; WATER AB A flexible, compressible, hydrophobic, ice-repelling, floatable, and conductive carbon nanotube (CNT)-polydimethylsiloxane (PDMS) sponge is presented. The microporous sponge-like PDMS scaffold fabricated with a sugar cube template is capable of CNT uptake. The CNT-PDMS sponge (CPS) is deformable and compressible up to 90%. The Young's modulus varies from 22KPa to 200KPa depending on the applied strain. The conductive pathways via the CNT network increase with compressive strain similar to a variable resistor or pressure sensor. The softness of the CPS can be utilized for artificial skin to grip sensitive objects. In addition, the contact angle of water droplets on CPS shows 141 degrees, and thus the hydrophobic nature of the CPS can be exploited as a floating electrode. Furthermore, the hydrophobicity is maintained below freezing temperature, allowing an ice-repelling electrode. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790437] C1 [Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Han, JW (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov NR 18 TC 26 Z9 26 U1 18 U2 192 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 4 PY 2013 VL 102 IS 5 AR 051903 DI 10.1063/1.4790437 PG 4 WC Physics, Applied SC Physics GA 087OC UT WOS:000314770300026 ER PT J AU Kusenko, A Loewenstein, M Yanagida, TT AF Kusenko, Alexander Loewenstein, Michael Yanagida, Tsutomu T. TI Moduli dark matter and the search for its decay line using Suzaku x-ray telescope SO PHYSICAL REVIEW D LA English DT Article ID MEDIATED SUPERSYMMETRY-BREAKING; XMM-NEWTON OBSERVATIONS; STERILE NEUTRINOS; STANDARD MODEL; WILLMAN 1; MASS; COSMOLOGY; INFLATION; VACUUM; BOSON AB Light scalar fields called moduli arise from a variety of different models involving supersymmetry and/or string theory; thus their existence is a generic prediction of leading theories for physics beyond the standard model. They also present a formidable, long-standing problem for cosmology. We argue that an anthropic solution to the moduli problem exists in the case of small moduli masses and that it automatically leads to dark matter in the form of moduli. The recent discovery of the 125 GeV Higgs boson implies a lower bound on the moduli mass of about a keV. This form of dark matter is consistent with the observed properties of structure formation, and it is amenable to detection with the help of x-ray telescopes. We present the results of a search for such dark matter particles using spectra extracted from the first deep x-ray observations of the Draco and Ursa Minor dwarf spheroidal galaxies, which are dark-matter-dominated systems with extreme mass-to-light ratios and low intrinsic backgrounds. No emission line is positively detected, and we set new constraints on the relevant new physics. DOI: 10.1103/PhysRevD.87.043508 C1 [Kusenko, Alexander] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kusenko, Alexander; Yanagida, Tsutomu T.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Loewenstein, Michael] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20770 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20770 USA. RP Kusenko, A (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RI Yanagida, Tsutomu/A-4394-2011; XRAY, SUZAKU/A-1808-2009 FU DOE [DE-FG03-91ER40662]; NSF [PHY-1066293]; NASA ADAP [NNX11AD36G, NNX11AD11G]; Astro-H mission FX The work of A. K. was supported by the DOE Grant No. DE-FG03-91ER40662. A. K. appreciates the hospitality of the Aspen Center for Physics, which is supported by the NSF Grant No. PHY-1066293. M. L. was supported by NASA ADAP Grants No. NNX11AD36G and No. NNX11AD11G and the Astro-H mission. NR 59 TC 16 Z9 16 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 4 PY 2013 VL 87 IS 4 AR 043508 DI 10.1103/PhysRevD.87.043508 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 086LO UT WOS:000314685400006 ER PT J AU Aguirre, VS Casagrande, L Basu, S Campante, TL Chaplin, WJ Huber, D Miglio, A Serenelli, AM AF Aguirre, V. Silva Casagrande, L. Basu, S. Campante, T. L. Chaplin, W. J. Huber, D. Miglio, A. Serenelli, A. M. CA KASC WG 1 TI Determining distances using asteroseismic methods SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE stars: distances; stars: fundamental parameters; stars: oscillations; techniques: photometric ID RED GIANTS; CHEMICAL EVOLUTION; KEPLER; STARS; OSCILLATIONS; POPULATIONS; PARAMETERS; SEQUENCE; CATALOG; COROT AB Asteroseismology has been extremely successful in determining the properties of stars in different evolutionary stages with a remarkable level of precision. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is needed. In this talk, I present a new technique developed to obtain stellar properties by coupling asteroseismic analysis with the infrared flux method. Using two global seismic observables and multi-band photometry, the technique determines masses, radii, effective temperatures, bolometric fluxes, and thus distances for field stars in a self-consistent manner. Applying our method to a sample of solar-like oscillators in the Kepler field that have accurate Hipparcos parallaxes, we find agreement in our distance determinations to better than 5%. Comparison with measurements of spectroscopic effective temperatures and interferometric radii also validate our results, and show that our technique can be applied to stars evolved beyond the main-sequence phase. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Aguirre, V. Silva; Chaplin, W. J.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Aguirre, V. Silva] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Casagrande, L.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Weston, ACT 2611, Australia. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Campante, T. L.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal. [Campante, T. L.; Chaplin, W. J.; Miglio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Huber, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Serenelli, A. M.] Inst Ciencias Espacio CSIC IEEC, Fac Ciencies, Bellaterra 08193, Spain. RP Aguirre, VS (reprint author), Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. EM victor@phys.au.dk RI Basu, Sarbani/B-8015-2014; OI Basu, Sarbani/0000-0002-6163-3472; Serenelli, Aldo/0000-0001-6359-2769 FU NASA's Science Mission Directorate; Excellence Cluster "Origin and Structure of the Universe" (Garching); International Space Science Institute (ISSI) FX Funding for the Kepler Discovery mission is provided by NASA's Science Mission Directorate. The authors wish to thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1. We are also grateful for support from the International Space Science Institute (ISSI). V. S. A. received financial support from the Excellence Cluster "Origin and Structure of the Universe" (Garching) NR 29 TC 2 Z9 2 U1 1 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD FEB PY 2013 VL 334 IS 1-2 SI SI BP 22 EP 25 DI 10.1002/asna.201211774 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237HO UT WOS:000325859900006 ER PT J AU Boyer, ML AF Boyer, M. L. TI Dust production and mass loss in cool evolved stars SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE galaxies: individual (SMC, LMC); stars: AGB and post-AGB; stars: mass loss ID LARGE-MAGELLANIC-CLOUD; ASYMPTOTIC GIANT BRANCH; AGB STARS; LOW METALLICITY; GALAXY EVOLUTION; INTERMEDIATE-MASS; LOSS RETURN; MU-M; SPITZER; GAS AB Following the red giant branch phase and the subsequent core He-burning phase, the low-to intermediate-mass stars (0.8 < M/M-circle dot < 8) begin to ascend the asymptotic giant branch (AGB). Pulsations levitate material from the stellar surface and provide density enhancements and shocks, which can encourage dust formation and re-processing. The dust composition depends on the atmospheric chemistry (abundance of carbon relative to oxygen), which is altered by dredging up newly formed carbon to the surface of the star. I will briefly review the current status of models that include AGB mass loss and relate them to recent observations of AGB stars from the Surveying the Agents of Galaxy Evolution (SAGE) Spitzer surveys of the Small and Large Magellanic Clouds, including measures of the total dust input to the interstellar medium from AGB stars. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Boyer, M. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Boyer, ML (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM martha.boyer@nasa.gov FU NASA via JPL [130827, 1340964] FX This work is supported by NASA via JPL contracts 130827 and 1340964. Many thanks to the CoolStars17 conference organizers and attendees for an excellent conference. NR 45 TC 2 Z9 2 U1 1 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD FEB PY 2013 VL 334 IS 1-2 SI SI BP 124 EP 128 DI 10.1002/asna.201211779 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237HO UT WOS:000325859900029 ER PT J AU Carson, J Thalmann, C Janson, M Kozakis, T Bonnefoy, M Biller, B Schlieder, J Currie, T McElwain, M Goto, M Henning, T Brandner, W Feldt, M Kandori, R Kuzuhara, M Stevens, L Wong, P Gainey, K Fukagawa, M Kuwada, Y Brandt, T Kwon, J Abe, L Egner, S Grady, C Guyon, O Hashimoto, J Hayano, Y Hayashi, M Hayashi, S Hodapp, K Ishii, M Iye, M Knapp, G Kudo, T Kusakabe, N Matsuo, T Miyama, S Morino, J Moro-Martin, A Nishimura, T Pyo, T Serabyn, E Suto, H Suzuki, R Takami, M Takato, N Terada, H Tomono, D Turner, E Watanabe, M Wisniewski, J Yamada, T Takami, H Usuda, T Tamura, M AF Carson, J. Thalmann, C. Janson, M. Kozakis, T. Bonnefoy, M. Biller, B. Schlieder, J. Currie, T. McElwain, M. Goto, M. Henning, T. Brandner, W. Feldt, M. Kandori, R. Kuzuhara, M. Stevens, L. Wong, P. Gainey, K. Fukagawa, M. Kuwada, Y. Brandt, T. Kwon, J. Abe, L. Egner, S. Grady, C. Guyon, O. Hashimoto, J. Hayano, Y. Hayashi, M. Hayashi, S. Hodapp, K. Ishii, M. Iye, M. Knapp, G. Kudo, T. Kusakabe, N. Matsuo, T. Miyama, S. Morino, J. Moro-Martin, A. Nishimura, T. Pyo, T. Serabyn, E. Suto, H. Suzuki, R. Takami, M. Takato, N. Terada, H. Tomono, D. Turner, E. Watanabe, M. Wisniewski, J. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI DIRECT IMAGING DISCOVERY OF A "SUPER-JUPITER" AROUND THE LATE B-TYPE STAR kappa And SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; planets and satellites: detection; stars: massive ID ORBITING HR 8799; BROWN DWARFS; EVOLUTIONARY MODELS; HIPPARCOS CATALOG; UPPER SCORPIUS; OPEN CLUSTERS; MU-M; PLANETS; COMPANION; PHOTOMETRY AB We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 +/- 2 AU (1 ''.058 +/- 0 ''.007) from the B9-type star kappa And. The planet was detected with Subaru/HiCIAO during the SEEDS survey and confirmed as a bound companion via common proper motion measurements. Observed near-infrared magnitudes of J = 16.3 +/- 0.3, H = 15.2 +/- 0.2, K-s = 14.6 +/- 0.4, and L' = 13.12 +/- 0.09 indicate a temperature of similar to 1700 K. The galactic kinematics of the host star are consistent with membership in the Columba Association, implying a corresponding age of 30(-10)(+20) Myr. The system's age, combined with the companion photometry, points to a model-dependent companion mass similar to 12.8 M-Jup. The host star's estimated mass of 2.4-2.5 M-circle dot places it among the most massive stars ever known to harbor an extrasolar planet or low-mass brown dwarf. While the mass of the companion is close to the deuterium burning limit, its mass ratio, orbital separation, and likely planet-like formation scenario imply that it may be best defined as a "super-Jupiter" with properties similar to other recently discovered companions to massive stars. C1 [Carson, J.; Kozakis, T.; Stevens, L.; Wong, P.; Gainey, K.; Kudo, T.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Carson, J.; Thalmann, C.; Bonnefoy, M.; Biller, B.; Schlieder, J.; Currie, T.; Henning, T.; Brandner, W.; Feldt, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Thalmann, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Janson, M.; Brandt, T.; Knapp, G.; Turner, E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [McElwain, M.; Grady, C.] NASA, Goddard Space Flight Ctr, ExoPlanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Goto, M.] Univ Munich, Young Stars & Star Format Univ Sternwarte Munchen, D-81679 Munich, Germany. [Kandori, R.; Kuzuhara, M.; Kwon, J.; Hashimoto, J.; Hayashi, M.; Iye, M.; Kusakabe, N.; Morino, J.; Suto, H.; Suzuki, R.; Takami, H.; Tamura, M.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Fukagawa, M.; Kuwada, Y.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Abe, L.] Univ Nice Sophia Antipolis, CNRS, UMR 7293, Lab Lagrange,Observ Cote Azur, F-06108 Nice 2, France. [Egner, S.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T.; Takato, N.; Terada, H.; Tomono, D.; Usuda, T.] Subaru Telescope, Hilo, HI 96720 USA. [Hodapp, K.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Matsuo, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Miyama, S.] Hiroshima Univ, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, A.] Inst Nacl Tecn Aeroespacial, CAB INTA CSIC, Dept Astrofis, E-28850 Madrid, Spain. [Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Turner, E.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Wisniewski, J.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Carson, J (reprint author), Coll Charleston, Dept Phys & Astron, 58 Coming St, Charleston, SC 29424 USA. RI MIYAMA, Shoken/A-3598-2015 FU MEXT, Japan; U.S. National Science Foundation [1009203, 1008440, 1009314] FX The authors thank David Lafreniere for providing the source code for his LOCI algorithm, the anonymous referee for useful comments, and Subaru Telescope staff for their assistance. The authors thank David Barrado and the Calar Alto Observatory staff for their efforts at carrying out supplementary observations of the host star. This work is partly supported by a Grant-in-Aid for Science Research in a Priority Area from MEXT, Japan, and the U.S. National Science Foundation under Award No. 1009203 (J.C., T.K., P.W., K.G.), 1008440 (C.G.), and 1009314 (J.W.). The authors recognize and acknowledge the significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 47 TC 82 Z9 83 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2013 VL 763 IS 2 AR L32 DI 10.1088/2041-8205/763/2/L32 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237NX UT WOS:000325878500008 ER PT J AU Thalmann, C Janson, M Buenzli, E Brandt, TD Wisniewski, JP Dominik, C Carson, J McElwain, MW Currie, T Knapp, GR Moro-Martin, A Usuda, T Abe, L Brandner, W Egner, S Feldt, M Golota, T Goto, M Guyon, O Hashimoto, J Hayano, Y Hayashi, M Hayashi, S Henning, T Hodapp, KW Ishii, M Iye, M Kandori, R Kudo, T Kusakabe, N Kuzuhara, M Kwon, J Matsuo, T Mayama, S Miyama, S Morino, JI Nishimura, T Pyo, TS Serabyn, E Suto, H Suzuki, R Takami, M Takato, N Terada, H Tomono, D Turner, EL Watanabe, M Yamada, T Takami, H Tamura, M AF Thalmann, C. Janson, M. Buenzli, E. Brandt, T. D. Wisniewski, J. P. Dominik, C. Carson, J. McElwain, M. W. Currie, T. Knapp, G. R. Moro-Martin, A. Usuda, T. Abe, L. Brandner, W. Egner, S. Feldt, M. Golota, T. Goto, M. Guyon, O. Hashimoto, J. Hayano, Y. Hayashi, M. Hayashi, S. Henning, T. Hodapp, K. W. Ishii, M. Iye, M. Kandori, R. Kudo, T. Kusakabe, N. Kuzuhara, M. Kwon, J. Matsuo, T. Mayama, S. Miyama, S. Morino, J. -I. Nishimura, T. Pyo, T. -S. Serabyn, E. Suto, H. Suzuki, R. Takami, M. Takato, N. Terada, H. Tomono, D. Turner, E. L. Watanabe, M. Yamada, T. Takami, H. Tamura, M. TI IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; planetary systems; stars: individual (HIP 79977); techniques: high angular resolution ID BETA-PICTORIS; SCORPIUS-CENTAURUS; CIRCUMSTELLAR DISK; HD 32297; IMAGES; EXOPLANETS; MORPHOLOGY; FOMALHAUT; MEMBERS; BELT AB We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose presence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of similar to 2 '', as well as polarized differential imaging to measure the degree of scattering polarization out to similar to 1 ''.5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S-out = -3.2[-3.6,-2.9], an inclination of i = 84 degrees[81 degrees, 86 degrees], a high Henyey-Greenstein forward-scattering parameter of g = 0.45[0.35, 0.60], and a nonsignificant disk-star offset of u = 3.0[-1.5, 7.5] AU = 24[-13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from similar to 10% at 0 ''.5 to similar to 45% at 1 ''.5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure. C1 [Thalmann, C.; Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Janson, M.; Brandt, T. D.; Carson, J.; Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Buenzli, E.] Univ Arizona, Dept Astron, Tucson, AZ USA. [Buenzli, E.] Univ Arizona, Steward Observ, Tucson, AZ USA. [Wisniewski, J. P.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Carson, J.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29401 USA. [McElwain, M. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Currie, T.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, Madrid, Spain. [Usuda, T.; Egner, S.; Golota, T.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.; Takami, H.] Subaru Telescope, Hilo, HI USA. [Abe, L.] Lab Hippolyte Fizeau, Nice, France. [Brandner, W.; Feldt, M.; Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Goto, M.] Univ Munich, Univ Sternwerte Munchen, Munich, Germany. [Hashimoto, J.; Iye, M.; Kandori, R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J. -I.; Suto, H.; Suzuki, R.; Tamura, M.] Natl Astron Observ Japan, Tokyo, Japan. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan. [Kwon, J.; Mayama, S.] Grad Univ Adv Studies Sokendai, Dept Astron Sci, Shonan Village, Japan. [Serabyn, E.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Turner, E. L.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido, Japan. [Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan. RP Thalmann, C (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. EM thalmann@uva.nl RI MIYAMA, Shoken/A-3598-2015; OI Buenzli, Esther/0000-0003-3306-1486 FU US National Science Foundation [1009203] FX We thank Jean-Charles Augereau for his GRaTer code, and the anonymous referee for helpful comments. J.C. is supported by the US National Science Foundation under Award No. 1009203. The authors recognize and acknowledge the significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 46 TC 22 Z9 22 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2013 VL 763 IS 2 AR L29 DI 10.1088/2041-8205/763/2/L29 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237NX UT WOS:000325878500005 ER PT J AU Wu, P Perri, S Osman, K Wan, M Matthaeus, WH Shay, MA Goldstein, ML Karimabadi, H Chapman, S AF Wu, P. Perri, S. Osman, K. Wan, M. Matthaeus, W. H. Shay, M. A. Goldstein, M. L. Karimabadi, H. Chapman, S. TI INTERMITTENT HEATING IN SOLAR WIND AND KINETIC SIMULATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetohydrodynamics (MHD); solar wind; Sun: corona; turbulence ID MAGNETIC-FIELD; TURBULENCE; DISCONTINUITIES AB Low-density astrophysical plasmas may be described by magnetohydrodynamics at large scales, but require kinetic description at ion scales in order to include dissipative processes that terminate the cascade. Here kinetic plasma simulations and high-resolution spacecraft observations are compared to facilitate the interpretation of signatures of various dissipation mechanisms. Kurtosis of increments indicates that kinetic scale coherent structures are present, with some suggestion of incoherent activity near ion scales. Conditioned proton temperature distributions suggest heating associated with coherent structures. The results reinforce the association of intermittent turbulence, coherent structures, and plasma dissipation. C1 [Wu, P.; Wan, M.; Matthaeus, W. H.; Shay, M. A.] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. [Perri, S.] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy. [Osman, K.; Chapman, S.] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Wu, P (reprint author), Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. EM penny@udel.edu; whm@udel.edu RI Chapman, Sandra/C-2216-2008; Wan, Minping/A-1344-2011 OI Chapman, Sandra/0000-0003-0053-1584; FU NASA [NNX11AJ44G]; NSF [AGS-1063439, AGS-1156094]; Solar Probe Plus Projects; DOE [DE-SC0004662]; Thailand Research Fund; POR Calabria FSE; EU FX This research supported in part by NASA Heliophysics Theory program NNX11AJ44G, NSF Solar Terrestrial and SHINE programs AGS-1063439 and AGS-1156094, NASA MMS Theory and MMS Interdisciplinary Science programs, Solar Probe Plus Projects, DOE program DE-SC0004662, the Thailand Research Fund, POR Calabria FSE 2007/2013, and by EU project "Turboplasmas." Simulations were performed on University of Delaware clusters and on Jaguar at the Oak Ridge National Laboratory. NR 34 TC 48 Z9 48 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2013 VL 763 IS 2 AR L30 DI 10.1088/2041-8205/763/2/L30 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237NX UT WOS:000325878500006 ER PT J AU Arumugam, DD Griffin, JD Stancil, DD Ricketts, DS AF Arumugam, Darmindra D. Griffin, Joshua D. Stancil, Daniel D. Ricketts, David S. TI Magneto-Quasistatic Tracking of an American Football: A Goal-Line Measurement SO IEEE ANTENNAS AND PROPAGATION MAGAZINE LA English DT Article DE Electromagnetic fields; magnetoquasistatics; radio position measurement; radio tracking; football ID IMAGE THEORY AB An American football was tracked using a long-range magneto-quasistatic position and orientation measurement system. A low-weight emitter that emitted a low-frequency quasistatic magnetic field was embedded within an American football. The emitter weighed a total of 26.5 g, which was within the manufacturing tolerance of an American football, and did not alter the dynamics of the ball. Measurements of a person carrying the football along the goal line of an American football field are described, along with a description of the construction of the magneto-quasistatic tracking system. The technique demonstrated measurements with a distance accuracy of 15 cm and an azimuthal orientation accuracy of 2.45 for measurements conducted along the goal line of an American football field. C1 [Arumugam, Darmindra D.] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. [Griffin, Joshua D.] Disney Res Pittsburgh, Pittsburgh, PA 15213 USA. [Stancil, Daniel D.; Ricketts, David S.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. RP Arumugam, DD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM darmindra.d.arumugam@jpl.nasa.gov; joshdgriffin@disneyresearch.com; ddstancil@ncsu.edu; david.ricketts@ncsu.edu NR 8 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1045-9243 EI 1558-4143 J9 IEEE ANTENN PROPAG M JI IEEE Antennas Propag. Mag. PD FEB PY 2013 VL 55 IS 1 BP 137 EP 146 DI 10.1109/MAP.2013.6474504 PG 10 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 216CB UT WOS:000324257500014 ER PT J AU Crucian, B Stowe, R Mehta, S Uchakin, P Quiriarte, H Pierson, D Sams, C AF Crucian, Brian Stowe, Raymond Mehta, Satish Uchakin, Peter Quiriarte, Heather Pierson, Duane Sams, Clarence TI Immune System Dysregulation Occurs During Short Duration Spaceflight On Board the Space Shuttle SO JOURNAL OF CLINICAL IMMUNOLOGY LA English DT Article DE Space; gravity; stress; immunity; viral reactivation ID EPSTEIN-BARR-VIRUS; T-CELL-ACTIVATION; CYTOKINE PRODUCTION; BED REST; ASTRONAUTS; FLIGHT; RESPONSES; REACTIVATION; COSMONAUTS; STRESS AB Background Post-flight data suggests immunity is dysregulated immediately following spaceflight, however this data may be influenced by the stress effects of high-G entry and readaptation to terrestrial gravity. It is unknown if immunity is altered during spaceflight. Methods Blood samples were collected from 19 US Astronauts onboard the Space Shuttle similar to 24 h prior to landing and returned for terrestrial analysis. Assays consisted of leukocyte distribution, T cell blastogenesis and cytokine production profiles. Results Most bulk leukocyte subsets (WBC, differential, lymphocyte subsets) were unaltered during spaceflight, but were altered following landing. CD8+ T cell subsets, including cytotoxic, central memory and senescent were altered during spaceflight. T cell early blastogenesis varied by culture mitogen. Functional responses to staphylococcal enterotoxin were reduced during and following spaceflight, whereas response to anti-CD3/28 antibodies was elevated post-flight. The level of virus specific T cells were generally unaltered, however virus specific T cell function was depressed both during and following flight. Plasma levels of IFN alpha, IFN gamma, IL-1 beta, IL-4, IL-10, IL-12, and TNF alpha were significantly elevated in-flight, while IL-6 was significantly elevated at R+0. Cytokine production profiles following mitogenic stimulation were significantly altered both during, and following spaceflight. Specifically, production of IFN gamma, IL-17 and IL-10 were reduced, but production of TNF alpha and IL-8 were elevated during spaceflight. Conclusions This study indicates that specific parameters among leukocyte distribution, T cell function and cytokine production profiles are altered during flight. These findings distinguish in-flight dysregulation from stress-related alterations observed immediately following landing. C1 [Crucian, Brian; Pierson, Duane; Sams, Clarence] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Stowe, Raymond] Microgen Labs, La Marque, TX USA. [Mehta, Satish] Enterprise Advisory Serv Inc, Houston, TX USA. [Uchakin, Peter] Mercer Univ, Mercer, GA USA. [Quiriarte, Heather] JES Tech, Houston, TX USA. RP Crucian, B (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM brian.crucian-1@nasa.gov FU JSC Clinical Laboratory; JSC Mission Integration Team; KSC Baseline Data Collection Facility FX The authors wish to thank the Space Shuttle crewmembers for participating in this study. The authors also wish to acknowledge the support provided by the JSC Clinical Laboratory, JSC Mission Integration Team, and KSC Baseline Data Collection Facility during this study. The authors are particularly grateful for operational support provided by Mimi Shao at the Kennedy Space Center and Matt Roper at the Johnson Space Center. NR 34 TC 29 Z9 33 U1 1 U2 10 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0271-9142 J9 J CLIN IMMUNOL JI J. Clin. Immunol. PD FEB PY 2013 VL 33 IS 2 BP 456 EP 465 DI 10.1007/s10875-012-9824-7 PG 10 WC Immunology SC Immunology GA 201DX UT WOS:000323122000022 PM 23100144 ER PT J AU Harlan, SL Declet-Barreto, JH Stefanov, WL Petitti, DB AF Harlan, Sharon L. Declet-Barreto, Juan H. Stefanov, William L. Petitti, Diana B. TI Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE climate; GIS; heat mortality; neighborhoods; remote sensing; vulnerability ID UNITED-STATES; CLIMATE-CHANGE; HEALTH-RISK; MORTALITY; TEMPERATURE; INEQUALITY; INDICATORS; VEGETATION; ECOSYSTEM; PHOENIX AB BACKGROUND: Most heat-related deaths occur in cities, and future trends in global climate change and urbanization may amplify this trend. Understanding how neighborhoods affect heat mortality fills an important gap between studies of individual susceptibility to heat and broadly comparative studies of temperature-mortality relationships in cities. OBJECTIVES: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000-2008). METHODS: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods. RESULTS: Neighborhood scores on three factors-socioeconomic vulnerability, elderly/isolation, and unvegetated area-varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor. CONCLUSIONS: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed. C1 [Harlan, Sharon L.; Declet-Barreto, Juan H.] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85284 USA. [Stefanov, William L.] NASA, Lyndon B Johnson Space Ctr, Jacobs Engn Sci & Contract Grp, Houston, TX 77058 USA. [Petitti, Diana B.] Arizona State Univ, Dept Biomed Informat, Scottsdale, AZ USA. RP Harlan, SL (reprint author), Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85284 USA. EM sharon.harlan@asu.edu FU National Science Foundation [GEO-0816168] FX This research was supported by the National Science Foundation (grant GEO-0816168). NR 52 TC 56 Z9 58 U1 8 U2 48 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD FEB PY 2013 VL 121 IS 2 BP 197 EP 204 DI 10.1289/ehp.1104625 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 208SX UT WOS:000323700900021 PM 23164621 ER PT J AU Cansizoglu, H Cansizoglu, MF Finckenor, M Karabacak, T AF Cansizoglu, Hilal Cansizoglu, Mehmet F. Finckenor, Miria Karabacak, Tansel TI Optical Absorption Properties of Semiconducting Nanostructures with Different Shapes SO ADVANCED OPTICAL MATERIALS LA English DT Article ID GLANCING ANGLE DEPOSITION; SILICON NANOWIRE ARRAYS; TIME-DOMAIN METHOD; IN2S3 THIN-FILMS; SOLAR-CELLS; PHOTOVOLTAIC APPLICATIONS; NANOROD ARRAYS; LOW-COST; TRANSMITTANCE; NANOPARTICLES AB In this study, a detailed experimental and theoretical investigation of optical absorption properties of indium sulfide (In2S3) nanostructure arrays in different shapes are presented. Zigzags, springs, screws, tilted rods, and vertical rods of In2S3 are grown using a glancing angle deposition (GLAD) technique. Nanostructured coatings are of similar material volume and porosity, yet with different shapes. Total optical reflection, transmission, and absorption profiles of In2S3 nanostructures are obtained by UV-vis-NIR spectroscopy using an integrating sphere. Measurements reveal that optical absorption of semiconducting nanostructures can strongly depend on their shapes. Under normal incidence of light, 3D geometries such as springs, screws, and vertical rods can provide enhanced absorption compared to zigzags, and tilted rods. Results of finite difference time domain (FDTD) simulations predict that spring, screw, and tapered-rod shapes can introduce a uniform distribution of diffracted light intensity and stronger absorption within the nanostructured layer, indicating an enhanced diffuse light scattering and light trapping. Zigzags and tilted rods show a relatively weaker absorption, similar to the experimental results. Experimental and simulation results are also compared to the predictions of effective medium theory. Current effective medium approximations are not sufficient to explain the high optical absorption of the nanostructures. C1 [Cansizoglu, Hilal; Cansizoglu, Mehmet F.; Karabacak, Tansel] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA. [Finckenor, Miria] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Cansizoglu, H (reprint author), Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA. EM hxis@ualr.edu FU NASA [NNX09AW22A] FX This work was supported by NASA under the grant number NNX09AW22A. The authors thank Dr. Yang Xu and UALR Center for Integrative Nanotechnology Sciences for helping with SEM and UV-vis-NIR spectroscopy measurements. NR 56 TC 13 Z9 13 U1 1 U2 56 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD FEB PY 2013 VL 1 IS 2 BP 158 EP 166 DI 10.1002/adom.201200018 PG 9 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 172JB UT WOS:000320997900008 ER PT J AU Bishop, JL Rampe, EB Bish, DL Abidin, Z Baker, LL Matsue, N Henmi, T AF Bishop, Janice L. Rampe, Elizabeth B. Bish, David L. Abidin, Zaenal Baker, Leslie L. Matsue, Naoto Henmi, Teruo TI SPECTRAL AND HYDRATION PROPERTIES OF ALLOPHANE AND IMOGOLITE SO CLAYS AND CLAY MINERALS LA English DT Article DE Allophane; Emission Spectroscopy; Imogolite; Reflectance Spectroscopy; XRD ID TUBULAR ALUMINUM SILICATE; RAY-POWDER DIFFRACTION; EMISSION-SPECTROSCOPY; INFRARED-SPECTROSCOPY; SYNTHETIC ALLOPHANE; MOLECULAR-DYNAMICS; THERMAL-REACTIONS; SIO2-AL2O3 RATIO; VOLCANIC ASH; NEW-ZEALAND AB Allophane and imogolite are common alteration products of volcanic materials. Natural and synthetic allophanes and imogolites were characterized in the present study in order to clarify the short-range order of these materials and to gain an understanding of their spectral properties. Spectral analyses included visible/near-infrared (VNIR), and infrared (IR) reflectance of particulate samples and thermal-infrared (TIR) emissivity spectra of particulate and pressed pellets. Spectral features were similar but not identical for allophane and imogolite. In the near-infrared (NIR) region, allophane spectra exhibited a doublet near 7265 and 7120 cm(-1) (1.38 and 1.40 mu m) due to OH2 nu, a broad band near 5220 cm(-1) (1.92 mu m) due to H2O nu+delta, and a band near 4560 cm(-1) (2.19 mu m) due to OH nu+delta. Reflectance spectra of imogolite in this region included a doublet near 7295 and 7190 cm(-1) (1.37 and 1.39 mu m) due to OH2 nu, a broad band near 5200 cm(-1) (1.92 mu m) due to H2O nu+delta, and a band near 4565 cm(-1) (2.19 mu m) due to OH nu+delta. A strong broad band was also observed near 3200-3700 cm(-1) (similar to 2.8-3.1 mu m) which is a composite of OH nu, H2O nu, and H2O2 delta vibrations. Visible/near-infrared spectra were also collected under two relative humidity (RH) conditions. High-RH conditions resulted in increasing band strength for the H2O combination modes near 6900-6930 cm(-1) (1.45 mu m) and 5170-5180 cm(-1) (1.93 mu m) in the allophane and imogolite spectra due to increased abundances of adsorbed H2O molecules. Variation in adsorbed H2O content caused an apparent shift in the bands near 1.4 and 1.9 mu m. A doublet H2O delta vibration was observed at 1600-1670 cm(-1) (similar to 6.0-6.2 mu m) and a band due to OH bending for O3SiOH was observed at similar to 1350-1485 cm(-1) (similar to 6.7-7.4 mu m). The Si-O-Al stretching vibrations occurred near 1030 and 940 cm(-1) (similar to 9.7 and 10.6 mu m) for allophane and near 1010 and 930 cm(-1) (similar to 9.9 and 10.7 mu m) for imogolite. OH out-of-plane bending modes occurred near 610 cm(-1) (16.4 mu m) for allophane and at 595 cm(-1) (16.8 mu m) for imogolite. Features due to Si-O-Al bending vibrations were observed at 545, 420, and 335 cm(-1) (similar to 18, 24, and 30 mu m) for allophane and at 495, 415, and 335 cm(-1) (similar to 20, 24, and 30 mu m) for imogolite. The emissivity spectra were obtained from pressed pellets of the samples, which greatly enhanced the spectral contrast of the TIR absorptions. Predicted NIR bands were calculated from the mid-IR fundamental stretching and bending vibrations and compared with the measured NIR values. Controlled-RH X-ray diffraction (XRD) experiments were also performed in order to investigate changes in the mineral structure with changing RH conditions. Both allophane and imogolite exhibited decreasing low-angle XRD intensity with increasing RH, which was probably a result of interactions between H2O molecules and the curved allophane and imogolite structures. C1 [Bishop, Janice L.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Bishop, Janice L.] NASA ARC, Mountain View, CA 94043 USA. [Rampe, Elizabeth B.] NASA JSC, Houston, TX 77058 USA. [Bish, David L.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Abidin, Zaenal; Matsue, Naoto; Henmi, Teruo] Ehime Univ, Fac Agr, Matsuyama, Ehime 7908566, Japan. [Abidin, Zaenal] Bogor Agr Univ, Fac Math & Nat Sci, Inorgan Chem Lab, Dept Chem, Bogor 16680, West Of Java, Indonesia. [Baker, Leslie L.] Univ Idaho, Dept Plant Soil & Entomol Sci, Moscow, ID 83843 USA. RP Bishop, JL (reprint author), SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM jbishop@seti.org FU NASA's Mars Fundamental Research program; NASA Postdoctoral Program FX Thanks are extended to C. Pieters, T. Hiroi, and NASA's PGG program and the NISLI for the reflectance spectra collected at Brown University's RELAB facility and to P. Christensen and the Mars Space Flight Facility at Arizona State University for the use of the thermal emission spectrometer facility. The authors are grateful to S. Petit, J. Stucki, and two anonymous reviewers for helpful comments that improved the manuscript. This work was supported by NASA's Mars Fundamental Research program and the NASA Postdoctoral Program. NR 73 TC 15 Z9 15 U1 7 U2 41 PU CLAY MINERALS SOC PI CHANTILLY PA 3635 CONCORDE PKWY, STE 500, CHANTILLY, VA 20151-1125 USA SN 0009-8604 EI 1552-8367 J9 CLAY CLAY MINER JI Clay Clay Min. PD FEB-APR PY 2013 VL 61 IS 1-2 BP 57 EP 74 DI 10.1346/CCMN.2013.0610105 PG 18 WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy; Soil Science SC Chemistry; Geology; Mineralogy; Agriculture GA 157LC UT WOS:000319896600005 ER PT J AU Marlier, ME DeFries, RS Voulgarakis, A Kinney, PL Randerson, JT Shindell, DT Chen, Y Faluvegi, G AF Marlier, Miriam E. DeFries, Ruth S. Voulgarakis, Apostolos Kinney, Patrick L. Randerson, James T. Shindell, Drew T. Chen, Yang Faluvegi, Greg TI El Nino and health risks from landscape fire emissions in southeast Asia SO NATURE CLIMATE CHANGE LA English DT Article ID AIR-POLLUTION; EQUATORIAL ASIA; DEFORESTATION; MORTALITY; SMOKE; DROUGHT; FORESTS; CLIMATE; IMPACT AB Emissions from landscape fires affect both climate and air quality(1). Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change(2,3). We show that during strong El Nino years, fires contribute up to 200 mu g m(-3) and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 mu g m(-3) 24-hr PM2.5 interim target(4) and an estimated 10,800 (6,800-14,300)-person (similar to 2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services. C1 [Marlier, Miriam E.] Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [DeFries, Ruth S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. [Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Greg] Columbia Univ, New York, NY 10025 USA. [Kinney, Patrick L.] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10032 USA. [Randerson, James T.; Chen, Yang] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Marlier, ME (reprint author), Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM marlier@ldeo.columbia.edu RI Shindell, Drew/D-4636-2012 FU National Sciences Foundation; NASA [NNX11AF96G] FX We are grateful to P. Kasibhatla for his help with the GEOS-Chem model runs. We also thank the local staff at B. K. Tabang and T. Rata for the WDCGG O3 data, M. Brauer for the annual PM2.5 data and K. Wolter at NOAA for the El Nino index. This work was supported by a National Sciences Foundation graduate research fellowship and NASA award NNX11AF96G. GFED3 is publicly available at http://www.globalfiredata.org. NR 29 TC 61 Z9 61 U1 4 U2 73 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2013 VL 3 IS 2 BP 131 EP 136 DI 10.1038/NCLIMATE1658 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 150NK UT WOS:000319397500014 PM 25379058 ER PT J AU Kuchner, M AF Kuchner, Marc TI Forget about networking SO PHYSICS WORLD LA English DT Article C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Kuchner, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM marc@marketingforscientists.com NR 0 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD FEB PY 2013 VL 26 IS 2 BP 44 EP 45 PG 2 WC Physics, Multidisciplinary SC Physics GA 148RK UT WOS:000319264400032 ER PT J AU Jones, DL AF Jones, Dayton L. TI Technology Challenges for the Square Kilometer Array SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article RP Jones, DL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dayton.jones@jpl.nasa.gov NR 13 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD FEB PY 2013 VL 28 IS 2 BP 18 EP 23 PG 6 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 138XS UT WOS:000318545800003 ER PT J AU Timokhin, AN Arons, J AF Timokhin, A. N. Arons, J. TI Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE acceleration of particles; plasmas; stars: magnetic field; stars: neutron; pulsars: general ID POLAR CAPS; POTENTIAL DROPS; NEUTRON-STAR; MAGNETIC-FIELDS; EMISSION; ACCELERATION; CASCADES; SURFACE; GAPS; SIMULATIONS AB We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(GJ) < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current. The 1D results described here characterize the dependence of acceleration and pair creation on the magnitude and sign of current. The dependence on the spatial distribution of the current is amulti-dimensional problem, possibly exhibiting more chaotic behaviour. We briefly outline possible relations of the electric field fluctuations observed in the polar flows (both with and without pair creation discharges) to direct emission of radio waves, as well as revive the possible relation of the observed limit cycle behaviour to microstructure in the radio emission. Actually modelling these effects requires the multi-dimensional treatment, to be reported in a later paper. C1 [Timokhin, A. N.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Timokhin, A. N.; Arons, J.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Timokhin, A. N.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119991, Russia. [Arons, J.] Univ Calif Berkeley, Dept Astron, Dept Phys, Berkeley, CA 94720 USA. [Arons, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Timokhin, AN (reprint author), NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM andrey.timokhin@nasa.gov FU NSF [AST-0507813]; NASA [NNG06GJI08G, NNX09AU05G]; DOE [DE-FC02-06ER41453]; NASA Goddard Space Flight centre FX We wish to thank Xuening Bai for making the plot shown in our Fig. 1. This work was supported by NSF grant AST-0507813; NASA grants NNG06GJI08G, NNX09AU05G; and DOE grant DE-FC02-06ER41453. AT was also supported by an appointment to the NASA Postdoctoral program at NASA Goddard Space Flight centre, administered by ORAU. NR 44 TC 44 Z9 44 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP 20 EP 54 DI 10.1093/mnras/sts298 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300025 ER PT J AU Duddy, SR Lowry, SC Christou, A Wolters, SD Rozitis, B Green, SF Weissman, PR AF Duddy, S. R. Lowry, S. C. Christou, A. Wolters, S. D. Rozitis, B. Green, S. F. Weissman, P. R. TI Spectroscopic observations of unbound asteroid pairs using the WHT SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE minor planets; asteroids: general ID CLOSE ENCOUNTERS; MASSIVE ASTEROIDS; IRRADIATION EXPERIMENTS; ROTATIONAL FISSION; BINARY ASTEROIDS; VESTA FAMILY; ORIGIN; SURFACES; BELT AB Recently over 62 pairs of asteroids have been shown to have very similar orbital elements. Backward integration of their orbits indicates that the asteroids in each pair likely had very close encounters at low relative velocities, consistent with models of the spin-up and rotational fission of asteroids. Although linked dynamically, the observation of highly similar spectra would suggest that the asteroids share a common composition, which we would expect if they formed from a common parent body. We have begun an observational campaign whose aim is to obtain optical and/or NIR spectra of a large sample of these unbound asteroid pairs to determine whether the asteroids in each pair exhibit similar spectra. We present optical spectroscopic observations of four complete pairs obtained using the William Herschel Telescope. We find that the components of pairs 1979-13732 and 19289-278067 share very similar spectra and likely have a common origin. Our current spectra of 17198-229056 are sufficiently different to suggest that they do not have a common origin, although this is contrary to the strong dynamical linkup of these asteroids demonstrated in the current paper and previous studies. Further observations of this pair are encouraged to examine why the spectra are so different. It is unclear whether the spectra of the final pair, 11842-228747, are a match due to the low S/N of the secondary's spectrum. We discuss the process of space weathering and present new dynamical analyses which confirm the previously estimated ages of the observed pairs. The time-scale for space weathering appears to be longer than 1 Myr for at least some pairs. We also present an efficient method which can be used to determine the positional convergence of unbound asteroid pairs. C1 [Duddy, S. R.; Lowry, S. C.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Christou, A.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Wolters, S. D.; Weissman, P. R.] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA. [Rozitis, B.; Green, S. F.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. RP Duddy, SR (reprint author), Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. EM s.duddy@kent.ac.uk RI Green, Simon/C-7408-2009 FU UK Science and Technology Facilities Council; SEPNet; Northern Ireland Department of Culture, Arts and Leisure (DCAL); NASA; SFI/HEA Irish Centre for High-End Computing (ICHEC) FX SRD, SCL, BR and SFG acknowledge the financial support of the UK Science and Technology Facilities Council. SCL acknowledges support from SEPNet. Astronomical Research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL). We wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. A part of this work was supported by the NASA Planetary Astronomy Program and was performed at the Jet Propulsion Laboratory under contract with NASA. We thank Petr Pravec for his helpful review of this paper. IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. We acknowledge JPL's HORIZONS online ephemeris generator for providing the asteroids' positions and rates of motion during the observations. NR 44 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP 63 EP 74 DI 10.1093/mnras/sts309 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300027 ER PT J AU Chapman, E Abdalla, FB Bobin, J Starck, JL Harker, G Jelic, V Labropoulos, P Zaroubi, S Brentjens, MA de Bruyn, AG Koopmans, VE AF Chapman, Emma Abdalla, Filipe B. Bobin, J. Starck, J-L Harker, Geraint Jelic, Vibor Labropoulos, Panagiotis Zaroubi, Saleem Brentjens, Michiel A. de Bruyn, A. G. Koopmans, V. E. TI The scale of the problem: recovering images of reionization with Generalized Morphological Component Analysis SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; cosmology: theory; dark ages, reionization, first stars; diffuse radiation ID BLIND SOURCE SEPARATION; 21 CENTIMETER FLUCTUATIONS; FOREGROUND REMOVAL; HIGH-REDSHIFT; INTERGALACTIC MEDIUM; NEUTRAL HYDROGEN; 21-CM EPOCH; TOMOGRAPHY; LOFAR; SIMULATIONS AB The accurate and precise removal of 21-cm foregrounds from Epoch of Reionization (EoR) redshifted 21-cm emission data is essential if we are to gain insight into an unexplored cosmological era. We apply a non-parametric technique, Generalized Morphological Component Analysis (GMCA), to simulated Low Frequency Array (LOFAR)-EoR data and show that it has the ability to clean the foregrounds with high accuracy. We recover the 21-cm 1D, 2D and 3D power spectra with high accuracy across an impressive range of frequencies and scales. We show that GMCA preserves the 21-cm phase information, especially when the smallest spatial scale data is discarded. While it has been shown that LOFAR-EoR image recovery is theoretically possible using image smoothing, we add that wavelet decomposition is an efficient way of recovering 21-cm signal maps to the same or greater order of accuracy with more flexibility. By comparing the GMCA output residual maps (equal to the noise, 21-cm signal and any foreground fitting errors) with the 21-cm maps at one frequency and discarding the smaller wavelet scale information, we find a correlation coefficient of 0.689, compared to 0.588 for the equivalently smoothed image. Considering only the pixels in a central patch covering 50 per cent of the total map area, these coefficients improve to 0.905 and 0.605, respectively, and we conclude that wavelet decomposition is a significantly more powerful method to denoise reconstructed 21-cm maps than smoothing. C1 [Chapman, Emma; Abdalla, Filipe B.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bobin, J.; Starck, J-L] Ctr Europeen Astron Saclay, Serv Astrophys DAPNIA SEDI SAP, F-91191 Gif Sur Yvette, France. [Harker, Geraint] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Harker, Geraint] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. [Jelic, Vibor; Labropoulos, Panagiotis; Brentjens, Michiel A.; de Bruyn, A. G.] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Labropoulos, Panagiotis; Zaroubi, Saleem; de Bruyn, A. G.; Koopmans, V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. RP Chapman, E (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM eow@star.ucl.ac.uk RI Jelic, Vibor/B-2938-2014; Bobin, Jerome/P-3729-2014; Harker, Geraint/C-4885-2012; OI Jelic, Vibor/0000-0002-6034-8610; Bobin, Jerome/0000-0003-1457-7890; Harker, Geraint/0000-0002-7894-4082; Abdalla, Filipe/0000-0003-2063-4345; Starck, Jean-Luc/0000-0003-2177-7794 FU Royal Society; NASA Lunar Science Institute [NNA09DB30A]; European Research Council [FIRSTLIGHT-258942] FX FBA acknowledges the support of the Royal Society via a University Research Fellowship. GH is a member of the LUNAR consortium, which is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon. LVEK acknowledges the financial support from the European Research Council under ERC-Starting Grant FIRSTLIGHT-258942. The authors would like to acknowledge Mario Santos for useful discussion. NR 42 TC 33 Z9 33 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP 165 EP 176 DI 10.1093/mnras/sts333 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300037 ER PT J AU Massey, R Hoekstra, H Kitching, T Rhodes, J Cropper, M Amiaux, J Harvey, D Mellier, Y Meneghetti, M Miller, L Paulin-Henriksson, S Pires, S Scaramella, R Schrabback, T AF Massey, Richard Hoekstra, Henk Kitching, Thomas Rhodes, Jason Cropper, Mark Amiaux, Jerome Harvey, David Mellier, Yannick Meneghetti, Massimo Miller, Lance Paulin-Henriksson, Stephane Pires, Sandrine Scaramella, Roberto Schrabback, Tim TI Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; instrumentation: detectors; methods: data analysis; space vehicles: instruments; telescopes; cosmological parameters ID HUBBLE-SPACE-TELESCOPE; POINT-SPREAD FUNCTION; CHARGE-TRANSFER INEFFICIENCY; IMAGE-ANALYSIS COMPETITION; GALAXY SHAPE MEASUREMENT; DARK ENERGY CONSTRAINTS; PIXEL-BASED CORRECTION; COSMIC SHEAR; ADVANCED CAMERA; GREAT08 CHALLENGE AB The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. Together, these now explain the additive A(l) and multiplicative M(l) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance. The second half of this paper propagates any residual shear measurement biases through to their effect on cosmological parameter constraints. Fully exploiting the statistical power of Stage IV weak lensing surveys will require additive biases (A) over bar less than or similar to 1.8 x 10(-12) and multiplicative biases (M) over bar less than or similar to 4.0 x 10(-3). These can be allocated between individual budgets in hardware, calibration data and software, using results from the first half of the paper. If instrumentation is stable and well calibrated, we find extant shear measurement software from Gravitational Lensing Accuracy Testing 2010 (GREAT10) already meet requirements on galaxies detected at signal-to-noise ratio = 40. Averaging over a population of galaxies with a realistic distribution of sizes, it also meets requirements for a 2D cosmic shear analysis from space. If used on fainter galaxies or for 3D cosmic shear tomography, existing algorithms would need calibration on simulations to avoid introducing bias at a level similar to the statistical error. Requirements on hardware and calibration data are discussed in more detail in a companion paper. Our analysis is intentionally general, but is specifically being used to drive the hardware and ground segment performance budget for the design of the European Space Agency's recently selected Euclid mission. C1 [Massey, Richard] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Hoekstra, Henk] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Kitching, Thomas; Harvey, David] Univ Edinburgh, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, Jason] CALTECH, Pasadena, CA 91109 USA. [Cropper, Mark] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Amiaux, Jerome; Mellier, Yannick; Paulin-Henriksson, Stephane; Pires, Sandrine] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Mellier, Yannick] Univ Paris 06, CNRS UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Meneghetti, Massimo] INAF, Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Miller, Lance] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Scaramella, Roberto] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Schrabback, Tim] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Schrabback, Tim] Argelander Inst Astron, D-53121 Bonn, Germany. RP Massey, R (reprint author), Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. EM r.j.massey@durham.ac.uk RI Meneghetti, Massimo/O-8139-2015; OI Meneghetti, Massimo/0000-0003-1225-7084; Scaramella, Roberto/0000-0003-2229-193X; Hoekstra, Henk/0000-0002-0641-3231 FU Royal Society University Research Fellowships; Netherlands Organization for Scientific Research through VIDI grants; Netherlands Research School for Astronomy (NOVA); ERC; Caltech; NSF [AST-0444059-001]; Smithsonian Astrophysics Observatory [GO0-11147A]; CNES; CNRS/INSU FX RM and TK are supported by Royal Society University Research Fellowships. HH is supported by the Netherlands Organization for Scientific Research through VIDI grants and acknowledges support from the Netherlands Research School for Astronomy (NOVA). RM and HH also acknowledge support from ERC International Reintegration Grants. This work was done in part at JPL, run under a contract for NASA by Caltech. TS is supported by the NSF through grant AST-0444059-001, and by the Smithsonian Astrophysics Observatory through grant GO0-11147A. YM acknowledges support from CNES and CNRS/INSU. NR 101 TC 49 Z9 49 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP 661 EP 678 DI 10.1093/mnras/sts371 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300072 ER PT J AU Rawlings, JI Seymour, N Page, MJ De Breuck, C Stern, D Symeonidis, M Appleton, PN Dey, A Dickinson, M Huynh, M Le Floc'h, E Lehnert, M Mullaney, JR Nesvadba, N Ogle, P Sajina, A Vernet, J Zirm, A AF Rawlings, J. I. Seymour, N. Page, M. J. De Breuck, C. Stern, D. Symeonidis, M. Appleton, P. N. Dey, A. Dickinson, M. Huynh, M. Le Floc'h, E. Lehnert, M. Mullaney, J. R. Nesvadba, N. Ogle, P. Sajina, A. Vernet, J. Zirm, A. TI Polycyclic aromatic hydrocarbon emission in powerful high-redshift radio galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: high-redshift; galaxies: nuclei; quasars: general; galaxies: star formation ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES; SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; MOLECULAR-HYDROGEN EMISSION; SUPERMASSIVE BLACK-HOLES; M SILICATE ABSORPTION; EXTENDED IONIZED-GAS; DEEP FIELD-SOUTH; AGN DUSTY TORI AB We present the mid-infrared (IR) spectra of seven of the most powerful radio-galaxies known to exist at 1.5 < z < 2.6. The radio emission of these sources is dominated by the AGN with 500 MHz luminosities in the range 10(27.8)-10(29.1) W Hz(-1). The AGN signature is clearly evident in the mid-IR spectra; however, we also detect polycyclic aromatic hydrocarbon emission, indicative of prodigious star formation at a rate of up to similar to 1000 M-circle dot yr(-1). Interestingly, we observe no significant correlation between AGN power and star formation in the host galaxy. We also find most of these radio galaxies to have weak 9.7 mu m silicate absorption features (tau(9.7 mu m) < 0.8) which implies that their mid-IR obscuration is predominantly due to the dusty torus that surrounds the central engine, rather than the host galaxy. The tori are likely to have an inhomogeneous distribution with the obscuring structure consisting of individual clouds. We estimate that these radio galaxies have already formed the bulk of their stellar mass and appear to lie at a stage in their evolution where the obscured AGN dominates the energy output of the system but star formation is also prevalent. C1 [Rawlings, J. I.; Seymour, N.; Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [De Breuck, C.; Vernet, J.] European So Observ, D-85748 Garching, Germany. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Appleton, P. N.] CALTECH, HSC, Pasadena, CA 91125 USA. [Dey, A.; Dickinson, M.] NOAO Tucson, Tucson, AZ 85719 USA. [Huynh, M.; Ogle, P.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Le Floc'h, E.; Mullaney, J. R.] Univ Paris Diderot, CNRS, CEA DSM IRFU, Lab AIM, F-91191 Gif Sur Yvette, France. [Lehnert, M.; Nesvadba, N.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Mullaney, J. R.] Univ Durham, Dept Phys, Durham DH13 LE2, England. [Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Sajina, A.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Zirm, A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. RP Rawlings, JI (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM jir2@mssl.ucl.ac.uk OI Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536; Appleton, Philip/0000-0002-7607-8766; De Breuck, Carlos/0000-0002-6637-3315 FU Science and Technologies Facilities Council studentship; Australian Research Council; NASA through JPL/Caltech; NASA through JPL; Ames Research Center FX We thank the anonymous referee and R. C. Hickox for their useful comments which improved the manuscript. JIR acknowledges the support of a Science and Technologies Facilities Council studentship. NS is the recipient of an Australian Research Council Future Fellowship. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) under contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through JPL and Ames Research Center. This work benefitted from the NASA/IPAC Extragalactic Database (NED), which is operated by the JPL, Caltech, under contract with NASA. NR 122 TC 10 Z9 10 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP 744 EP 756 DI 10.1093/mnras/sts368 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300076 ER PT J AU Dawson, P Scholz, A Ray, TP Marsh, KA Wood, K Natta, A Padgett, D Ressler, ME AF Dawson, P. Scholz, A. Ray, T. P. Marsh, K. A. Wood, K. Natta, A. Padgett, D. Ressler, M. E. TI New brown dwarf discs in Upper Scorpius observed with WISE SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; open clusters and associations: individual: Upper Scorpius; infrared: stars ID STAR-FORMING REGION; LARGE-AREA SEARCH; LOW-MASS OBJECTS; OB ASSOCIATION; CHAMELEON-I; PROTOPLANETARY DISKS; STELLAR POPULATION; ORIONIS CLUSTER; SIGMA-ORIONIS; INNER HOLES AB We present a census of the disc population for UKIDSS selected brown dwarfs in the 510 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour-magnitude and colour-colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 mu m and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars. We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5-10 Myr and a disc clearing time-scale significantly shorter than 1 Myr. C1 [Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Marsh, K. A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Wood, K.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Natta, A.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Padgett, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ressler, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dawson, P (reprint author), Dublin Inst Adv Studies, Sch Cosm Phys, 31 Fitzwilliam Pl, Dublin 2, Ireland. EM dawsonp@tcd.ie OI Scholz, Aleks/0000-0001-8993-5053 FU Science Foundation Ireland within the Research Frontiers Programme [10/RFP/AST2780]; National Aeronautics and Space Administration; National Science Foundation FX The authors would like to thank Isabelle Baraffe of Exeter University and France Allard of the Centre de Recherche Astrophysique de Lyon for supplying model data. This work was supported by Science Foundation Ireland within the Research Frontiers Programme under grant no. 10/RFP/AST2780. This publication makes use of data products from the WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We would also like to thank the UKIDSS Team for the excellent data base they have made available to the community. NR 47 TC 13 Z9 13 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP 903 EP 914 DI 10.1093/mnras/sts386 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300089 ER PT J AU Kaviraj, S Cohen, S Windhorst, RA Silk, J O'Connell, RW Dopita, MA Dekel, A Hathi, NP Straughn, A Rutkowski, M AF Kaviraj, S. Cohen, S. Windhorst, R. A. Silk, J. O'Connell, R. W. Dopita, M. A. Dekel, A. Hathi, N. P. Straughn, A. Rutkowski, M. TI The insignificance of major mergers in driving star formation at z similar or equal to 2 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: bulges; galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: interactions; galaxies: star formation ID PASSIVELY EVOLVING GALAXIES; HIGH-REDSHIFT GALAXIES; FORMING GALAXIES; MASSIVE GALAXIES; SINS SURVEY; FORMATION HISTORIES; DEEP SURVEY; FIELD; EVOLUTION; MORPHOLOGY AB We study the significance of major-merger-driven star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M-* > 10(10) M-circle dot) galaxies at z similar or equal to 2. Employing visually classified morphologies from rest-frame V-band Hubble Space Telescope (HST) imaging, we find that 55(+/- 14) per cent of the star formation budget is hosted by non-interacting late types, with 27(+/- 8) per cent in major mergers and 18(+/- 6) per cent in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e. g. cold accretion and minor mergers), similar to 27 per cent is an upper limit to the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late types is similar to 2.2: 1, suggesting that the enhancement of star formation due to major merging is typically modest, and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as similar to 15 per cent. While our study does not preclude a major-merger-dominated era in the very early Universe, if the major-merger contribution to star formation does not evolve strongly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time. C1 [Kaviraj, S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Kaviraj, S.; Silk, J.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Cohen, S.; Windhorst, R. A.; Rutkowski, M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Silk, J.] Inst Astrophys, F-75014 Paris, France. [O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Dopita, M. A.] Australian Natl Univ, Res Sch Phys & Astron, Weston, ACT 2611, Australia. [Dopita, M. A.] King Abdulaziz Univ, Dept Astron, Jeddah 21413, Saudi Arabia. [Dekel, A.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Hathi, N. P.] Carnegie Observ, Pasadena, CA 91101 USA. [Straughn, A.] Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Kaviraj, S (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. EM skaviraj@astro.ox.ac.uk RI Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014 OI Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090 FU 1851 Royal Commission; Imperial College; Worcester College Oxford; NASA [GO-11359]; NASA JWST Interdisciplinary Scientist grant [NAG5-12460]; ISF [6/08]; GIF [G-1052-104.7/2009]; DIP [STE1869/1-1.GE625/15-1]; NSF [AST-1010033] FX We are grateful to the anonymous referee for many constructive comments. We thank Richard Ellis, Emanuele Daddi and Naveen Reddy for many interesting discussions and constructive comments. SK acknowledges fellowships from the 1851 Royal Commission, Imperial College and Worcester College Oxford. We are grateful to the Director of STScI for awarding Director's Discretionary time for the WFC3 ERS programme. RWO acknowledges partial support from NASA grant GO-11359. RAW acknowledges NASA JWST Interdisciplinary Scientist grant NAG5-12460. AD acknowledges ISF grant 6/08, GIF grant G-1052-104.7/2009, DIP grant STE1869/1-1.GE625/15-1 and NSF grant AST-1010033. NR 62 TC 35 Z9 35 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 1 BP L40 EP L44 DI 10.1093/mnrasl/sls019 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134TT UT WOS:000318238300009 ER PT J AU Smith, KT Fossey, SJ Cordiner, MA Sarre, PJ Smith, AM Bell, TA Viti, S AF Smith, Keith T. Fossey, Stephen J. Cordiner, Martin A. Sarre, Peter J. Smith, Arfon M. Bell, Tom A. Viti, Serena TI Small-scale structure in the interstellar medium: time-varying interstellar absorption towards kappa Velorum SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM: atoms; ISM: individual objects: kappa Vel cloud; ISM: lines and bands; ISM: molecules; ISM: structure; local interstellar matter ID HIGH-RESOLUTION OBSERVATIONS; COLD NEUTRAL MEDIUM; ATOMIC-STRUCTURE; PHYSICAL CONDITIONS; THERMAL PRESSURES; MOLECULAR CLOUDS; I ABSORPTION; AU-SCALES; CA-II; NA-I AB Ultra-high spectral resolution observations of time-varying interstellar absorption towards kappa Vel are reported, using the Ultra-High Resolution Facility on the Anglo-Australian Telescope. Detections of interstellar Ca I, Ca II, K I, Na I and CH are obtained, whilst an upper limit on the column density is reported for C-2. The results show continued increases in column densities of K I and Ca I since observations similar to 4 yr earlier, as the transverse motion of the star carried it similar to 10 au perpendicular to the line of sight. Line profile models are fitted to the spectra and two main narrow components (A and B) are identified for all species except CH. The column density N(K I) is found to have increased by 82(-9)(+10) per cent between 1994 and 2006, whilst N(Ca I) is found to have increased by 32 +/- 5 per cent over the shorter period of 2002-2006. The line widths are used to constrain the kinetic temperature to T-k,T- A < 671(-17)(+18) K and T-k,T- B < 114(-14)(+15) K. Electron densities are determined from the Ca I/Ca II ratio, which in turn place lower limits on the total number density of n(A) greater than or similar to 7 x 10(3) cm(-3) and n(B) greater than or similar to 2 x 10(4) cm(-3). Calcium depletions are estimated from the Ca I/K I ratio. Comparison with the chemical models of Bell et al. confirms the high number density, with n = 5 x 10(4) cm(-3) for the best-fitting model. The first measurements of diffuse interstellar bands (DIBs) towards this star are made at two epochs, but only an upper limit of less than or similar to 40 per cent is placed on their variation over similar to 9 yr. The DIBs are unusually weak for the measured E(B - V) and appear to exhibit similar behaviour to that seen in Orion. The ratio of equivalent widths of the lambda 5780 to lambda 5797 DIBs is amongst the highest known, which may indicate that the carrier of lambda 5797 is more sensitive to ultraviolet radiation than to local density. C1 [Smith, Keith T.; Cordiner, Martin A.; Sarre, Peter J.; Smith, Arfon M.] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England. [Fossey, Stephen J.; Viti, Serena] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Cordiner, Martin A.] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Cordiner, Martin A.] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Smith, Arfon M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bell, Tom A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bell, Tom A.] Ctr Astrobiol CSIC INTA, Madrid 28850, Spain. RP Smith, KT (reprint author), Royal Astron Soc, Burlington House, London W1J 0BQ, England. EM kts@ras.org.uk FU EPSRC; STFC FX The authors thank PATT for the award of UHRF time on the AAT and for T&S. SJF and AMS thank Stuart Ryder and the AAO technical staff for their characteristically excellent support, and Julian Russell for his assistance with the AAT observations. Ian Crawford and Dan Welty provided helpful comments on early drafts of this paper, whilst Ian Howarth provided assistance with the VAPID software. KTS acknowledges financial support from EPSRC, and MAC visitor funding from STFC. NR 77 TC 10 Z9 10 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 2 BP 939 EP 953 DI 10.1093/mnras/sts310 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134UC UT WOS:000318239300002 ER PT J AU Heinis, S Buat, V Bethermin, M Aussel, H Bock, J Boselli, A Burgarella, D Conley, A Cooray, A Farrah, D Ibar, E Ilbert, O Ivison, RJ Magdis, G Marsden, G Oliver, SJ Page, MJ Rodighiero, G Roehlly, Y Schulz, B Scott, D Smith, AJ Viero, M Wang, L Zemcov, M AF Heinis, S. Buat, V. Bethermin, M. Aussel, H. Bock, J. Boselli, A. Burgarella, D. Conley, A. Cooray, A. Farrah, D. Ibar, E. Ilbert, O. Ivison, R. J. Magdis, G. Marsden, G. Oliver, S. J. Page, M. J. Rodighiero, G. Roehlly, Y. Schulz, B. Scott, Douglas Smith, A. J. Viero, M. Wang, L. Zemcov, M. TI HERMES: unveiling obscured star formation - the far-infrared luminosity function of ultraviolet-selected galaxies at z similar to 1.5 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; galaxies: luminosity function; infrared: galaxies; ultraviolet: galaxies ID FORMATION RATE DENSITY; UV-SELECTED GALAXIES; HERSCHEL-SPIRE INSTRUMENT; HIGH-REDSHIFT GALAXIES; LYMAN BREAK GALAXIES; GOODS NICMOS SURVEY; VLT DEEP SURVEY; LESS-THAN 2; FORMING GALAXIES; DUST ATTENUATION AB We study the far-infrared and sub-millimetre properties of a sample of ultraviolet (UV) selected galaxies at z similar to 1.5. Using stacking at 250, 350 and 500 mu m from Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE) imaging of the Cosmological Evolution Survey (COSMOS) field obtained within the Herschel Multi-tiered Extragalactic Survey (HERMES) key programme, we derive the mean infrared (IR) luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR-selected samples at the faintest luminosities (L-IR similar to 10(11) L-circle dot), but might underestimate them at the bright-end (L-IR greater than or similar to 5 x 10(11) L-circle dot). For galaxies with 10(11) < L-IR/L-circle dot < 10(13), the IR luminosity function of an UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star formation rate density derived from an IR selection. The cosmic star formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far-IR luminosity function from our UV selection at z similar to 1.5. This suggests that a sample around 4 mag deeper (i.e. reaching u* similar to 30 mag) and a large dispersion of the IR to UV luminosity ratio are required. C1 [Heinis, S.; Buat, V.; Boselli, A.; Burgarella, D.; Ilbert, O.; Roehlly, Y.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Bethermin, M.; Aussel, H.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA,DSM,Irfu, F-91191 Gif Sur Yvette, France. [Bethermin, M.] Univ Paris 11, IAS, F-91405 Orsay, France. [Bethermin, M.] CNRS, UMR 8617, F-91405 Orsay, France. [Bock, J.; Cooray, A.; Schulz, B.; Viero, M.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Magdis, G.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Marsden, G.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Oliver, S. J.; Smith, A. J.; Wang, L.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, JPL, Pasadena, CA 91125 USA. RP Heinis, S (reprint author), Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. EM sebastien.heinis@oamp.fr RI Magdis, Georgios/C-7295-2014; Ivison, R./G-4450-2011; OI Magdis, Georgios/0000-0002-4872-2294; Ivison, R./0000-0001-5118-1313; Scott, Douglas/0000-0002-6878-9840; Rodighiero, Giulia/0000-0002-9415-2296 FU French Space Agency (CNES); CSA (Canada); NAOC (China); CEA; CNES; CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC; UKSA (UK); NASA (USA) FX We thank the referee for a careful reading and detailed, constructive comments which helped improving the paper. SH and VB thank the French Space Agency (CNES) for financial support. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including: Univ. Lethbridge (Canada); NAOC (China); CEA, LAM(France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). NR 94 TC 43 Z9 43 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 2 BP 1113 EP 1132 DI 10.1093/mnras/sts397 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134UC UT WOS:000318239300016 ER PT J AU Barr, ED Guillemot, L Champion, DJ Kramer, M Eatough, RP Lee, KJ Verbiest, JPW Bassa, CG Camilo, F Celik, O Cognard, I Ferrara, EC Freire, PCC Janssen, GH Johnston, S Keith, M Lyne, AG Michelson, PF Parkinson, PMS Ransom, SM Ray, PS Stappers, BW Wood, KS AF Barr, E. D. Guillemot, L. Champion, D. J. Kramer, M. Eatough, R. P. Lee, K. J. Verbiest, J. P. W. Bassa, C. G. Camilo, F. Celik, O. Cognard, I. Ferrara, E. C. Freire, P. C. C. Janssen, G. H. Johnston, S. Keith, M. Lyne, A. G. Michelson, P. F. Parkinson, P. M. Saz Ransom, S. M. Ray, P. S. Stappers, B. W. Wood, K. S. TI Pulsar searches of Fermi unassociated sources with the Effelsberg telescope SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE pulsars: general; pulsars: individual: PSR J1745+1017; gamma-rays: general ID LARGE-AREA TELESCOPE; GAMMA-RAY PULSARS; EGRET ERROR BOXES; MILLISECOND PULSAR; RADIO PULSARS; MAGNETIC-FIELDS; SOURCE CATALOG; LIGHT CURVES; DISCOVERY; EMISSION AB Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated gamma-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). This survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M-c,M-min similar to 0.0137 M-circle dot, indicative of 'black widow' type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked gamma-ray light curve, proving that PSR J1745+1017 is the source responsible for the gamma-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the gamma-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. The reasons behind the seemingly low yield of discoveries are also discussed. C1 [Barr, E. D.; Guillemot, L.; Champion, D. J.; Kramer, M.; Eatough, R. P.; Lee, K. J.; Verbiest, J. P. W.; Freire, P. C. C.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kramer, M.; Bassa, C. G.; Janssen, G. H.; Lyne, A. G.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Camilo, F.] Arecibo Observ, Arecibo, PR 00612 USA. [Celik, O.; Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, O.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Cognard, I.] CNRS, Lab Phys & Chim Environm, LPCE, UMR 6115, F-45071 Orleans 02, France. [Cognard, I.] Observ Paris, Stn Radioastron Nancay, CNRS INSU, F-18330 Nancay, France. [Johnston, S.; Keith, M.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Michelson, P. F.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Michelson, P. F.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ransom, S. M.] Natl Radio Astron Observ NRAO, Charlottesville, VA 22903 USA. [Ray, P. S.; Wood, K. S.] USN, Space Sci Div, Res Lab, Washington, DC 20375 USA. RP Barr, ED (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM ebarr@mpifr-bonn.mpg.de; guillemo@mpifr-bonn.mpg.de RI Saz Parkinson, Pablo Miguel/I-7980-2013; OI Champion, David/0000-0003-1361-7723; Ransom, Scott/0000-0001-5799-9714; Ray, Paul/0000-0002-5297-5278 FU European Union under Marie-Curie Intra-European Fellowship [236394]; European Research Council under ERC Starting Grant Beacon [279702]; UK Science and Technology Facilities Council (STFC) FX JPWV acknowledges support by the European Union under Marie-Curie Intra-European Fellowship 236394.; PCCF and JPWV acknowledge support by the European Research Council under ERC Starting Grant Beacon (contract no. 279702).; We would like to thank Matthew Kerr for his input regarding initial source selection. Pulsar research and observations at Jodrell Bank Observatory have been supported through Rolling Grants from the UK Science and Technology Facilities Council (STFC). NR 49 TC 21 Z9 21 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 429 IS 2 BP 1633 EP 1642 DI 10.1093/mnras/sts449 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134UC UT WOS:000318239300056 ER PT J AU Eggl, S Pilat-Lohinger, E Funk, B Georgakarakos, N Haghighipour, N AF Eggl, S. Pilat-Lohinger, E. Funk, B. Georgakarakos, N. Haghighipour, N. TI Circumstellar habitable zones of binary-star systems in the solar neighbourhood SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astrobiology; binaries: general ID ALPHA-CENTAURI-B; HIERARCHICAL TRIPLE-SYSTEMS; PLANET FORMATION; ORBITS; EVOLUTION; STELLAR; ECCENTRICITY; EXOPLANETS; STABILITY; CANDIDATES AB Binary and multiple systems constitute more than half of the total stellar population in the solar neighbourhood. Their frequent occurrence as well as the fact that more than 70 planets have already been discovered in such configurations - most notably the telluric companion of a Cen B - make them interesting targets in the search for habitable worlds. Recent studies have shown that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical time-scales. In this paper, we provide habitable zones for 19 near S-type binary systems from the Hipparcos and Washington Double Star catalogue (WDS) catalogues with semimajor axes between 1 and 100 au. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 offer dynamically stable habitable zones around at least one component. The 17 potentially habitable systems contain 5 F, 3 G, 7 K and 16 M class stars. As their proximity to the Solar system (d < 31 pc) makes the selected binary stars exquisite targets for observational campaigns, we offer estimates on radial velocity, astrometric and transit signatures produced by habitable Earth-like planets in eccentric circumstellar orbits. C1 [Eggl, S.; Pilat-Lohinger, E.; Funk, B.] Univ Vienna, Inst Astrophys IfA, A-1180 Vienna, Austria. [Georgakarakos, N.] Higher Technol Educ Inst Serres, Terma Magnesias 62124, Serres, Greece. [Haghighipour, N.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Eggl, S (reprint author), Univ Vienna, Inst Astrophys IfA, Turkenschanzstr 17, A-1180 Vienna, Austria. EM siegfried.eggl@univie.ac.at OI Funk, Barbara/0000-0001-7233-9730; Georgakarakos, Nikolaos/0000-0002-7071-5437 FU FWF projects [S11608-N16, P20216-N16, P22603-N16]; NASA Astrobiology Institute [NNA09DA77A]; NASA EXOB grant [NNX09AN05G]; University of Vienna's Forschungsstipendium FX The authors would like to acknowledge the support of FWF projects S11608-N16 (EP-L and SE), P20216-N16 (SE, EP-L and BF) and P22603-N16 (EP-L and BF). SE and EP-L would like to thank the Institute for Astronomy and NASA Astrobiology Institute at the University of Hawaii for their hospitality during their visit when some of the ideas for this work were developed. NH acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA09DA77A at the Institute for Astronomy, University of Hawaii, and NASA EXOB grant NNX09AN05G. SE acknowledges the support of University of Vienna's Forschungsstipendium 2012. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory. NR 66 TC 13 Z9 14 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 428 IS 4 BP 3104 EP 3113 DI 10.1093/mnras/sts257 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134RM UT WOS:000318232000024 ER PT J AU Wylezalek, D Vernet, J De Breuck, C Stern, D Galametz, A Seymour, N Jarvis, M Barthel, P Drouart, G Greve, TR Haas, M Hatch, N Ivison, R Lehnert, M Meisenheimer, K Miley, G Nesvadba, N Rottgering, HJA Stevens, JA AF Wylezalek, D. Vernet, J. De Breuck, C. Stern, D. Galametz, A. Seymour, N. Jarvis, M. Barthel, P. Drouart, G. Greve, T. R. Haas, M. Hatch, N. Ivison, R. Lehnert, M. Meisenheimer, K. Miley, G. Nesvadba, N. Rottgering, H. J. A. Stevens, J. A. TI The Herschel view of the environment of the radio galaxy 4C+41.17 at z=3.8 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; galaxies: clusters: general; galaxies: high-redshift; galaxies: individual: 4C+41.17 ID SPITZER-SPACE-TELESCOPE; SPECTRAL ENERGY-DISTRIBUTIONS; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; LUMINOSITY FUNCTION; NUMBER COUNTS; ARRAY CAMERA; 4C 41.17; MU-M; REDSHIFT AB We present Herschel observations at 70, 160, 250, 350 and 500 mu m of the environment of the radio galaxy 4C+41.17 at z = 3.792. About 65 per cent of the extracted sources are securely identified with mid-infrared sources observed with the Spitzer Space Telescope at 3.6, 4.5, 5.8, 8 and 24 mu m. We derive simple photometric redshifts, also including existing 850 and 1200 mu m data, using templates of active galactic nuclei, starburst-dominated systems and evolved stellar populations. We find that most of the Herschel sources are foreground to the radio galaxy and therefore do not belong to a structure associated with 4C+41.17. We do, however, find that the spectral energy distribution (SED) of the closest (similar to 25 arcsec offset) source to the radio galaxy is fully consistent with being at the same redshift as 4C+41.17. We show that finding such a bright source that close to the radio galaxy at the same redshift is a very unlikely event, making the environment of 4C+41.17 a special case. We demonstrate that multiwavelength data, in particular on the Rayleigh-Jeans side of the SED, allow us to confirm or rule out the presence of protocluster candidates that were previously selected by single wavelength data sets. C1 [Wylezalek, D.; Vernet, J.; De Breuck, C.; Drouart, G.] European So Observ, D-85748 Garching, Germany. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Galametz, A.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Seymour, N.] CASS, Epping, NSW 1710, Australia. [Jarvis, M.; Stevens, J. A.] Univ Hertfordshire, STRI, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Jarvis, M.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. [Barthel, P.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Drouart, G.] Inst Astrophys, F-75014 Paris, France. [Greve, T. R.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Haas, M.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Hatch, N.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Ivison, R.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lehnert, M.] Univ Paris Diderot, CNRS, Observ Paris, GEPI,UMR 8111, F-92190 Meudon, France. [Meisenheimer, K.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Miley, G.; Rottgering, H. J. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Nesvadba, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. RP Wylezalek, D (reprint author), European So Observ, Karl Schwarzschildstr 2, D-85748 Garching, Germany. EM dwylezal@eso.org RI Drouart, Guillaume/C-6049-2016; Ivison, R./G-4450-2011; OI Drouart, Guillaume/0000-0003-2275-5466; Ivison, R./0000-0001-5118-1313; Hatch, Nina/0000-0001-5600-0534; Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536; De Breuck, Carlos/0000-0002-6637-3315 FU UK Science and Technologies Facilities Council; Australian Research Council Future Fellowship; NASA FX TRG acknowledges support from the UK Science and Technologies Facilities Council. NS is the recipient of an Australian Research Council Future Fellowship. The work of DS was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The Herschel spacecraft was designed, built, tested and launched under a contract to ESA managed by the Herschel/Planck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at spacecraft level, Thales Alenia Space (Turin) responsible for the service module and Astrium (Toulouse) responsible for the telescope, with in excess of a hundred subcontractors. NR 59 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 428 IS 4 BP 3206 EP 3219 DI 10.1093/mnras/sts264 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134RM UT WOS:000318232000033 ER PT J AU Farinelli, R Amati, L Shaposhnikov, N Frontera, F Masetti, N Palazzi, E Landi, R Lombardi, C Orlandini, M Brocksopp, C AF Farinelli, R. Amati, L. Shaposhnikov, N. Frontera, F. Masetti, N. Palazzi, E. Landi, R. Lombardi, C. Orlandini, M. Brocksopp, C. TI Spectral evolution of the X-ray nova XTE J1859+226 during its outburst observed by BeppoSAX and RXTE SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; radiative transfer; X-rays: individual: XTE J1859+226; X-rays: binaries ID QUASI-PERIODIC OSCILLATIONS; ENERGY CONCENTRATOR SPECTROMETER; ACCRETING BLACK-HOLES; ASTRONOMY SATELLITE; ON-BOARD; BINARY-SYSTEMS; NEUTRON-STARS; POWER SPECTRA; CYGNUS X-1; SOFT STATE AB We report results of an extensive analysis of the X-ray nova XTE J1859+226 observed with BeppoSAX and the Rossi X-ray Timing Explorer during the 1999 source outburst. We modelled the source spectrum with a multicolour blackbody-like feature plus the generic Comptonization model BMC which has the advantage of providing spectral description of the emitted-radiation properties without assumptions on the underlying physical process. The multicolour component is attributed to the geometrically thin accretion disc, while the Comptonization spectrum is claimed to originate in the innermost sub-Keplerian region of the system (transition layer). We find that XTE J1859+226 covers all the spectral states typical of black hole sources during its evolution across the outburst; however, during the very high state, when the disc contribution to the total luminosity is more than 70 per cent and the root mean square variability less than or similar to 5 per cent, the high-energy photon index is closer to a hard state value (Gamma similar to 1.8). The BMC normalization and photon index Gamma well correlate with the radio emission, and we also observed a possible saturation effect of Gamma at the brightest radio emission levels. A strong positive correlation was found between the fractions of Comptonized seed photons and the integrated root mean square variability, which strengthens the idea that most of the fast variability in these systems is attributable to the innermost Compton cloud, which may be also identified as a jet. C1 [Farinelli, R.; Frontera, F.; Lombardi, C.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Farinelli, R.] INAF IASF, Sez Palermo, I-90146 Palermo, Italy. [Amati, L.; Masetti, N.; Palazzi, E.; Landi, R.; Orlandini, M.] INAF IASF, Sez Bologna, I-40129 Bologna, Italy. [Shaposhnikov, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Brocksopp, C.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. RP Farinelli, R (reprint author), Univ Ferrara, Dipartimento Fis, Via Saragat 1, I-44122 Ferrara, Italy. EM farinelli@fe.infn.it RI Orlandini, Mauro/H-3114-2014; Palazzi, Eliana/N-4746-2015; Amati, Lorenzo/N-5586-2015; OI Orlandini, Mauro/0000-0003-0946-3151; Amati, Lorenzo/0000-0001-5355-7388; Palazzi, Eliana/0000-0002-8691-7666; Masetti, Nicola/0000-0001-9487-7740 FU [ASI-INAF I/009/10/0] FX RF is grateful to Lev Titarchuk for useful discussions related to the spectral evolution of X-ray novae, and acknowledges financial support from agreement ASI-INAF I/009/10/0. The authors also acknowledge the anonymous referee whose detailed report was helpful in better outlining the most important results of the paper. NR 73 TC 5 Z9 5 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 428 IS 4 BP 3295 EP 3305 DI 10.1093/mnras/sts273 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134RM UT WOS:000318232000040 ER PT J AU Klus, H Bartlett, ES Bird, AJ Coe, M Corbet, RHD Udalski, A AF Klus, H. Bartlett, E. S. Bird, A. J. Coe, M. Corbet, R. H. D. Udalski, A. TI Swift J045106.8-694803: a highly magnetized neutron star in the Large Magellanic Cloud SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: magnetars; stars: neutron; X-rays: binaries ID X-RAY BINARIES; GX 1+4; MAGNETARS; POPULATION; EXTINCTION; SUPERNOVA; GALAXY; OB AB We report the analysis of a highly magnetized neutron star in the Large Magellanic Cloud (LMC). The high-mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, the Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission-Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of -5.01 +/- 0.06 s yr(-1), amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh & Lamb accretion theory assuming it has a magnetic field of (1.2 +/-(0.2)(0.7)) x 10(14) G. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 +/- 0.005 d has been found from Massive Compact Halo Object (MACHO) optical photometry. C1 [Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.] Univ Southampton, Fac Phys & Appl Sci, Southampton SO17 1BJ, Hants, England. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Udalski, A.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Klus, H (reprint author), Univ Southampton, Fac Phys & Appl Sci, Southampton SO17 1BJ, Hants, England. EM hvk1g11@soton.ac.uk FU US Department of Energy through the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; National Science Foundation through the Center for Particle Astrophysics of the University of California [AST-8809616]; Mount Stromlo and Siding Spring Observatory, part of the Australian National University; European Research Council under the European Community [246678]; STFC; [088.D-0352(A)] FX We acknowledge the use of public data from the Swift and RXTE data archive and are grateful for the advice from Gerry Skinner on the Swift/BAT data. This paper utilizes public domain data obtained by the MACHO Project, jointly funded by the US Department of Energy through the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, by the National Science Foundation through the Center for Particle Astrophysics of the University of California under cooperative agreement AST-8809616, and by the Mount Stromlo and Siding Spring Observatory, part of the Australian National University. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 246678 to AU. Optical observations were also made with ESO Telescopes at the La Silla Paranal Observatory under programme ID [088.D-0352(A)] and the SAAO 1.9 m telescope in South Africa. We also thank STFC whose studentships funded HK and ESB. NR 43 TC 7 Z9 7 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB PY 2013 VL 428 IS 4 BP 3607 EP 3617 DI 10.1093/mnras/sts304 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 134RM UT WOS:000318232000061 ER PT J AU Bennett, SA Coleman, M Huber, JA Reddington, E Kinsey, JC McIntyre, C Seewald, JS German, CR AF Bennett, Sarah A. Coleman, Max Huber, Julie A. Reddington, Emily Kinsey, James C. McIntyre, Cameron Seewald, Jeffrey S. German, Christopher R. TI Trophic regions of a hydrothermal plume dispersing away from an ultramafic-hosted vent-system: Von Damm vent-site, Mid-Cayman Rise SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE hydrothermal; food web; microorganisms; plume; carbon; ultramafic ID DE-FUCA RIDGE; DISSOLVED ORGANIC-CARBON; EAST PACIFIC RISE; ENDEAVOR SEGMENT; ATLANTIC RIDGE; GEOCHEMICAL CONSTRAINTS; COMMUNITY STRUCTURE; PARTICLE-FLUX; WATER COLUMN; SEA AB Deep-sea ultramafic-hosted vent systems have the potential to provide large amounts of metabolic energy to both autotrophic and heterotrophic microorganisms in their dispersing hydrothermal plumes. Such vent-systems release large quantities of hydrogen and methane to the water column, both of which can be exploited by autotrophic microorganisms. Carbon cycling in these hydrothermal plumes may, therefore, have an important influence on open-ocean biogeochemistry. In this study, we investigated an ultramafic-hosted system on the Mid-Cayman Rise, emitting metal-poor and hydrogen sulfide-, methane-, and hydrogen-rich hydrothermal fluids. Total organic carbon concentrations in the plume ranged between 42.1 and 51.1 mu M (background = 43.2 +/- 0.7 mu M (n = 5)) and near-field plume samples with elevated methane concentrations imply the presence of chemoautotrophic primary production and in particular methanotrophy. In parts of the plume characterized by persistent potential temperature anomalies but lacking elevated methane concentrations, we found elevated organic carbon concentrations of up to 51.1 mu M, most likely resulting from the presence of heterotrophic communities, their extracellular products and vent larvae. Elevated carbon concentrations up to 47.4 mu M were detected even in far-field plume samples. Within the Von Damm hydrothermal plume, we have used our data to hypothesize a microbial food web in which chemoautotrophy supports a heterotrophic community of microorganisms. Such an active microbial food web would provide a source of labile organic carbon to the deep ocean that should be considered in any future studies evaluating sources and sinks of carbon from hydrothermal venting to the deep ocean. C1 [Bennett, Sarah A.; Coleman, Max] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Coleman, Max] NASA, Astrobiol Inst, Pasadena, CA USA. [Huber, Julie A.; Reddington, Emily] Marine Biol Lab, Josephine Bay Paul Ctr, Woods Hole, MA 02543 USA. [Kinsey, James C.; McIntyre, Cameron; Seewald, Jeffrey S.; German, Christopher R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. RP Bennett, SA (reprint author), CALTECH, NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sarah.a.bennett@jpl.nasa.gov RI Bennett, Sarah/F-9831-2011; McIntyre, Cameron/D-1222-2016; OI Bennett, Sarah/0000-0002-9811-4764; McIntyre, Cameron/0000-0001-8517-9836; Huber, Julie/0000-0002-4790-7633 FU NOAA's Office of Ocean Exploration and Research; Office of Marine and Aviation Operations; NSF's Division of Ocean Sciences [OCE-1061863]; National Science Foundation [NSF OCE-1061863]; NASA's ASTEP Program [NNX09AB75G]; NASA ASTEP Program FX We thank the Commanding Officer and Crew of the NOAA Ship Okeanos Explorer cruise EX11-04 Mid-Cayman Rise Expedition and R/V Atlantis AT18-16 together with the Okeanos Explorer Mission team and ROV Jason team without which this research would not have been possible. The research reported in this paper was supported by ship time and support provided by NOAA's Office of Ocean Exploration and Research and the Office of Marine and Aviation Operations and NSF's Division of Ocean Sciences (Grant OCE-1061863) and by further shore-based research from both the National Science Foundation (NSF OCE-1061863) and NASA's ASTEP Program (Grant # NNX09AB75G). The contributions of SB and MC were carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA), with support from the NASA ASTEP Program. NR 52 TC 11 Z9 11 U1 2 U2 53 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD FEB PY 2013 VL 14 IS 2 BP 317 EP 327 DI 10.1002/ggge.20063 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 129FH UT WOS:000317823900004 ER PT J AU Himberg, H Motai, Y Bradley, A AF Himberg, Henry Motai, Yuichi Bradley, Arthur TI A Multiple Model Approach to Track Head Orientation With Delta Quaternions SO IEEE TRANSACTIONS ON CYBERNETICS LA English DT Article DE Delta quaternion (DQ); extended Kalman filter (EKF); head orientation; head tracking; interacting multiple model estimator (IMME); quaternion prediction ID ATTITUDE DETERMINATION; VIRTUAL ENVIRONMENTS; TARGET TRACKING; KALMAN FILTER; TELEOPERATION; REPRESENTATIONS; ALGORITHMS; SYSTEMS AB Virtual reality and augmented reality environments using helmet-mounted displays create a sense of immersion by closely coupling user head motion to display content. Delays in the presentation of visual information can destroy the sense of presence in the simulation environment when it causes a lag in the display response to user head motion. The effect of display lag can be minimized by predicting head orientation, allowing the system to have sufficient time to counteract the delay. In this paper, a new head orientation prediction technique is proposed that uses a multiple delta quaternion (DQ) extended Kalman filter to track angular head velocity and angular head acceleration. This method is independent of the device used for orientation measurement, relying on quaternion orientation as the only measurement data. A new orientation prediction algorithm is proposed that estimates future head orientation as a function of the current orientation measurement and a predicted change in orientation, using the velocity and acceleration estimates. Extensive experimentation shows that the new method improves head orientation prediction when compared to single filter DQ prediction. C1 [Himberg, Henry] Polhemus Inc, Colchester, VT 05446 USA. [Motai, Yuichi] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA. [Bradley, Arthur] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Himberg, H (reprint author), Polhemus Inc, Colchester, VT 05446 USA. EM hhimberg@polhemus.com; ymotai@vcu.edu; arthur.t.bradley@nasa.gov FU School of Engineering at Virginia Commonwealth University; Polhemus Inc.; Colchester; VT; National Science Foundation Division of Electrical, Communications and Cyber Systems [1054333] FX This work was supported in part by the School of Engineering at Virginia Commonwealth University, by Polhemus Inc., Colchester, VT, and by National Science Foundation Division of Electrical, Communications and Cyber Systems #1054333. NR 41 TC 6 Z9 6 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-2267 J9 IEEE T CYBERNETICS JI IEEE T. Cybern. PD FEB PY 2013 VL 43 IS 1 BP 90 EP 101 DI 10.1109/TSMCB.2012.2199311 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics SC Computer Science GA 126TG UT WOS:000317643500008 PM 22692926 ER PT J AU McAdoo, DC Farrell, SL Laxon, S Ridout, A Zwally, HJ Yi, DH AF McAdoo, David C. Farrell, Sinead Louise Laxon, Seymour Ridout, Andy Zwally, H. J. Yi, Donghui TI Gravity of the Arctic Ocean from satellite data with validations using airborne gravimetry: Oceanographic implications SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID SEA-ICE FREEBOARD; LOMONOSOV RIDGE; ALTIMETRY; CIRCULATION; THICKNESS; ANOMALIES; MISSION; GRACE; BASIN; LASER AB Precise mappings of sea surface topography, slope, and gravity of the Arctic Ocean are derived from altimeter data collected by Envisat and ICESat. Both altimeters measured instantaneous sea surface height at leads in the sea ice. To reduce contamination by ice-freeboard signal and tracker noise in Envisat height data, a retracking of the waveform data was performed. Analogous reprocessing of ICESat data was also done. Arctic mean sea surfaces (MSSs) were computed from Envisat data spanning 2002-2008 and ICESat data spanning 2003-2009. Farrell et al. (2012) used these "ICEn" MSSs to estimate mean dynamic topography (MDT). These same Envisat and ICESat data are used, in sea-surface-slope form, to compute the ARCtic Satellite-only (ARCS-2) altimetric marine gravity field. ARCS-2 extends north to 86 degrees N and uses GRACE/GOCE gravity data (GOCO02S) for its long-wavelength (>260 km) components. Use of Envisat data improves the spatial resolution over that of existing Arctic marine gravity fields in many areas. ARCS-2's spatial resolution aids in tracing tectonic fabric-e. g., extinct plate boundaries-over broad areas of the Arctic basin whose tectonic origin remains a mystery. ARCS-2's precision is validated using NASA 2010/2011 Operation IceBridge (OIB) airborne gravimetry. ARCS-2 and OIB gravity along with ICEn-MSS results are employed to locate short-wavelength errors approaching 1 m in current Arctic marine geoids (EGM2008). Precise OIB airborne gravity corroborates that such errors in current geoid/gravity models are widespread in Arctic areas lacking accurate surface gravity data. These geoid errors limit the spatial resolution at which MDT can be mapped. Citation: McAdoo, D. C., S. L. Farrell, S. Laxon, A. Ridout, H. J. Zwally, and D. Yi (2013), Gravity of the Arctic Ocean from satellite data with validations using airborne gravimetry: Oceanographic implications, J. Geophys. Res. Oceans, 118, 917-930, doi:10.1002/jgrc.20080. C1 [McAdoo, David C.; Farrell, Sinead Louise] NOAA, Lab Satellite Altimetry, College Pk, MD USA. [McAdoo, David C.; Farrell, Sinead Louise] Uni Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. [Laxon, Seymour; Ridout, Andy] UCL, Natl Ctr Earth Observat, Ctr Polar Observat & Modelling, London, England. [Farrell, Sinead Louise; Zwally, H. J.; Yi, Donghui] NASA, Cryospher Sci Branch, Goddard SFC, Greenbelt, MD USA. RP McAdoo, DC (reprint author), NOAA, Lab Satellite Altimetry, College Pk, MD USA. EM Dave.McAdoo@noaa.gov RI Farrell, Sinead/F-5586-2010; McAdoo, Dave/F-5612-2010 OI Farrell, Sinead/0000-0003-3222-2751; McAdoo, Dave/0000-0002-7533-5564 NR 47 TC 7 Z9 7 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD FEB PY 2013 VL 118 IS 2 BP 917 EP 930 DI 10.1002/jgrc.20080 PG 14 WC Oceanography SC Oceanography GA 129LK UT WOS:000317840700025 ER PT J AU McDunn, T Bougher, S Murphy, J Kleinbohl, A Forget, F Smith, M AF McDunn, T. Bougher, S. Murphy, J. Kleinboehl, A. Forget, F. Smith, M. TI Characterization of middle-atmosphere polar warming at Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; DUST STORMS; THERMAL STRUCTURE; MESOSPHERE; MARINER-9; SURFACE AB [1] We characterize middle-atmosphere polar warming (PW) using nearly three Martian years of temperature observations by the Mars Climate Sounder. We report the observed structure of PW and share hypotheses as to possible explanations, which have yet to be tested with global dynamical models. In the data, PW manifested between p = 15 Pa and p(-)4.8 x 10(-3) Pa. The latitude where PW maximized shifted poleward with decreasing pressure. The nightside magnitude was larger than the dayside magnitude. The maximum nightside magnitudes ranged from 22 to 67 K. As expected, the annual maximum magnitude in the north occurred during late-local fall to middle-local winter. In the south it occurred during late-local winter. Also as expected, the maximum magnitude near MY 28' s southern winter solstice was smaller than that at that same year's northern winter solstice, when a global dust storm was occurring. Unexpectedly, the maximum magnitude at southern winter solstice was comparable to that at northern winter solstice for both MY 29 and MY 30, years that did not experience global dust storms but certainly experienced greater dust loading during L-s = 270 degrees than L-s= 90 degrees Another unexpected result was a hemispheric asymmetry in PW magnitude during most of the observed equinoxes. This paper also provides tables of (1) averaged temperatures as a function of latitude, pressure, and season, and (2) the maximum polar warming features as a function of pressure and season. These tables can be used to validate GCM calculations of middle-atmosphere temperatures and constrain calculations of unobserved winds. Citation: McDunn T., S. Bougher, J. Murphy, A. Kleinbohl, F. Forget, and M. Smith (2013), Characterization of middle-atmosphere polar warming at Mars, J. Geophys. Res. Planets, 118, 161-178, doi: 10.1002/jgre.20016. C1 [McDunn, T.; Bougher, S.] Univ Michigan, Dept AOSS, Ann Arbor, MI 48109 USA. [Murphy, J.] NMSU, Dept Astron, Las Cruces, NM USA. [Kleinboehl, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Forget, F.] LMD, Paris, France. [Smith, M.] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP McDunn, T (reprint author), Univ Michigan, Dept AOSS, Ann Arbor, MI 48109 USA. EM tmcdunn@umich.edu RI sebastianovitsch, stepan/G-8507-2013; Bougher, Stephen/C-1913-2013 OI Bougher, Stephen/0000-0002-4178-2729 FU NASA Earth; Space Science Fellowship FX We are grateful to Dan McCleese, Tim Schofield, and David Kass for access to the MCS dataset. We also would like to thank Alexander Medvedev and an anonymous reviewer for constructive comments that greatly improved the story and presentation of this paper. Finally, T.L.M. would like to acknowledge 3 years of funding from the NASA Earth and Space Science Fellowship. NR 41 TC 6 Z9 6 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD FEB PY 2013 VL 118 IS 2 BP 161 EP 178 DI 10.1002/jgre.20016 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 129MQ UT WOS:000317845100001 ER PT J AU Nahm, AL Ohman, T Kring, DA AF Nahm, Amanda L. Oehman, Teemu Kring, David A. TI Normal faulting origin for the Cordillera and Outer Rook Rings of Orientale Basin, the Moon SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CHICXULUB IMPACT CRATER; SLIP DISTRIBUTIONS; THRUST FAULTS; ROCK MASSES; LUNAR MARIA; DEFORMATION; EVOLUTION; STRESS; LITHOSPHERE; MODELS AB [1] Orientale Basin is the youngest and best-preserved large impact basin on the Moon with at least four topographic rings contained within the topographic rim marked by the Cordillera Ring (diameter = 930 km). Its well-exposed interior makes this basin a prime location to study basin formation processes. Forward mechanical modeling of basin ring topography shows that the outermost rings, the Cordillera Ring (CR) and Outer Rook Ring (ORR) are large-scale normal faults with displacements (D) of 0.8 to 5.2 km, fault dip angles (partial derivative) of 54 degrees to 80 degrees, and vertical depth of faulting (T) between 19 and 37 km with most faults having T= 30 +/- 5 km. These faults and the distribution of maria inside the basin suggest that the transient crater, important for determining many impact-related characteristics such as projectile size, was contained entirely within the ORR and likely had a diameter between 500 and 550 km. The difference in crustal thickness between the western and eastern sides of the basin is not a result of the basin-forming event, which indicates the formation of the hemispheric crustal thickness asymmetry was likely before the formation of Orientale Basin 3.68 to 3.85 Ga. C1 [Nahm, Amanda L.; Oehman, Teemu; Kring, David A.] USRA Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA. [Nahm, Amanda L.; Oehman, Teemu; Kring, David A.] NASA, Lunar Sci Inst, Moffett Field, CA USA. [Nahm, Amanda L.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. RP Nahm, AL (reprint author), Univ Texas El Paso, Dept Geol Sci, 500 W Univ Ave, El Paso, TX 79968 USA. EM alnahm@utep.edu RI Nahm, Amanda/F-4602-2011; OI Nahm, Amanda/0000-0002-3771-6825; Ohman, Teemu/0000-0001-8214-841X FU NASA [NNX08AC28A]; NASA Lunar Science Institute [NNA09DB33A, NNX09AP33G] FX The authors thank M. Weller (Rice University) for discussions about fault modeling using Coulomb, R. Schultz (ConocoPhillips) for detailed discussions regarding faulting behavior, C. Mercer (LPI and USGS Denver) and P. McGovern (LPI) for discussions about magma ascent around impact basins, R. Potter (LPI) for discussions regarding hydrocode models, Y. Ishihara (National Astronomical Observatory of Japan) for sharing GIS-compatible crustal thickness data, L. Gaddis (USGS), the USGS ISIS team, and B. Fessler (LPI) for valuable computer support for ArcMap and ISIS. We are also grateful for the data collected and provided by the LRO LOLA team. The authors thank Jeff Andrews-Hanna and Christian Klimczak for thorough and detailed comments that greatly improved the manuscript. This research was partially funded by NASA under the LPI Cooperative Agreement NNX08AC28A, NASA Lunar Science Institute contract NNA09DB33A (PI David A. Kring), and NASA Outer Planets Research grant NNX09AP33G (PI B. R. Smith-Konter). This is LPI contribution 1712. NR 108 TC 12 Z9 12 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD FEB PY 2013 VL 118 IS 2 BP 190 EP 205 DI 10.1002/jgre.20045 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 129MQ UT WOS:000317845100003 ER PT J AU Smith, MD Wolff, MJ Clancy, RT Kleinbohl, A Murchie, SL AF Smith, Michael D. Wolff, Michael J. Clancy, R. Todd Kleinboehl, Armin Murchie, Scott L. TI Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; RADIATIVE-TRANSFER; PARTICLE SIZES; MARS AEROSOL; CYCLE; VARIABILITY; SIMULATIONS; TRANSPORT; STORM AB Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (similar to 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons. Citation: Smith, M. D., M. J. Wolff, R. T. Clancy, A. Kleinbohl, and S. L. Murchie (2013), Vertical distribution of dust and water ice aerosols from CRISMlimb- geometry observations, J. Geophys. Res. Planets, 118, 321-334, doi:10.1002/jgre.20047. C1 [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wolff, Michael J.; Clancy, R. Todd] Space Sci Inst, Boulder, CO USA. [Kleinboehl, Armin] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Smith, MD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Michael.D.Smith@nasa.gov RI sebastianovitsch, stepan/G-8507-2013; Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU NASA Mars Reconnaissance Orbiter project FX The authors acknowledge financial support from the NASA Mars Reconnaissance Orbiter project as members of the CRISM and MCS Science Teams and are grateful for all the hard work done by the CRISM operations team at the Applied Physics Laboratory who performed all the sequencing and calibration needed to obtain this data set. All data products used as input to the retrieval process as well as all output results are available from the author upon request. We thank Scott Guzewich for a helpful discussion of this work, and we appreciate the review comments from Mark Richardson and an anonymous referee. NR 42 TC 16 Z9 16 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD FEB PY 2013 VL 118 IS 2 BP 321 EP 334 DI 10.1002/jgre.20047 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 129MQ UT WOS:000317845100011 ER PT J AU McSween, HY Ammannito, E Reddy, V Prettyman, TH Beck, AW De Sanctis, MC Nathues, A Le Corre, L O'Brien, DP Yamashita, N McCoy, TJ Mittlefehldt, DW Toplis, MJ Schenk, P Palomba, E Turrini, D Tosi, F Zambon, F Longobardo, A Capaccioni, F Raymond, CA Russell, CT AF McSween, Harry Y. Ammannito, Eleonora Reddy, Vishnu Prettyman, Thomas H. Beck, Andrew W. De Sanctis, M. Cristina Nathues, Andreas Le Corre, Lucille O'Brien, David P. Yamashita, Naoyuki McCoy, Timothy J. Mittlefehldt, David W. Toplis, Michael J. Schenk, Paul Palomba, Ernesto Turrini, Diego Tosi, Federico Zambon, Francesca Longobardo, Andrea Capaccioni, Fabrizio Raymond, Carol A. Russell, Christopher T. TI Composition of the Rheasilvia basin, a window into Vesta's interior SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ASTEROID 4 VESTA; EUCRITE PARENT BODY; EARLY SOLAR-SYSTEM; ORTHO-PYROXENE; DIOGENITE METEORITES; REFLECTANCE SPECTRA; HED METEORITES; DAWN MISSION; ORIGIN; HOWARDITE AB The estimated excavation depth of the huge Rheasilvia impact basin is nearly twice the likely thickness of the Vestan basaltic crust, so the mantle should be exposed. Spectral mapping by the Dawn spacecraft reveals orthopyroxene-rich materials, similar to diogenite meteorites, in the deepest parts of the basin and within its walls. Significant amounts of olivine are predicted for the mantles of bulk-chondritic bodies like Vesta, and its occurrence is demonstrated by some diogenites that are harzburgite and dunite. However, olivine has so far escaped detection by Dawn's instruments. Spectral detection of olivine in the presence of orthopyroxene is difficult in samples with < 25% olivine, and olivine in Rheasilvia might have been diluted during impact mixing or covered by the collapse of basin walls. The distribution of diogenite inferred from its exposures in and around Rheasilvia provides a geologic context for the formation of these meteorites, but does not clearly distinguish between a magmatic cumulate versus partial melting restite origin for diogenites. The former is favored by geochemical arguments, and crystallization in either a magma ocean or multiple plutons emplaced near the crust-mantle boundary is permitted by Dawn observations. Citation: McSween, H. Y., et al. (2013), Composition of the Rheasilvia basin, a window into Vesta's interior, J. Geophys. Res. Planets, 118, 335-346, doi:10.1002/jgre.20057. C1 [McSween, Harry Y.] Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA. [McSween, Harry Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Ammannito, Eleonora; De Sanctis, M. Cristina; Palomba, Ernesto; Turrini, Diego; Tosi, Federico; Zambon, Francesca; Longobardo, Andrea; Capaccioni, Fabrizio] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy. [Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Reddy, Vishnu] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58201 USA. [Prettyman, Thomas H.; O'Brien, David P.; Yamashita, Naoyuki] Planetary Sci Inst, Tucson, AZ USA. [Beck, Andrew W.; McCoy, Timothy J.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA. [Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. [Toplis, Michael J.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Schenk, Paul] Lunar & Planetary Inst, Houston, TX 77058 USA. [Raymond, Carol A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP McSween, HY (reprint author), Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA. EM mcsween@utk.edu RI De Sanctis, Maria Cristina/G-5232-2013; Beck, Andrew/J-7215-2015; OI Turrini, Diego/0000-0002-1923-7740; Capaccioni, Fabrizio/0000-0003-1631-4314; De Sanctis, Maria Cristina/0000-0002-3463-4437; Beck, Andrew/0000-0003-4455-2299; Reddy, Vishnu/0000-0002-7743-3491; Prettyman, Thomas/0000-0003-0072-2831; Le Corre, Lucille/0000-0003-0349-7932; Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434; Zambon, Francesca/0000-0002-4190-6592 FU NASA's Discovery Program; University of California, Los Angeles; NASA's Dawn at Vesta Participating Scientists Program; Italian Space Agency; Max Planck Society; German Space Agency (DLR); Planetary Science Institute under Jet Propulsion Laboratory FX This work was funded by NASA's Discovery Program through a contract to the University of California, Los Angeles, by NASA's Dawn at Vesta Participating Scientists Program, by the Italian Space Agency, by the Max Planck Society and German Space Agency (DLR), and by the Planetary Science Institute under contract with the Jet Propulsion Laboratory, California Institute of Technology. We appreciate reviews by K. Keil, K. Righter, and an unnamed reviewer. NR 79 TC 52 Z9 53 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD FEB PY 2013 VL 118 IS 2 BP 335 EP 346 DI 10.1002/jgre.20057 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 129MQ UT WOS:000317845100012 ER PT J AU Malaspina, DM Newman, DL Willson, LB Goetz, K Kellogg, PJ Kerstin, K AF Malaspina, David M. Newman, David L. Willson, Lynn B., III Goetz, Keith Kellogg, Paul J. Kerstin, Kris TI Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC RECONNECTION; LANGMUIR-WAVES; PLASMA; FIELD; SPACECRAFT; HOLES; DISCONTINUITIES; BOUNDARY; RADIO AB A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e. g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection. Citation: Malaspina, D. M., D. L. Newman, L. B. Willson III, K. Goetz, P. J. Kellogg, and K. Kerstin (2013), Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets, J. Geophys. Res. Space Physics, 118, 591-599, doi:10.1002/jgra.50102. C1 [Malaspina, David M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Newman, David L.] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA. [Willson, Lynn B., III] NASA, Goddard Space Flight Ctr Code 672, Greenbelt, MD 20771 USA. [Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Malaspina, DM (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM David.Malaspina@colorado.edu RI NASA MMS, Science Team/J-5393-2013; Wilson III, Lynn/D-4425-2012 OI NASA MMS, Science Team/0000-0002-9504-5214; Wilson III, Lynn/0000-0002-4313-1970 FU STEREO/IMPACT phase E grant; STEREO/WAVES phase E grant FX This work was supported by a STEREO/IMPACT phase E grant and a STEREO/WAVES phase E grant. The authors would like to acknowledge helpful conversations with Jack Gosling, Bob Ergun, and Stuart Bale. NR 44 TC 20 Z9 20 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2013 VL 118 IS 2 BP 591 EP 599 DI 10.1002/jgra.50102 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RQ UT WOS:000317860000001 ER PT J AU Buzulukova, N Fok, MC Roelof, E Redfern, J Goldstein, J Valek, P McComas, D AF Buzulukova, N. Fok, M. -C. Roelof, E. Redfern, J. Goldstein, J. Valek, P. McComas, D. TI Comparative analysis of low-altitude ENA emissions in two substorms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOSPHERIC SUBSTORM; GROWTH-PHASE; BEHAVIOR; TAIL AB We report on the dynamics of low-altitude energetic neutral atom (ENA) emissions during two substorms that occurred during the main phases of two storms: (1) a CIR-driven storm on 11 October 2008 and (2) a coronal mass ejection (CME)-driven storm on 5 April 2010. For both of these storms, we have complementary spacecraft and ground-based observations. The dual-spacecraft Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission obtained ENA images containing low-altitude emissions (LAEs). Substorm dynamics is inferred from THEMIS all-sky imagers. TWINS-observed LAEs are compared with trapped/loss cone proton fluxes from the low-altitude NOAA/MetOp spacecraft constellation. We find that the timing and intensity profiles of LAEs are different for the two selected events. For the 11 October 2008 event, the LAEs rise during substorm recovery phase and storm main phase. On 5 April 2010, the LAEs tend to peak near substorm onset. We argue that the different LAE behavior results from different pitch-angle distributions (PADs) of the ion source population. Ion PADs are isotropic during substorm recovery phase for the 11 October 2008 event and have empty loss cone for the 5 April 2010 event. For both cases, LAE intensification marks the onset of activity in the magnetotail and precedes the large substorm onset. We conclude that the LAE production starts in the transition region between the magnetotail and ring current and may expand/move into the inner magnetosphere together with ring current formation. Citation: Buzulukova, N., M.-C. Fok, E. Roelof, J. Redfern, J. Goldstein, P. Valek, and D. McComas (2013), Comparative analysis of low-altitude ENA emissions in two substorms, J. Geophys. Res. Space Physics, 118, 724-731, doi:10.1002/jgra.50103. C1 [Buzulukova, N.; Fok, M. -C.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Redfern, J.; Goldstein, J.; Valek, P.; McComas, D.] SW Res Inst, San Antonio, TX USA. [Goldstein, J.; Valek, P.; McComas, D.] Univ Texas San Antonio, San Antonio, TX USA. RP Buzulukova, N (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 673,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM nbuzulukova@gmail.com RI Fok, Mei-Ching/D-1626-2012; OI Valek, Philip/0000-0002-2318-8750 FU SWRI [799106L]; NASA [955518.02.01.02.57] FX We acknowledge THEMIS data provider, S. Mende and E. Donavan at UCB and University of Calgary, respectively, NASA NASS-0289 and CDAWeb. SYMH, AU, and AL data were obtained from Kyoto WDC for Geomagnetism. NOAA/MetOp data were obtained from the NOAA website http://www.ngdc.noaa.gov/stp/satellite/poes/dataaccess.html. Coordinates of the THEMIS stations were taken from the THEMIS website http://themis.igpp.ucla.edu/instrument_gmags.shtml. This work was carried out as a part of the TWINS mission, which is part of NASA's Explorer Program. The effort at JHU/APL was carried out under subcontract 799106L from SWRI. For N.B. and M.-C. F., this work was also supported by NASA Heliophysics Guest Investigators Program, under Work Breakdown Structure 955518.02.01.02.57. NR 26 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2013 VL 118 IS 2 BP 724 EP 731 DI 10.1002/jgra.50103 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RQ UT WOS:000317860000015 ER PT J AU Omidi, N Sibeck, D Blanco-Cano, X Rojas-Castillo, D Turner, D Zhang, H Kajdic, P AF Omidi, N. Sibeck, D. Blanco-Cano, X. Rojas-Castillo, D. Turner, D. Zhang, H. Kajdic, P. TI Dynamics of the foreshock compressional boundary and its connection to foreshock cavities SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; UPSTREAM SOLAR-WIND; MAGNETIC-FIELD; IONS; WAVES; POPULATIONS; ASSOCIATION; SIMULATIONS; ISEE-2 AB We use several global hybrid (kinetic ions, fluid electrons) simulation runs for steady and time-varying interplanetary magnetic field (IMF) conditions to examine the dynamics of the foreshock compressional boundary (FCB) and its connection to foreshock cavities. The results demonstrate that for steady IMF conditions, the FCB forms and evolves over a long period of time due to the dynamics of the bow shock and ion foreshock. Formation of the FCB is tied to the generation and nonlinear evolution of ULF waves associated with large-amplitude fluctuations in magnetic field and density within the foreshock. As a result, even during steady IMF conditions, the transitions in the magnetic field strength and direction across an FCB evolve. Although the FCB itself is associated with increases in the magnetic field strength and density, these quantities are reduced on the turbulent side of the FCB as compared to the pristine solar wind. Hybrid simulations with time-varying IMF have been performed to examine the relationship between the FCB and foreshock cavities generated under two possible scenarios. In the first scenario, a bundle of field lines connects to an otherwise quasi-perpendicular bow shock and results in the formation of a finite-sized foreshock region that travels with this bundle of field lines as it connects to different parts of the bow shock surface. Two FCBs bound the traveling foreshock region. In the second scenario, solar wind discontinuities cause the IMF cone angle (angle between the IMF and the solar wind flow direction) to vary and thereby modify the foreshock geometry and the position of the FCB. We demonstrate that structures similar to foreshock cavities bounded by FCBs form in both scenarios. We show that the two scenarios cannot be distinguished based on convecting or nonconvecting FCBs. We also demonstrate that depending on spacecraft location and the nature of the solar wind discontinuities, foreshock cavities may be bounded by an FCB on one side and a foreshock bubble on the other. Citation: Omidi, N., D. Sibeck, X. Blanco-Cano, D. Rojas-Castillo, D. Turner, H. Zhang, and P. Kajdic (2013), Dynamics of the foreshock compressional boundary and its connection to foreshock cavities, J. Geophys. Res. Space Physics, 118, 823-831, doi:10.1002/jgra.50146. C1 [Omidi, N.] Solana Sci Inc, Solana Beach, CA 92075 USA. [Sibeck, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blanco-Cano, X.; Rojas-Castillo, D.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Turner, D.] Univ Calif Los Angeles, Dept Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Zhang, H.] Univ Alaska Fairbanks, Fairbanks, AK USA. [Kajdic, P.] Inst Rech Astrophys & Planetol, Toulouse, France. RP Omidi, N (reprint author), Solana Sci Inc, 777 S Pacific Coast HWY,208, Solana Beach, CA 92075 USA. EM omidi@solanasci.com RI Turner, Drew/G-3224-2012 FU NSF [AGS-1007449]; NASA's THEMIS mission; CONACYT FX Work for this project was supported by NSF Grant AGS-1007449 and NASA's THEMIS mission. DRC's work was supported by CONACYT through a PhD scholarship. NR 30 TC 9 Z9 9 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2013 VL 118 IS 2 BP 823 EP 831 DI 10.1002/jgra.50146 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RQ UT WOS:000317860000023 ER PT J AU Kil, H Lee, WK Shim, J Paxton, LJ Zhang, Y AF Kil, H. Lee, W. K. Shim, J. Paxton, L. J. Zhang, Y. TI The effect of the 135.6nm emission originated from the ionosphere on the TIMED/GUVI O/N-2 ratio SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ULTRAVIOLET IMAGER GUVI; STORM; DAYGLOW; THERMOSPHERE; DISTURBANCES; MISSION AB The column number density ratio of atomic oxygen to molecular nitrogen (O/N-2 ratio) provided by the Global Ultraviolet Imager (GUVI) onboard the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite has been used as a diagnostic of the thermospheric neutral composition. However, a recent study claimed that the GUVI O/N-2 ratio is not a pure thermospheric parameter in low latitudes during periods of low geomagnetic activity. This study quantifies the O/N-2 ratio contamination by the ionosphere using the GUVI observations and model ionosphere acquired from 31 August to 2 September 2002. During this period, the local time of the GUVI observation was near 1500 and the average Kp index was 2 degrees. The 135.6nm emission originated from the ionosphere is estimated using the electron density profiles provided by the Utah State University-Global Assimilation of Ionospheric Measurements model. Our results show that the 135.6nm emission originated from the equatorial ionization anomaly (EIA) contributes 5 similar to 10% to the total 135.6nm intensity and O/N-2 ratio. The EIA feature and longitudinal wave patterns in the GUVI 135.6nm intensity maps are identified above an altitude of 300km and show a good agreement with those in the F region plasma density. However, the EIA feature and longitudinal wave patterns do not appear in the GUVI 135.6nm intensity maps below an altitude of 300km and in the GUVI N-2 Lyman-Birge-Hopfield band intensity maps in any altitude. These observations indicate that the longitudinal wave patterns in the GUVI O/N-2 ratio represent the ionospheric phenomenon. Citation: Kil, H., W. K. Lee, J. Shim, L. J. Paxton, and Y. Zhang (2013), The effect of the 135.6nm emission originated from the ionosphere on the TIMED/GUVI O/N-2 ratio, J. Geophys. Res. Space Physics, 118, 859-865, doi: 10.1029/2012JA018112. C1 [Kil, H.; Lee, W. K.; Paxton, L. J.; Zhang, Y.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD USA. [Lee, W. K.] Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA. [Shim, J.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Goddard Planetary Heliophys Inst, Greenbelt, MD USA. RP Kil, H (reprint author), Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD USA. EM hyosub.kil@jhuapl.edu RI Paxton, Larry/D-1934-2015; Kil, Hyosub/C-2577-2016; Zhang, Yongliang/C-2180-2016 OI Paxton, Larry/0000-0002-2597-347X; Kil, Hyosub/0000-0001-8288-6236; Zhang, Yongliang/0000-0003-4851-1662 FU NASA [NNX12AD17G]; NSF National Space Weather Program [AGS-1024886]; University of Science and Technology Post-Doc Research Program in Korea FX H. Kil acknowledges support from NASA NNX12AD17G and NSF National Space Weather Program (AGS-1024886) grants. W. K. Lee acknowledges support from University of Science and Technology Post-Doc Research Program in Korea. Simulation results have been provided by the Community Coordinated Modeling Center (CCMC) at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF and ONR. The USU-GAIM Model was developed by the GAIM team (R. W. Schunk, L. Scherliess, J. J. Sojka, D. C. Thompson, and L. Zhu) at Utah State University. NR 34 TC 4 Z9 4 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2013 VL 118 IS 2 BP 859 EP 865 DI 10.1029/2012JA018112 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RQ UT WOS:000317860000028 ER PT J AU Khazanov, GV Glocer, A Liemohn, MW Himwich, EW AF Khazanov, G. V. Glocer, A. Liemohn, M. W. Himwich, E. W. TI Superthermal electron energy interchange in the ionosphere-plasmasphere system SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PHOTOELECTRON FLUXES; CROSS-SECTIONS; TRANSPORT; MODEL; PHOTOIONIZATION; MAGNETOSPHERE; TEMPERATURE; ATMOSPHERE AB A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks. Citation: Khazanov, G. V., A. Glocer, M. W. Liemohn, and E. W. Himwich (2013), Superthermal electron energy interchange in the ionosphere-plasmasphere system, J. Geophys. Res. Space Physics, 118, 925-934, doi: 10.1002/jgra.50127. C1 [Khazanov, G. V.; Glocer, A.; Himwich, E. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Liemohn, M. W.] Univ Michigan, Ann Arbor, MI USA. RP Glocer, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alex.glocer-1@nasa.gov RI Liemohn, Michael/H-8703-2012; Glocer, Alex/C-9512-2012; feggans, john/F-5370-2012 OI Liemohn, Michael/0000-0002-7039-2631; Glocer, Alex/0000-0001-9843-9094; FU National Aeronautics and Space Administration SMD/Heliophysics Supporting Research program for Geospace SRT FX This material is based on work supported by the National Aeronautics and Space Administration SMD/Heliophysics Supporting Research program for Geospace SR&T. The authors would like to thank the reviewers for their useful comments. NR 42 TC 5 Z9 5 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2013 VL 118 IS 2 BP 925 EP 934 DI 10.1002/jgra.50127 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RQ UT WOS:000317860000036 ER PT J AU Lee, HB Jee, G Kim, YH Shim, JS AF Lee, H. -B. Jee, G. Kim, Y. H. Shim, J. S. TI Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID TOTAL ELECTRON-CONTENT; TOPEX/POSEIDON MISSION; SOLAR-CYCLE; GPS TEC; DENSITY; MODEL; DISTURBANCE; DEPLETION; FLUX AB We compared the global plasmaspheric total electron content (pTEC) with the ionospheric TEC (iTEC) simultaneously measured by Jason-1 satellite during the declining phase of solar cycle 23 (2002-2009) to investigate the global morphology of the plasmaspheric density in relation to the ionosphere. Our study showed that the plasmaspheric density structures fundamentally follow the ionosphere, but there are also significant differences between them. Although the diurnal variations are very similar to each region, the plasmasphere shows much weaker variations, only approximately 1 TECU day-night difference. By analyzing the day-night differences in the plasmasphere, we found that the plasmaspheric contribution to the nighttime ionosphere does not increase with solar activity and the largest contribution occurs during June solstice. The plasmasphere shows similar seasonal variations to the ionosphere, except for the semiannual variation, which is essentially absent in the plasmasphere. There is also an important difference in the annual variation: although the annual variation in the ionosphere exists regardless of longitude, it occurs only at American sector in the plasmasphere. As solar activity increases to moderate level, the pTEC substantially enhances from approximately 2 to 4 TECU at the initial increase of solar activity below F10.7p = 100 and then quickly slows down while the iTEC almost linearly enhances. Although it is well known that magnetic storms are the major source of plasmaspheric density depletion, pTEC does not show this aspect of the plasmasphere probably due to the relatively small K-p values for high magnetic activity (K-p > 2.5) in the current study. Citation: Lee, H.-B., G. Jee, Y. H. Kim, and J. S. Shim (2013), Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys. Res. Space Physics, 118, 935-946, doi: 10.1002/jgra.50130. C1 [Lee, H. -B.; Jee, G.] Korea Polar Res Inst, Div Polar Climate Sci, Inchon, South Korea. [Lee, H. -B.; Kim, Y. H.] Chungnam Natl Univ, Dept Space & Astron, Taejon, South Korea. [Shim, J. S.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Jee, G (reprint author), Korea Polar Res Inst, Div Polar Climate Sci, Inchon, South Korea. EM ghjee@kopri.re.kr FU Korea Polar Research Institute [PE12320] FX This work was supported by the project PE12320 at the Korea Polar Research Institute. The Jason-1 TEC data were obtained from the Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the NASA Jet Propulsion Laboratory. NR 37 TC 31 Z9 31 U1 4 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB PY 2013 VL 118 IS 2 BP 935 EP 946 DI 10.1002/jgra.50130 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 129RQ UT WOS:000317860000037 ER PT J AU Voss, KA Famiglietti, JS Lo, MH de Linage, C Rodell, M Swenson, SC AF Voss, Katalyn A. Famiglietti, James S. Lo, MinHui de Linage, Caroline Rodell, Matthew Swenson, Sean C. TI Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region SO WATER RESOURCES RESEARCH LA English DT Article ID CLIMATE EXPERIMENT GRACE; TIME-VARIABLE GRAVITY; SATELLITE-OBSERVATIONS; CANADIAN PRAIRIE; MODEL; STORAGE; SYSTEM; PRECIPITATION; ASSIMILATION; VARIABILITY AB In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 +/- 0.6 mm yr(-1) equivalent water height, equal to a volume of 143.6 km(3) during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of "best current capabilities" in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 +/- 2.1 mm yr(-1) equivalent water height of groundwater during the study period, or 91.3 +/- 10.9 km(3) in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget. Citation: Voss, K. A., J. S. Famiglietti, M. Lo, C. de Linage, M. Rodell, and S. C. Swenson (2013), Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region, Water Resour. Res., 49, doi: 10.1002/wrcr.20078. C1 [Voss, Katalyn A.] Georgetown Univ, Sch Foreign Serv, Sci Technol & Int Affairs Program, Washington, DC 20057 USA. [Voss, Katalyn A.; Famiglietti, James S.; Lo, MinHui] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA. [Famiglietti, James S.; de Linage, Caroline] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Lo, MinHui] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10764, Taiwan. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Swenson, Sean C.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. RP Famiglietti, JS (reprint author), Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA. EM jfamigli@uci.edu RI Rodell, Matthew/E-4946-2012; OI Rodell, Matthew/0000-0003-0106-7437; LO, MIN-HUI/0000-0002-8653-143X FU NASA GRACE Science Team; MRPI program of the University of California Office of the President FX The authors thank J. T. Reager, UC Center for Hydrologic Modeling, and T. Beach, C. Weiss, and E. Stephen, Georgetown University, for their valuable comments. This work was funded by grants from the NASA GRACE Science Team and the MRPI program of the University of California Office of the President. NR 82 TC 112 Z9 113 U1 5 U2 98 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB PY 2013 VL 49 IS 2 BP 904 EP 914 DI 10.1002/wrcr.20078 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 129HA UT WOS:000317828600017 ER PT J AU Brown, ME Escobar, VM Aschbacher, J Milagro-Perez, MP Doorn, B Macauley, MK Friedl, L AF Brown, Molly E. Escobar, Vanessa M. Aschbacher, Josef Milagro-Perez, Maria Pilar Doorn, Bradley Macauley, Molly K. Friedl, Lawrence TI Policy for robust space-based earth science, technology and applications SO SPACE POLICY LA English DT Article ID GMES; MODIS; PRODUCTS; MISSION; NASA AB Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions. Published by Elsevier Ltd. C1 [Brown, Molly E.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Escobar, Vanessa M.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Sigma Space Corp, Greenbelt, MD 20771 USA. [Aschbacher, Josef] European Space Agcy, ESRIN, I-00044 Rome, Italy. [Milagro-Perez, Maria Pilar] European Space Agcy, ESRIN, GMES Space Off, I-00044 Rome, Italy. [Doorn, Bradley; Friedl, Lawrence] NASA Headquarters, Div Earth Sci, Washington, DC 20546 USA. [Macauley, Molly K.] Resources Future Inc, Washington, DC 20036 USA. RP Brown, ME (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. EM molly.brown@nasa.gov; vanessa.escobar@nasa.gov; Josef.aschbacher@esa.int; Maria.milagro@esa.int; Bradley.Doorn@nasa.gov; macauley@rff.org; LFriedl@nasa.gov RI Brown, Molly/E-2724-2010 OI Brown, Molly/0000-0001-7384-3314 NR 34 TC 1 Z9 1 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-9646 J9 SPACE POLICY JI Space Policy PD FEB PY 2013 VL 29 IS 1 BP 76 EP 82 DI 10.1016/j.spacepol.2012.11.007 PG 7 WC International Relations; Social Sciences, Interdisciplinary SC International Relations; Social Sciences - Other Topics GA 120JM UT WOS:000317166600011 ER PT J AU Brown, D Cole, S Webster, G Agle, DC Chicoine, RA Rickman, J Hoover, R Mitrofanov, I Ravine, M Hassler, D Cueste, L Jones, NN Barnstorff, K Faccio, R Apuzzo, MLJ Pagan, VM AF Brown, Dwayne Cole, Steve Webster, Guy Agle, D. C. Chicoine, Ruth Ann Rickman, James Hoover, Rachel Mitrofanov, Igor Ravine, Michael Hassler, Donald Cueste, Luis Jones, Nancy Neal Barnstorff, Kathy Faccio, Rodrick Apuzzo, Michael L. J. Pagan, Veronica M. TI The Mars Science Laboratory Landing SO WORLD NEUROSURGERY LA English DT Article DE Frontiers; Instrumentation; Imaging; Mars; Miniaturization; Robotics; Space exploration C1 [Brown, Dwayne; Cole, Steve] NASAs Mars Program Headquarters, Washington, DC USA. [Webster, Guy; Agle, D. C.] Mars Sci Lab Mission Jet Prop Lab, Pasadena, CA USA. [Chicoine, Ruth Ann] Canadian Space Agcy, St Hubert, PQ, Canada. [Rickman, James] Los Alamos Natl Lab, Los Alamos, NM USA. [Hoover, Rachel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Mitrofanov, Igor] Space Res Inst, Moscow, Russia. [Ravine, Michael] Malin Space Sci Syst, San Diego, CA USA. [Hassler, Donald] SW Res Inst, Boulder, CO USA. [Cueste, Luis] Ctr Astrobiol, Madrid, Spain. [Jones, Nancy Neal] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Barnstorff, Kathy] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Faccio, Rodrick; Apuzzo, Michael L. J.; Pagan, Veronica M.] Univ So Calif, Keck Sch Med, Dept Neurol Surg, Los Angeles, CA 90033 USA. RP Faccio, R (reprint author), Univ So Calif, Keck Sch Med, Dept Neurol Surg, Los Angeles, CA 90033 USA. NR 0 TC 2 Z9 2 U1 0 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1878-8750 J9 WORLD NEUROSURG JI World Neurosurg. PD FEB PY 2013 VL 79 IS 2 BP 223 EP 242 DI 10.1016/j.wneu.2013.01.099 PG 20 WC Clinical Neurology; Surgery SC Neurosciences & Neurology; Surgery GA 125JV UT WOS:000317537000006 PM 23385447 ER PT J AU Anderson, MS AF Anderson, M. S. TI Atomic force microscope mediated chromatography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB An atomic force microscope (AFM) is presented as an instrument for rapid, miniaturized chromatography. The AFM is used to inject a sample, provide shear driven liquid flow over a functionalized substrate, and detect separated components. The components are then analyzed with surface enhanced Raman spectroscopy using AFM deposition of gold nanoparticles on the separated bands. This AFM mediated chromatography (AFM-MC) is demonstrated using lipophilic dyes and normal phase chemistry. A significant reduction in both size and separation time scales is achieved with 25 mu m length scale and 1 s separation times. AFM-MC has general applications to trace chemical analysis and microfluidics. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792380] C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Anderson, MS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Mark.S.Anderson@jpl.nasa.gov NR 17 TC 2 Z9 2 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2013 VL 84 IS 2 AR 025114 DI 10.1063/1.4792380 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 117LJ UT WOS:000316954600078 PM 23464258 ER PT J AU Xu, J Sahai, N Eggleston, CM Schoonen, MAA AF Xu, Jie Sahai, Nita Eggleston, Carrick M. Schoonen, Martin A. A. TI Reactive oxygen species at the oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the origin of life SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE radical; titania; Fe2O3; mineral surface; prebiotic chemistry; origin of life ID DIFFUSE-REFLECTANCE SPECTROSCOPY; HYDROXYL RADICAL GENERATION; TITANIUM-DIOXIDE; DNA-DAMAGE; SEMICONDUCTOR PARTICLES; LIPID-PEROXIDATION; ORGANIC-MOLECULES; HYDROGEN-PEROXIDE; BACILLUS-SUBTILIS; SURFACE-CHEMISTRY AB The goal of our study is to identify free radical formation pathways on mineral surfaces. Organic molecules on early Earth might have been modified or decomposed by such pathways, thus affecting the total organic inventory for prebiotic synthesis reactions. Specifically, we evaluated several common oxide minerals under a range of environmental conditions and combinations of conditions (pH, O-2 level, UV-wavelength, and particle loading), for formation of highly reactive oxygen species (ROS) at the oxide surfaces by quantifying the generated [OH center dot] and [H2O2]. We identified anatase/rutile (beta-TiO2/alpha-TiO2) and hematite (alpha-Fe2O3) as active in ROS production and, importantly, found different dominant pathways for ROS formation on anatase/rutile versus hematite. Hydroxyl radicals (OH center dot) in anatase and rutile suspensions were generated mainly through the oxidation of OH- by photo-generated holes and H2O2 was generated through the combination of an OH center dot radical with an OH- and a hole. This pathway for the TiO2 phases did not require the presence of O-2, and was not shut down under anaerobic conditions. In contrast, formation of H2O2 and OH center dot in hematite suspensions involved reduction of O-2 by electrons, which was inhibited under anaerobic conditions. The surface ROS as well as free radicals formed by reactions with other gases on early Earth atmosphere were capable of destroying molecules such as lipids and pre-RNA or RNA essential to assembly of protocells and survival of the earliest cells. At the same time, surface associated ROS and other free radicals may also have promoted aminoamide formation. Thus, the surface ROS would have affected prebiotic organic compound inventory and protocell/early life evolution. (C) 2012 Elsevier B.V. All rights reserved. C1 [Xu, Jie] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Xu, Jie; Sahai, Nita] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Xu, Jie] George Washington Univ, Dept Chem, Washington, DC 20052 USA. [Sahai, Nita] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Sahai, Nita] Univ Akron, NASA Astrobiol Inst, Akron, OH 44325 USA. [Eggleston, Carrick M.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Schoonen, Martin A. A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Schoonen, Martin A. A.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. RP Xu, J (reprint author), George Washington Univ, Dept Chem, 725 21st St NW, Washington, DC 20052 USA. EM jxu@email.gwu.edu; sahai@uakron.edu RI Schoonen, martin/E-7703-2011; XU, JIE/K-5516-2015 OI Schoonen, martin/0000-0002-7133-1160; FU NSF [EAR 0346689]; NASA Astrobiology Institute Director's Discretionary Fund (NAI DDF); University of Akron; Weeks Graduate Fellowship; Department of Geoscience, the University of Wisconsin-Madison (UW) FX This research was supported by an NSF CAREER Award (EAR 0346689), NASA Astrobiology Institute Director's Discretionary Fund (NAI DDF 2008 and 2009) grants and start-up funds from University of Akron to N.S. J.X. was partially supported by a Weeks Graduate Fellowship, Department of Geoscience, the University of Wisconsin-Madison (UW). We are grateful to Ms. Shavonne Hylton, Stony Brook University, for sharing the ROS measurement protocol; Prof. Judyth Burstyn, Department of Chemistry, UW and Prof. Huifang Xu, Departments of Geoscience, UW, respectively, for use of the fluorospectrometer and the B.E.T. specific surface analyzer; and Dr. Nianli Zhang for HRTEM particle characterization. NR 114 TC 14 Z9 15 U1 5 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD FEB 1 PY 2013 VL 363 BP 156 EP 167 DI 10.1016/j.epsl.2012.12.008 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 113CH UT WOS:000316643300016 ER PT J AU Czaja, AD Johnson, CM Beard, BL Roden, EE Li, WQ Moorbath, S AF Czaja, Andrew D. Johnson, Clark M. Beard, Brian L. Roden, Eric E. Li, Weiqiang Moorbath, Stephen TI Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland) SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Isua Supracrustal Belt; Fe isotopes; femtosecond laser-ablation; anoxygenic phototrophs; Fe oxidation; Early Archean ID BILLION YEARS AGO; ARCHEAN MOLECULAR FOSSILS; GREENSTONE-BELT; ISOTOPE FRACTIONATION; SOUTHWEST GREENLAND; HEMATITE FORMATION; SEDIMENTARY-ROCKS; AQUEOUS FE(II); SW GREENLAND; FERROUS IRON AB The redox balance of the Archean atmosphere-ocean system is among the most significant uncertainties in our understanding of the earliest history of Earth's surface zone. Most workers agree that oxygen did not constitute a significant proportion of the atmosphere until after ca. 2.45 Ga, after the Great Oxidation Event, but there is less agreement on when O-2 production began, and how this may have been consumed by reduced species such as Fe(II) in the oceans. The Fe redox cycle through time has been traced using banded iron formations (BIFs), and Fe isotopes are increasingly used to constrain the conditions of Earth's paleoenvironments, including the pathways of formation of BIFs. Iron isotope analyses of BIFs from the 3.7 to 3.8 Ga Isua Supracrustal Belt (ISB), obtained by micro-sampling of magnetite-rich layers and conventional analysis, as well as by in situ femtosecond laser ablation (fs-LA-ICP-MS), indicate a consistently narrow range of non-zero delta Fe-56 values. Analysis of magnetite by fs-LA-ICP-MS allows for precise and accurate micron-scale analyses without the problems of orientation effects that are associated with secondary ion mass spectrometry (SIMS) analyses. Magnetite delta Fe-56 values range from +0.4 parts per thousand to +1.1 parts per thousand among different bands, but within individual layers magnetite grains are mostly homogeneous. Although these BIFs have been metamorphosed to amphibolite-facies, the metamorphism can neither explain the range in Fe isotope compositions across bands, nor that between hand samples. The isotopic compositions therefore reflect "primary", low-temperature sedimentary values. The positive delta Fe-56 values measured from the ISB magnetites are best explained by deposition of Fe(III)-oxides produced by partial oxidation of Fe(II)-rich ocean water. A dispersion/reaction model, which accounts for rates of hydrothermal Fe(II)(aq) input, rates of oxidation, and rates of Fe(OH)(3) settling suggests exceptionally low O-2 contents, <0.001% of modern O-2 contents in the photic zone. Such low levels suggest an anoxygenic pathway is more likely, and the data can be well modeled by anoxygenic photosynthetic Fe(II) oxidation. Comparison of the Fe isotope data from the Isua BIFs with those from the 2.5 Ga BIFs from the Hamersley and Transvaal basins (Australia and South Africa, respectively) suggests a striking difference in Fe sources and pathways. The 2.5 Ga magnetite facies BIFs of Australia and South Africa have delta Fe-56 values that range from -1.2 parts per thousand to +1.2 parts per thousand over small scales, and are on average close to 0 parts per thousand, which is significantly lower than those reported here from the Isua BIFs. The wide range in Fe isotope compositions for the Hamersley and Transvaal BIFs, in concert with C and O isotope data, have been interpreted to reflect bacterial dissimilatory Fe(III) reduction (DIR). The absence of low delta Fe-56 values in the Isua BIFs, as well as the lack of fine-scale isotopic heterogeneity, may indicate formation prior to widespread DIR. (C) 2013 Elsevier B.V. All rights reserved. C1 [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Moorbath, Stephen] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England. RP Czaja, AD (reprint author), Univ Cincinnati, Dept Geol, POB 210013, Cincinnati, OH 45221 USA. EM andrew.czaja@uc.edu RI Li, Weiqiang/D-2975-2011 OI Li, Weiqiang/0000-0003-2648-7630 FU NSF; NASA FX Conventional Fe isotope measurements and whole-rock geochemical analyses were performed by M. Herrick. We also thank J. Fournelle for his assistance with electron microprobe analyses and C. Kelly for use of Merchanteck micro-mill. Finally, we thank Associate Editor T. Harrison and two anonymous reviewers whose comments improved the manuscript. The samples studied here that were originally reported by R. Dymek are part of the extensive BIF collections of C. Klein that were donated to the Department of Geoscience at the University of Wisconsin, Madison by C. Klein. This work was funded by NSF and NASA grants to C.M.J. and B.L.B. NR 92 TC 43 Z9 44 U1 4 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD FEB 1 PY 2013 VL 363 BP 192 EP 203 DI 10.1016/j.epsl.2012.12.025 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 113CH UT WOS:000316643300019 ER PT J AU Babcock, C Matney, J Finley, AO Weiskittel, A Cook, BD AF Babcock, Chad Matney, Jason Finley, Andrew O. Weiskittel, Aaron Cook, Bruce D. TI Multivariate Spatial Regression Models for Predicting Individual Tree Structure Variables Using LiDAR Data SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Bayesian; forestry; Gaussian process; LiDAR; MCMC; spatial random effects ID MULTISPECTRAL DATA; AIRBORNE LIDAR; FOREST; COREGIONALIZATION; SURFACE; VOLUME AB This study assesses univariate and multivariate spatial regression models for predicting individual tree structure variables using Light Detection And Ranging (LiDAR) covariates. Many studies have used covariates derived from LiDAR to help explain the variability in tree, stand, or forest variables at a fine spatial resolution across a specified domain. Few studies use regression models capable of accommodating residual spatial dependence between field measurements. Failure to acknowledge this spatial dependence can result in biased and perhaps misleading inference about the importance of LiDAR covariates and erroneous prediction. Accommodating residual spatial dependence, via spatial random effects, helps to meet basic model assumptions and, as illustrated in this study, can improve model fit and prediction. When multiple correlated tree structure variables are considered, it is attractive to specify joint models that are able to estimate the within tree covariance structure and use it for subsequent prediction for unmeasured trees. We capture within tree residual covariances by specifying a model with multivariate spatial random effects. The univariate and multivariate spatial random effects models are compared to those without random effects using a data set collected on the U.S. Forest Service Penobscot Experimental Forest, Maine. These data comprise individual tree measurements including geographic position, height, average crown length, average crown radius, and diameter at breast height. C1 [Finley, Andrew O.] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA. [Babcock, Chad; Matney, Jason; Finley, Andrew O.] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA. [Weiskittel, Aaron] Univ Maine, Sch Forest Resources, Orono, ME 04469 USA. [Cook, Bruce D.] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Finley, AO (reprint author), Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA. EM babcoc76@msu.edu; matneyja@msu.edu; finleya@msu.edu; aaron.weiskittel@maine.edu; bruce.cook@nasa.gov RI Cook, Bruce/M-4828-2013 OI Cook, Bruce/0000-0002-8528-000X FU NASA Carbon Monitoring System [11-CMS11-0021]; NSF [EF-1137309, DMS-1106609, EF-1029808, EF-1138160, EF-1150319, DBI-0752017]; NASA [11-CMS11-0028]; National Ecological Observatory Network (NEON) FX The work of all authors was supported by NASA Carbon Monitoring System Grant 11-CMS11-0021. The work of A. O. Finley was supported by NSF EF-1137309, DMS-1106609, and NASA Grant 11-CMS11-0028. This work was also supported by The National Ecological Observatory Network (NEON) which is a project sponsored by the NSF Grants EF-1029808, EF-1138160, EF-1150319 and DBI-0752017 and managed under cooperative agreement by NEON, Inc. NR 28 TC 7 Z9 7 U1 1 U2 30 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD FEB PY 2013 VL 6 IS 1 SI SI BP 6 EP 14 DI 10.1109/JSTARS.2012.2215582 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 110UG UT WOS:000316471600002 ER PT J AU Rosette, J North, PRJ Rubio-Gil, J Cook, B Los, S Suarez, J Sun, GQ Ranson, J Blair, JB AF Rosette, Jacqueline North, Peter R. J. Rubio-Gil, Jeremy Cook, Bruce Los, Sietse Suarez, Juan Sun, Guoqing Ranson, Jon Blair, J. Bryan TI Evaluating Prospects for Improved Forest Parameter Retrieval From Satellite LiDAR Using a Physically-Based Radiative Transfer Model SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Forest biophysical parameter estimation; landcover type; radiative transfer modeling; satellite lidar; slope ID WAVE-FORM LIDAR; VEGETATION HEIGHT; LASER ALTIMETER; AVHRR DATA; VALIDATION; TOPOGRAPHY; AIRBORNE; BIOMASS; CANOPIES; CARBON AB A space-based full-waveform LiDAR system, optimised for vegetation analysis, offers the opportunity for global biophysical parameter retrieval of the world's forests. However the conditions under which signals from the ground and vegetation can be detected will vary as a result of sensor specifications, vegetation characteristics and underlying surface properties. This paper demonstrates the utility of a ray tracing radiative transfer model for assessing sensitivity to site-specific conditions (e. g., topography, canopy and ground reflectance) that will improve our ability to estimate structural parameters in forest ecosystems. Specifications for the LiDAR instrument planned for NASA's Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission, a vegetation-focused mission that was cancelled in 2011, were used to explore the effect of slope on the estimation of vegetation height. Slope was a limitation for NASA's previous satellite LiDAR mission, ICESat, which used a large, 70 m footprint, designed primarily for cryospheric applications. Simulations with the FLIGHT model suggested that the smaller footprint (similar to 25 m diameter) would enable ground to be reliably identified with automated peak-finding algorithms for canopy cover of 77% and slopes up to 30 degrees. The challenging objective of detecting a ground signal for almost complete canopy closure of 98% was achieved in the simulations for slopes up to 10 degrees. These results suggest that a satellite LiDAR instrument optimised for vegetation analysis will provide good estimates of vegetation height for all but the most extreme forest environments. The reduced footprint diameter in comparison with the ICESat instrument, GLAS, and continuous along-track sampling will provide a unique dataset to allow improved confidence of the distribution of forest parameters. C1 [Rosette, Jacqueline] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [North, Peter R. J.; Los, Sietse] Swansea Univ, Swansea SA2 8PP, W Glam, Wales. [Rosette, Jacqueline; Suarez, Juan] Forest Res Northern Res Stn, Roslin EH25 9SY, Midlothian, Scotland. [Rubio-Gil, Jeremy] Univ Toulouse, Ctr Etud Spatiales BIOsphere CESBIO, Toulouse, France. [Rubio-Gil, Jeremy] Univ Maryland, Greenbelt, MD 20771 USA. [Rubio-Gil, Jeremy; Cook, Bruce; Sun, Guoqing; Ranson, Jon; Blair, J. Bryan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rosette, J (reprint author), Swansea Univ, Swansea SA2 8PP, W Glam, Wales. EM j.a.rosette@swansea.ac.uk; p.r.j.north@swansea.ac.uk; jeremy.rubio-1@nasa.gov; bruce.cook@nasa.gov; s.o.los@swansea.ac.uk; juan.suarez@forestry.gsi.gov.uk; guoqing.sun-1@nasa.gov; kenneth.j.ranson@nasa.gov; james.b.blair@nasa.gov RI Los, Sietse/G-8985-2012; Blair, James/D-3881-2013; Cook, Bruce/M-4828-2013; North, Peter/A-1616-2009; Beckley, Matthew/D-4547-2013; OI Cook, Bruce/0000-0002-8528-000X; North, Peter/0000-0001-9933-6935; Los, Sietse/0000-0002-1325-3555 FU NASA DESDynI LiDAR Project; NASA's Carbon Monitoring System initiative; U.K. Natural Environment Research Council [NE/F021437/1] FX This work was supported by the former NASA DESDynI LiDAR Project, NASA's Carbon Monitoring System initiative and the U.K. Natural Environment Research Council [NE/F021437/1]. NR 39 TC 9 Z9 10 U1 3 U2 58 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD FEB PY 2013 VL 6 IS 1 SI SI BP 45 EP 53 DI 10.1109/JSTARS.2013.2244199 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 110UG UT WOS:000316471600006 ER PT J AU Vadrevu, KP Csiszar, I Ellicott, E Giglio, L Badarinath, KVS Vermote, E Justice, C AF Vadrevu, Krishna Prasad Csiszar, Ivan Ellicott, Evan Giglio, Louis Badarinath, K. V. S. Vermote, Eric Justice, Chris TI Hotspot Analysis of Vegetation Fires and Intensity in the Indian Region SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Fires; FRP; India; vegetation ID BOREAL FOREST; MODIS; BIOMASS; LANDSCAPE; EMISSIONS; DYNAMICS; TROPICS; ECOSYSTEM; SAVANNA; FLORIDA AB In this study, we quantify vegetation fire activity in India using the MODerate resolution Imaging Spectroradiometer (MODIS) active fire datasets. We assessed different fire regime attributes, i.e., fire frequency, seasonality, intensity and the type of vegetation burnt in diverse geographical regions. MODIS data from 2002-2010 revealed an average of 63696 fire counts per year with the highest during 2009. Fire season in India extends from October to June with the peak during March. The K-means algorithm identified hotspot regions of fire clusters in diverse regions of India. We examined fire radiative power (FRP) data in the hotspot regions to address which fires burn intensively than others based on the vegetation type. We first assessed the best statistical fit distributions for the FRP data using the probability density functions (PDFs) and ranked them based on Kolmogorov-Smirnov statistic. We then described the fire intensities using empirical cumulative distribution functions (CDFs). Results suggest diverse pdfs for the FRP data that included Burr, Dagum, Johnson as well as Pearson distribution and they varied based on the vegetation type burnt. Analysis from empirical CDFs suggested relatively high fire intensity for closed broadleaved evergreen/ semi-deciduous forests than the other vegetation types. Although, annual sum of FRP for agricultural fires was less than the closed broadleaved evergreen forests, the values were higher than the mosaic vegetation category and broadleaved deciduous forests. These results on fire hotspots and FRP will be useful to address the impact of vegetation fires on air pollution and climate in India. C1 [Vadrevu, Krishna Prasad; Ellicott, Evan; Giglio, Louis; Vermote, Eric; Justice, Chris] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Csiszar, Ivan] NOAA, Satellite Meteorol & Climatol Div, NESDIS Ctr Satellite Applicat & Res, Camp Springs, MD 20746 USA. [Giglio, Louis] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Badarinath, K. V. S.] Govt India, Natl Remote Sensing Ctr, Dept Space, Hyderabad, Andhra Pradesh, India. RP Vadrevu, KP (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. RI Csiszar, Ivan/D-2396-2010; OI Vadrevu, Krishna/0000-0003-4407-5605 FU NASA [NNX10AU77G] FX This work was supported by NASA grant NNX10AU77G. NR 63 TC 9 Z9 9 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD FEB PY 2013 VL 6 IS 1 SI SI BP 224 EP 238 DI 10.1109/JSTARS.2012.2210699 PG 15 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 110UG UT WOS:000316471600023 ER PT J AU Vaishampayan, P Probst, AJ La Duc, MT Bargoma, E Benardini, JN Andersen, GL Venkateswaran, K AF Vaishampayan, Parag Probst, Alexander J. La Duc, Myron T. Bargoma, Emilee Benardini, James N. Andersen, Gary L. Venkateswaran, Kasthuri TI New perspectives on viable microbial communities in low-biomass cleanroom environments SO ISME JOURNAL LA English DT Article DE viability; microarray; 454 pyrosequencing; PMA; PhyloChip; 16S rRNA gene ID RIBOSOMAL-RNA GENES; PROPIDIUM MONOAZIDE; QUANTITATIVE PCR; WATER SAMPLES; ETHIDIUM MONOAZIDE; CLONE LIBRARY; DEEP-SEA; BACTERIA; DIVERSITY; SPACECRAFT AB The advent of phylogenetic DNA microarrays and high-throughput pyrosequencing technologies has dramatically increased the resolution and accuracy of detection of distinct microbial lineages in mixed microbial assemblages. Despite an expanding array of approaches for detecting microbes in a given sample, rapid and robust means of assessing the differential viability of these cells, as a function of phylogenetic lineage, remain elusive. In this study, pre-PCR propidium monoazide (PMA) treatment was coupled with downstream pyrosequencing and PhyloChip DNA microarray analyses to better understand the frequency, diversity and distribution of viable bacteria in spacecraft assembly cleanrooms. Sample fractions not treated with PMA, which were indicative of the presence of both live and dead cells, yielded a great abundance of highly diverse bacterial pyrosequences. In contrast, only 1% to 10% of all of the pyrosequencing reads, arising from a few robust bacterial lineages, originated from sample fractions that had been pre-treated with PMA. The results of PhyloChip analyses of PMA-treated and -untreated sample fractions were in agreement with those of pyrosequencing. The viable bacterial population detected in cleanrooms devoid of spacecraft hardware was far more diverse than that observed in cleanrooms that housed mission-critical spacecraft hardware. The latter was dominated by hardy, robust organisms previously reported to survive in oligotrophic cleanroom environments. Presented here are the findings of the first ever comprehensive effort to assess the viability of cells in low-biomass environmental samples, and correlate differential viability with phylogenetic affiliation. The ISME Journal (2013) 7, 312-324; doi: 10.1038/ismej.2012.114; published online 11 October 2012 C1 [Vaishampayan, Parag; La Duc, Myron T.; Bargoma, Emilee; Benardini, James N.; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [Probst, Alexander J.] Univ Regensburg, Dept Microbiol, D-93053 Regensburg, Germany. [Probst, Alexander J.] Univ Regensburg, Archaea Ctr, D-93053 Regensburg, Germany. [Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89-108,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov RI Andersen, Gary/G-2792-2015; Probst, Alexander/K-2813-2016 OI Andersen, Gary/0000-0002-1618-9827; FU German National Academic Foundation (Studienstiftung des deutschen Volkes) FX Part of the research described in this study was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. AJP's contribution was supported by the German National Academic Foundation (Studienstiftung des deutschen Volkes). We are grateful to T DeSantis, L Tom, for PhyloChip analyses, S Westcott and P Schloss, for pyrosequence analysis, J Andy Spry and K Buxbaum for valuable advice and guidance. We thank M Cooper and C Stam for assistance with sample collection and processing, and acknowledge Y Sun at Research and Technology Laboratory for all next-generation sequencing and assistance with TEFAP analyses. NR 59 TC 25 Z9 25 U1 1 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 J9 ISME J JI ISME J. PD FEB PY 2013 VL 7 IS 2 BP 312 EP 324 DI 10.1038/ismej.2012.114 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 114EI UT WOS:000316723300009 PM 23051695 ER PT J AU Ham, YG Kug, JS Park, JY Jin, FF AF Ham, Yoo-Geun Kug, Jong-Seong Park, Jong-Yeon Jin, Fei-Fei TI Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/Southern Oscillation events SO NATURE GEOSCIENCE LA English DT Article ID NINO-SOUTHERN-OSCILLATION; INDIAN-OCEAN; WARM POOL; VARIABILITY; ENSO; PACIFIC; SST; CIRCULATION; RAINFALL; CLIMATE AB El Nino events, the warm phase of the El Nino/Southern Oscillation (ENSO), are known to affect other tropical ocean basins through teleconnections. Conversely, mounting evidence suggests that temperature variability in the Atlantic Ocean may also influence ENSO variability(1-5). Here we use reanalysis data and general circulation models to show that sea surface temperature anomalies in the north tropical Atlantic during the boreal spring can serve as a trigger for ENSO events. We identify a subtropical teleconnection in which spring warming in the north tropical Atlantic can induce a low-level cyclonic atmospheric flow over the eastern Pacific Ocean that in turn produces a low-level anticyclonic flow over the western Pacific during the following months. This flow generates easterly winds over the western equatorial Pacific that cool the equatorial Pacific and may trigger a La Nina event the following winter. In addition, El Nino events led by cold anomalies in the north tropical Atlantic tend to be warm-pool El Nino events, with a centre of action located in the central Pacific(6,7), rather than canonical El Nino events. We suggest that the identification of temperature anomalies in the north tropical Atlantic could help to forecast the development of different types of El Nino event. C1 [Ham, Yoo-Geun] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD 20771 USA. [Ham, Yoo-Geun] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kug, Jong-Seong; Park, Jong-Yeon] Korea Inst Ocean Sci & Technol, Ansan 426744, South Korea. [Jin, Fei-Fei] Univ Hawaii, Dept Meteorol, Honolulu, HI 96822 USA. RP Ham, YG (reprint author), NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD 20771 USA. EM jskug@kiost.ac RI KUG, JONG-SEONG/A-8053-2013 FU National Research Foundation of Korea [NRF-2009-C1AAA001-2009-0093042]; Korean government (MEST); KIOST [PE98801]; US NSF [ATM1034798]; US Department of Energy [DESC005110]; US NOAA [NA10OAR4310200] FX This work was supported by the National Research Foundation of Korea (Grant NRF-2009-C1AAA001-2009-0093042) funded by the Korean government (MEST), and KIOST (PE98801). F.F.J. was supported by US NSF grant ATM1034798, US Department of Energy grant DESC005110 and US NOAA grant NA10OAR4310200. NR 30 TC 51 Z9 53 U1 6 U2 39 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD FEB PY 2013 VL 6 IS 2 BP 112 EP 116 DI 10.1038/NGEO1686 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 117HO UT WOS:000316944400015 ER PT J AU Michalski, JR Cuadros, J Niles, PB Parnell, J Rogers, AD Wright, SP AF Michalski, Joseph R. Cuadros, Javier Niles, Paul B. Parnell, John Rogers, A. Deanne Wright, Shawn P. TI Groundwater activity on Mars and implications for a deep biosphere SO NATURE GEOSCIENCE LA English DT Article ID MERIDIANI PLANUM; IMPACT CRATERS; HIGH OBLIQUITY; ARABIA TERRA; SUBSURFACE; ICE; LIFE; HISTORY; WATER; PHYLLOSILICATES AB By the time eukaryotic life or photosynthesis evolved on Earth, the martian surface had become extremely inhospitable, but the subsurface of Mars could potentially have contained a vast microbial biosphere. Crustal fluids may have welled up from the subsurface to alter and cement surface sediments, potentially preserving clues to subsurface habitability. Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins. Many ancient, deep basins lack evidence for groundwater activity. However, McLaughlin Crater, one of the deepest craters on Mars, contains evidence for Mg-Fe-bearing clays and carbonates that probably formed in an alkaline, groundwater-fed lacustrine setting. This environment strongly contrasts with the acidic, water-limited environments implied by the presence of sulphate deposits that have previously been suggested to form owing to groundwater upwelling. Deposits formed as a result of groundwater upwelling on Mars, such as those in McLaughlin Crater, could preserve critical evidence of a deep biosphere on Mars. We suggest that groundwater upwelling on Mars may have occurred sporadically on local scales, rather than at regional or global scales. C1 [Michalski, Joseph R.; Cuadros, Javier] Nat Hist Museum, Dept Earth Sci, London SW7 5BD, England. [Michalski, Joseph R.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Parnell, John] Univ Aberdeen, Aberdeen AB24 3UE, Scotland. [Rogers, A. Deanne] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Wright, Shawn P.] Auburn Univ, Auburn, AL 36849 USA. RP Michalski, JR (reprint author), Nat Hist Museum, Dept Earth Sci, Cromwell Rd, London SW7 5BD, England. EM michalski@psi.edu RI Rogers, Deanne/I-9737-2016 OI Rogers, Deanne/0000-0002-4671-2551 FU NASA; European Commission FX We thank S. Clifford and K. Lewis for comments that greatly improved the manuscript. We acknowledge NASA's Mars Data Analysis Program and the European Commission Marie Curie Actions for funding of various portions of this research. NR 50 TC 55 Z9 56 U1 9 U2 77 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD FEB PY 2013 VL 6 IS 2 BP 133 EP 138 DI 10.1038/NGEO1706 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 117HO UT WOS:000316944400020 ER PT J AU Aunai, N Hesse, M Zenitani, S Kuznetsova, M Black, C Evans, R Smets, R AF Aunai, Nicolas Hesse, Michael Zenitani, Seiji Kuznetsova, Maria Black, Carrie Evans, Rebekah Smets, Roch TI Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON PHYSICS; MAGNETOPAUSE; TRANSPORT; DENSITY; PLASMAS; LAYER AB Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792250] C1 [Aunai, Nicolas; Hesse, Michael; Kuznetsova, Maria; Black, Carrie; Evans, Rebekah] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Zenitani, Seiji] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Smets, Roch] Univ Paris 06, Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France. RP Aunai, N (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Code 674, Greenbelt, MD 20771 USA. EM nicolas.aunai@nasa.gov RI Zenitani, Seiji/D-7988-2013; feggans, john/F-5370-2012; NASA MMS, Science Team/J-5393-2013 OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA FX Three of us (N.A., C.B., and R.E.) acknowledge support from the NASA postdoctoral program. M.H. acknowledges support from the theory and modeling group of NASA's MMS. NR 30 TC 12 Z9 12 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022902 DI 10.1063/1.4792250 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800049 ER PT J AU Khazanov, GV Krivorutsky, EN AF Khazanov, G. V. Krivorutsky, E. N. TI Ponderomotive force in the presence of electric fields SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC-FIELD; ACCELERATION; PLASMA; WAVE AB This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an (E) over right arrow x (B) over right arrow B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces. [http://dx.doi.org/10.1063/1.4789874] C1 [Khazanov, G. V.; Krivorutsky, E. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Khazanov, GV (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI feggans, john/F-5370-2012 FU National Aeronautics and Space Administration SMD/Heliophysics Supporting Research program for Geospace SRT FX This material is based upon work supported by the National Aeronautics and Space Administration SMD/Heliophysics Supporting Research program for Geospace SR&T. We are grateful to Robert F. Benson and both referees for helpful comments. NR 15 TC 1 Z9 1 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022903 DI 10.1063/1.4789874 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800050 ER PT J AU DiRienzi, J Drachman, RJ AF DiRienzi, Joseph Drachman, Richard J. TI Inclusion of a Coulomb interaction potential in a variational model for positronium-helium scattering SO CANADIAN JOURNAL OF PHYSICS LA English DT Article ID ORTHOPOSITRONIUM; HE AB While carrying out investigations on Ps-He scattering it was discovered that it would be possible to improve the results of a previous work on zero-energy scattering of ortho-positronium by helium atoms. The previous work used a model to account for exchange and also attempted to include the effect of short-range Coulomb interactions in the close-coupling approximation. The three terms that were then included did not produce a well-converged result but served to give some justification to the model. Now we improve the calculation by using a simple variational wave function, and derive a much better value of the scattering length. The new result is compared with other computed values, and when an approximate correction due to the van der Waals potential is included the total is consistent with an earlier conjecture. C1 [DiRienzi, Joseph] Notre Dame Maryland Univ, Baltimore, MD 21210 USA. [Drachman, Richard J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Drachman, RJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM richard.j.drachman@nasa.gov NR 16 TC 0 Z9 0 U1 1 U2 9 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4204 J9 CAN J PHYS JI Can. J. Phys. PD FEB PY 2013 VL 91 IS 2 BP 188 EP 190 DI 10.1139/cjp-2012-0430 PG 3 WC Physics, Multidisciplinary SC Physics GA 105GO UT WOS:000316054700014 ER PT J AU Lani, A Sjogreen, B Yee, HC Henshaw, WD AF Lani, Andrea Sjoegreen, Bjoern Yee, H. C. Henshaw, William D. TI Variable High-Order Multiblock Overlapping Grid Methods for Mixed Steady and Unsteady Multiscale Viscous Flows, Part II: Hypersonic Nonequilibrium Flows SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Unstructured mesh; hypersonic flows; thermo-chemical nonequilibrium; residual distribution schemes; double cone ID NUMERICAL DISSIPATION; SCHEMES; MESHES AB The variable high-order multiblock overlapping (overset) grids method of Sjogreen & Yee [CiCP, Vol. 5, 2009] for a perfect gas has been extended to nonequilibrium flows. This work makes use of the recently developed high-order well-balanced shock-capturing schemes and their filter counterparts [Wang et al., J. Comput. Phys., 2009, 2010] that exactly preserve certain non-trivial steady state solutions of the chemical nonequilibrium governing equations. Multiscale turbulence with strong shocks and flows containing both steady and unsteady components is best treated by mixing of numerical methods and switching on the appropriate scheme in the appropriate subdomains of the flow fields, even under the multiblock grid or adaptive grid refinement framework. While low dissipative sixth- or higher-order shock-capturing filter methods are appropriate for unsteady turbulence with shocklets, second- and third-order shock-capturing methods are more effective for strong steady or nearly steady shocks in terms of convergence. It is anticipated that our variable high-order overset grid framework capability with its highly modular design will allow for an optimum synthesis of these new algorithms in such a way that the most appropriate spatial discretizations can be tailored for each particular region of the flow. In this paper some of the latest developments in single block high-order filter schemes for chemical nonequilibrium flows are applied to overset grid geometries. The numerical approach is validated on a number of test cases characterized by hypersonic conditions with strong shocks, including the reentry flow surrounding a 3D Apollo-like NASA Crew Exploration Vehicle that might contain mixed steady and unsteady components, depending on the flow conditions. C1 [Lani, Andrea] NASA Ames Stanford Ctr Turbulence Res, Palo Alto, CA USA. [Sjoegreen, Bjoern; Henshaw, William D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Yee, H. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lani, A (reprint author), NASA Ames Stanford Ctr Turbulence Res, Palo Alto, CA USA. EM alani0@stanford.edu; sjogreen2@llnl.gov; helen.m.yee@nasa.gov; henshaw@llnl.gov OI Lani, Andrea/0000-0003-4017-215X FU DOE/SciDAC SAP grant [DE-AI02-06ER25796]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to express their gratitude to A. Lazanoff and J. Chang of the Scientific Consultant Group, Code TN, NASA Ames and their help. The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged. Work by the second and fourth authors was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Part of the work by the third author was performed under NASA Fundamental Aeronautics Hypersonic Program. Special thanks to Wei Wang, former CTR postdoc, who implemented all WENO schemes for nonequilibrium flows. NR 37 TC 2 Z9 2 U1 1 U2 12 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2013 VL 13 IS 2 BP 583 EP 602 DI 10.4208/cicp.240811.090312a PG 20 WC Physics, Mathematical SC Physics GA 104ID UT WOS:000315984700013 ER PT J AU Llovel, W Fukumori, I Meyssignac, B AF Llovel, W. Fukumori, I. Meyssignac, B. TI Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010 SO GLOBAL AND PLANETARY CHANGE LA English DT Article DE Thermosteric mean sea level; Reconstructed mean sea level; Sea level budget; Depth-dependent temperature changes ID OCEAN; REEVALUATION; BUDGET; HEAT AB The dependency of global mean thermosteric sea level changes to temperature at different depths down to 700 m is investigated from 1960 to 2010 using two separate gridded temperature datasets, and compared with reconstructed estimates of sea level change. The rates of thermosteric sea level changes are closely correlated with those of reconstructed sea level changes with correlation coefficients larger than 0.8, but the former has smaller amplitudes than the latter, indicating contributions to total sea level change from processes other than upper ocean temperature changes examined here. Most of the net thermosteric sea level rise (similar to 92%) can be attributed to temperature changes of the upper ocean (0-300 m), but an intriguing temporal lag is found between thermal anomalies of the upper (0-300 m) and lower (300-700 m) layers in the historical temperature datasets, suggestive of a time-lag associated with heat penetrating from the surface into deeper layers of the ocean. Results of global mean thermosteric sea level estimates from the two different temperature datasets are found to be consistent with each other in time and in depth. Published by Elsevier B.V. C1 [Llovel, W.; Fukumori, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Meyssignac, B.] Univ Toulouse, UPS OMP PCA, LEGOS, F-31400 Toulouse, France. [Meyssignac, B.] LEGOS, CNES, F-31400 Toulouse, France. RP Llovel, W (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM william.llovel@jpl.nasa.gov RI Meyssignac, Benoit/O-1910-2015; LLOVEL, William/G-6930-2016 FU Oak Ridge Associated Universities through the NASA Postdoctoral Program (NPP) FX William Llovel is supported by Oak Ridge Associated Universities through the NASA Postdoctoral Program (NPP) and carried out by the Jet Propulsion Laboratory, California Institute of Technology. The authors thank Tim Boyer for providing temperature anomaly errors from World Ocean Database (2009). We would like to thank CK Shum and an anonymous reviewer for their fruitful comments. NR 25 TC 6 Z9 6 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8181 EI 1872-6364 J9 GLOBAL PLANET CHANGE JI Glob. Planet. Change PD FEB PY 2013 VL 101 BP 113 EP 118 DI 10.1016/j.gloplacha.2012.12.011 PG 6 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 110DU UT WOS:000316423600009 ER PT J AU Bunderson, L Luvall, J Van De Water, P Levetin, E AF Bunderson, Landon Luvall, Jeffrey Van De Water, Peter Levetin, Estelle TI Juniper Pollen Hotspots in the Southwest SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American Academy of Allergy, Asthma and Immunology (AAAAI) CY FEB 22-26, 2013 CL San Antonio, TX SP Amer Acad Allergy, Asthma & Immunol (AAAAI) C1 [Bunderson, Landon; Levetin, Estelle] Univ Tulsa, Tulsa, OK 74104 USA. [Luvall, Jeffrey] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Van De Water, Peter] Calif State Univ Fresno, Fresno, CA 93740 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0091-6749 J9 J ALLERGY CLIN IMMUN JI J. Allergy Clin. Immunol. PD FEB PY 2013 VL 131 IS 2 SU S BP AB81 EP AB81 PG 1 WC Allergy; Immunology SC Allergy; Immunology GA 111WC UT WOS:000316550800293 ER PT J AU Crucian, B Zwart, S Mehta, S Stowe, R Uchakin, P Quiriarte, H Pierson, D Smith, SM Sams, C AF Crucian, Brian Zwart, Sara Mehta, Satish Stowe, Raymond Uchakin, Peter Quiriarte, Heather Pierson, Duane Smith, Scott M. Sams, Clarence TI Immune System Dysregulation Persists During Long-Duration Spaceflight SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American Academy of Allergy, Asthma and Immunology (AAAAI) CY FEB 22-26, 2013 CL San Antonio, TX SP Amer Acad Allergy, Asthma & Immunol (AAAAI) C1 [Crucian, Brian; Pierson, Duane; Smith, Scott M.; Sams, Clarence] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zwart, Sara] Univ Space Res Assoc, Houston, TX USA. [Mehta, Satish] Enterprise Advisory Serv Inc, Houston, TX USA. [Stowe, Raymond] Microgen Labs, La Marque, TX USA. [Uchakin, Peter] Mercer Univ, Macon, GA 31207 USA. [Quiriarte, Heather] JES Tech, Houston, TX USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0091-6749 J9 J ALLERGY CLIN IMMUN JI J. Allergy Clin. Immunol. PD FEB PY 2013 VL 131 IS 2 SU S BP AB210 EP AB210 PG 1 WC Allergy; Immunology SC Allergy; Immunology GA 111WC UT WOS:000316550800747 ER PT J AU Yim, KB Yim, JT AF Yim, K. B. Yim, J. T. TI Dynamic stability of a rotor with shear-flexible shaft under axial loads SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY LA English DT Article DE Dynamic stability; Shear deformation; Axial force; Transfer matrix method ID OVERHUNG ROTORS; TORQUE; FORCE AB The dynamic stability of shear-flexible rotating shaft with a disk under axial forces has been studied by employing the transfer matrix method. The conventional transfer matrix was modified to include both the applied axial force and the shear deformation. The shear effect is considered based on Engesser's and Haringx's buckling theories for shear-flexible beam. A computer program was developed to investigate the influence of both the axial force and the shear deformation on the stability and the natural frequencies of general rotor systems. Two rotor system models are considered: the overhung rotor with or without an intermediate support and the simply supported Jeffcott rotor. The effect of shear deformation and the difference between the Engesser and Haringx approaches increase with an intermediate support for an overhung rotor. C1 [Yim, K. B.] Dongyang Mirae Univ, Sch Mech Engn, Seoul 152714, South Korea. [Yim, J. T.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Yim, KB (reprint author), Dongyang Mirae Univ, Sch Mech Engn, Seoul 152714, South Korea. EM kbyim@dongyang.ac.kr FU Dongyang Mirae University FX This work was supported by Dongyang Mirae University. NR 15 TC 3 Z9 3 U1 3 U2 15 PU KOREAN SOC MECHANICAL ENGINEERS PI SEOUL PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 1738-494X J9 J MECH SCI TECHNOL JI J. Mech. Sci. Technol. PD FEB PY 2013 VL 27 IS 2 BP 359 EP 366 DI 10.1007/s12206-013-0102-2 PG 8 WC Engineering, Mechanical SC Engineering GA 106BX UT WOS:000316117500009 ER PT J AU Scott, JM Lakoski, S Mackey, JR Douglas, PS Haykowsky, MJ Jones, LW AF Scott, Jessica M. Lakoski, Susan Mackey, John R. Douglas, Pamela S. Haykowsky, Mark J. Jones, Lee W. TI The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics SO ONCOLOGIST LA English DT Article DE Exercise; Cardiotoxicity; Molecular therapeutics; Solid malignancies ID ENDOTHELIAL GROWTH-FACTOR; METASTATIC BREAST-CANCER; TYROSINE KINASE INHIBITOR; RENAL-CELL CARCINOMA; TRANSCRIPTIONAL COACTIVATOR PGC-1-ALPHA; LEFT-VENTRICULAR HYPERTROPHY; HEART-FAILURE PATIENTS; NITRIC-OXIDE SYNTHASE; EMBRYONIC STEM-CELLS; PHASE-III TRIAL AB Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathway simplicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. The Oncologist 2013;18:221-231 C1 [Scott, Jessica M.] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA. [Lakoski, Susan] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA. [Mackey, John R.; Haykowsky, Mark J.] Univ Alberta, Edmonton, AB, Canada. [Douglas, Pamela S.; Jones, Lee W.] Duke Univ, Med Ctr, Durham, NC USA. RP Scott, JM (reprint author), NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jessica.m.scott@nasa.gov FU National Cancer Institute [CA143254, CA142566, CA138634, CA133895, CA164751]; funds from George and Susan Beischer; Natural Sciences and Engineering Research Council FX This work is supported in part by grants from the National Cancer Institute (CA143254, CA142566, CA138634, CA133895, CA164751 to L.W.J.), funds from George and Susan Beischer (L.W.J.), and a Natural Sciences and Engineering Research Council postdoctoral fellowship (J.M.S.). NR 141 TC 11 Z9 12 U1 0 U2 7 PU ALPHAMED PRESS PI DURHAM PA 318 BLACKWELL ST, STE 260, DURHAM, NC 27701-2884 USA SN 1083-7159 EI 1549-490X J9 ONCOLOGIST JI Oncologist PD FEB PY 2013 VL 18 IS 2 BP 221 EP 231 DI 10.1634/theoncologist.2012-0226 PG 11 WC Oncology SC Oncology GA 102YJ UT WOS:000315880300014 PM 23335619 ER PT J AU Baek, CK Kang, D Kim, J Jin, B Rim, T Park, S Meyyappan, M Jeong, YH Lee, JS AF Baek, Chang-Ki Kang, Daegun Kim, JeongSik Jin, Bo Rim, Taiuk Park, Sooyoung Meyyappan, M. Jeong, Yoon-Ha Lee, Jeong-Soo TI Improved performance of In2Se3 nanowire phase-change memory with SiO2 passivation SO SOLID-STATE ELECTRONICS LA English DT Article DE In2Se3 nanowire; Phase change memory; SiO2 passivation; Chalcogenide; Low frequency noise ID DEVICES AB The resistive switching and low frequency noise characteristics in In2Se3 nanowire PRAM devices with SiO2 passivation have been studied. The SiO2 passivation of the nanowires was adopted to lessen the thermal energy dissipation to the surroundings and as a result, the set/reset voltages and the corresponding power requirements have been reduced. The measured low frequency noise characteristics exhibit a typical 1/f noise behavior and show the same noise level after the SiO2 passivation. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Baek, Chang-Ki; Park, Sooyoung; Jeong, Yoon-Ha] Pohang Univ Sci & Technol POSTECH, Dept Creat IT Excellence Engn, Pohang 790784, South Korea. [Baek, Chang-Ki; Park, Sooyoung; Jeong, Yoon-Ha] Pohang Univ Sci & Technol POSTECH, Future IT Innovat Lab I Lab, Pohang 790784, South Korea. [Kang, Daegun; Rim, Taiuk] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 790784, South Korea. [Kim, JeongSik; Jin, Bo; Meyyappan, M.; Lee, Jeong-Soo] Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Pohang 790784, South Korea. [Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lee, JS (reprint author), Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Pohang 790784, South Korea. EM baekck@postech.ac.kr; ljs6951@postech.ac.kr FU Brain Korea 21 program, a World Class University program; Ministry of Education, Science and Technology through the National Research Foundation of Korea [R31-2008-000-10100-0]; MKE (The Ministry of Knowledge Economy), Korea [C1515-11221-0003]; Korea Institute for Advanced Study (KIAS); National Research Foundation of Korea; Korean Government [2010-0028110] FX This research was supported by Brain Korea 21 program, a World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-2008-000-10100-0), the MKE (The Ministry of Knowledge Economy), Korea, under the "IT Consilience Creative Program" support program supervised by the NIPA (National IT Industry Promotion Agency) (C1515-11221-0003), the Korea Institute for Advanced Study (KIAS) and the National Research Foundation of Korea Grant funded by the Korean Government (2010-0028110). NR 21 TC 12 Z9 12 U1 1 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1101 J9 SOLID STATE ELECTRON JI Solid-State Electron. PD FEB PY 2013 VL 80 BP 10 EP 13 DI 10.1016/j.sse.2012.10.007 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied; Physics, Condensed Matter SC Engineering; Physics GA 102IJ UT WOS:000315838000003 ER PT J AU Hu, XF Waller, LA Al-Hamdan, MZ Crosson, WL Estes, MG Estes, SM Quattrochi, DA Sarnat, JA Liu, Y AF Hu, Xuefei Waller, Lance A. Al-Hamdan, Mohammad Z. Crosson, William L. Estes, Maurice G., Jr. Estes, Sue M. Quattrochi, Dale A. Sarnat, Jeremy A. Liu, Yang TI Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression SO ENVIRONMENTAL RESEARCH LA English DT Article DE PM2.5; MODIS; Remote sensing; Aerosol optical depth; Geographically weighted regression ID AEROSOL OPTICAL DEPTH; PARTICULATE AIR-POLLUTION; MATTER COMPONENT CONCENTRATIONS; UNITED-STATES; MODIS; HEALTH; REANALYSIS; COORDINATE; EXPOSURE; MODEL AB Most of currently reported models for predicting PM2.5 concentrations from satellite retrievals of aerosol optical depth are global methods without considering local variations, which might introduce significant biases into prediction results. In this paper, a geographically weighted regression model was developed to examine the relationship among PM2.5, aerosol optical depth, meteorological parameters, and land use information. Additionally, two meteorological datasets, North American Regional Reanalysis and North American Land Data Assimilation System, were fitted into the model separately to compare their performances. The study area is centered at the Atlanta Metro area, and data were collected from various sources for the year 2003. The results showed that the mean local R-2 of the models using North American Regional Reanalysis was 0.60 and those using North American Land Data Assimilation System reached 0.61. The root mean squared prediction error showed that the prediction accuracy was 82.7% and 83.0% for North American Regional Reanalysis and North American Land Data Assimilation System in model fitting, respectively, and 69.7% and 72.1% in cross validation. The results indicated that geographically weighted regression combined with aerosol optical depth, meteorological parameters, and land use information as the predictor variables could generate a better fit and achieve high accuracy in PM2.5 exposure estimation, and North American Land Data Assimilation System could be used as an alternative of North American Regional Reanalysis to provide some of the meteorological fields. (C) 2012 Elsevier Inc. All rights reserved. C1 [Hu, Xuefei; Sarnat, Jeremy A.; Liu, Yang] Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA. [Waller, Lance A.] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA. [Al-Hamdan, Mohammad Z.; Crosson, William L.; Estes, Maurice G., Jr.; Estes, Sue M.] NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Univ Space Res Assoc, Huntsville, AL 35805 USA. [Quattrochi, Dale A.] NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Earth Sci Off, Huntsville, AL 35805 USA. RP Liu, Y (reprint author), Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, 1518 Clifton Rd NE, Atlanta, GA 30322 USA. EM yang.liu@emory.edu FU NASA Applied Sciences Public Health Program [NNX09AT52G] FX This project is supported and funded by NASA Applied Sciences Public Health Program managed by John Haynes (grant number NNX09AT52G). NR 39 TC 57 Z9 61 U1 9 U2 98 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 J9 ENVIRON RES JI Environ. Res. PD FEB PY 2013 VL 121 BP 1 EP 10 DI 10.1016/j.envres.2012.11.003 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 101CV UT WOS:000315753700001 PM 23219612 ER PT J AU Kharuk, VI Ranson, KJ Oskorbin, PA Im, ST Dvinskaya, ML AF Kharuk, V. I. Ranson, K. J. Oskorbin, P. A. Im, S. T. Dvinskaya, M. L. TI Climate induced birch mortality in Trans-Baikal lake region, Siberia SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article DE Climate-induced tree mortality; Drought impact; Forest die-off; Forest-steppe; Betula pendula ID CANADIAN ASPEN FORESTS; SEVERE DROUGHT; DYNAMICS; STANDS; SWITZERLAND; SOUTHWEST; INDEXES; BIOMASS; IMPACT; GROWTH AB The Trans-Baikal (or Zabailkal'e) region includes the forest-steppe ecotones south and east of Lake Baikal in Russia and has experienced drought for several years. The decline and mortality of birch (Betula pendula) stands within the forest-steppe ecotone Trans-Baikal region was studied based on a temporal series of satellite data, ground measurements, and tree ring analysis. During the first decade of the 21st century birch stands decline and mortality were observed on about 5% of the total area of stands within our 1250 km(2) study area. Birch forest decline and mortality occurs mainly at the margins of stands, within the forest-steppe ecotone on slopes with direct insolation. During the first decade of the 21st century summer (June-August) precipitation was about 25% below normal. Soil water content measurements were lowest within dead stands and highest within healthy stands and intermediate within damaged stands. Drought impact on stands was amplified by an increase in summer air temperatures (+0.9 degrees C) in comparison with the previous decade. Tree ring data of "surviving" and "dead" tree groups showed a positive correlation with summer/annual precipitation and negative correlation with summer air temperatures. Temperature and precipitation extreme anomalies tend to occur in the region with a period of about 27 years. The observed anomaly was the most severe since the beginning of meteorological observations in the year 1900. Data for the other sites showed a positive climate impact on the growth and expansion of Siberian forests. That is, the same species (B. pendula) showed considerable increase (1.4 times both in height and stem volume) during 20th-21st centuries as temperature increased but precipitation remained at adequate levels. (C) 2012 Elsevier B.V. All rights reserved. C1 [Kharuk, V. I.; Oskorbin, P. A.; Im, S. T.; Dvinskaya, M. L.] VN Sukachev Inst Forest, Krasnoyarsk, Russia. [Kharuk, V. I.; Oskorbin, P. A.; Im, S. T.; Dvinskaya, M. L.] Siberian Fed Univ, Krasnoyarsk, Russia. [Ranson, K. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kharuk, VI (reprint author), VN Sukachev Inst Forest, Krasnoyarsk, Russia. EM kharuk@ksc.krasn.ru RI Ranson, Kenneth/G-2446-2012; Im, Sergei/J-2736-2016 OI Ranson, Kenneth/0000-0003-3806-7270; Im, Sergei/0000-0002-5794-7938 FU SB RAS Program [30.3.33]; NASA Science Mission Directorate, Terrestrial Ecology Program FX This research was supported by the SB RAS Program No. 30.3.33, and NASA Science Mission Directorate, Terrestrial Ecology Program. The authors thank Dr. Joanne Howl for editing the manuscript. NR 40 TC 18 Z9 20 U1 0 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD FEB 1 PY 2013 VL 289 BP 385 EP 392 DI 10.1016/j.foreco.2012.10.024 PG 8 WC Forestry SC Forestry GA 099XP UT WOS:000315659500042 ER PT J AU Ruane, AC Major, DC Yu, WH Alam, M Hussain, SG Khan, AS Hassan, A Al Hossain, BMT Goldberg, R Horton, RM Rosenzweig, C AF Ruane, Alex C. Major, David C. Yu, Winston H. Alam, Mozaharul Hussain, Sk. Ghulam Khan, Abu Saleh Hassan, Ahmadul Al Hossain, Bhuiya Md. Tamim Goldberg, Richard Horton, Radley M. Rosenzweig, Cynthia TI Multi-factor impact analysis of agricultural production in Bangladesh with climate change SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Climate change; Climate impacts; Agriculture; Bangladesh; Rice; Wheat; Crop modeling; DSSAT; Floods; Sea level rise; Adaptation ID SYSTEM MODEL; FOOD; ADAPTATION; CROP; EMISSIONS; CO2 AB Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, bora, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21 Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario. Published by Elsevier Ltd. C1 [Ruane, Alex C.; Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Major, David C.; Goldberg, Richard; Horton, Radley M.] Columbia Univ, Earth Inst Ctr Climate Syst Res, New York, NY USA. [Yu, Winston H.] World Bank, Washington, DC 20433 USA. [Alam, Mozaharul] Bangladesh Ctr Adv Studies, Dhaka, Bangladesh. [Hussain, Sk. Ghulam] Bangladesh Agr Res Council, Dhaka, Bangladesh. [Khan, Abu Saleh] Inst Water Modelling, Dhaka, Bangladesh. [Hussain, Sk. Ghulam; Hassan, Ahmadul; Al Hossain, Bhuiya Md. Tamim] CEGIS, Dhaka, Bangladesh. [Alam, Mozaharul] United Nations, Environm Programme, Reg Off Asia & Pacific, Bangkok, Thailand. RP Ruane, AC (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM alexander.c.ruane@nasa.gov FU NASA FX The views expressed herein are those of the authors and do not necessarily reflect the views of their institutions or funders. The authors would like to thank the editors and three anonymous reviewers for their helpful comments and suggestions. This research was supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA, and is a continuation of work initiated by the World Bank. The authors would like to thank Md. Shohel Pervez for his assistance in translating BRRI management guidance, reviewers of the initial World Bank project report that became Yu et al. (2010), World Bank staff in Dhaka, Laura Paulson for map creation, and Gerrit Hoogenboom for his assistance with DSSAT. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. NR 77 TC 13 Z9 13 U1 6 U2 109 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD FEB PY 2013 VL 23 IS 1 BP 338 EP 350 DI 10.1016/j.gloenvcha.2012.09.001 PG 13 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA 099JL UT WOS:000315617200030 ER PT J AU Veverka, J Klaasen, K A'Hearn, M Belton, M Brownlee, D Chesley, S Clark, B Economou, T Farquhar, R Green, SF Groussin, O Harris, A Kissel, J Li, JY Meech, K Melosh, J Richardson, J Schultz, P Silen, J Sunshine, J Thomas, P Bhaskaran, S Bodewits, D Carcich, B Cheuvront, A Farnham, T Sackett, S Wellnitz, D Wolf, A AF Veverka, J. Klaasen, K. A'Hearn, M. Belton, M. Brownlee, D. Chesley, S. Clark, B. Economou, T. Farquhar, R. Green, S. F. Groussin, O. Harris, A. Kissel, J. Li, J. -Y. Meech, K. Melosh, J. Richardson, J. Schultz, P. Silen, J. Sunshine, J. Thomas, P. Bhaskaran, S. Bodewits, D. Carcich, B. Cheuvront, A. Farnham, T. Sackett, S. Wellnitz, D. Wolf, A. TI Return to Comet Tempel 1: Overview of Stardust-NExT results SO ICARUS LA English DT Article DE Comets, dust; Comets, nucleus; Comet Tempel-1; Comet Wild-2 ID INTERSTELLAR DUST ANALYZER; DEEP IMPACT OBSERVATIONS; FLUX MONITOR INSTRUMENT; 81P/WILD 2; SURFACE; SPACECRAFT; MORPHOLOGY; HALLEY; COMET-9P/TEMPEL-1; 9P/TEMPEL-1 AB On February 14, 2011 Stardust-NExT (SN) flew by Comet Tempel 1, the target of the Deep Impact (DI) mission in 2005, obtaining dust measurements and high-resolution images of areas surrounding the 2005 impact site, and extending image coverage to almost two thirds of the nucleus surface. The nucleus has an average radius of 2.83 +/- 0.1 km and a uniform geometric albedo of about 6% at visible wavelengths. Local elevation differences on the nucleus reach up to 830 m. At the time of encounter the spin rate was 213 degrees per day (period = 40.6 h) and the comet was producing some 130 kg of dust per second. Some 30% of the nucleus is covered by smooth flow-like deposits and related materials, restricted to gravitational lows. This distribution is consistent with the view that the smooth areas represent material erupted from the subsurface and date from a time after the nucleus achieved its current shape. It is possible that some of these eruptions occurred after 1609 when the comet's perihelion distance decreased from 3.5 AU to the current 1.5 AU. Much of the surface displays evidence of layering: some related to the smooth flows and some possibly dating back to the accretion of the nucleus. Pitted terrain covers approximately half the nucleus surface. The pits range up to 850 m in diameter. Due to their large number, they are unlikely to be impact scars: rather they probably result from volatile outbursts and sublimational erosion. The DI impact site shows a subdued depression some 50 m in diameter implying surface properties similar to those of dry, loose snow. It is possible that the 50-m depression is all that remains of an initially larger crater. In the region of overlapping DI and SN coverage most of the surface remained unchanged between 2005 and 2011 in albedo, photometric properties and morphology. Significant changes took place only along the edges of a prominent smooth flow estimated to be 10-15 m thick, the margins of which receded in places by up to 50 m. Coma and jet activity were lower in 2011 than in 2005. Most of the jets observed during the SN flyby can be traced back to an apparently eroding terraced scarp. The dust instruments detected bursts of impacts consistent with a process by which larger aggregates of material emitted from the nucleus subsequently fragment into smaller particles within the coma. (c) 2012 Elsevier Inc. All rights reserved. C1 [Veverka, J.; Thomas, P.; Carcich, B.; Sackett, S.] Cornell Univ, Ithaca, NY 14853 USA. [Klaasen, K.; Chesley, S.; Bhaskaran, S.; Wolf, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [A'Hearn, M.; Li, J. -Y.; Sunshine, J.; Bodewits, D.; Farnham, T.; Wellnitz, D.] Univ Maryland, College Pk, MD 20742 USA. [Belton, M.] Belton Space Explorat Initiat, Tucson, AZ 85716 USA. [Brownlee, D.] Univ Washington, Seattle, WA 98195 USA. [Clark, B.] Space Sci Inst, Boulder, CO 80301 USA. [Economou, T.] Univ Chicago, Chicago, IL 60637 USA. [Farquhar, R.] Kinetx, Tempe, AZ 85084 USA. [Green, S. F.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Groussin, O.] Lab Astrophys Marseille, F-13388 Marseille 13, France. [Harris, A.] Space Sci Inst, La Canada Flintridge, CA 91011 USA. [Kissel, J.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Meech, K.] Univ Hawaii, Honolulu, HI 96822 USA. [Melosh, J.; Richardson, J.] Purdue Univ, Lafayette, IN 47907 USA. [Schultz, P.] Brown Univ, Providence, RI 02912 USA. [Silen, J.] Finnish Meteorol Inst, Helsinki 00560, Finland. [Cheuvront, A.] Lockheed Martin, Littleton, CO 80127 USA. RP Veverka, J (reprint author), Cornell Univ, Ithaca, NY 14853 USA. EM veverka@astro.cornell.edu RI Green, Simon/C-7408-2009; OI Bodewits, Dennis/0000-0002-2668-7248 FU NASA; Centre Nationale d'Etudes Spatiales (CNES) FX Stardust-NExT was supported by NASA through its Discovery Program. The Science Team expresses its thanks and acknowledges its debt to the Project Management and Navigation Teams at the Jet Propulsion Laboratory, to the Deep Space Network (DSN), and to the Spacecraft Team at Lockheed Martin Aerospace (LMA) in Denver. We record our special thanks to the world-wide network of observers for providing crucial observations of Tempel 1 to support the determination of the appropriate time-of-arrival at the comet. Part of the research described was carried out at JPL under contract with NASA. O. Groussin's participation in the project was supported by the Centre Nationale d'Etudes Spatiales (CNES). NR 48 TC 24 Z9 24 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 424 EP 435 DI 10.1016/j.icarus.2012.03.034 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800002 ER PT J AU Klaasen, KP Brown, D Carcich, B Farnham, T Owen, W Thomas, P AF Klaasen, Kenneth P. Brown, David Carcich, Brian Farnham, Tony Owen, William Thomas, Peter TI Stardust-NExT NAVCAM calibration and performance SO ICARUS LA English DT Article DE Comet Tempel 1; Instrumentation; Data reduction techniques ID JUPITER AB NASA's Stardust-NExT mission used the Stardust spacecraft to deliver a scientific payload, including a panchromatic visible camera designated NAVCAM, to a close flyby of Comet 9P/Tempel 1 in February 2011. Proper interpretation of the NAVCAM images depends on accurate calibration of the camera performance. While the NAVCAM had been calibrated during the primary Stardust mission to Comet 81P/Wild 2 in 2004, that calibration was incomplete and somewhat lacking in fidelity. Substantial improvements in the NAVCAM calibration were achieved during Stardust-NExT in the areas of geometric correction, spatial resolution, and radiometric calibration (in particular, zero-exposure signal levels, shutter time offsets, absolute radiometric response, noise, and scattered light characterization). These improvements will allow upgrades to the calibration of images returned from the Stardust primary mission as well as high-quality calibration of the Stardust-NExT images. The upgraded calibration results have been incorporated into the Stardust-NExT image processing pipeline via new routines and updated constants and files in preparation for archiving calibrated images in the NASA Planetary Data System. (c) 2012 Elsevier Inc. All rights reserved. C1 [Klaasen, Kenneth P.; Brown, David; Owen, William] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Carcich, Brian; Thomas, Peter] Cornell Univ, Ithaca, NY 14853 USA. [Farnham, Tony] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Klaasen, KP (reprint author), CALTECH, Jet Prop Lab, Mail Stop 306-392,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kenneth.p.klaasen@jpl.nasa.gov FU National Aeronautics and Space Administration from the Discovery Program [NNM08AA26C, NMO711001] FX Our appreciation goes to Allan Cheuvront of Lockheed Martin Astronautics and the LMA operations team for expertly collecting the NAVCAM data discussed here. Sound project management was provided by the Jet Propulsion Laboratory led by Timothy Larson and by the Stardust-NExT Principal Investigator, Dr. Joseph Veverka of Cornell University. The work described herein was supported by the National Aeronautics and Space Administration through Contract No. NNM08AA26C from the Discovery Program to Cornell University and through Task Order No. NMO711001 from the Discovery Program to the Jet Propulsion Laboratory, California Institute of Technology. NR 16 TC 3 Z9 3 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 436 EP 452 DI 10.1016/j.icarus.2012.01.025 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800003 ER PT J AU Thomas, P A'Hearn, M Belton, MJS Brownlee, D Carcich, B Hermalyn, B Klaasen, K Sackett, S Schultz, PH Veverka, J Bhaskaran, S Bodewits, D Chesley, S Clark, B Farnham, T Groussin, O Harris, A Kissel, J Li, JY Meech, K Melosh, J Quick, A Richardson, J Sunshine, J Wellnitz, D AF Thomas, P. A'Hearn, M. Belton, M. J. S. Brownlee, D. Carcich, B. Hermalyn, B. Klaasen, K. Sackett, S. Schultz, P. H. Veverka, J. Bhaskaran, S. Bodewits, D. Chesley, S. Clark, B. Farnham, T. Groussin, O. Harris, A. Kissel, J. Li, J. -Y. Meech, K. Melosh, J. Quick, A. Richardson, J. Sunshine, J. Wellnitz, D. TI The nucleus of Comet 9P/Tempel 1: Shape and geology from two flybys SO ICARUS LA English DT Article DE Comet Tempel 1; Comets, Nucleus; Geological processes ID DEEP IMPACT OBSERVATIONS; SURFACE-FEATURES; COMET-9P/TEMPEL-1; TOPOGRAPHY; EVOLUTION; SPACECRAFT; TEMPEL-1; GRAVITY; DENSITY; MASS AB The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 51/2 years. The combined imaging covers similar to 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (similar to 10 m/pixel) up to similar to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically-controlled processes, or a continuing interaction of erosion and deposition. (c) 2012 Elsevier Inc. All rights reserved. C1 [Thomas, P.; Carcich, B.; Sackett, S.; Veverka, J.] Cornell Univ, Ithaca, NY 14853 USA. [A'Hearn, M.; Li, J. -Y.; Sunshine, J.; Wellnitz, D.] Univ Maryland, College Pk, MD 20742 USA. [Belton, M. J. S.; Farnham, T.] Belton Space Explorat Initiat, Tucson, AZ 85716 USA. [Brownlee, D.] Univ Washington, Seattle, WA 98195 USA. [Hermalyn, B.; Schultz, P. H.] Brown Univ, Providence, RI 02912 USA. [Klaasen, K.; Bhaskaran, S.; Chesley, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bodewits, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Clark, B.] Space Sci Inst, Boulder, CO 80301 USA. [Groussin, O.] Lab Astrophys Marseille, F-13388 Marseille 13, France. [Harris, A.] Space Sci Inst, La Canada Flintridge, CA 91011 USA. [Kissel, J.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Meech, K.] Univ Hawaii, Honolulu, HI 96822 USA. [Melosh, J.; Richardson, J.] Purdue Univ, Lafayette, IN 47907 USA. [Quick, A.] Univ Rochester, Rochester, NY 14627 USA. RP Thomas, P (reprint author), Cornell Univ, Ithaca, NY 14853 USA. EM pct2@cornell.edu OI Bodewits, Dennis/0000-0002-2668-7248 FU NASA through its Discovery Program; NASA; National Aeronautics and Space Administration; Centre Nationale d'Etudes Spatiales (CNES) FX Stardust-NExT was supported by NASA through its Discovery Program. The Science Team expresses its thanks and acknowledges its debt to the Project Management and Navigation Teams at the Jet Propulsion Laboratory, to the Deep Space Network (DSN), and to the Spacecraft Team at Lockheed Martin Aerospace (LMA) in Denver. We record our special thanks to the world-wide network of observers for providing crucial observations of Tempel 1 to support the determination of the appropriate time-of-arrival at the comet. Part of the research described was carried out at JPL under contract with NASA. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. O. Groussin's participation in the project was supported by the Centre Nationale d'Etudes Spatiales (CNES). Technical assistance was provided by K. Consroe and T. Shannon. Reviews by L. Soderblom and an anonymous reviewer notably improved the presentation. NR 44 TC 29 Z9 29 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 453 EP 466 DI 10.1016/j.icarus.2012.02.037 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800004 ER PT J AU Li, JY A'Hearn, MF Belton, MJS Farnham, TL Klaasen, KP Sunshine, JM Thomas, PC Veverka, J AF Li, Jian-Yang A'Hearn, Michael F. Belton, Michael J. S. Farnham, Tony L. Klaasen, Kenneth P. Sunshine, Jessica M. Thomas, Peter C. Veverka, Joe TI Photometry of the nucleus of Comet 9P/Tempel 1 from Stardust-NExT flyby and the implications SO ICARUS LA English DT Article DE Comet Tempel-1; Photometry; Comets, Nucleus ID SPACE-TELESCOPE OBSERVATIONS; DEEP-IMPACT; SURFACE; MORPHOLOGY; TEMPEL-1; IMAGES AB The photometric properties of the nucleus of Comet 9P/Tempel 1 as modeled from the Stardust-NExT images agree with those reported by Li et al. (Li, J.-Y. et al. [2007a]. Icarus 187, 41-55; Li, J.-Y., A'Hearn, M.F., McFadden, L.A., Belton, M.J.S. [2007b]. Icarus 188, 195-211) from Deep Impact images. No significant changes are detectable by comparing the two image-sets taken one comet year apart. The overall photometric variations on the similar to 70% of the surface of Tempel 1 observed by Deep Impact and Stardust-NExT are small, with albedo variations of +/- 10% full-width-at-half-maximum and non-detectable variations in phase function and surface roughness. Some bright surface albedo features visible in the outbound images have an albedo about 25% higher than that of surrounding area. No bright albedo features similar to those ice patches reported by Sunshine et al. (Sunshine, J.M., et al. [2006]. Science 311, 1453-1455) are seen on the outbound side, which was not imaged by DI. The similar global photometric properties among cometary nuclei may indicate that these properties are dominated by cometary activity that results in constant resurfacing on comets. Tiny amounts of ice concentration on their surface can significantly change the local photometric properties. (c) 2012 Elsevier Inc. All rights reserved. C1 [Li, Jian-Yang; A'Hearn, Michael F.; Farnham, Tony L.; Sunshine, Jessica M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomas, Peter C.; Veverka, Joe] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. RP Li, JY (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM jyli@astro.umd.edu FU NASA Discovery Program's Stardust-NExT mission [NNM07AA97C]; National Aeronautics and Space Administration FX This research was funded by NASA Discovery Program's Stardust-NExT mission under Contract NNM07AA97C to University of Maryland. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We would like to thank all the science team members, engineers, and supporting personal for making the mission successful. The authors are grateful to Dr. Tom McCord and Dr. Imre Toth for their critical reviews that have helped improve this manuscript. NR 35 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 467 EP 476 DI 10.1016/j.icarus.2012.02.011 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800005 ER PT J AU Belton, MJS Thomas, P Carcich, B Quick, A Veyerka, J Melosh, HJ A'Hearn, MF Li, JY Brownlee, D Schultz, P Klaasen, K Sarid, G AF Belton, Michael J. S. Thomas, Peter Carcich, Brian Quick, Andrew Veyerka, Joseph Melosh, H. Jay A'Hearn, Michael F. Li, Jian-Yang Brownlee, Donald Schultz, Peter Klaasen, Kenneth Sarid, Gal TI The origin of pits on 9P/Tempel 1 and the geologic signature of outbursts in Stardust-NExT images SO ICARUS LA English DT Article DE Comets, Nucleus; Comets, Coma; Comet Tempel-1 ID DEEP IMPACT OBSERVATIONS; COMET 9P/TEMPEL-1; SMOOTH TERRAINS; NUCLEI; EVOLUTION; SURFACE; TOPOGRAPHY; 17P/HOLMES; PHOTOMETRY; MORPHOLOGY AB We consider the origin of similar to 380 quasi-circular depressions (pits) seen to be distributed in a broad band across the surface of 9P/Tempel 1 and show that possibly similar to 96% may be due to outburst activity. Of the rest, <4%, are probably due to a mix of cryo-volcanic collapse events and collisional impacts with asteroidal material. We estimate the mass ejected during the June 14, 2005, mini-outburst on 9P to be in the range (6-30) x 10(4) kg and find that the resulting pit should have a diameter in the range 10-30 m. Published locations of mini-outbursts are revised to account for changes in the nucleus shape, rotation rate, and rotation pole that have resulted from observations made during the Stardust-NExT mission. Both of these locations are found to fall in, or on the edge of, the band of pits that encircles the nucleus. We have identified features in high-resolution images near one of these locations as the possible places of origin of the mini-outbursts. These features show close packing of multiple pits in the appropriate diameter range. We consider the distribution of pit diameters and show that the largest pits follow a power-law with exponent -2.24 +/- 0.09. Using the June 14, 2005, mini-outburst and the Deep Impact crater to provide a calibration, we establish empirical relationships between pit diameter, D, the total outburst energy, E, and the visual magnitude change, Delta m(abs), which is the visual amplitude of the outburst referenced to a standard initial brightness. We find Log(10)D similar to 0.107(+/- 0.004)Delta m(abs) + 1.3(+/- 0.4) and Log(10)E similar to 0.32(+/- 0.01)Delta m(abs) + 10.1(+/- 1.2) where the uncertainties represent the range of values for the coefficient rather than formal error. We apply these approximate relationships to the mega-outburst on 17P/Holmes and predict that it left a pit-like scar on the surface with a diameter in the range 160-1300 m, that the total energy released was in the range 7 x 10(12)-3 x 10(15) J, and that between 6 x 10(7) and 1.3 x 10(11) kg of material was ejected from the surface. While these predictions are crude they encompass, particularly near the upper end of the range, the results on kinetic energy release and mass loss found by Reach et al. (Reach, W.T., Vaubaillon, J., Lisse, C.M., Holloway, M., Rho, J. [2010]. Icarus 208, 276-292) based on IR observations of 17P. (c) 2012 Elsevier Inc. All rights reserved. C1 [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Thomas, Peter; Carcich, Brian; Quick, Andrew; Veyerka, Joseph] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Melosh, H. Jay] Purdue Univ, Dept Earth & Atmospher Sci, Lafayette, IN 47907 USA. [A'Hearn, Michael F.; Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brownlee, Donald] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Schultz, Peter] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Klaasen, Kenneth] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sarid, Gal] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Belton, MJS (reprint author), Belton Space Explorat Initiat LLC, 430 S Randolph Way, Tucson, AZ 85716 USA. EM mbelton@dakotacom.net FU University of Maryland [NNM07AA99C]; Cornell University [51326-8361]; National Aeronautics and Space Administration FX This research was performed with the University of Maryland under Contract NNM07AA99C and Cornell University under agreement 51326-8361, and we thank the NExT and EPOXI Principal Investigators, Joseph Veverka and Michael A'Hearn, for their continuing support. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 39 TC 12 Z9 12 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 477 EP 486 DI 10.1016/j.icarus.2012.03.007 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800006 ER PT J AU Wellnitz, DD Collins, SM A'Hearn, MF AF Wellnitz, Dennis D. Collins, Steven M. A'Hearn, Michael F. CA Deep Impact Mission Team Stardust-NExT Mission Team TI The location of the impact point of the Deep Impact Impactor on Comet 9P/Tempel 1 SO ICARUS LA English DT Article DE Comet Tempel-1; Comets, Nucleus; Cratering; Orbit determination AB We describe three methods for determination of the impact point of the Deep Impact Impactor on Comet 9P/Tempel 1, and the probable errors associated with each method. From this analysis it appears that the three methods give results that are consistent within their probable errors. (c) 2012 Elsevier Inc. All rights reserved. C1 [Wellnitz, Dennis D.; A'Hearn, Michael F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Collins, Steven M.] Jet Prop Lab, Pasadena, CA 91011 USA. RP Wellnitz, DD (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM wellnitz@astro.umd.edu FU NASA through the Discovery Program FX This work was supported by NASA through the Discovery Program contracts for Deep Impact, EPOXI, and Stardust-NExT. NR 2 TC 1 Z9 1 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 487 EP 491 DI 10.1016/j.icarus.2012.08.003 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800007 ER PT J AU Chesley, SR Belton, MJS Carcich, B Thomas, PC Pittichova, J Klaasen, KP Li, JY Farnham, TL Gillam, SD Harris, AW Veverka, J AF Chesley, S. R. Belton, M. J. S. Carcich, B. Thomas, P. C. Pittichova, J. Klaasen, K. P. Li, J. -Y. Farnham, T. L. Gillam, S. D. Harris, A. W. Veverka, J. TI An updated rotation model for Comet 9P/Tempel 1 SO ICARUS LA English DT Article DE Comets; Comets, Nucleus; Rotational dynamics; Comet Tempel-1 ID SPACE-TELESCOPE OBSERVATIONS; DEEP IMPACT; NUCLEUS AB Observations from the second encounter of Comet 9P/Tempel 1 by the Stardust-NExT spacecraft provide an improved shape model and rotational pole for the nucleus (Thomas, P.C. et al. [2012]. Icarus 222, 453-466) that allows us to greatly improve our knowledge of its rotational evolution beyond that outlined earlier in Belton et al. (Belton, M.J.S. et al. [2011]. Icarus 213, 345-368). Model light curves are shown to fit observations at both perihelia with a single pole direction indicating that polar precession during a single perihelion passage is small. We show that the rotational phasing associated with observations taken far from perihelion in the previous work was incorrectly assessed by approximately half a cycle leading us to a significant reassessment of the evolution of the non-gravitational torques acting on the nucleus. We present an updated spin rate profile (torque model) for the 2005 perihelion passage and show that retardation of the spin rate well before perihelion is no longer a required feature. With the exception of the spin rate before the 2000 perihelion passage, the evolution of rotational rates through the three most recent perihelion passages is largely unaffected as is the prediction of the rotational phase of the comet's nucleus at the Stardust-NExT near-perihelion encounter. We find a spin rate of 209.4 +/- 0.01 degrees/d likely applies in the quiescent period before the 2000 perihelion, a 0.2% change, and that the rotational period shortened by 12.3 +/- 0.2 min during the 2000 perihelion passage. We present an analysis of Stardust-NExT time-series photometry that yields a spin rate near 213.3 +/- 0.8 degrees/d at the time of encounter. An application of the 2005 torque model suggests that, while roughly similar, the torques were probably weaker during the 2011 perihelion passage. (c) 2012 Elsevier Inc. All rights reserved. C1 [Chesley, S. R.; Klaasen, K. P.; Gillam, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Belton, M. J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Carcich, B.; Thomas, P. C.; Veverka, J.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Pittichova, J.] Slovak Acad Sci, Astron Inst, SK-84504 Bratislava, Slovakia. [Li, J. -Y.; Farnham, T. L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Harris, A. W.] Space Sci Inst, Boulder, CO 80301 USA. RP Chesley, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM steven.chesley@jpl.nasa.gov FU National Aeronautics and Space Administration; University of Maryland under NASA [NNM07AA99C]; Cornell University under NASA [51326-8361]; Space Telescope Science Institute [HST-GO-11998.03-A] FX This research was conducted in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and at the University of Maryland under NASA Contract NNM07AA99C and Cornell University under NASA Agreement 51326-8361. Partial support of this work was provided by the Space Telescope Science Institute through Grant HST-GO-11998.03-A. NR 16 TC 4 Z9 4 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 516 EP 525 DI 10.1016/j.icarus.2012.03.022 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800010 ER PT J AU Thomas, PC A'Hearn, MF Veverka, J Belton, MJS Kissel, J Klaasen, KP McFadden, LA Melosh, HJ Schultz, PH Besse, S Carcich, BT Farnham, TL Groussin, O Hermalyn, B Li, JY Lindler, DJ Lisse, CM Meech, K Richardson, JE AF Thomas, P. C. A'Hearn, Michael F. Veverka, Joseph Belton, Michael J. S. Kissel, Jochen Klaasen, Kenneth P. McFadden, Lucy A. Melosh, H. Jay Schultz, Peter H. Besse, Sebastien Carcich, Brian T. Farnham, Tony L. Groussin, Olivier Hermalyn, Brendan Li, Jian-Yang Lindler, Don J. Lisse, Carey M. Meech, Karen Richardson, James E. TI Shape, density, and geology of the nucleus of Comet 103P/Hartley 2 SO ICARUS LA English DT Article DE Comets; Comets, Nucleus; Geological processes; Geophysics ID DEEP IMPACT; SMALL SATELLITES; SPACECRAFT; EPOXI; INSTRUMENT; TOPOGRAPHY; GRAVITY; MISSION; SURFACE; TARGET AB Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds <40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a "waist" between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200-400 kg m(-3). Such a mean density suggests mass loss per orbit of >1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object's complex rotation. (C) 2012 Elsevier Inc. All rights reserved. C1 [Thomas, P. C.; Veverka, Joseph; Carcich, Brian T.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [A'Hearn, Michael F.; McFadden, Lucy A.; Besse, Sebastien; Farnham, Tony L.; Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Kissel, Jochen] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McFadden, Lucy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Melosh, H. Jay; Richardson, James E.] Purdue Univ, Lafayette, IN 47907 USA. [Schultz, Peter H.; Hermalyn, Brendan] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Groussin, Olivier] Univ Aix Marseille 1, Lab Astrophys Marseille, Marseille, France. [Groussin, Olivier] CNRS, Marseille, France. [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA. [Lisse, Carey M.] JHU Appl Phys Lab, Laurel, MD 20723 USA. [Meech, Karen] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Thomas, PC (reprint author), Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. EM pct2@cornell.edu RI McFadden, Lucy-Ann/I-4902-2013; Lisse, Carey/B-7772-2016; OI McFadden, Lucy-Ann/0000-0002-0537-9975; Lisse, Carey/0000-0002-9548-1526; Besse, Sebastien/0000-0002-1052-5439 FU NASA [NNM07AA99C]; New Frontiers Program Office FX Most of the work for this paper was funded by NASA, through Contract NNM07AA99C to the University of Maryland from NASA's Discovery and New Frontiers Program Office. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Technical assistance provided by A. Quick, K. Consroe, R. Rich Goldweber, and C. Jackman. Two reviewers helped find mistakes and improve the presentation. NR 41 TC 42 Z9 42 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 550 EP 558 DI 10.1016/j.icarus.2012.05.034 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800013 ER PT J AU Li, JY Besse, S A'Hearn, MF Belton, MJS Bodewits, D Farnham, TL Klaasen, KP Lisse, CM Meech, KJ Sunshine, JM Thomas, PC AF Li, Jian-Yang Besse, Sebastien A'Hearn, Michael F. Belton, Michael J. S. Bodewits, Dennis Farnham, Tony L. Klaasen, Kenneth P. Lisse, Carey M. Meech, Karen J. Sunshine, Jessica M. Thomas, Peter C. TI Photometric properties of the nucleus of Comet 103P/Hartley 2 SO ICARUS LA English DT Article DE Comets, Nucleus; Photometry; Spectrophotometry ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; MULTIPLE APPARITIONS; 9P/TEMPEL 1; SURFACE; MORPHOLOGY; COMET-9P/TEMPEL-1; OUTBURSTS; ROUGHNESS; COLORS AB We have studied the photometric properties of the nucleus of a hyperactive comet, 103P/Hartley 2, at visible wavelengths using the DIXI flyby images with both disk-integrated and disk-resolved analyses. The disk-integrated phase function of the nucleus has a linear slope of 0.046 +/- 0.002 mag/deg and an absolute magnitude of 18.4 +/- 0.1 at V-band. The nucleus displays an overall linear, featureless spectrum between 400 nm and 850 nm. The linear spectral slope is 7.6 +/- 3.6% per 100 nm, corresponding to broadband solar-illuminated color indices B-V of 0.75 +/- 0.05 and V-R of 0.43 +/- 0.04. Disk-resolved photometric analysis with a Hapke model returns a best-fit single-scattering albedo of 0.036 +/- 0.006, an asymmetry factor of the Henyey-Greenstein single-particle phase function of -0.46 +/- 0.06, and a photometric roughness of 15 +/- 10 degrees. The model yields a geometric albedo of 0.045 +/- 0.009 and a Bond albedo of 0.012 +/- 0.002. The overall photometric variations of the nucleus are small, with an equivalent albedo variation of 15% FWHM, and a color variation of 12% FWHM. Some areas near the terminator visible in the inbound images show an albedo of more than twice the global average value, and a much bluer color than the average nucleus. The overall photometric properties and variations of the nucleus of Hartley 2 are similar to those of the nuclei of Comets Wild 2 and Tempel 1 as studied from previous spacecraft flyby missions at similar resolutions. (C) 2012 Elsevier Inc. All rights reserved. C1 [Li, Jian-Yang; Besse, Sebastien; A'Hearn, Michael F.; Bodewits, Dennis; Farnham, Tony L.; Sunshine, Jessica M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Meech, Karen J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Meech, Karen J.] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Thomas, Peter C.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. RP Li, JY (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM jyli@psi.edu RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Bodewits, Dennis/0000-0002-2668-7248; Besse, Sebastien/0000-0002-1052-5439 FU NASA from the Discovery and New Frontiers Program Office [NNM07AA99C]; DDAP program [NNX07AG24G] FX This research was supported by NASA through both the EPOXI Mission through Contract NNM07AA99C from the Discovery and New Frontiers Program Office and Grant NNX07AG24G under the DDAP program, both to the University of Maryland. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors thank the operations teams and all science team members of the DIXI part of the EPOXI mission for making the flyby a success. We are extremely grateful to Dr. Bonnie Burrati, an anonymous reviewer, and Dr. Paul Helfenstein for their insightful and constructive reviews that have helped us substantially improve this manuscript. NR 51 TC 25 Z9 25 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 559 EP 570 DI 10.1016/j.icarus.2012.11.001 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800014 ER PT J AU Lindler, DJ A'Hearn, MF Besse, S Carcich, B Hermalyn, B Klaasen, KP AF Lindler, Don J. A'Hearn, Michael F. Besse, Sebastien Carcich, Brian Hermalyn, Brendan Klaasen, Kenneth P. TI Interpretation of results of deconvolved images from the Deep Impact spacecraft High Resolution Instrument SO ICARUS LA English DT Article DE Comets, Nucleus; Image processing; Instrumentation ID COMET 9P/TEMPEL-1; RESTORATION AB A flaw in the pre-launch calibration system resulted in an inability to accurately focus the Deep Impact's High Resolution Instrument (HRI). This defocus resulted in a significant loss of resolution. The nature of the blurring function allows us to use image restoration techniques to retrieve much of the lost resolution. These techniques can produce artifacts in the image such as noise amplification and unwanted oscillations (at the level of 10% of the peak value in the restored point source) in the restored signal. Much useful information, including photometry of point sources, can be extracted from the restored HRI images of Comet Hartley 2, and other images from the Deep Impact spacecraft. In this paper, we present techniques for evaluating the restored images both qualitatively and quantitatively. Monte Carlo techniques are suggested to assess the accuracy of point source photometry. (C) 2012 Elsevier Inc. All rights reserved. C1 [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA. [A'Hearn, Michael F.; Besse, Sebastien] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Carcich, Brian] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Hermalyn, Brendan] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lindler, DJ (reprint author), Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA. EM don.lindler@nasa.gov OI Besse, Sebastien/0000-0002-1052-5439 FU NASA [NNM07AA99C] FX This research was supported by NASA through Contract NNM07AA99C to the University of Maryland for the EPOXI mission from the Discovery and New Frontiers Program Office. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The R L restorations were performed using software developed by Richard White of the Space Telescope Science Institute. NR 15 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 571 EP 579 DI 10.1016/j.icarus.2012.09.003 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800015 ER PT J AU Groussin, O Sunshine, JM Feaga, LM Jorda, L Thomas, PC Li, JY A'Hearn, MF Belton, MJS Besse, S Carcich, B Farnham, TL Hampton, D Klaasen, K Lisse, C Merlin, F Protopapa, S AF Groussin, O. Sunshine, J. M. Feaga, L. M. Jorda, L. Thomas, P. C. Li, J. -Y. A'Hearn, M. F. Belton, M. J. S. Besse, S. Carcich, B. Farnham, T. L. Hampton, D. Klaasen, K. Lisse, C. Merlin, F. Protopapa, S. TI The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 SO ICARUS LA English DT Article DE Comets; Comets; Nucleus; Comet Tempel 1; Infrared observations ID ASTEROID SPECTROSCOPIC SURVEY; SPACE-TELESCOPE OBSERVATIONS; NEAR-INFRARED SPECTROSCOPY; DEEP IMPACT; THERMOPHYSICAL MODEL; EMISSION SPECTROMETER; PHYSICAL-PROPERTIES; SURFACE-COMPOSITION; TROJAN ASTEROIDS; SOLAR-SYSTEM AB The Deep Impact spacecraft flew by Comet 103P/Hartley 2 on November 4th, 2010 (EPOXI mission) and Comet 9P/Tempel 1 on July 4th, 2005 (Deep Impact mission). During the two flybys, spatially resolved infrared (1.05-4.8 mu m) spectra of the surface of the nucleus were acquired by the HRI-IR instrument. The analysis of these two data sets, obtained by the same instrument, offers a unique opportunity to understand, compare and contrast the surface thermal properties of these two comets. For this paper, we use spectral cubes with a spatial resolution of 30 m/pixel to 40 m/pixel for Hartley 2 and 160 m/pixel for Tempel 1. We focus our analysis on the color, temperature, thermal inertia and roughness of the nucleus. The two comets have the same color, moderately red, with an average slope of 3.0 +/- 0.9% per k angstrom to 3.5 +/- 1.1% per k angstrom. There are very small variations of the color across the surface, except for regions with water ice that are neutral to blue, and two dark spots with redder (4.5 +/- 1.4% per k angstrom) materials on Hartley 2. The nucleus thermal emission at all resolved spatial scales differs from that of a gray body with an infrared emissivity of 0.9-1.0, the discrepancy being more important for larger incidence angles. Moreover, the color temperature of Comets Hartley 2 and Tempel 1 is relatively homogeneous across the surface and does not vary strongly with incidence angle. These two effects mainly result from surface roughness and associated projected shadows. From the temperature rise on the morning terminator, we derive a thermal inertia lower than 250 W/K/m(2)/s(1/2) for Hartley 2 and lower than 45 W/K/m(2)/s(1/2) for Tempel 1 (3 sigma upper limits). For Hartley 2 and Tempel 1, the temperature of the regions with exposed water ice is more than 100 K above the sublimation temperature of water ice (similar to 200 K). This observation indicates that the thermal emission is dominated by dust, and that water ice is not intimately mixed with dust at the scale of observation, with water ice patches at the meter or sub-meter scale. (c) 2012 Elsevier Inc. All rights reserved. C1 [Groussin, O.; Jorda, L.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Sunshine, J. M.; Feaga, L. M.; Li, J. -Y.; A'Hearn, M. F.; Besse, S.; Farnham, T. L.; Protopapa, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Thomas, P. C.; Carcich, B.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Belton, M. J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Hampton, D.] Univ Alaska Fairbanks, Fairbanks, AK 99775 USA. [Klaasen, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lisse, C.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA. [Merlin, F.] Univ Paris 07, LESIA, Meudon, France. RP Groussin, O (reprint author), Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. EM olivier.groussin@oamp.fr RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Besse, Sebastien/0000-0002-1052-5439 FU NASA's Discovery Program [NNM07AA99C, NMO711002]; Centre National d'Etudes Spatiales (CNES) FX This work was supported by NASA's Discovery Program contract NNM07AA99C to the University of Maryland and task order NMO711002 to the Jet Propulsion Laboratory, California Institute of Technology. The work of O. Groussin was funded by the Centre National d'Etudes Spatiales (CNES). The authors are extremely grateful for personal efforts and professional excellence of numerous engineers and supporting scientists who were critical to the successful development and execution of the Deep Impact and EPOXI missions. We thank B. Davidsson for very helpful discussions and E. Kuhrt and an anonymous referee for their constructive reviews. NR 74 TC 29 Z9 29 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 580 EP 594 DI 10.1016/j.icarus.2012.10.003 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800016 ER PT J AU Belton, MJS Thomas, P Li, JY Williams, J Carcich, B A'Hearn, MF McLaughlin, S Farnham, T McFadden, L Lisse, CM Collins, S Besse, S Klaasen, K Sunshine, J Meech, KJ Lindler, D AF Belton, Michael J. S. Thomas, Peter Li, Jian-Yang Williams, Jade Carcich, Brian A'Hearn, Michael F. McLaughlin, Stephanie Farnham, Tony McFadden, Lucy Lisse, Carey M. Collins, Steven Besse, Sebastien Klaasen, Kenneth Sunshine, Jessica Meech, Karen J. Lindler, Don TI The complex spin state of 103P/Hartley 2: Kinematics and orientation in space SO ICARUS LA English DT Article DE Comets; Comets, Nucleus; Rotational dynamics ID ROTATION; NUCLEUS; CN AB We derive the spin state of the nucleus of Comet 103P/Hartley 2, its orientation in space, and its short-term temporal evolution from a mixture of observations taken from the DIXI (Deep Impact Extended Investigation) spacecraft and radar observations. The nucleus is found to spin in an excited long-axis mode (LAM) with its rotational angular momentum per unit mass, M, and rotational energy per unit mass, E, slowly decreasing while the degree of excitation in the spin increases through perihelion passage. M is directed toward (RA, Dec; J2000) = 8 +/- 4 degrees, 54 +/- 1 degrees (obliquity = 48 +/- 1 degrees). This direction is likely changing, but the change is probably <6 degrees on the sky over the similar to 81.6 days of the DIXI encounter. The magnitudes of M and E at closest approach (JD 2455505.0831866 2011-11-04 13:59:47.310) are 30.0 +/- 0.2 m(2)/s and (1.56 +/- 0.02) x 10(-3) m(2)/s(2) respectively. The period of rotation about the instantaneous spin vector, which points in the direction (RA, Dec; J2000) = 300 +/- 3.2 degrees, 67 +/- 1.3 degrees at the time of closest approach, was 14.1 +/- 0.3 h. The instantaneous spin vector circulates around M, inclined at an average angle of 33.2 +/- 1.3 degrees, with an average period of 18.40 +/- 0.13 h at the time of closest approach. The period of roll around the principal axis of minimum inertia ("long" axis) at that time is 26.72 +/- 0.06 h. The long axis is inclined to M by similar to 81.2 +/- 0.6 degrees on average, slowly decreasing through encounter. We infer that there is a periodic nodding motion of the long axis with half the roll period, i.e., 13.36 +/- 0.03 h, with amplitude of similar to 1 degrees again decreasing through encounter. The periodic variability in the circulation and roll rates during a cycle was at the 2% and 10-14% level respectively. During the encounter there was a secular lengthening of the circulation period of the long axis by 1.3 +/- 0.2 min/d, in agreement with ground-based estimates, while the period of roll around the long axis changed by similar to-4.4 min/d at perihelion. M decreased at a rate of -0.038 (m(2)/s) per day in a roughly linear fashion. Assuming a bulk density between 230-300 kg/m(3) and a total volume for the nucleus of 8.09 x 10(8) m(3), the net torque acting on the nucleus was in the range 0.8-1.1 x 10(5) kg m(2)/s(2). In order to bring the spacecraft photometric and imaging data into alignment on the direction of M, the directions of the intermediate and short principal axes of inertia had to be adjusted by 33 degrees (on the sky) from the values indicated by the shape model with an assumed homogeneous interior. The adjusted direction of the intermediate axis is RA, Dec = 302 degrees, -16.5 degrees. The morning and evening terminators in the images are identified, and the variation of the insolation at three regions on the nucleus associated with active areas calculated. The plume of water vapor observed in the inner coma is found to be directed close to the direction of local gravity over the sub-solar region for a range of reasonable bulk densities. The plume does not follow the projected normal to the surface at the sub-solar point. (c) 2012 Elsevier Inc. All rights reserved. C1 [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Thomas, Peter; Carcich, Brian] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Li, Jian-Yang; Williams, Jade; A'Hearn, Michael F.; McLaughlin, Stephanie; Farnham, Tony; Besse, Sebastien; Sunshine, Jessica] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McFadden, Lucy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA. [Collins, Steven; Klaasen, Kenneth] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Meech, Karen J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Lindler, Don] Sigma Space Corp, Lanham, MD 20706 USA. RP Belton, MJS (reprint author), Belton Space Explorat Initiat LLC, 430 S Randolph Way, Tucson, AZ 85716 USA. EM mbelton@dakotacom.net RI McFadden, Lucy-Ann/I-4902-2013; Lisse, Carey/B-7772-2016; OI McFadden, Lucy-Ann/0000-0002-0537-9975; Lisse, Carey/0000-0002-9548-1526; Besse, Sebastien/0000-0002-1052-5439 FU NASA under the PMDAP program [NNX07AG24G]; Discovery and New Frontiers Program Office [NNM07AA99C]; National Aeronautics and Space Administration FX This work was supported by NASA Grant NNX07AG24G under the PMDAP program and Contract NNM07AA99C from the Discovery and New Frontiers Program Office, both to the University of Maryland and sub-contracted to Belton Space Exploration Initiatives, LLC, through a Memorandum of Agreement with the National Optical Astronomy Observatories. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The principal author thanks the Principal Investigators Michael F. A'Hearn and Jian-Yang Li for their continuing support. We also would like to acknowledge the valuable assistance of Dr. D. Bockelee-Morvan in locating an error in our longitude definitions. NR 28 TC 10 Z9 10 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 595 EP 609 DI 10.1016/j.icarus.2012.06.037 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800017 ER PT J AU Hermalyn, B Farnham, TL Collins, SM Kelley, MS A'Hearn, MF Bodewits, D Carcich, B Lindler, DJ Lisse, C Meech, K Schultz, PH Thomas, PC AF Hermalyn, Brendan Farnham, Tony L. Collins, Steven M. Kelley, Michael S. A'Hearn, Michael F. Bodewits, Dennis Carcich, Brian Lindler, Don J. Lisse, Casey Meech, Karen Schultz, Peter H. Thomas, Peter C. TI The detection, localization, and dynamics of large icy particles surrounding Comet 103P/Hartley 2 SO ICARUS LA English DT Article DE Comets; Comets, Coma; Comets, Dust; Ices; Image processing ID NUCLEI AB The Deep Impact Spacecraft flew past Comet 103P/Hartley 2 on November 4th, 2010. Images revealed the comet to be enveloped in a field of debris composed of fine grained dust, ice, and hundreds of discrete millimeter to decimeter sized particles. In this work, a selection of the brightest particles are identified and photogrammetrically located in 3D space to examine their positions and dynamics. 90% of the particles detected were within 10 km of the nucleus and traveling a few meters per second or slower. The particles exhibit a high degree of temporal variability in brightness, suggesting rotating, heterogeneous and faceted geometries. This style of near-nucleus environment has not been observed in any other comet to date and it may help explain the hyperactive nature of water production on Hartley 2 and similar comets. (c) 2012 Elsevier Inc. All rights reserved. C1 [Hermalyn, Brendan; Schultz, Peter H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Hermalyn, Brendan; Meech, Karen] Univ Hawaii, NASA Astrobiol Inst, Inst Astron, Honolulu, HI 96822 USA. [Farnham, Tony L.; Kelley, Michael S.; A'Hearn, Michael F.; Bodewits, Dennis] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Collins, Steven M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Carcich, Brian; Thomas, Peter C.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA. [Lisse, Casey] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Hermalyn, B (reprint author), Univ Hawaii, NASA Astrobiol Inst, Inst Astron, 2860 Woodlawn Dr, Honolulu, HI 96822 USA. EM hermalyn@hawaii.edu RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Kelley, Michael/0000-0002-6702-7676; Bodewits, Dennis/0000-0002-2668-7248 FU NASA's Discovery Program [NM071102, NAS7-03001]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA09DA77A]; NASA-RI Space Grant [NNX10AI95H] FX This material is based upon work supported by NASA's Discovery Program, which supported the EPOXI mission via Contract NM071102 to the University of Maryland and task order NAS7-03001 between NASA and CalTech, and the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science. B.H. also received partial support from the NASA-RI Space Grant (NNX10AI95H) for a portion of this study. NR 21 TC 17 Z9 17 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 625 EP 633 DI 10.1016/j.icarus.2012.09.030 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800019 ER PT J AU Kelley, MS Lindler, DJ Bodewits, D A'Hearn, MF Lisse, CM Kolokolova, L Kissel, J Hermalyn, B AF Kelley, Michael S. Lindler, Don J. Bodewits, Dennis A'Hearn, Michael F. Lisse, Carey M. Kolokolova, Ludmilla Kissel, Jochen Hermalyn, Brendan TI A distribution of large particles in the coma of Comet 103P/Hartley 2 SO ICARUS LA English DT Article DE Comets; Comets, Coma; Comets, Dust; Ices ID SPACE-TELESCOPE OBSERVATIONS; 73P/SCHWASSMANN-WACHMANN 3; DUST TRAIL; NUCLEI; INSTRUMENT; EPOXI; PHOTOMETRY; EUROPA; IMAGES; RADAR AB The coma of Comet 103P/Hartley 2 has a significant population of large particles observed as point sources in images taken by the Deep Impact spacecraft. We measure their spatial and flux distributions, and attempt to constrain their composition. The flux distribution of these particles implies a very steep size distribution with power-law slopes ranging from -6.6 to -4.7. The radii of the particles extend up to 20 cm, and perhaps up to 2 m, but their exact sizes depend on their unknown light scattering properties. We consider two cases: bright icy material, and dark dusty material. The icy case better describes the particles if water sublimation from the particles causes a significant rocket force, which we propose as the best method to account for the observed spatial distribution. Solar radiation is a plausible alternative, but only if the particles are very low density aggregates. If we treat the particles as mini-nuclei, we estimate they account for <16-80% of the comet's total water production rate (within 20.6 km). Dark dusty particles, however, are not favored based on mass arguments. The water production rate from bright icy particles is constrained with an upper limit of 0.1-0.5% of the total water production rate of the comet. If indeed icy with a high albedo, these particles do not appear to account for the comet's large water production rate. (c) 2012 Elsevier Inc. All rights reserved. C1 [Kelley, Michael S.; Bodewits, Dennis; A'Hearn, Michael F.; Kolokolova, Ludmilla] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Kissel, Jochen] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Hermalyn, Brendan] Univ Hawaii, NASA Astrobiol Inst, Inst Astron, Honolulu, HI 96822 USA. RP Kelley, MS (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM msk@astro.umd.edu; don.j.lindler@nasa.gov; dennis@astro.umd.edu; ma@astro.umd.edu; Carey.Lisse@jhuapl.edu; ludmilla@astro.umd.edu; hermalyn@ifa.hawaii.edu RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Kelley, Michael/0000-0002-6702-7676; Bodewits, Dennis/0000-0002-2668-7248 FU NASA's Discovery Program [NNM07AA99C, NMO711002] FX This work was supported by NASA's Discovery Program contract NNM07AA99C to the University of Maryland and task order NMO711002 to the Jet Propulsion Laboratory. NR 54 TC 43 Z9 43 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 634 EP 652 DI 10.1016/j.icarus.2012.09.037 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800020 ER PT J AU Meech, KJ Kleyna, J Hainaut, OR Lowry, SC Fuse, T A'Hearn, MF Chesley, S Yeomans, DK Fernandez, Y Lisse, C Reach, W Bauer, JM Mainzer, AK Pittichova, J Christensen, E Osip, D Brink, T Mateo, M Motta, V Challis, P Holman, M Ferrin, I AF Meech, K. J. Kleyna, J. Hainaut, O. R. Lowry, S. C. Fuse, T. A'Hearn, M. F. Chesley, S. Yeomans, D. K. Fernandez, Y. Lisse, C. Reach, W. Bauer, J. M. Mainzer, A. K. Pittichova, J. Christensen, E. Osip, D. Brink, T. Mateo, M. Motta, V. Challis, P. Holman, M. Ferrin, I. TI The demise of Comet 85P/Boethin, the first EPOXI mission target SO ICARUS LA English DT Article DE Comets; Data reduction techniques; Image processing ID MULTIBAND IMAGING PHOTOMETER; DEEP-IMPACT; SOLAR-SYSTEM; 9P/TEMPEL-1; SPITZER; JUPITER; NUCLEUS; 1P/HALLEY; CAMPAIGN; SCIENCE AB Comet 85P/Boethin was selected as the original comet target for the Deep Impact extended mission, EPOXI. Because this comet had been only observed at two apparitions in 1975 and 1986 and consequently had a large ephemeris error, an early intense recovery effort similar to that of 1P/Halley was undertaken beginning in 2005 using the ESO Very Large Telescopes (VLTs) in a distant comet program. These were challenging observations because of the low galactic latitude, and an error ellipse (the line of variations) that was larger than the CCD FOV, and the comet was not seen. Dedicated recovery observing time was awarded on the Subaru telescope in April and May 2006, and June 2007, in addition to time on the VLT and Canada France Hawaii telescopes during July August 2007 with wide field mosaics and mosaicing techniques. The limiting V magnitudes from these observing runs ranged between 25.7 and 27.3 and again the comet was not seen in the individual nights. A new image processing technique was developed to stack images over extended runs and runs after distorting them to account for dilations and rotations in the line of variations using modifications of the world coordinate system. A candidate at V 27.3 was found in the CFHT data along the LOV, 2.5' west of the nominal ephemeris position. The EPOXI mission was unwilling to re-target the spacecraft without a confirmation. Additional time was secured using the Spitzer Space Telescope, the Gemini South 8-m telescope, the Clay and Baade (Magellan 6.5 m), CTIO 4 m, and SOAR 4 m telescopes during 2007 September and October A composite image made by stacking the new data showed no plausible candidate nucleus to a limiting magnitude of V = 28.5, corresponding to a nucleus radius between 0.1 and 0.2 km (assuming an albedo of 0.04). The comet was declared lost, presumably having disintegrated. Searches in the WISE data set revealed no debris trail, but no constraints on the possible time of disruption can be made. NASA approved the trajectory correction maneuver to go to Comet 103P/Hartley 2 on 2007 November 1. Many observers searched for the comet as it came to its December 2008 perihelion, but no trace of the nucleus was found. Based on observations collected at the Very Large Telescope, Chile, in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, in part using data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii, in part using data collected at the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which are operated by the Association for Research in Astronomy, under contract with the National Science Foundation, and in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministerio da Ciencia, Tecnologia, e Inovacao (MCTI) da Republica Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). This work is also based in part on observations taken with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. (c) 2012 Elsevier Inc. All rights reserved. C1 [Meech, K. J.; Kleyna, J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Meech, K. J.; Kleyna, J.] UH NASA Astrobiol Inst, Moffett Field, CA 94035 USA. [Hainaut, O. R.] European So Observ, D-85748 Garching, Germany. [Lowry, S. C.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Fuse, T.] Kashima Space Technol Ctr, Natl Inst Informat & Commun Technol, Kashima, Ibaraki 3148501, Japan. [A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Chesley, S.; Yeomans, D. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fernandez, Y.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Lisse, C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Reach, W.] USRA SOFIA, Moffett Field, CA 94035 USA. [Bauer, J. M.; Mainzer, A. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pittichova, J.] Slovak Acad Sci, Astron Inst, Bratislava 84504, Slovakia. [Christensen, E.] Univ Arizona, Catalina Sky Survey Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Osip, D.] Carnegie Inst Sci, Las Campanas Observ, La Serena, Chile. [Brink, T.; Mateo, M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Motta, V.] Univ Valparaiso, Dept Fis & Astron, Valparaiso, Chile. [Challis, P.; Holman, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ferrin, I.] Univ Antioquia, Fac Exact & Nat Sci, Inst Phys, Medellin, Colombia. RP Meech, KJ (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM meech@ifa.hawaii.edu RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Fernandez, Yanga/0000-0003-1156-9721; Reach, William/0000-0001-8362-4094 FU VLT, European Southern Observatory, Chile (ESO Programmes) [279.C-5016, 279.C-5062]; Gemini Observatory [GS-2007B-DD-2]; University of Maryland; University of Hawaii [Z667702]; NASA [NASW-00004]; National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration; Council for Scientific Development of the University of the Andes [C-1281-04-05-B]; UK Particle Physics and Astronomy Research Council FX This is based in part on observations collected at the VLT, European Southern Observatory, Chile (ESO Programmes 279.C-5016 and 279.C-5062), and in part on observations obtained at the Gemini Observatory (program GS-2007B-DD-2), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia e Tecnologia (Brazil) and SECYT (Argentina). Image processing in this paper has been performed using the MIDAS software, developed by the European Southern Observatory, and is distributed with a general public license, and in part using the IRAF program. IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. Support for this work was provided in part through University of Maryland and University of Hawaii subcontract Z667702, which was awarded under prime contract NASW-00004 from NASA (K.J.M., J.P., and C.M.L.), conducted in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (S.C. and D.K.Y.). Support for the work (C.M.L. and W.T.R.) was provided by NASA through an award issued by JPL/Caltech. This research made use of Tiny Tim/ Spitzer, developed by J.E. Krist for the Spitzer Space Center. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. IF would like to thank the Council for Scientific Development of the University of the Andes, for their support through Grant C-1281-04-05-B, and S.C.L. acknowledges support from the UK Particle Physics and Astronomy Research Council. We would like to especially thank (1) the observatory directors who allocated director's time: M. Hayashi (Subaru), C. Cesarsky and T. de Zeeuw (ESO-V.L.T.), D. Simons and J.-R. Roy (Gemini), A. Walker (CTIO), S. Heathcote (SOAR); (2) the Observatory Science Operations Heads who were instrumental in helping execute our programs: P. Martin (Canada-France Telescope) and B. Rodgers (Gemini S.). Additionally we want to thank the observatory staff who helped with the observing: M. Takami and M. Ishii (Subaru), D. Maturana, L. Fraga and S. Points (SOAR). We would also like to thank J. Johnson and N. Cabrera who obtained UH2.2m images for us that enabled us to discount the spurious recovery report during July 2008. NR 43 TC 1 Z9 1 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 662 EP 678 DI 10.1016/j.icarus.2012.09.002 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800022 ER PT J AU Bonev, BP Villanueva, GL Paganini, L DiSanti, MA Gibb, EL Keane, JV Meech, KJ Mumma, MJ AF Bonev, Boncho P. Villanueva, Geronimo L. Paganini, Lucas DiSanti, Michael A. Gibb, Erika L. Keane, Jacqueline V. Meech, Karen J. Mumma, Michael J. TI Evidence for two modes of water release in Comet 103P/Hartley 2: Distributions of column density, rotational temperature, and ortho-para ratio SO ICARUS LA English DT Article DE Comet Hartley-2; Comets, coma; Comets, composition; Infrared observations; Ices ID INNER COMA; INFRARED-SPECTROSCOPY; SPIN CONVERSION; FLUORESCENCE; BAND; WAVELENGTHS; MECHANISMS; EMISSION; HERITAGE; METHANE AB This paper presents long-slit spectra of H2O emission from the inner coma of Comet 103P/Hartley 2, acquired with NIRSPEC/Keck 2 during the comet's close approach to Earth in 2010. On UT 19.6 October 2010 the slit was oriented nearly orthogonal to the projected (in the plane of the sky) Sun-comet line, and the H2O rotational temperature and column density showed similar spatial distributions as a function of projected distance from the nucleus. On UT 22.5 October, the slit was oriented along the Sun-comet line, and the rotational temperatures revealed pronounced asymmetry while the column densities were nearly symmetric about the nucleus. We suggest this dichotomy reflects two qualitatively different mechanisms of volatile release, which introduce distinct rotational distributions in the sublimated material. Future modeling can test this hypothesis. We also report new retrievals of water nuclear spin species (ortho, para) in this comet, and we present the ortho-to-para ratio (OPR) for various projected nucleocentric distances. Our most precise individual measurement is OPR = 2.59 +/- 0.13, corresponding to a nuclear spin temperature (T-spin) of 31 +/- 3 K. A weighted mean of five independent measurements provides OPR = 2.79 +/- 0.13 (T-spin = 37(-4)(+8) K). Hartley 2 is the first comet for which the OPR has been measured in multiple apparitions. Our values (in 2010) are in good agreement with those obtained two apparitions earlier by the Infrared Space Observatory. Since the comet lost a substantial amount of material between 1998 and 2010, we see no evidence for variation of the OPR with depth in the nucleus. Further discussion of the advantages, assumptions, and biases introduced by various approaches when quantifying nuclear spin species (observing techniques, models and model parameters, sources of uncertainty) would likely aid in interpreting the OPRs measured in cometary volatiles. (c) 2012 Elsevier Inc. All rights reserved. C1 [Bonev, Boncho P.; Villanueva, Geronimo L.] Catholic Univ Amer, Dept Phys, Washington, DC 20061 USA. [Bonev, Boncho P.; Villanueva, Geronimo L.; Paganini, Lucas; DiSanti, Michael A.; Gibb, Erika L.; Mumma, Michael J.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Paganini, Lucas] NASA, Greenbelt, MD 20771 USA. [Gibb, Erika L.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Keane, Jacqueline V.; Meech, Karen J.] Univ Hawaii, Natl Astrobiol Inst, Honolulu, HI 96822 USA. RP Bonev, BP (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Mail Stop 690, Greenbelt, MD 20771 USA. EM bonev@cua.edu RI mumma, michael/I-2764-2013 FU NSF Astronomy and Astrophysics Research Grants Program [AST 0807939]; NASA Astrobiology Institute; NASA Postdoctoral Program; NASA's Planetary Astronomy Program; NASA's Planetary Atmospheres Program; NASA's Discovery Program; NOAO (through the Telescope System Instrumentation Program); NSF; University of Hawaii FX We gratefully acknowledge support by the NSF Astronomy and Astrophysics Research Grants Program (AST 0807939; PI/co-PI Bonev/Gibb), by the NASA Astrobiology Institute (PI: Meech, PI: Mumma), by the NASA Postdoctoral Program (fellow Paganini), and by NASA's Planetary Astronomy (PI: DiSanti; PI: Mumma), Planetary Atmospheres (PI: DiSanti; PI: Villanueva), and Discovery (PI: Meech) Programs. NOAO (through the Telescope System Instrumentation Program funded by NSF) and the University of Hawaii granted Keck-2 telescope time for this investigation. NR 49 TC 19 Z9 19 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 740 EP 751 DI 10.1016/j.icarus.2012.07.034 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800029 ER PT J AU Maartens, R Zhao, GB Bacon, D Koyama, K Raccanelli, A AF Maartens, Roy Zhao, Gong-Bo Bacon, David Koyama, Kazuya Raccanelli, Alvise TI Relativistic corrections and non-Gaussianity in radio continuum surveys SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE galaxy clustering; cluster counts; non-gaussianity ID SKY AB Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modi fied gravity and non-Gaussianity. We consider the continuum surveys with LO-FAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near and beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift - we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f(NL) greater than or similar to 5 for SKA continuum surveys. C1 [Maartens, Roy] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. [Maartens, Roy; Zhao, Gong-Bo; Bacon, David; Koyama, Kazuya] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Raccanelli, Alvise] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Raccanelli, Alvise] CALTECH, Pasadena, CA 91125 USA. RP Maartens, R (reprint author), Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. EM Roy.Maartens@port.ac.uk; Gong-bo.Zhao@port.ac.uk; David.Bacon@port.ac.uk; Kazuya.Koyama@port.ac.uk; alvise@caltech.edu OI Raccanelli, Alvise/0000-0001-6726-0438; Maartens, Roy/0000-0001-9050-5894 FU South African Square Kilometre Array Project; National Research Foundation; U.K. Science & Technology Facilities Council [ST/H002774/1]; Royal Society (U.K.)/ National Research Foundation (SA); European Research Council; Leverhulme Trust FX We thank Matt Jarvis for helpful discussions. RM was supported by the South African Square Kilometre Array Project and National Research Foundation. RM, GZ, DB, KK were supported by the U.K. Science & Technology Facilities Council (grant no. ST/H002774/1) and by a Royal Society (U.K.)/ National Research Foundation (SA) exchange grant. KK was also supported by the European Research Council and the Leverhulme Trust. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 36 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2013 IS 2 AR 044 DI 10.1088/1475-7516/2013/02/044 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098VE UT WOS:000315576400044 ER PT J AU Diniega, S Sayanagi, KM Balcerski, J Carande, B Diaz-Silva, RA Fraeman, AA Guzewich, SD Hudson, J Nahm, AL Potter-McIntyre, S Route, M Urban, KD Vasisht, S Benneke, B Gil, S Livi, R Williams, B Budney, CJ Lowes, LL AF Diniega, Serina Sayanagi, Kunio M. Balcerski, Jeffrey Carande, Bryce Diaz-Silva, Ricardo A. Fraeman, Abigail A. Guzewich, Scott D. Hudson, Jennifer Nahm, Amanda L. Potter-McIntyre, Sally Route, Matthew Urban, Kevin D. Vasisht, Soumya Benneke, Bjoern Gil, Stephanie Livi, Roberto Williams, Brian Budney, Charles J. Lowes, Leslie L. TI Mission to the Trojan asteroids: Lessons learned during a JPL Planetary Science Summer School mission design exercise SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Trojan asteroid; Mission design; Asteroid tour; NASA-JPL Planetary Science Summer School ID DAWN MISSION; SOLAR-SYSTEM; SURFACE-COMPOSITION; GAMMA-RAY; MAIN BELT; SPECTROSCOPY; JUPITER; VESTA; CERES; CONSTRAINTS AB The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids occupying Jupiter's L4 and L5 Lagrange points as a priority for future NASA missions. Observing these asteroids and measuring their physical characteristics and composition would aid in identification of their source and provide answers about their likely impact history and evolution, thus yielding information about the makeup and dynamics of the early Solar System. We present a conceptual design for a mission to the Jovian Trojan asteroids: the Trojan ASteroid Tour, Exploration, and Rendezvous (TASTER) mission, that is consistent with the NASA New Frontiers candidate mission recommended by the Decadal Survey and the final result of the 2011 NASA-JPL Planetary Science Summer School. Our proposed mission includes visits to two Trojans in the L4 population: a 500 km altitude fly-by of 1999 XS143, followed by a rendezvous with and detailed observations of 911 Agamemnon at orbital altitudes of 1000-100 km over a 12 month nominal science data capture period. Our proposed instrument payload - wide- and narrow-angle cameras, a visual and infrared mapping spectrometer, and a neutron/gamma ray spectrometer - would provide unprecedented high-resolution, regional-to-global datasets for the target bodies, yielding fundamental information about the early history and evolution of the Solar System. Although our mission design was completed as part of an academic exercise, this study serves as a useful starting point for future Trojan mission design studies. In particular, we identify and discuss key issues that can make large differences in the complex trade-offs required when designing a mission to the Trojan asteroids. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Diniega, Serina; Williams, Brian; Budney, Charles J.; Lowes, Leslie L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sayanagi, Kunio M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Sayanagi, Kunio M.] CALTECH, Pasadena, CA 91106 USA. [Balcerski, Jeffrey] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Carande, Bryce] Arizona State Univ, Tempe, AZ 85281 USA. [Diaz-Silva, Ricardo A.] Univ Calif Davis, Davis, CA 95616 USA. [Fraeman, Abigail A.] Washington Univ, St Louis, MO USA. [Guzewich, Scott D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Hudson, Jennifer] Univ Michigan, Ann Arbor, MI 48105 USA. [Nahm, Amanda L.] Univ Texas El Paso, El Paso, TX USA. [Potter-McIntyre, Sally] Univ Utah, Salt Lake City, UT 84112 USA. [Route, Matthew] Penn State Univ, University Pk, PA 16802 USA. [Urban, Kevin D.] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07103 USA. [Vasisht, Soumya] Univ Washington, Seattle, WA 98195 USA. [Benneke, Bjoern; Gil, Stephanie] MIT, Cambridge, MA 02139 USA. [Livi, Roberto] Univ Texas San Antonio, San Antonio, TX 78249 USA. RP Diniega, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM serina.diniega@jpl.nasa.gov RI Nahm, Amanda/F-4602-2011; OI Nahm, Amanda/0000-0002-3771-6825; Guzewich, Scott/0000-0003-1149-7385 FU NASA FX This document was created by students as an educational activity at the Jet Propulsion Laboratory, California Institute of Technology, and does not represent an actual mission. (c) 2012. All rights reserved. Government sponsorship acknowledged. We thank everyone involved with the NASA-JPL Planetary Science Summer School and Team X for enriching our experience, with special thanks to Charles Budney for serving as our mentor and Leslie Lowes and Trisha Wheeler for their logistics assistance. We also thank our review board for their insight and advice: Mark Adler, Bruce Banerdt, Rosaly Lopes, Edward Miller, and Adam Steltzner. Finally, we thank our reviewers, Andrew Rivkin and Josh Emery, for their insightful and constructive comments. Diniega was supported by an appointment to the NASA Post-doctoral Program, administered by Oak Ridge Associated Universities, at the California Institute of Technology Jet Propulsion Laboratory under a contract with NASA. NR 48 TC 1 Z9 1 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD FEB PY 2013 VL 76 BP 68 EP 82 DI 10.1016/j.pss.2012.11.011 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 102FW UT WOS:000315831300006 ER PT J AU Stockton, AM Mora, MF Cable, ML Willis, PA AF Stockton, Amanda M. Mora, Maria F. Cable, Morgan L. Willis, Peter A. TI Design rules and operational optimization for rapid, contamination-free microfluidic transfer using monolithic membrane valves SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Normally-closed monolithic membrane microvalves; Peristaltic micropump; Rapid microfluidic transfer; Spaceflight applications ID CAPILLARY-ELECTROPHORESIS SYSTEM; CARBONACEOUS BIOMARKERS; GENETIC-ANALYSIS; MICROCHIP; MARS; MICRODEVICE; PUMPS AB Networks of monolithic membrane microvalves integrated into microdevices enable complete automation of liquid-based chemical analyses necessary for fully automated applications, such as spaceflight. Although individual pumping devices and operational routines have been characterized, to date there has been no rigorous evaluation of microvalve layout and its effect on fluidic transfer. Here, we evaluate two microdevices at opposite extremes of fluidic resistance and evaluate three pumping routines on each device. Delay times between operational steps are optimized for fastest fluidic transfer. A 3-valve double-chamber routine enables fastest pumping rates on both devices. On low fluidic resistance devices, a 2-valve (bivalve) pumping routine enables faster fluidic transfer than a 3-valve single-chamber pumping routine. Additionally, low fluidic resistance devices enable significantly faster fluidic transfer (4-6 fold) than their higher resistance counterparts. Back-contamination is qualitatively characterized for the optimized routines; higher fluidic resistance between the pumping architecture and the fluidic output reservoir is the most essential feature for preventing back-contamination. We use these results to suggest design rules to guide future pumping architectures to enable the rapid, contamination-free fluidic transfer that will be necessary in spaceflight applications. (c) 2012 Elsevier B.V. All rights reserved. C1 [Stockton, Amanda M.; Mora, Maria F.; Cable, Morgan L.; Willis, Peter A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Willis, PA (reprint author), Mail Stop 302-231,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM peter.a.willis@jpl.nasa.gov RI Mora, Maria/C-9753-2009; Willis, Peter/I-6621-2012 FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; NASA's ASTID Program [104320]; NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory; NASA FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Financial support was provided by NASA's ASTID Program (Project #104320) and the NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. NR 17 TC 5 Z9 5 U1 1 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD FEB PY 2013 VL 177 BP 668 EP 675 DI 10.1016/j.snb.2012.11.039 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 101BU UT WOS:000315751000089 ER PT J AU Kim, B Lu, YJ Hannon, A Meyyappan, M Li, J AF Kim, Beomseok Lu, Yijiang Hannon, Ami Meyyappan, M. Li, Jing TI Low temperature Pd/SnO2 sensor for carbon monoxide detection SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Carbon monoxide sensor; Low temperature sensing; Palladium doped tin dioxide; Hydroxypropyl cellulose ID ROOM-TEMPERATURE; SNO2 SENSORS; GAS SENSORS; CHEMICAL SENSOR; WATER-VAPOR; CO; PD; NANOTUBES; FILMS; NO2 AB The development of a tin oxide nanoparticle based sensor for detecting carbon monoxide at low temperature, 60 degrees C is presented. A combination of three approaches namely, (1) addition of a catalytic metal - 1.5% palladium, (2) optimization of organic binder content, and (3) a proper design of electrodes, leads to high sensitivity, excellent repeatability, and long-term stability in sensor response. The sensors have been tested in dry (<1% RH) and humid (>70% RH) conditions, and no humidity effect on the sensor performance was noticed. The sensors using 15% hydroxypropyl cellulose (HPC) mixed with Pd/SnO2 show sensitivity to CO gas in the parts per million (ppm) level of concentration, 5-10% repeatability in 6-18 ppm CO exposures, and active response for more than 40 days. In addition, the fatigued sensors were recoverable with a brief heating process. Published by Elsevier B.V. C1 [Kim, Beomseok; Lu, Yijiang] NASA, ELORET Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hannon, Ami] NASA, ERC Inc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Meyyappan, M.; Li, Jing] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Li, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jing.li-1@nasa.gov FU U.S. Department of Homeland Security, HSARPA Cell-All Program via a NASA-DHS interagency agreement [IAA: HSHQDC-08-X-00870]; University Affiliated Research Center prime NASA contract [NAS2-03144] FX This work was funded by the U.S. Department of Homeland Security, HSARPA Cell-All Program via a NASA-DHS interagency agreement (IAA: HSHQDC-08-X-00870). The work conducted by the employees of ELORET Corporation was supported through a subcontract to the University Affiliated Research Center prime NASA contract number NAS2-03144 operated by the University of California at Santa Cruz. NR 27 TC 17 Z9 17 U1 7 U2 99 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD FEB PY 2013 VL 177 BP 770 EP 775 DI 10.1016/j.snb.2012.11.020 PG 6 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 101BU UT WOS:000315751000102 ER PT J AU Hong, S Kang, IS Choi, I Ham, YG AF Hong, Soojin Kang, In-Sik Choi, Ildae Ham, Yoo-Geun TI Climate responses in the tropical pacific associated with atlantic warming in recent decades SO ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES LA English DT Article DE Warm pool; moisture convergence feedback; AMO; aqua planet; ENSO ID THERMOHALINE CIRCULATION; SURFACE-TEMPERATURE; COUPLED GCM; EL-NINO; ENSO; VARIABILITY; OCEAN; TRANSPORT; MOMENTUM; RAINFALL AB In this study, we investigated the impact of the Atlantic decadal-scale sea surface temperature (SST) variation on the tropical Pacific climate using a Atmospheric General Circulation Model (AGCM). During the recent decade from 2000 to 2010 when the Atlantic SST has sharply increased, observations have shown that the strong easterly and increased precipitation anomalies appeared over the western-central Pacific. It is different from the conventional Gilltype response in which the easterly due to heating in the Atlantic is expected to be extended to the Indian Ocean. We have found that the warm pool over the western Pacific plays an important role in enhancing the atmospheric response to the Atlantic SST forcing in the Pacific basin. Simplified Aqua planet GCM experiments showed that the central location of the anomalous easterly over the Pacific produced by the Atlantic SST forcing highly depends on the location of the idealized warm pool. The reason for this is because the moisture feedback is strongest over the warm pool region, which leads to additional local anomalous convergence, and therefore the easterly produced by the Atlantic SST forcing is enhanced only over the east of the warm pool region. C1 [Hong, Soojin; Kang, In-Sik; Choi, Ildae] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea. [Ham, Yoo-Geun] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD 20771 USA. [Ham, Yoo-Geun] Univ Space Res Assoc, Columbia, MD 21044 USA. RP Kang, IS (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak Ro, Seoul 151747, South Korea. EM kang@climate.snu.ac.kr RI 안, 민섭/D-9972-2015 FU National Research Foundation of Korea; Korean Government (MEST) [NRF-2009- C1AAA001- 2009-0093042]; Brain Korea 21 Project FX This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009- C1AAA001- 2009-0093042) and by the second stage of the Brain Korea 21 Project. NR 33 TC 9 Z9 11 U1 0 U2 11 PU KOREAN METEOROLOGICAL SOC PI SEOUL PA SHINKIL-DONG 508, SIWON BLDG 704, YONGDUNGPO-GU, SEOUL, 150-050, SOUTH KOREA SN 1976-7633 EI 1976-7951 J9 ASIA-PAC J ATMOS SCI JI Asia-Pac. J. Atmos. Sci. PD FEB PY 2013 VL 49 IS 2 BP 209 EP 217 DI 10.1007/s13143-013-0022-1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 098PU UT WOS:000315562000009 ER PT J AU Kelley, OA AF Kelley, Owen A. TI Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission SO COMPUTERS & GEOSCIENCES LA English DT Article DE Online visualization; TRMM; GPM; 3D; NASA ID PRECIPITATION RADAR; ANALYSIS SYSTEM; SATELLITE; EARTH AB THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over MU. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Kelley, Owen A.] NASA Goddard, Precipitat Proc Syst, Greenbelt, MD 20771 USA. [Kelley, Owen A.] George Mason Univ, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. RP Kelley, OA (reprint author), NASA Goddard, Precipitat Proc Syst, Code 610-2, Greenbelt, MD 20771 USA. EM Owen.Kelley@nasa.gov FU NASA METS-II [NNG10CR16C] FX This work was supported by the NASA METS-II contract NNG10CR16C. Conversations with the following people have helped to develop the ideas presented in this study: Chris Cohoon, Victoria Elinson, Darryl Fountain, Rob Gutro, Thomas Harris, John Kwiatkowski, Kenneth Lee, Mark Piper, Holli Riebeek, Erich Stocker, John Stout, and Bill Teng. The staff at the NASA Goddard library tracked down some hard-to-find resources cited in this study. NR 58 TC 1 Z9 1 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD FEB PY 2013 VL 51 BP 228 EP 237 DI 10.1016/j.cageo.2012.10.004 PG 10 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 095XO UT WOS:000315368500025 ER PT J AU Santanello, JA Peters-Lidard, CD Kennedy, A Kumar, SV AF Santanello, Joseph A., Jr. Peters-Lidard, Christa D. Kennedy, Aaron Kumar, Sujay V. TI Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes in the US Southern Great Plains SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID DIURNAL TIME SCALES; BOUNDARY-LAYER; SOIL-MOISTURE; SURFACE EVAPORATION; VERTICAL DIFFUSION; MODEL; FRAMEWORK; VERIFICATION; ENTRAINMENT; SENSITIVITY AB Land atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the -U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies. C1 [Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.] NASA, GSFC, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Kennedy, Aaron] Univ N Dakota, Grand Forks, ND 58201 USA. [Kumar, Sujay V.] Sci Applicat Int Corp, Mclean, VA 22102 USA. RP Santanello, JA (reprint author), NASA, GSFC, Code 614-3,Bldg 33,Room G220, Greenbelt, MD 20771 USA. EM joseph.a.santanello@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Santanello, Joseph/D-4438-2012; Kumar, Sujay/B-8142-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; Santanello, Joseph/0000-0002-0807-6590; FU NASA Energy and Water Cycle Study (NEWS); Modeling and Extremes Working Groups FX This work was supported and motivated by the NASA Energy and Water Cycle Study (NEWS; PM: Jared Entin) and the Modeling and Extremes Working Groups. The NU-WRF team was also instrumental in providing support related to LIS-WRF coupling and a stable and updated version of the system. We also appreciate the past and ongoing collaboration with the LoCo community and working group that has stimulated this work, in particular Michael Ek, Cor Jacobs, Obbe Tuinenburg, Chiel van Heerwaarden, Bart van den Hurk, and Martin Best. NR 39 TC 32 Z9 32 U1 0 U2 29 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2013 VL 14 IS 1 BP 3 EP 24 DI 10.1175/JHM-D-12-023.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095VT UT WOS:000315363800001 ER PT J AU Kumar, SV Peters-Lidard, CD Mocko, D Tian, YD AF Kumar, Sujay V. Peters-Lidard, Christa D. Mocko, David Tian, Yudong TI Multiscale Evaluation of the Improvements in Surface Snow Simulation through Terrain Adjustments to Radiation SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID DATA ASSIMILATION SYSTEM; SPATIAL-DISTRIBUTION; MODELING SYSTEM; SCALE; MODIS; CLIMATE; PRECIPITATION; VARIABILITY; PRODUCTS; COVER AB The downwelling shortwave radiation on the earth's land surface is affected by the terrain characteristics of slope and aspect. These adjustments, in turn, impact the evolution of snow over such terrain. This article presents a multiscale evaluation of the impact of terrain-based adjustments to incident shortwave radiation on snow simulations over two midlatitude regions using two versions of the Noah land surface model (LSM). The evaluation is performed by comparing the snow cover simulations against the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product. The model simulations are evaluated using categorical measures, such as the probability of detection of "yes" events (PODy), which measure the fraction of snow cover presence that was correctly simulated, and false alarm ratio (FAR), which measures the fraction of no-snow events that was incorrectly simulated. The results indicate that the terrain-based correction of radiation leads to systematic improvements in the snow cover estimates in both domains and in both LSM versions (with roughly 12% overall improvement in PODy and 5% improvement in FAR), with larger improvements observed during snow accumulation and melt periods. Increased contribution to PODy and FAR improvements is observed over the north- and south-facing slopes, when the overall improvements are stratified to the four cardinal aspect categories. A two-dimensional discrete Haar wavelet analysis for the two study areas indicates that the PODy improvements in snow cover estimation drop to below 10% at scales coarser than 16 km, whereas the FAR improvements are below 10% at scales coarser than 4 km. C1 [Kumar, Sujay V.; Mocko, David] Sci Applicat Int Corp, Beltsville, MD USA. [Kumar, Sujay V.; Peters-Lidard, Christa D.; Mocko, David; Tian, Yudong] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Mocko, David] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Tian, Yudong] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. RP Kumar, SV (reprint author), NASA, GSFC, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA. EM sujay.v.kumar@nasa.gov RI Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012 OI Peters-Lidard, Christa/0000-0003-1255-2876 FU Air Force Weather Agency; NASA Center for Climate Simulation FX We gratefully acknowledge the financial support from the Air Force Weather Agency. Computing was supported by the resources at the NASA Center for Climate Simulation. The NLDAS-2 data used in this effort were acquired as part of the activities of NASA's Science Mission Directorate and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). NR 52 TC 3 Z9 3 U1 0 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2013 VL 14 IS 1 BP 220 EP 232 DI 10.1175/JHM-D-12-046.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095VT UT WOS:000315363800013 ER PT J AU Wei, JF Dirmeyer, PA Wisser, D Bosilovich, MG Mocko, DM AF Wei, Jiangfeng Dirmeyer, Paul A. Wisser, Dominik Bosilovich, Michael G. Mocko, David M. TI Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LAND-USE CHANGES; UNITED-STATES; HYDROLOGIC-CYCLE; SURFACE FLUXES; GREAT-PLAINS; TEMPERATURE; CLIMATE; IMPACT; MODEL; VAPOR AB Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land. C1 [Wei, Jiangfeng; Dirmeyer, Paul A.] Ctr Ocean Land Atmosphere Studies, Calverton, MD USA. [Dirmeyer, Paul A.] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA. [Wisser, Dominik] Univ Utrecht, Dept Phys Geog, Utrecht, Netherlands. [Bosilovich, Michael G.; Mocko, David M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Mocko, David M.] NASA, Goddard Space Flight Ctr, SAIC, Greenbelt, MD 20771 USA. RP Wei, JF (reprint author), Univ Texas Austin, Jackson Sch Geosci, 2275 Speedway C9000, Austin, TX 78712 USA. EM jwei@utexas.edu RI Bosilovich, Michael/F-8175-2012; Wei, Jiangfeng/C-6342-2009; Dirmeyer, Paul/B-6553-2016 OI Wei, Jiangfeng/0000-0001-8981-8674; Dirmeyer, Paul/0000-0003-3158-1752 FU National Aeronautics and Space Administration [NNX09AI84G] FX This research was supported by National Aeronautics and Space Administration Grant NNX09AI84G. We thank Qing Liu and Rolf Reichle for providing an early version of the MERRA-Land data set and Min-Hui Lo for earlier discussion. NR 60 TC 29 Z9 29 U1 2 U2 35 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2013 VL 14 IS 1 BP 275 EP 289 DI 10.1175/JHM-D-12-079.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095VT UT WOS:000315363800017 ER PT J AU Zaitchik, BF Santanello, JA Kumar, SV Peters-Lidard, CD AF Zaitchik, Benjamin F. Santanello, Joseph A. Kumar, Sujay V. Peters-Lidard, Christa D. TI Representation of Soil Moisture Feedbacks during Drought in NASA Unified WRF (NU-WRF) SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID PRECIPITATION FEEDBACK; WEATHER RESEARCH; SURFACE ALBEDO; UNITED-STATES; LAND; ATMOSPHERE; CLIMATE; VARIABILITY; MODEL; SIMULATIONS AB Positive soil moisture precipitation feedbacks can intensify heat and prolong drought under conditions of precipitation deficit. Adequate representation of these processes in regional climate models is, therefore, important for extended weather forecasts, seasonal drought analysis, and downscaled climate change projections. This paper presents the first application of the NASA Unified Weather Research and Forecasting Model (NU-WRF) to simulation of seasonal drought. Simulations of the 2006 southern Great Plains drought performed with and without soil moisture memory indicate that local soil moisture feedbacks had the potential to concentrate precipitation in wet areas relative to dry areas in summer drought months. Introduction of a simple dynamic surface albedo scheme that models albedo as a function of soil moisture intensified the simulated feedback pattern at local scale dry, brighter areas received even less precipitation while wet, whereas darker areas received more but did not significantly change the total amount of precipitation simulated across the drought-affected region. This soil-moisture-mediated albedo land atmosphere coupling pathway is structurally excluded from standard versions of WRF. C1 [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Santanello, Joseph A.; Kumar, Sujay V.; Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Kumar, Sujay V.] Sci Applicat Int Corp, Greenbelt, MD USA. RP Zaitchik, BF (reprint author), 3400 N Charles St,301 Olin Hall, Baltimore, MD 21218 USA. EM zaitchik@jhu.edu RI Santanello, Joseph/D-4438-2012; Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012 OI Santanello, Joseph/0000-0002-0807-6590; Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA [NNX09AU61G] FX This work was supported by NASA Modeling, Analysis, and Prediction Program Grant NNX09AU61G. We also thank three anonymous reviewers for their helpful comments on the original manuscript. NR 36 TC 20 Z9 20 U1 0 U2 22 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2013 VL 14 IS 1 BP 360 EP 367 DI 10.1175/JHM-D-12-069.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095VT UT WOS:000315363800023 ER PT J AU Maggioni, V Reichle, RH Anagnostou, EN AF Maggioni, Viviana Reichle, Rolf H. Anagnostou, Emmanouil N. TI The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID PRECIPITATION; IMPACT AB The efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System (LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex, multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma, LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop, 0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also match the performance of a benchmark model simulation forced with high-quality radar precipitation. Compared to using the CTRL rainfall error model in LDAS, using the more complex SREM2D exhibits only slight improvements in soil moisture estimates. C1 [Maggioni, Viviana; Anagnostou, Emmanouil N.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT USA. [Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Maggioni, V (reprint author), Univ Maryland, ESSIC, 5825 Univ Res Court,Suite 4001, College Pk, MD 20740 USA. EM viviana@umd.edu RI Reichle, Rolf/E-1419-2012 FU NASA Earth System Science Graduate Fellowship; NASA research program "The Science of Terra and Aqua"; SMAP Science Definition Team; NASA Precipitation Science Team Grant [NNX07AE31G] FX V. Maggioni was supported by a NASA Earth System Science Graduate Fellowship. R. Reichle was supported by the NASA research program "The Science of Terra and Aqua" and the SMAP Science Definition Team. E. Anagnostou was supported by NASA Precipitation Science Team Grant NNX07AE31G. Computing was supported by the NASA High End Computing Program. NR 22 TC 3 Z9 3 U1 2 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2013 VL 14 IS 1 BP 368 EP 374 DI 10.1175/JHM-D-12-0105.1 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 095VT UT WOS:000315363800024 ER PT J AU Hallis, LJ AF Hallis, L. J. TI Alteration assemblages in the Miller Range and Elephant Moraine regions of Antarctica: Comparisons between terrestrial igneous rocks and Martian meteorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID WEATHERING PRODUCTS; MERIDIANI-PLANUM; MINERAL ASSEMBLAGES; SNC METEORITES; RAMAN SPECTRUM; MARS; SULFATE; NAKHLITES; SULFUR; CHEMISTRY AB The weathering products present in igneous terrestrial Antarctic samples were analyzed, and compared with those found in the four Miller Range nakhlite Martian meteorites. The aim of these comparisons was to determine which of the alteration phases in the Miller Range nakhlites are produced by terrestrial weathering, and what effect rock composition has on these phases. Antarctic terrestrial samples MIL 05031 and EET 96400, along with the Miller Range nakhlites MIL 03346 and 090032, were found to contain secondary alteration assemblages at their externally exposed surfaces. Despite the difference in primary mineralogy, the assemblages of these rocks consist mostly of sulfates (jarosite in MIL 05031, jarosite and gypsum in EET 96400) and iddingsite-like Fe-clay. As neither of the terrestrial samples contains sulfur-bearing primary minerals, and these minerals are rare in the Miller Range nakhlites, it appears that SO42, possibly along with some of the Na+, K+, and Ca+ in these phases, was sourced from wind-blown sea spray and biogenic emissions from the southern ocean. Cl enrichment in the terrestrially derived iddingsite of MIL 05031 and MIL 03346, and the presence of halite at the exterior edge of MIL 090032, can also be explained by this process. However, jarosite within and around the olivine-bound melt inclusions of MIL 090136 is present in the interior of the meteorite and, therefore, is probably the product of preterrestrial weathering on Mars. C1 Univ Hawaii, HIGP SOEST, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Hallis, LJ (reprint author), Univ Hawaii, HIGP SOEST, NASA Astrobiol Inst, Honolulu, HI 96822 USA. EM lydh@higp.hawaii.edu FU National Aeronautics and Space Administration, through the NASA Astrobiology Institute [NNA09DA77A] FX This material is based upon work supported by the National Aeronautics and Space Administration, through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A, issued through the Office of Space Science. Thanks to the NASA Johnson Space Center for allocation of the Miller Range nakhlite thin sections, and rock chips of MIL 05031 and EET 96400. I would also like to thank JoAnn Sinton for thin-section production and Eric Hellebrand for his assistance with EMP analyses. Prof. Jeff Taylor is thanked for his helpful comments and corrections, as are Francis McCubbin, Michael Velbel, and Gretchen Benedix. NR 62 TC 6 Z9 6 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2013 VL 48 IS 2 BP 165 EP 179 DI 10.1111/maps.12049 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 097SD UT WOS:000315492900002 ER PT J AU Brown, P Marchenko, V Moser, DE Weryk, R Cooke, W AF Brown, Peter Marchenko, Valerie Moser, Danielle E. Weryk, Robert Cooke, William TI Meteorites from meteor showers: A case study of the Taurids SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID CANADIAN CAMERA NETWORK; TAGISH LAKE METEORITE; ASTEROID 2008 TC3; PHOTOGRAPHIC DATA; EUROPEAN NETWORK; PEEKSKILL METEORITE; INNISFREE METEORITE; INFRASOUND RECORDS; COMET 81P/WILD-2; VIDEO RECORDS AB We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite-producing fireballs, and suggest that end heights below 35km and terminal speeds below 10kms1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite-producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite-producing characteristics, despite a very high entry velocity (33kms1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28kms1), further suggesting that survival of meteorites at Taurid-like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid-like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream. C1 [Brown, Peter; Weryk, Robert] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Brown, Peter] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON N6A 5B7, Canada. [Marchenko, Valerie] NASA, George C Marshall Space Flight Ctr, Spring Intern Program, Huntsville, AL 35812 USA. [Marchenko, Valerie] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Moser, Danielle E.] NASA, George C Marshall Space Flight Ctr, MITS Dynet Tech Serv, Huntsville, AL 35812 USA. [Cooke, William] NASA, George C Marshall Space Flight Ctr, Meteoroid Environm Off, Space Environm Team, Huntsville, AL 35812 USA. RP Brown, P (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM pbrown@uwo.ca FU NASA Meteoroid Environment Office [NNX11AB76A]; Canadian Natural Sciences and Engineering Research Council; Canada Research Chairs program FX We thank J. Borovicka and Z. Ceplecha for use of their entry modeling and meteor trajectory-solving software. All authors thank the NASA Meteoroid Environment Office for funding support under co-operative agreement NNX11AB76A. PGB thanks the Canadian Natural Sciences and Engineering Research Council and Canada Research Chairs program for additional funding support. Helpful reviews by J. Borovicka and J. Toth of an earlier version of this work greatly improved the manuscript. NR 113 TC 5 Z9 5 U1 1 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD FEB PY 2013 VL 48 IS 2 BP 270 EP 288 DI 10.1111/maps.12055 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 097SD UT WOS:000315492900008 ER PT J AU Bala, G Joshi, J Chaturvedi, RK Gangamani, HV Hashimoto, H Nemani, R AF Bala, Govindasamy Joshi, Jaideep Chaturvedi, Rajiv K. Gangamani, Hosahalli V. Hashimoto, Hirofumi Nemani, Rama TI Trends and Variability of AVHRR-Derived NPP in India SO REMOTE SENSING LA English DT Article DE AVHRR-derived NPP; vegetation productivity; CO2 fertilization; afforestation; soil water; atmospheric CO2 ID NET PRIMARY PRODUCTIVITY; GROSS PRIMARY PRODUCTIVITY; CARBON-CYCLE FEEDBACK; TERRESTRIAL BIOSPHERE; GLOBAL CLIMATE; NDVI DATA; MODEL; VEGETATION; MODIS; CO2 AB In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity. C1 [Bala, Govindasamy; Gangamani, Hosahalli V.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Bala, Govindasamy; Gangamani, Hosahalli V.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Joshi, Jaideep] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India. [Chaturvedi, Rajiv K.] Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India. [Hashimoto, Hirofumi; Nemani, Rama] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bala, G (reprint author), Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. EM gbala@caos.iisc.ernet.in; jaideep777@gmail.com; chaturvedi.rajiv@gmail.com; gangahv@gmail.com; hirofumi.hashimoto@gmail.com; rama.nemani@nasa.gov FU Department of Science and Technology [DST0948]; Ministry of Environment and Forests through National Environmental Sciences Fellowship; Divecha Center for Climate Change FX We thank the funding from Department of Science and Technology under the grant DST0948. Rajiv K. Chaturvedi is supported by the Ministry of Environment and Forests through National Environmental Sciences Fellowship. Hosahalli V. Gangamani is supported by the Divecha Center for Climate Change. NR 45 TC 14 Z9 16 U1 2 U2 30 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD FEB PY 2013 VL 5 IS 2 BP 810 EP 829 DI 10.3390/rs5020810 PG 20 WC Remote Sensing SC Remote Sensing GA 096KM UT WOS:000315402700014 ER PT J AU Zhu, ZC Bi, J Pan, YZ Ganguly, S Anav, A Xu, L Samanta, A Piao, SL Nemani, RR Myneni, RB AF Zhu, Zaichun Bi, Jian Pan, Yaozhong Ganguly, Sangram Anav, Alessandro Xu, Liang Samanta, Arindam Piao, Shilong Nemani, Ramakrishna R. Myneni, Ranga B. TI Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011 SO REMOTE SENSING LA English DT Article DE LAI; FPAR; NDVI3g; MODIS; NASA NEX; artificial neural networks; remote sensing of vegetation ID NET PRIMARY PRODUCTION; MODIS-LAI PRODUCT; REMOTE-SENSING DATA; SATELLITE DATA; LAND-COVER; BIOPHYSICAL PARAMETERS; MULTISCALE ANALYSIS; BIOSPHERE MODEL; SPOT-VEGETATION; NORTH-AMERICA AB Long-term global data sets of vegetation Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) are critical to monitoring global vegetation dynamics and for modeling exchanges of energy, mass and momentum between the land surface and planetary boundary layer. LAI and FPAR are also state variables in hydrological, ecological, biogeochemical and crop-yield models. The generation, evaluation and an example case study documenting the utility of 30-year long data sets of LAI and FPAR are described in this article. A neural network algorithm was first developed between the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products for the overlapping period 2000-2009. The trained neural network algorithm was then used to generate corresponding LAI3g and FPAR3g data sets with the following attributes: 15-day temporal frequency, 1/12 degree spatial resolution and temporal span of July 1981 to December 2011. The quality of these data sets for scientific research in other disciplines was assessed through (a) comparisons with field measurements scaled to the spatial resolution of the data products, (b) comparisons with broadly-used existing alternate satellite data-based products, (c) comparisons to plant growth limiting climatic variables in the northern latitudes and tropical regions, and (d) correlations of dominant modes of interannual variability with large-scale circulation anomalies such as the El Nino-Southern Oscillation and Arctic Oscillation. These assessment efforts yielded results that attested to the suitability of these data sets for research use in other disciplines. The utility of these data sets is documented by comparing the seasonal profiles of LAI3g with profiles from 18 state-of-the-art Earth System Models: the models consistently overestimated the satellite-based estimates of leaf area and simulated delayed peak seasonal values in the northern latitudes, a result that is consistent with previous evaluations of similar models with ground-based data. The LAI3g and FPAR3g data sets can be obtained freely from the NASA Earth Exchange (NEX) website. C1 [Zhu, Zaichun; Bi, Jian; Xu, Liang; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Zhu, Zaichun; Pan, Yaozhong] Beijing Normal Univ, Coll Resources Sci & Technol, State Key Lab Earth Proc & Resource Ecol, Beijing 100875, Peoples R China. [Ganguly, Sangram] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Anav, Alessandro] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. [Samanta, Arindam] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Piao, Shilong] Peking Univ, Dept Ecol, Beijing 100871, Peoples R China. [Piao, Shilong] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Zhu, ZC (reprint author), Boston Univ, Dept Earth & Environm, 685 Commonwealth Ave, Boston, MA 02215 USA. EM zzc@bu.edu; bijian.bj@gmail.com; pyz@bnu.edu.cn; sangramganguly@gmail.com; A.Anav@exeter.ac.uk; bireme@gmail.com; arindam.sam@gmail.com; slpiao@pku.edu.cn; rama.nemani@nasa.gov; ranga.myneni@gmail.com RI Xu, Liang/D-1247-2013; ganguly, sangram/B-5108-2010; Myneni, Ranga/F-5129-2012 FU China Scholarship Council; NASA Earth Science Division FX We thank C. J. Tucker and J. Pinzon of NASA GSFC for making available the GIMMS NDVI3g data set. We also thank BELMANIP Project for providing the BELMANIP site for validation of our products. This study was partially funded by the China Scholarship Council and NASA Earth Science Division. NR 81 TC 161 Z9 168 U1 15 U2 178 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD FEB PY 2013 VL 5 IS 2 BP 927 EP 948 DI 10.3390/rs5020927 PG 22 WC Remote Sensing SC Remote Sensing GA 096KM UT WOS:000315402700021 ER PT J AU Wei, CY Pohorille, A AF Wei, Chenyu Pohorille, Andrew TI Permeation of Aldopentoses and Nucleosides Through Fatty Acid and Phospholipid Membranes: Implications to the Origins of Life SO ASTROBIOLOGY LA English DT Article DE Ribose; Aldopentoses; Nucleosides; Membrane permeability; Protocells ID MOLECULAR-DYNAMICS SIMULATIONS; LIPID-BILAYERS; FREE-ENERGY; MODEL PROTOCELL; WATER-MEMBRANE; KINETICS; RNA; TRANSPORT; SURFACE; MONOSACCHARIDES AB Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes was investigated by way of molecular dynamics simulations. Calculated permeability coefficients of membranes to aldopentoses, which exist predominantly in the pyranose form, are in a very good agreement with experimental results. The unexpected preferential permeation of ribose, compared to its diastereomers, found by Sacerdote and Szostak, is explained in terms of inter- and intramolecular interactions involving hydroxyl groups. In aqueous solution, these groups favor the formation of intermolecular hydrogen bonds with neighboring water molecules. Inside the membrane, however, they form intramolecular hydrogen bonds, which in ribose are arranged in a chain. In its diastereomers this chain is broken, which yields higher free energy barrier to transfer through membranes. Faster permeation of ribose would lead to its preferential accumulation inside cells if sugars were converted sufficiently quickly to nonpermeable derivatives. An estimate for the rate of such reaction was derived. Preferential accumulation of ribose would increase the probability of correct monomers' incorporation during synthesis of nucleic acids inside protocells. The same mechanism does not apply to nucleosides or their activated derivatives because sugars are locked in the furanose form, which contains fewer exocyclic hydroxyl groups than does pyranose. The results of this study underscore concerted early evolution of membranes and the biochemical processes that they encapsulated. C1 [Wei, Chenyu; Pohorille, Andrew] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wei, Chenyu; Pohorille, Andrew] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA. RP Pohorille, A (reprint author), NASA, Ames Res Ctr, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM andrew.pohorille@nasa.gov FU NASA Exobiology Program FX This work was supported by a grant from the NASA Exobiology Program. NASA Advanced Supercomputing (NAS) Division provided computational resources needed to carry out this study. The authors thank Michael Wilson for his valuable comments on the manuscript. NR 60 TC 4 Z9 4 U1 2 U2 29 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD FEB PY 2013 VL 13 IS 2 BP 177 EP 188 DI 10.1089/ast.2012.0901 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 093MN UT WOS:000315196100006 PM 23397957 ER PT J AU Bargoma, E La Duc, MT Kwan, K Vaishampayan, P Venkateswaran, K AF Bargoma, E. La Duc, M. T. Kwan, K. Vaishampayan, P. Venkateswaran, K. TI Differential Recovery of Phylogenetically Disparate Microbes from Spacecraft-Qualified Metal Surfaces SO ASTROBIOLOGY LA English DT Article DE Sampling; Recovery; Biomolecules; Clean room; DNA ID 16S RIBOSOMAL-RNA; POLYMERASE-CHAIN-REACTION; QUANTITATIVE PCR; NONPOROUS SURFACES; BACILLUS SPORES; STAINLESS-STEEL; CLONE LIBRARY; CLEAN ROOM; TIME; DIVERSITY AB Universal and species-specific quantitative polymerase chain reaction-based methods were employed to compare the effectiveness of four distinct materials used to collect biological samples from metal surfaces. Known cell densities of a model microbial community (MMC) were deposited onto metal surfaces and subsequently collected with cotton and nylon-flocked swabs for small surface areas and biological sampling kits (BiSKits) and polyester wipes for large surface areas. Ribosomal RNA gene-based quantitative PCR (qPCR) analyses revealed that cotton swabs were superior to nylon-flocked swabs for recovering nucleic acids (i.e., DNA) from small surface areas. Similarly, BiSKits outperformed polyester wipes for sampling large surface areas. Species-specific qPCR results show a differential recovery of rRNA genes of the various MMC constituents, seemingly dependent on the type of sampling device employed. Both cotton swabs and BiSKits recovered the rDNA of all nine of the MMC constituent microbes assayed, whereas nylon-flocked swabs and polyester wipes recovered the rDNA of only six and four of these MMC strains, respectively. The findings of this study demonstrate the importance and proficiency of molecular techniques in gauging the effectiveness and efficiency of various modes of biological sample collection from metal surfaces. C1 [Bargoma, E.; La Duc, M. T.; Kwan, K.; Vaishampayan, P.; Venkateswaran, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, NASA, Mail Stop 89,Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov FU Mars Program Office; National Aeronautics and Space Administration FX Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was funded by the Mars Program Office. We also appreciate the valuable advice received from J.A. Spry, K. Buxbaum, and C. Conley. Copyright 2011. All rights reserved. NR 64 TC 2 Z9 2 U1 0 U2 11 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD FEB PY 2013 VL 13 IS 2 BP 189 EP 202 DI 10.1089/ast.2012.0917 PG 14 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 093MN UT WOS:000315196100007 PM 23421553 ER PT J AU Allwood, A Beaty, D Bass, D Conley, C Kminek, G Race, M Vance, S Westall, F AF Allwood, Abigail Beaty, David Bass, Deborah Conley, Cassie Kminek, Gerhard Race, Margaret Vance, Steve Westall, Frances TI Conference Summary: Life Detection in Extraterrestrial Samples SO ASTROBIOLOGY LA English DT Article ID ALLAN HILLS 84001; MARS C1 [Allwood, Abigail; Beaty, David] Jet Prop Lab, Pasadena, CA 91016 USA. [Bass, Deborah] Jet Prop Lab, Mars Program Off, Pasadena, CA 91016 USA. [Conley, Cassie] NASA Headquarters, Washington, DC USA. [Kminek, Gerhard] ESA, Noordwijk, Netherlands. [Race, Margaret] SETI, Mountain View, CA USA. [Vance, Steve] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Westall, Frances] Natl Ctr Res & Sci, Ctr Biophys Mol, Orleans, France. RP Allwood, A (reprint author), Jet Prop Lab, 4800 Oak Grove Dr,MS 183-301, Pasadena, CA 91016 USA. EM Abigail.C.Allwood@jpl.nasa.gov; David.W.Beaty@jpl.nasa.gov NR 18 TC 3 Z9 3 U1 1 U2 24 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD FEB PY 2013 VL 13 IS 2 BP 203 EP 216 DI 10.1089/ast.2012.0931 PG 14 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 093MN UT WOS:000315196100008 PM 23421554 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Battaner, E Battye, R Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Brown, ML Bucher, M Burenin, R Burigana, C Butler, RC Cabella, P Carvalho, P Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Clements, DL Colafrancesco, S Colombi, S Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Democles, J Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Feroz, F Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Grainge, KJB Gregorio, A Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Hurley-Walker, N Jagemann, T Juvela, M Keihanen, E Khamitov, I Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Luzzi, G Macias-Perez, JF MacTavish, CJ Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Montier, L Morgante, G Munshi, D Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Olamaie, M Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perrott, YC Perrotta, F Piacentini, F Pierpaoli, E Platania, P Pointecouteau, E Polenta, G Popa, L Poutanen, T Pratt, GW Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Rodriuez-Gonzalvez, C Rosset, C Rossetti, M Rubino-Martin, JA Rumsey, C Rusholme, B Sandri, M Saunders, RDE Savini, G Schammel, MP Scott, D Shimwell, TW Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Battaner, E. Battye, R. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Bucher, M. Burenin, R. Burigana, C. Butler, R. C. Cabella, P. Carvalho, P. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Clements, D. L. Colafrancesco, S. Colombi, S. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Democles, J. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Feroz, F. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Grainge, K. J. B. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Hurley-Walker, N. Jagemann, T. Juvela, M. Keihanen, E. Khamitov, I. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. MacTavish, C. J. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Montier, L. Morgante, G. Munshi, D. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Olamaie, M. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perrott, Y. C. Perrotta, F. Piacentini, F. Pierpaoli, E. Platania, P. Pointecouteau, E. Polenta, G. Popa, L. Poutanen, T. Pratt, G. W. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Rodriuez-Gonzalvez, C. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rumsey, C. Rusholme, B. Sandri, M. Saunders, R. D. E. Savini, G. Schammel, M. P. Scott, D. Shimwell, T. W. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck AMI Collaborations TI Planck intermediate results II. Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; cosmic background radiation; X-rays: galaxies: clusters ID X-RAY-PROPERTIES; SOUTH-POLE TELESCOPE; PRE-LAUNCH STATUS; DISCRETE OBJECT DETECTION; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; MHZ SKY SURVEY; RADIO-SOURCES; XMM-NEWTON; HYDRODYNAMICAL SIMULATIONS AB A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk and White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y-500) and the scale radius (theta(500)) of each cluster. Our resulting constraints in the Y-500 - theta(500) 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally. C1 [Bucher, M.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS, CEA,Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Feroz, F.; Grainge, K. J. B.; Hobson, M.; Hurley-Walker, N.; Lasenby, A.; Olamaie, M.; Perrott, Y. C.; Rodriuez-Gonzalvez, C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Shimwell, T. W.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Fromenteau, S.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR7095, F-75014 Paris, France. [Fosalba, P.] CSIC, IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Brown, M. L.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England. [Ashdown, M.; Grainge, K. J. B.; Harrison, D.; Lasenby, A.; MacTavish, C. J.; Saunders, R. D. E.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Marshall, D. J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observ Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] Tubitak Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 6, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Brown, ML (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester, Lancs, England. EM mbrown@jb.man.ac.uk RI Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; de Gasperis, Giancarlo/C-8534-2012; Hurley-Walker, Natasha/B-9520-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Pierpaoli, Elena/0000-0002-7957-8993; Butler, Reginald/0000-0003-4366-5996; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; de Gasperis, Giancarlo/0000-0003-2899-2171; Hurley-Walker, Natasha/0000-0002-5119-4808; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); Doe (USA); STFC (UK); UKSAR (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes, (Finland); AoF, (Finland); CSC, (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); ESA member states FX A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). The AMI telescope is supported by Cambridge University and the STFC. The AMI data analysis was carried out on the COSMOS UK National Supercomputer at DAMTP, University of Cambridge and the AMI Consortium thanks Andrey Kaliazin for computing assistance.; Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions form NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark. NR 90 TC 14 Z9 14 U1 1 U2 25 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A128 DI 10.1051/0004-6361/201219361 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700128 ER PT J AU Ade, PAR Aghanim, N Argueso, F Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bethermin, M Bhatia, R Bonaldi, A Bond, JR Borrill, J Bouchet, FR Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Chamballu, A Chary, RR Chen, X Chiang, LY Christensen, PR Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Coulais, A Crill, BP Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Fosalba, P Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurinsky, N Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Lilje, PB Lopez-Caniego, M Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sajina, A Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Turler, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Argueeso, F. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bethermin, M. Bhatia, R. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chen, X. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihanen, E. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurinsky, N. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Lilje, P. B. Lopez-Caniego, M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sajina, A. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuerler, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; surveys; galaxies: statistics; galaxies: evolution; galaxies: star formation; galaxies: active ID PROBE WMAP OBSERVATIONS; PRE-LAUNCH STATUS; SUBMILLIMETER NUMBER COUNTS; STAR-FORMATION HISTORY; NORTH ECLIPTIC POLE; 500 MU-M; GALAXY EVOLUTION; LUMINOSITY FUNCTIONS; LOCAL UNIVERSE; HERSCHEL AB We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3mm to 350 mu m). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg(2) (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a large range of flux densities. We derive the multi-frequency Euclidean level - the plateau in the normalised differential counts at high flux-density - and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857 GHz. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Lrfu, Observ Paris,CNRS,IN2P3, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Argueeso, F.] Univ Oviedo, Dept Matemat, Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Kurinsky, N.; Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Balbi, A.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Chen, X.; Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Fosalba, P.] CSIC IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Dickinson, C.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Bethermin, M.; Marshall, D. J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, IRFU Serv Astrophys, Lab AIM,CNRS,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balbi, A.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Dole, H (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM herve.dole@ias.u-psud.fr RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014 OI De Zotti, Gianfranco/0000-0003-2868-2595; Matarrese, Sabino/0000-0002-2573-1243; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Bethermin, Matthieu/0000-0002-3915-2015; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386 FU ESA; NASA; CNES (France); CNRS/INSU-IN2P3INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); National Aeronautics and Space Administration FX Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 101 TC 18 Z9 18 U1 1 U2 29 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A133 DI 10.1051/0004-6361/201220053 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700133 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Burenin, R Burigana, C Cabella, P Cardoso, JF Castex, G Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gilfanov, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Luzzi, G Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Schaefer, BM Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gilfanov, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Luzzi, G. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results VIII. Filaments between interacting clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; large-scale structure of Universe ID PRE-LAUNCH STATUS; X-RAY-STRUCTURE; GALAXY CLUSTERS; INTRACLUSTER MEDIUM; OUTER REGIONS; SIMULATIONS; GAS; ABSORPTION; ENRICHMENT; RADIATION AB Context. About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium. Aims. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Methods. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps. Results. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +/- 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 +/- 0.2) x 10(-4) cm(-3). Conclusions. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas. C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Lrfu, Observ Paris,CNRS,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Offices, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Geophys & Astron, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.; Suur-Uski, A. -S.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Juvela, M.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, IRFU Serv Astrophys,Lab AIM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subat & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM hurier@lpsc.in2p3.fr RI Remazeilles, Mathieu/N-1793-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; OI Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU ESA; NASA; CNES (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal) FX Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and The development of Planck has been supported by: ESA; CNES and CNRS/INSU- IN2P3- INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). We acknowledge the use of the Healpix software NR 63 TC 14 Z9 14 U1 1 U2 29 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A134 DI 10.1051/0004-6361/201220194 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700134 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Burenin, R Burigana, C Cabella, P Cardoso, JF Castex, G Catalano, A Cayon, L Chamballu, A Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gilfanov, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Heinamaki, P Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N Yvon, D Zacchei, A Zaroubi, S Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chiang, L. -Y Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gilfanov, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Heinamaki, P. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihaenen, E. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. Yvon, D. Zacchei, A. Zaroubi, S. Zonca, A. CA Planck Collaboration TI Planck intermediate results VI. The dynamical structure of PLCKG214.6+37.0, a Planck discovered triple system of galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; large-scale structure of Universe; galaxies: clusters: individual: PLCKG214.6+37.0 ID PRE-LAUNCH STATUS; XMM-NEWTON; SAMPLE; PROFILES; NEARBY; MASS; SPECTRUM; REXCESS; A3558; CORE AB The survey of galaxy clusters performed by Planck through the Sunyaev-Zeldovich effect has already discovered many interesting objects, thanks to its full sky coverage. One of the SZ candidates detected in the early months of the mission near to the signal-to-noise threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to be a triple system of galaxy clusters. We present the results from a deep XMM-Newton re-observation of PLCKG214.6+37.0, part of a multi-wavelength programme to investigate Planck discovered superclusters. The characterisation of the physical properties of the three components has allowed us to build a template model to extract the total SZ signal of this system with Planck data. We have partly reconciled the discrepancy between the expected SZ signal derived from X-rays and the observed one, which are now consistent within 1.2 sigma. We measured the redshift of the three components with the iron lines in the X-ray spectrum, and confirm that the three clumps are likely part of the same supercluster structure. The analysis of the dynamical state of the three components, as well as the absence of detectable excess X-ray emission, suggests that we are witnessing the formation of a massive cluster at an early phase of interaction. C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, Observ Paris, CNRS,CEA Lrfu,IN2P3, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago, Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Gorski, K. M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Coll Letter Arts & Sci, Dept Phys & Astron Dana & David Dornsife, Los Angeles, CA 90089 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.; Lasenby, A.] European So Observ, ESO Vitacura, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, F-92195 Meudon, France. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Zaroubi, S.] Univ Groningen, Kapteyn Astron Inst, NL-9747 AD Groningen, Netherlands. [Ashdown, M.; Harrison, D.; Sutton, D.] Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, IRFU Serv Astrophys, CEA Saclay, CNRS,Lab AIM,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Heinamaki, P.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Piikkio 21500, Finland. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Rossetti, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. EM mariachiara.rossetti@unimi.it RI Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; OI Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Pasian, Fabio/0000-0002-4869-3227; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER /SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); USA (NASA); Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, and JA (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER /SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). The present paper is also partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), and on data retrieved from SDSS-III. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/ NR 57 TC 6 Z9 6 U1 1 U2 30 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A132 DI 10.1051/0004-6361/201220039 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700132 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Battye, R Benabed, K Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Bourdin, H Brown, ML Bucher, M Burenin, R Burigana, C Butler, RC Cabella, P Cardoso, JF Carvalho, P Chamballu, A Chiang, LY Chon, G Clements, DL Colafrancesco, S Coulais, A Cuttaia, F Da Silva, A Dahle, H Davis, RJ de Bernardis, P de Gasperis, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jagemann, T Juvela, M Keihanen, E Khamitov, I Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mitra, S Miville-Deschenes, MA Montier, L Morgante, G Munshi, D Natoli, P Norgaard-Nielsen, HU Noviello, F Osborne, S Pajot, F Paoletti, D Partridge, B Pearson, TJ Perdereau, O Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wandelt, BD Weller, J White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Battye, R. Benabed, K. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Bucher, M. Burenin, R. Burigana, C. Butler, R. C. Cabella, P. Cardoso, J. -F. Carvalho, P. Chamballu, A. Chiang, L. -Y. Chon, G. Clements, D. L. Colafrancesco, S. Coulais, A. Cuttaia, F. Da Silva, A. Dahle, H. Davis, R. J. de Bernardis, P. de Gasperis, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jagemann, T. Juvela, M. Keihanen, E. Khamitov, I. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mitra, S. Miville-Deschenes, M. -A. Montier, L. Morgante, G. Munshi, D. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Osborne, S. Pajot, F. Paoletti, D. Partridge, B. Pearson, T. J. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Weller, J. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: galaxies: clusters; galaxies: clusters: intracluster medium; galaxies: clusters: general; cosmology: observations ID WEAK LENSING ANALYSIS; PRE-LAUNCH STATUS; HUBBLE-SPACE-TELESCOPE; SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; SCALING RELATIONS; XMM-NEWTON; DARK-MATTER; REPRESENTATIVE SAMPLE; PARAMETER-ESTIMATION AB We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D-A(2) Y-500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an M-WL-D-A(2) Y-500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R-500 are on average similar to 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Rosset, C.] Univ Paris Diderot, APC, CNRS, CEA,Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, SPP, Irfu, DSM, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Luzzi, G.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, Lab Phys Subat & Cosmol, CNRS,IN2P3, F-38026 St Martin Dheres, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-0708 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Pratt, GW (reprint author), Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. EM gabriel.pratt@cea.fr RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Butler, Reginald/N-4647-2015; Pearson, Timothy/N-2376-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Butler, Reginald/0000-0003-4366-5996; Lopez-Caniego, Marcos/0000-0003-1016-9283; Morgante, Gianluca/0000-0001-9234-7412; Pearson, Timothy/0000-0001-5213-6231; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Hivon, Eric/0000-0003-1880-2733; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Weller, Jochen/0000-0002-8282-2010; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375 FU ESA member states; USA (NASA); ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.; We thank N. Okabe and D. Marrone for useful discussions. The present work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www. rssd. esa. int/Planck. NR 87 TC 28 Z9 28 U1 3 U2 28 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A129 DI 10.1051/0004-6361/201219398 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700129 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Brown, ML Burigana, C Butler, RC Cabella, P Carvalho, P Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombi, S Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giraud-Heraud, Y Gonzalez-Nuevo, J Gonzalez-Riestra, R Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jagemann, T Jones, WC Juvela, M Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Morgante, G Mortlock, D Munshi, D Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Osborne, S Pajot, F Paoletti, D Perdereau, O Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Reinecke, M Remazeilles, M Renault, C Ricciardi, S Rocha, G Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Stanford, A Stivoli, F Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N Weller, J White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Brown, M. L. Burigana, C. Butler, R. C. Cabella, P. Carvalho, P. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gonzalez-Riestra, R. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Morgante, G. Mortlock, D. Munshi, D. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Osborne, S. Pajot, F. Paoletti, D. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Rocha, G. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Stanford, A. Stivoli, F. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. Weller, J. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results IV. The XMM-Newton validation programme for new Planck galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; cosmic background radiation; X-rays: galaxies: clusters ID DISCRETE OBJECT DETECTION; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; X-RAY-PROPERTIES; REPRESENTATIVE SAMPLE; SCALING RELATIONS; TEMPERATURE PROFILES; REXCESS; CATALOG; TELESCOPE AB We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. Fourteen new clusters were detected by XMM-Newton, ten single clusters and two double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z > 0.5. Estimated masses (M-500) range from 2.5 x 10(14) to 8 x 10(14) M-circle dot. We discuss our results in the context of the full XMM-Newton validation programme, in which 51 new clusters have been detected. This includes four double and two triple systems, some of which are chance projections on the sky of clusters at different redshifts. We find that association with a source from the RASS-Bright Source Catalogue is a robust indicator of the reliability of a candidate, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. Candidate validation from association with SDSS galaxy overdensity at z > 0.5 is also discussed. The full sample gives a Planck sensitivity threshold of Y-500 similar to 4 x 10(-4) arcmin(2), with indication for Malmquist bias in the YX-Y500 relation below this threshold. The corresponding mass threshold depends on redshift. Systems with M-500 > 5 x 10(14) M-circle dot at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the Y-X-Y-500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. In particular, there is no significant evolution of the Y-X/Y-500 ratio. C1 [Bartlett, J. G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS, CEA Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Marshall, D. J.; Pointecouteau, E.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.; Stanford, A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dept Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Balbi, A.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Gonzalez-Riestra, R.] European Space Agcy, ESAC, Madrid, Spain. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, NL-2200 AG Noordwijk, Netherlands. [Tauber, J. A.] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Mei, S.] GEPI, Observ Paris, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Polenta, G.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech & Informat, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS INSU, UMR 5274, IPAG, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Luzzi, G.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU Serv Astrophys,CEA DSM,CNRS, F-91191 Gif Sur Yvette, France. [Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3,Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, CNRS, Lab Phys Theor, F-91405 Orsay, France. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observ Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Inst Astron, Royal Observ, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 6, UMR7095, F-75014 Paris, France. [Mei, S.] Univ Denis Diderot Paris 7, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Marshall, D. J.; Pointecouteau, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Democles, J (reprint author), Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU Serv Astrophys,CEA DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. EM jessica.democles@cea.fr RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Mazzotta, Pasquale/B-1225-2016; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; OI Pierpaoli, Elena/0000-0002-7957-8993; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Lopez-Caniego, Marcos/0000-0003-1016-9283; Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Finelli, Fabio/0000-0002-6694-3269; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA member states; USA (NASA); Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias [AOT24/11-A24DDT3, 43-016]; Gemini Science [GN-2011B-Q-41]; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www. esa. int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.; The Planck Collaboration thanks Norbert Schartel for his support of the validation process and for granting discretionary time for the observation of Planck cluster candidates. The present work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). This research has made use of the following databases: SIMBAD, operated at the CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by IRAP, under contract with the Centre National d'Etudes Spatiales (CNES); and the SZ repository operated by IAS Data and Operation centre (IDOC) under contract with CNES. Based on photographic data obtained using The UK Schmidt Telescope. We further used observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (Science Program ID AOT24/11-A24DDT3), on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (Science Program ID 43-016), observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), Gemini Science Program ID: GN-2011B-Q-41. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 37 TC 17 Z9 17 U1 2 U2 24 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A130 DI 10.1051/0004-6361/201219519 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700130 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bobin, J Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Bourdin, H Brown, ML Burenin, R Burigana, C Cabella, P Cardoso, JF Carvalho, P Castex, G Catalano, A Cayon, L Chamballu, A Chiang, LY Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Liddle, A Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Valenziano, L Van Tent, B Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Bobin, J. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Carvalho, P. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chiang, L. -Y Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihanen, E. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Liddle, A. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Valenziano, L. Van Tent, B. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; submillimeter: general; X-rays: general ID SOUTH-POLE TELESCOPE; INTRACLUSTER GAS TEMPERATURE; SURFACE-BRIGHTNESS PROFILES; INTERNAL LINEAR COMBINATION; STRUCTURE SURVEY REXCESS; X-RAY MEASUREMENTS; XMM-NEWTON; COSMOLOGICAL SIMULATIONS; REPRESENTATIVE SAMPLE; VIRIAL RADIUS AB Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R-500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R-500, i. e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R-500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i. e., [0.1-1] R-500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P-0, c(500), gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 R-500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos. C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, CNRS IN2P3, CEA Lrfu, APC AstroParticule & Cosmol,Observ Paris, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylamala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Offices, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, F-92195 Meudon, France. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS INSU 1, IPAG, UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Fosalba, P.] CSIC IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Bobin, J.; Democles, J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, IRFU Serv Astrophys, Lab AIM,CEA DSM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] Akdeniz Univ, TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Pointecouteau, E (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM etienne.pointecouteau@irap.omp.eu RI Remazeilles, Mathieu/N-1793-2015; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Churazov, Eugene/A-7783-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Martinez-Gonzalez, Enrique/E-9534-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Bobin, Jerome/P-3729-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015 OI Pierpaoli, Elena/0000-0002-7957-8993; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; WANDELT, Benjamin/0000-0002-5854-8269; Scott, Douglas/0000-0002-6878-9840; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Valenziano, Luca/0000-0002-1170-0104; Morgante, Gianluca/0000-0001-9234-7412; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; Mazzotta, Pasquale/0000-0002-5411-1748; Masi, Silvia/0000-0001-5105-1439; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Finelli, Fabio/0000-0002-6694-3269; Frailis, Marco/0000-0002-7400-2135; De Zotti, Gianfranco/0000-0003-2868-2595; Sandri, Maura/0000-0003-4806-5375; Franceschi, Enrico/0000-0002-0585-6591; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Bobin, Jerome/0000-0003-1457-7890; Barreiro, Rita Belen/0000-0002-6139-4272; FU ESA member states; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.; The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). We acknowledge the use of the Healpix software. NR 114 TC 66 Z9 66 U1 4 U2 34 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A131 DI 10.1051/0004-6361/201220040 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700131 ER PT J AU de Martino, D Belloni, T Falanga, M Papitto, A Motta, S Pellizzoni, A Evangelista, Y Piano, G Masetti, N Bonnet-Bidaud, JM Mouchet, M Mukai, K Possenti, A AF de Martino, D. Belloni, T. Falanga, M. Papitto, A. Motta, S. Pellizzoni, A. Evangelista, Y. Piano, G. Masetti, N. Bonnet-Bidaud, J. -M. Mouchet, M. Mukai, K. Possenti, A. TI X-ray follow-ups of XSS J12270-4859: a low-mass X-ray binary with gamma-ray Fermi-LAT association SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; X-rays: binaries; gamma rays: stars; binaries: close ID CATACLYSMIC VARIABLES; MILLISECOND PULSATIONS; LS I+61-DEGREES-303; LOW/HARD STATE; BLACK-HOLES; EMISSION; PULSARS; SEARCHES; MISSION; STARS AB Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9-4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity low-mass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 x 10(33) d(1kpc)(2) erg s(-1)) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at similar to 13 kK and a cool one at similar to 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (greater than or similar to 6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case, it would be the first associated with a high-energy gamma-ray source. C1 [de Martino, D.] INAF, Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Belloni, T.; Motta, S.] INAF, Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Falanga, M.] ISSI, CH-3012 Bern, Switzerland. [Papitto, A.] Inst Ciencie Espai IEEC CSIC, Fac Ciencies, Barcelona 08193, Spain. [Pellizzoni, A.; Possenti, A.] INAF, Osservatorio Astron Cagliari, I-09012 Capoterra, CA, Italy. [Evangelista, Y.; Piano, G.] INAF, Ist Astrofis Spaziale & Planetol Spaziali, I-00133 Rome, Italy. [Masetti, N.] INAF, Ist Astrofis Spaziale, I-40129 Bologna, Italy. [Bonnet-Bidaud, J. -M.] CEA Saclay, DSM, Irfu, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Mouchet, M.] Univ Paris 07, Lab APC, F-75005 Paris, France. [Mouchet, M.] Observ Paris, LUTH, Sect Meudon, F-92195 Meudon, France. [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. RP de Martino, D (reprint author), INAF, Osservatorio Astron Capodimonte, I-80131 Naples, Italy. EM demartino@oacn.inaf.it; tomaso.belloni@brera.inaf.it; mfalanga@issibern.ch; papitto@ice.csic.es; sara.motta@brera.inaf.it; apellizz@oa-cagliari.inaf.it; yuri.evangelista@iasf-roma.inaf.it; giovanni.piano@iasf-roma.inaf.it; nicola.masetti@iasfbo.inaf.it; bonnetbidaud@cea.fr; martine.mouchet@obspm.fr; koji.mukai@nasa.gov OI Pellizzoni, Alberto Paolo/0000-0002-4590-0040; de Martino, Domitilla/0000-0002-5069-4202; Masetti, Nicola/0000-0001-9487-7740 FU ESA Member States; NASA; Swift, a NASA science mission with Italian participation; Rossi-XTE, a NASA science mission; with Fermi a NASA mission; AGILE, an Italian Space Agency mission with participation of the Italian Institute of Astrophysics; Italian Institute of Nuclear Physics; ASI [ASI/INAFI/009/10/0]; European Commnunity [ITN 215212]; [AYA2012-39303]; [SGR2009-811]; [iLINK2011-0303] FX Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with Swift, a NASA science mission with Italian participation, with Rossi-XTE, a NASA science mission, and with Fermi a NASA mission with contributions from France, Germany, Italy, Japan, Sweden, and USA, and with AGILE, an Italian Space Agency mission with participation of the Italian Institute of Astrophysics and the Italian Institute of Nuclear Physics.; D.d.M. and T. B. acknowledge financial support from ASI under contract ASI/INAFI/009/10/0. A. P. acknowledges the support of the grants AYA2012-39303, SGR2009-811, and iLINK2011-0303. This research has received funding from the European Commnunity's Seven Framework Programme (FP7/2007-2013) under grant agreement ITN 215212. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. D. d. M. wishes to thank Dr. Norbert Schartel and the ESAC staff for their help in obtaining the XMM-Newton data. NR 56 TC 30 Z9 30 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A89 DI 10.1051/0004-6361/201220393 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700089 ER PT J AU Gontikakis, C Winebarger, AR Patsourakos, S AF Gontikakis, C. Winebarger, A. R. Patsourakos, S. TI Spectral diagnostic of a microflare. Evidences of resonant scattering in C IV 1548 angstrom, 1550 angstrom lines SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: activity; Sun: corona; Sun: flares ID STELLAR TRANSITION REGIONS; FAR-ULTRAVIOLET CONTINUUM; HIGH TIME RESOLUTION; EXTREME-ULTRAVIOLET; ACTIVE-REGION; QUIET SUN; CHROMOSPHERIC EVAPORATION; SOLAR-FLARES; X-RAY; TRANSIENT BRIGHTENINGS AB Aims. We study a microflare, classified as a GOES-A1 after background subtraction, which was observed in active region NOAA 8541 on May 15, 1999. Methods. We used TRACE filtergrams to study the morphology and time evolution. SUMER spectral lines were used to diagnose the chromospheric plasma (Si II 1533 angstrom), transition region plasma (C IV 1548, 1550 angstrom), and coronal plasma (Ne VIII 770 angstrom). Results. In the 171 angstrom and 195 angstrom filtergrams, we measure apparent mass motions along two small loops that compose the microflare from the eastern toward the western footpoints. In SUMER, the microflare is detected as a small (47 Mm(2)), bright area at the western footpoints of the TRACE loops. The spectral profiles recorded over the bright area are complex. The Si II 1533 angstrom line is self-reversed owing to opacity, and the coronal Ne VIII line profile is composed of two Gaussian components, one of them systematically redshifted. The C IV 1548 angstrom and 1550 angstrom profiles are badly distorted because of the temporary depression of the detector local gain caused by the very high count rates reached in the flaring region and we can only confirm the presence of strong blueshifts of similar or equal to-200 km s(-1). Few, unaffected C IV profiles show two spectral components. In the northern part of the bright area, all SUMER spectral lines have at least one blueshifted spectral component. In the southern region of the bright area the spectral lines are redshifted. Adjacent to the microflare we measure, for the first time on the solar disk, an intensity ratio of the 1548 angstrom line to 1550 angstrom line with values of three to four, indicating that resonance scattering prevails in the lines formation. Moreover, the scattering region is found to be cospatial to a solar pore. Conclusions. The blueshifts in the footpoints of the microflare and the apparent mass motions observed with TRACE can be explained by a gentle chromospheric evaporation triggered by the microflare. The redshifted spectral components can be explained as cooling material that is falling back on the solar surface. The presence of resonant scattering can be explained by the low electron density expected in the transition region of a solar pore, combined with the high photon flux coming from the nearby microflare. We estimate that the lower limit of the electron density in the pore lies in the range 10(8) cm(-3) to 10(9) cm(-3). C1 [Gontikakis, C.] Acad Athens, Astron & Appl Math Res Ctr, Athens 11527, Greece. [Winebarger, A. R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Patsourakos, S.] Univ Ioannina, Dept Phys, Sect Astrogeophys, GR-45110 Ioannina, Greece. RP Gontikakis, C (reprint author), Acad Athens, Astron & Appl Math Res Ctr, 4 Soranou Efessiou Str, Athens 11527, Greece. EM cgontik@academyofathens.gr FU DLR; CNES; NASA; ESA PRODEX program (Swiss contribution); European Union (European Social Fund ESF); Greek Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales; FP7 Marie Curie Grant [FP7-PEOPLE-2010-RG/268288] FX SOHO is a mission of international cooperation between ESA and NASA. The SUMER project is financially supported by DLR, CNES, NASA and the ESA PRODEX program (Swiss contribution). C. G. acknowledge discussions with J.-C. Vial, A. H. Gabriel, W. Curdt, and M. K. Georgoulis. We thank J.-M. Malherbe for providing the Ha filtergrams from the Meudon Heliograph. Last, but not least, we would like to thank the referee, L. Teriaca, who helped very much the present work with his comments. This research has been supported in part by the European Union (European Social Fund ESF) and in part by the Greek Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. "Hellenic National Network for Space Weather Research"-MIS 377274. S. P. acknowledges support from an FP7 Marie Curie Grant (FP7-PEOPLE-2010-RG/268288). NR 72 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A16 DI 10.1051/0004-6361/200913423 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700016 ER PT J AU Gonzalez-Alfonso, E Fischer, J Bruderer, S Muller, HSP Gracia-Carpio, J Sturm, E Lutz, D Poglitsch, A Feuchtgruber, H Veilleux, S Contursi, A Sternberg, A Hailey-Dunsheath, S Verma, A Christopher, N Davies, R Genzel, R Tacconi, L AF Gonzalez-Alfonso, E. Fischer, J. Bruderer, S. Mueller, H. S. P. Gracia-Carpio, J. Sturm, E. Lutz, D. Poglitsch, A. Feuchtgruber, H. Veilleux, S. Contursi, A. Sternberg, A. Hailey-Dunsheath, S. Verma, A. Christopher, N. Davies, R. Genzel, R. Tacconi, L. TI Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE line: formation; line: identification; ISM: abundances; galaxies: ISM; infrared: galaxies; molecular processes ID IMPACT ROTATIONAL-EXCITATION; LUMINOUS INFRARED GALAXIES; LASER MAGNETIC-RESONANCE; STAR-FORMING REGIONS; RAY IONIZATION RATE; STARBURST GALAXY; INTERSTELLAR OH+; HERSCHEL-PACS; MOLECULAR GAS; DOMINATED REGIONS AB We report on Herschel/PACS observations of absorption lines of OH+, H2O+ and H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with E-lower of at least 285 and similar to 200 K, respectively, are detected in both sources, indicating radiative pumping and location in the high radiation density environment of the nuclear regions. Abundance ratios OH+/H2O+ of 1-2.5 are estimated in the nuclei of both sources. The inferred OH+ column and abundance relative to H nuclei are (0.5-1) x 10(16) cm(-2) and similar to 2 x 10(-8), respectively. Additionally, in Arp 220, an extended low excitation component around the nuclear region is found to have OH+/H2O+ similar to 5-10. H3O+ is detected in both sources with N(H3O+) similar to (0.5-2) x 10(16) cm(-2), and in Arp 220 the pure inversion, metastable lines indicate a high rotational temperature of similar to 500 K, indicative of formation pumping and/or hot gas. Simple chemical models favor an ionization sequence dominated by H+ -> O+ -> OH+ -> H2O+ -> H3O+, and we also argue that the H+ production is most likely dominated by X-ray/cosmic ray ionization. The full set of observations and models leads us to propose that the molecular ions arise in a relatively low density (similar to 10(4) cm(-3)) interclump medium, in which case the ionization rate per H nucleus (including secondary ionizations) is zeta > 10(-13) s(-1), a lower limit that is several x 10(2) times the highest current rate estimates for Galactic regions. In Arp 220, our lower limit for zeta is compatible with estimates for the cosmic ray energy density inferred previously from the supernova rate and synchrotron radio emission, and also with the expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray ionization due to an active galactic nucleus is responsible for the molecular ion production. C1 [Gonzalez-Alfonso, E.] Univ Alcala de Henares, Dept Fis & Matemat, Madrid 28871, Spain. [Fischer, J.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Bruderer, S.; Gracia-Carpio, J.; Sturm, E.; Lutz, D.; Poglitsch, A.; Feuchtgruber, H.; Contursi, A.; Davies, R.; Genzel, R.; Tacconi, L.] Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. [Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Veilleux, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Veilleux, S.] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sternberg, A.] Tel Aviv Univ, Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, Israel. [Hailey-Dunsheath, S.] CALTECH, Pasadena, CA 91125 USA. [Verma, A.; Christopher, N.] Univ Oxford, Oxford Astrophys, Oxford OX1 3RH, England. RP Gonzalez-Alfonso, E (reprint author), Univ Alcala de Henares, Dept Fis & Matemat, Campus Univ, Madrid 28871, Spain. EM eduardo.gonzalez@uah.es OI Mueller, Holger/0000-0002-0183-8927 FU BMVIT (Austria); ESAPRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); Spanish Ministerio de Ciencia e Innovacion [AYA2010-21697-C05-01]; NHSC; Bundesministerium fur Bildung und Forschung (BMBF) [FKZ 50OF0901]; NASA [RSA 1427277]; NASA FX We thank the referee, David A. Neufeld, for useful indications that improved the manuscript. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESAPRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). E. G.-A. is a Research Associate at the Harvard-Smithsonian Center for Astrophysics, and thanks the support by the Spanish Ministerio de Ciencia e Innovacion under project AYA2010-21697-C05-01. Basic research in IR astronomy at NRL is funded by the US ONR; J.F. also acknowledges support from the NHSC. H. S. P. M. acknowledges support by the Bundesministerium fur Bildung und Forschung (BMBF) through project FKZ 50OF0901 (ICC HIFI Herschel). S. V. thanks NASA for partial support of this research via Research Support Agreement RSA 1427277, support from a Senior NPP Award from NASA, and his host institution, the Goddard Space Flight Center. This research has made use of NASA's Astrophysics Data System (ADS) and of GILDAS software (http://www.iram.fr/IRAMFR/GILDAS). NR 89 TC 36 Z9 36 U1 0 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A25 DI 10.1051/0004-6361/201220466 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700025 ER PT J AU Grellmann, R Preibisch, T Ratzka, T Kraus, S Helminiak, KG Zinnecker, H AF Grellmann, R. Preibisch, T. Ratzka, T. Kraus, S. Helminiak, K. G. Zinnecker, H. TI The multiplicity of massive stars in the Orion Nebula Cluster as seen with long-baseline interferometry SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: close; stars: formation; stars: massive; techniques: interferometric ID SOLAR-TYPE STARS; TRAPEZIUM CLUSTER; SPECTROSCOPIC BINARIES; SPECKLE INTERFEROMETRY; RADIAL-VELOCITY; ORBITAL MOTION; DATA REDUCTION; V1016 ORI; C SYSTEM; AMBER/VLTI AB Context. The characterization of multiple stellar systems is an important ingredient for testing current star formation models. Stars are more often found in multiple systems, the more massive they are. A complete knowledge of the multiplicity of high-mass stars over the full range of orbit separations is thus essential to understand their still debated formation process. Aims. Infrared long baseline interferometry is very well suited to close the gap between spectroscopic and adaptive optics searches. Observations of the Orion Nebula Cluster (ONC) in general and the Trapezium Cluster in particular can help to answer the question about the origin and evolution of multiple stars. Earlier studies provide a good knowledge about the multiplicity of the stars at very small (spectroscopic companions) and large separations (AO, speckle companions) and thus make the ONC a good target for such a project. Methods. We used the near infrared interferometric instrument AMBER at ESOs Very Large Telescope Interferometer to observe a sample of bright stars in the ONC. We complement our data set by archival NACO observations of theta(1) Ori A to obtain more information about the orbit of the close visual companion. Results. Our observations resolve the known multiple systems theta(1) Ori C and theta(1) Ori A and provide new orbit points, which confirm the predicted orbit and the determined stellar parameters for theta(1) Ori C. Combining AMBER and NACO data for theta(1) Ori A we were able to follow the (orbital) motion of the companion from 2003 to 2011. We furthermore find hints for a companion around theta(1) Ori D, whose existence has been suggested already before, and a previously unknown companion to NU Ori. With a probability of similar to 90% we can exclude further companions with masses of >= 3 M-circle dot around our sample stars for separations between similar to 2 mas and similar to 110 mas. Conclusions. We conclude that the companion around theta(1) Ori A is most likely physically related to the primary star and not only a chance projected star. The newly discovered possible companions further increase the multiplicity in the ONC. For our sample of two O and three B-type stars we find on average 2.5 known companions per primary, which is around five times more than for low-mass stars. C1 [Grellmann, R.; Preibisch, T.; Ratzka, T.] Univ Munich, Univ Sternwarte, D-81679 Munich, Germany. [Kraus, S.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Helminiak, K. G.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 7820436, Chile. [Helminiak, K. G.] Nicolaus Copernicus Astron Ctr, Dept Astrophys, PL-87100 Torun, Poland. [Zinnecker, H.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. RP Grellmann, R (reprint author), Univ Munich, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. EM rgrellma@eso.org RI Helminiak, Krzysztof/N-6385-2015; OI Helminiak, Krzysztof/0000-0002-7650-3603; Ratzka, Thorsten/0000-0001-9557-8232 FU German Deutsche Forschungsgemeinschaft, DFG [PR 569/8-1]; Proyecto FONDECYT [3120153]; Polish Nacional Science Center [2011/03/N/ST9/01819] FX We gratefully acknowledge funding of this work by the German Deutsche Forschungsgemeinschaft, DFG project number PR 569/8-1. K. G. H. acknowledges support provided by the Proyecto FONDECYT Postdoctoral No. 3120153 and the Polish Nacional Science Center grant No. 2011/03/N/ST9/01819. This research has made use of the Jean-Marie Mariotti Center AMBER data reduction package3 and LITpro4 service co-developed by CRAL, LAOG and FIZEAU. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. We thank the referee Douglas Gies for the helpful und constructive comments, which helped to improve the paper. NR 52 TC 9 Z9 9 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A82 DI 10.1051/0004-6361/201220192 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700082 ER PT J AU Herenz, P Richter, P Charlton, JC Masiero, JR AF Herenz, P. Richter, P. Charlton, J. C. Masiero, J. R. TI The Milky Way halo as a QSO absorption-line system New results from an HST/STIS absorption-line catalogue of Galactic high-velocity clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; Galaxy: halo; galaxies: halos ID HOT INTERGALACTIC MEDIUM; SMALL-MAGELLANIC-CLOUD; COLD GAS ACCRETION; MG II ABSORBERS; COMPLEX-C; INTERMEDIATE-REDSHIFT; LOW-METALLICITY; IONIZED-GAS; PHYSICAL-PROPERTIES; INTERSTELLAR-MEDIUM AB We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low-and intermediate ions (Oi, Cii, Si ii, Mgii, Feii, Si iii, Civ, and Si iv) in the range f(c) = 0.20-0.70. For detailed analysis we concentrate on Si ii absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for Si ii and Mg II, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong Mg ii absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average similar to 52 percent to the total strong Mg ii cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong Mg ii absorption in the Milky Way halo and disc from an exterior vantage point is < f(c,sMgII)> = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong Mg ii absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong Mgii absorbers is < 34 percent. These findings are in line with the idea that outflowing gas (e. g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong Mgii absorbers in the local Universe. C1 [Herenz, P.; Richter, P.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Richter, P.] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Charlton, J. C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Masiero, J. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Herenz, P (reprint author), Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany. EM pherenz@astro.physik.uni-potsdam.de OI Masiero, Joseph/0000-0003-2638-720X FU German Deutsche Forschungsgemeinschaft, DFG [Ri 1124/8 - 1] FX P.H. and P.R. acknowledge financial support by the German Deutsche Forschungsgemeinschaft, DFG, through grant Ri 1124/8 - 1. NR 86 TC 8 Z9 8 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A87 DI 10.1051/0004-6361/201220531 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700087 ER PT J AU McElroy, D Walsh, C Markwick, AJ Cordiner, MA Smith, K Millar, TJ AF McElroy, D. Walsh, C. Markwick, A. J. Cordiner, M. A. Smith, K. Millar, T. J. TI The UMIST database for astrochemistry 2012 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; molecular data; molecular processes; ISM: molecules; circumstellar matter ID DENSE INTERSTELLAR CLOUDS; NEUTRAL-NEUTRAL REACTIONS; ION-MOLECULE REACTIONS; INTER-STELLAR CLOUDS; GAS-PHASE REACTIONS; ULTRALOW-TEMPERATURE KINETICS; RICH CIRCUMSTELLAR ENVELOPES; PRODUCT BRANCHING FRACTIONS; PROTON-TRANSFER REACTIONS; ABSOLUTE CROSS-SECTION AB We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types. We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss the results of these models. C1 [McElroy, D.; Walsh, C.; Smith, K.; Millar, T. J.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Markwick, A. J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Cordiner, M. A.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20770 USA. [Cordiner, M. A.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20770 USA. [Cordiner, M. A.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP McElroy, D (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. EM dmcelroy03@qub.ac.uk OI Millar, Tom/0000-0001-5178-3656 FU STFC; "Combination of Collaborative Projects and Coordination and Support Actions" Funding Scheme of The Seventh Framework Program; [239108] FX We are grateful to E. van Dishoeck, E. Vigren, M. Rollig and R. Garrod for sending data and giving advice. We would also like to thank the referee for providing useful comments, which helped improve the paper. Research in molecular astrophysics at QUB, and in particular that of DMcE, is supported by a grant from the STFC. VAMDC is funded under the "Combination of Collaborative Projects and Coordination and Support Actions" Funding Scheme of The Seventh Framework Program. Call topic: INFRA-2008-1.2.2 Scientific Data Infrastructure. Grant Agreement number: 239108. NR 267 TC 145 Z9 146 U1 2 U2 31 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A36 DI 10.1051/0004-6361/201220465 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700036 ER PT J AU Nordon, R Behar, E Drake, SA AF Nordon, R. Behar, E. Drake, S. A. TI Variability of a stellar corona on a time scale of days Evidence for abundance fractionation in an emerging coronal active region SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: atmospheres; stars: coronae; stars: abundances; X-rays: stars; stars: individual: EI Eridani ID X-RAY FLARES; NON-WKB MODELS; EI ERIDANI; ELEMENTAL ABUNDANCES; SOLAR ATMOSPHERE; SPECTROSCOPY; EMISSION; CHANDRA; DIAGNOSTICS; BINARIES AB Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae. C1 [Nordon, R.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany. [Nordon, R.] Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Behar, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Drake, S. A.] NASA GSFC, Greenbelt, MD 20771 USA. RP Nordon, R (reprint author), Max Planck Inst Extraterr Phys MPE, Postfach 1312, D-85741 Garching, Germany. EM nordon@astro.tau.ac.il; behar@physics.technion.ac.il; stephen.a.drake@nasa.gov FU Israel Science Foundation [1163/10]; Ministry of Science and Technology FX This work was supported by The Israel Science Foundation (grant #1163/10) and by the Ministry of Science and Technology. NR 35 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A22 DI 10.1051/0004-6361/201220491 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700022 ER PT J AU Tadesse, T Wiegelmann, T Inhester, B MacNeice, P Pevtsov, A Sun, X AF Tadesse, T. Wiegelmann, T. Inhester, B. MacNeice, P. Pevtsov, A. Sun, X. TI Full-disk nonlinear force-free field extrapolation of SDO/HMI and SOLIS/VSM magnetograms SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE magnetic fields; Sun: corona; Sun: atmosphere; methods: numerical ID CORONAL MAGNETIC-FIELD; SOLAR ACTIVE-REGION; WELL-POSED RECONSTRUCTION; TWISTED FLUX ROPE; VECTOR MAGNETOGRAPH; STOKES PROFILES; GRAD-RUBIN; FILAMENT; CONFIGURATION; AMBIGUITY AB Context. The magnetic field configuration is essential for understanding solar explosive phenomena, such as flares and coronal mass ejections. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Two complications of this approach are that the measured photospheric magnetic field is not force-free and that one has to apply a preprocessing routine to achieve boundary conditions suitable for the force-free modeling. Furthermore the nonlinear force-free extrapolation code should take uncertainties into account in the photospheric field data. They occur due to noise, incomplete inversions, or azimuth ambiguity-removing techniques. Aims. Extrapolation codes in Cartesian geometry for modeling the magnetic field in the corona do not take the curvature of the Sun's surface into account and can only be applied to relatively small areas, e. g., a single active region. Here we apply a method for nonlinear force-free coronal magnetic field modeling and preprocessing of photospheric vector magnetograms in spherical geometry using the optimization procedure to full disk vector magnetograms. We compare the analysis of the photospheric magnetic field and subsequent force-free modeling based on full-disk vector maps from Helioseismic and Magnetic Imager (HMI) onboard the solar dynamics observatory (SDO) and Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS). Methods. We used HMI and VSM photospheric magnetic field measurements to model the force-free coronal field above multiple solar active regions, assuming magnetic forces to dominate. We solved the nonlinear force-free field equations by minimizing a functional in spherical coordinates over a full disk and excluding the poles. After searching for the optimum modeling parameters for the particular data sets, we compared the resulting nonlinear force-free model fields. We compared quantities, such as the total magnetic energy content, free magnetic energy, the longitudinal distribution of the magnetic pressure, and surface electric current density, using our spherical geometry extrapolation code. Results. The magnetic field lines obtained from nonlinear force-free extrapolation based on HMI and VSM data show good agreement. However, the nonlinear force-free extrapolation based on HMI data contain more total magnetic energy, free magnetic energy, the longitudinal distribution of the magnetic pressure, and surface electric current density than do the VSM data. C1 [Tadesse, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Tadesse, T.] Univ Addis Ababa, Inst Geophys Space Sci & Astron, Addis Ababa, Ethiopia. [Wiegelmann, T.; Inhester, B.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [MacNeice, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pevtsov, A.] Natl Solar Observ, Sunspot, NM 88349 USA. [Sun, X.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. RP Tadesse, T (reprint author), Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. EM tasfaw@einstein.physics.drexel.edu RI Sun, Xudong/M-3245-2013; OI Sun, Xudong/0000-0003-4043-616X; Pevtsov, Alexei/0000-0003-0489-0920 FU NASA [NNX07AU64G]; DLR-grant [50 OC 453 0501] FX The authors thank the anonymous referee for helpful comments. Data are courtesy of NASA/SDO and the AIA and HMI science teams. SOLIS/VSM vector magnetograms are produced cooperatively by NSF/NSO and NASA/LWS. The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. This work was supported by NASA grant NNX07AU64G and the work of T. Wiegelmann was supported by DLR-grant 50 OC 453 0501. NR 53 TC 8 Z9 8 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A14 DI 10.1051/0004-6361/201220044 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700014 ER PT J AU Tierney, D McBreen, S Preece, RD Fitzpatrick, G Foley, S Guiriec, S Bissaldi, E Briggs, MS Burgess, JM Connaughton, V Goldstein, A Greiner, J Gruber, D Kouveliotou, C McGlynn, S Paciesas, WS Pelassa, V von Kienlin, A AF Tierney, D. McBreen, S. Preece, R. D. Fitzpatrick, G. Foley, S. Guiriec, S. Bissaldi, E. Briggs, M. S. Burgess, J. M. Connaughton, V. Goldstein, A. Greiner, J. Gruber, D. Kouveliotou, C. McGlynn, S. Paciesas, W. S. Pelassa, V. von Kienlin, A. TI Anomalies in low-energy gamma-ray burst spectra with the Fermi Gamma-ray Burst Monitor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general; methods: data analysis; techniques: spectroscopic ID LARGE-AREA TELESCOPE; 1ST 2 YEARS; GRB 090902B; BATSE OBSERVATIONS; SGR J1550-5418; EMISSION; COMPONENT; GBM; CATALOG; LONG AB Context. A Band function has become the standard spectral function used to describe the prompt emission spectra of gamma-ray bursts (GRBs). However, deviations from this function have previously been observed in GRBs detected by BATSE and in individual GRBs from the Fermi era. Aims. We present a systematic and rigorous search for spectral deviations from a Band function at low energies in a sample of the first two years of high fluence, long bursts detected by the Fermi Gamma-ray Burst Monitor (GBM). The sample contains 45 bursts with a fluence greater than 2 x 10(-5) erg/cm(2) (10-1000 keV). Methods. An extrapolated fit method is used to search for low-energy spectral anomalies, whereby a Band function is fit above a variable low-energy threshold and then the best fit function is extrapolated to lower energy data. Deviations are quantified by examining residuals derived from the extrapolated function and the data and their significance is determined via comprehensive simulations which account for the instrument response. This method was employed for both time-integrated burst spectra and time-resolved bins defined by a signal-to-noise ratio of 25 sigma and 50 sigma. Results. Significant deviations are evident in 3 bursts (GRB 081215A, GRB090424 and GRB090902B) in the time-integrated sample (similar to 7%) and 5 bursts (GRB 090323, GRB090424, GRB090820, GRB090902B and GRB090926A) in the time-resolved sample (similar to 11%). Conclusions. The advantage of the systematic, blind search analysis is that it can demonstrate the requirement for an additional spectral component without any prior knowledge of the nature of that extra component. Deviations are found in a large fraction of high fluence GRBs; fainter GRBs may not have sufficient statistics for deviations to be found using this method. C1 [Tierney, D.; McBreen, S.; Fitzpatrick, G.; Foley, S.] Univ Coll Dublin, Dublin 4, Ireland. [Preece, R. D.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Goldstein, A.; Pelassa, V.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Guiriec, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bissaldi, E.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Greiner, J.; Gruber, D.; McGlynn, S.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kouveliotou, C.] NASA, Space Sci Off, VP62, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [McGlynn, S.] Tech Univ Munich, D-85748 Garching, Germany. [Paciesas, W. S.] Univ Space Res Assoc, Inst Sci & Technol, Huntsville, AL 35805 USA. RP Tierney, D (reprint author), Univ Coll Dublin, Dublin 4, Ireland. EM david.tierney@ucd.ie RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515 FU Science Foundation Ireland [09-RFP-AST-2400]; Irish Research Council; Irish Research Council for Science, Engineering and Technology; Marie Curie Actions under FP7; NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center; Cycle-4 NASA Fermi Guest Investigator program; German Aerospace Center [DLR 50 QV 0301] FX D.T. acknowledges support from Science Foundation Ireland under grant number 09-RFP-AST-2400. G.F. acknowledges the support of the Irish Research Council. S.F. acknowledges the support of the Irish Research Council for Science, Engineering and Technology, cofunded by Marie Curie Actions under FP7. S.G. was supported by the NASA Postdoctoral Program (NPP) at the NASA/Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. S.G. acknowledges financial support through the Cycle-4 NASA Fermi Guest Investigator program. A.v.K. acknowledges support by the German Aerospace Center, through DLR 50 QV 0301. NR 81 TC 6 Z9 6 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A102 DI 10.1051/0004-6361/201220710 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700102 ER PT J AU Hadley, KR Douglas, MSV Lim, D Smol, JP AF Hadley, Kristopher R. Douglas, Marianne S. V. Lim, Darlene Smol, John P. TI Diatom assemblages and limnological variables from 40 lakes and ponds on Bathurst Island and neighboring high Arctic islands SO INTERNATIONAL REVIEW OF HYDROBIOLOGY LA English DT Article DE Arctic; Bathurst Island; Diatoms; Paleolimnology; pH transfer function ID PALEOLIMNOLOGICAL INFERENCE MODELS; ELLEF-RINGNES ISLAND; AXEL-HEIBERG ISLAND; CHEMICAL LIMNOLOGY; ELLESMERE-ISLAND; CANADA; NUNAVUT; NWT; COMMUNITIES; GRADIENTS AB We examined the influence of catchment geology, specifically differences in buffering capacity, on the limnological characteristics and surface sediment diatom assemblages from lakes and ponds from Bathurst Island, High Arctic Canada. Differences in buffering capacity exist on Bathurst Island due to a geological gradient that spans from carbonate-bearing limestone in the east, to more stable quartz sandstone, siltstone, and shale in the west. We collected physical and chemical limnological data, as well as surface sediment diatom assemblages from nine ponds on the poorly buffered western portion of the island and combined these observations with a previously published dataset of 31 lakes and ponds, from the well-buffered eastern region. The addition of these nine ponds expanded the pH gradient of the existing Bathurst Island dataset (pH 8.08.6) to pH 6.88.6. A regional, weighted average diatom-inferred pH model was developed and showed strength similar to other Arctic calibration sets (rboot2=0.63, root-mean-squared-error of prediction (RMSEP)=0.298). Given the links between climate and pH shifts in the High Arctic, the ability to reconstruct pH should be a valuable tool for future paleolimnological studies. C1 [Hadley, Kristopher R.; Smol, John P.] Queens Univ, Dept Biol, PEARL, Kingston, ON K7L 3N6, Canada. [Douglas, Marianne S. V.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada. [Lim, Darlene] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Hadley, KR (reprint author), Queens Univ, Dept Biol, PEARL, Kingston, ON K7L 3N6, Canada. EM hadley.k@queensu.ca RI Smol, John/A-8838-2015 FU Natural Sciences and Engineering Research Council (NSERC); Northern Scientific Training Program grant (NSTP) FX The authors wish to thanks Catherine Crawley, Bronwyn Keatley, John Glew, and Wes Blake Jr. for assistance in the field. Two anonymous reviewers provided many useful comments. We also thank Neal Michelutti for his assistance in improving the manuscript. Logistical support in the field was provided by the Polar Continental Shelf Program (PCSP). This work has been made possible by the Natural Sciences and Engineering Research Council (NSERC) grants of John P. Smol and Marianne S. V. Douglas, as well as the Northern Scientific Training Program grant (NSTP) of Kris Hadley. NR 37 TC 3 Z9 3 U1 0 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1434-2944 J9 INT REV HYDROBIOL JI Int. Rev. Hydrobiol. PD FEB PY 2013 VL 98 IS 1 BP 44 EP 59 DI 10.1002/iroh.201201449 PG 16 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 093MM UT WOS:000315196000005 ER PT J AU McGill, M Markus, T Scott, VS Neumann, T AF McGill, Matthew Markus, Thorsten Scott, V. Stanley Neumann, Thomas TI The Multiple Altimeter Beam Experimental Lidar (MABEL): An Airborne Simulator for the ICESat-2 Mission SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article AB This paper presents the motivation for, and initial results from, the Multiple Altimeter Beam Experimental lidar (MABEL) instrument. The MABEL instrument provides a new capability for airborne altimetry measurements and serves as a prototype and simulator for the upcoming NASA second-generation Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission. Designed to be highly flexible in measurement capability, MABEL serves as both a demonstration of measurement capability and a science tool for cryospheric and biospheric remote sensing. It is important to document the instrument specifications and essential background information to provide a suitable reference for the detailed MABEL results and science investigation publications that will be forthcoming. C1 [McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McGill, M (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 612, Greenbelt, MD 20771 USA. EM matthew.j.mcgill@nasa.gov RI Neumann, Thomas/D-5264-2012 FU ICESat-2 project FX The MABEL development was supported by the ICESat-2 project, managed by Douglas McLennan. In addition to specific vendors acknowledged in the text, the systems engineering, mechanical, and electronics support were provided by Sigma Space Corporation. NR 6 TC 28 Z9 29 U1 2 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD FEB PY 2013 VL 30 IS 2 BP 345 EP 352 DI 10.1175/JTECH-D-12-00076.1 PG 8 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 093NB UT WOS:000315197500014 ER PT J AU Harder, B Jacobson, N Myers, D AF Harder, Bryan Jacobson, Nathan Myers, Dwight TI Oxidation Transitions for SiC Part II. Passive-to-Active Transitions SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ELEVATED-TEMPERATURES; SILICON-CARBIDE AB Oxidation of SiC can occur in a passive mode, where a protective film is generated, or in an active mode, where a volatile suboxide is generated. The transitions from active-to-passive and passive-to-active are particularly important to understand as they occur via different mechanisms. In Part II of this article, the passive-to-active transition is explored. Three different types of SiC are examinedSi-rich SiC, stoichiometric SiC, and C-rich SiC. In addition to an in situ transition from passive-to-active, the effect of a preformed film on all three types of SiC is explored. It appears that the passive-to-active transition occurs when the SiO2 scale begins to react with the SiC substrate. This reaction generates SiO(g) and CO(g), which build pressure beneath the SiO2 scale, eventually causing the oxide to rupture. In addition, the SiO(g) can oxidize a distance away from the surface leading to the formation of SiO2 needles and further promoting this SiO2/SiC reaction. Thermodynamic and kinetic data are used to predict transition pressures of oxygen, which show reasonable agreement with those measured. C1 [Harder, Bryan; Jacobson, Nathan] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Myers, Dwight] E Cent Univ, Ada, OK 74820 USA. RP Harder, B (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM bryan.harder@nasa.gov NR 19 TC 16 Z9 16 U1 2 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2013 VL 96 IS 2 BP 606 EP 612 DI 10.1111/jace.12104 PG 7 WC Materials Science, Ceramics SC Materials Science GA 089PJ UT WOS:000314922200047 ER PT J AU Bendek, E Belikov, R Pluzhnik, E Guyon, O AF Bendek, Eduardo Belikov, Ruslan Pluzhnik, Eugene Guyon, Olivier TI Compatibility of a Diffractive Pupil and Coronagraphic Imaging SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID INDUCED AMPLITUDE APODIZATION; ASTROMETRY; PHOTOMETRY; TELESCOPE AB Detection and characterization of exo-Earths require direct imaging techniques that can deliver contrast ratios of 10(10) at 100 mas or smaller angular separation. At the same time, astrometric data is required to measure planet masses and to help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high-efficiency coronagraph to perform direct imaging and a diffractive pupil to calibrate wide field distortions to enable high-precision astrometric measurements. This article reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronagraphic imaging systems. No diffractive contamination was found within our detectability limit of 2 x 10(-7) contrast outside a region of 12 lambda/D and 2.5 x 10(-6) within a region spanning from 2 to 12 lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(-7) or better contrast. C1 [Bendek, Eduardo; Guyon, Olivier] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Bendek, Eduardo; Belikov, Ruslan; Pluzhnik, Eugene] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guyon, Olivier] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. RP Bendek, E (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. NR 16 TC 4 Z9 4 U1 1 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2013 VL 125 IS 924 BP 204 EP 212 DI 10.1086/669824 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 094ON UT WOS:000315273800007 ER PT J AU Davidson, M Roberts, S Castro, G Dillon, RP Kunz, A Kozachkov, H Demetriou, MD Johnson, WL Nutt, S Hofmann, DC AF Davidson, Marc Roberts, Scott Castro, Gerhard Dillon, Robert Peter Kunz, Allison Kozachkov, Henry Demetriou, Marios D. Johnson, William L. Nutt, Steve Hofmann, Douglas C. TI Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID GLASS MATRIX COMPOSITES; HYPERVELOCITY IMPACT; TENSILE DUCTILITY AB The threat of micro-meteoroid and orbital debris (MMOD) collisions with spacecraft and satellites has been increasing with the increasing worldwide use of low earth orbit. Providing low-areal-density shielding for the mitigation of these high velocity impacts is essential for ensuring successful and cost effective missions. Here, we report results obtained from hypervelocity impact testing on bulk metallic glass (BMG) matrix composites. Their carbide-like hardness, low melting temperatures, ultra-high strength-to-weight ratio and the ability to be processed like polymers are material attributes ideally suited for spacecraft shielding, particularly as an outer wall bumper shield. C1 [Davidson, Marc; Castro, Gerhard; Nutt, Steve] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. [Roberts, Scott; Kunz, Allison; Kozachkov, Henry; Demetriou, Marios D.; Johnson, William L.; Hofmann, Douglas C.] CALTECH, Keck Lab Engn, Pasadena, CA 91125 USA. [Dillon, Robert Peter; Hofmann, Douglas C.] CALTECH, Jet Prop Lab, Engn & Sci Directorate, Pasadena, CA 91109 USA. RP Davidson, M (reprint author), Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. EM dch@jpl.nasa.gov FU Strategic University Research Partnership at the Jet Propulsion Laboratory; California Institute of Technology; Office of Naval Research [N00014-07-1-1115]; Education Office of the Jet Propulsion Laboratory; NASA's Exploration Systems Mission Directorate [NNH10ZTT001N] FX This work was supported by the Strategic University Research Partnership at the Jet Propulsion Laboratory, California Institute of Technology. Graduate student support was provided by the Office of Naval Research under grant no. N00014-07-1-1115, the Education Office of the Jet Propulsion Laboratory, California Institute of Technology, and NASA's Exploration Systems Mission Directorate under contract number NNH10ZTT001N. The authors thank the staff of the NASA Ames Vertical Gun Range for their technical support of this effort, especially D. Holt and C. Cornelison. The authors also thank Eric Christiansen of NASA's Johnson Space Center for supplying the ballistic limit equations program and comments. Supporting Information is available from the Wiley Online Library or from the author. NR 23 TC 6 Z9 6 U1 5 U2 84 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD FEB PY 2013 VL 15 IS 1-2 BP 27 EP 33 DI 10.1002/adem.201200313 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 089NE UT WOS:000314916500004 ER PT J AU Smith, DJ Timonen, HJ Jaffe, DA Griffin, DW Birmele, MN Perry, KD Ward, PD Roberts, MS AF Smith, David J. Timonen, Hilkka J. Jaffe, Daniel A. Griffin, Dale W. Birmele, Michele N. Perry, Kevin D. Ward, Peter D. Roberts, Michael S. TI Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DIFFERENT ECOSYSTEMS; GLOBAL ATMOSPHERE; DESERT DUST; DIVERSITY; TRANSPORT; MICROARRAY; EMISSIONS; AEROSOLS AB Microorganisms are abundant in the upper atmosphere, particularly downwind of arid regions, where winds can mobilize large amounts of topsoil and dust. However, the challenge of collecting samples from the upper atmosphere and reliance upon culture-based characterization methods have prevented a comprehensive understanding of globally dispersed airborne microbes. In spring 2011 at the Mt. Bachelor Observatory in North America (2.8 km above sea level), we captured enough microbial biomass in two transpacific air plumes to permit a microarray analysis using 16S rRNA genes. Thousands of distinct bacterial taxa spanning a wide range of phyla and surface environments were detected before, during, and after each Asian long-range transport event. Interestingly, the transpacific plumes delivered higher concentrations of taxa already in the background air (particularly Proteobacteria, Actinobacteria, and Firmicutes). While some bacterial families and a few marine archaea appeared for the first and only time during the plumes, the microbial community compositions were similar, despite the unique transport histories of the air masses. It seems plausible, when coupled with atmospheric modeling and chemical analysis, that microbial biogeography can be used to pinpoint the source of intercontinental dust plumes. Given the degree of richness measured in our study, the overall contribution of Asian aerosols to microbial species in North American air warrants additional investigation. C1 [Smith, David J.; Ward, Peter D.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Timonen, Hilkka J.; Jaffe, Daniel A.] Univ Washington, Sci & Technol Program, Seattle, WA 98195 USA. [Jaffe, Daniel A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Griffin, Dale W.] US Geol Survey, Tallahassee, FL USA. [Birmele, Michele N.; Roberts, Michael S.] NASA Kennedy Space Ctr, ESC Team QNA, Kennedy Space Ctr, FL USA. [Perry, Kevin D.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT USA. RP Smith, DJ (reprint author), Univ Washington, Dept Biol, Seattle, WA 98195 USA. EM djsone@uw.edu RI Timonen, Hilkka/M-8141-2014 OI Timonen, Hilkka/0000-0002-7987-7985 FU National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) at the University of Washington (UW) Astrobiology Program; National Geographic Society Waitt Grants Program [W177-11]; NASA Astrobiology Institute Director's Discretionary Fund; Virtual Planetary Lab at UW; NSF [ATM-0724327] FX Research funding was provided by National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) at the University of Washington (UW) Astrobiology Program, the National Geographic Society Waitt Grants Program (W177-11), the NASA Astrobiology Institute Director's Discretionary Fund, and the Virtual Planetary Lab at UW. NSF grant ATM-0724327 funded the MBO atmospheric chemistry measurements. NR 26 TC 58 Z9 60 U1 4 U2 85 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 4 BP 1134 EP 1139 DI 10.1128/AEM.03029-12 PG 6 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 089EE UT WOS:000314891500009 PM 23220959 ER PT J AU Batalha, NM Rowe, JF Bryson, ST Barclay, T Burke, CJ Caldwell, DA Christiansen, JL Mullally, F Thompson, SE Brown, TM Dupree, AK Fabrycky, DC Ford, EB Fortney, JJ Gilliland, RL Isaacson, H Latham, DW Marcy, GW Quinn, SN Ragozzine, D Shporer, A Borucki, WJ Ciardi, DR Gautier, TN Haas, MR Jenkins, JM Koch, DG Lissauer, JJ Rapin, W Basri, GS Boss, AP Buchhave, LA Carter, JA Charbonneau, D Christensen-Dalsgaard, J Clarke, BD Cochran, WD Demory, BO Desert, JM Devore, E Doyle, LR Esquerdo, GA Everett, M Fressin, F Geary, JC Girouard, FR Gould, A Hall, JR Holman, MJ Howard, AW Howell, SB Ibrahim, KA Kinemuchi, K Kjeldsen, H Klaus, TC Li, J Lucas, PW Meibom, S Morris, RL Prsa, A Quintana, E Sanderfer, DT Sasselov, D Seader, SE Smith, JC Steffen, JH Still, M Stumpe, MC Tarter, JC Tenenbaum, P Torres, G Twicken, JD Uddin, K Van Cleve, J Walkowicz, L Welsh, WF AF Batalha, Natalie M. Rowe, Jason F. Bryson, Stephen T. Barclay, Thomas Burke, Christopher J. Caldwell, Douglas A. Christiansen, Jessie L. Mullally, Fergal Thompson, Susan E. Brown, Timothy M. Dupree, Andrea K. Fabrycky, Daniel C. Ford, Eric B. Fortney, Jonathan J. Gilliland, Ronald L. Isaacson, Howard Latham, David W. Marcy, Geoffrey W. Quinn, Samuel N. Ragozzine, Darin Shporer, Avi Borucki, William J. Ciardi, David R. Gautier, Thomas N., III Haas, Michael R. Jenkins, Jon M. Koch, David G. Lissauer, Jack J. Rapin, William Basri, Gibor S. Boss, Alan P. Buchhave, Lars A. Carter, Joshua A. Charbonneau, David Christensen-Dalsgaard, Joergen Clarke, Bruce D. Cochran, William D. Demory, Brice-Olivier Desert, Jean-Michel Devore, Edna Doyle, Laurance R. Esquerdo, Gilbert A. Everett, Mark Fressin, Francois Geary, John C. Girouard, Forrest R. Gould, Alan Hall, Jennifer R. Holman, Matthew J. Howard, Andrew W. Howell, Steve B. Ibrahim, Khadeejah A. Kinemuchi, Karen Kjeldsen, Hans Klaus, Todd C. Li, Jie Lucas, Philip W. Meibom, Soren Morris, Robert L. Prsa, Andrej Quintana, Elisa Sanderfer, Dwight T. Sasselov, Dimitar Seader, Shawn E. Smith, Jeffrey C. Steffen, Jason H. Still, Martin Stumpe, Martin C. Tarter, Jill C. Tenenbaum, Peter Torres, Guillermo Twicken, Joseph D. Uddin, Kamal Van Cleve, Jeffrey Walkowicz, Lucianne Welsh, William F. TI PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; eclipses; planetary systems; space vehicles; techniques: photometric ID SOLAR-TYPE STARS; SUN-LIKE STAR; TARGET STARS; ECLIPSING BINARIES; HABITABLE PLANETS; INPUT CATALOG; DATA RELEASE; LOW-MASS; SYSTEMS; METALLICITIES AB New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T-0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R-P / R-star), reduced semimajor axis (d / R-star), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2R(circle plus). compared to 53% for candidates larger than 2R.) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant. C1 [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Batalha, Natalie M.; Bryson, Stephen T.; Christiansen, Jessie L.; Borucki, William J.; Haas, Michael R.; Koch, David G.; Lissauer, Jack J.; Rapin, William; Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rowe, Jason F.; Burke, Christopher J.; Caldwell, Douglas A.; Mullally, Fergal; Thompson, Susan E.; Jenkins, Jon M.; Li, Jie; Quintana, Elisa; Seader, Shawn E.; Smith, Jeffrey C.; Stumpe, Martin C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, Thomas; Kinemuchi, Karen; Still, Martin] NASA, Bay Area Environm Res Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brown, Timothy M.; Shporer, Avi] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Dupree, Andrea K.; Latham, David W.; Quinn, Samuel N.; Ragozzine, Darin; Carter, Joshua A.; Charbonneau, David; Desert, Jean-Michel; Esquerdo, Gilbert A.; Fressin, Francois; Geary, John C.; Holman, Matthew J.; Meibom, Soren; Sasselov, Dimitar; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fabrycky, Daniel C.; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Gilliland, Ronald L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Isaacson, Howard; Marcy, Geoffrey W.; Basri, Gibor S.; Howard, Andrew W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quinn, Samuel N.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Gautier, Thomas N., III; Clarke, Bruce D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boss, Alan P.] Carnegie Inst Sci, Washington, DC 20015 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Christensen-Dalsgaard, Joergen; Kjeldsen, Hans] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Demory, Brice-Olivier] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Devore, Edna; Doyle, Laurance R.; Tarter, Jill C.] SETI Inst, Mountain View, CA 94043 USA. [Everett, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Girouard, Forrest R.; Hall, Jennifer R.; Ibrahim, Khadeejah A.; Klaus, Todd C.; Morris, Robert L.; Sanderfer, Dwight T.; Uddin, Kamal] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA. [Lucas, Philip W.] Univ Hertfordshire, Ctr Astrophys, Hatfield AL10 9AB, Herts, England. [Prsa, Andrej] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. [Steffen, Jason H.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Walkowicz, Lucianne] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. RP Batalha, NM (reprint author), San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. EM Natalie.Batalha@nasa.gov RI Caldwell, Douglas/L-7911-2014; Howard, Andrew/D-4148-2015; OI Caldwell, Douglas/0000-0003-1963-9616; Howard, Andrew/0000-0001-8638-0320; Fortney, Jonathan/0000-0002-9843-4354; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Demory, Brice-Olivier/0000-0002-9355-5165; /0000-0001-6545-639X; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate.; National Aeronautics and Space Administration [NNX08AR04G] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. This material is based on work supported by the National Aeronautics and Space Administration under grant NNX08AR04G issued through the Kepler Participating Scientist Program. NR 59 TC 434 Z9 434 U1 6 U2 65 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2013 VL 204 IS 2 AR 24 DI 10.1088/0067-0049/204/2/24 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088BZ UT WOS:000314810100011 ER PT J AU Zeng, XP Tao, WK Powell, SW Houze, RA Ciesielski, P Guy, N Pierce, H Matsui, T AF Zeng, Xiping Tao, Wei-Kuo Powell, Scott W. Houze, Robert A., Jr. Ciesielski, Paul Guy, Nick Pierce, Harold Matsui, Toshihisa TI A Comparison of the Water Budgets between Clouds from AMMA and TWP-ICE SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID RESOLVING MODEL SIMULATIONS; MIDLATITUDE SQUALL LINE; LONG-TERM BEHAVIOR; TOGA COARE; STRATIFORM PRECIPITATION; CONVECTIVE SYSTEMS; SURFACE PROCESSES; RADIATION INTERACTION; WEST-AFRICAN; MICROPHYSICS AB Two field campaigns, the African Monsoon Multidisciplinary Analysis (AMMA) and the Tropical Warm Pool International Cloud Experiment (TWP-ICE), took place in 2006 near Niamey, Niger, and Darwin, Northern Territory, Australia, providing extensive observations of mesoscale convective systems (MCSs) near a desert and a tropical coast, respectively. Under the constraint of their observations, three-dimensional cloud-resolving model simulations are carried out and presented in this paper to replicate the basic characteristics of the observed MCSs. All of the modeled MCSs exhibit a distinct structure having deep convective clouds accompanied by stratiform and anvil clouds. In contrast to the approximately 100-km-scale MCSs observed in TWP-ICE, the MCSs in AMNIA have been successfully simulated with a scale of about 400 km. These modeled AMMA and TWP-ICE MCSs offer an opportunity to understand the structure and mechanism of MCSs. Comparing the water budgets between AMMA and TWP-ICE MCSs suggests that TWP-ICE convective clouds have stronger ascent while the mesoscale ascent outside convective clouds in AMMA is stronger. A case comparison, with the aid of sensitivity experiments, also suggests that vertical wind shear and ice crystal (or dust aerosol) concentration can significantly impact stratiform and anvil clouds (e.g., their areas) in MCSs. In addition, the obtained water budgets quantitatively describe the transport of water between convective, stratiform, and anvil regions as well as water sources/sinks from microphysical processes, providing information that can be used to help determine parameters in the convective and cloud parameterizations in general circulation models (GCMs). C1 [Zeng, Xiping; Tao, Wei-Kuo; Pierce, Harold; Matsui, Toshihisa] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA. [Powell, Scott W.; Houze, Robert A., Jr.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Ciesielski, Paul; Guy, Nick] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Zeng, XP (reprint author), NASA, Goddard Space Flight Ctr, C423,Bldg 33,Mail Code 612, Greenbelt, MD 20771 USA. EM xiping.zeng@nasa.gov FU Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement [DE-AI02-04ER63755]; NASA MAP project [NNX09AJ46G, NNX10AG18G]; NASA Precipitation Measurement Mission (PMM); NASA Modeling Analysis Prediction (MAP) FX This research was supported by the Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement DE-AI02-04ER63755. It was also supported by the NASA MAP project under Grants NNX09AJ46G and NNX10AG18G. Dr. W.-K. Tao was mainly supported by the NASA Precipitation Measurement Mission (PMM) and NASA Modeling Analysis Prediction (MAP). NR 55 TC 8 Z9 8 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD FEB PY 2013 VL 70 IS 2 BP 487 EP 503 DI 10.1175/JAS-D-12-050.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 091TG UT WOS:000315072100008 ER PT J AU Leppert, KD Petersen, WA Cecil, DJ AF Leppert, Kenneth D., II Petersen, Walter A. Cecil, Daniel J. TI Electrically Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific SO MONTHLY WEATHER REVIEW LA English DT Article ID TRMM PRECIPITATION RADAR; OPTICAL TRANSIENT DETECTOR; RAIN-PROFILING ALGORITHM; ICE-SCATTERING SIGNATURE; LIGHTNING CHARACTERISTICS; PASSIVE MICROWAVE; NORTH PACIFIC; HURRICANE EYEWALLS; HOT TOWERS; PHASE III AB In this study, the authors investigated the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and the east Pacific Ocean. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using data from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that develop a cyclone in the Atlantic basin, coverage by IR brightness temperatures <= 240 and <= 210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the east Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting. C1 [Leppert, Kenneth D., II; Cecil, Daniel J.] Univ Alabama, Huntsville, AL 35899 USA. [Petersen, Walter A.] NASA, Goddard Space Flight Ctr, Wallops Flight Facil Field Support Off, Wallops Isl, VA 23337 USA. RP Leppert, KD (reprint author), NSSTC, 320 Sparkman Dr,Rm 4074, Huntsville, AL 35805 USA. EM leppert@nsstc.uah.edu FU NASA Earth and Space Science Fellowship [NNX09AO40H]; NASA PMM/TRMM Program FX This work was part of the lead author's research for his doctoral degree, and funding for the research was provided through a NASA Earth and Space Science Fellowship (Grant NNX09AO40H). Dr. Walter Petersen and Dr. Daniel Cecil also acknowledge funding from the NASA PMM/TRMM Program. Suggestions from Dr. Ron McTaggart-Cowan and two anonymous reviewers greatly improved earlier versions of this manuscript. The authors would also like to gratefully acknowledge the Goddard Earth Sciences Data and Information Services Center for providing the TMI, PR, and IR brightness temperature data, the NASA EOSDIS Global Hydrology Resource Center DAAC for providing the LIS science data, and the NOAA/OAR/ESRL PSD for providing the NCEP-NCAR reanalysis data. NR 65 TC 4 Z9 4 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2013 VL 141 IS 2 BP 542 EP 556 DI 10.1175/MWR-D-12-00174.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 088LD UT WOS:000314835000009 ER PT J AU Guy, N Zeng, XP Rutledge, SA Tao, WK AF Guy, Nick Zeng, Xiping Rutledge, Steven A. Tao, Wei-Kuo TI Comparing the Convective Structure and Microphysics in Two Sahelian Mesoscale Convective Systems: Radar Observations and CRM Simulations SO MONTHLY WEATHER REVIEW LA English DT Article ID AFRICAN EASTERLY JET; ICE WATER-CONTENT; WEST-AFRICA; SQUALL LINES; CLOUD MICROPHYSICS; STRATIFORM PRECIPITATION; POLARIMETRIC RADAR; VERTICAL STRUCTURE; SIZE DISTRIBUTION; FORECAST SYSTEM AB Two mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses(AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. This study was undertaken to determine the performance of the cloud-resolving model in representing distinct convective and microphysical differences between the two MCSs over a tropical continental location. Simulations are performed using 1-km horizontal grid spacing, a lower limit on current embedded cloud-resolving models within a global multiscale modeling framework. Simulated system convective structure and microphysics are compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Vertical distributions of ice hydrometeors indicate underestimation at the mid- and upper levels, partially due to the inability of the model to produce adequate system heights. The abundance of high-reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles show that high reflectivity is present at greater heights than the simulations produced, thought to be a result of using a single-moment microphysics scheme. Relative trends in the population of simulated hydrometeors are in agreement with observations, though a secondary convective burst is not well represented. Despite these biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model has some skill in capturing observed differences between the two MCSs. C1 [Guy, Nick; Rutledge, Steven A.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Zeng, Xiping; Tao, Wei-Kuo] Morgan State Univ, Atmospheres Lab, NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Zeng, Xiping] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. RP Guy, N (reprint author), NOAA NSSL WRDD, 120 David L Boren Blvd, Norman, OK 73072 USA. EM nick.guy@noaa.gov OI Guy, Nick/0000-0002-9800-598X FU NASA CEAS [NNX08AT77G]; NASA Precipitation Measurement Mission [NNX10AG88G]; NASA Modeling Analysis Prediction; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division FX This research was supported by the NASA CEAS Fellowship Grant NNX08AT77G and NASA Precipitation Measurement Mission under Grant NNX10AG88G. W.-K. Tao is mainly supported by the NASA Precipitation Measurement Mission (PMM) and NASA Modeling Analysis Prediction (MAP). Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, the United Kingdom, the United States, and Africa. It has been the beneficiary of a major financial contribution from the European Community's Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA International website (http://www.amma-international.org). MIT radar data were provided by Earle Williams. Sounding data were provided by Doug Parker. Cloud radar data were obtained from the Atmospheric Radiation Measurement Program (ARM) sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. Large-scale forcing data were provided by Paul Ciesielski. Gareth Berry provided computer code for AEW analysis. The authors thank Sue van den Heever for helpful comments on early versions of this work and three anonymous reviewers for comments and suggestions that greatly improved this manuscript. NR 70 TC 6 Z9 6 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2013 VL 141 IS 2 BP 582 EP 601 DI 10.1175/MWR-D-12-00053.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 088LD UT WOS:000314835000011 ER PT J AU Zhang, SQ Zupanski, M Hou, AY Lin, X Cheung, SH AF Zhang, Sara Q. Zupanski, Milija Hou, Arthur Y. Lin, Xin Cheung, Samson H. TI Assimilation of Precipitation-Affected Radiances in a Cloud-Resolving WRF Ensemble Data Assimilation System SO MONTHLY WEATHER REVIEW LA English DT Article ID VARIATIONAL DATA ASSIMILATION; AFFECTED MICROWAVE RADIANCES; DIRECT 4D-VAR ASSIMILATION; SIMULATED RADAR DATA; ROOT KALMAN FILTER; PART II; MICROPHYSICAL PARAMETERS; 1D+4D-VAR ASSIMILATION; ATMOSPHERIC STATE; MODEL SIMULATIONS AB Assimilation of remotely sensed precipitation observations into numerical weather prediction models can improve precipitation forecasts and extend prediction capabilities in hydrological applications. This paper presents a new regional ensemble data assimilation system that assimilates precipitation-affected microwave radiances into the Weather Research and Forecasting Model (WRF). To meet the challenges in satellite data assimilation involving cloud and precipitation processes, hydrometeors produced by the cloud-resolving model are included as control variables and ensemble forecasts are used to estimate flow-dependent background error covariance. Two assimilation experiments have been conducted using precipitation-affected radiances from passive microwave sensors: one for a tropical storm after landfall and the other for a heavy rain event in the southeastern United States. The experiments examined the propagation of information in observed radiances via flow-dependent background error auto-and cross covariance, as well as the error statistics of observational radiance. The results show that ensemble assimilation of precipitation-affected radiances improves the quality of precipitation analyses in terms of spatial distribution and intensity in accumulated surface rainfall, as verified by independent ground-based precipitation observations. C1 [Zhang, Sara Q.; Hou, Arthur Y.; Lin, Xin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zupanski, Milija] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Cheung, Samson H.] Univ Calif Davis, Davis, CA 95616 USA. RP Zhang, SQ (reprint author), NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM sara.q.zhang@nasa.gov FU Global Precipitation Measurement (GPM) Flight Project at NASA Goddard Space Flight Center; NASA Precipitation Measurement Mission (PMM) Science Program [NNX07AD75G] FX This research was supported by the Global Precipitation Measurement (GPM) Flight Project at NASA Goddard Space Flight Center, and NASA Precipitation Measurement Mission (PMM) Science Program under Grant NNX07AD75G to Colorado State University. Computations were carried out at NASA Advanced Supercomputing (NAS). We thank the anonymous reviewers for their improvements to the paper. NR 39 TC 18 Z9 19 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2013 VL 141 IS 2 BP 754 EP 772 DI 10.1175/MWR-D-12-00055.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 088LD UT WOS:000314835000020 ER PT J AU Badavi, FF AF Badavi, Francis F. TI Exposure estimates for repair satellites at geosynchronous orbit SO ACTA ASTRONAUTICA LA English DT Article DE CEPTRN; HZETRN; AP8; AE8; Geosynchronous orbit ID MODEL; RADIATION; DOSIMETRY; TRANSPORT; SPECTRA AB Communications and weather satellites in geosynchronous (GEO, altitude: 35,793 km.) and geostationary orbits (GSO) are revolutionizing our ability to almost instantly communicate with each other, capture high resolution global imagery for weather forecasting and obtain a multitude of other geophysical data for environmental protection purposes. The rapid increase in the number of satellites at GEO is partly due to the exponential expansion of the internet, its commercial potential and the need to deliver a large amount of digital information in near real time. With the large number of satellites operating at GEO and particularly at GSO, there is a need to think of viable approaches to retrieve, rejuvenate and perhaps repair these satellites. The first step in this process is a detailed understanding of the ionizing radiation environment at GEO. Currently, the most widely used trapped particle radiation environment definition near Earth is based on the NASA's static AP8/AE8 models which define the trapped proton and electron intensities. These models are based on a large number of satellite measurements carried out in the 1960s and 1970s. In this paper, the AP8/AE8 models as well as a heavy ion galactic cosmic ray (GCR) model are used to define the radiation environments for protons, electrons and heavy ions at low Earth orbit (LEO), medium Earth orbit (MEO) and GEO. LEO and MEO dosimetric calculations are included in the analysis since any launch platform capable of delivering a payload to GEO will accumulate exposure during its transit through LEO and MEO. The computational approach (particle transport) taken in this paper is to use the static LEO, MEO, GEO and geomagnetically attenuated GCR environments as input to the NASA Langley Research Center (LaRC) developed deterministic particle transport codes high charge and energy transport (HZETRN) and coupled electron photon transport (CEPTRN). This is done through exposure prediction within a spherical shell, a legacy Apollo era command service module (CSM) configuration, and a large modular structure represented by a specific configuration of the international Space Station (ISS-11A, circa 2005). Based on the results of the simulations, conclusions are drawn on the exposure levels accumulated by these geometries throughout a mission to GEO. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Badavi, Francis F.] Old Dominion Univ, Norfolk, VA 23529 USA. RP Badavi, FF (reprint author), NASA, Langley Res Ctr, MS 188E, Hampton, VA 23681 USA. EM francis.f.badavi@nasa.gov NR 21 TC 4 Z9 4 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD FEB-MAR PY 2013 VL 83 BP 18 EP 26 DI 10.1016/j.actaastro.2012.09.021 PG 9 WC Engineering, Aerospace SC Engineering GA 080QV UT WOS:000314259300004 ER PT J AU Dudnik, OV Kaiser, ML AF Dudnik, O. V. Kaiser, M. L. TI VHF radio response of the near Earth space during solar activity growth in October, 2003 SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Solar flare; Magnetosphere; Radio emission; Energetic particles; Space weather ID WEATHER; BURSTS; ORIGIN; WIND AB The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1-14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft. The sporadic enhancement of near Earth very high frequency radio noise were observed with the help of ground radio telescope preferably either in pre mid night hours or at daytime. In many cases between October 17 and 22 short-term increases of the fluxes of low energy electrons, protons and ions in the interplanetary space by hundreds of times, corresponded to VHF radio bursts. At the same time slow increasing of solar cosmic rays streams at Lagrange point L1 and on geostationary orbit during October, 21 and 22, did not affect the usual radio noise level. A strong solar flare of 1B/X5.5 class on October 23 contributed to a prolonged rise of the intensity level of spectral radio emission, including the night sector of magnetosphere. It is assumed that very high frequency radio bursts in the near Earth space may appear when the processes of penetration of interplanetary low energy charge particles into Earth plasmasphere take place. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Dudnik, O. V.] Kharkov Natl Univ, UA-61022 Kharkov, Ukraine. [Kaiser, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Dudnik, OV (reprint author), Kharkov Natl Univ, Svobody Sq 4, UA-61022 Kharkov, Ukraine. EM Oleksiy.V.Dudnik@univer.kharkov.ua; Michael.Kaiser@nasa.gov RI Dudnik, Oleksiy/H-9492-2012 OI Dudnik, Oleksiy/0000-0002-5127-5843 NR 16 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD FEB 1 PY 2013 VL 51 IS 3 BP 350 EP 355 DI 10.1016/j.asr.2012.09.015 PG 6 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 082IR UT WOS:000314386000003 ER PT J AU Sahoo, AK De Lannoy, GJM Reichle, RH Houser, PR AF Sahoo, Alok Kumar De Lannoy, Gabrielle J. M. Reichle, Rolf H. Houser, Paul R. TI Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA SO ADVANCES IN WATER RESOURCES LA English DT Article DE Data assimilation; Kalman filter; Soil moisture; Multi-scale; Little River Experimental Watershed; Satellite observations ID LAND DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; SURFACE MODELS; INFORMATION-SYSTEM; MICROWAVE EMISSION; SPATIAL-RESOLUTION; HYDROLOGY MODEL; UNITED-STATES; CLIMATE MODEL; PRECIPITATION AB A three dimensional Ensemble Kalman filter (3-D EnKF) and a one dimensional EnKF (1-D EnKF) are used in this study to assimilate Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) coarse grid (25 km) soil moisture retrievals into the Noah land surface model for fine-scale (1 km) surface soil moisture estimation over the Little River Experimental Watershed (LREW), Georgia, USA. For the 1-D EnKF integration, the satellite observations are a priori partitioned to the model fine scale resolution, whereas in the 3-D EnKF integration, the original coarse grid satellite observations are directly used and downscaling is accomplished within the 3-D EnKF update step. In both cases, a first order a priori forecast bias correction is applied. Validation against in situ observations shows that both EnKF algorithms improve the soil moisture estimates, but the 3-D EnKF algorithm better preserves the spatial coherence. It is illustrated how surface soil moisture assimilation affects the deeper layer soil moisture and other water budget variables. Through sensitivity experiments, it is shown that data assimilation accelerates the moisture redistribution compared to the model integrations without assimilation, as surface soil moisture updates are effectively propagated over the entire profile. In the absence of data assimilation, the atmospheric conditions (especially the ratio of evapotranspiration to precipitation) control the model state balancing. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Sahoo, Alok Kumar] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [De Lannoy, Gabrielle J. M.] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. [De Lannoy, Gabrielle J. M.; Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off Code 610 1, Greenbelt, MD 20771 USA. [Houser, Paul R.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. RP Sahoo, AK (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. EM sahoo@princeton.edu RI Reichle, Rolf/E-1419-2012; Houser, Paul/J-9515-2013 OI Houser, Paul/0000-0002-2991-0441 FU NASA [NNX08AG90G] FX We are thankful to the LIS software team and particularly to Sujay Kumar. We are grateful to Tom Jackson and Mike Cosh in USDA-ARS Laboratory at Beltsville, Maryland, and David Bosch in USDA-ARS Southeast Research Laboratory at Tifton, Georgia for providing all the in situ measurement data sets used in this study. This research work is supported by the NASA Grant NNX08AG90G. Gabrielle De Lannoy was a postdoctoral researcher of the Research Foundation Flanders (FWO). NR 69 TC 30 Z9 30 U1 4 U2 55 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD FEB PY 2013 VL 52 BP 19 EP 33 DI 10.1016/j.advwatres.2012.08.007 PG 15 WC Water Resources SC Water Resources GA 086ME UT WOS:000314687500003 ER PT J AU Panda, J Burnside, NJ Fong, RK Ross, JC James, GH Fogt, VA AF Panda, J. Burnside, N. J. Fong, R. K. Ross, J. C. James, G. H. Fogt, V. A. TI Heated Helium to Simulate Surface Pressure Fluctuations Created by Rocket Motor Plumes SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 17th AIAA/CEAS Aeroacoustics Conference / 32nd AIAA Aeroacoustics Conference CY JUN 05-08, 2011 CL Portland, OR SP AIAA, CEAS ID MIXTURE JETS AB The solid-rocket plumes from the abort motor of the multipurpose crew vehicle were simulated using hot, high-pressure, helium gas to determine pressure fluctuations on the vehicle surface in the event of an abort. About 80 different abort situations over a Mach number range of 0.3 to 1.2, and vehicle attitudes of +/- 14 deg, were simulated using a 6% scaled model inside the NASA Ames Transonic Wind Tunnel. The test showed very high level of surface pressure fluctuations caused by the hydrodynamic near-field of the plume shear layer. The plumes grew in size with increasing flight Mach number, which was associated with a lowering of the ambient pressure. This caused an increase of plume impingement on the vehicle. Interestingly, the trend was a decrease in the level of pressure fluctuations with increasing impingement. The wind-tunnel data were compared against flight data from the Pad Abort 1 flight test. Despite various differences between the transient-flight situation and the steady-state wind-tunnel simulations, the hot-helium data were found to replicate Pad Abort 1 fairly reasonably. The data gathered from this one-of-a-kind v,wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification of the multipurpose crew vehicle. C1 [Panda, J.; Burnside, N. J.; Fong, R. K.; Ross, J. C.] NASA, Ames Res Ctr, Expt Aerophys Branch, Moffett Field, CA 94035 USA. [James, G. H.; Fogt, V. A.] NASA, Lyndon B Johnson Space Ctr, Struct Mech Loads & Struct Dynam Branch, Houston, TX 77058 USA. RP Panda, J (reprint author), NASA, Ames Res Ctr, Expt Aerophys Branch, Moffett Field, CA 94035 USA. NR 16 TC 1 Z9 1 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD FEB PY 2013 VL 51 IS 2 BP 302 EP 314 DI 10.2514/1.J051485 PG 13 WC Engineering, Aerospace SC Engineering GA 086GY UT WOS:000314673300003 ER PT J AU Panangadan, A Liu, SP Talukder, A Raghavendra, CS AF Panangadan, Anand Liu, Shuping Talukder, Ashit Raghavendra, Cauligi S. TI COORDINATED SENSING OF NETWORKED BODY SENSORS USING MARKOV DECISION PROCESSES SO APPLIED ARTIFICIAL INTELLIGENCE LA English DT Article AB This article describes a Markov decision process (MDP) framework for coordinated sensing between correlated sensors in a body-area network. The technique is designed to extend the life of mobile continuous health-monitoring systems based on energy-constrained wearable sensors. The technique enables distributed sensors in a body-area network to adapt their sampling rates in response to changing criticality of the detected data and the limited energy reserve at each sensor node. The relationship between energy consumption, sampling rates, and utility of coordinated measurements is formulated as an MDP. This MDP is solved to generate a globally optimal policy that specifies the sampling rates for each sensor for all possible states of the system. This policy is computed offline before deployment and only the resulting policy is stored within each sensor node. We also present a method of executing the global policy without requiring continuous communication between the sensors. Each sensor node maintains a local estimate of the global state. Communication occurs only when an information-theoretic model of the uncertainty in the local state estimates exceeds a predefined threshold. We show results on simulated data that demonstrate the efficacy of this distributed-control framework and compare the performance of the proposed controller with other policies. C1 [Panangadan, Anand; Talukder, Ashit] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA. [Liu, Shuping; Talukder, Ashit; Raghavendra, Cauligi S.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Talukder, Ashit] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Raghavendra, CS (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. EM raghu@usc.edu FU NSF from the Division of Computer and Network Systems [0615132] FX This work is supported by NSF grant no. 0615132 from the Division of Computer and Network Systems. NR 17 TC 1 Z9 1 U1 0 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0883-9514 EI 1087-6545 J9 APPL ARTIF INTELL JI Appl. Artif. Intell. PD FEB 1 PY 2013 VL 27 IS 2 BP 126 EP 150 DI 10.1080/08839514.2013.762616 PG 25 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 085RT UT WOS:000314632700004 ER PT J AU Branscomb, E Russell, MJ AF Branscomb, Elbert Russell, Michael J. TI Turnstiles and bifurcators: The disequilibrium converting engines that put metabolism on the road SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Alkaline hydrothermal vent; Origin of life; Chemiosmosis; Serpentinization; Free energy conversion; Non-equilibrium thermodynamics ID CITY HYDROTHERMAL FIELD; VINELANDII FERREDOXIN I; EARLY EVOLUTION; BC(1) COMPLEX; Q-CYCLE; IRON; LIFE; ORIGIN; SULFIDE; ENERGY AB The Submarine Hydrothermal Alkaline Spring Theory for the emergence of life holds that it is the ordered delivery of hydrogen and methane in alkaline hydrothermal solutions at a spontaneously precipitated inorganic osmotic and catalytic membrane to the carbon dioxide and other electron acceptors in the earliest acidulous cool ocean that, through these gradients, drove life into being. That such interactions between hydrothermal fuels and potential oxidants have so far not been accomplished in the lab is because some steps along the necessary metabolic pathways are endergonic and must therefore be driven by being coupled to thermodynamically larger exergonic processes. But coupling of this kind is far from automatic and it is not enough to merely sum the Delta Gs of two supposedly coupled reactions and show their combined thermodynamic viability. An exergonic reaction will not drive an endergonic one unless 'forced' to do so by being tied to it mechanistically via an organized "engine" of "Free Energy Conversion" (FEC). Here we discuss the thermodynamics of FEC and advance proposals regarding the nature and roles of the FEC devices that could, in principle, have arisen spontaneously in the alkaline hydrothermal context and have forced the onset of a protometabolism. The key challenge is to divine what these initial engines of life were in physicochemical terms and as part of that, what structures provided the first "turnstile-like" mechanisms needed to couple the partner processes in free energy conversion; in particular to couple the dissipation of geochemically given gradients to, say, the reduction of CO2 to formate and the generation of a pyrophosphate disequilibrium. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. (C) 2012 Elsevier B.V. All rights reserved. C1 [Branscomb, Elbert] UIUC, Inst Genom Biol, Champaign, IL USA. [Russell, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Branscomb, E (reprint author), UIUC, Inst Genom Biol, Champaign, IL USA. EM brnscmb@Illinois.edu FU National Aeronautics and Space Administration [NNH06ZDA001N]; US Government sponsorship; NASA Astrobiology Institute (Icy Worlds) FX This contribution is dedicated to Georg Fuchs who cleared the path(s). We appreciate help from Wolfgang Nitschke, Nigel Goldenfeld, Nick Lane, Laurie Barge, Lauren White, Takazo Shibuya, Richard Kidd and Isik Kanik and thank Dr. Carl Pitcher and the members of the NM-sponsored Thermodynamics Disequilibrium and Evolution Focus Group for discussions. The research described for this publication was carried out at the Institute for Genomic Biology, University of Illinois at Urbana-Champaign and at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: with support by NASA Exobiology and Evolutionary Biology award (NNH06ZDA001N) and supported by the NASA Astrobiology Institute (Icy Worlds). US Government sponsorship acknowledged. NR 116 TC 23 Z9 23 U1 1 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD FEB PY 2013 VL 1827 IS 2 SI SI BP 62 EP 78 DI 10.1016/j.bbabio.2012.10.003 PG 17 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 083CL UT WOS:000314440200002 PM 23063910 ER PT J AU Schoepp-Cothenet, B van Lis, R Atteia, A Baymann, F Capowiez, L Ducluzeau, AL Duval, S ten Brink, F Russell, MJ Nitschke, W AF Schoepp-Cothenet, Barbara van Lis, Robert Atteia, Ariane Baymann, Frauke Capowiez, Line Ducluzeau, Anne-Lise Duval, Simon ten Brink, Felix Russell, Michael J. Nitschke, Wolfgang TI On the universal core of bioenergetics SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Review DE Chemiosmosis; 2nd law of thermodynamics; Electron transfer; Evolution; Quinone; Origin of life ID CITY HYDROTHERMAL FIELD; DIMETHYL SULFIDE DEHYDROGENASE; COPPER OXYGEN REDUCTASES; ALTERNATIVE COMPLEX III; GREAT OXIDATION EVENT; METHANOGENIC ARCHAEA; ENERGY-CONSERVATION; RHODOSPIRILLUM-RUBRUM; ELECTRON-TRANSPORT; NITRATE REDUCTASE AB Living cells are able to harvest energy by coupling exergonic electron transfer between reducing and oxidising substrates to the generation of chemiosmotic potential. Whereas a wide variety of redox substrates is exploited by prokaryotes resulting in very diverse layouts of electron transfer chains, the ensemble of molecular architectures of enzymes and redox cofactors employed to construct these systems is stunningly small and uniform. An overview of prominent types of electron transfer chains and of their characteristic electrochemical parameters is presented. We propose that basic thermodynamic considerations are able to rationalise the global molecular make-up and functioning of these chemiosmotic systems. Arguments from palaeogeochemistry and molecular phylogeny are employed to discuss the evolutionary history leading from putative energy metabolisms in early life to the chemiosmotic diversity of extant organisms. Following the Occam's razor principle, we only considered for this purpose origin of life scenarios which are contiguous with extant life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. (C) 2012 Elsevier B.V. All rights reserved. C1 [Schoepp-Cothenet, Barbara; van Lis, Robert; Atteia, Ariane; Baymann, Frauke; Capowiez, Line; ten Brink, Felix; Nitschke, Wolfgang] CNRS AMU, Lab Bioenerget & Ingn Prot, UMR 7281, F-13402 Marseille 20, France. [Russell, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ducluzeau, Anne-Lise] Univ Nebraska, Beadle Ctr, Lincoln, NE 68588 USA. [Duval, Simon] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. RP Schoepp-Cothenet, B (reprint author), CNRS AMU, Lab Bioenerget & Ingn Prot, UMR 7281, FR3479, F-13402 Marseille 20, France. EM schoepp@imm.cnrs.fr OI Nitschke, Wolfgang/0000-0003-2084-3032 FU National Aeronautics and Space Administration [NNH06ZDA001N]; NASA Astrobiology, Science and Technology Exploration Program (ASTEP), from the NASA Astrobiology Institute (NAI-Icy Worlds) FX MJR's contribution to this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: with joint support by the NASA Exobiology and Evolutionary Biology award (NNH06ZDA001N) and NASA Astrobiology, Science and Technology Exploration Program (ASTEP) as well as that from the NASA Astrobiology Institute (NAI-Icy Worlds). NR 138 TC 36 Z9 36 U1 8 U2 126 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD FEB PY 2013 VL 1827 IS 2 SI SI BP 79 EP 93 DI 10.1016/j.bbabio.2012.09.005 PG 15 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 083CL UT WOS:000314440200003 PM 22982447 ER PT J AU Vescovini, R Davila, CG Bisagni, C AF Vescovini, Riccardo Davila, Carlos G. Bisagni, Chiara TI Failure analysis of composite multi-stringer panels using simplified models SO COMPOSITES PART B-ENGINEERING LA English DT Article DE Finite element analysis (FEA); Damage mechanics; Computational modeling ID CONTINUUM DAMAGE MODEL; NUMERICAL-ANALYSIS; STIFFENED PANELS; DELAMINATION; COMPRESSION; PREDICTION; SPECIMEN; FRACTURE; LEVEL; TESTS AB The postbuckling response and failure of multi-stringer panels is analyzed using finite element models with three levels of approximation. The first model is based on a relatively coarse mesh to capture the global postbuckling response of a multi-stringer panel. The second model can predict the nonlinear response as well as the debonding and crippling failure mechanisms in a Single Stringer Compression Specimen (SSCS). The third model consists of a simplified version of the SSCS that is designed to minimize the computational effort. The simplified model is well-suited to perform sensitivity analyses for studying the phenomena that lead to structural collapse. In particular, the simplified model is used to obtain a deeper understanding of the role played by geometric and material modeling parameters such as mesh size and interlaminar strength. Finally, a global/local damage analysis method is proposed in which a detailed local model is used to scan the global model and identify the locations that are most critical for damage tolerance. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Vescovini, Riccardo; Bisagni, Chiara] Politecn Milan, Dept Aerosp Engn, I-20133 Milan, Italy. [Davila, Carlos G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Bisagni, C (reprint author), Politecn Milan, Dept Aerosp Engn, I-20133 Milan, Italy. EM chiara.bisagni@polimi.it RI Vescovini, Riccardo/C-1866-2013; Bisagni, Chiara/G-7158-2012; Davila, Carlos/D-8559-2011 OI Vescovini, Riccardo/0000-0003-3915-5299; Bisagni, Chiara/0000-0002-8713-9763; NR 23 TC 7 Z9 8 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-8368 EI 1879-1069 J9 COMPOS PART B-ENG JI Compos. Pt. B-Eng. PD FEB PY 2013 VL 45 IS 1 BP 939 EP 951 DI 10.1016/j.compositesb.2012.07.030 PG 13 WC Engineering, Multidisciplinary; Materials Science, Composites SC Engineering; Materials Science GA 079ST UT WOS:000314193200102 ER PT J AU Cure, D Weller, TM Miranda, FA AF Cure, David Weller, Thomas M. Miranda, Felix A. TI Study of a Low-Profile 2.4-GHz Planar Dipole Antenna Using a High-Impedance Surface With 1-D Varactor Tuning SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Frequency-selective surfaces (FSS); low-profile antenna; varactor-tuned high-impedance surfaces (HIS) ID ARTIFICIAL MAGNETIC CONDUCTORS; FREQUENCY; DESIGN AB A theoretical and experimental study has been performed on a low-profile, 2.4-GHz dipole antenna that uses a frequency-selective surface (FSS) with varactor-tuned unit cells. The tunable unit cell is a square patch with a small aperture on either side to accommodate the varactor diodes. The varactors are placed only along one dimension to avoid the use of vias and simplify the dc bias network. An analytical circuit model for this type of electrically asymmetric unit cell is shown. The measured data demonstrate tunability from 2.15 to 2.63 GHz with peak gains at broadside that range from 3.7- to 5-dBi and instantaneous bandwidths of 50 to 280 MHz within the tuning range. It is shown that tuning for optimum performance in the presence of a human-core body phantom can be achieved. The total antenna thickness is approximately lambda/45. C1 [Cure, David; Weller, Thomas M.] Univ S Florida, Tampa, FL 33620 USA. [Miranda, Felix A.] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. RP Cure, D (reprint author), Univ S Florida, Tampa, FL 33620 USA. EM dcure@mail.usf.edu; weller@usf.edu; felix.a.miranda@nasa.gov FU NASA Glenn Research Center's Graduate Student Researcher Program [NNX10AL41H]; National Science Foundation [ECS-0901779] FX Manuscript received December 25, 2011; revised July 05, 2012; accepted September 19, 2012. Date of publication October 09, 2012; date of current version January 30, 2013. This work was supported in part by the NASA Glenn Research Center's Graduate Student Researcher Program under Grant NNX10AL41H and in part by the National Science Foundation under Grant ECS-0901779. NR 40 TC 12 Z9 12 U1 2 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD FEB PY 2013 VL 61 IS 2 BP 506 EP 515 DI 10.1109/TAP.2012.2223435 PG 10 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 086JZ UT WOS:000314681200002 ER PT J AU Braaten, BD Roy, S Nariyal, S Al Aziz, M Chamberlain, NF Irfanullah, I Reich, MT Anagnostou, DE AF Braaten, Benjamin D. Roy, Sayan Nariyal, Sanjay Al Aziz, Masud Chamberlain, Neil F. Irfanullah, Irfan Reich, Michael T. Anagnostou, Dimitris E. TI A Self-Adapting Flexible (SELFLEX) Antenna Array for Changing Conformal Surface Applications SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Adaptive antennas; conformal antennas; microstrip arrays; phased arrays and planar arrays AB A phased-array test platform for studying the self-adapting capabilities of conformal antennas is developed and presented. Specifically, a four-port 2.45-GHz receiver with voltage controlled phase shifters and attenuators is designed along with four individual printed microstrip patch antennas attached to a conformal surface. Each antenna is connected to the corresponding receiver port with a flexible SMA cable. It is shown that with appropriate phase compensation, the distorted radiation pattern of the array can be recovered as the surface of the conformal array changes shape. This pattern recovery information is then used to develop a new self-adapting flexible 1 x 4 microstrip antenna array with an embedded flexible sensor system. In particular, a flexible resistive sensor is used to measure the deformation of the substrate of a conformal antenna array, while a sensor circuit is used to measure the changing resistance. The circuit then uses this information to control the individual voltage of the phase shifters of each radiating element in the array. It is shown that with appropriate phase compensation, the radiation properties of the array can be autonomously recovered as the surface of the flexible array changes shape during normal operation. Throughout this work, measurements are shown to agree with analytical solutions and simulations. C1 [Braaten, Benjamin D.; Roy, Sayan; Nariyal, Sanjay; Irfanullah, Irfan] N Dakota State Univ, Dept Elect & Comp Engn, Fargo, ND 58102 USA. [Al Aziz, Masud] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA. [Chamberlain, Neil F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Reich, Michael T.] N Dakota State Univ, CNSE, Fargo, ND 58102 USA. [Anagnostou, Dimitris E.] S Dakota Sch Mines & Technol, Dept Elect & Comp Engn, Rapid City, SD 57701 USA. RP Braaten, BD (reprint author), N Dakota State Univ, Dept Elect & Comp Engn, Fargo, ND 58102 USA. EM benbraaten@ieee.org RI Irfan, Irfanullah/M-3799-2016; Anagnostou, Dimitris/A-3124-2009 OI Irfan, Irfanullah/0000-0001-8909-2447; Anagnostou, Dimitris/0000-0003-4266-0309 FU Defense Miroelectronics Activity (DMEA) [H94003-09-2-0905]; NASA ND EPSCoR [NNX07AK91A]; Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office (MTO) Young Faculty Award program [N66001-11-1-4145]; Force Research Laboratories [FA9453-08-C-0245] FX Manuscript received March 22, 2012; revised August 21, 2012; accepted October 11, 2012. Date of publication October 23, 2012; date of current version January 30, 2013. This material is based upon work supported in part by the Defense Miroelectronics Activity (DMEA) under agreement number H94003-09-2-0905, by NASA ND EPSCoR under agreement number NNX07AK91A, by the Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office (MTO) Young Faculty Award program under Award No. N66001-11-1-4145, and in part by the Air Force Research Laboratories under contract FA9453-08-C-0245. NR 31 TC 21 Z9 21 U1 0 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD FEB PY 2013 VL 61 IS 2 BP 655 EP 665 DI 10.1109/TAP.2012.2226227 PG 11 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 086JZ UT WOS:000314681200019 ER PT J AU Lee, D Oreopoulos, L Huffman, GJ Rossow, WB Kang, IS AF Lee, Dongmin Oreopoulos, Lazaros Huffman, George J. Rossow, William B. Kang, In-Sik TI The Precipitation Characteristics of ISCCP Tropical Weather States SO JOURNAL OF CLIMATE LA English DT Article ID CLOUD REGIMES; GLOBAL PRECIPITATION; WESTERN PACIFIC; SYSTEMS; PROJECT; CYCLE AB The authors examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35 degrees S-35 degrees N) for a 10-yr period. The main precipitation dataset used is the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis operational product 3B42 dataset, but Global Precipitation Climatology Project daily data are also used for comparison. It is found that the most convectively active ISCCP weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropics; yet, even this weather state appears to not precipitate about half the time, although this may be to some extent an artifact of detection and spatiotemporal matching limitations of the precipitation dataset. WS1 exhibits a modest annual cycle of the domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states appear to be stronger when occurring before or after WS1. The precipitation rates of the various weather states are different between ocean and land, with WS1 producing higher daytime rates on average over ocean than land, likely because of the larger size and more persistent nature of oceanic WS1s. The results of this study, in addition to advancing the understanding of tropical hydrology, can serve as higher-order diagnostics for evaluating the realism of tropical precipitation distributions in large-scale models. C1 [Lee, Dongmin] Univ Space Res Assoc, GESTAR, Columbia, NY USA. [Lee, Dongmin; Oreopoulos, Lazaros; Huffman, George J.] NASA GSFC, Div Earth Sci, Greenbelt, MD 20771 USA. [Lee, Dongmin; Kang, In-Sik] Seoul Natl Univ, Seoul, South Korea. [Huffman, George J.] Sci Syst & Applicat Inc, Lanham, MD USA. [Rossow, William B.] CUNY, Cooperat Remote Sensing Sci & Technol Inst, New York, NY 10021 USA. RP Oreopoulos, L (reprint author), NASA GSFC, Code 613, Greenbelt, MD 20771 USA. EM lazaros.oreopoulos@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Huffman, George/F-4494-2014; Rossow, William/F-3138-2015; 안, 민섭/D-9972-2015 OI Oreopoulos, Lazaros/0000-0001-6061-6905; Huffman, George/0000-0003-3858-8308; FU NASA's Modeling Analysis and Prediction program; CloudSat/CALIPSO Science Team recompetition; NASA MEASURES program; NEWS program FX Lazaros Oreopoulos and Dongmin Lee acknowledge funding from NASA's Modeling Analysis and Prediction program and the CloudSat/CALIPSO Science Team recompetition, both managed by Dr. David Considine. William B. Rossow acknowledges funding from the NASA MEASURES and NEWS programs. We thank A. Del Genio for helpful discussions. NR 30 TC 14 Z9 14 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD FEB PY 2013 VL 26 IS 3 BP 772 EP 788 DI 10.1175/JCLI-D-11-00718.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 086OR UT WOS:000314695500006 ER PT J AU Hodge, A Dambaugh, G AF Hodge, Andrew Dambaugh, Gabriel TI Analysis of thermally induced stresses on the core node bonds of a co-cured sandwich panel SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE Sandwich structure; induced thermal stress; node disbonds; carbon fiber composite AB During process development testing of the ARES I composite interstage, large regions of node disbonds were observed in the aluminum honeycomb core. The sandwich panels were composed of carbon fiber/epoxy face sheets and one-eighth inch cell size aluminum core co-cured in an autoclave. Node disbonds were initially observed after cure with ultrasonic inspection and subsequently confirmed with X-ray inspection and cross sectioning. A stress analysis was performed on the residual thermal stresses resulting from post-cure cool down. Analysis indicated that the thermal stresses in the aluminum core are a function of foil thickness of the aluminum core. Thermal stresses are relieved through disbonding of the adhesive node. The node disbonds were shown to significantly reduce the shear capability of the sandwich structure. Funding was provided by the ARES I Upper Stage Project. C1 [Hodge, Andrew; Dambaugh, Gabriel] NASA, MSFC, Mat & Proc Lab, Huntsville, AL 35812 USA. RP Hodge, A (reprint author), NASA, MSFC, Mat & Proc Lab, EM20, Huntsville, AL 35812 USA. EM andrew.j.hodge@nasa.gov NR 6 TC 0 Z9 0 U1 1 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 J9 J COMPOS MATER JI J. Compos Mater. PD FEB PY 2013 VL 47 IS 4 BP 467 EP 474 DI 10.1177/0021998312441654 PG 8 WC Materials Science, Composites SC Materials Science GA 077YI UT WOS:000314064900008 ER PT J AU Hoehler, TM Jorgensen, BB AF Hoehler, Tori M. Jorgensen, Bo Barker TI Microbial life under extreme energy limitation SO NATURE REVIEWS MICROBIOLOGY LA English DT Review ID SULFATE-REDUCING BACTERIA; MARINE SUBSURFACE SEDIMENTS; DEEP SUBSEAFLOOR SEDIMENTS; STATIONARY-PHASE; MAINTENANCE ENERGY; ESCHERICHIA-COLI; STREPTOCOCCUS-BOVIS; ANAEROBIC OXIDATION; CONTINENTAL-MARGIN; CONTINUOUS CULTURE AB A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 10(4)-to 10(6)-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors. C1 [Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jorgensen, Bo Barker] Aarhus Univ, Ctr Geomicrobiol, Inst Biosci, DK-8000 Aarhus C, Denmark. RP Hoehler, TM (reprint author), NASA, Ames Res Ctr, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM tori.m.hoehler@nasa.gov RI Jorgensen, Bo/C-2214-2013 OI Jorgensen, Bo/0000-0001-9398-8027 FU NASA Astrobiology Institute; Danish National Research Foundation; German Max Planck Society; European Research Council; Exobiology Program FX T.M.H. is supported by the NASA Astrobiology Institute and Exobiology Program, and B.B.J is supported by the Danish National Research Foundation, the German Max Planck Society and the European Research Council. The authors thank M. A. Lever, H. Roy, A. Schippers and an anonymous reviewer for helpful comments on the manuscript. NR 128 TC 138 Z9 141 U1 18 U2 276 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1740-1526 J9 NAT REV MICROBIOL JI Nat. Rev. Microbiol. PD FEB PY 2013 VL 11 IS 2 BP 83 EP 94 DI 10.1038/nrmicro2939 PG 12 WC Microbiology SC Microbiology GA 085OB UT WOS:000314623000011 PM 23321532 ER PT J AU Aveline, DC Baumgartel, LM Lin, GP Yu, N AF Aveline, David C. Baumgartel, Lukas M. Lin, Guoping Yu, Nan TI Whispering gallery mode resonators augmented with engraved diffraction gratings SO OPTICS LETTERS LA English DT Article ID CAVITY AB We report the demonstration of whispering gallery mode (WGM) resonators augmented with diffraction gratings. We apply focused ion beam (FIB) methods to precisely engrave a surface grating directly into the perimeter of a crystalline disc. The grating provides a simple and highly directional free-space coupling mechanism with superior stability to evanescent coupling techniques. These integrated gratings can also provide control of the resonance spectrum, significantly reducing the mode density. Our FIB fabrication process does not introduce significant loss; Q similar or equal to 3 x 10(7) has been demonstrated. The wavelength dependence of the diffraction angle was found to be in excellent agreement with grating theory. The versatility of spectral control and far-field grating coupling will have significant impact in WGM resonator applications in lasers, sensors, and optoelectronics. (C) 2013 Optical Society of America C1 [Aveline, David C.; Baumgartel, Lukas M.; Lin, Guoping; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Baumgartel, Lukas M.] Univ So Calif, Los Angeles, CA 90089 USA. RP Aveline, DC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM daveline@jpl.nasa.gov RI Lin, Guoping/I-3381-2015 OI Lin, Guoping/0000-0003-4007-1850 FU National Aeronautics and Space Administration; NASA's Center Innovation Fund FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, supported by NASA's Center Innovation Fund. FIB and SEM were performed at USC's Center for Electron Microscopy and Micro-Analysis (CEMMA). The authors thank Thanh Le and K. Mansour for helpful discussions and contributions. NR 11 TC 7 Z9 7 U1 0 U2 35 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD FEB 1 PY 2013 VL 38 IS 3 BP 284 EP 286 PG 3 WC Optics SC Optics GA 085QP UT WOS:000314629600016 PM 23381412 ER PT J AU Doarn, CR Mohler, SR AF Doarn, Charles R. Mohler, Stanley R. TI Physician Training in Aerospace Medicine-An Historical Review in the United States SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE aerospace medicine; aviation medicine; spaceflight; training; NASA; military ID PREVENTIVE-MEDICINE; SPACE-MEDICINE; AVIATION; NASA AB DOARN CR, MOHLER SR. Physician training in aerospace medicine an historical review in the United States. Aviat Space Environ Med 2013; 84:158-62. The training of U.S. physicians in aviation medicine closely followed the development of reliable airplanes. This training has matured as aviation and space travel have become more routine over the past several decades. In the U.S., this training began in support of military pilots who were flying increasingly complex aircraft in the early part of the 20th century. As individuals reached into the stratosphere, low Earth orbit, and eventually to the Moon, physicians were trained not only through military efforts but in academic settings as well. This paper provides an historical summary of how physician training in aerospace medicine developed in the U.S., citing both the development of the military activities and, more importantly, the perspectives of the academic programs. This history is important as we move forward in the development of commercial space travel and the needs that such a business model will be required to meet. C1 [Doarn, Charles R.] Univ Cincinnati, Dept Family & Community Med, Cincinnati, OH 45267 USA. [Doarn, Charles R.] NASA Headquarters, Washington, DC USA. [Mohler, Stanley R.] Wright State Univ, Dept Community Hlth, Dayton, OH 45435 USA. RP Doarn, CR (reprint author), Univ Cincinnati, Coll Med, Grad Div, POB 670566, Cincinnati, OH 45267 USA. EM charles.doarn@uc.edu RI Herciu, Iulian/C-4492-2013 NR 26 TC 2 Z9 2 U1 0 U2 6 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD FEB PY 2013 VL 84 IS 2 BP 158 EP 162 DI 10.3357/ASEM.3292.2013 PG 5 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 079VO UT WOS:000314200500011 PM 23447855 ER PT J AU Barnes, NP Walsh, BM Amzajerdian, F Reichle, DJ Busch, GE Carrion, WA AF Barnes, Norman P. Walsh, Brian M. Amzajerdian, Farzin Reichle, Donald J. Busch, George E. Carrion, William A. TI Measurement of Up Conversion in Er:YAG and Influence on Laser Performance SO IEEE JOURNAL OF QUANTUM ELECTRONICS LA English DT Article DE Diode pumped lasers; Er:YAG lasers; up conversion ID ENERGY-TRANSFER; IONS AB Up conversion significantly affects Er:YAG lasers, particularly when Q-switching. Measurements performed here using low Er concentration materials are significantly different than those reported using high Er concentrations. Analytical results are compared with experimental data and used to predict laser performance. C1 [Barnes, Norman P.; Walsh, Brian M.; Amzajerdian, Farzin; Reichle, Donald J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Busch, George E.; Carrion, William A.] Coherent Applicat Inc, Hampton, VA 23681 USA. RP Barnes, NP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM normanpbarnes@hotmail.com; brian.m.walsh@nasa.gov; f.amzajerdian@nasa.gov; donald.j.reichle@nasa.gov; george.e.busch@nasa.gov; william.carrion@nasa.gov NR 11 TC 1 Z9 1 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9197 J9 IEEE J QUANTUM ELECT JI IEEE J. Quantum Electron. PD FEB PY 2013 VL 49 IS 2 BP 238 EP 246 DI 10.1109/JQE.2012.2226146 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 079LN UT WOS:000314172000002 ER PT J AU Wilson, MJ Oreopoulos, L AF Wilson, Michael J. Oreopoulos, Lazaros TI Enhancing a Simple MODIS Cloud Mask Algorithm for the Landsat Data Continuity Mission SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmospheric modeling; clouds; Earth observing system; infrared image sensors; land surface; remote sensing ID CLEAR-SKY; CHANNELS AB The upcoming Landsat Data Continuity Mission (LDCM) will include new channels centered around 1.38 mu m and 12 mu m. This work studies the potential impact of these new channels on LDCM's cloud detection capabilities by using MODerate resolution Imaging Spectroradiometer (MODIS) data as a proxy. Thresholds for the 1.38 mu m band and the so-called "split window" technique (using the brightness temperature difference of bands centered at 11 mu m and 12 mu m) are derived using atmospheric profiles from the ECMWF ERA-40 reanalysis and a MODIS-band radiance simulator. The thresholds are incorporated into a previously published cloud mask scheme and applied on low-and mid-latitude (60 degrees S to 60 degrees N) MODIS radiance data from two different days, six months apart. While the previous scheme yields agreement rates to the MODIS cloud mask just below 80%, the addition of the 1.38 mu m and split window tests increases the agreement by 7-9%. The earlier scheme is still appropriate for cloud masking of historical Landsat images and for carrying consistent cloud detection into the future. The enhanced scheme of this paper, on the other hand, with its improved masking of primarily high thin clouds, can be either used independently or combined with other masking techniques for generating reliable LDCM cloud mask products that can potentially include confidence indicators based on the degree of agreement between multiple cloud masks. C1 [Wilson, Michael J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Wilson, Michael J.; Oreopoulos, Lazaros] NASA, Climate & Radiat Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wilson, MJ (reprint author), IM Syst Grp, Rockville, MD 20852 USA. EM mjwilson@umbc.edu; Lazaros.Oreopoulos@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Wilson, Michael/G-9611-2013 OI Oreopoulos, Lazaros/0000-0001-6061-6905; FU U.S. Geological Survey [06CRCN0022] FX This work was supported by the U.S. Geological Survey under Contract 06CRCN0022. NR 13 TC 6 Z9 7 U1 1 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2013 VL 51 IS 2 BP 723 EP 731 DI 10.1109/TGRS.2012.2203823 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 077HW UT WOS:000314019500001 ER PT J AU Amin, R Gould, R Hou, WL Arnone, R Lee, ZP AF Amin, Ruhul Gould, Richard Hou, Weilin Arnone, Robert Lee, Zhongping TI Optical Algorithm for Cloud Shadow Detection Over Water SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hyperspectral imagery; ocean color; optical algorithm; remote sensing; shadow detection ID AVHRR DATA; ILLUMINATION CONDITIONS; SPATIAL-RESOLUTION; SATELLITE IMAGERY; REMOVAL; ASSIMILATION; RETRIEVAL; CANADA; MODEL; LAND AB The application of ocean color product retrieval algorithms for pixels containing cloud shadows leads to erroneous results. Thus, shadows are an important scene type that should be identified and excluded from the set of clear-sky pixels. In this paper, we present an optical cloud shadow-detection technique called the Cloud Shadow Detection Index (CSDI). This approach is for homogeneous water bodies such as deep waters where shadow detection is very challenging due to the relatively small differences in the brightness values of the shadows and neighboring sunlit or some other regions. The CSDI technique is developed based on the small differences between the total radiances reaching the sensor from the shadowed and neighboring sunlit regions of similar optical properties by amplifying the differences through integrating the spectra of the two regions. The Integrated Value (IV) is then normalized by the mean of the IVs within a spatial adaptive sliding box where atmospheric and marine optical properties are assumed homogeneous. Assuming that the true color and the IV images represent accurate shadow locations, the results were visually compared. The CSDI images agree reasonably well with the corresponding true color and the IV images over open ocean. Also, the shape of the cloud shadow particularly for the isolated cloud closely follows that of the cloud, as expected, reconfirming the potential of the CSDI technique. C1 [Amin, Ruhul; Gould, Richard; Hou, Weilin; Arnone, Robert] USN, Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA. [Lee, Zhongping] Univ Massachusetts, Dept Environm Earth & Ocean Sci, Boston, MA 02125 USA. RP Amin, R (reprint author), USN, Res Lab, Stennis Space Ctr, Code 7333, Stennis Space Ctr, MS 39529 USA. EM ruhul.amin@nrlssc.navy.mil; gould@nrlssc.navy.mil; wilin.hou@nrlssc.navy.mil; arnone@nrlssc.navy.mil; zhongping.lee@umb.edu FU U.S. Naval Research Laboratory [PE0602435N] FX This work was supported by the U.S. Naval Research Laboratory Program Element PE0602435N "Realizing the Naval Scientific Return of HICO." NR 37 TC 4 Z9 4 U1 3 U2 44 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2013 VL 51 IS 2 BP 732 EP 741 DI 10.1109/TGRS.2012.2204267 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 077HW UT WOS:000314019500002 ER PT J AU Ou, SSC Kahn, BH Liou, KN Takano, Y Schreier, MM Yue, Q AF Ou, Steve S. C. Kahn, Brian H. Liou, Kuo-Nan Takano, Yoshihide Schreier, Mathias M. Yue, Qing TI Retrieval of Cirrus Cloud Properties From the Atmospheric Infrared Sounder: The k-Coefficient Approach Using Cloud-Cleared Radiances as Input SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmospheric Infrared Sounder (AIRS); cirrus clouds; cloud-cleared radiances; ice crystal mean effective diameter; k-coefficient approach; Moderate Resolution Imaging ID RADIATIVE-TRANSFER MODEL; IMAGER-RADIOMETER SUITE; ENVIRONMENTAL SATELLITE SYSTEM; BULK SCATTERING PROPERTIES; FIRE-II-IFO; OPTICAL-THICKNESS; AVHRR DATA; DELTA-4-STREAM APPROXIMATION; MICROPHYSICAL PROPERTIES; INFORMATION-CONTENT AB We have developed a k-coefficient retrieval approach for Atmospheric Infrared Sounder (AIRS) observations, using AIRS cloud-cleared radiances (ACCRs) as input. This new approach takes advantage of the available ACCR, reduces computational expense, offers an efficient and accurate cirrus cloud retrieval alternative for hyperspectral infrared (IR) observations, and is potentially applicable to the compilation of a long-term cirrus cloud climatology from hyperspectral IR observations. The retrieval combines a lookup-table method coupled to a residual minimization scheme using observed cloudy and cloud-cleared AIRS radiances as input. Six AIRS channels between 766 and 832 cm(-1) with minimal water vapor absorption/emission have been selected, and their spectral radiances have been demonstrated to be sensitive to both cirrus cloud optical depth (tau(c)) and ice crystal effective particle size (D-e). The capability of the k-coefficient approach is demonstrated by comparison with a more accurate retrieval program, which combines the delta-four stream (D4S) approximation with the currently operational Stand-alone AIRS Radiative Transfer Algorithm (SARTA). The distribution patterns and the range of retrieved cloud parameters from the k-coefficient approach are nearly identical to those from SARTA+D4S retrievals, with minor differences traced to uncertainties in parameterized cloudy radiances in the k-coefficient approach and in the ACCR. The k-coefficient approach has also been applied to four AIRS granules over North Central China, Mongolia, and Siberia containing a significant presence of cirrus clouds, and its results are quantitatively compared to simultaneous Moderate Resolution Imaging Spectroradiometer/Aqua cirrus cloud retrievals. Finally, AIRS retrieved tc and De are consistent with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat derived values for semi-transparent cirrus clouds, with more significant differences in thicker cirrus and multilayer clouds. C1 [Ou, Steve S. C.; Liou, Kuo-Nan; Takano, Yoshihide; Schreier, Mathias M.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Kahn, Brian H.; Schreier, Mathias M.; Yue, Qing] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ou, SSC (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM ssou@atmos.ucla.edu; brian.h.kahn@jpl.nasa.gov; knliou@atmos.ucla.edu; ytakano@atmos.ucla.edu; mathias.schreier@jpl.nasa.gov; Qing.Yue@jpl.nasa.gov RI Yue, Qing/F-4619-2017 OI Yue, Qing/0000-0002-3559-6508 FU Atmospheric Infrared Sounder (AIRS) project at the Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration Award [NNX08AI09G] FX The authors Ou and Kahn would like to acknowledge the support for this work on behalf of the Atmospheric Infrared Sounder (AIRS) project at the Jet Propulsion Laboratory (JPL). Kahn and Schreier were partially supported by National Aeronautics and Space Administration Award NNX08AI09G. AIRS data were obtained through the Goddard Earth Sciences Data and Information Services Center (http://disc.gsfc.nasa.gov/). Moderate Resolution Imaging Spectroradiometer data were obtained through the Moderate Resolution Imaging Spectroradiometer Data Processing System (MODAPS) (http://ladsweb.nascom.nasa.gov/). CloudSat data were obtained through the CloudSat Data Processing Center (http://www.cloudsat.cira.colostate.edu/). CALIPSO Level 1B data were obtained through the Atmospheric Sciences Data Center at NASA Langley Research Center (http://eosweb.larc.nasa.gov/). A portion of this work was performed within the Joint Institute for Regional Earth System Science and Engineering of the University of California at Los Angeles, Los Angeles, and at the JPL, California Institute of Technology, under a contract with NASA. NR 64 TC 4 Z9 4 U1 3 U2 31 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2013 VL 51 IS 2 BP 1010 EP 1024 DI 10.1109/TGRS.2012.2205261 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 077HW UT WOS:000314019500023 ER PT J AU Yang, YK Marshak, A Palm, SP Wang, ZS Schaaf, C AF Yang, Yuekui Marshak, Alexander Palm, Stephen P. Wang, Zhuosen Schaaf, Crystal TI Assessment of Cloud Screening With Apparent Surface Reflectance in Support of the ICESat-2 Mission SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Apparent surface reflectance; cloud detection; ICESat-2; lidar; snow reflectance ID GLAS ALTIMETRY; ALGORITHM; LAYERS; LAND; SNOW AB Cloud detection/screening is a fundamental step in satellite data analysis. For the Ice, Cloud, and land Elevation Satellite (ICESat) and its successor ICESat-2, clouds can significantly affect the accuracy of the surface elevation retrievals. This paper proposes a new method for cloud screening in support of the ICESat-2 mission with focus on the polar ice sheet regions. The method utilizes the apparent surface reflectance (ASR) at the backscattering direction as the cloud screening test. The basis of this method is that clouds produce a strong signal by significantly decreasing the ASR. We show that depending on the height and microphysics of the cloud, the ASR decreases 8%-17% for clouds with an optical depth of 0.1 and 57%-85% for clouds with an optical depth 1.0. Data from ICESat's 1064-nm channel is used to demonstrate the feasibility of the method. It is shown that cloud detectability is a function of surface reflectance variability. Generally, the smaller the surface reflectance variability, the more accurate is cloud detection. Unlike ICESat, which used a 1064-nm laser, ICESat-2 adopts a 532-nm photon counting system for its laser altimeter. With both modeling studies and results from the Moderate Resolution Imaging Spectroradiometer (MODIS), we demonstrate that the ASR variability is much smaller for the 532-nm channel than that for the 1064-nm channel. Hence, the 532-nm channel is better suited for cloud screening than the 1064-nm channel. C1 [Yang, Yuekui] Univ Space Res Assoc, Columbia, MD 21044 USA. [Yang, Yuekui; Marshak, Alexander; Palm, Stephen P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Palm, Stephen P.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Wang, Zhuosen; Schaaf, Crystal] Univ Massachusetts, Dept Environm Earth & Ocean Sci, Boston, MA 02125 USA. [Wang, Zhuosen; Schaaf, Crystal] Boston Univ, Ctr Remote Sensing, Dept Geog & Environm, Boston, MA 02215 USA. RP Yang, YK (reprint author), Univ Space Res Assoc, Columbia, MD 21044 USA. EM yuekui.yang@nasa.gov; alexander.marshak@nasa.gov; Stephen.p.palm@nasa.gov; wangzhs@bu.edu; schaaf@bu.edu RI Marshak, Alexander/D-5671-2012; Yang, Yuekui/B-4326-2015 FU National Aeronautics and Space Administration's ICESat-2 Science Definition Project FX This work was supported by the National Aeronautics and Space Administration's ICESat-2 Science Definition Project. NR 27 TC 3 Z9 3 U1 3 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2013 VL 51 IS 2 BP 1037 EP 1045 DI 10.1109/TGRS.2012.2204066 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 077HW UT WOS:000314019500025 ER PT J AU Shahriar, AM Atiquzzaman, M Ivancic, W AF Shahriar, Abu Zafar M. Atiquzzaman, Mohammed Ivancic, William TI Network Mobility in satellite networks: architecture and the protocol SO INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS LA English DT Article DE Network Mobility; satellite networks; architecture; basic protocol ID IP AB Mobility management is required to ensure the session continuity for multiple Internet Protocol-enabled devices onboard a satellite that hands off between ground stations. Network Mobility (NEMO) can efficiently manage the mobility of multiple Internet Protocol-enabled devices that are connected as a mobile network. However, existing mobility management solutions for satellite networks are unable to route through intermediate satellites links when a direct connection with a ground station is lost. We proposed an architecture of NEMO in satellite networks with routing through multiple satellite links using nesting, where a mobile network connects to another mobile network. However, NEMO Basic Support Protocol can be inefficient in satellite networks because of poor nesting formation leading to the routing loop, inefficient routes, and overloaded links. We extended NEMO Basic Support Protocol for the efficient use in satellite networks by augmenting it with a decision criteria for the nesting. Results verify that the extended protocol ensures loop-free and continuous connection despite the loss of direct connection to the ground and provides an insight on how to form the nested NEMO to avoid overloading. The architecture and the extended NEMO protocol can be used for the efficient and continuous transfer of data from satellite networks to the ground. Copyright (c) 2011 John Wiley & Sons, Ltd. C1 [Shahriar, Abu Zafar M.; Atiquzzaman, Mohammed] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA. [Ivancic, William] NASA, Satellite Networks & Architectures Branch, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Shahriar, AM (reprint author), Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA. EM shahriar@ou.edu FU NASA [NNX06AE44G] FX The research reported in this paper was funded by NASA Grant NNX06AE44G. NR 28 TC 1 Z9 3 U1 1 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1074-5351 EI 1099-1131 J9 INT J COMMUN SYST JI Int. J. Commun. Syst. PD FEB PY 2013 VL 26 IS 2 BP 177 EP 197 DI 10.1002/dac.1338 PG 21 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 077TJ UT WOS:000314050600003 ER PT J AU Sanghavi, SV Martonchik, JV Davis, AB Diner, DJ AF Sanghavi, Suniti V. Martonchik, John V. Davis, Anthony B. Diner, David J. TI Linearization of a scalar matrix operator method radiative transfer model with respect to aerosol and surface properties SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Analytical derivatives; Linearization; Optimized inversion; Aerosols; Matrix operator method; Remote sensing ID DISCRETE SPACE THEORY; PHASE MATRIX; SCATTERING; RETRIEVAL; SYSTEM; LIGHT AB In this paper, we review the radiative transfer formalism of the matrix operator method, and present the analytic form for its differentiation with respect to aerosol optical thickness, microphysical parameters and surface parameters. This "linearization" is an exact method that allows for an accurate and speedy computation of the Jacobian matrix, which is key to most optimization-based retrieval methods. We define an aerosol in terms of its optical thickness, complex refractive index and lognormal size distribution. We consider a bimodal aerosol distribution, consisting of a fine and coarse mode, such that the two modes also differ in their respective complex refractive indices. Three types of surfaces have been considered, viz, a purely Lambertian surface, a modified Rahman-Pinty-Verstraete bidirectional reflecting surface, and a Fresnel-reflecting ocean surface. We verify our results by comparing our linearized Jacobians of normalized intensities calculated at four different wavelengths in the visible (VIS) and near-infrared (NIR) and viewing angles ranging from -75 degrees through 0 degrees to 75 degrees with those computed by the method of finite differences. We demonstrate the guaranteed accuracy of the linearized approach by contrasting it with the finite difference method which can only be used as a rough estimate due to its sensitivity to step size, especially for derivatives with respect to aerosol microphysical parameters. We also report that the computational speed-up due to linearization improves with the number of parameters involved, parity being achieved with the finite difference method for just one parameter. Finally, we discuss the features of the illustrated Jacobians as a function of viewing angle and wavelengths. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Sanghavi, Suniti V.; Martonchik, John V.; Davis, Anthony B.; Diner, David J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sanghavi, SV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Suniti.V.Sanghavi@jpl.nasa.gov NR 29 TC 6 Z9 6 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 1 EP 16 DI 10.1016/j.jqsrt.2012.10.021 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400001 ER PT J AU Liu, ZY Fairlie, TD Uno, I Huang, JF Wu, D Omar, A Kar, J Vaughan, M Rogers, R Winker, D Trepte, C Hu, YX Sun, WB Lin, B Cheng, AN AF Liu, Zhaoyan Fairlie, T. Duncan Uno, Itsushi Huang, Jingfeng Wu, Dong Omar, Ali Kar, Jayanta Vaughan, Mark Rogers, Raymond Winker, David Trepte, Charles Hu, Yongxiang Sun, Wenbo Lin, Bing Cheng, Anning TI Transpacific transport and evolution of the optical properties of Asian dust SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Dust; Dust transport; Depolarization ratio; CALIPSO ID MINERAL DUST; CALIPSO LIDAR; SAHARAN DUST; EAST-ASIA; SATELLITE-OBSERVATIONS; SIZE DISTRIBUTION; NORTH-AMERICA; APRIL 1998; AEROSOL; CLOUD AB Five years of CALIPSO lidar layer products are used to study transpacific transport of Asian dust. We focus on possible changes to dust intrinsic optical properties during the course of transport, with specific emphasis on changes to particulate depolarization ratio (PDR). PDR distributions for Asian dust transported across the Pacific are compared to previously reported PDR distributions for African dust transported across the Atlantic. African dust shows a slight decreasing trend in PDR during westward transport across the Atlantic during its most active long-range transport season in summer. Asian dust, on the other hand, shows some spatial variability in PDR over the Pacific during its most active long-range transport season in spring. The dust PDR is generally smaller over the ocean than over the Tarim basin and nearby downwind regions. PDR also shows a decreasing trend with latitude moving northward toward the Arctic, together with an increasing trend in the dust aerosol optical depth (AOD) when passing over polluted Asian regions. Possible explanations include (i) the mixing of dust externally or internally with other types of aerosol over the heavily developed industrial regions in East Asia, and (ii) the downstream mixing of dust plumes from different source regions (i.e., Tarim and Gobi). Dust from different source regions exhibits relatively large differences in PDR, with mean values of 0.34 +/- 0.07, 0.28 +/- 0.06, and 0.30 +/- 0.08, respectively, over the Tarim basin, Gobi Desert and Northwest African source regions. Different transport mechanisms are seen for African dust and Asian dust. Asian dust transport is originated by cold fronts and driven by westerly jets. In contrast, summer African transatlantic dust transport is driven by trade winds and is generally well confined in altitude in the free troposphere throughout the tropics and subtropics. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Liu, Zhaoyan; Kar, Jayanta; Sun, Wenbo; Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA. [Fairlie, T. Duncan; Omar, Ali; Vaughan, Mark; Rogers, Raymond; Winker, David; Trepte, Charles; Hu, Yongxiang; Lin, Bing] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Uno, Itsushi] Kyushu Univ, Fukuoka 812, Japan. [Huang, Jingfeng] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. [Wu, Dong] Ocean Univ China, Qingdao, Peoples R China. RP Liu, ZY (reprint author), Sci Syst & Applicat Inc, Hampton, VA USA. EM zhaoyan.liu@nasa.gov RI Liu, Zhaoyan/B-1783-2010; Huang, Jingfeng/D-7336-2012; Hu, Yongxiang/K-4426-2012; U-ID, Kyushu/C-5291-2016; Kyushu, RIAM/F-4018-2015; Omar, Ali/D-7102-2017 OI Liu, Zhaoyan/0000-0003-4996-5738; Huang, Jingfeng/0000-0002-8779-2922; Omar, Ali/0000-0003-1871-9235 NR 55 TC 19 Z9 22 U1 5 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 24 EP 33 DI 10.1016/j.jqsrt.2012.11.011 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400003 ER PT J AU Faure, A Wiesenfeld, L Drouin, BJ Tennyson, J AF Faure, A. Wiesenfeld, L. Drouin, B. J. Tennyson, J. TI Pressure broadening of water and carbon monoxide transitions by molecular hydrogen at high temperatures SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Pressure broadening; Planetary atmospheres; Hydrogen broadening; Carbon monoxide; Water vapor ID CROSS-SECTIONS; HELIUM; COLLISIONS; H2O; COEFFICIENTS; PARAMETERS; DEPENDENCE; SPECTRA; VAPOR; H-2 AB Water and carbon monoxide are two major compounds in the predominantly H-2 atmospheres of stars, brown dwarfs and extrasolar planets. Recent radiative transfer models suggest that there is an urgent need for data on the pressure broadening of molecular transitions by H-2 at high temperatures. We present a set of theoretical H-2 pressure broadening parameters for 228 H2O transitions in the range of 10-20,000 GHz and 30 CO transitions in the 115-3500 GHz region. These parameters are appropriate for temperatures between 200 and 3000 K. The random phase approximation is employed to derive the broadening parameters from recent state-of-the-art inelastic collisional rate coefficients. This approximation is compared both to full close-coupling calculations and to available experimental data. It is shown to be valid at temperatures above 200 K, as expected from theoretical considerations, with an accuracy of about 25%. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Faure, A.; Wiesenfeld, L.] UJF Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Drouin, B. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tennyson, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Faure, A (reprint author), UJF Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. EM afaure@obs.ujf-grenoble.fr RI Tennyson, Jonathan/I-2222-2012 OI Tennyson, Jonathan/0000-0002-4994-5238 FU ERC Advanced Investigator Project [267219] FX We thank Christian Hill for helpful comments on the data. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. L.W. thanks the French spatial agency CNES for travel support. J.T.'s work was supported by ERC Advanced Investigator Project 267219. NR 36 TC 16 Z9 17 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 79 EP 86 DI 10.1016/j.jqsrt.2012.09.015 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400009 ER PT J AU Daumont, L Nikitin, AV Thomas, X Regalia, L Von der Heyden, P Tyuterev, VG Rey, M Boudon, V Wenger, C Loete, M Brown, LR AF Daumont, L. Nikitin, A. V. Thomas, X. Regalia, L. Von der Heyden, P. Tyuterev, VI. G. Rey, M. Boudon, V. Wenger, Ch. Loete, M. Brown, L. R. TI New assignments in the 2 mu m transparency window of the (CH4)-C-12 Octad band system SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Methane; Intensities; Spectra; Transparency window; Titan; Long path FTS; Octad ID EMPIRICAL LINE PARAMETERS; POLYATOMIC-MOLECULES; CM(-1) REGION; SPECTROSCOPIC DATABASE; 1ST ASSIGNMENT; METHANE; SPECTRA; STRENGTHS; TRANSITIONS; SIMULATION AB This paper reports new assignments of rovibrational transitions of (CH4)-C-12 bands in the range 4600-4887 cm(-1) which is usually referred to as a part of the 2 mu m methane transparency window. Several experimental data sources for methane line positions and intensities were combined for this analysis. Three long path Fourier transform spectra newly recorded in Reims with 1603 m absorption path length and pressures of 1,7 and 34 hPa for samples of natural abundance CH4 provided new measurements of (CH4)-C-12 lines. Older spectra for (CH4)-C-13 (90% purity) from JPL with 73 m absorption path length were used to identify the corresponding lines. Most of the lines in this region belong to the Octad system of (CH4)-C-12. The new spectra allowed us to assign 1014 new line positions and to measure 1095 line intensities in the cold bands of the Octad. These new line positions and intensities were added to the global fit of Hamiltonian and dipole moment parameters of the Ground State, Dyad, Pentad and Octad systems. This leads to a noticeable improvement of the theoretical description in this methane transparency window and a better global prediction of the methane spectrum. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Daumont, L.; Nikitin, A. V.; Thomas, X.; Regalia, L.; Von der Heyden, P.; Tyuterev, VI. G.; Rey, M.] Univ Reims, UFR Sci Exactes & Nat, UMR CNRS 6089, Grp Spectromet Mol & Atmospher, F-51687 Reims 2, France. [Nikitin, A. V.] SB RAS, VE Zuev Inst Atmospher Opt, Lab Theoret Spect, Tomsk 634021, Russia. [Boudon, V.; Wenger, Ch.; Loete, M.] Univ Bourgogne, CNRS, UMR 5209, Lab Interdisciplinaire Carnot Bourgogne, F-21078 Dijon, France. [Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Daumont, L (reprint author), Univ Reims, UFR Sci Exactes & Nat, UMR CNRS 6089, Grp Spectromet Mol & Atmospher, BP 1039, F-51687 Reims 2, France. EM ludovic.daumont@univ-reims.fr RI BOUDON, Vincent/A-4504-2010; Nikitin, Andrei/K-2624-2013 OI Nikitin, Andrei/0000-0002-4280-4096 FU ANR [BLAN08-2_321467]; IDRIS computer centre of CNRS France; computer centre Reims-Champagne-Ardenne; CNRS (France); RFBR (Russia); CAS (China) FX This work is part of the ANR project "CH4@Titan" (ref: BLAN08-2_321467). The support of the Groupement de Recherche International SAMIA between CNRS (France), RFBR (Russia) and CAS (China) is acknowledged. We acknowledge the support from IDRIS computer centre of CNRS France and of the computer centre Reims-Champagne-Ardenne. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the National Aeronautics and Space Administration. NR 50 TC 28 Z9 28 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 101 EP 109 DI 10.1016/j.jqsrt.2012.08.025 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400011 ER PT J AU Wang, CX Yang, P Nasiri, SL Platnick, S Baum, BA Heidinger, AK Liu, X AF Wang, Chenxi Yang, Ping Nasiri, Shaima L. Platnick, Steven Baum, Bryan A. Heidinger, Andrew K. Liu, Xu TI A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Radiative transfer; Cloud remote sensing; Fast radiative transfer model; Non-Lambertian surface; Twisted icosahedral mesh; Adding-doubling ID SHALLOW-WATER EQUATIONS; SATELLITE DATA ASSIMILATION; BULK SCATTERING PROPERTIES; WEATHER PREDICTION MODELS; MONTE-CARLO CALCULATIONS; MULTIPLE-SCATTERING; OPTICAL-THICKNESS; NUMERICAL-INTEGRATION; SURFACE EMISSIVITY; REFRACTIVE-INDEX AB A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error > 5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA > 45 degrees and VZA > 70 degrees). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Heidinger, Andrew K.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Madison, WI 53706 USA. [Liu, Xu] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. RP Wang, CX (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM chenx.wang@geos.tamu.edu RI Yang, Ping/B-4590-2011; Nasiri, Shaima/C-8044-2011; Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010; Richards, Amber/K-8203-2015 OI Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X; FU NASA [NNX11A055G, NNX11AF40G] FX This study was supported by the NASA Grant nos. NNX11A055G and NNX11AF40G. The authors acknowledge the Texas A&M Supercomputing Facility (http://sc.tamu.edu/) for providing computing resources useful in conducting the research reported in this paper. NR 60 TC 11 Z9 11 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 122 EP 131 DI 10.1016/j.jqsrt.2012.10.012 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400013 ER PT J AU Bi, L Yang, P Kattawar, GW Mishchenko, MI AF Bi, Lei Yang, Ping Kattawar, George W. Mishchenko, Michael I. TI Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Invariant imbedding method; Separation of variables method; T-matrix ID DISCRETE-DIPOLE APPROXIMATION; MODELING OPTICAL-PROPERTIES; ELECTROMAGNETIC SCATTERING; LIGHT-SCATTERING; RADIATIVE PROPERTIES; SPHEROIDAL PARTICLES; REFERENCE DATABASE; ICE CRYSTALS; SPHERE; COMPUTATIONS AB Three terms, "Waterman's T-matrix method", "extended boundary condition method (EBCM)", and "null field method", have been interchangeable in the literature to indicate a method based on surface integral equations to calculate the T-matrix. Unlike the previous method, the invariant imbedding method (IIM) calculates the T-matrix by the use of a volume integral equation. In addition, the standard separation of variables method (SOV) can be applied to compute the T-matrix of a sphere centered at the origin of the coordinate system and having a maximal radius such that the sphere remains inscribed within a nonspherical particle. This study explores the feasibility of a numerical combination of the IIM and the SOV, hereafter referred to as the IIM+SOV method, for computing the single-scattering properties of nonspherical dielectric particles, which are, in general, inhomogeneous. The IIM+SOV method is shown to be capable of solving light-scattering problems for large nonspherical particles where the standard EBCM fails to converge. The IIM+SOV method is flexible and applicable to inhomogeneous particles and aggregated nonspherical particles (overlapped circumscribed spheres) representing a challenge to the standard superposition T-matrix method. The IIM+SOV computational program, developed in this study, is validated against EBCM simulated spheroid and cylinder cases with excellent numerical agreement (up to four decimal places). In addition, solutions for cylinders with large aspect ratios, inhomogeneous particles, and two-particle systems are compared with results from discrete dipole approximation (DDA) computations, and comparisons with the improved geometric-optics method (IGOM) are found to be quite encouraging. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Bi, Lei; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Kattawar, George W.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, TAMU 3150, College Stn, TX 77843 USA. EM pyang@tamu.edu RI Yang, Ping/B-4590-2011; Mishchenko, Michael/D-4426-2012; Bi, Lei/B-9242-2011 FU National Science Foundation [ATMO-0803779]; NASA [NNX11AK37G]; David Bullock Harris Chair in Geosciences at the College of Geosciences, Texas AM University FX This research is supported by the National Science Foundation (ATMO-0803779), NASA (NNX11AK37G), and the endowment funds associated with the David Bullock Harris Chair in Geosciences at the College of Geosciences, Texas A&M University. The numerical computation was carried out using the EOS supercomputer at Texas A&M University. MIM acknowledges support via the NASA Remote Sensing Theory Program managed by Lucia Tsaoussi. The authors thank M. A. Yurkin and A. G. Hoekstra for use of their ADDA code. NR 60 TC 29 Z9 30 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 169 EP 183 DI 10.1016/j.jqsrt.2012.11.014 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400017 ER PT J AU Devi, VM Benner, DC Smith, MAH Mantz, AW Sung, K Brown, LR Predoi-Cross, A AF Devi, V. Malathy Benner, D. Chris Smith, M. A. H. Mantz, A. W. Sung, K. Brown, L. R. Predoi-Cross, A. TI Spectral line parameters including temperature dependences of self- and air-broadening in the 2 <- 0 band of CO at 2.3 mu m (vol 113, pg 1013, 2012) SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Correction C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Smith, M. A. H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Sung, K.; Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Predoi-Cross, A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB TIK 3M4, Canada. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@nasa.gov RI Sung, Keeyoon/I-6533-2015 NR 1 TC 4 Z9 4 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD FEB PY 2013 VL 116 BP 199 EP 200 DI 10.1016/j.jqsrt.2012.11.020 PG 2 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 082YR UT WOS:000314430400022 ER PT J AU Mijnendonckx, K Provoost, A Ott, CM Venkateswaran, K Mahillon, J Leys, N Van Houdt, R AF Mijnendonckx, K. Provoost, A. Ott, C. M. Venkateswaran, K. Mahillon, J. Leys, N. Van Houdt, R. TI Characterization of the Survival Ability of Cupriavidus metallidurans and Ralstonia pickettii from Space-Related Environments SO MICROBIAL ECOLOGY LA English DT Article ID ALCALIGENES-EUTROPHUS CH34; MICROBIAL CHARACTERIZATION; ASSEMBLY FACILITY; BIOFILM FORMATION; ESCHERICHIA-COLI; METAL RESISTANCE; DRINKING-WATER; GENOME SEQUENCE; CYSTIC-FIBROSIS; ULTRAPURE WATER AB Four Cupriavidus metallidurans and eight Ralstonia pickettii isolates from the space industry and the International Space Station (ISS) were characterized in detail. Nine of the 12 isolates were able to form a biofilm on plastics and all were resistant to several antibiotics. R. pickettii isolates from the surface of the Mars Orbiter prior to flight were 2.5 times more resistant to UV-C-254nm radiation compared to the R. pickettii type strain. All isolates showed moderate to high tolerance against at least seven different metal ions. They were tolerant to medium to high silver concentrations (0.5-4 mu M), which are higher than the ionic silver disinfectant concentrations measured regularly in the drinking water aboard the ISS. Furthermore, all isolates survived a 23-month exposure to 2 mu M AgNO3 in drinking water. These resistance properties are putatively encoded by their endogenous megaplasmids. This study demonstrated that extreme resistance is not required to withstand the disinfection and sterilization procedures implemented in the ISS and space industry. All isolates acquired moderate to high tolerance against several stressors and can grow in oligotrophic conditions, enabling them to persist in these environments. C1 [Mijnendonckx, K.; Provoost, A.; Leys, N.; Van Houdt, R.] Belgian Nucl Res Ctr SCK CEN, Microbiol Unit, B-2400 Mol, Belgium. [Mijnendonckx, K.; Mahillon, J.] Catholic Univ Louvain, Lab Food & Environm Microbiol, B-1348 Louvain, Belgium. [Ott, C. M.] NASA, Habitabil & Environm Factors Div, Johnson Space Ctr, Houston, TX USA. [Venkateswaran, K.] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA USA. [Van Houdt, R.] Belgian Nucl Res Ctr SCK CEN, Expert Grp Mol & Cellular Biol, Microbiol Unit, B-2400 Mol, Belgium. RP Van Houdt, R (reprint author), Belgian Nucl Res Ctr SCK CEN, Expert Grp Mol & Cellular Biol, Microbiol Unit, Boeretang 200, B-2400 Mol, Belgium. EM rob.van.houdt@sckcen.be RI Van Houdt, Rob/B-8599-2011 OI Van Houdt, Rob/0000-0002-7459-496X FU European Space Agency (ESA-PRODEX); Belgian Science Policy (Belspo) through the COMICS project [C90356]; COMICS project; SCK.CEN FX This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the COMICS project (C90356). Kristel Mijnendonckx is a Ph.D. student at the Laboratory of Food and Environmental Microbiology (Universite catholique de Louvain, Belgium) and at the Unit of Microbiology (SCK.CEN, Belgium). KM is financed through the COMICS project and an AWM Ph.D. grant from SCK.CEN. NR 77 TC 9 Z9 9 U1 3 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD FEB PY 2013 VL 65 IS 2 BP 347 EP 360 DI 10.1007/s00248-012-0139-2 PG 14 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 082BO UT WOS:000314366900008 PM 23212653 ER PT J AU Johnson, L Meyer, M Palaszewski, B Coote, D Goebel, D White, H AF Johnson, Les Meyer, Michael Palaszewski, Bryan Coote, David Goebel, Dan White, Harold TI Development priorities for in-space propulsion technologies SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 7th IAA Symposium on Realistic Near-Term Advanced Scientific Space Missions - Missions to the Outer Solar System and Beyond CY JUL 11-14, 2011 CL Aosta, ITALY SP Int Acad Astronaut (IAA) DE In-space propulsion; Chemical propulsion; Tether propulsion; Electric propulsion; Solar sail propulsion; Propulsion technology roadmap AB During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein. Published by Elsevier Ltd. C1 [Johnson, Les] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Meyer, Michael; Palaszewski, Bryan] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Coote, David] NASA, Stennis Space Ctr, MS 39529 USA. [Goebel, Dan] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [White, Harold] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Johnson, L (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM c.les.johnson@nasa.gov NR 16 TC 3 Z9 3 U1 4 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD FEB PY 2013 VL 82 IS 2 SI SI BP 148 EP 152 DI 10.1016/j.actaastro.2012.05.006 PG 5 WC Engineering, Aerospace SC Engineering GA 073UZ UT WOS:000313769900002 ER PT J AU Miernik, J Statham, G Fabisinski, L Maples, CD Adams, R Polsgrove, T Fincher, S Cassibry, J Cortez, R Turner, M Percy, T AF Miernik, J. Statham, G. Fabisinski, L. Maples, C. D. Adams, R. Polsgrove, T. Fincher, S. Cassibry, J. Cortez, R. Turner, M. Percy, T. TI Z-Pinch fusion-based nuclear propulsion SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 7th IAA Symposium on Realistic Near-Term Advanced Scientific Space Missions - Missions to the Outer Solar System and Beyond CY JUL 11-14, 2011 CL Aosta, ITALY SP Int Acad Astronaut (IAA) DE Z-pinch; Magneto-inertial; Fusion; Propulsion AB Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (I-sp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(-6) s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of I-sp over chemical propulsion is predicted. An I-sp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Adams, R.; Polsgrove, T.; Fincher, S.] NASA, MSFC, Washington, DC USA. [Cassibry, J.; Cortez, R.; Turner, M.] Univ Alabama Huntsville, Prop Res Ctr, Huntsville, AL USA. RP Miernik, J (reprint author), NASA, George C Marshall Space Flight Ctr, Adv Concepts Off, ED04, Huntsville, AL 35812 USA. EM janie.h.miernik@nasa.gov NR 7 TC 1 Z9 1 U1 2 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD FEB PY 2013 VL 82 IS 2 SI SI BP 173 EP 182 DI 10.1016/j.actaastro.2012.02.012 PG 10 WC Engineering, Aerospace SC Engineering GA 073UZ UT WOS:000313769900006 ER PT J AU Ackermann, M Ajello, M Asano, K Baldini, L Barbiellini, G Baring, MG Bastieri, D Bellazzini, R Blandford, RD Bonamente, E Borgland, AW Bottacini, E Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chaves, RCG Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Drlica-Wagner, A Favuzzi, C Fegan, SJ Focke, WB Franckowiak, A Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grove, JE Guiriec, S Hadasch, D Hanabata, Y Hayashida, M Hays, E Hughes, RE Jackson, MS Jogler, T Johannesson, G Johnson, AS Knodlseder, J Kocevski, D Kuss, M Lande, J Larsson, S Latronico, L Longo, F Loparco, F Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Mehault, J Meszaros, P Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Nymark, T Ohno, M Ohsugi, T Omodei, N Orienti, M Orlando, E Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Racusin, JL Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Romoli, C Roth, M Ryde, F Sanchez, DA Sgro, C Siskind, EJ Sonbas, E Spinelli, P Stamatikos, M Takahashi, H Tanaka, T Thayer, JG Thayer, JB Tibaldo, L Tinivella, M Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Winer, BL Wood, KS Yang, Z Gruber, D Bhat, PN Bissaldi, E Briggs, MS Burgess, JM Connaughton, V Foley, S Kippen, RM Kouveliotou, C McBreen, S McGlynn, S Paciesas, WS Pelassa, V Preece, R Rau, A van der Horst, AJ von Kienlin, A Kann, DA Filgas, R Klose, S Kruhler, T Fukui, A Sako, T Tristram, PJ Oates, SR Ukwatta, TN Littlejohns, O AF Ackermann, M. Ajello, M. Asano, K. Baldini, L. Barbiellini, G. Baring, M. G. Bastieri, D. Bellazzini, R. Blandford, R. D. Bonamente, E. Borgland, A. W. Bottacini, E. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chaves, R. C. G. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Favuzzi, C. Fegan, S. J. Focke, W. B. Franckowiak, A. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hanabata, Y. Hayashida, M. Hays, E. Hughes, R. E. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, A. S. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Larsson, S. Latronico, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Mehault, J. Meszaros, P. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Nymark, T. Ohno, M. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Racusin, J. L. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Romoli, C. Roth, M. Ryde, F. Sanchez, D. A. Sgro, C. Siskind, E. J. Sonbas, E. Spinelli, P. Stamatikos, M. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Tibaldo, L. Tinivella, M. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Winer, B. L. Wood, K. S. Yang, Z. Gruber, D. Bhat, P. N. Bissaldi, E. Briggs, M. S. Burgess, J. M. Connaughton, V. Foley, S. Kippen, R. M. Kouveliotou, C. McBreen, S. McGlynn, S. Paciesas, W. S. Pelassa, V. Preece, R. Rau, A. van der Horst, A. J. von Kienlin, A. Kann, D. A. Filgas, R. Klose, S. Kruhler, T. Fukui, A. Sako, T. Tristram, P. J. Oates, S. R. Ukwatta, T. N. Littlejohns, O. TI MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A: GeV EMISSION FROM ONSET TO AFTERGLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB110731A) ID GAMMA-RAY BURST; HIGH-ENERGY EMISSION; LARGE-AREA TELESCOPE; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; INTERNAL SHOCK MODEL; LIGHT CURVES; OPTICAL AFTERGLOWS; FERMI OBSERVATIONS; SPECTRAL CATALOG; PEAK LUMINOSITY AB We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Gamma similar to 500-550. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Blandford, R. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Blandford, R. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.; Romoli, C.; Tibaldo, L.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; D'Ammando, F.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.] IEEE CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chaves, R. C. G.; Grenier, I. A.; Naumann-Godo, M.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Chekhtman, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Larsson, S.; Moretti, E.; Nymark, T.; Ryde, F.; Yang, Z.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Fukazawa, Y.; Hanabata, Y.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Troja, E.; Ukwatta, T. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Greiner, J.; Gruber, D.; Foley, S.; McBreen, S.; Rau, A.; von Kienlin, A.; Kann, D. A.; Filgas, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Guiriec, S.; Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Paciesas, W. S.; Pelassa, V.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hughes, R. E.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Jackson, M. S.; Moretti, E.; Nymark, T.; Ryde, F.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Norris, J. P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA. [Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Razzano, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Razzano, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Reimer, A.; Reimer, O.; Bissaldi, E.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Bissaldi, E.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sanchez, D. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey. [Sonbas, E.] USRA, Columbia, MD 21044 USA. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-10133 Turin, Italy. [Foley, S.; McBreen, S.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kouveliotou, C.; van der Horst, A. J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [McGlynn, S.; Kann, D. A.] Tech Univ Munich, Exzellenzcluster Universe, D-85748 Garching, Germany. [Kann, D. A.; Klose, S.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Filgas, R.] Czech Tech Univ, Inst Expt & Appl Phys, Prague 12800, Czech Republic. [Kruhler, T.] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Fukui, A.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tristram, P. J.] Victoria Univ Wellington, SCPS, Wellington Nz, New Zealand. [Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Littlejohns, O.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM johan.bregeon@pi.infn.it; kocevski@slac.stanford.edu; srazzaque@ssd5.nrl.navy.mil; eleonora.troja@nasa.gov; dgruber@mpe.mpg.de RI Bissaldi, Elisabetta/K-7911-2016; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Orlando, E/R-5594-2016 OI Moretti, Elena/0000-0001-5477-9097; Gasparrini, Dario/0000-0002-5064-9495; Kruehler, Thomas/0000-0002-8682-2384; Baldini, Luca/0000-0002-9785-7726; Giordano, Francesco/0000-0002-8651-2394; Preece, Robert/0000-0003-1626-7335; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; McBreen, Sheila/0000-0002-1477-618X; Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; FU K. A. Wallenberg Foundation; UK Space Agency; DFG [HA 1850/28-1, Kl 766/16-1]; European Commission under the Marie Curie Intra-European Fellowship Programme; MPE; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; We gratefully acknowledge the contributions of dozens of members of the Swift team at OAB, PSU, UL, GSFC, ASDC, and MSSL and our subcontractors, who helped make these instruments possible. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. S.R.O. acknowledges support from the UK Space Agency.; Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to Professor G. Hasinger (DFG grant HA 1850/28-1). T. K. acknowledges support by the European Commission under the Marie Curie Intra-European Fellowship Programme. D. A. K. and S. K. acknowledge support by grant DFG Kl 766/16-1. D. A. K. is grateful for travel funding support through the MPE.; We acknowledge the MOA collaboration to permit target of opportunity observations for GRB afterglow. We also acknowledge the University of Canterbury for allowing MOA to use the B&C telescope. This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. NR 99 TC 28 Z9 28 U1 0 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 71 DI 10.1088/0004-637X/763/2/71 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800002 ER PT J AU Benson, BA de Haan, T Dudley, JP Reichardt, CL Aird, KA Andersson, K Armstrong, R Ashby, MLN Bautz, M Bayliss, M Bazin, G Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT Desai, S Dobbs, MA Foley, RJ Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Harrington, N High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Montroy, TE Murray, SS Natoli, T Padin, S Plagge, T Pryke, C Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Story, K Stubbs, CW Suhada, R van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Benson, B. A. de Haan, T. Dudley, J. P. Reichardt, C. L. Aird, K. A. Andersson, K. Armstrong, R. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. Dobbs, M. A. Foley, R. J. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Montroy, T. E. Murray, S. S. Natoli, T. Padin, S. Plagge, T. Pryke, C. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Suhada, R. van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg(2) OF THE SOUTH POLE TELESCOPE SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; large-scale structure of universe ID MASSIVE GALAXY CLUSTERS; MICROWAVE BACKGROUND ANISOTROPIES; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING MASSES; GREATER-THAN 1; SCALING RELATIONS; OBSERVED GROWTH; POWER SPECTRUM; STAR-FORMATION; DARK ENERGY AB We usemeasurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg(2) of the 2500 deg(2) SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat Lambda CDM cosmological model, we find the SPT cluster sample constrains sigma(8)(Omega(m)/0.25)(0.30) = 0.785 +/- 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains sigma(8) = 0.795 +/- 0.016 and Omega(m) = 0.255 +/- 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the Lambda CDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Sigma m(nu)), the effective number of relativistic species (N-eff), and a primordial non-Gaussianity (f(NL)). We find that adding the SPT cluster data significantly improves the constraints on w and Sigma m(nu) beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = -0.973 +/- 0.063 and the sum of neutrino masses Sigma m(nu) < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a Lambda CDM model with a free N-eff and Sigma m(nu), we measure N-eff = 3.91 +/- 0.42 and constrain Sigma m(nu) < 0.63 eV at 95% confidence. We also use the SPT cluster sample to constrain f(NL) = -220 +/- 317, consistent with zero primordial non-Gaussianity. Finally, we discuss the current systematic limitations due to the cluster mass calibration, and future improvements for the recently completed 2500 deg(2) SPT-SZ survey. The survey has detected similar to 500 clusters with a median redshift of similar to 0.5 and a median mass of similar to 2.3 x 10(14) M-circle dot h(-1) and, when combined with an improved cluster mass calibration and existing external cosmological data sets will significantly improve constraints on w. C1 [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [de Haan, T.; Dudley, J. P.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; van Engelen, A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Reichardt, C. L.; George, E. M.; Harrington, N.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Andersson, K.; Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Suhada, R.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Andersson, K.; Bautz, M.; McDonald, M.] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Ashby, M. L. N.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Suhada, R.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Marrone, D. P.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] PUC, Dept Astron & Astrofs, Santiago 22, Chile. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Dept Space Sci, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Marrone, D. P.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Benson, BA (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM bbenson@kicp.uchicago.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA [12800071, 12800088, 13800883, NAS8-03060, NAS 8-03060]; Chandra X-ray Observatory Center; Blanco 4 m at Cerro Tololo Interamerican Observatories [2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598]; VLT programs [086.A-0741, 286.A-5021]; Gemini program [GS-2009B-Q-16]; NASA Office of Space Science; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA; Excellence Cluster Universe; DFG [TR33]; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution; Brinson Foundation; JPL/Caltech FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile. Support for X-ray analysis was provided by NASA through Chandra Award Numbers 12800071, 12800088, and 13800883 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Optical imaging data from the Blanco 4 m at Cerro Tololo Interamerican Observatories (programs 2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598) and spectroscopic observations from VLT programs 086.A-0741 and 286.A-5021 and Gemini program GS-2009B-Q-16 were included in this work. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. R.J.F. is supported by a Clay Fellowship. B.A.B. is supported by a KICP Fellowship, M.B. acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M.D. acknowledges support from an Alfred P. Sloan Research Fellowship, W.F. and C.J. acknowledge support from the Smithsonian Institution, and B.S. acknowledges support from the Brinson Foundation. NR 98 TC 132 Z9 132 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 147 DI 10.1088/0004-637X/763/2/147 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800078 ER PT J AU Desjardins, TD Gallagher, SC Tzanavaris, P Mulchaey, JS Brandt, WN Charlton, JC Garmire, GP Gronwall, C Hornschemeier, AE Johnson, KE Konstantopoulos, IS Zabludoff, AI AF Desjardins, Tyler D. Gallagher, Sarah C. Tzanavaris, Panayiotis Mulchaey, John S. Brandt, William N. Charlton, Jane C. Garmire, Gordon P. Gronwall, Caryl Hornschemeier, Ann E. Johnson, Kelsey E. Konstantopoulos, Iraklis S. Zabludoff, Ann I. TI INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: groups: general; X-rays: galaxies ID LARGE-SCALE STRUCTURE; STEPHANS QUINTET; STAR-FORMATION; NEUTRAL HYDROGEN; POOR GROUPS; OPTICAL-PROPERTIES; ASTRONOMICAL DATA; REDSHIFT SURVEY; DWARF GALAXIES; CLUSTER SURVEY AB Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L-X-T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L-X-sigma relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L-X increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L-X of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62. C1 [Desjardins, Tyler D.; Gallagher, Sarah C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Tzanavaris, Panayiotis; Hornschemeier, Ann E.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Mulchaey, John S.] Carnegie Observ, Pasadena, CA 91101 USA. [Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Konstantopoulos, Iraklis S.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Johnson, Kelsey E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Zabludoff, Ann I.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Brandt, William N.; Gronwall, Caryl] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Desjardins, TD (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM tdesjar@uwo.ca RI Brandt, William/N-2844-2015; OI Brandt, William/0000-0002-0167-2453; Konstantopoulos, Iraklis/0000-0003-2177-0146 FU Natural Science and Engineering Research Council of Canada; Ontario Early Researcher Award Program; ACIS Instrument Team [SAO SV4-74018]; NASA ADP [NNX10AC99G]; NSF [AST-1108604]; Eberly College of Science; Office of the Senior Vice President for Research at the Pennsylvania State University; Chandra Award [GO8-9124B]; Chandra X-Ray Observatory Center; NASA [NAS8-03060]; National Science Foundation [0908984] FX T.D.D. and S. C. G. thank the Natural Science and Engineering Research Council of Canada and the Ontario Early Researcher Award Program for support. This work was partially supported by the ACIS Instrument Team contract SAO SV4-74018 (PI: G. Garmire). W.N.B. thanks NASA ADP grant NNX10AC99G and NSF grant AST-1108604 for support. The authors are grateful to the anonymous referee for providing thoughtful feedback that improved the manuscript. T. D. D. also thanks Tesla Jeltema, Allison R. Hill, and Alexander DeSouza for their helpful comments. The Institute for Gravitation and the Cosmos is supported by the Eberly College of Science and the Office of the Senior Vice President for Research at the Pennsylvania State University. J.C.C., I. S. K., and C. G. acknowledge funding that was provided through Chandra Award No. GO8-9124B issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory under NASA contract NAS8-03060, and by the National Science Foundation under award 0908984. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 104 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 121 DI 10.1088/0004-637X/763/2/121 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800052 ER PT J AU France, K Froning, CS Linsky, JL Roberge, A Stocke, JT Tian, F Bushinsky, R Desert, JM Mauas, P Vieytes, M Walkowicz, LM AF France, Kevin Froning, Cynthia S. Linsky, Jeffrey L. Roberge, Aki Stocke, John T. Tian, Feng Bushinsky, Rachel Desert, Jean-Michel Mauas, Pablo Vieytes, Mariela Walkowicz, Lucianne M. TI THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: activity; stars: individual (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, GJ 1214); stars: low-mass; ultraviolet: stars ID HUBBLE-SPACE-TELESCOPE; LOCAL INTERSTELLAR-MEDIUM; DIGITAL SKY SURVEY; GJ 436 SYSTEM; NEARBY STAR; CA-II; CHROMOSPHERIC ACTIVITY; TRANSITING EXOPLANETS; SPECTROSCOPIC SURVEY; MAGNETIC ACTIVITY AB The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Ly alpha emission lines are reconstructed, and we find that the Ly alpha line fluxes comprise similar to 37%-75% of the total 1150-3100 angstrom flux from most M dwarfs; greater than or similar to 10(3) times the solar value. We develop an empirical scaling relation between Ly alpha and Mgii emission, to be used when interstellar Hi attenuation precludes the direct observation of Ly alpha. The intrinsic unreddened flux ratio is F(Ly alpha)/F(Mg II) = 10 +/- 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O-2 and O-3, is shown to be similar to 0.5-3 for all M dwarfs in our sample, >10(3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10(2)-10(3) s timescales. This effect should be taken into account in future UV transiting planet studies, including searches for O-3 on Earth-like planets. Finally, we observe relatively bright H-2 fluorescent emission from four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832). Additional modeling work is needed to differentiate between a stellar photospheric or possible exoplanetary origin for the hot (T(H-2) approximate to 2000-4000 K) molecular gas observed in these objects. C1 [France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Linsky, Jeffrey L.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Linsky, Jeffrey L.] NIST, Boulder, CO 80309 USA. [Roberge, Aki] NASA, Exoplanets & Stellar Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tian, Feng] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Desert, Jean-Michel] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Mauas, Pablo; Vieytes, Mariela] Inst Astron Espacio CONICET UBA, RA-1428 Buenos Aires, DF, Argentina. [Walkowicz, Lucianne M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP France, K (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. EM kevin.france@colorado.edu RI Roberge, Aki/D-2782-2012; Tian, Feng/C-1344-2015 OI Roberge, Aki/0000-0002-2989-3725; Tian, Feng/0000-0002-9607-560X FU HST Guest Observing program [12464]; COS Science Team Guaranteed Time programs, Brass Elephant [12034, 12035]; NASA [HST-GO-12464.01, NNX08AC146, NAS5-98043] FX K.F. thanks Tom Ayres for technical assistance with STIS echelle spectra and enjoyable discussions about cool star atmospheres. The quality and completeness of the manuscript was improved by the thoughtful comments of an anonymous referee. The data presented here were obtained as part of the HST Guest Observing program 12464 and the COS Science Team Guaranteed Time programs 12034 and 12035, Brass Elephant. This work was supported by NASA grants HST-GO-12464.01, NNX08AC146, and NAS5-98043 to the University of Colorado at Boulder. NR 103 TC 74 Z9 74 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 149 DI 10.1088/0004-637X/763/2/149 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800080 ER PT J AU Gould, A Yee, JC Bond, IA Udalski, A Han, C Jorgensen, UG Greenhill, J Tsapras, Y Pinsonneault, MH Bensby, T Allen, W Almeida, LA Bos, M Christie, GW DePoy, DL Dong, SB Gaudi, BS Hung, LW Jablonski, F Lee, CU McCormick, J Moorhouse, D Munoz, JA Natusch, T Nola, M Pogge, RW Skowron, J Thornley, G Abe, F Bennett, DP Botzler, CS Chote, P Freeman, M Fukui, A Furusawa, K Harris, P Itow, Y Ling, CH Masuda, K Matsubara, Y Miyake, N Ohnishi, K Rattenbury, NJ Saito, T Sullivan, DJ Sumi, T Suzuki, D Sweatman, WL Tristram, PJ Wada, K Yock, PCM Szymanski, MK Soszynski, I Kubiak, M Poleski, R Ulaczyk, K Pietrzynski, G Wyrzykowski, L Alsubai, KA Bozza, V Browne, P Burgdorf, MJ Novati, SC Dodds, P Dominik, M Finet, F Gerner, T Hardis, S Harpsoe, K Hessman, FV Hinse, TC Hundertmark, M Kains, N Kerins, E Liebig, C Mancini, L Mathiasen, M Penny, MT Proft, S Rahvar, S Ricci, D Sahu, KC Scarpetta, G Schafer, S Schonebeck, F Snodgrass, C Southworth, J Surdej, J Wambsganss, J Street, RA Horne, K Bramich, DM Steele, IA Albrow, MD Bachelet, E Batista, V Beatty, TG Beaulieu, JP Bennett, CS Bowens-Rubin, R Brillant, S Caldwell, JAR Cassan, A Cole, AA Corrales, E Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Henderson, CB Kubas, D Marquette, JB Martin, R Menzies, JW Shappee, B Williams, A van Saders, J Zub, M AF Gould, A. Yee, J. C. Bond, I. A. Udalski, A. Han, C. Jorgensen, U. G. Greenhill, J. Tsapras, Y. Pinsonneault, M. H. Bensby, T. Allen, W. Almeida, L. A. Bos, M. Christie, G. W. DePoy, D. L. Dong, Subo Gaudi, B. S. Hung, L-W Jablonski, F. Lee, C-U McCormick, J. Moorhouse, D. Munoz, J. A. Natusch, T. Nola, M. Pogge, R. W. Skowron, J. Thornley, G. Abe, F. Bennett, D. P. Botzler, C. S. Chote, P. Freeman, M. Fukui, A. Furusawa, K. Harris, P. Itow, Y. Ling, C. H. Masuda, K. Matsubara, Y. Miyake, N. Ohnishi, K. Rattenbury, N. J. Saito, To. Sullivan, D. J. Sumi, T. Suzuki, D. Sweatman, W. L. Tristram, P. J. Wada, K. Yock, P. C. M. Szymanski, M. K. Soszynski, I. Kubiak, M. Poleski, R. Ulaczyk, K. Pietrzynski, G. Wyrzykowski, L. Alsubai, K. A. Bozza, V. Browne, P. Burgdorf, M. J. Novati, S. Calchi Dodds, P. Dominik, M. Finet, F. Gerner, T. Hardis, S. Harpsoe, K. Hessman, F. V. Hinse, T. C. Hundertmark, M. Kains, N. Kerins, E. Liebig, C. Mancini, L. Mathiasen, M. Penny, M. T. Proft, S. Rahvar, S. Ricci, D. Sahu, K. C. Scarpetta, G. Schaefer, S. Schoenebeck, F. Snodgrass, C. Southworth, J. Surdej, J. Wambsganss, J. Street, R. A. Horne, K. Bramich, D. M. Steele, I. A. Albrow, M. D. Bachelet, E. Batista, V. Beatty, T. G. Beaulieu, J-P Bennett, C. S. Bowens-Rubin, R. Brillant, S. Caldwell, J. A. R. Cassan, A. Cole, A. A. Corrales, E. Coutures, C. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Henderson, C. B. Kubas, D. Marquette, J-B Martin, R. Menzies, J. W. Shappee, B. Williams, A. van Saders, J. Zub, M. CA Fun Collaboration MOA Collaboration OGLE Collaboration MiNDSTEp Consortium RoboNet Collaboration PLANET Collaboration TI MOA-2010-BLG-523: "FAILED PLANET" = RS CVn STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems; starspots; stars: variables: general ID GRAVITATIONAL LENSING EXPERIMENT; GALACTIC BULGE; MICROLENSING EVENTS; HIGH-MAGNIFICATION; VARIABLE-STARS; DWARF STARS; SYSTEMS; PHOTOMETRY; ROTATION; CATALOG AB The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A(max) similar to 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge. C1 [Gould, A.; Yee, J. C.; Pinsonneault, M. H.; Dong, Subo; Gaudi, B. S.; Hung, L-W; Pogge, R. W.; Skowron, J.; Penny, M. T.; Batista, V.; Beatty, T. G.; Henderson, C. B.; Shappee, B.; van Saders, J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bond, I. A.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, Auckland 1330, New Zealand. [Udalski, A.; Szymanski, M. K.; Soszynski, I.; Kubiak, M.; Poleski, R.; Ulaczyk, K.; Pietrzynski, G.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Han, C.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Jorgensen, U. G.; Hardis, S.; Harpsoe, K.; Hinse, T. C.; Mathiasen, M.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Jorgensen, U. G.; Harpsoe, K.] Geol Museum, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Greenhill, J.; Cole, A. A.; Dieters, S.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Tsapras, Y.; Street, R. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Bensby, T.] Lund Observ, Dept Astron & Theoret Phys, SE-22100 Lund, Sweden. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Almeida, L. A.; Jablonski, F.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Bos, M.] Molehill Astron Observ, N Shore, New Zealand. [Christie, G. W.; Natusch, T.] Auckland Observ, Auckland, New Zealand. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Dong, Subo] Inst Adv Study, Princeton, NJ 08540 USA. [Lee, C-U; Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [McCormick, J.] Farm Cove Observ, Ctr Backyard Astrophys, Auckland, New Zealand. [Moorhouse, D.; Nola, M.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Munoz, J. A.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Natusch, T.] AUT Univ, Inst Radiophys & Space Res, Auckland, New Zealand. [Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Miyake, N.; Sumi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Botzler, C. S.; Freeman, M.; Rattenbury, N. J.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand. [Chote, P.; Harris, P.; Sullivan, D. J.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington, New Zealand. [Fukui, A.] Natl Astron Observ, Okayama Astrophys Observ, Asakuchi, Okayama 7190232, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sumi, T.; Suzuki, D.; Wada, K.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Tristram, P. J.] Mt John Univ Observ, Lake Tekapo 8770, New Zealand. [Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Alsubai, K. A.] Qatar Fdn, Doha, Qatar. [Bozza, V.; Mancini, L.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, Italy. [Bozza, V.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Browne, P.; Dodds, P.; Dominik, M.; Hundertmark, M.; Kains, N.; Liebig, C.; Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Burgdorf, M. J.] HE Space Operat, Deutsch SOFIA Inst, D-28199 Bremen, Germany. [Burgdorf, M. J.] NASA, SOFIA Sci Ctr, Ames Res Ctr, Moffett Field, CA 94035 USA. [Novati, S. Calchi; Scarpetta, G.] IIASS, Vietri Sul Mare, SA, Italy. [Finet, F.; Ricci, D.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Gerner, T.; Proft, S.; Schoenebeck, F.; Wambsganss, J.; Zub, M.] Heidelberg Univ, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Hessman, F. V.; Hundertmark, M.; Schaefer, S.; Surdej, J.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Kains, N.; Bramich, D. M.] ESO Headquarters, D-85748 Garching, Germany. [Kerins, E.; Penny, M. T.; Sahu, K. C.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mancini, L.] Max Planck Inst Astron, D-619117 Heidelberg, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Snodgrass, C.; Brillant, S.; Kubas, D.] European So Observ, Santiago 19, Chile. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Bachelet, E.; Fouque, P.] Univ Toulouse, CNRS, IRAP, F-31400 Toulouse, France. [Batista, V.; Beaulieu, J-P; Cassan, A.; Corrales, E.; Coutures, C.; Kubas, D.; Marquette, J-B] Inst Astrophys Paris, UPMC CNRS, UMR 7095, F-75014 Paris, France. [Bennett, C. S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Bowens-Rubin, R.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Gould, A (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. RI Greenhill, John/C-8367-2013; Almeida, L./G-7188-2012; Williams, Andrew/K-2931-2013; Skowron, Jan/M-5186-2014; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Ricci, Davide/0000-0002-9790-0552; Penny, Matthew/0000-0001-7506-5640; Snodgrass, Colin/0000-0001-9328-2905; Williams, Andrew/0000-0001-9080-0105; Skowron, Jan/0000-0002-2335-1730; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855 FU European Southern Observatory [85.B-0399(I)]; NSF [AST-1103471]; SNSF Graduate Research Fellowship [2009068160]; NASA [NNX12AB99G]; Creative Research Initiative Program of National Research Foundation of Korea [2009-0081561]; Swedish Research Council [621-2009-3911]; NASA through the Sagan Fellowship Program; Korea Research Council for Science and Technology (KRCF) via the KRCF Young Scientist Research Fellowship Program; National Science Foundation Graduate Research Fellowships; JSPS [20340052, 22403003]; European Research Council under the European Community [246678]; German Research Foundation (DFG); Communaute francaise Belgique Actions de recherche concertees-Academie universitaire Wallonie-Europe; European Union [268421]; Danish Natural Science Foundation (FNU); Qatar National Research Fund (QNRF) [NPRP-09-476-1-078]; [JSPS23340044] FX Based on observations made with the European Southern Observatory telescopes, Program ID 85.B-0399(I).; A.G. and J.C.Y. acknowledge support from NSF AST-1103471. Work by J.C.Y. was supported by an SNSF Graduate Research Fellowship under grant No. 2009068160. A. G., B. S. G., L.-W.H., and R. W. P. acknowledge support from NASA grant NNX12AB99G. Work by C. Han was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. T. B. was funded by grant No. 621-2009-3911 from The Swedish Research Council. Work by S. Dong was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. T. C. H. acknowledges support from the Korea Research Council for Science and Technology (KRCF) via the KRCF Young Scientist Research Fellowship Program. Work by B. Shappee and J. van Saders was supported by National Science Foundation Graduate Research Fellowships. The MOA project acknowledges grants 20340052 and 22403003 from JSPS. T. Sumi acknowledges support from JSPS23340044. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 246678 to A. U. M. H. acknowledges support by the German Research Foundation (DFG). D. R. (boursier FRIA), F. F. (boursier ARC), and J. Surdej acknowledge support from the Communaute francaise Belgique Actions de recherche concertees-Academie universitaire Wallonie-Europe. C. S. received funding from the European Union Seventh Framework Programme (FPT/2007-2013) under grant agreement 268421. The Danish 1.54 m telescope is operated based on a grant from the Danish Natural Science Foundation (FNU). K. A., D. M. B., M. D., K. H., M. H., C. L., C. S., R. A. S., and Y.T. are thankful to the Qatar National Research Fund (QNRF) by grant NPRP-09-476-1-078. NR 48 TC 10 Z9 10 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 141 DI 10.1088/0004-637X/763/2/141 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800072 ER PT J AU Katsuda, S Long, KS Petre, R Reynolds, SP Williams, BJ Winkler, PF AF Katsuda, Satoru Long, Knox S. Petre, Robert Reynolds, Stephen P. Williams, Brian J. Winkler, P. Frank TI X-RAY PROPER MOTIONS AND SHOCK SPEEDS ALONG THE NORTHWEST RIM OF SN 1006 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (SN 1006); ISM: kinematics and dynamics; X-rays: individual (SN 1006); X-rays: ISM ID TYCHOS SUPERNOVA REMNANT; BALMER-DOMINATED SHOCKS; AZIMUTHAL VARIATIONS; OPTICAL REMNANT; HIGH-ENERGY; SN-1006; ACCELERATION; EMISSION; EXPANSION; SPECTRUM AB We report the results of an X-ray proper-motion measurement for the NW rim of SN 1006, carried out by comparing Chandra observations from 2001 to 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN 1006 with significant optical emission: a thin, Balmer-dominated filament. For most of the NW rim, the proper motion is approximate to 0.'' 30 yr(-1), essentially the same as has been measured from the H alpha filament. Isolated regions of the NW limb are dominated by nonthermal emission, and here the proper motion is much higher, 0.'' 49 yr(-1), close to the value measured in X-rays along the much brighter NE limb, where the X-rays are overwhelmingly nonthermal. At the 2.2 kpc distance to SN 1006, the proper motions imply shock velocities of similar to 3000 km s(-1) and similar to 5000 km s(-1) in the thermal and nonthermal regions, respectively. A lower velocity behind the H alpha filament is consistent with the picture that SN 1006 is encountering denser gas in the NW, as is also suggested by its overall morphology. In the thermally dominated portion of the X-ray shell, we also see an offset in the radial profiles at different energies; the 0.5-0.6 keV peak dominated by O VII is closer to the shock front than that of the 0.8-3 keV emission-due to the longer times for heavier elements to reach ionization states where they produce strong X-ray emission. C1 [Katsuda, Satoru] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Long, Knox S.; Williams, Brian J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. RP Katsuda, S (reprint author), RIKEN, Inst Phys & Chem Res, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM katsuda@crab.riken.jp; long@stsci.edu; reynolds@ncsu.edu; brian.j.williams@nasa.gov; winkler@middlebury.edu FU Smithsonian Astrophysical Observatory [NAS83060]; National Aeronautics and Space Administration by the Chandra X-Ray Center [G06-7073A]; National Aeronautics Space Administration [NAS8-03060]; Special Postdoctoral Researchers Program in RIKEN; National Science Foundation [AST-0908566]; [GO1-12115] FX Based on observations made with NASA's Chandra X-Ray Observatory, which is operated by Smithsonian Astrophysical Observatory under contract NAS83060, and the data were obtained through program GO1-12115.; We acknowledge the conscientious support from members of the mission-planning staff at the Chandra X-Ray Center in planning our observations, as well as valuable comments on this paper by Una Hwang. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number G06-7073A issued by the Chandra X-Ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. S. K. is supported by the Special Postdoctoral Researchers Program in RIKEN, and P. F. W. acknowledges additional support from the National Science Foundation through grant AST-0908566. NR 34 TC 13 Z9 13 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 85 DI 10.1088/0004-637X/763/2/85 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800016 ER PT J AU Kong, DL Zhang, KK Schubert, G Anderson, J AF Kong, Dali Zhang, Keke Schubert, Gerald Anderson, John TI A THREE-DIMENSIONAL NUMERICAL SOLUTION FOR THE SHAPE OF A ROTATIONALLY DISTORTED POLYTROPE OF INDEX UNITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitation; planets and satellites: individual (Jupiter); planets and satellites: interiors; stars: individual (alpha Eridani) ID DEEP ZONAL FLOWS; JUPITER; SATURN; HYDROGEN AB We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star (alpha Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybrid inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J(2) of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For a Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening. C1 [Kong, Dali; Zhang, Keke] Univ Exeter, Dept Math Sci, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. [Schubert, Gerald] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Anderson, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kong, DL (reprint author), Univ Exeter, Dept Math Sci, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. EM D.Kong@exeter.ac.uk; K.Zhang@exeter.ac.uk; jdandy@earthlink.net FU Exeter University Studentship; UK NERC; STFC; Leverhulme grant; National Science Foundation [NSF AST-0909206] FX D.K. is supported by an Exeter University Studentship, K.Z. is supported by UK NERC, STFC, and Leverhulme grants, and G.S. is supported by the National Science Foundation under grant NSF AST-0909206. NR 23 TC 7 Z9 9 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 116 DI 10.1088/0004-637X/763/2/116 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800047 ER PT J AU Kuiper, R Yorke, HW AF Kuiper, Rolf Yorke, Harold W. TI ON THE EFFECTS OF OPTICALLY THICK GAS (DISKS) AROUND MASSIVE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; dust, extinction; ISM: molecules; methods: numerical; stars: formation; stars: winds, outflows ID ACCRETION; DUST; OPACITIES; EVOLUTION AB Numerical simulations have shown that the often cited radiation pressure barrier to accretion onto massive stars can be circumvented, when the radiation field is highly anisotropic in the presence of a circumstellar accretion disk with high optical depth. Here, these studies of the so-called flashlight effect are expanded by including the opacity of the innermost dust-free but potentially optically thick gas regions around forming massive stars. In addition to frequency-dependent opacities for the dust grains, we use temperature-and density-dependent Planck and Rosseland mean opacities for the gas. The simulations show that the innermost dust-free parts of the accretion disks are optically thick to the stellar radiation over a substantial fraction of the solid angle above and below the disk's midplane. The temperature in the shielded disk region decreases faster with radius than in a comparison simulation with a lower constant gas opacity, and the dust sublimation front is shifted to smaller radii. The shielding by the dust-free gas in the inner disk thus contributes to an enhanced flashlight effect, which ultimately results in a smaller opening angle of the radiation pressure driven outflow and in a much longer timescale of sustained feeding of the circumstellar disk by the molecular cloud core. We conclude that it is necessary to properly account for the opacity of the inner dust-free disk regions around forming massive stars in order to correctly assess the effectiveness of the flashlight effect, the opening angle of radiation pressure driven outflows, and the lifetime and morphological evolution of the accretion disk. C1 [Kuiper, Rolf; Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kuiper, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Rolf.Kuiper@jpl.nasa.gov; Harold.W.Yorke@jpl.nasa.gov FU German Academy of Science Leopoldina within the Leopoldina Fellowship programme [LPDS 2011-5]; National Aeronautics and Space Administration (NASA) FX This research project was financially supported by the German Academy of Science Leopoldina within the Leopoldina Fellowship programme, grant No. LPDS 2011-5. R. K. thanks Dmitry Semenov and Mykola Malygin from the Max Planck Institute for Astronomy in Heidelberg for fruitful discussions on theory and numerical computation of frequency-dependent and frequency-averaged gas opacities. Our work has also profited from critical discussions with Neal Turner and Takashi Hosokawa. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). NR 23 TC 11 Z9 11 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 104 DI 10.1088/0004-637X/763/2/104 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800035 ER PT J AU Leggett, SK Morley, CV Marley, MS Saumon, D Fortney, JJ Visscher, C AF Leggett, S. K. Morley, Caroline V. Marley, M. S. Saumon, D. Fortney, Jonathan J. Visscher, Channon TI A COMPARISON OF NEAR-INFRARED PHOTOMETRY AND SPECTRA FOR Y DWARFS WITH A NEW GENERATION OF COOL CLOUDY MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; stars: atmospheres ID LARGE-AREA SURVEY; SURVEY-EXPLORER WISE; DIGITAL SKY SURVEY; COLD BROWN DWARFS; T-DWARFS; SPACE-TELESCOPE; L/T TRANSITION; BINARY-SYSTEM; ULTRACOOL DWARFS; CARBON-MONOXIDE AB We present YJHK photometry, or a subset, for the six Y dwarfs discovered in Wide-field Infrared Survey Explorer (WISE) data by Cushing et al. The data were obtained using the Near-Infrared Imager on the Gemini North telescope; YJHK were obtained for WISEP J041022.71+150248.5, WISEP J173835.52+273258.9, and WISEPC J205628.90+145953.3; YJH for WISEPC J140518.40+553421.5 and WISEP J154151.65225025.2; and YJK for WISEP J182831.08+265037.8. We also present a far-red spectrum obtained using GMOS-North for WISEPC J205628.90+145953.3. We compare the data to Morley et al. models, which include cloud decks of sulfide and chloride condensates. We find that the models with these previously neglected clouds can reproduce the energy distributions of T9 to Y0 dwarfs quite well, other than near 5 mu m where the models are too bright. This is thought to be because the models do not include departures from chemical equilibrium caused by vertical mixing, which would enhance the abundance of CO and CO2, decreasing the flux at 5 mu m. Vertical mixing also decreases the abundance of NH3, which would otherwise have strong absorption features at 1.03 mu m and 1.52 mu m that are not seen in the Y0 WISEPC J205628.90+145953.3. We find that the five Y0 to Y0.5 dwarfs have 300 less than or similar to T-eff K less than or similar to 450, 4.0 less than or similar to log g less than or similar to 4.5, and f(sed) approximate to 3. These temperatures and gravities imply a mass range of 5-15 M-Jupiter and ages around 5 Gyr. We suggest that WISEP J182831.08+265037.8 is a binary system, as this better explains its luminosity and color. We find that the data can be made consistent with observed trends, and generally consistent with the models, if the system is composed of a T-eff approximate to 325 K and log g less than or similar to 4.5 primary, and a T-eff approximate to 300 K and log g greater than or similar to 4.0 secondary, corresponding to masses of 10 and 7 M-Jupiter and an age around 2 Gyr. If our deconvolution is correct, then the T-eff approximate to 300 K cloud-free model fluxes at K and W 2 are too faint by 0.5-1.0 mag. We will address this discrepancy in our next generation of models, which will incorporate water clouds and mixing. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Morley, Caroline V.; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Visscher, Channon] SW Res Inst, Boulder, CO 80302 USA. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Fortney, Jonathan/0000-0002-9843-4354; Marley, Mark/0000-0002-5251-2943; Leggett, Sandy/0000-0002-3681-2989 FU NASA [NNH11AQ54I]; Gemini Observatory; National Aeronautics and Space Administration FX D.S. is supported by NASA Astrophysics Theory grant NNH11AQ54I. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). S.K.L.'s research is supported by Gemini Observatory. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 86 TC 38 Z9 38 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 130 DI 10.1088/0004-637X/763/2/130 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800061 ER PT J AU Matteini, L Landi, S Velli, M Matthaeus, WH AF Matteini, L. Landi, S. Velli, M. Matthaeus, W. H. TI PROTON TEMPERATURE ANISOTROPY AND MAGNETIC RECONNECTION IN THE SOLAR WIND: EFFECTS OF KINETIC INSTABILITIES ON CURRENT SHEET STABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE instabilities; magnetic reconnection; methods: numerical; plasmas; solar wind ID VELOCITY DISTRIBUTION FUNCTION; TEARING INSTABILITY; NEUTRAL SHEET; PLASMA INSTABILITIES; HYBRID SIMULATIONS; HOSE INSTABILITY; FIELD; MECHANISM; DYNAMICS; 1-AU AB We investigate the role of kinetic instabilities driven by a proton anisotropy on the onset of magnetic reconnection by means of two-dimensional hybrid simulations. The collisionless tearing of a current sheet is studied in the presence of a proton temperature anisotropy in the surrounding plasma. Our results confirm that anisotropic protons within the current sheet region can significantly enhance/stabilize the tearing instability of the current. Moreover, fluctuations associated with linear instabilities excited by large proton temperature anisotropies can significantly influence the stability of the plasma and perturb the current sheets, triggering the tearing instability. We find that such a complex coupling leads to a faster tearing evolution in the T-perpendicular to > T-parallel to regime when an ion-cyclotron instability is generated by the anisotropic proton distribution functions. On the contrary, in the presence of the opposite anisotropy, fire-hose fluctuations excited by the unstable background protons with T-parallel to < T-perpendicular to are not able to efficiently destabilize current sheets, which remain stable for a long time after fire-hose saturation. We discuss possible influences of this novel coupling on the solar wind and heliospheric plasma dynamics. C1 [Matteini, L.; Landi, S.; Velli, M.] Univ Florence, Dipartimento Fis & Astron, I-50125 Florence, Italy. [Matteini, L.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Matthaeus, W. H.] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. RP Matteini, L (reprint author), Univ Florence, Dipartimento Fis & Astron, Largo E Fermi 2, I-50125 Florence, Italy. RI Landi, Simone/G-7282-2015 OI Landi, Simone/0000-0002-1322-8712 FU European Commission's Seventh Framework Programme (FP7) under the SHOCK [284515]; US NSF SHINE program; Science and Technology Facilities Council (STFC) FX The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SHOCK (project number 284515), from the US NSF SHINE program, and from the Science and Technology Facilities Council (STFC). It was also carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 42 TC 15 Z9 15 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 142 DI 10.1088/0004-637X/763/2/142 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800073 ER PT J AU Mennesson, B Absil, O Lebreton, J Augereau, JC Serabyn, E Colavita, MM Millan-Gabet, R Liu, W Hinz, P Thebault, P AF Mennesson, B. Absil, O. Lebreton, J. Augereau, J. -C. Serabyn, E. Colavita, M. M. Millan-Gabet, R. Liu, W. Hinz, P. Thebault, P. TI AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. II. KECK NULLER MID-INFRARED OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; instrumentation: interferometers; stars: individual (Fomalhaut) ID STELLAR ANGULAR DIAMETERS; VEGA-LIKE STARS; NEARBY STARS; DUST; PLANET; IMAGES; MODEL; BELT AB We report on high-contrast mid-infrared observations of Fomalhaut obtained with the Keck Interferometer Nuller (KIN) showing a small resolved excess over the level expected from the stellar photosphere. The measured null excess has a mean value of 0.35% +/- 0.10% between 8 and 11 mu m and increases from 8 to 13 mu m. Given the small field of view of the instrument, the source of this marginal excess must be contained within 2 AU of Fomalhaut. This result is reminiscent of previous VLTI K-band (similar or equal to 2 mu m) observations, which implied the presence of a similar to 0.88% excess, and argued that thermal emission from hot dusty grains located within 6 AU from Fomalhaut was the most plausible explanation. Using a parametric two-dimensional radiative transfer code and a Bayesian analysis, we examine different dust disk structures to reproduce both the near- and mid-infrared data simultaneously. While not a definitive explanation of the hot excess of Fomalhaut, our model suggests that the most likely inner few AU disk geometry consists of a two-component structure, with two different and spatially distinct grain populations. The 2-11 mu m data are consistent with an inner hot ring of very small (similar or equal to 10-300 nm) carbon-rich grains concentrating around 0.1 AU. The second dust population-inferred from the KIN data at longer mid-infrared wavelengths-consists of larger grains (size of a few microns to a few tens of microns) located further out in a colder region where regular astronomical silicates could survive, with an inner edge around 0.4 AU-1 AU. From a dynamical point of view, the presence of the inner concentration of submicron-sized grains is surprising, as such grains should be expelled from the inner planetary system by radiation pressure within only a few years. This could either point to some inordinate replenishment rates (e.g., many grazing comets coming from an outer reservoir) or to the existence of some braking mechanism preventing the grains from moving out. C1 [Mennesson, B.; Serabyn, E.; Colavita, M. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Absil, O.] Univ Liege, Dept Astrophys Geophys & Oceanog, B-4000 Sart Tilman Par Liege, Belgium. [Lebreton, J.; Augereau, J. -C.] CNRS, IPAG, UMR 5274, F-38041 Grenoble, France. [Lebreton, J.; Augereau, J. -C.] Univ Grenoble 1, F-38041 Grenoble, France. [Millan-Gabet, R.] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Liu, W.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Hinz, P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Thebault, P.] Observ Paris, Sect Meudon, F-92195 Meudon, France. RP Mennesson, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Absil, Olivier/0000-0002-4006-6237 FU National Aeronautics and Space Administration (NASA); W. M. Keck Foundation; French National Research Agency (ANR) [ANR-2010 BLAN-0505-01] FX The Keck Interferometer was funded by the National Aeronautics and Space Administration (NASA). Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, and at the NASA Exoplanet Science Center (NExSci), under contract with NASA. The Keck Observatory was made possible through the generous financial support of the W. M. Keck Foundation. O. Absil, J.-C. Augereau, J. Lebreton, and P. Thebault thank the French National Research Agency (ANR, contract ANR-2010 BLAN-0505-01, EXOZODI) for financial support. NR 36 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 119 DI 10.1088/0004-637X/763/2/119 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800050 ER PT J AU Reichardt, CL Stalder, B Bleem, LE Montroy, TE Aird, KA Andersson, K Armstrong, R Ashby, MLN Bautz, M Bayliss, M Bazin, G Benson, BA Brodwin, M Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Harrington, NL High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Murray, SS Natoli, T Padin, S Plagge, T Pryke, C Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Staniszewski, Z Stark, AA Story, K Stubbs, CW Suhada, R van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Reichardt, C. L. Stalder, B. Bleem, L. E. Montroy, T. E. Aird, K. A. Andersson, K. Armstrong, R. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Benson, B. A. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. L. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Murray, S. S. Natoli, T. Padin, S. Plagge, T. Pryke, C. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Suhada, R. van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: individual; large-scale structure of universe ID MICROWAVE BACKGROUND ANISOTROPIES; ALL-SKY SURVEY; BLANCO COSMOLOGY SURVEY; HUBBLE-SPACE-TELESCOPE; GREATER-THAN 1; DATA RELEASE; POWER SPECTRUM; SOURCE CATALOG; RICH CLUSTERS; SAMPLE AB We present a catalog of galaxy cluster candidates, selected through their Sunyaev-Zel'dovich (SZ) effect signature in the first 720 deg(2) of the South Pole Telescope (SPT) survey. This area was mapped with the SPT in the 2008 and 2009 austral winters to a depth of similar to 18 mu K-CMB-arcmin at 150 GHz; 550 deg(2) of it was also mapped to similar to 44 mu K-CMB-arcmin at 95 GHz. Based on optical imaging of all 224 candidates and near-infrared imaging of the majority of candidates, we have found optical and/or infrared counterparts for 158, which we then classify as confirmed galaxy clusters. Of these 158 clusters, 135 were first identified as clusters in SPT data, including 117 new discoveries reported in this work. This catalog triples the number of confirmed galaxy clusters discovered through the SZ effect. We report photometrically derived (and in some cases spectroscopic) redshifts for confirmed clusters and redshift lower limits for the remaining candidates. The catalog extends to high redshift with a median redshift of z = 0.55 and maximum confirmed redshift of z = 1.37. Forty-five of the clusters have counterparts in the ROSAT bright or faint source catalogs from which we estimate X-ray fluxes. Based on simulations, we expect the catalog to be nearly 100% complete above M-500 approximate to 5 x 10(14) M-circle dot h(70)(-1) at z greater than or similar to 0.6. There are 121 candidates detected at signal-to-noise ratio greater than five, at which the catalog purity is measured to be 95%. From this high-purity subsample, we exclude the z < 0.3 clusters and use the remaining 100 candidates to improve cosmological constraints following the method presented by Benson et al. Adding the cluster data to CMB + BAO + H-0 data leads to a preference for non-zero neutrino masses while only slightly reducing the upper limit on the sum of neutrino masses to Sigma m(nu) < 0.38 eV (95% CL). For a spatially flat wCDM cosmological model, the addition of this catalog to the CMB + BAO + H-0 + SNe results yields sigma(8) = 0.807 +/- 0.027 and w = -1.010 +/- 0.058, improving the constraints on these parameters by a factor of 1.4 and 1.3, respectively. The larger cluster catalog presented in this work leads to slight improvements in cosmological constraints from those presented by Benson et al. These cosmological constraints are currently limited by uncertainty in the cluster mass calibration, not the size or quality of the cluster catalog. A multi-wavelength observation program to improve the cluster mass calibration will make it possible to realize the full potential of the final 2500 deg(2) SPT cluster catalog to constrain cosmology. C1 [Stalder, B.; Ashby, M. L. N.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Andersson, K.; Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Suhada, R.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Andersson, K.; Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] PUC, Dept Astron & Astrofis, Santiago 22, Chile. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; van Engelen, A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Dept Space Sci, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. [Reichardt, C. L.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Reichardt, CL (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. EM cr@bolo.berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012 OI Marrone, Daniel/0000-0002-2367-1080; Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996; Stubbs, Christopher/0000-0003-0347-1724 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA [NAS 8-03060, NAS8-03060]; NASA through JPL/Caltech; Excellence Cluster Universe; DFG [TR33]; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution; Brinson Foundation; NASA through Chandra Award [12800071, 12800088, G02-13006A]; Chandra X-ray Observatory Center; Blanco 4 m at Cerro Tololo Inter-American Observatories [2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598]; VLT programs [086.A-0741, 286.A-5021]; Gemini program [GS-2009B-Q-16]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. R.J.F. is supported by a Clay Fellowship. B. A. B is supported by a KICP Fellowship, M. Bautz acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M. D. acknowledges support from an Alfred P. Sloan Research Fellowship, W. F. and C.J. acknowledge support from the Smithsonian Institution, and B. S. acknowledges support from the Brinson Foundation.; Support for X-ray analysis was provided by NASA through Chandra Award Numbers 12800071, 12800088, and G02-13006A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Optical imaging data from the Blanco 4 m at Cerro Tololo Inter-American Observatories (programs 2005B-0043, 2009B-0400, 2010A-0441, and 2010B-0598) and spectroscopic observations from VLT programs 086.A-0741 and 286.A-5021 and Gemini program GS-2009B-Q-16 were included in this work. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile.; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 93 TC 150 Z9 150 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 127 DI 10.1088/0004-637X/763/2/127 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800058 ER PT J AU Silva, MB Santos, MG Gong, Y Cooray, A Bock, J AF Silva, Marta B. Santos, Mario G. Gong, Yan Cooray, Asantha Bock, James TI INTENSITY MAPPING OF Ly alpha EMISSION DURING THE EPOCH OF REIONIZATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; diffuse radiation; large-scale structure of universe ID STAR-FORMING GALAXIES; SUBARU DEEP FIELD; MICROWAVE BACKGROUND CONSTRAINTS; HIGH-REDSHIFT GALAXIES; RADIATIVE-TRANSFER; ESCAPE FRACTION; COLLAPSING PROTOGALAXIES; LUMINOSITY FUNCTIONS; IONIZING-RADIATION; LYMAN LIMIT AB We calculate the absolute intensity and anisotropies of the Ly alpha radiation field present during the epoch of reionization. We consider emission from both galaxies and the intergalactic medium (IGM) and take into account the main contributions to the production of Ly alpha photons: recombinations, collisions, continuum emission from galaxies, and scattering of Lyn photons in the IGM. We find that the emission from individual galaxies dominates over the IGM with a total Ly alpha intensity (times frequency) of about (1.43-3.57) x 10(-8) erg s(-1) cm(-2) sr(-1) at a redshift of 7. This intensity level is low, so it is unlikely that the Ly alpha background during reionization can be established by an experiment aiming at an absolute background light measurement. Instead, we consider Ly alpha intensity mapping with the aim of measuring the anisotropy power spectrum that has rms fluctuations at the level of 1 x 10(-16) [erg s(-1) cm(-2) sr(-1)](2) at a few Mpc scales. These anisotropies could be measured with a spectrometer at near-IR wavelengths from 0.9 to 1.4 mu m with fields in the order of 0.5 to 1 deg(2). We recommend that existing ground-based programs using narrowband filters also pursue intensity fluctuations to study statistics on the spatial distribution of faint Ly alpha emitters. We also discuss the cross-correlation signal with 21 cm experiments that probe Hi in the IGM during reionization. A dedicated sub-orbital or space-based Ly alpha intensity mapping experiment could provide a viable complimentary approach to probe reionization, when compared to 21 cm experiments, and is likely within experimental reach. C1 [Silva, Marta B.; Santos, Mario G.] Univ Tecn Lisboa, Inst Super Tecn, CENTRA, P-1049001 Lisbon, Portugal. [Silva, Marta B.; Gong, Yan; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bock, James] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Bock, James] NASA, JPL, Pasadena, CA 91109 USA. RP Silva, MB (reprint author), Univ Tecn Lisboa, Inst Super Tecn, CENTRA, P-1049001 Lisbon, Portugal. RI Santos, Mario/F-2484-2011 OI Santos, Mario/0000-0003-3892-3073 FU FCT-Portugal [SFRH/BD/51373/2011, PTDC/FIS/100170/2008]; NSF CAREER [AST-0645427]; NASA at UCI [NNX10AD42G] FX This work was supported by FCT-Portugal with the grant SFRH/BD/51373/2011 for M. B. S. and under grant PTDC/FIS/100170/2008 for M.B.S. and M.G.S.; A.C. and Y.G. acknowledge support from NSF CAREER AST-0645427 and NASA NNX10AD42G at UCI. NR 85 TC 15 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 132 DI 10.1088/0004-637X/763/2/132 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800063 ER PT J AU Stalder, B Ruel, J Suhada, R Brodwin, M Aird, KA Andersson, K Armstrong, R Ashby, MLN Bautz, M Bayliss, M Bazin, G Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR George, EM Gettings, D Gladders, MD Gonzalez, AH Halverson, NW Harrington, NL High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Montroy, TE Murray, SS Natoli, T Nurgaliev, D Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stanford, SA Staniszewski, Z Stark, AA Story, K Stubbs, CW van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Stalder, B. Ruel, J. Suhada, R. Brodwin, M. Aird, K. A. Andersson, K. Armstrong, R. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. George, E. M. Gettings, D. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. L. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Montroy, T. E. Murray, S. S. Natoli, T. Nurgaliev, D. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI SPT-CL J0205-5829: A z=1.32 EVOLVED MASSIVE GALAXY CLUSTER IN THE SOUTH POLE TELESCOPE SUNYAEV-ZEL'DOVICH EFFECT SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies: clusters: individual (SPT-CL J0205-5829); galaxies: evolution; galaxies: formation; large-scale structure of universe ID IRAC SHALLOW SURVEY; GREATER-THAN 1; HIGH-REDSHIFT; RED-SEQUENCE; XMM-NEWTON; SPECTROSCOPIC CONFIRMATION; COOLING FLOWS; COSMOLOGY; EVOLUTION; SAMPLE AB The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically confirmed redshift, z = 1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of T-X = 8.7(-0.8)(+1.0) keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich-derived mass. The combined SZ and X-ray mass estimate of M-500 = (4.8+/-0.8) x 10(14)h(70)(-1) M-circle dot makes it the most massive known SZ-selected galaxy cluster at z > 1.2 and the second most massive at z > 1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was < 5 Gyr old, with stellar population ages greater than or similar to 3 Gyr, and low rates of star formation (< 0.5 M-circle dot yr(-1)). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat Lambda CDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg(2) SPT-SZ survey is 69%. C1 [Stalder, B.; Ashby, M. L. N.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruel, J.; Bayliss, M.; Nurgaliev, D.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Suhada, R.; Andersson, K.; Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Brodwin, M.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Andersson, K.; Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrosif, Santiago, Chile. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; van Engelen, A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gettings, D.; Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Stalder, B (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM bstalder@cfa.harvard.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA [NAS 8-03060]; Excellence Cluster Universe; DFG [TR33]; NASA by JPL/Caltech; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. This work is based in part on observations obtained with the Spitzer Space Telescope (PID 60099), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile and the Blanco 4 m Telescope at Cerro Tololo Inter-American Observatories in Chile. R.J.F. is supported by a Clay Fellowship. B. A. B is supported by a KICP Fellowship, M. Bautz acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M. D. acknowledges support from an Alfred P. Sloan Research Fellowship, W. F. and C.J. acknowledge support from the Smithsonian Institution. NR 86 TC 23 Z9 23 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 93 DI 10.1088/0004-637X/763/2/93 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800024 ER PT J AU Su, KYL Rieke, GH Malhotra, R Stapelfeldt, KR Hughes, AM Bonsor, A Wilner, DJ Balog, Z Watson, DM Werner, MW Misselt, KA AF Su, Kate Y. L. Rieke, George H. Malhotra, Renu Stapelfeldt, Karl R. Hughes, A. Meredith Bonsor, Amy Wilner, David J. Balog, Zoltan Watson, Dan M. Werner, Michael W. Misselt, Karl A. TI ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; planetary systems; stars: individual (Vega, Fomalhaut) ID INFRARED INTERFEROMETRIC SURVEY; SPITZER-SPACE-TELESCOPE; EPSILON-ERIDANI; SOLAR-SYSTEM; HR 8799; KUIPER-BELT; HOT DUST; PLANET; STARS; HERSCHEL AB Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as "debris disk twins." We present Spitzer 10-35 mu m spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of similar to 30 mu m from both warm components is well described as a blackbody emission of similar to 170 K. Interestingly, two other systems, epsilon Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system's zodiacal dust cloud, but of far greater mass (fractional luminosity of similar to 10(-5) to 10(-6) compared to 10(-8) to 10(-7)). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 mu m hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio greater than or similar to 10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut. C1 [Su, Kate Y. L.; Rieke, George H.; Misselt, Karl A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Malhotra, Renu] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Stapelfeldt, Karl R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hughes, A. Meredith] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Bonsor, Amy] UJF Grenoble 1, CNRS INSU, Inst Planetol & Astrophys Grenoble IPAG, UMR 5274, F-38041 Grenoble, France. [Wilner, David J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Balog, Zoltan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Watson, Dan M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Werner, Michael W.] JPL Caltech, Pasadena, CA 91109 USA. RP Su, KYL (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM ksu@as.arizona.edu OI Malhotra, Renu/0000-0002-1226-3305; Su, Kate/0000-0002-3532-5580 FU NASA's ADAP program [NNX11AF73G]; NASA issued by JPL/Caltech [1255094, 1256424]; Miller Institute for Basic Research in Science; EXEXOZODI [ANR-2010 BLAN-0505-01]; Deutsches Zentrum fur Luf- und Raumfahrt (DLR); Hungarian OTKA [K81966] FX We thank the anonymous referee for prompt and constructive comments. K.Y.L.S. thanks Denis Defrere for his helpful discussion of the hot excesses. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology. K.Y.L.S. and K. R. S. are grateful for funding from NASA's ADAP program (grant No. NNX11AF73G). Support for G. H. R. is provided by NASA through contracts 1255094 and 1256424 issued by JPL/Caltech to the University of Arizona. A. M. H. is supported by a fellowship from the Miller Institute for Basic Research in Science. A. B. is supported by the ANR-2010 BLAN-0505-01 (EXEXOZODI) program. Z.B. is funded by the Deutsches Zentrum fur Luf- und Raumfahrt (DLR). Partial support for this work was also provided for Z.B. through Hungarian OTKA grant No. K81966. NR 87 TC 52 Z9 52 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 118 DI 10.1088/0004-637X/763/2/118 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800049 ER PT J AU Vasudevan, RV Brandt, WN Mushotzky, RF Winter, LM Baumgartner, WH Shimizu, TT Schneider, DP Nousek, J AF Vasudevan, Ranjan V. Brandt, William N. Mushotzky, Richard F. Winter, Lisa M. Baumgartner, Wayne H. Shimizu, Thomas T. Schneider, Donald. P. Nousek, John TI X-RAY PROPERTIES OF THE NORTHERN GALACTIC CAP SOURCES IN THE 58 MONTH SWIFT/BAT CATALOG SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; surveys; X-rays: galaxies ID SEYFERT 1 GALAXIES; DEEP FIELD-SOUTH; XMM-NEWTON; SPECTRAL PROPERTIES; SOFT EXCESS; RADIO LOUDNESS; BAT SURVEY; NUCLEI; AGN; CHANDRA AB We present a detailed X-ray spectral analysis of the non-beamed, hard X-ray selected active galactic nuclei (AGNs) in the northern Galactic cap of the 58 month Swift Burst Alert Telescope (Swift/BAT) catalog, consisting of 100 AGNs with b > 50 degrees. This sky area has excellent potential for further dedicated study due to a wide range of multi-wavelength data that are already available, and we propose it as a low-redshift analog to the "deep field" observations of AGNs at higher redshifts (e.g., CDFN/S, COSMOS, Lockman Hole). We present distributions of luminosity, absorbing column density, and other key quantities for the catalog. We use a consistent approach to fit new and archival X-ray data gathered from XMM-Newton, Swift/XRT, ASCA, and Swift/BAT. We probe to deeper redshifts than the 9 month BAT catalog (< z > = 0.043 compared to < z > = 0.03 for the 9 month catalog), and uncover a broader absorbing column density distribution. The fraction of obscured (log N-H >= 22) objects in the sample is similar to 60%, and 43%-56% of the sample exhibits "complex" 0.4-10 keV spectra. We present the properties of iron lines, soft excesses, and ionized absorbers for the subset of objects with sufficient signal-to-noise ratio. We reinforce previous determinations of the X-ray Baldwin (Iwasawa-Taniguchi) effect for iron K alpha lines. We also identify two distinct populations of sources; one in which a soft excess is well-detected and another where the soft excess is undetected, suggesting that the process responsible for producing the soft excess is not at work in all AGNs. The fraction of Compton-thick sources (log N-H > 24.15) in our sample is similar to 9%. We find that "hidden/buried AGNs" (which may have a geometrically thick torus or emaciated scattering regions) constitute similar to 14% of our sample, including seven objects previously not identified as hidden. Compton reflection is found to be important in a large fraction of our sample using joint XMM-Newton+BAT fits (< R > = 2.7 +/- 0.75), indicating light bending or extremely complex absorption. High-energy cutoffs generally lie outside the BAT band (E > 200 keV) but are seen in some sources. We present the average 1-10 keV spectrum for the sample, which reproduces the 1-10 keV X-ray background slope as found for the brighter 9 month BAT AGN sample. The 2-10 keV log(N)-log(S) plot implies completeness down to fluxes a factor of similar to 4 fainter than seen in the 9 month catalog. We emphasize the utility of this northern Galactic cap sample for a wide variety of future studies on AGNs. C1 [Vasudevan, Ranjan V.; Mushotzky, Richard F.; Shimizu, Thomas T.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brandt, William N.; Schneider, Donald. P.; Nousek, John] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, William N.; Schneider, Donald. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Winter, Lisa M.] Atmospher & Environm Res, Lexington, MA USA. [Baumgartner, Wayne H.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Vasudevan, RV (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM ranjan@astro.umd.edu RI Brandt, William/N-2844-2015; OI Brandt, William/0000-0002-0167-2453; Shimizu, Thomas/0000-0002-2125-4670; Winter, Lisa/0000-0002-3983-020X FU ESA Member States; National Aeronautics and Space Administration (NASA) FX R.V.V. thanks Jeremy Sanders for designing and providing extensive support for the Veusz plotting package with which most of the plots in this paper were generated, and Mike Koss for his comments on the paper. We thank Jack Tueller, Craig Markwardt, and Neil Gehrels for their work on the proposal to extend the XMM-Newton coverage of this region, and all of the BAT team for their work on the BAT catalog. We also thank the anonymous referee for useful comments that improved the paper. This work makes use of data from XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 75 TC 39 Z9 39 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 111 DI 10.1088/0004-637X/763/2/111 PG 38 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800042 ER PT J AU Wang, YM Muglach, K AF Wang, Y. -M. Muglach, K. TI TRANSIENT BRIGHTENINGS ASSOCIATED WITH FLUX CANCELLATION ALONG A FILAMENT CHANNEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: chromosphere; Sun: filaments, prominences; Sun: magnetic topology; Sun: surface magnetism; Sun: UV radiation ID X-RAY JETS; MAGNETIC-FIELD; ACTIVE-REGION; SOLAR PROMINENCES; EVOLUTION; RECONNECTION; ORIGIN; SITES; FLOWS; MODEL AB Filament channels coincide with large-scale polarity inversion lines of the photospheric magnetic field, where flux cancellation continually takes place. High-cadence Solar Dynamics Observatory (SDO) images recorded in He II 30.4 nm and Fe IX 17.1 nm during 2010 August 22 reveal numerous transient brightenings occurring along the edge of a filament channel within a decaying active region, where SDO line-of-sight magnetograms show strong opposite-polarity flux in close contact. The brightenings are elongated along the direction of the filament channel, with linear extents of several arcseconds, and typically last a few minutes; they sometimes have the form of multiple two-sided ejections with speeds on the order of 100 km s(-1). Remarkably, some of the brightenings rapidly develop into larger scale events, forming sheetlike structures that are eventually torn apart by the diverging flows in the filament channel and ejected in opposite directions. We interpret the brightenings as resulting from reconnections among filament-channel field lines having one footpoint located in the region of canceling flux. In some cases, the flow patterns that develop in the channel may bring successive horizontal loops together and cause a cascade to larger scales. C1 [Wang, Y. -M.] USN, Code 7682, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Muglach, K.] NASA, Code 674, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Muglach, K.] ARTEP Inc, Ellicott City, MD 21042 USA. RP Wang, YM (reprint author), USN, Code 7682, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM yi.wang@nrl.navy.mil; karin.muglach@nasa.gov FU NASA; NSF; Office of Naval Research FX We thank S. F. Martin, N. Srivastava, and the referee for helpful comments. This work was supported by NASA, NSF, and the Office of Naval Research. NR 27 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 97 DI 10.1088/0004-637X/763/2/97 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800028 ER PT J AU Guo, HB Xu, HF Barnard, AS AF Guo, Haibo Xu, Huifang Barnard, Amanda S. TI Can hematite nanoparticles be an environmental indicator? SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID TOTAL-ENERGY CALCULATIONS; BANDED IRON-FORMATIONS; WAVE BASIS-SET; WATER-ADSORPTION; X-RAY; MAGNETOTACTIC BACTERIA; CRYSTALLINE HEMATITE; SURFACE RELAXATION; REACTIVITY; STABILITY AB Environmental indicators play an important role in assessing the state of the environment and understanding the trend of environmental changes. Iron oxide nanostructures are widespread in multiple ecosystems, and are therefore suitable for providing environmental indicators with measurable physical or chemical properties that are sensitive to the environmental conditions. It has been found that the morphologies of natural hematite (alpha-Fe2O3) nanocrystals have large variations depending on thermodynamic and chemical conditions of their formation environments. To assess the applicability of nanomorphology as an environmental indicator, we construct a morphology map of hematite nanocrystals in hydrous environments, characterized with different temperatures, humidity and supersaturation of oxygen. Our model indicates that the fractional surface areas of morphologically significant facets change with humidity and temperature, and can be used to track the variation of these environmental conditions. C1 [Guo, Haibo] Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China. [Xu, Huifang] Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. [Barnard, Amanda S.] CSIRO Mat Sci & Engn, Virtual Nanosci Lab, Parkville, Vic 3052, Australia. RP Guo, HB (reprint author), Shanghai Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China. EM amanda.barnard@csiro.au RI Guo, Haibo/F-9266-2011; Barnard, Amanda/A-7340-2011 OI Guo, Haibo/0000-0003-0154-589X; Barnard, Amanda/0000-0002-4784-2382 FU Australian Research Council [DP0986752]; NCI national Facility of Australia under the Merit Allocation Scheme [p00]; NASA Astrobiology Institute [N07-5489]; National Science Foundation [EAR-0810150] FX This project has been supported by the Australian Research Council under grant number DP0986752. The authors acknowledge the supercomputer usage and technical support from the NCI national Facility of Australia under the Merit Allocation Scheme grant p00. Xu thanks the supports from NASA Astrobiology Institute (N07-5489) and National Science Foundation (EAR-0810150). NR 69 TC 8 Z9 8 U1 2 U2 65 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2013 VL 6 IS 2 BP 561 EP 569 DI 10.1039/c2ee23253g PG 9 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 075NA UT WOS:000313892400018 ER PT J AU Samuelsen, GS Brouwer, J Vardakas, MA Holdeman, JD AF Samuelsen, G. S. Brouwer, J. Vardakas, M. A. Holdeman, J. D. TI Experimental and modeling investigation of the effect of air preheat on the formation of NOx in an RQL combustor SO HEAT AND MASS TRANSFER LA English DT Article ID SUBSONIC CROSS-FLOW; CYLINDRICAL DUCT; MULTIPLE JETS; OPPOSED ROWS; RICH; OPTIMIZATION; NITROGEN; GEOMETRY AB The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept. C1 [Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.] Univ Calif Irvine, UCI Combust Lab, Irvine, CA 92697 USA. [Holdeman, J. D.] NASA, Cleveland, OH 44135 USA. RP Holdeman, JD (reprint author), NASA, Cleveland, OH 44135 USA. EM jjdholdeman@aol.com FU NASA Glenn Research Center [NCC 3-412]; UCI Combustion Laboratory (UCICL) at the University of California, Irvine FX The experimental work was supported by cooperation agreement NCC 3-412 from the NASA Glenn Research Center and the complementary chemical equilibrium and kinetics calculations were funded by the UCI Combustion Laboratory (UCICL) at the University of California, Irvine. The authors would also like to thank the Combustion Branch at the NASA Glenn Research Center for providing for the Open Access publication and color printing of this paper. NR 42 TC 7 Z9 7 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-7411 J9 HEAT MASS TRANSFER JI Heat Mass Transf. PD FEB PY 2013 VL 49 IS 2 BP 219 EP 231 DI 10.1007/s00231-012-1080-0 PG 13 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 074HQ UT WOS:000313803900008 ER PT J AU Parpura, V Silva, GA Tass, PA Bennet, KE Meyyappan, M Koehne, J Lee, KH Andrews, RJ AF Parpura, Vladimir Silva, Gabriel A. Tass, Peter A. Bennet, Kevin E. Meyyappan, M. Koehne, Jessica Lee, Kendall H. Andrews, Russell J. TI Neuromodulation: selected approaches and challenges SO JOURNAL OF NEUROCHEMISTRY LA English DT Review DE carbon nanotubes; connectivity of networks; deep brain stimulation; desynchronization; neurochemistry ID DEEP-BRAIN-STIMULATION; WALLED CARBON NANOTUBES; HIGH-FREQUENCY STIMULATION; ADVANCED PARKINSONS-DISEASE; CENTRAL-NERVOUS-SYSTEM; COORDINATED RESET NEUROMODULATION; OBSESSIVE-COMPULSIVE DISORDER; AUDITORY PHANTOM PERCEPTION; SCAN CYCLIC VOLTAMMETRY; SUBTHALAMIC NUCLEUS AB The brain operates through complex interactions in the flow of information and signal processing within neural networks. The wiring of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromodulation are discussed. The use of water-dispersible carbon nanotubes has been proven effective in the modulation of neurite outgrowth in culture and in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing misfiring neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real-time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us. C1 [Parpura, Vladimir] Univ Alabama Birmingham, Atom Force Microscopy & Nanotechnol Labs, Evelyn F McKnight Brain Inst, Dept Neurobiol,Ctr Glial Biol Med,Civitan Int Res, Birmingham, AL 35294 USA. [Parpura, Vladimir] Univ Rijeka, Dept Biotechnol, Rijeka, Croatia. [Silva, Gabriel A.] Univ Calif San Diego, Dept Ophthalmol, Dept Bioengn, San Diego, CA 92103 USA. [Silva, Gabriel A.] Univ Calif San Diego, Neurosci Program, San Diego, CA 92103 USA. [Tass, Peter A.] Res Ctr Julich, Inst Neurosci & Med, Julich, Germany. [Tass, Peter A.] Univ Cologne, Sch Med, Div Neuromodulat, D-50931 Cologne, Germany. [Bennet, Kevin E.] Mayo Clin Rochester, Div Engn, Rochester, MN USA. [Meyyappan, M.; Koehne, Jessica; Andrews, Russell J.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94305 USA. [Lee, Kendall H.] Mayo Clin Rochester, Dept Neurosurg, Rochester, MN USA. RP Parpura, V (reprint author), Univ Alabama Birmingham, Atom Force Microscopy & Nanotechnol Labs, Evelyn F McKnight Brain Inst, Dept Neurobiol,Ctr Glial Biol Med,Civitan Int Res, 1719 6th Ave S,CIRC 429, Birmingham, AL 35294 USA. EM vlad@uab.edu; rja@russelljandrews.org RI Tass, Peter/H-8756-2013 OI Tass, Peter/0000-0002-5736-7415 FU National Science Foundation (US NSF) [CBET 0943343]; Deutsche Forschungsgemeinschaft (DFG) [KFO 219 TA203/4-1]; National Institutes of Health [US NIH K08 NS 52232, R01 NS 70872, R01 NS 75013]; Grainger Foundation FX Discussion about this review between the authors took place at the 'Neuromodulation Brainstorming Retreat' held in Carmel, California, March 23-25, 2012, and organized by Russell J. Andrews. We thank Yong Sim for her hospitality and culinary treats. We also thank Manoj K. Gottipati for comments on a previous version of this manuscript. This work was supported by the National Science Foundation (US NSF; CBET 0943343 to VP), Deutsche Forschungsgemeinschaft (DFG; KFO 219 TA203/4-1 to PAT), the National Institutes of Health (US NIH K08 NS 52232, R01 NS 70872, and R01 NS 75013 to KHL), and The Grainger Foundation (KHL and KEB). NR 155 TC 5 Z9 7 U1 3 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-3042 EI 1471-4159 J9 J NEUROCHEM JI J. Neurochem. PD FEB PY 2013 VL 124 IS 4 BP 436 EP 453 DI 10.1111/jnc.12105 PG 18 WC Biochemistry & Molecular Biology; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 079QK UT WOS:000314186300003 PM 23190025 ER PT J AU Kumar, P Park, SH Cho, KS Bong, SC AF Kumar, Pankaj Park, Sung-Hong Cho, K. -S. Bong, S. -C. TI Multiwavelength Study of a Solar Eruption from AR NOAA 11112 I. Flux Emergence, Sunspot Rotation and Triggering of a Solar Flare SO SOLAR PHYSICS LA English DT Article DE Solar flare - coronal loops; Magnetic field; Flux rope; Magnetic reconnection ID CORONAL MASS EJECTIONS; MAGNETIC HELICITY INJECTION; DYNAMICS-OBSERVATORY SDO; ACTIVE REGIONS; INDUCTION EQUATION; KINK INSTABILITY; RAPID ROTATION; MODEL; EVOLUTION; ENERGY AB We analyze the multiwavelength observations of an M2.9/1N flare that occurred in the active region (AR) NOAA 11112 in the vicinity of a huge filament system on 16 October 2010. SDO/HMI magnetograms reveal the emergence of a bipole (within the existing AR) 50 hours prior to the flare event. During the emergence, both the positive and negative sunspots in the bipole show translational as well as rotational motion. The positive-polarity sunspot shows significant motion/rotation in the south-westward/clockwise direction, and we see continuously pushing/sliding of the surrounding opposite-polarity field region. On the other hand, the negative-polarity sunspot moves/rotates in the westward/anticlockwise direction. The positive-polarity sunspot rotates approximate to 70 degrees within 30 hours, whereas the one with negative polarity rotates approximate to 20 degrees within 10 hours. SDO/AIA 94 angstrom EUV images show the emergence of a flux tube in the corona, consistent with the emergence of the bipole in HMI. The footpoints of the flux tube were anchored in the emerging bipole. The initial brightening starts at one of the footpoints (western) of the emerging loop system, where the positive-polarity sunspot pushes/slides towards a nearby negative-polarity field region. A high speed plasmoid ejection (speed approximate to 1197 km s(-1)) was observed during the impulsive phase of the flare, which suggests magnetic reconnection of the emerging positive-polarity sunspot with the surrounding opposite-polarity field region. The entire AR shows positive-helicity injection before the flare event. Moreover, the newly emerging bipole reveals the signature of a negative (left-handed) helicity. These observations provide unique evidence of the emergence of twisted flux tubes from below the photosphere to coronal heights, triggering a flare mainly due to the interaction between the emerging positive-polarity sunspot and a nearby negative-polarity sunspot by the shearing motion of the emerging positive sunspot towards the negative one. Our observations also strongly support the idea that the rotation can most likely be attributed to the emergence of twisted magnetic fields, as proposed by recent models. C1 [Kumar, Pankaj; Park, Sung-Hong; Cho, K. -S.; Bong, S. -C.] Korea Astron & Space Sci Inst KASI, Taejon 305348, South Korea. [Cho, K. -S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cho, K. -S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Kumar, P (reprint author), Korea Astron & Space Sci Inst KASI, Taejon 305348, South Korea. EM pankaj@kasi.re.kr RI Park, Sung-Hong/K-1578-2014 OI Park, Sung-Hong/0000-0001-9149-6547 FU "Development of Korea Space Weather Center" project of KASI; KASI basic research fund FX We express our gratitude to the referees for providing constructive comments/suggestions, which improved the manuscript considerably. SDO is a mission for NASA's Living With a Star (LWS) Program. We are thankful for the radio data obtained from RSTN network and GBRSBS. The Global High Resolution H alpha Network is operated by the Space Weather Research Lab, New Jersey Institute of Technology. PK thanks Prof. P. F. Chen and Dr. A. K. Srivastava for fruitful discussions. This work has been supported by the "Development of Korea Space Weather Center" project of KASI, and the KASI basic research fund. NR 77 TC 14 Z9 14 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD FEB PY 2013 VL 282 IS 2 BP 503 EP 521 DI 10.1007/s11207-012-0174-7 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 074FM UT WOS:000313798300013 ER PT J AU Kumar, P Cho, KS Chen, PF Bong, SC Park, SH AF Kumar, Pankaj Cho, K. -S. Chen, P. F. Bong, S. -C. Park, Sung-Hong TI Multiwavelength Study of a Solar Eruption from AR NOAA 11112: II. Large-Scale Coronal Wave and Loop Oscillation SO SOLAR PHYSICS LA English DT Article DE Solar flare - coronal loops; Magnetic field; Flux rope; Magnetic reconnection ID ULTRAVIOLET IMAGING TELESCOPE; X-RAY OBSERVATIONS; MHD SHOCK-WAVES; EIT WAVES; MASS EJECTION; MORETON WAVE; FLARE WAVES; QUADRATURE OBSERVATIONS; SOHO/EIT OBSERVATIONS; MAGNETIC FIELDS AB We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 angstrom EUV images reveal the presence of a faster coronal wave (decelerating from approximate to 1390 to approximate to 830 km s(-1)) propagating ahead of a slower wave (decelerating from approximate to 416 to approximate to 166 km s(-1)) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed approximate to 800 km s(-1)). The speed of the faster coronal wave, derived from AIA 211 angstrom images, is found to be comparable to the coronal shock speed. AIA 171 angstrom high-cadence observations showed that a coronal loop, which was located at a distance of approximate to 0.32 R-circle dot to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of approximate to 340-350 km s(-1). STEREO 195 angstrom images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from approximate to 320 to approximate to 254 km s(-1). These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave. C1 [Kumar, Pankaj; Cho, K. -S.; Bong, S. -C.; Park, Sung-Hong] Korea Astron & Space Sci Inst KASI, Taejon 305348, South Korea. [Cho, K. -S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cho, K. -S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Chen, P. F.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. RP Kumar, P (reprint author), Korea Astron & Space Sci Inst KASI, Taejon 305348, South Korea. EM pankaj@kasi.re.kr RI Park, Sung-Hong/K-1578-2014 OI Park, Sung-Hong/0000-0001-9149-6547 FU Chinese foundation NSFC [11025314, 10878002, 10933003]; "Development of Korea Space Weather Center" project of KASI; KASI basic research fund; [2011CB811402] FX We express our gratitude to the referee for his/her valuable and constructive comments/suggestions, which improved the manuscript considerably. SDO is a mission for NASA's Living With a Star (LWS) Program. We thank the STEREO/SECCHI teams for their open data policy. We are thankful for the radio data obtained from Sagamore Hill station. SOHO is a project of international cooperation between ESA and NASA. PFC is supported by the Chinese foundation NSFC (11025314, 10878002, and 10933003) and 2011CB811402. PK thanks Prof. D. E. Innes for several fruitful discussions during his visit to MPS. PK thanks Dr. A. K. Srivastava for reading/discussing the manuscript. This work has been supported by the "Development of Korea Space Weather Center" project of KASI, and the KASI basic research fund. NR 77 TC 16 Z9 18 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD FEB PY 2013 VL 282 IS 2 BP 523 EP 541 DI 10.1007/s11207-012-0158-7 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 074FM UT WOS:000313798300014 ER PT J AU Wohl, CJ Chen, LL Lin, Y Connell, JW AF Wohl, Christopher J. Chen, Lillian Lin, Yi Connell, John W. TI Low friction, elastomer-containing copolyimides SO HIGH PERFORMANCE POLYMERS LA English DT Article DE Surface engineering; surface modifying agent; polyimide; butadiene; domain formation ID SURFACE MODIFIERS; WEAR BEHAVIORS; POLYIMIDE; FILMS; ASSIGNMENTS; COPOLYMER; POLYMERS; SILICON; BLENDS AB Novel copoly(imide butadiene)s and copoly(imide butadiene acrylonitrile)s were synthesized from amine-terminated butadiene oligomers, amine-terminated butadiene acrylonitrile oligomers, and aromatic dianhydrides and diamines. The copoly(amide acid)s were synthesized in a mixture of N-methyl-2-pyrrolidinone and toluene and were subsequently cast into thin films. The films were cyclodehydrated under a nitrogen atmosphere with a final cure at 250 degrees C to minimize thermal degradation of the aliphatic components. Free-standing films of the copolymers exhibited reduced optical transparency, mechanical properties, water contact angle values, and sliding coefficients of friction when compared with homopolyimide films. These results indicated both bulk and surface phase segregation. Surface phase segregation was observed using atomic force microscopic imaging and was related to insufficient elastomer wetting of the casting surface. The detailed results of this study are discussed herein. C1 [Wohl, Christopher J.; Chen, Lillian; Connell, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Lin, Yi] Natl Inst Aerosp, Hampton, VA USA. RP Wohl, CJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM christopher.j.wohl@nasa.gov FU NASA Langley Research Center's Creative and Innovative Research Fund FX This work was funded through the NASA Langley Research Center's Creative and Innovative Research Fund. NR 32 TC 0 Z9 1 U1 1 U2 24 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-0083 J9 HIGH PERFORM POLYM JI High Perform. Polym. PD FEB PY 2013 VL 25 IS 1 BP 3 EP 12 DI 10.1177/0954008312454150 PG 10 WC Polymer Science SC Polymer Science GA 072TQ UT WOS:000313696100001 ER PT J AU Zheng, ZM Wang, P Wang, HY Zhang, XM Wang, ML Cucinotta, FA Wang, Y AF Zheng, Zhiming Wang, Ping Wang, Hongyan Zhang, Xiangming Wang, Minli Cucinotta, Francis A. Wang, Ya TI Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS LA English DT Article ID LINEAR-ENERGY-TRANSFER; S-PHASE CELLS; THERAPY; PATHWAY; BREAKS; RNAI AB Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials: Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. (C) 2013 Elsevier Inc. C1 [Zheng, Zhiming] Shandong Univ, Prov Hosp, Dept Neurosurg, Jinan 250100, Peoples R China. [Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Ya] Emory Univ, Sch Med, Dept Radiat Oncol, Winship Canc Inst, Atlanta, GA 30322 USA. [Wang, Minli] Univ Space Res Assoc, Div Life Sci, Houston, TX USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Wang, Y (reprint author), Emory Univ, Sch Med, Dept Radiat Oncol, Winship Canc Inst, 1365 Clifton Rd NE,Suite 5090, Atlanta, GA 30322 USA. EM ywang94@emory.edu FU NASA [NNX11AC30G]; Department of Energy [DE-AI02-10ER64969] FX This work was supported by NASA Specialized Centers of Research grant NNX11AC30G (to Y.W.) and Department of Energy grant DE-AI02-10ER64969 (to F.C.). NR 24 TC 5 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0360-3016 J9 INT J RADIAT ONCOL JI Int. J. Radiat. Oncol. Biol. Phys. PD FEB 1 PY 2013 VL 85 IS 2 BP 466 EP 471 DI 10.1016/j.ijrobp.2012.04.008 PG 6 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 072BB UT WOS:000313642000038 PM 22658516 ER PT J AU Jahanshahi, MR Masri, SF Padgett, CW Sukhatme, GS AF Jahanshahi, Mohammad R. Masri, Sami F. Padgett, Curtis W. Sukhatme, Gaurav S. TI An innovative methodology for detection and quantification of cracks through incorporation of depth perception SO MACHINE VISION AND APPLICATIONS LA English DT Article DE Crack detection; Thickness quantification; Computer vision; Image processing; Pattern classification; 3D scene reconstruction; Morphological operation ID IMAGES; CLASSIFICATION; INSPECTION; SURFACE; SYSTEM AB Visual inspection of structures is a highly qualitative method in which inspectors visually assess a structure's condition. If a region is inaccessible, binoculars must be used to detect and characterize defects. Although several Non-Destructive Testing methods have been proposed for inspection purposes, they are nonadaptive and cannot quantify crack thickness reliably. In this paper, a contact-less remote-sensing crack detection and quantification methodology based on 3D scene reconstruction (computer vision), image processing, and pattern recognition concepts is introduced. The proposed approach utilizes depth perception to detect cracks and quantify their thickness, thereby giving a robotic inspection system the ability to analyze images captured from any distance and using any focal length or resolution. This unique adaptive feature is especially useful for incorporating mobile systems, such as unmanned aerial vehicles, into structural inspection methods since it would allow inaccessible regions to be properly inspected for cracks. Guidelines are presented for optimizing the acquisition and processing of images, thereby enhancing the quality and reliability of the damage detection approach and allowing the capture of even the slightest cracks (e.g., detection of 0.1 mm cracks from a distance of 20 m), which are routinely encountered in realistic field applications where the camera-object distance and image contrast are not controllable. C1 [Jahanshahi, Mohammad R.; Masri, Sami F.] Univ So Calif, Sonny Astani Dept Civil & Environm Engn, Los Angeles, CA 90089 USA. [Padgett, Curtis W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sukhatme, Gaurav S.] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. RP Jahanshahi, MR (reprint author), Univ So Calif, Sonny Astani Dept Civil & Environm Engn, Los Angeles, CA 90089 USA. EM jahansha@usc.edu; masri@usc.edu; curtis.w.padgett@jpl.nasa.gov; gaurav@usc.edu FU US National Science Foundation FX This study was supported in part by grants from the US National Science Foundation. The authors would like to thank Dr. Zahra Tehrani for her critical reading of the manuscript. NR 32 TC 32 Z9 32 U1 4 U2 62 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0932-8092 J9 MACH VISION APPL JI Mach. Vis. Appl. PD FEB PY 2013 VL 24 IS 2 BP 227 EP 241 DI 10.1007/s00138-011-0394-0 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 070HB UT WOS:000313496100001 ER PT J AU Mecikalski, JR Minnis, P Palikonda, R AF Mecikalski, John R. Minnis, Patrick Palikonda, Rabindra TI Use of satellite derived cloud properties to quantify growing cumulus beneath cirrus clouds SO ATMOSPHERIC RESEARCH LA English DT Article DE Cumulus clouds; GOES derived cloud properties; Convective initiation; Infrared observations ID CONVECTIVE INITIATION; BOUNDARY-LAYER; CONVERGENCE LINES; STORM INITIATION; TOP PROPERTIES; VOLCANIC ASH; SYSTEM; PRECIPITATION; THUNDERSTORMS; EVOLUTION AB The accurate prediction of convective cloud development in advance of thunderstorm formation (so-called "convective initiation," CI) is a challenging forecast problem, one in which the processing of 5-15 min interval imagery from geostationary satellites (e.g., Meteosat Second Generation) offers considerable promise. A present drawback to using sequences of visible or infrared (IR) satellite images to monitor growing cumulus clouds is that higher altitude cirrus clouds often obscure the view of the low-level cumulus in the pre-convective environment. In particular, cirrus anvils from pre-existing convection, and cirrus caused by deep layer quasi-geostrophic ascent, are very common in pre-CI environments. Cloud derived parameters from GOES are used here to demonstrate how quantities like visible optical depth (tau), emittance, liquid water path, and effective particle size can be used to quantify cumulus cloud growth in advance of Cl. Time rates of change of these derived quantities, as well as IR interest fields that describe cumulus cloud development rates beneath cirrus, are analyzed as tau of the cirrus are binned from 1 to >50. Results confirm that if cirrus possess tau<20, up to >90% of the "signal" in the IR interest field remains, compared to clear-sky values, and it is proposed that CI can still be adequately nowcasted using IR channel data similar to what is done in the absence of cirrus. Similarly, cloud derived parameters become valuable as their time rates of change measure cumulus cloud growth beneath the higher clouds. In contrast, once tau values increase beyond similar to 20, cumulus cloud growth signals decrease significantly through cirrus, and as tau becomes >40, little information from the cumulus remains. (C) 2012 Elsevier B.V. All rights reserved. C1 [Mecikalski, John R.] Univ Alabama, Dept Atmospher Sci, NSSTC, Huntsville, AL 35805 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA. RP Mecikalski, JR (reprint author), Univ Alabama, Dept Atmospher Sci, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM john.mecikalski@nsstc.uah.edu RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU National Aeronautics and Space Administration [09-GULF09-0014]; NASA Modeling, Analysis, and Prediction (MAP) Program; Department of Energy Atmospheric Science Research Program [DE-SC0000991/003] FX This research was supported by a National Aeronautics and Space Administration grant 09-GULF09-0014. The cloud property analyses (http://angler.larc.nasa.gov/) are supported by the NASA Modeling, Analysis, and Prediction (MAP) Program and by the Department of Energy Atmospheric Science Research Program under Interagency Agreement DE-SC0000991/003. The author thanks Ms. Retha Matthee (University of Alabama in Huntsville) for helping catalog the 253 case dataset Mr. Kristopher Bedka (Science Systems and Applications, Inc.) helped provide the cloud properties data, and gave advice in interpreting the results of this study. NR 40 TC 9 Z9 10 U1 1 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD FEB PY 2013 VL 120 BP 192 EP 201 DI 10.1016/j.atmosres.2012.08.017 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 061CW UT WOS:000312825700016 ER PT J AU Santiago, C Rusu, A Rusu, A Fabian, AJ AF Santiago, Confesor Rusu, Adrian Rusu, Amalia Fabian, Andrew J. TI Systematic Visualization Suite for En Route Air Traffic Flows and Flight Encounters SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS LA English DT Article AB This paper describes a suite of visualization software developed over several years of research by Rowan University in collaboration with Fairfield University and in partnership with the Federal Aviation Administration (FAA) through a collaborative research development agreement. The visualization suite aids analysts in the evaluation of air traffic data: particularly, the accuracy of conflict probes within decision support tools (DSTs). Within this suite are two software applications developed in Java. The first visualization tool is called ScenarioGUI (scenario graphical user interface), and it is used to evaluate new advanced air traffic concepts within U. S. National Airspace System. The second visualization tool is called FlightGUI (flight graphical user interface), which helps the FAA visualize areas of interest during the testing and evaluation of new DSTs being deployed into the field. Two case studies of real-world examples are provided, showcasing the process of using these tools to discover insights into the data. The end product is a capability that helps the FAA determine appropriate requirements for such future systems, and an ability to purge test data in order to illustrate reasons for inaccuracies and errors through visualization that may otherwise go unnoticed through typical regression and statistical system testing. C1 [Santiago, Confesor] FAA, Atlantic City, NJ 08405 USA. [Rusu, Adrian] Rowan Univ, Dept Comp Sci, Glassboro, NJ 08028 USA. [Rusu, Amalia] Fairfield Univ, Dept Software Engn, Fairfield, CT 06824 USA. [Fabian, Andrew J.] FAA, William J Hughes Tech Ctr, Atlantic City, NJ 08405 USA. RP Santiago, C (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 11 TC 0 Z9 0 U1 4 U2 6 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 EI 2327-3097 J9 J AEROSP INFORM SYST JI J. Aerosp. Inf. Syst. PD FEB PY 2013 VL 10 IS 2 BP 87 EP 97 DI 10.2514/1.54512 PG 11 WC Engineering, Aerospace SC Engineering GA AB2FI UT WOS:000331608200003 ER PT J AU Lang, T Saeed, I Carballido-Gamio, J Harnish, R Frassetto, L Streeper, T Sibonga, J Lee, S Keyak, J Cavanagh, P AF Lang, Thomas Saeed, Isra Carballido-Gamio, Julio Harnish, Roy Frassetto, Lynda Streeper, Tim Sibonga, Jean Lee, Stuart Keyak, Joyce Cavanagh, Peter TI Visualizing the Skeletal Response to Resistance Exercise SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Lang, Thomas; Saeed, Isra; Carballido-Gamio, Julio; Harnish, Roy; Frassetto, Lynda; Streeper, Tim] Univ Calif San Francisco, San Francisco, CA 94143 USA. [Sibonga, Jean; Lee, Stuart] NASA, Washington, DC USA. [Keyak, Joyce] Univ Calif Irvine, Dept Radiol Sci, Irvine, CA 92717 USA. [Cavanagh, Peter] Univ Washington, Seattle, WA 98195 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA SA0190 PG 4 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035800151 ER PT J AU Shirazi-Fard, Y Kwaczala, A Judex, S Bloomfield, S Hogan, H AF Shirazi-Fard, Yasaman Kwaczala, Andrea Judex, Stefan Bloomfield, Susan Hogan, Harry TI Exercise During Recovery Between Two Hindlimb Unloading Exposures Enhances Cancellous Bone Microarchitecture and Mechanical Properties SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Shirazi-Fard, Yasaman] NASA, Ames Res Ctr, Washington, DC USA. [Kwaczala, Andrea; Judex, Stefan] SUNY Stony Brook, Stony Brook, NY USA. [Bloomfield, Susan; Hogan, Harry] Texas A&M Univ, College Stn, TX 77843 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA MO0047 PG 2 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035801084 ER PT J AU Abdul-Aziz, A Roth, DJ Cotton, R Studor, GF Christiansen, E Young, PC AF Abdul-Aziz, Ali Roth, D. J. Cotton, R. Studor, George F. Christiansen, Eric Young, P. C. TI Composite Material Characterization using Microfocus X-ray Computed Tomography Image-based Finite Element Modeling SO MATERIALS EVALUATION LA English DT Article DE thermal protection material; computed tomography; finite element modeling; image processing; failure analysis; damage analysis AB This study utilized microfocus X-ray computed tomography slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. Image processing-based software was used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions were calculated for realistic mission profiles that subjected the sample to extreme temperature and other severe environmental conditions. The resulting stress fields were used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material could still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate 3D rendered model from a series of computed tomography slices is an essential tool to quantify the internal macroscopic discontinuities and damage of a complex system made out of thermal protection material. Results were obtained showing details of segmented images; 3D volume rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study was conducted to exhibit certain high-caliber capabilities that the nondestructive testing group at National Aeronautics and Space Administration Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made. C1 [Abdul-Aziz, Ali; Roth, D. J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Cotton, R.] Simpleware Ltd, Exeter, Devon, England. [Studor, George F.; Christiansen, Eric] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Young, P. C.] Univ Exeter, Sch Engn & Comp Sci, Exeter EX4 4QF, Devon, England. RP Abdul-Aziz, A (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM philippe.g.young@exeter.ac.uk NR 11 TC 2 Z9 2 U1 4 U2 4 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD FEB PY 2013 VL 71 IS 2 BP 167 EP 175 PG 9 WC Materials Science, Characterization & Testing SC Materials Science GA AR1GM UT WOS:000343333700004 ER PT J AU McClure, LA Loop, MS Crosson, WL Kleindorfer, DO Kissela, BM Al-Hamdan, MZ AF McClure, Leslie A. Loop, Matthew S. Crosson, William L. Kleindorfer, Dawn O. Kissela, Brett M. Al-Hamdan, Mohammad Z. TI Fine Particulate Matter (PM2.5) and the Risk of Stroke in the REGARDS Cohort SO STROKE LA English DT Meeting Abstract CT American-Heart-Association/American-Stroke-Association International Stroke Conference / Nursing Symposium CY FEB 06-08, 2013 CL Honolulu, HI SP Amer Heart Assoc, Amer Stroke Assoc DE Air pollution; Stroke C1 [McClure, Leslie A.; Loop, Matthew S.] Univ Alabama Birmingham, Birmingham, AL USA. [Crosson, William L.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Inst Sci & Technol, Huntsville, AL 35812 USA. [Kleindorfer, Dawn O.; Kissela, Brett M.] Univ Cincinnati, Cincinnati, OH USA. [Al-Hamdan, Mohammad Z.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0039-2499 EI 1524-4628 J9 STROKE JI Stroke PD FEB PY 2013 VL 44 IS 2 SU S PG 1 WC Clinical Neurology; Peripheral Vascular Disease SC Neurosciences & Neurology; Cardiovascular System & Cardiology GA 301NY UT WOS:000330540200535 ER PT J AU Slaba, TC Blattnig, SR Tweed, J AF Slaba, Tony C. Blattnig, Steve R. Tweed, John TI Reduced discretization error in HZETRN SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Space radiation; Particle transport; Radiation exposure; Radiation transport; HZETRN ID TRANSPORT AB The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A <= 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm(2) exposed to both solar particle event and galactic cosmic ray environments. Published by Elsevier Inc. C1 [Slaba, Tony C.; Blattnig, Steve R.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Tweed, John] Old Dominion Univ, Norfolk, VA 23508 USA. RP Slaba, TC (reprint author), NASA Langley Res Ctr, 2 W Reid St,MS 188E, Hampton, VA 23681 USA. EM Tony.C.Slaba@nasa.gov; Steve.R.Blattnig@nasa.gov; jtweed@odu.edu FU Human Research Program in the Advanced Capabilities Division under the Human Exploration and Operations Mission Directorate of NASA FX This work was supported by the Human Research Program in the Advanced Capabilities Division under the Human Exploration and Operations Mission Directorate of NASA. NR 17 TC 1 Z9 1 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2013 VL 234 BP 217 EP 229 DI 10.1016/j.jcp.2012.09.042 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 044SW UT WOS:000311644900012 ER PT J AU Fisher, TC Carpenter, MH Nordstrom, J Yamaleev, NK Swanson, C AF Fisher, Travis C. Carpenter, Mark H. Nordstrom, Jan Yamaleev, Nail K. Swanson, Charles TI Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE High-order finite-difference methods; Lax-Wendroff; Conservation; Skew-symmetric; Numerical stability ID PARTS OPERATORS; INCOMPRESSIBLE-FLOW; ORDER; SCHEMES; ENTROPY; SYSTEMS; APPROXIMATIONS; SUMMATION; SIMULATIONS; METHODOLOGY AB The Lax-Wendroff theorem stipulates that a discretely conservative operator is necessary to accurately capture discontinuities. The discrete operator, however, need not be derived from the divergence form of the continuous equations. Indeed, conservation law equations that are split into linear combinations of the divergence and product rule form and then discretized using any diagonal-norm skew-symmetric summation-by-parts (SBP) spatial operator, yield discrete operators that are conservative. Furthermore, split-form, discretely conservation operators can be derived for periodic or finite-domain SBP spatial operators of any order. Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth-and eighth-order constructions are derived, and are supplied in an accompanying text file. Published by Elsevier Inc. C1 [Fisher, Travis C.; Carpenter, Mark H.] NASA Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. [Fisher, Travis C.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Nordstrom, Jan] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden. [Yamaleev, Nail K.] N Carolina Agr & Tech State Univ, Dept Math, Greensboro, NC 27411 USA. RP Carpenter, MH (reprint author), NASA Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. EM travis.fisher@nasa.gov; mark.h.carpenter@nasa.gov; jan.nordstrom@liu.se; nkyamale@ncat.edu; rcswanson11@yahoo.com OI Nordstrom, Jan/0000-0002-7972-6183 FU NASA [NNX09AV08A]; Army Research Laboratory [W911NF-06-R-006] FX Supported in part by NASA under Grant NNX09AV08A and the Army Research Laboratory under Grant W911NF-06-R-006. NR 37 TC 12 Z9 12 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2013 VL 234 BP 353 EP 375 DI 10.1016/j.jcp.2012.09.026 PG 23 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 044SW UT WOS:000311644900019 ER PT J AU Van De Kerchove, R Lhermitte, S Veraverbeke, S Goossens, R AF Van De Kerchove, R. Lhermitte, S. Veraverbeke, S. Goossens, R. TI Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Land surface temperature (LST); Fast Fourier transform (FFT); Russian Altay Mountains; Spatio-temporal variability; Physiographic predictors ID NDVI TIME-SERIES; URBAN HEAT-ISLAND; FOURIER-ANALYSIS; NOAA-AVHRR; MODIS DATA; LATE PLEISTOCENE; SOLAR-RADIATION; MOISTURE STATUS; ENERGY BALANCE; VEGETATION AB Spatio-temporal variability in energy fluxes at the earth's surface implies spatial and temporal changes in observed land surface temperatures (LST). These fluxes are largely determined by variation in meteorological conditions, surface cover and soil characteristics. Consequently, a change in these parameters will be reflected in a different temporal LST behavior which can be observed by remotely sensed time series. Therefore, the objective of this paper is to perform a quantitative analysis on the parameters that determine this variability in LST to estimate the impact of changes in these parameters on the surface thermal regime. This study was conducted in the Russian Altay Mountains, an area characterized by strong gradients in meteorological conditions and surface cover. Spatio-temporal variability in LST was assessed by applying the fast Fourier transform (FFT) on 8 year of MODIS Aqua LST time series, herein considering both day and nighttime series as well as the diurnal difference. This FFT method was chosen as it allows to discriminate significant periodics, and as such enables distinction between short-term weather components, and strong, climate related, periodic patterns. A quantitative analysis was based on multiple linear regression models between the calculated, significant Fourier components (i.e. the annual and average component) and five physiographic variables representing the regional variability in meteorological conditions and surface cover. Physiographic predictors were elevation, potential solar insolation, topographic convergence, vegetation cover and snow cover duration. Results illustrated the strong inverse relationship between averaged daytime and diurnal difference LST and snow duration, with a R-adj(2) of 0.85 and 0.60, respectively. On the other hand, nocturnal LST showed a strong connection with elevation and the amount of vegetation cover. Amplitudes of the annual harmonic experienced both for daytime and for nighttime LST similar trends with the set of physiographic variables - with stronger relationships at night. As such, topographic convergence was found to be the principal single predictor which demonstrated the importance of severe temperature inversions in the region. Furthermore, limited contribution of the physiographic predictors to the observed variation in the annual signal of the diurnal difference was retrieved, although a significant phase divergence was noticed between the majority of the study region and the perennial snowfields. Hence, this study gives valuable insights into the complexity of the spatio-temporal variability in LST, which can be used in future studies to estimate the ecosystems' response on changing climatic conditions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Van De Kerchove, R.; Veraverbeke, S.; Goossens, R.] Univ Ghent, Dept Geog, B-9000 Ghent, Belgium. [Lhermitte, S.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Lhermitte, S.] Univ La Serena, CEAZA, La Serena, Chile. [Veraverbeke, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Van De Kerchove, R (reprint author), Univ Ghent, Dept Geog, Krijgslaan 281,S8, B-9000 Ghent, Belgium. EM ruben.vandekerchove@ugent.be RI Veraverbeke, Sander/H-2301-2012; Lhermitte, Stef (Stefaan)/A-3385-2013; OI Veraverbeke, Sander/0000-0003-1362-5125; Lhermitte, Stef (Stefaan)/0000-0002-1622-0177; Van De Kerchove, Ruben/0000-0001-6314-4931 FU Flemish Agency for the promotion of Innovation by Science and Technology (IWT) FX This study was funded by the Flemish Agency for the promotion of Innovation by Science and Technology (IWT). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The JPL author's copyright for this publication is held by the California Institute of Technology. NR 84 TC 15 Z9 15 U1 2 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD FEB PY 2013 VL 20 SI SI BP 4 EP 19 DI 10.1016/j.jag.2011.09.007 PG 16 WC Remote Sensing SC Remote Sensing GA 025GB UT WOS:000310173800002 ER PT J AU Bergin, EA Cleeves, LI Gorti, U Zhang, K Blake, GA Green, JD Andrews, SM Evans, NJ Henning, T Oberg, K Pontoppidan, K Qi, CH Salyk, C van Dishoeck, EF AF Bergin, Edwin A. Cleeves, L. Ilsedore Gorti, Uma Zhang, Ke Blake, Geoffrey A. Green, Joel D. Andrews, Sean M. Evans, Neal J., II Henning, Thomas Oeberg, Karin Pontoppidan, Klaus Qi, Chunhua Salyk, Colette van Dishoeck, Ewine F. TI An old disk still capable of forming a planetary system SO NATURE LA English DT Article ID T-TAURI; PROTOPLANETARY DISKS; SOLAR NEBULA; GAS; HYA; EMISSION; SEARCH; PACS; LINE; MASS AB From the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star(1-4). (One astronomical unit is the EarthSun distance.) The main constituent of the disk, gaseous molecular hydrogen, does not efficiently emit radiation from the disk mass reservoir(5), and so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide(6). Carbon monoxide emission generally indicates properties of the disk surface, and the conversion from dust emission to gas mass requires knowledge of the grain properties and the gas-to-dust mass ratio, which probably differ from their interstellar values(7,8). As a result, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3-10 million years) star TW Hydrae(9,10), for which the range is 0.0005-0.06 solar masses(11-14). Here we report the detection of the fundamental rotational transition of hydrogen deuteride from the direction of TW Hydrae. Hydrogen deuteride is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emission is sensitive to the total mass. The detection of hydrogen deuteride, combined with existing observations and detailed models, implies a disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own. C1 [Bergin, Edwin A.; Cleeves, L. Ilsedore] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gorti, Uma] SETI Inst, Mountain View, CA 94043 USA. [Gorti, Uma] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zhang, Ke] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Blake, Geoffrey A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Green, Joel D.; Evans, Neal J., II] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Andrews, Sean M.; Oeberg, Karin; Qi, Chunhua] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Henning, Thomas] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Pontoppidan, Klaus] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Salyk, Colette] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [van Dishoeck, Ewine F.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Bergin, EA (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM ebergin@umich.edu RI zhang, ke/A-3898-2009; OI zhang, ke/0000-0002-0661-7517; Cleeves, L. Ilsedore/0000-0003-2076-8001 FU NASA through JPL/Caltech; US National Science Foundation [1008800] FX Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech and by the US National Science Foundation under grant 1008800. This paper makes use of the following Atacama Large Millimeter/submillimeter Array (ALMA) data: ADS/JAO.ALMA#2011.0.00001.SV. ALMA is a partnership of ESO (representing its member states), the NSF (USA) and NINS (Japan), together with the NRC (Canada) and the NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. NR 30 TC 82 Z9 82 U1 1 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 31 PY 2013 VL 493 IS 7434 BP 644 EP 646 DI 10.1038/nature11805 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 080CU UT WOS:000314219600050 PM 23364742 ER PT J AU Boggs, ASP Lowers, RH Cloy-McCoy, JA Guillette, LJ AF Boggs, Ashley S. P. Lowers, Russell H. Cloy-McCoy, Jessica A. Guillette, Louis J., Jr. TI Organizational Changes to Thyroid Regulation in Alligator mississippiensis: Evidence for Predictive Adaptive Responses SO PLOS ONE LA English DT Article ID CENTRAL CONGENITAL HYPOTHYROIDISM; JUVENILE AMERICAN ALLIGATORS; HORMONE CONCENTRATIONS; NEONATAL HYPERTHYROIDISM; SEASONAL-VARIATION; GROWTH-RATES; HPT AXIS; FLORIDA; CONTAMINANTS; NUTRITION AB During embryonic development, organisms are sensitive to changes in thyroid hormone signaling which can reset the hypothalamic-pituitary-thyroid axis. It has been hypothesized that this developmental programming is a 'predictive adaptive response', a physiological adjustment in accordance with the embryonic environment that will best aid an individual's survival in a similar postnatal environment. When the embryonic environment is a poor predictor of the external environment, the developmental changes are no longer adaptive and can result in disease states. We predicted that endocrine disrupting chemicals (EDCs) and environmentally-based iodide imbalance could lead to developmental changes to the thyroid axis. To explore whether iodide or EDCs could alter developmental programming, we collected American alligator eggs from an estuarine environment with high iodide availability and elevated thyroid-specific EDCs, a freshwater environment contaminated with elevated agriculturally derived EDCs, and a reference freshwater environment. We then incubated them under identical conditions. We examined plasma thyroxine and triiodothyronine concentrations, thyroid gland histology, plasma inorganic iodide, and somatic growth at one week (before external nutrition) and ten months after hatching (on identical diets). Neonates from the estuarine environment were thyrotoxic, expressing follicular cell hyperplasia (p = 0.01) and elevated plasma triiodothyronine concentrations (p = 0.0006) closely tied to plasma iodide concentrations (p = 0.003). Neonates from the freshwater contaminated site were hypothyroid, expressing thyroid follicular cell hyperplasia (p = 0.01) and depressed plasma thyroxine concentrations (p = 0.008). Following a ten month growth period under identical conditions, thyroid histology (hyperplasia p = 0.04; colloid depletion p = 0.01) and somatic growth (body mass p<0.0001; length p = 0.02) remained altered among the contaminated sites. This work supports the hypothesis that embryonic EDC exposure or iodide imbalance could induce adult metabolic disease states, thereby stressing the need to consider the multiple environmental variables present during development. C1 [Boggs, Ashley S. P.; Guillette, Louis J., Jr.] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA. [Boggs, Ashley S. P.; Guillette, Louis J., Jr.] Univ Florida, Dept Biol, Gainesville, FL USA. [Boggs, Ashley S. P.; Cloy-McCoy, Jessica A.; Guillette, Louis J., Jr.] Med Univ S Carolina, Dept Obstet & Gynecol, Charleston, SC 29425 USA. [Boggs, Ashley S. P.; Cloy-McCoy, Jessica A.; Guillette, Louis J., Jr.] Hollings Marine Lab, Charleston, SC USA. [Lowers, Russell H.] NASA, Kennedy Space Ctr, FL USA. RP Boggs, ASP (reprint author), Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA. EM aspboggs@gmail.com FU National Aeronautics and Space Administration Graduate Student Research Program [NNX09AK51H- SF 425]; NASA's Kennedy Space Center FX Funding for this research was provided, in part, by the National Aeronautics and Space Administration Graduate Student Research Program (grant number NNX09AK51H- SF 425) and NASA's Kennedy Space Center (https://fellowships.nasaprs.com/gsrp/nav/). Employees of the NASA Ecological Program (Innovative Health Applications) assisted in the collection of eggs from Merritt Island National Wildlife Refuge at Kennedy Space Center, but had no other influence on experimental design, experimental conduct, or the writing of this manuscript. NR 42 TC 1 Z9 1 U1 0 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 30 PY 2013 VL 8 IS 1 AR e55515 DI 10.1371/journal.pone.0055515 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 098QM UT WOS:000315563800162 PM 23383213 ER PT J AU Eisenberg, RS Kaufman, I Luchinsky, D Tindjong, R McClintock, PVE AF Eisenberg, Robert S. Kaufman, Igor Luchinsky, Dmitry Tindjong, Rodrique McClintock, Peter V. E. TI Discrete Conductance Levels in Calcium Channel Models: Multiband Calcium Selective Conduction SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 57th Annual Meeting of the Biophysical-Society CY FEB 02-06, 2013 CL Philadelphia, PA SP Biophys Soc C1 [Eisenberg, Robert S.] Rush Univ, Chicago, IL 60612 USA. [Kaufman, Igor; Luchinsky, Dmitry; Tindjong, Rodrique; McClintock, Peter V. E.] Univ Lancaster, Lancaster, England. [Luchinsky, Dmitry] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 0 TC 1 Z9 1 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JAN 29 PY 2013 VL 104 IS 2 SU 1 BP 358A EP 358A PG 1 WC Biophysics SC Biophysics GA 105MI UT WOS:000316074303331 ER PT J AU Shapiro, MG Priest, MF Siegel, PH Bezanilla, F AF Shapiro, Mikhail G. Priest, Michael F. Siegel, Peter H. Bezanilla, Francisco TI Temperature-Mediated Effects of Millimeter Wave Stimulation on Membrane Protein Function SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 57th Annual Meeting of the Biophysical-Society CY FEB 02-06, 2013 CL Philadelphia, PA SP Biophys Soc C1 [Shapiro, Mikhail G.] Univ Calif Berkeley, Miller Res Inst, Berkeley, CA 94720 USA. [Priest, Michael F.; Bezanilla, Francisco] Univ Chicago, Div Biol Sci, Chicago, IL 60637 USA. [Siegel, Peter H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Siegel, Peter H.] CALTECH, Dept Biol, Pasadena, CA 91125 USA. NR 0 TC 1 Z9 1 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JAN 29 PY 2013 VL 104 IS 2 SU 1 BP 679A EP 679A PG 1 WC Biophysics SC Biophysics GA 105MI UT WOS:000316074306434 ER PT J AU Petruska, J Barge, LM AF Petruska, John Barge, Laura M. TI Bilaterally symmetric facial morphology simulated by diffusion-controlled chemical precipitation in gel SO CHEMICAL PHYSICS LETTERS LA English DT Article ID MECHANISMS; PATTERN AB Reactions controlled by diffusion create self-organizing periodic patterns in chemical systems and play a key role in biological pattern formation through diffusion-generated morphogen gradients. To better understand the organizing ability of diffusion-controlled assembly, we investigated the formation of bilaterally symmetric morphologies by simple inorganic precipitation reactions in neutral agarose gel. Our results reveal that bilaterally symmetric 'face-like' deposits of insoluble products reproducibly form in gel, by reactions governed by the properties and concentrations of soluble reactants placed symmetrically relative to a midline and by the temporal and spatial distributions arising by diffusion from initial times and positions of reactant placement. (C) 2013 Published by Elsevier B.V. C1 [Petruska, John] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Barge, Laura M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Barge, LM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM laura.m.barge@jpl.nasa.gov FU National Aeronautics and Space Administration FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. (C) 2012. NR 21 TC 2 Z9 2 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JAN 29 PY 2013 VL 556 BP 315 EP 319 DI 10.1016/j.cplett.2012.12.041 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 072BU UT WOS:000313644100059 ER PT J AU Jin, ZH Lukashin, C Qiao, YL Gopalan, A AF Jin, Zhonghai Lukashin, Constantin Qiao, Yanli Gopalan, Arun TI An efficient and effective method to simulate the earth spectral reflectance over large temporal and spatial scales SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SYSTEM AB Atmospheric and surface properties have been measured from space with various spatial resolutions for decades. It is very challenging to derive the mean solar spectral radiance or reflectance over large temporal and spatial scales by explicit radiative transfer computations from the large volume of instantaneous data, especially at high spectral resolution. We propose a procedurally simple but effective method to compute the solar spectral reflectance in large climate domains, in which the probability distribution function (PDF) of cloud optical depth is used to account for the wide variation of cloud properties in different sensor footprints, and to avoid the repeated computations for footprints with similar conditions. This approach is tested with MODIS/CERES data and evaluated with SCIAMACHY measured spectral reflectance. The mean difference between model and observation is about 3% for the monthly global mean reflectance. This PDF-based approach provides a simple, fast, and effective way to simulate the mean spectral reflectance over large time and space scales with a large volume of high-resolution satellite data. Citation: Jin, Z., C. Lukashin, Y. Qiao, and A. Gopalan (2013), An efficient and effective method to simulate the earth spectral reflectance over large temporal and spatial scales, Geophys. Res. Lett., 40, 374-379, doi:10.1002/grl.50116. C1 [Jin, Zhonghai; Gopalan, Arun] Sci Syst & Applicat, Hampton, VA USA. [Jin, Zhonghai; Lukashin, Constantin; Gopalan, Arun] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. [Qiao, Yanli] Acad Sinica, Anhui Inst Opt & Fine Mech, Hefei 230031, Anhui, Peoples R China. RP Jin, ZH (reprint author), Sci Syst & Applicat, 1 Enterprise PKWY,STE 200, Hampton, VA USA. EM zhonghai.jin@nasa.gov RI Richards, Amber/K-8203-2015 FU CLARREO project of NASA FX We thank the SCIAMACHY team for the solar radiance data and the NASA CERES group for the SSF data, Dr. Brian Baum and Dr. Ping Yang for the new cloud data, and Dr. Sky Yang and Dr. Shuntai Zhou for the ozone data. We appreciate the valuable comments by Bruce Wielicki. This research is supported by the CLARREO project of NASA. NR 18 TC 4 Z9 4 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2013 VL 40 IS 2 BP 374 EP 379 DI 10.1002/GRL.50116 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HH UT WOS:000317829300027 ER PT J AU Gao, S Chiu, LS Shie, CL AF Gao, Si Chiu, Long S. Shie, Chung-Lin TI Trends and variations of ocean surface latent heat flux: Results from GSSTF2c data set SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BULK PARAMETERIZATION; WATER-VAPOR; ALGORITHM; EXCHANGE; COARE AB Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends. Citation: Gao, S., L. S. Chiu, and C.-L. Shie (2013), Trends and variations of ocean surface latent heat flux: Results from GSSTF2c data set, Geophysical Res. Lett., 40, 380-385, doi:10.1029/2012GL054620. C1 [Gao, Si; Chiu, Long S.] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA. [Shie, Chung-Lin] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Shie, Chung-Lin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chiu, LS (reprint author), George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA. EM lchiu@gmu.edu RI Gao, Si/D-7619-2015 FU NASA MEaSUREs program FX We benefitted from discussions with Drs. M. Kubota and L. Yu. This work was supported by the NASA MEaSUREs program. We thank program manager M. Maiden and program scientist J. Entin for their support of this research. The comments of two anonymous reviewers are also appreciated. NR 30 TC 3 Z9 3 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2013 VL 40 IS 2 BP 380 EP 385 DI 10.1029/2012GL054620 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HH UT WOS:000317829300028 ER PT J AU Molod, A Suarez, M Partyka, G AF Molod, Andrea Suarez, Max Partyka, Gary TI The impact of limiting ocean roughness on GEOS-5 AGCM tropical cyclone forecasts SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA MOMENTUM EXCHANGE; HIGH WIND SPEEDS; DRAG COEFFICIENT; BOUNDARY-LAYER; SURFACE-WAVES; PART I; AIR; FLUX; PARAMETERIZATION; HYPOTHESIS AB Global climate models have been shown to simulate tropical cyclone-like behavior even at relatively coarse resolution, and recent higher resolution simulations more accurately capture the intensity, structure, and interannual variability. Even the highest resolution global models, however, continue to underestimate the intensity of the strongest tropical cyclones. The simulated cyclone intensity has been shown by many studies to be greatly influenced by the fluxes at the air-sea interface. A simple modification has been implemented in the GEOS-5 atmospheric general circulationmodel (AGCM) based on existing theory and laboratory experiments, which demonstrated that the ocean roughness does not increase with surface stress beyond some threshold. A series of strong tropical cyclone simulations were performed with the GEOS-5 AGCM to evaluate the impact of imposing a limit on ocean surface roughness at high wind speeds. The results demonstrated clear improvements in cyclone intensity and structure in the simulations with limited ocean roughness. Citation: Molod, A., M. Suarez, and G. Partyka (2013), The impact of limiting ocean roughness on GEOS-5 AGCM tropical cyclone forecasts, Geophys. Res. Lett., 40, 411-416, doi:10.1029/2012GL053979. C1 [Molod, Andrea] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Molod, Andrea; Suarez, Max; Partyka, Gary] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Partyka, Gary] Sci Applicat Int Corp, Beltsville, MD USA. RP Molod, A (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM Andrea.Molod@nasa.gov FU NASA [WBS 802678.02.17.01.11]; NSF [0620101, 0620087] FX The authors wish to acknowledge scientific conversations with Oreste Reale about the nature and behavior of tropical cyclones. This research was supported by the NASA Modeling, Analysis and Prediction program under WBS 802678.02.17.01.11. Computational support was provided by the NASA Center for Climate Simulation and the NASA Advanced Supercomputing Division. The manuscript was written at the GAIN 2011 workshop, funded by NSF grant numbers 0620101 and 0620087. NR 27 TC 2 Z9 2 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2013 VL 40 IS 2 BP 411 EP 416 DI 10.1029/2012GL053979 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HH UT WOS:000317829300033 ER PT J AU Ziemba, LD Thornhill, KL Ferrare, R Barrick, J Beyersdorf, AJ Chen, G Crumeyrolle, SN Hair, J Hostetler, C Hudgins, C Obland, M Rogers, R Scarino, AJ Winstead, EL Anderson, BE AF Ziemba, Luke D. Thornhill, K. Lee Ferrare, Rich Barrick, John Beyersdorf, Andreas J. Chen, Gao Crumeyrolle, Suzanne N. Hair, John Hostetler, Chris Hudgins, Charlie Obland, Michael Rogers, Raymond Scarino, Amy Jo Winstead, Edward L. Anderson, Bruce E. TI Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; OPTICAL-PROPERTIES AB Extensive profiling of aerosol optical, chemical, and microphysical properties was performed in the Washington DC/Baltimore MD region in July 2011 during NASA DISCOVER-AQ. In situ extinction coefficient (sigma(ext,in-situ)) measurements were made aboard the NASA P3-B aircraft coincident with remote-sensing observations by the High-Spectral Resolution Lidar (HSRL; sigma(ext,HSRL)) aboard the NASA UC-12 aircraft. A statistical comparison revealed good agreement within instrumental uncertainty (sigma(ext,in-situ)=1.1(sigma ext,HSRL) - 3.2Mm(-1), r(2)=0.88) and demonstrated the robust nature of hygroscopicity measurements (f(RH)) necessary to correct observations at dry relative humidity (RH) to ambient conditions. The average liquid-water contribution to ambient visible-light extinction was as much as 43% in this urban region. f(RH) values were observed to vary significantly from 1.1 to 2.1 on a day-to-day basis suggesting influence from both local and transported sources. Results emphasize the importance of accounting for the RH dependence of optical-and mass-based aerosol air-quality measurements (e. g., of PM2.5), especially in relation to satellite and remote-sensing retrievals. Citation: Ziemba L. D., et al. (2013), Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity, Geophys. Res. Lett., 40, 417-422, doi:10.1029/2012GL054428. C1 [Ziemba, Luke D.; Thornhill, K. Lee; Ferrare, Rich; Barrick, John; Beyersdorf, Andreas J.; Chen, Gao; Crumeyrolle, Suzanne N.; Hair, John; Hostetler, Chris; Hudgins, Charlie; Obland, Michael; Rogers, Raymond; Scarino, Amy Jo; Winstead, Edward L.; Anderson, Bruce E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Thornhill, K. Lee; Barrick, John; Hudgins, Charlie; Scarino, Amy Jo; Winstead, Edward L.] Sci Syst & Applicat Inc, Lanham, MD USA. [Crumeyrolle, Suzanne N.] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Ziemba, LD (reprint author), NASA, Chem & Dynam Branch, Sci Directorate, Langley Res Ctr, 21 Langley Blvd,MS 401A,Bldg 1250,Room 126, Hampton, VA 23681 USA. EM luke.ziemba@nasa.gov RI Beyersdorf, Andreas/N-1247-2013 FU NASA's Earth Venture-1 Program through the Earth System Science Pathfinder (ESSP) Program Office; ESSP Program Office FX This research was funded by NASA's Earth Venture-1 Program through the Earth System Science Pathfinder (ESSP) Program Office. We wish to thank the ESSP Program Office for their support throughout the first DISCOVER-AQ deployment. We would also like to express our deep appreciation to Mary Kleb and to the pilots and flight crews of NASA's P-3B and UC-12 for their important contributions. Thanks to Glenn Diskin and his research group for the use of CO data. We would also like to acknowledge the helpful comments during the peer-review process. NR 17 TC 28 Z9 29 U1 4 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2013 VL 40 IS 2 BP 417 EP 422 DI 10.1029/2012GL054428 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HH UT WOS:000317829300034 ER PT J AU Papadimitriou, VC McGillen, MR Fleming, EL Jackman, CH Burkholder, JB AF Papadimitriou, Vassileios C. McGillen, Max R. Fleming, Eric L. Jackman, Charles H. Burkholder, James B. TI NF3: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NITROGEN TRIFLUORIDE; CROSS-SECTIONS; O(D-1); SF5CF3 AB Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O(D-1) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(lambda, T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm, T) of similar to 45% between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(lambda, T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased <0.3, 1.1, and 6.5% to 13,300, 17,700, and 19,700, respectively. Citation: Papadimitriou, V. C., M. R. McGillen, E. L. Fleming, C. H. Jackman, and J. B. Burkholder (2013), NF3: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications, Geophys. Res. Lett., 40, 440-445, doi:10.1002/grl.50120. C1 [Papadimitriou, Vassileios C.; McGillen, Max R.; Burkholder, James B.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Papadimitriou, Vassileios C.; McGillen, Max R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Papadimitriou, Vassileios C.] Univ Crete, Dept Chem, Lab Photochem & Chem Kinet, Iraklion, Crete, Greece. [Fleming, Eric L.; Jackman, Charles H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fleming, Eric L.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Burkholder, JB (reprint author), NOAA, Earth Syst Res Lab, Div Chem Sci, 325 Broadway, Boulder, CO 80305 USA. EM James.B.Burkholder@noaa.gov RI Jackman, Charles/D-4699-2012; Manager, CSD Publications/B-2789-2015; McGillen, Max/G-5196-2011; Burkholder, James/H-4914-2013 OI McGillen, Max/0000-0002-1623-5985; FU National Oceanic and Atmospheric Administration Climate Goal Program; NASA Atmospheric Composition Program FX This work was supported in part by the National Oceanic and Atmospheric Administration Climate Goal Program and the NASA Atmospheric Composition Program. NR 15 TC 9 Z9 9 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2013 VL 40 IS 2 BP 440 EP 445 DI 10.1002/grl.50120 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HH UT WOS:000317829300038 ER PT J AU Papanastasiou, DK Carlon, NR Neuman, JA Fleming, EL Jackman, CH Burkholder, JB AF Papanastasiou, Dimitrios K. Carlon, Nabilah Rontu Neuman, J. Andrew Fleming, Eric L. Jackman, Charles H. Burkholder, James B. TI Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone-depleting substances CF2Br2, CF2ClBr, and CF2BrCF2Br SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CROSS-SECTIONS; HALOALKANES AB The contribution of Halons, bromine-containing haloalkanes, to stratospheric ozone depletion is highly dependent on their atmospheric lifetime, which is primarily determined by UV photolysis. In this work, UV absorption cross-sections of the ozone-depleting substances CF2Br2 (Halon-1202), CF2ClBr (Halon-1211), and CF2BrCF2Br (Halon-2402) were measured between 300 and 350 nm over the temperature range 210-296 K using cavity ring-down spectroscopy. Rayleigh scattering cross-sections were also determined and utilized in the cross-section determination. Spectra parameterizations are presented and 2-D atmospheric model calculations were used to determine global annually averaged atmospheric lifetimes of 2.52, 16.4, and 28.3 years, ozone depletion potentials (ODPs) of 1.95, 8.1, and 18.4, global warming potentials (GWPs) of 175, 1940, and 2270 (100-year time horizon), and associated uncertainties for CF2Br2, CF2ClBr, and CF2BrCF2Br, respectively. The revised lifetimes, ODPs, and GWPs differ from values currently reported in international assessments to evaluate ozone recovery and climate change. Citation: Papanastasiou, D. K., N. R. Carlon, J. A. Neuman, E. L. Fleming, C. H. Jackman, and J. B. Burkholder (2013), Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone-depleting substances CF2Br2, CF2ClBr, and CF2BrCF2Br, Geophys. Res. Lett., 40, 464-469, doi:101002/grl.50121. C1 [Papanastasiou, Dimitrios K.; Carlon, Nabilah Rontu; Neuman, J. Andrew; Burkholder, James B.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Papanastasiou, Dimitrios K.; Carlon, Nabilah Rontu; Neuman, J. Andrew] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Fleming, Eric L.; Jackman, Charles H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fleming, Eric L.] Sci Syst & Applicat Inc, Lanham, MD USA. [Papanastasiou, Dimitrios K.] Fdn Res & Technol Hellas, Inst Chem Engn & High Temp Chem Proc, Patras, Greece. RP Burkholder, JB (reprint author), NOAA, Earth Syst Res Lab, Div Chem Sci, 325 Broadway, Boulder, CO 80305 USA. EM James.B.Burkholder@noaa.gov RI Burkholder, James/H-4914-2013; Papanastasiou, Dimitrios/O-1419-2013; Jackman, Charles/D-4699-2012; Neuman, Andy/A-1393-2009; Manager, CSD Publications/B-2789-2015 OI Papanastasiou, Dimitrios/0000-0003-3963-162X; Neuman, Andy/0000-0002-3986-1727; FU National Oceanic and Atmospheric Administration Climate Goal Program; NASA Atmospheric Composition Program FX This work was supported in part by the National Oceanic and Atmospheric Administration Climate Goal Program and the NASA Atmospheric Composition Program. NR 12 TC 7 Z9 7 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2013 VL 40 IS 2 BP 464 EP 469 DI 10.1002/GRL.50121 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129HH UT WOS:000317829300042 ER PT J AU Sun, XL Skillman, DR Hoffman, ED Mao, DD McGarry, JF McIntire, L Zellar, RS Davidson, FM Fong, WH Krainak, MA Neumann, GA Zuber, MT Smith, DE AF Sun, Xiaoli Skillman, David R. Hoffman, Evan D. Mao, Dandan McGarry, Jan F. McIntire, Leva Zellar, Ronald S. Davidson, Frederic M. Fong, Wai H. Krainak, Michael A. Neumann, Gregory A. Zuber, Maria T. Smith, David E. TI Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit SO OPTICS EXPRESS LA English DT Article ID LINK AB Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model. (C) 2013 Optical Society of America C1 [Sun, Xiaoli; Skillman, David R.; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H.; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hoffman, Evan D.] Honeywell Technol Solut Inc, Columbia, MD 21046 USA. [Mao, Dandan] Sigma Space Corp, Lanham, MD 20706 USA. [McIntire, Leva] Catholic Univ Amer, Washington, DC 20064 USA. [Davidson, Frederic M.] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA. [Zuber, Maria T.; Smith, David E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Sun, XL (reprint author), NASA, Goddard Space Flight Ctr, Code 694-599-567-554-698, Greenbelt, MD 20771 USA. EM xiaoli.sun-1@nasa.gov RI Davidson, Frederic /A-3273-2010; Sun, Xiaoli/B-5120-2013; Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 NR 16 TC 14 Z9 21 U1 2 U2 38 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 28 PY 2013 VL 21 IS 2 BP 1865 EP 1871 DI 10.1364/OE.21.001865 PG 7 WC Optics SC Optics GA 104JT UT WOS:000315989500054 PM 23389171 ER PT J AU Adamovsky, G Wrbanek, S AF Adamovsky, G. Wrbanek, S. TI Coupling of low-order LP modes propagating in cylindrical waveguides into whispering gallery modes in microspheres SO OPTICS EXPRESS LA English DT Article ID MORPHOLOGY-DEPENDENT RESONANCES; OPTICAL-FIBER; RESONATORS; EXCITATION; APPROXIMATION AB Whispering gallery modes in microspheres are excited by light delivered to them via optical fibers imbedded in a half-block coupler. The corresponding light intensity resonances in microspheres and coupling of two low-order linearly polarized modes in the fibers, LP01 and LP11, into the microspheres are observed. The LP01 and LP11 modes are delivered to the microsphere via a cylindrical optical fiber carrying light at two operating wavelengths, 1550 and 1300 nm correspondingly. The resonances behavioral differences generated by these fiber modes are also observed and explained. The properties of resonances generated by the LP01 and LP11 modes are analyzed using a linear polarizer inserted in the path of light propagating in optical fibers. (C) 2013 Optical Society of America C1 [Adamovsky, G.; Wrbanek, S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Adamovsky, G (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM g.adamovsky@nasa.gov FU Vehicle System Safety Technology (VSST) Project of the NASA Aviation Safety Program FX The work is being supported by the Vehicle System Safety Technology (VSST) Project of the NASA Aviation Safety Program. NR 37 TC 3 Z9 3 U1 1 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 28 PY 2013 VL 21 IS 2 BP 2279 EP 2286 DI 10.1364/OE.21.002279 PG 8 WC Optics SC Optics GA 104JT UT WOS:000315989500090 PM 23389207 ER PT J AU McKitterick, CB Prober, DE Karasik, BS AF McKitterick, Christopher B. Prober, Daniel E. Karasik, Boris S. TI Performance of graphene thermal photon detectors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NOISE; BOLOMETER; AMPLIFIER; BAND AB We analyze the performance of graphene microstructures as thermal photon detectors and deduce the range of parameters that define a linear response. The saturation effects of a graphene thermal detector that operates beyond the linear range are described in detail for a single-photon detector (calorimeter). We compute the effect of operating beyond this linear range and find that sensitive detection occurs for such non-linear operation. We identify the optimum conditions and find that single-photon detection at terahertz frequencies should be feasible. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789360] C1 [McKitterick, Christopher B.; Prober, Daniel E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [McKitterick, Christopher B.; Prober, Daniel E.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Karasik, Boris S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP McKitterick, CB (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. FU NSF [DMR 0907082]; Yale University FX We acknowledge support from NSF DMR 0907082 and Yale University. We also acknowledge productive discussions with F. W. Carter, J. D. Chudow, H. D. Drew, X. Du, K. C. Fong, M. Fuhrer, S. H. Moseley, D. F. Santavicca, A. V. Sergeev, and A. E. Szymkowiak. The research of B. S. Karasik was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 37 TC 16 Z9 16 U1 3 U2 60 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 28 PY 2013 VL 113 IS 4 AR 044512 DI 10.1063/1.4789360 PG 6 WC Physics, Applied SC Physics GA 086XZ UT WOS:000314724500130 ER PT J AU Xu, TB Tolliver, L Jiang, XN Su, J AF Xu, Tian-Bing Tolliver, Laura Jiang, Xiaoning Su, Ji TI A single crystal lead magnesium niobate-lead titanate multilayer-stacked cryogenic flextensional actuator SO APPLIED PHYSICS LETTERS LA English DT Article ID PERFORMANCE; TRANSDUCER; BEHAVIOR; CYMBAL; STRAIN AB A "33" mode single crystal lead magnesium niobate-lead titanate flextensional actuator with large displacement, high load capability, and broad bandwidth was designed, prototyped, and evaluated at temperatures ranging from room temperature to cryogenic temperatures. Measuring 27.4 x 10 x 13.6 mm (height) overall and weighing 9.2 g, the actuator generates a 96.5 mu m displacement in the Z-direction at 170 V-rms. The level of displacement remained constant under compressive loads up to 5 kg force. The actuator maintains 66% of its room temperature displacement at -196 degrees C. The measured displacements matched well with those modeled using ANSYS finite element analysis. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790142] C1 [Xu, Tian-Bing] Natl Inst Aerosp, Hampton, VA 23666 USA. [Tolliver, Laura; Jiang, Xiaoning] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Su, Ji] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Xu, TB (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. RI Jiang, Xiaoning/E-6619-2011 OI Jiang, Xiaoning/0000-0003-3605-3801 NR 18 TC 15 Z9 15 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 28 PY 2013 VL 102 IS 4 AR 042906 DI 10.1063/1.4790142 PG 4 WC Physics, Applied SC Physics GA 086XS UT WOS:000314723600063 ER PT J AU Panesi, M Jaffe, RL Schwenke, DW Magin, TE AF Panesi, Marco Jaffe, Richard L. Schwenke, David W. Magin, Thierry E. TI Rovibrational internal energy transfer and dissociation of N-2((1)Sigma(+)(g))-N(S-4(u)) system in hypersonic flows SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID THERMAL RATE CONSTANTS; II FLIGHT EXPERIMENT; VIBRATIONAL-RELAXATION; ROTATIONAL RELAXATION; 3-BODY RECOMBINATION; RATE COEFFICIENTS; CLASSICAL-MODEL; ATOMIC NITROGEN; DIATOMIC GASES; SHOCK-WAVE AB A rovibrational collisional model is developed to study energy transfer and dissociation of N-2((1)Sigma(+)(g)) molecules interacting with N(S-4(u)) atoms in an ideal isochoric and isothermal chemical reactor. The system examined is a mixture of molecular nitrogen and a small amount of atomic nitrogen. This mixture, initially at room temperature, is heated by several thousands of degrees Kelvin, driving the system toward a strong non-equilibrium condition. The evolution of the population densities of each individual rovibrational level is explicitly determined via the numerical solution of the master equation for temperatures ranging from 5000 to 50 000 K. The reaction rate coefficients are taken from an ab initio database developed at NASA Ames Research Center. The macroscopic relaxation times, energy transfer rates, and dissociation rate coefficients are extracted from the solution of the master equation. The computed rotational-translational (RT) and vibrational-translational (VT) relaxation times are different at low heat bath temperatures (e. g., RT is about two orders of magnitude faster than VT at T = 5000 K), but they converge to a common limiting value at high temperature. This is contrary to the conventional interpretation of thermal relaxation in which translational and rotational relaxation timescales are assumed comparable with vibrational relaxation being considerable slower. Thus, this assumption is questionable under high temperature non-equilibrium conditions. The exchange reaction plays a very significant role in determining the dynamics of the population densities. The macroscopic energy transfer and dissociation rates are found to be slower when exchange processes are neglected. A macroscopic dissociation rate coefficient based on the quasi-stationary distribution, exhibits excellent agreement with experimental data of Appleton et al. [J. Chem. Phys. 48, 599-608 (1968)]. However, at higher temperatures, only about 50% of dissociation is found to take place under quasi-stationary state conditions. This suggest the necessity of explicitly including some rovibrational levels, when solving a global kinetic rate equation. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774412] C1 [Panesi, Marco] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. [Jaffe, Richard L.; Schwenke, David W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Magin, Thierry E.] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium. RP Panesi, M (reprint author), Univ Illinois, Dept Aerosp Engn, 104 S Wright St, Urbana, IL 61801 USA. EM mpanesi@illinois.edu RI schwenke, david/I-3564-2013; Magin, Thierry/A-7533-2016 OI Magin, Thierry/0000-0002-4376-1518 FU NASA's Hypersonics-Entry, Descent, and Landing Project; Fundamental Aeronautics Program/Hypersonics Project; European Research Council [259354] FX The authors have benefited from numerous discussions with Dr. G. Chaban, Dr. W. Huo, and Dr. Y. Liu at NASA Ames Research Center. We gratefully acknowledge Dr. A. Bourdon at the EM2C Laboratory and Mr. A. Munafo at the von Karman Institute for Fluid Dynamics, for their help with processing the database. This work was initiated during the 2008 Summer Program at the Center for Turbulence Research at Stanford University and has been supported by NASA's Hypersonics-Entry, Descent, and Landing Project and Fundamental Aeronautics Program/Hypersonics Project. T. E. M. acknowledges support from the European Research Council Starting Grant #259354. NR 70 TC 43 Z9 43 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2013 VL 138 IS 4 AR 044312 DI 10.1063/1.4774412 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 086YL UT WOS:000314725900029 PM 23387589 ER PT J AU Lewis, SC LeGrande, AN Kelley, M Schmidt, GA AF Lewis, Sophie C. LeGrande, Allegra N. Kelley, Maxwell Schmidt, Gavin A. TI Modeling insights into deuterium excess as an indicator of water vapor source conditions SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LAST GLACIAL MAXIMUM; ANTARCTIC ICE CORES; EPICA DOME-C; SEA-SURFACE TEMPERATURE; SENSIBLE HEAT-FLUX; ATMOSPHERIC CIRCULATION; ISOTOPIC COMPOSITION; EAST ANTARCTICA; CLIMATE SIMULATIONS; CLOUD PROCESSES AB Deuterium excess (d) is interpreted in conventional paleoclimate reconstructions as a tracer of oceanic source region conditions, such as temperature, where precipitation originates. Previous studies have adopted coisotopic approaches (using both delta O-18 and d) to estimate past changes in both site and oceanic source temperatures for ice core sites using empirical relationships derived from conceptual distillation models, particularly Mixed Cloud Isotopic Models (MCIMs). However, the relationship between d and oceanic surface conditions remains unclear in past contexts. We investigate this climate-isotope relationship for sites in Greenland and Antarctica using multiple simulations of the water isotope-enabled Goddard Institute for Space Studies ModelE-R general circulation model and apply a novel suite of model vapor source distribution (VSD) tracers to assess d as a proxy for source temperature variability under a range of climatic conditions. Simulated average source temperatures determined by the VSDs are compared to synthetic source temperature estimates calculated using MCIM equations linking d to source region conditions. We show that although deuterium excess is generally a faithful tracer of source temperatures as estimated by the MCIM approach, large discrepancies in the isotope-climate relationship occur around Greenland during the Last Glacial Maximum simulation, when precipitation seasonality and moisture source regions were notably different from the present. This identified sensitivity in d as a source temperature proxy suggests that quantitative climate reconstructions from deuterium excess should be treated with caution for some sites when boundary conditions are significantly different from the present day. Also, the exclusion of the influence of humidity and other evaporative source changes in MCIM regressions may be a limitation of quantifying source temperature fluctuations from deuterium excess in some instances. Citation: Lewis, S. C., A. N. LeGrande, M. Kelley, and G. A. Schmidt (2013), Modeling insights into deuterium excess as an indicator of water vapor source conditions, J. Geophys. Res. Atmos., 118, 243-262, doi:10.1029/2012JD017804. C1 [Lewis, Sophie C.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia. [LeGrande, Allegra N.; Kelley, Maxwell; Schmidt, Gavin A.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. [LeGrande, Allegra N.; Kelley, Maxwell; Schmidt, Gavin A.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. RP Lewis, SC (reprint author), Univ Melbourne, Sch Earth Sci, Parkville, Vic 3010, Australia. EM sophie.lewis@unimelb.edu.au RI Schmidt, Gavin/D-4427-2012; Lewis, Sophie/H-4968-2011 OI Schmidt, Gavin/0000-0002-2258-0486; Lewis, Sophie/0000-0001-6416-0634 FU NSF [ATM 07-53868]; APA/ASS/JAE Scholarships; Paterson Fellowship/ANU FX The authors thank NASA GISS for institutional support. NSF ATM 07-53868 supports A.N.L. and travel for S. C. L. This study was assisted by APA/ASS/JAE Scholarships and travel funding from Paterson Fellowship/ANU Vice-Chancellor to S. C. L. The authors also thank two anonymous reviewers, who greatly assisted in improving this manuscript. NR 71 TC 13 Z9 14 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 243 EP 262 DI 10.1029/2012JD017804 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100001 ER PT J AU Feng, X Bosilovich, M Houser, P Chern, JD AF Feng, X. Bosilovich, M. Houser, P. Chern, J. -D. TI Impact of land surface conditions on 2004 North American monsoon in GCM experiments SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHWEST UNITED-STATES; GULF-OF-CALIFORNIA; SOIL-MOISTURE; INTERANNUAL VARIABILITY; SUMMER PRECIPITATION; REGIONAL REANALYSIS; MEXICAN MONSOON; CLIMATE MODEL; RAINFALL; SYSTEM AB In this study, two sets of six-member ensemble simulations were performed for the boreal summer of 2004 using the Finite Volume General Circulation model to investigate the sensitivity of the North American monsoon (NAM) system to land surface conditions and further to identify the mechanisms by which land surface processes control the NAM precipitation. The control simulation uses a fully interactive land surface model, whereas the sensitivity experiment uses prescribed land surface fields from the Global Land Data Assimilation System. The response of the monsoon precipitation to land surface changes varies over different regions modulated by two different soil moisture-precipitation feedbacks. The vast northern NAM region, including most of Arizona and New Mexico, as well as the northwestern Mexico shows that soil moisture has a positive feedback with precipitation primarily due to local recycling mechanisms. The reduction of soil moisture decreases latent heat flux and increases sensible heat flux and consequently increases the Bowen ratio and surface temperature, leading to a deep (warm and dry) boundary layer, which suppresses convection and hence reduces precipitation. Over the west coast of Mexico near Sinaloa, a negative soil moisture-precipitation relationship is noted to be associated with a large-scale mechanism. The reduced soil moisture changes surface fluxes and hence boundary layer instability and ultimately low-level circulation. As a result, the changes in surface pressure and large scale wind field increase moisture flux convergence and consequently moisture content, leading to increased atmospheric instability and in turn enhancing convection and accordingly precipitation. These results further reinforce the important role of land surface conditions on surface process, boundary structure, atmospheric circulation, and rainfall during the NAM development. Citation: Feng, X., M. Bosilovich, P. Houser, and J.-D. Chern (2013), Impact of land surface conditions on 2004 North American monsoon in GCM experiments, J. Geophys. Res. Atmos., 118, 293-305, doi:10.1029/2012JD018805. C1 [Feng, X.; Houser, P.] George Mason Univ, Fairfax, VA 22030 USA. [Bosilovich, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chern, J. -D.] Morgan State Univ, Baltimore, MD 21239 USA. RP Feng, X (reprint author), George Mason Univ, Fairfax, VA 22030 USA. EM xfeng@gmu.edu RI Houser, Paul/J-9515-2013; Bosilovich, Michael/F-8175-2012 OI Houser, Paul/0000-0002-2991-0441; FU GAPP-PACS FX This work was sponsored by GAPP-PACS Warm Season Precipitation Initiative. The authors thank three anonymous reviewers for their valuable comments that helped improve an early version of the manuscript. NR 62 TC 4 Z9 4 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 293 EP 305 DI 10.1029/2012JD018805 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100004 ER PT J AU Guan, B Waliser, DE Li, JLF da Silva, A AF Guan, Bin Waliser, Duane E. Li, Jui-Lin F. da Silva, Arlindo TI Evaluating the impact of orbital sampling on satellite-climate model comparisons SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STOCHASTIC-MODEL; RAINFALL; ERRORS AB The effect of orbital sampling is one of the chief uncertainties in satellite-climate model comparisons. In the context of an ongoing activity to make satellite data more accessible for model evaluation (i.e., obs4MIPs), six variables (temperature, specific humidity, ozone, cloud water, cloud cover, and ocean surface wind) associated with six satellite instruments are evaluated for the orbital sampling effect. Comparisons are made between reanalysis and simulated satellite-sampled data in terms of bias and pattern similarity. It is found that the bias introduced by orbital sampling for long-term annual means, monthly climatologies, and monthly means is largely negligible, which is within similar to 3% of the standard deviation of the three quantities for most fields. The bias for 2-hPa temperature and specific humidity, while relatively large (9-10%), is within the estimated observational uncertainty. In terms of pattern similarity, cloud water and upper level specific humidity are the most sensitive to orbital sampling among the variables considered, with the magnitude of the sampling effect dependent on the spatial resolution-insignificant at 1.25 degrees x 1.25 degrees resolution for both. For all variables considered, orbital sampling effects are not an important consideration for model evaluation at 1.25 degrees x 1.25 degrees resolution. At 0.5 degrees x 0.5 degrees, orbital sampling is potentially important for cloud water and upper level specific humidity when evaluating model long-term annual means and monthly climatologies, and for cloud water when evaluating monthly means, all in terms of pattern similarities. Orbital sampling is not an important factor for evaluating zonal means in call cases considered. Citation: Guan, B., D. E. Waliser, J. F. Li, and A. da Silva (2013), Evaluating the impact of orbital sampling on satellite-climate model comparisons, J. Geophys. Res. Atmos., 118, 355-369, doi:10.1029/2012JD018590. C1 [Guan, Bin; Waliser, Duane E.; Li, Jui-Lin F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Guan, Bin] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [da Silva, Arlindo] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guan, B (reprint author), CALTECH, Jet Prop Lab, MS 233-300,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bin.guan@jpl.nasa.gov RI Guan, Bin/F-6735-2010 FU National Aeronautics and Space Administration FX CFSR data were made available by NCEP and downloaded from the CISL Research Data Archive managed by NCAR. MERRA data were made available by the Global Modeling and Assimilation Office (GMAO) and disseminated by the GES DISC. DEW's, JLL's and BG's contribution to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 33 TC 12 Z9 12 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 355 EP 369 DI 10.1029/2012JD018590 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100009 ER PT J AU Su, WY Loeb, NG Schuster, GL Chin, M Rose, FG AF Su, Wenying Loeb, Norman G. Schuster, Gregory L. Chin, Mian Rose, Fred G. TI Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SUN PHOTOMETER MEASUREMENTS; BIOMASS-BURNING AEROSOLS; OPTICAL-PROPERTIES; LIGHT-ABSORPTION; SPECTRAL DEPENDENCE; ORGANIC-CARBON; DUST AEROSOLS; BROWN CARBON; MODEL; CLIMATE AB Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon Moderate Resolution Imaging Spectroradiometer (MODIS) and Model for Atmospheric Transport and Chemistry (MATCH) assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF) by assuming that the anthropogenic fractions from GOCART are representative. The global (60 degrees N similar to 60 degrees S) mean all-skyMODIS/MATCHDRF is -0.51 Wm(-2) at the top of the atmosphere (TOA), 2.51 Wm(-2) within the atmosphere, and -3.02 Wm(-2) at the surface. The GOCART all-sky DRF is -0.17 Wm(-2) at the TOA, 2.02 Wm(-2) within the atmosphere, and -2.19 Wm(-2) at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are more absorbing than those in MODIS/MATCH. Large difference in all-sky TOA DRF from these two aerosol data sets highlights the complexity in determining the all-sky DRF, since the presence of clouds amplifies the sensitivities of DRF to aerosol single-scattering albedo and aerosol vertical distribution. C1 [Su, Wenying; Loeb, Norman G.; Schuster, Gregory L.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Chin, Mian] Goddard Space & Flight Ctr, Greenbelt, MD USA. [Rose, Fred G.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Su, WY (reprint author), NASA, Langley Res Ctr, Sci Directorate, MS 420, Hampton, VA 23681 USA. EM Wenying.Su-1@nasa.gov RI Chin, Mian/J-8354-2012; OI Rose, Fred G/0000-0003-0769-0772 FU NASA's Earth Science Enterprise FX This work was funded by NASA's Earth Science Enterprise. We thank Thomas Diehl and Qian Tan from NASA GSFC for providing GOCART simulations. NR 60 TC 16 Z9 17 U1 1 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 655 EP 669 DI 10.1029/2012JD018294 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100030 ER PT J AU Wang, HL Su, WY AF Wang, Hailan Su, Wenying TI Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODELS; BUDGET EXPERIMENT; PERFORMANCE; SURFACE; SYSTEM; IMPACT AB In this study, the annual mean climatology of top of the atmosphere (TOA) shortwave and longwave cloud radiative effects in 12 Atmospheric Model Intercomparison Project (AMIP)-type simulations participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated and investigated using satellite-based observations, with a focus on the tropics. Results show that the CMIP5 AMIPs simulate large-scale regional mean TOA radiative fluxes and cloud radiative forcings (CRFs) well but produce considerably less cloud amount, particularly in the middle and lower troposphere. The good model simulations in tropical means, with multimodel mean biases of -3.6 W/m(2) for shortwave CRF and -1.0 W/m(2) for longwave CRF, are, however, a result of compensating errors over different dynamical regimes. Over the Maritime Continent, most of the models simulate moderately less high-cloud fraction, leading to weaker shortwave cooling and longwave warming and a larger net cooling. Over subtropical strong subsidence regimes, most of the CMIP5 models strongly underestimate stratocumulus cloud amount and show considerably weaker local shortwave CRF. Over the transitional trade cumulus regimes, a notable feature is that while at varying amplitudes, most of the CMIP5 models consistently simulate a deeper and drier boundary layer, more moist free troposphere, and more high clouds and, consequently, overestimate shortwave cooling and longwave warming effects there. While most of the CMIP5 models show the same sign as the multimodel mean, there are substantial model spreads, particularly over the tropical deep convective and subtropical strong subsidence regimes. Representing clouds and their TOA radiative effects remains a challenge in the CMIP5 models. C1 [Wang, Hailan; Su, Wenying] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23666 USA. [Wang, Hailan] Sci Syst & Applicat Inc, Hampton, VA USA. RP Wang, HL (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM hailan.wang@nasa.gov FU NASA CLOUDSAT; CALIPSO Science Team Recompete program [NNH09ZDA001N-CCST] FX This study is supported by the NASA CLOUDSAT and CALIPSO Science Team Recompete program (NNH09ZDA001N-CCST). We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Inter-comparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The CERES EBAF edition 2.6r data were obtained from the NASA Langley Research Center CERES ordering tool at http://ceres.larc.nasa.gov/cmip5_data.php/. The CALIPSO-GOCCP data were obtained from the GOCCP Web site (http://climserv.ipsl.polytechnique.fr/cfmip-obs/). The modified Taylor diagrams were made using GrADS scripts from Bin Guan's GrADS Script Library (http://www.atmos.umd.edu/similar to bguan/grads/GrADS_Scripts.html). We thank two anonymous reviewers, whose comments and suggestions have significantly improved this paper. NR 46 TC 23 Z9 24 U1 3 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 683 EP 699 DI 10.1029/2012JD018619 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100032 ER PT J AU Yu, HB Chin, M West, JJ Atherton, CS Bellouin, N Bergmann, D Bey, I Bian, HS Diehl, T Forberth, G Hess, P Schulz, M Shindell, D Takemura, T Tan, Q AF Yu, Hongbin Chin, Mian West, J. Jason Atherton, Cynthia S. Bellouin, Nicolas Bergmann, Dan Bey, Isabelle Bian, Huisheng Diehl, Thomas Forberth, Gerd Hess, Peter Schulz, Michael Shindell, Drew Takemura, Toshihiko Tan, Qian TI A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BLACK CARBON; ATMOSPHERIC AEROSOLS; INTEGRATED ANALYSIS; OPTICAL-PROPERTIES; CLIMATE RESPONSE; GLOBAL-MODELS; MIXING STATE; AIR-QUALITY; POLLUTION; AEROCOM AB In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean +/- one standard deviation) is -3.5 +/- 0.8, -4.0 +/- 1.7, and 29.5 +/- 18.1 mW m(-2) per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 +/- 5% to 31 +/- 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 +/- 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 +/- 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations. C1 [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Yu, Hongbin; Chin, Mian; Bian, Huisheng; Diehl, Thomas; Tan, Qian] NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD 20771 USA. [West, J. Jason] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC USA. [Atherton, Cynthia S.] Gordon & Betty Moore Fdn, Palo Alto, CA USA. [Bellouin, Nicolas; Forberth, Gerd] Met Off Hadley Ctr, Exeter, Devon, England. [Bergmann, Dan] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. [Bey, Isabelle] ETH, Ctr Climate Syst Modeling, Zurich, Switzerland. [Bian, Huisheng] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Diehl, Thomas; Tan, Qian] Univ Space Res Assoc, Columbia, MD USA. [Hess, Peter] Cornell Univ, Ithaca, NY USA. [Schulz, Michael] Inst Meteorol, Oslo, Norway. [Shindell, Drew] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Takemura, Toshihiko] Kyushu Univ, Res Inst Appl Mech, Fukuoka 812, Japan. RP Yu, HB (reprint author), NASA, Goddard Space Flight Ctr, Code 613, Greenbelt, MD 20771 USA. EM hongbin.yu@nasa.gov RI Bergmann, Daniel/F-9801-2011; Takemura, Toshihiko/C-2822-2009; Yu, Hongbin/C-6485-2008; Chin, Mian/J-8354-2012; Shindell, Drew/D-4636-2012; Kyushu, RIAM/F-4018-2015; West, Jason/J-2322-2015; Hess, Peter/M-3145-2015; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016 OI Bellouin, Nicolas/0000-0003-2109-9559; Bergmann, Daniel/0000-0003-4357-6301; Takemura, Toshihiko/0000-0002-2859-6067; Yu, Hongbin/0000-0003-4706-1575; West, Jason/0000-0001-5652-4987; Hess, Peter/0000-0003-2439-3796; Schulz, Michael/0000-0003-4493-4158; FU NASA [NNX11AH66G]; U.S. Department of Energy (BER) at LLNL [DE-AC52-07NA27344] FX H.Y. was supported by NASA grant NNX11AH66G, managed by Richard Eckman. M.C. and H.B. were supported by NASA Modeling, Analysis, and Prediction program managed by David Considine. C.S.A. and D.B. were supported by the U.S. Department of Energy (BER) at LLNL under contract DE-AC52-07NA27344. N.B. thanks Shekar Reddy, formerly with the Met Office Hadley Centre, for carrying out the HadGEM2 simulations. We are grateful to many colleagues, including Frank Dentener and Bill Collins, for helpful comments. The HTAP experiments used in this study were organized by Martin Schultz, Arlene Fiore, Kees Cuvelier, Frank Dentener, Christiane Textor, Terry Keating, and Andre Zuber. We are grateful to Daven Henze and three anonymous reviewers for their constructive comments and suggestions that have significantly improved the quality of paper. NR 82 TC 19 Z9 19 U1 3 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 700 EP 720 DI 10.1029/2012JD018148 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100033 ER PT J AU Kim, D Chin, MA Bian, HS Tan, Q Brown, ME Zheng, T You, RJ Diehl, T Ginoux, P Kucsera, T AF Kim, Dongchul Chin, Mian Bian, Huisheng Tan, Qian Brown, Molly E. Zheng, Tai You, Renjie Diehl, Tomas Ginoux, Paul Kucsera, Tom TI The effect of the dynamic surface bareness on dust source function, emission, and distribution SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL DEPTH; GOCART MODEL; SPOT-VEGETATION; DESERT DUST; AERONET; OCEAN; MODIS; SENSITIVITY; VALIDATION; SIMULATION AB In this study we report the development of a time dependency of global dust source and its impact on dust simulation in the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. We determine the surface bareness using the 8 km normalized difference vegetation index (NDVI) observed from the advanced very high resolution radiometer satellite. The results are used to analyze the temporal variations of surface bareness in 22 global dust source regions. One half of these regions can be considered permanent dust source regions where NDVI is always less than 0.15, while the other half shows substantial seasonality of NDVI. This NDVI-based surface bareness map is then used, along with the soil and topographic characteristics, to construct a dynamic dust source function for simulating dust emissions with the GOCART model. We divide the 22 dust source regions into three groups of (I) permanent desert, (II) seasonally changing bareness that regulates dust emissions, and (III) seasonally changing bareness that has little effect on dust emission. Compared with the GOCART results with the previously employed static dust source function, the simulation with the new dynamic source function shows significant improvements in category II regions. Even though the global improvement of the aerosol optical depth (AOD) is rather small when compared with satellite and ground-based remote sensing observations, we found a clear and significant effect of the new dust source on seasonal variation of dust emission and dust optical depth near the source regions. Globally, we have found that the permanent bare land contributes to 88% of the total dust emission, whereas the grassland and cultivated crops land contribute to about 12%. Our results suggest the potential of using NDVI over a vegetated area to link the dust emission with land cover and land use change for air quality and climate change studies. C1 [Kim, Dongchul; Bian, Huisheng] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21250 USA. [Kim, Dongchul; Chin, Mian; Bian, Huisheng; Tan, Qian; Brown, Molly E.; Diehl, Tomas; Kucsera, Tom] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, Dongchul; Tan, Qian; Diehl, Tomas; Kucsera, Tom] Univ Space Res Assoc, Columbia, MD USA. [Zheng, Tai] Montgomery Blair High Sch, Silver Spring, MD USA. [Zheng, Tai] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [You, Renjie] Thomas Jefferson High Sch Sci & Technol, Alexandria, VA USA. [You, Renjie] Stanford Univ, Dept Math, Stanford, CA 94305 USA. [Ginoux, Paul] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Kim, D (reprint author), Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21250 USA. EM dongchul.kim@nasa.gov RI Kim, Dongchul/H-2256-2012; Chin, Mian/J-8354-2012; Brown, Molly/M-5146-2013; Ginoux, Paul/C-2326-2008; Brown, Molly/E-2724-2010 OI Kim, Dongchul/0000-0002-5659-1394; Brown, Molly/0000-0001-7384-3314; Ginoux, Paul/0000-0003-3642-2988; Brown, Molly/0000-0001-7384-3314 FU NASA FX This work is supported by the NASA Modeling, Analysis and Prediction (MAP) and EOS programs. We would like to thank the MISR, MODIS, MODIS Deep Blue, AVHRR, and AERONET teams for the data used in this study. NR 46 TC 18 Z9 19 U1 0 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 871 EP 886 DI 10.1029/2012JD017907 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100046 ER PT J AU Nedoluha, GE Gomez, RM Neal, H Lambert, A Hurst, D Boone, C Stiller, G AF Nedoluha, Gerald E. Gomez, R. Michael Neal, Helen Lambert, Alyn Hurst, Dale Boone, Chris Stiller, Gabriele TI Validation of long-term measurements of water vapor from the midstratosphere to the mesosphere at two Network for the Detection of Atmospheric Composition Change sites SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL TROPOPAUSE; TEMPERATURE; MIPAS; SPECTROMETER; RADIOMETER; RETRIEVAL; CH4 AB We present measurements from the Water Vapor Millimeter-wave Spectrometer (WVMS) instruments at Table Mountain, California (34.4 degrees N, 242.3 degrees E), and Mauna Loa, Hawaii (19.5 degrees N, 204.4 degrees E), and highlight the extended altitude range of the measurements at these sites, which now provide measurements down to 26 km. We show that this extended altitude range has been acquired without disturbing the existing long-term WVMS data set at Mauna Loa. Validation of the successful transition is provided by comparing WVMS measurements with coincident satellite measurements from the Aura Microwave Limb Sounder (MLS), the Atmospheric Chemistry Experiment, and the Michelson Interferometer for Passive Atmospheric Sounding. At the lowest altitudes where WVMS measurements are possible, we also compare with frost-point hygrometer balloon measurements. The water vapor mixing ratios measured at 50 km over Mauna Loa are the highest ever reported in the WVMS (since 1996) or MLS (since 2004) time series. Particularly encouraging for the new 26 km WVMS measurements is that they indicate an increase between 2010 and 2011 that is comparable to that observed by other instruments. This shows that these measurements are sensitive to variations at this altitude and that the instrumental baseline remains stable. C1 [Nedoluha, Gerald E.; Gomez, R. Michael] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Neal, Helen] Computat Phys Inc, Springfield, VA USA. [Lambert, Alyn] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hurst, Dale] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Boone, Chris] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Stiller, Gabriele] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany. RP Nedoluha, GE (reprint author), USN, Res Lab, Remote Sensing Div, 4555 Overlook Ave SW, Washington, DC 20375 USA. EM nedoluha@nrl.navy.mil RI Stiller, Gabriele/A-7340-2013; Hurst, Dale/D-1554-2016 OI Stiller, Gabriele/0000-0003-2883-6873; Hurst, Dale/0000-0002-6315-2322 FU German Research Foundation (DFG) [STI 210/9-1]; NASA; Naval Research Laboratory FX We thank S. McDermid, D. Walsh, and T. LeBlanc at Table Mountain for their technical assistance. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration. The provision of MIPAS spectral data by ESA is gratefully acknowledged. Work at KIT was partly supported by the German Research Foundation (DFG) under grant STI 210/9-1 (SHARP-WV). This project was funded by NASA under the Upper Atmosphere Research Program and by the Naval Research Laboratory. NR 33 TC 5 Z9 5 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 934 EP 942 DI 10.1029/2012JD018900 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100050 ER PT J AU Oman, LD Douglass, AR Ziemke, JR Rodriguez, JM Waugh, DW Nielsen, JE AF Oman, Luke D. Douglass, Anne R. Ziemke, Jerry R. Rodriguez, Jose M. Waugh, Darryn W. Nielsen, J. Eric TI The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LOWER-STRATOSPHERIC TEMPERATURE; TROPICAL TROPOSPHERIC OZONE; QUASI-BIENNIAL OSCILLATION; NINO-SOUTHERN-OSCILLATION; 1997-1998 EL-NINO; TRANSPORT MODEL; COLUMN OZONE; LA-NINA; PHOTOCHEMISTRY; VARIABILITIES AB The El Nino-Southern Oscillation (ENSO) is the dominant mode of inter-annual variability in the tropical ocean and troposphere. Its impact on tropospheric circulation causes significant changes to the distribution of ozone. Here we derive the lower tropospheric to lower stratospheric ozone response to ENSO from observations by the Tropospheric Emission Spectrometer (TES) and the Microwave Limb Sounder (MLS) instruments, both on the Aura satellite, and compare to the simulated response from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Measurement ozone sensitivity is derived using multiple linear regression to include variations from ENSO as well as from the first two empirical orthogonal functions of the quasi-biennial oscillation. Both measurements and simulation show features such as the negative ozone sensitivity to ENSO over the tropospheric tropical Pacific and positive ozone sensitivity over Indonesia and the Indian Ocean region. Ozone sensitivity to ENSO is generally positive over the midlatitude lower stratosphere, with greater sensitivity in the Northern Hemisphere. GEOSCCM reproduces both the overall pattern and magnitude of the ozone response to ENSO obtained from observations. We demonstrate the combined use of ozone measurements from MLS and TES to quantify the lower atmospheric ozone response to ENSO and suggest its possible usefulness in evaluating chemistry-climate models. C1 [Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerry R.; Rodriguez, Jose M.; Nielsen, J. Eric] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ziemke, Jerry R.] Morgan State Univ, Baltimore, MD 21239 USA. [Waugh, Darryn W.] Johns Hopkins Univ, Baltimore, MD USA. [Nielsen, J. Eric] Sci Syst & Applicat Inc, Lanham, MD USA. RP Oman, LD (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM luke.d.oman@nasa.gov RI Rodriguez, Jose/G-3751-2013; Douglass, Anne/D-4655-2012; Oman, Luke/C-2778-2009; Waugh, Darryn/K-3688-2016 OI Rodriguez, Jose/0000-0002-1902-4649; Oman, Luke/0000-0002-5487-2598; Waugh, Darryn/0000-0001-7692-2798 FU NASA MAP program; NASA ACMAP program; NASA Aura program FX This research was supported by the NASA MAP, ACMAP, and Aura programs. We would like to thank Stacey Frith for helping with the model output processing, Jacquie Witte and Mike Manyin for the help with the measurement data sets, Feng Li for the comments on an early version of this manuscript, and the three anonymous reviewers for their very helpful comments. We also thank those involved in model development at GSFC and the high-performance computing resources that were provided by NASA's Advanced Supercomputing Division. NR 50 TC 20 Z9 20 U1 1 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 965 EP 976 DI 10.1029/2012JD018546 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100052 ER PT J AU Fueglistaler, S Liu, YS Flannaghan, TJ Haynes, PH Dee, DP Read, WJ Remsberg, EE Thomason, LW Hurst, DF Lanzante, JR Bernath, PF AF Fueglistaler, S. Liu, Y. S. Flannaghan, T. J. Haynes, P. H. Dee, D. P. Read, W. J. Remsberg, E. E. Thomason, L. W. Hurst, D. F. Lanzante, J. R. Bernath, P. F. TI The relation between atmospheric humidity and temperature trends for stratospheric water SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL TROPOPAUSE TEMPERATURES; DATA SET; VAPOR; METHANE; VARIABILITY; TROPOSPHERE; OCCULTATION; REANALYSES; FOUNTAIN; AEROSOL AB We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higher-frequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer from artifacts that need to be resolved in order to answer the question whether the large-scale flow and temperature field is sufficient to explain water entering the stratosphere. C1 [Fueglistaler, S.] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA USA. [Liu, Y. S.] Univ St Andrews, Sch Math & Stat, St Andrews, Fife, Scotland. [Flannaghan, T. J.; Haynes, P. H.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England. [Dee, D. P.] ECMWF, Reading, Berks, England. [Read, W. J.] Jet Prop Labs, Pasadena, CA USA. [Remsberg, E. E.; Thomason, L. W.] NASA Langley, Hampton, VA USA. [Hurst, D. F.] NOAA ESRL, Boulder, CO USA. [Hurst, D. F.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Lanzante, J. R.] Princeton Univ, NOAA GFDL, Princeton, NJ 08544 USA. [Bernath, P. F.] Old Dominion Univ, Norfolk, VA USA. RP Fueglistaler, S (reprint author), Princeton Univ, Dept Geosci AOS, Princeton, NJ 08544 USA. EM stf@princeton.edu RI Bernath, Peter/B-6567-2012; Fueglistaler, Stephan/I-5803-2013; Hurst, Dale/D-1554-2016; OI Bernath, Peter/0000-0002-1255-396X; Hurst, Dale/0000-0002-6315-2322; Thomason, Larry/0000-0002-1902-0840; Haynes, Peter/0000-0002-7726-6988 FU National Aeronautics and Space Administration; Canadian Space Agency; Natural Sciences and Engineering Research Council of Canada; NERC Advanced Researcher Fellowship at Cambridge University; NERC PhD studentship at Cambridge University; NERC; EU FX We would like to thank three reviewers for their helpful comments and thank the following groups and agencies for providing data and support for this study. HALOE data were downloaded from http://haloe.gats-inc.com/home/index.php. The MLS data used herein were produced at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. The MLS data are available at http://mirador.gsfc.nasa.gov. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, is a Canadian-led mission mainly supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. We thank the NASA Langley Research Center (NASA-LaRC) and the NASA Langley Radiation and Aerosols Branch for providing the SAGE II data, available at http://eosweb.larc.nasa.gov/PRODOCS/sage2/table_sage2.html. We thank NOAA/ESRL for tropospheric Methane measurements, available at http://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/methane/methane.html . We thank ECMWF for providing the ERA-Interim data. MERRA data used in this study/project have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center through the NASA GES DISC online archive. We thank NCEP and NCAR for providing the CFSR data, available at http://dss.ucar.edu/pub/cfsr.html, and for the NCEP/NCAR reanalysis available at http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml. We thank NOAA for providing the RATPAC data, available at http://www.ncdc.noaa.gov/oa/climate/ratpac. RICHv1.5 data were downloaded from http://www.univie.ac.at/theoret-met/research/raobcore. CHAMP and COSMIC-GPS temperature data were downloaded from http://cdaac-www.cosmic.ucar.edu/cdaac/postProcess.html. HadAT2 temperature data were downloaded from www.metoffice.gov.uk/hadobs. During the initial stages of this work, S. F. has been supported by a NERC Advanced Researcher Fellowship at Cambridge University, and Y.S.L. has been supported by a NERC PhD studentship at Cambridge University as part of the ACTIVE consortium project. T.J.F. has been supported by a NERC PhD studentship, with additional support from the EU-funded SHIVA project. NR 53 TC 26 Z9 26 U1 1 U2 37 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 1052 EP 1074 DI 10.1002/jgrd.50157 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100059 ER PT J AU Olsen, MA Douglass, AR Kaplan, TB AF Olsen, Mark A. Douglass, Anne R. Kaplan, Trevor B. TI Variability of extratropical ozone stratosphere-troposphere exchange using microwave limb sounder observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MASS; TROPOPAUSE; FLUX; ATMOSPHERE; TRANSPORT; INDEX AB The extratropical stratosphere-troposphere exchange (STE) of ozone from 2005 to 2010 is estimated by combining Microwave Limb Sounder ozone observations and MERRA reanalysis meteorological fields in an established direct diagnostic framework. The multiyear mean ozone STE is 275 Tg yr(-1) and 214 Tg yr(-1) in the Northern and Southern Hemispheres, respectively. The year-to-year variability is greater in the Northern Hemisphere, where the difference between the highest and the lowest annual flux is 15% of the multiyear mean compared with 6% in the Southern Hemisphere. Variability of lower stratospheric ozone and variability of the net mass flux both contribute to interannual variability in the Northern Hemisphere ozone flux. The flux across the extratropical 380K surface determines the amount of flux across the extratropical tropopause, and the greatest seasonal variability of the 380K ozone flux occurs in the late winter/early spring, around the time of greatest flux. Both the mass flux and the ozone mixing ratios on the 380K surface show recurring spatial patterns, but interannual variability of these quantities and their alignment contribute to the ozone flux variability. The spatial and temporal variability are not well represented when zonal and/or monthly mean fields are used to calculate the ozone STE, although this results in a small high bias of the seasonal amplitude and annual magnitude. If the climatological variability over these 6 years is representative, the estimated number of years required to detect a 2 - 3% decade(-1) trend in ozone STE using this diagnostic is 35 - 39 years. C1 [Olsen, Mark A.] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Olsen, Mark A.; Douglass, Anne R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kaplan, Trevor B.] Sci Syst & Applicat Inc, Greenbelt, MD USA. RP Olsen, MA (reprint author), NASA, Goddard Space Flight Ctr, Mailstop 614, Greenbelt, MD 20771 USA. EM mark.a.olsen@nasa.gov RI Douglass, Anne/D-4655-2012 FU NASA's ACMAP program FX The authors thank the anonymous referees that provided constructive comments to improve the manuscript. This work was supported by NASA's ACMAP program. NR 30 TC 6 Z9 6 U1 1 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 27 PY 2013 VL 118 IS 2 BP 1090 EP 1099 DI 10.1029/2012JD018465 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129KN UT WOS:000317838100061 ER PT J AU Manchester, RN Hobbs, G Bailes, M Coles, WA Straten, W Keith, MJ Shannon, RM Bhat, NDR Brown, A Burke-Spolaor, SG Champion, DJ Chaudhary, A Edwards, RT Hampson, G Hotan, AW Jameson, A Jenet, FA Kesteven, MJ Khoo, J Kocz, J Maciesiak, K Oslowski, S Ravi, V Reynolds, JR Sarkissian, JM Verbiest, JPW Wen, ZL Wilson, WE Yardley, D Yan, WM You, XP AF Manchester, R. N. Hobbs, G. Bailes, M. Coles, W. A. van Straten, W. Keith, M. J. Shannon, R. M. Bhat, N. D. R. Brown, A. Burke-Spolaor, S. G. Champion, D. J. Chaudhary, A. Edwards, R. T. Hampson, G. Hotan, A. W. Jameson, A. Jenet, F. A. Kesteven, M. J. Khoo, J. Kocz, J. Maciesiak, K. Oslowski, S. Ravi, V. Reynolds, J. R. Sarkissian, J. M. Verbiest, J. P. W. Wen, Z. L. Wilson, W. E. Yardley, D. Yan, W. M. You, X. P. TI The Parkes Pulsar Timing Array Project SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA LA English DT Article DE gravitational waves; instrumentation: miscellaneous; methods: observational; pulsars: general ID BLACK-HOLE BINARIES; RADIO ASTRONOMICAL POLARIMETRY; GRAVITATIONAL-WAVE DETECTION; MILLISECOND PULSARS; GENERAL-RELATIVITY; ELECTRON-DENSITY; COALESCENCE RATE; PSR J1022+1001; SYSTEM; DISCOVERY AB A 'pulsar timing array' (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of 'global' phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 ms pulsars is being observed at three radio-frequency bands, 50 cm (similar to 700MHz), 20 cm (similar to 1400 MHz), and 10 cm (similar to 3100 MHz), with observations at intervals of two to three weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters, and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For 10 of the 20 pulsars, rms timing residuals are less than 1 mu s for the best band after fitting for pulse frequency and its first time derivative. Significant 'red' timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array and a PTA based on the Square Kilometre Array. We also present an 'extended PPTA' data set that combines PPTA data with earlier Parkes timing data for these pulsars. C1 [Manchester, R. N.; Hobbs, G.; Keith, M. J.; Shannon, R. M.; Brown, A.; Burke-Spolaor, S. G.; Champion, D. J.; Chaudhary, A.; Hampson, G.; Hotan, A. W.; Kesteven, M. J.; Khoo, J.; Maciesiak, K.; Oslowski, S.; Ravi, V.; Reynolds, J. R.; Sarkissian, J. M.; Wilson, W. E.; Yardley, D.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Bailes, M.; van Straten, W.; Bhat, N. D. R.; Hotan, A. W.; Jameson, A.; Kocz, J.; Oslowski, S.; Verbiest, J. P. W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Coles, W. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bhat, N. D. R.] Curtin Univ Technol, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia. [Burke-Spolaor, S. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Champion, D. J.; Verbiest, J. P. W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Jenet, F. A.] Univ Texas Brownsville, Ctr Adv Radio Astron, Brownsville, TX 78520 USA. [Kocz, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Maciesiak, K.] Univ Zielona Gora, Kepler Inst Astron, PL-65265 Zielona Gora, Poland. [Ravi, V.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Wen, Z. L.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Yardley, D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Yan, W. M.] Chinese Acad Sci, Xinjiang Astron Observ, Xinjiang 830011, Peoples R China. [You, X. P.] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China. RP Manchester, RN (reprint author), CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia. EM dick.manchester@csiro.au OI Champion, David/0000-0003-1361-7723; Shannon, Ryan/0000-0002-7285-6348; Kocz, Jonathon/0000-0003-0249-7586; van Straten, Willem/0000-0003-2519-7375; Oslowski, Stefan/0000-0003-0289-0732 FU RNM's Australian Research Council (ARC) Federation Fellowship [FF0348478]; CSIRO; ARC Discovery Project grant [DP0985272]; ARC QEII Fellowship [DP0878388]; John Stocker Postgraduate Scholarship from the Science and Industry Endowment Fund; National Aeronautics and Space Administration; Commonwealth Government FX The PPTA project was initiated with support from RNM's Australian Research Council (ARC) Federation Fellowship (FF0348478) and from the CSIRO under this Fellowship program. It has also received support from ARC Discovery Project grant DP0985272. GH is the recipient of an ARC QEII Fellowship (DP0878388) and VR is a recipient of a John Stocker Postgraduate Scholarship from the Science and Industry Endowment Fund. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge contributions to the project from L. Kedziora-Chudczer, K. J. Lee, A. N. Lommen, D. Smith, and Ding Chen. The Parkes telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. NR 118 TC 46 Z9 46 U1 0 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1323-3580 J9 PUBL ASTRON SOC AUST JI Publ. Astron. Soc. Aust. PD JAN 24 PY 2013 VL 30 AR UNSP e017 DI 10.1017/pasa.2012.017 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 161ZV UT WOS:000320234700001 ER PT J AU Mattmann, CA AF Mattmann, Chris A. TI A vision for data science SO NATURE LA English DT Editorial Material ID OPEN SOURCE SOFTWARE C1 [Mattmann, Chris A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mattmann, Chris A.] Univ So Calif, Los Angeles, CA 90089 USA. RP Mattmann, CA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM chris.a.mattmann@nasa.gov NR 10 TC 28 Z9 29 U1 5 U2 67 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 24 PY 2013 VL 493 IS 7433 BP 473 EP 475 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 075GF UT WOS:000313871400013 PM 23344342 ER PT J AU Aasi, J Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adams, T Addesso, P Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Allocca, A Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Araya, MC Ast, S Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Bao, Y Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Bell, C Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bhadbade, T Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bond, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Charlton, P Chassande-Mottin, E Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, JA Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Damjanic, M Danilishin, SL D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R Debra, D Debreczeni, G Degallaix, J Del Pozzo, W Dent, T Dergachev, V DeRosa, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doravari, S Dorsher, S Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Farr, BF Favata, M Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Ferrini, F Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Franco, S Frasca, S Frasconi, F Frede, M Frei, MA Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gelencser, G Gemme, G Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gray, C Greenhalgh, RJS Gretarsson, AM Griffo, C Grote, H Grover, K Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hemming, G Hendry, MA Heng, IS Heptonstall, AW Herrera, V Heurs, M Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasprzack, M Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kaufman, K Kawabe, K Kawamura, S Kawazoe, F Keitel, D Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, J Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnan, B Krolak, A Kuehn, G Kumar, P Kumar, R Kurdyumov, R Kwee, P Lam, PK Landry, M Langley, A Lantz, B Lastzka, N Lawrie, C Lazzarini, A Le Roux, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Lhuillier, V Li, J Li, TGF Lindquist, PE Litvine, V Liu, Y Liu, Z Lockerbie, NA Lodhia, D Logue, J Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Lubinski, M Luck, H Lundgren, AP Macarthur, J Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mingarelli, CMF Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Mueller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Oldenberg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Paoletti, R Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Pedraza, M Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pierro, V Pihlaja, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Poux, C Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, C Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, M Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Salemi, F Sammut, L Sandberg, V Sankar, S Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Saracco, E Sassolas, B Sathyaprakash, BS Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siemens, X Sigg, D Simakov, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Speirits, FC Sperandio, L Stefszky, M Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szeifert, G Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, R ter Braack, APM Thomas, P Thorne, KA Thorne, KS Thrane, E Thuering, A Titsler, C Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, CV Torrie, CI Tournefier, E Travasso, F Traylor, G Tse, M Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wiesner, K Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Wimmer, M Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhao, C Zotov, N Zucker, ME Zweizig, J AF Aasi, J. Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adams, T. Addesso, P. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Allocca, A. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Ast, S. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Bao, Y. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Bell, C. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bhadbade, T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bond, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. A. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P-F. Colacino, C. N. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Damjanic, M. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. Debra, D. Debreczeni, G. Degallaix, J. Del Pozzo, W. Dent, T. Dergachev, V. DeRosa, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doravari, S. Dorsher, S. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Farr, B. F. Favata, M. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Ferrini, F. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Franco, S. Frasca, S. Frasconi, F. Frede, M. Frei, M. A. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gelencser, G. Gemme, G. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Griffo, C. Grote, H. Grover, K. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hemming, G. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Heurs, M. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasprzack, M. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kaufman, K. Kawabe, K. Kawamura, S. Kawazoe, F. Keitel, D. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnan, B. Krolak, A. Kuehn, G. Kumar, P. Kumar, R. Kurdyumov, R. Kwee, P. Lam, P. K. Landry, M. Langley, A. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Le Roux, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Lhuillier, V. Li, J. Li, T. G. F. Lindquist, P. E. Litvine, V. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Logue, J. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macarthur, J. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mingarelli, C. M. F. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Oldenberg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Paoletti, R. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pierro, V. Pihlaja, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Poux, C. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, M. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Salemi, F. Sammut, L. Sandberg, V. Sankar, S. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Saracco, E. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siemens, X. Sigg, D. Simakov, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Sperandio, L. Stefszky, M. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szeifert, G. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, R. ter Braack, A. P. M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. V. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tse, M. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J-Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wiesner, K. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Wimmer, M. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010 SO PHYSICAL REVIEW D LA English DT Article ID X-RAY BINARIES; ACCRETION DISK; SPIN; CONTINUUM; FORMS; X-1 AB We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1). C1 [Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Daudert, B.; Dergachev, V.; Doravari, S.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Litvine, V.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Pedraza, M.; Phelps, M.; Poux, C.; Price, L. R.; Privitera, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Griffo, C.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Bell, C.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Logue, J.; Macarthur, J.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pierro, V.; Pinto, I. M.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Le Roux, A.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Adams, T.; Dent, T.; Edwards, M.; Fairhurst, S.; Macleod, D. M.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Jonker, R. J. G.; Li, T. G. F.; Rabeling, D. S.; ter Braack, A. P. M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Mori, T.; Nishizawa, A.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Favata, M.; Giampanis, S.; Hammer, D.; Hughey, B.; Kline, J.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; Oldenberg, R. G.; O'Shaughnessy, R.; Pankow, C.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allocca, A.; Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Paoletti, R.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Allocca, A.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Amariutei, D.; Bao, Y.; Ciani, G.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, Milan, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lhuillier, V.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Aylott, B. E.; Bond, C.; Carbone, L.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Grover, K.; Hallam, J. M.; Lodhia, D.; Mandel, I.; Mingarelli, C. M. F.; Page, A.; Sidery, T. L.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Hemming, G.; Kasprzack, M.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Harry, I. W.; Kelley, D.; Kumar, P.; Lough, J.; Nitz, A.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Katsavounidis, E.; Kissel, J. S.; Kwee, P.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Sankar, S.; Shapiro, B.; Shoemaker, D. H.; Smith-Lefebvre, N. D.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Ward, R. L.] Univ Paris Diderot, APC, CNRS, IN2P3,CEA Irfu,Observ Paris,AstroParticule & Cosm, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Raffai, P.; Tse, M.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Beck, D.; Bhadbade, T.; Byer, R. L.; Clark, D. E.; Debra, D.; Herrera, V.; Kim, N.; Kurdyumov, R.; Lantz, B.; Markosyan, A.; Roberts, M.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] Polish Acad Sci, IM, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] Polish Acad Sci, CAMK, PL-00716 Warsaw, Poland. [Jaranowski, P.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Cagnoli, G.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Stroeer, A. S.; Torres, C. V.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Kasprzack, M.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Kanner, J. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Dumas, J. -C.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Menendez, D. F.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J-Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Cagnoli, G.; Degallaix, J.; Flaminio, R.; Franc, J.; Galimberti, M.; Granata, M.; Michel, C.; Morgado, N.; Pinard, L.; Saracco, E.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, Milan, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [Branchesi, M.; Guidi, G. M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P-F.; Heidmann, A.] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France. [Buonanno, A.; Capano, C. D.; Kanner, J. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Cadonati, L.; Clark, J. A.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Zhang, F.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kokeyama, K.; Mullavey, A.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Dietz, A.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Kaufman, K.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Morgia, A.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Milan, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Addesso, P.; Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Costa, C. A.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, H-1121 Budapest, Hungary. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Pihlaja, M.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Drago, M.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [Drago, M.; Prodi, G. A.; Yamamoto, K.] Univ Trent, I-38050 Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, Milan, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Farr, B. F.; Fazi, D.; Jang, Y. J.; Kalogera, V.; Raymond, V.; Rodriguez, C.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M. A.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Gelencser, G.; Raffai, P.; Szeifert, G.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hanna, C.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Harry, G. M.] American Univ, Washington, DC 20016 USA. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Howell, Eric/H-5072-2014; Vyatchanin, Sergey/J-2238-2012; Gorodetsky, Michael/C-5938-2008; CONTE, ANDREA/J-6667-2012; Bell, Angus/E-7312-2011; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Steinlechner, Sebastian/D-5781-2013; Strigin, Sergey/I-8337-2012; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Marchesoni, Fabio/A-1920-2008; Strain, Kenneth/D-5236-2011; Gemme, Gianluca/C-7233-2008; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; prodi, giovanni/B-4398-2010; Puppo, Paola/J-4250-2012; Lam, Ping Koy/A-5276-2008; Ciani, Giacomo/G-1036-2011; Parisi, Maria/D-2817-2013; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Kumar, Prem/B-6691-2009; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Bao, Yiliang/G-9848-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Chen, Yanbei/A-2604-2013; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Vicere, Andrea/J-1742-2012; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Ward, Robert/I-8032-2014; OI calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Pierro, Vincenzo/0000-0002-6020-5521; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Papa, M.Alessandra/0000-0002-1007-5298; Pinto, Innocenzo M./0000-0002-2679-4457; Gorodetsky, Michael/0000-0002-5159-2742; Bell, Angus/0000-0003-1523-0821; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Steinlechner, Sebastian/0000-0003-4710-8548; Marchesoni, Fabio/0000-0001-9240-6793; Strain, Kenneth/0000-0002-2066-5355; Gemme, Gianluca/0000-0002-1127-7406; Zhao, Chunnong/0000-0001-5825-2401; prodi, giovanni/0000-0001-5256-915X; Puppo, Paola/0000-0003-4677-5015; Lam, Ping Koy/0000-0002-4421-601X; Ciani, Giacomo/0000-0003-4258-9338; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Vicere, Andrea/0000-0003-0624-6231; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Aulbert, Carsten/0000-0002-1481-8319; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Whiting, Bernard F/0000-0002-8501-8669; Roberts, Mallory/0000-0002-9396-9720; Vocca, Helios/0000-0002-1200-3917; Fairhurst, Stephen/0000-0001-8480-1961; Addesso, Paolo/0000-0003-0895-184X; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Husa, Sascha/0000-0002-0445-1971 FU Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the U.S. National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 54 TC 82 Z9 82 U1 13 U2 125 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 23 PY 2013 VL 87 IS 2 AR 022002 DI 10.1103/PhysRevD.87.022002 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 076HP UT WOS:000313947400001 ER PT J AU Babak, S Biswas, R Brady, PR Brown, DA Cannon, K Capano, CD Clayton, JH Cokelaer, T Creighton, JDE Dent, T Dietz, A Fairhurst, S Fotopoulos, N Gonzalez, G Hanna, C Harry, IW Jones, G Keppel, D McKechan, DJA Pekowsky, L Privitera, S Robinson, C Rodriguez, AC Sathyaprakash, BS Sengupta, AS Vallisneri, M Vaulin, R Weinstein, AJ AF Babak, S. Biswas, R. Brady, P. R. Brown, D. A. Cannon, K. Capano, C. D. Clayton, J. H. Cokelaer, T. Creighton, J. D. E. Dent, T. Dietz, A. Fairhurst, S. Fotopoulos, N. Gonzalez, G. Hanna, C. Harry, I. W. Jones, G. Keppel, D. McKechan, D. J. A. Pekowsky, L. Privitera, S. Robinson, C. Rodriguez, A. C. Sathyaprakash, B. S. Sengupta, A. S. Vallisneri, M. Vaulin, R. Weinstein, A. J. TI Searching for gravitational waves from binary coalescence SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALING BINARIES; COMPACT BINARIES; DETECTORS; CHOICE; LIGO; TEMPLATES; FILTERS; SIGNALS AB We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise. C1 [Babak, S.; Cokelaer, T.; Dent, T.; Dietz, A.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Robinson, C.; Sathyaprakash, B. S.; Sengupta, A. S.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Babak, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Biswas, R.; Brady, P. R.; Brown, D. A.; Cannon, K.; Clayton, J. H.; Creighton, J. D. E.; Fairhurst, S.; Fotopoulos, N.; Vaulin, R.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Biswas, R.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Brown, D. A.; Capano, C. D.; Harry, I. W.; Pekowsky, L.] Syracuse Univ, Syracuse, NY 13244 USA. [Brown, D. A.; Cannon, K.; Fairhurst, S.; Fotopoulos, N.; Hanna, C.; Keppel, D.; Privitera, S.; Sengupta, A. S.; Weinstein, A. J.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Capano, C. D.; Robinson, C.] Univ Maryland, College Pk, MD 20742 USA. [Dent, T.; Keppel, D.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Dietz, A.] Univ Mississippi, University, MS 38677 USA. [Dietz, A.; Gonzalez, G.; Hanna, C.; Rodriguez, A. C.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Keppel, D.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Pekowsky, L.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Pekowsky, L.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Sengupta, A. S.] IIT Gandhinagar, Chandkheda Ahmedabad 382424, Gujarat, India. [Vallisneri, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vaulin, R.] MIT, LIGO Lab, Cambridge, MA 02139 USA. RP Babak, S (reprint author), Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. OI Fairhurst, Stephen/0000-0001-8480-1961 FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Royal Society; Max Planck Society; National Aeronautics and Space Administration; Industry Canada; Province of Ontario through the Ministry of Research and Innovation; National Science Foundation [PHY-0757058] FX The authors would like to thank their colleagues in the LIGO Scientific Collaboration and Virgo Collaboration, and particularly the other members of the Compact Binary Coalescence Search Group. The authors gratefully acknowledge the support of the United States National Science Foundation, the Science and Technology Facilities Council of the United Kingdom, the Royal Society, the Max Planck Society, the National Aeronautics and Space Administration, Industry Canada and the Province of Ontario through the Ministry of Research and Innovation. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058. NR 93 TC 56 Z9 56 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 22 PY 2013 VL 87 IS 2 AR 024033 DI 10.1103/PhysRevD.87.024033 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 076HL UT WOS:000313947000007 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beattie, K Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Bruijn, R Brunner, J Buitink, S Carson, M Casey, J Casier, M Chirkin, D Christy, B Clevermann, F Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Dunkman, M Eagan, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Hanson, K Heereman, D Heimann, P Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jlelati, O Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lesiak-Bzdak, M Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Movit, SM Nahnhauer, R Naumann, U Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L Pepper, JA de los Heros, CP Pieloth, D Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonherr, L Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Seo, SH Sestayo, Y Seunarine, S Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zilles, A Zoll, M AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beattie, K. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Bruijn, R. Brunner, J. Buitink, S. Carson, M. Casey, J. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Dunkman, M. Eagan, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heimann, P. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jlelati, O. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lesiak-Bzdak, M. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Naumann, U. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Pepper, J. A. de los Heros, C. Perez Pieloth, D. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenherr, L. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Seo, S. H. Sestayo, Y. Seunarine, S. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zilles, A. Zoll, M. CA IceCube Collaboration TI SEARCHES FOR HIGH-ENERGY NEUTRINO EMISSION IN THE GALAXY WITH THE COMBINED ICECUBE-AMANDA DETECTOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; neutrinos ID GAMMA-RAY EMISSION; COSMIC-RAYS; CRAB-NEBULA; STATISTICAL-ANALYSIS; TRACK RECONSTRUCTION; SUPERNOVA REMNANT; SHOCK FRONTS; CASSIOPEIA-A; COLD MEDIA; X-RAY AB We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below similar to 10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized formultiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E-2 and E-3 in order to cover the entire range of possible neutrino spectra. The steeply falling E-3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E(3)dN/dE similar to 5.4-19.5 x 10(-11) TeV2 cm(-2) s(-1) for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date. C1 [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Baum, V.; Koepke, L.; Kroll, G.; Luenemann, J.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium. [Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bell, M.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Laihem, K.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bose, D.; Brayeur, L.; Buitink, S.; Casier, M.; De Clercq, C.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.; Nowicki, S. C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Montaruli, T.] Dipartimento Fis, Sez INFN, I-70126 Bari, Italy. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Taavola, Henric/B-4497-2011; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Hallgren, Allan/A-8963-2013; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014 OI Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Helmholtz Alliance for Astroparticle Physics (HAP); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, UK; Marsden Fund, New Zealand; Australian Research Council; Japan Society for the Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge support from the following agencies: the U.S. National Science Foundation-Office of Polar Programs, the U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) infrastructure; the U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; the National Science and Engineering Research Council of Canada; the Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; the German Ministry for Education and Research (BMBF), Helmholtz Alliance for Astroparticle Physics (HAP), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; the Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); the University of Oxford, UK; the Marsden Fund, New Zealand; the Australian Research Council; the Japan Society for the Promotion of Science (JSPS); and the Swiss National Science Foundation (SNSF), Switzerland. NR 103 TC 6 Z9 6 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 33 DI 10.1088/0004-637X/763/1/33 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700033 ER PT J AU Cheng, X Zhang, J Ding, MD Liu, Y Poomvises, W AF Cheng, X. Zhang, J. Ding, M. D. Liu, Y. Poomvises, W. TI THE DRIVER OF CORONAL MASS EJECTIONS IN THE LOW CORONA: A FLUX ROPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares ID SOLAR-FLARES; MAGNETIC RECONNECTION; ACTIVE-REGION; ACCELERATION; EVOLUTION; ERUPTION; FILAMENT; COMPONENTS; INITIATION; TRANSIENT AB Recent Solar Dynamic Observatory observations reveal that coronal mass ejections (CMEs) consist of a multi-temperature structure: a hot flux rope and a cool leading front (LF). The flux rope first appears as a twisted hot channel in the Atmospheric Imaging Assembly (AIA) 94 angstrom and 131 angstrom passbands. The twisted hot channel initially lies along the polarity inversion line and then rises and develops into a semi-circular flux-rope-like structure during the impulsive acceleration phase of CMEs. In the meantime, the rising hot channel compresses the surrounding magnetic field and plasma, which successively stack into the CME LF. In this paper, we study in detail two well-observed CMEs that occurred on 2011 March 7 and 2011 March 8, respectively. Each of them is associated with an M-class flare. Through a kinematic analysis we find that (1) the hot channel rises earlier than the first appearance of the CME LF and the onset of the associated flare and (2) the speed of the hot channel is always faster than that of the LF, at least in the field of view of AIA. Thus, the hot channel acts as a continuous driver of the CME formation and eruption in the early acceleration phase. Subsequently, the two CMEs in white-light images can be well reproduced by the graduated cylindrical shell flux rope model. These results suggest that the pre-existing flux rope plays a key role in CME initiation and formation. C1 [Cheng, X.; Ding, M. D.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Cheng, X.; Zhang, J.; Poomvises, W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Cheng, X.; Ding, M. D.] Nanjing Univ, Minist Educ, Key Lab Modern Astron & Astrophys, Nanjing 210093, Jiangsu, Peoples R China. [Liu, Y.] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China. [Liu, Y.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Poomvises, W.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Dept Phys, Washington, DC 20064 USA. [Poomvises, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cheng, X (reprint author), Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. EM xincheng@nju.edu.cn; jzhang7@gmu.edu RI Cheng, Xin/G-6762-2011; Ding, Mingde/C-7787-2009; OI Cheng, Xin/0000-0003-2837-7136; Liu, Ying/0000-0002-3483-5909 FU NSFC [10673004, 10828306, 10933003]; NKBRSF [2011CB811402]; China Scholarship Council (CSC) [2010619071]; NSF [ATM-0748003, AGS-1156120]; NASA [NNG05GG19G] FX We thank the anonymous referee for constructive comments that have significantly improved this manuscript. We are grateful to O. Olmedo, Q. R. Chen, and S. Patsourakos for valuable discussions. SDO is a mission of NASA's Living With a Star Program. X.C. and M.D.D. are supported by NSFC under grants 10673004, 10828306, and 10933003 and NKBRSF under grant 2011CB811402. X.C. is also supported by the scholarship granted by the China Scholarship Council (CSC) under file No. 2010619071. J.Z. is supported by NSF grants ATM-0748003 and AGS-1156120, and NASA grant NNG05GG19G. NR 70 TC 40 Z9 41 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 43 DI 10.1088/0004-637X/763/1/43 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700043 ER PT J AU Ciardi, DR Fabrycky, DC Ford, EB Gautier, TN Howell, SB Lissauer, JJ Ragozzine, D Rowe, JF AF Ciardi, David R. Fabrycky, Daniel C. Ford, Eric B. Gautier, T. N., III Howell, Steve B. Lissauer, Jack J. Ragozzine, Darin Rowe, Jason F. TI ON THE RELATIVE SIZES OF PLANETS WITHIN KEPLER MULTIPLE-CANDIDATE SYSTEMS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems ID TRANSIT TIMING OBSERVATIONS; LOW-MASS; STARS; CONFIRMATION; ARCHITECTURE; JUPITERS; MODELS AB We present a study of the relative sizes of planets within the multiple-candidate systems discovered with the Kepler mission. We have compared the size of each planet to the size of every other planet within a given planetary system after correcting the sample for detection and geometric biases. We find that for planet pairs for which one or both objects are approximately Neptune-sized or larger, the larger planet is most often the planet with the longer period. No such size-location correlation is seen for pairs of planets when both planets are smaller than Neptune. Specifically, if at least one planet in a planet pair has a radius of greater than or similar to 3R(circle plus), 68% +/- 6% of the planet pairs have the inner planet smaller than the outer planet, while no preferred sequential ordering of the planets is observed if both planets in a pair are smaller than less than or similar to 3 R-circle plus. C1 [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA. [Ford, Eric B.; Ragozzine, Darin] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Gautier, T. N., III] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Howell, Steve B.; Lissauer, Jack J.; Rowe, Jason F.] NASA, Ames Res Ctr, Mountain View, CA USA. RP Ciardi, DR (reprint author), CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM ciardi@ipac.caltech.edu RI Ragozzine, Darin/C-4926-2013; OI Ciardi, David/0000-0002-5741-3047; /0000-0001-6545-639X; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA Science Mission directorate; National Aeronautics and Space Administration under the Exoplanet Exploration Program; NASA [HF-51272.01-A]; STScI; AURA [NAS 5-26555] FX Kepler was competitively selected as the 10th NASA Discovery mission. The authors thank the many people who have made Kepler such a success. This paper includes data collected by the Kepler mission; funding for the Kepler mission is provided by the NASA Science Mission directorate. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. D.C.F. acknowledges NASA support through Hubble Fellowship grant HF-51272.01-A, awarded by STScI, operated by AURA under contract NAS 5-26555. D. R. C. thanks the referee, the Kepler team, Bill Borucki, Geoff Marcy, Stephen Kane, Peter Plavchan, Kaspar von Braun, Teresa Ciardi, and Jim Grubbs for very insightful and inspirational comments and discussions in the formation of this paper. NR 35 TC 26 Z9 27 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 41 DI 10.1088/0004-637X/763/1/41 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700041 ER PT J AU DiSanti, MA Bonev, BP Villanueva, GL Mumma, MJ AF DiSanti, M. A. Bonev, B. P. Villanueva, G. L. Mumma, M. J. TI HIGHLY DEPLETED ETHANE AND MILDLY DEPLETED METHANOL IN COMET 21P/GIACOBINI-ZINNER: APPLICATION OF A NEW EMPIRICAL nu(2)-BAND MODEL FOR CH3OH NEAR 50 K SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; comets: individual (21P/Giacobini-Zinner); techniques: spectroscopic ID C/1996 B2 HYAKUTAKE; O1 HALE-BOPP; PARENT VOLATILES; CARBON-MONOXIDE; INFRARED OBSERVATIONS; PROTOPLANETARY DISKS; CHEMICAL-COMPOSITION; SOLID CO; H1 LEE; CHEMISTRY AB We obtained infrared spectra of Comet 21P/Giacobini-Zinner (hereafter 21P/GZ) using NIRSPEC at Keck II on UT 2005 June 3, approximately one month before perihelion, that simultaneously sampled H2O, C2H6, and CH3OH. Our production rate for H2O (3.885 +/- 0.074 x 10(28) molecules s(-1)) was consistent with that measured during other apparitions of 21P/GZ as retrieved from optical, infrared, and radio observations. Our analysis also provided values for rotational temperature (T-rot = 51 +/- 3 K) and the abundance ratio of ortho and para spin populations for water (OPR = 2.99 +/- 0.23, implying a spin temperature exceeding 50 K). Six Q-branches in the nu(7) band of C2H6 provided a production rate (5.27 +/- 0.90 x 10(25) s(-1)) that corresponded to an abundance ratio of 0.136 +/- 0.023 x 10(-2) relative to H2O, confirming the previously reported strong depletion of C2H6 from IR observations during the 1998 apparition, and in qualitative agreement with the depletion of C-2 known from optical studies of 21P/GZ. For CH3OH, we applied our recently published quantum model for the nu(3) band to obtain a rotational temperature (48(+10)/-7 K) consistent with that obtained for H2O. In addition, we developed a new empirical model for the CH3OH nu(2) band, based on observations of Comet 8P/Tuttle with NIRSPEC. The application of our nu(2) model to 21P/GZ yielded a production rate in agreement with that obtained from the nu(3) band. Combining results from both nu(2) and nu(3) bands provided a production rate (47.5 +/- 4.4 x 10(25) s(-1)) that corresponded to an abundance ratio of 1.22 +/- 0.11 x 10(-2) relative to H2O in 21P/GZ, indicating mild depletion of CH3OH. Together with observations of 21P/GZ in 1998, our study provides a measure of primary volatile production rates for this Jupiter family comet over multiple apparitions using high-resolution IR spectroscopy. C1 [DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Mumma, M. J.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [DiSanti, M. A.; Mumma, M. J.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Bonev, B. P.; Villanueva, G. L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP DiSanti, MA (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. EM michael.a.disanti@nasa.gov RI mumma, michael/I-2764-2013 FU NASA's Planetary Atmospheres Program [RTOP 09-PATM-0080, 08-PATM-0031, PATM-NNX12AG60G, RTOP 09-PAST09-0034, RTOPs 344-32-07, 08-PAST08-0033/34]; NSF Astronomy and Astrophysics Grants Program [AST-1211362, AST-0807939]; NASA's Astrobiology Program through the NASA Astrobiology Institute [RTOP 344-53-51]; W. M. Keck Foundation FX M. A. D. and G. L. V. acknowledge support from NASA's Planetary Atmospheres Program (RTOP 09-PATM-0080; PI: M. A. D., and 08-PATM-0031; PI: G. L. V.). B. P. B. acknowledges support from the NSF Astronomy and Astrophysics Grants Program (AST-1211362; AST-0807939) and NASA's Planetary Atmospheres Program (PATM-NNX12AG60G). We also acknowledge support from NASA's Planetary Astronomy Program for MAD (RTOP 09-PAST09-0034) and for M.J.M. and G. L. V. (RTOPs 344-32-07, 08-PAST08-0033/34), and from NASA's Astrobiology Program through the NASA Astrobiology Institute (RTOP 344-53-51; PI: M.J.M.). We thank an anonymous reviewer for providing comments that improved the manuscript. The data presented herein were obtained at the W. M. Keck Observatory, operated as a scientific partnership among CalTech, UCLA, and NASA. This Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 77 TC 15 Z9 15 U1 4 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 1 DI 10.1088/0004-637X/763/1/1 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700001 ER PT J AU Dogan, G Metcalfe, TS Deheuvels, S Di Mauro, MP Eggenberger, P Creevey, OL Monteiro, MJPFG Pinsonneault, M Frasca, A Karoff, C Mathur, S Sousa, SG Brandao, IM Campante, TL Handberg, R Thygesen, AO Biazzo, K Bruntt, H Niemczura, E Bedding, TR Chaplin, WJ Christensen-Dalsgaard, J Garcia, RA Molenda-Zakowicz, J Stello, D Van Saders, JL Kjeldsen, H Still, M Thompson, SE Van Cleve, J AF Dogan, G. Metcalfe, T. S. Deheuvels, S. Di Mauro, M. P. Eggenberger, P. Creevey, O. L. Monteiro, M. J. P. F. G. Pinsonneault, M. Frasca, A. Karoff, C. Mathur, S. Sousa, S. G. Brandao, I. M. Campante, T. L. Handberg, R. Thygesen, A. O. Biazzo, K. Bruntt, H. Niemczura, E. Bedding, T. R. Chaplin, W. J. Christensen-Dalsgaard, J. Garcia, R. A. Molenda-Zakowicz, J. Stello, D. Van Saders, J. L. Kjeldsen, H. Still, M. Thompson, S. E. Van Cleve, J. TI CHARACTERIZING TWO SOLAR-TYPE KEPLER SUBGIANTS WITH ASTEROSEISMOLOGY: KIC 10920273 AND KIC 11395018 SO ASTROPHYSICAL JOURNAL LA English DT Article DE asteroseismology; stars: evolution; stars: fundamental parameters; stars: individual (KIC 10920273, KIC 11395018); stars: solar-type ID STELLAR EVOLUTION CODE; P-MODES; ROTATIONAL EVOLUTION; LITHIUM DEPLETION; ECHELLE DIAGRAMS; GOLF EXPERIMENT; MAIN-SEQUENCE; OPEN CLUSTERS; MIXED-MODES; TIME SCALES AB Determining fundamental properties of stars through stellar modeling has improved substantially due to recent advances in asteroseismology. Thanks to the unprecedented data quality obtained by space missions, particularly CoRoT and Kepler, invaluable information is extracted from the high-precision stellar oscillation frequencies, which provide very strong constraints on possible stellar models for a given set of classical observations. In this work, we have characterized two relatively faint stars, KIC 10920273 and KIC 11395018, using oscillation data from Kepler photometry and atmospheric constraints from ground-based spectroscopy. Both stars have very similar atmospheric properties; however, using the individual frequencies extracted from the Kepler data, we have determined quite distinct global properties, with increased precision compared to that of earlier results. We found that both stars have left the main sequence and characterized them as follows: KIC 10920273 is a one-solar-mass star (M = 1.00 +/- 0.04 M-circle dot), but much older than our Sun (t = 7.12 +/- 0.47 Gyr), while KIC 11395018 is significantly more massive than the Sun (M = 1.27 +/- 0.04 M-circle dot) with an age close to that of the Sun (t = 4.57 +/- 0.23 Gyr). We confirm that the high lithium abundance reported for these stars should not be considered to represent young ages, as we precisely determined them to be evolved subgiants. We discuss the use of surface lithium abundance, rotation, and activity relations as potential age diagnostics. C1 [Dogan, G.; Metcalfe, T. S.; Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Dogan, G.; Karoff, C.; Handberg, R.; Thygesen, A. O.; Bruntt, H.; Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Dogan, G.; Metcalfe, T. S.; Deheuvels, S.; Pinsonneault, M.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Garcia, R. A.; Van Saders, J. L.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Metcalfe, T. S.] Space Sci Inst, Boulder, CO 80301 USA. [Deheuvels, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Di Mauro, M. P.] Ist Astrofis & Planetol Spaziali, INAF IAPS, I-00133 Rome, Italy. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Creevey, O. L.] Univ Nice, CNRS UMR 6202, Observ Cote Azur, Lab Cassiopee, F-06304 Nice 4, France. [Creevey, O. L.] IAC Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Creevey, O. L.] Univ La Laguna, E-38206 Tenerife, Spain. [Monteiro, M. J. P. F. G.; Sousa, S. G.; Brandao, I. M.; Campante, T. L.] Univ Porto, Ctr Astrofis, Oporto, Portugal. [Monteiro, M. J. P. F. G.; Sousa, S. G.; Brandao, I. M.; Campante, T. L.] Univ Porto, DFA Fac Ciencias, Oporto, Portugal. [Pinsonneault, M.; Van Saders, J. L.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Frasca, A.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy. [Campante, T. L.; Chaplin, W. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Thygesen, A. O.] Heidelberg Univ, Zentrum Astron, Landessternwarte, D-69117 Heidelberg, Germany. [Biazzo, K.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Niemczura, E.; Molenda-Zakowicz, J.] Uniwersytet Wroclawski, Inst Astron, PL-51622 Wroclaw, Poland. [Bedding, T. R.; Stello, D.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Garcia, R. A.] Ctr Saclay, Lab AIM, CEA DSM CNRS U Paris Diderot IRFU SAp, F-91191 Gif Sur Yvette, France. [Still, M.] NASA, Bay Area Environm Res Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thompson, S. E.; Van Cleve, J.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Dogan, G (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, POB 3000, Boulder, CO 80307 USA. EM gulnur@ucar.edu RI Sousa, Sergio/I-7466-2013; Brandao, Isa/M-5172-2013; Monteiro, Mario J.P.F.G./B-4715-2008; OI Sousa, Sergio/0000-0001-9047-2965; Brandao, Isa/0000-0002-1153-0942; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Biazzo, Katia/0000-0002-1892-2180; Bedding, Timothy/0000-0001-5943-1460; Di Mauro, Maria Pia/0000-0001-7801-7484; Frasca, Antonio/0000-0002-0474-0896; Metcalfe, Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate; Advanced Study Program (ASP) of the National Center for Atmospheric Research (NCAR); NASA [NNX11AE04G]; Danish Council for Independent Research; National Science Foundation; Danish National Research Foundation; ASTERISK project (ASTERoseismic Investigations with SONG and Kepler); European Research Council [267864, ERC-2009-StG-239953]; German Research Foundation (DFG) [Sonderforschungsbereich SFB 881]; FCT/MCTES, Portugal [SFRH/BD/41213/2007, PTDC/CTE-AST/098754/2008]; FCT-Portugal [PTDC/CTE-AST/098754/2008]; Polish Minstry [N N203 405139]; FEDER; INAF Postdoctoral fellowship; Conseil General des Alpes-Maritimes; Observatoire de la Cote d'Azur; European Community [269194]; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/47611/2008]; UK Science and Technology Facilities Council; National Science Foundation [PHY05-51164] FX We thank the entire Kepler team, without whom these results would not be possible. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1. This article is based on observations made with the Nordic Optical Telescope (NOT) operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos. G. D. gratefully acknowledges financial support from the following institutions: the Advanced Study Program (ASP) of the National Center for Atmospheric Research (NCAR), NASA under grant No. NNX11AE04G (together with M. P. and T. S. M.), The Danish Council for Independent Research; and thanks Y. Elsworth, S. Hekker, M. Steslicki, J. C. Suarez, M. J. Thompson, and the anonymous referee for useful comments. NCAR is partially supported by the National Science Foundation. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation. The research is supported in part by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement No. 267864). A.O.T. acknowledges support from Sonderforschungsbereich SFB 881 "The Milky Way System" (subproject A5) of the German Research Foundation (DFG). I. M. B. is supported by the grant SFRH/BD/41213/2007 from FCT/MCTES, Portugal. I. M. B. and M. J. P. F. G. were supported in part by grant PTDC/CTE-AST/098754/2008 from FCT-Portugal and FEDER. J.M.-.Z acknowledges the Polish Minstry grant number N N203 405139. K. B. acknowledges the funding support from the INAF Postdoctoral fellowship. This research was carried out while O.L.C. was a Henri Poincare Fellow at the Observatoire de la Cote d'Azur. The Henri Poincare Fellowship is funded by the Conseil General des Alpes-Maritimes and the Observatoire de la Cote d'Azur. R. A. G. has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 269194 (IRSES/ASK). S. G. S. acknowledges the support from the Fundacao para a Ciencia e Tecnologia (grant ref. SFRH/BPD/47611/2008) and the European Research Council (grant ref. ERC-2009-StG-239953). T. L. C. acknowledges financial support from project PTDC/CTE-AST/098754/2008 funded by FCT/MCTES, Portugal. W. J. C. acknowledges financial support from the UK Science and Technology Facilities Council. We acknowledge the KITP staff at UCSB for their warm hospitality during the research program "Asteroseismology in the Space Age." This research was supported in part by the National Science Foundation under grant No. PHY05-51164. NR 66 TC 18 Z9 18 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 49 DI 10.1088/0004-637X/763/1/49 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700049 ER PT J AU Johnson, JA Morton, TD Wright, JT AF Johnson, John Asher Morton, Timothy D. Wright, Jason T. TI RETIRED A STARS: THE EFFECT OF STELLAR EVOLUTION ON THE MASS ESTIMATES OF SUBGIANTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: evolution; stars: fundamental parameters; stars: general ID PLANETARY COMPANION; EXTRASOLAR PLANETS; N2K CONSORTIUM; HOT SATURN; COOL STARS; M-DWARF; EXOPLANETS; CATALOG; SEARCH; SPOCS AB Doppler surveys have shown that the occurrence rate of Jupiter-mass planets appears to increase as a function of stellar mass. However, this result depends on the ability to accurately measure the masses of evolved stars. Recently, Lloyd called into question the masses of subgiant stars targeted by Doppler surveys. Lloyd argues that very few observable subgiants have masses greater than 1.5 M-circle dot, and that most of them have masses in the range 1.0-1.2 M-circle dot. To investigate this claim, we use Galactic stellar population models to generate an all-sky distribution of stars. We incorporate the effects that make massive subgiants less numerous, such as the initial mass function and differences in stellar evolution timescales. We find that these effects lead to negligibly small systematic errors in stellar mass estimates, in contrast to the approximate to 50% errors predicted by Lloyd. Additionally, our simulated target sample does in fact include a significant fraction of stars with masses greater than 1.5 M-circle dot, primarily because the inclusion of an apparent magnitude limit results in a Malmquist-like bias toward more massive stars, in contrast to the volume-limited simulations of Lloyd. The magnitude limit shifts the mean of our simulated distribution toward higher masses and results in a relatively smaller number of evolved stars with masses in the range 1.0-1.2 M-circle dot. We conclude that, within the context of our present-day understanding of stellar structure and evolution, many of the subgiants observed in Doppler surveys are indeed as massive as main-sequence A stars. C1 [Johnson, John Asher; Morton, Timothy D.] CALTECH, Dept Astrophys, Pasadena, CA 91125 USA. [Johnson, John Asher; Morton, Timothy D.] NASA, Exoplanet Sci Inst NExScI, Pasadena, CA 91125 USA. [Wright, Jason T.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16803 USA. [Wright, Jason T.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16803 USA. RP Johnson, JA (reprint author), CALTECH, Dept Astrophys, MC 249-17, Pasadena, CA 91125 USA. EM johnjohn@astro.caltech.edu OI Wright, Jason/0000-0001-6160-5888 FU Alfred P. Sloan Foundation; David and Lucile Packard Foundation; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium FX We gratefully acknowledge the insightful comments and edits of earlier drafts of this manuscript provided by Rebekah Dawson, Kaitlin Kratter, Geoff Marcy, Ed Turner, and Jon Swift. We thank James Lloyd for his comments and assistance with understanding the arguments of L11, and also for his many collegial discussions and thoughtful feedback on previous drafts of this manuscript. We also thank Leo Girardi for sending us his Perl scripts and providing advice and information about the TRILEGAL code. J.A.J. acknowledges support from the Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. NR 33 TC 23 Z9 23 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 53 DI 10.1088/0004-637X/763/1/53 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700053 ER PT J AU Moses, JI Madhusudhan, N Visscher, C Freedman, RS AF Moses, J. I. Madhusudhan, N. Visscher, C. Freedman, R. S. TI CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: individual (HD 189733b, WASP-12b, XO-1b, CoRoT-2b); stars: individual (HD 189733, WASP-12, XO-1, CoRoT-2) ID INFRARED-EMISSION-SPECTRUM; GIANT PLANET ATMOSPHERES; MASS DWARF STARS; MOLECULAR SPECTROSCOPIC DATABASE; TRANSITING EXTRASOLAR PLANET; COLLISION-INDUCED ABSORPTION; PROTOPLANETARY DISKS. II.; HUBBLE-SPACE-TELESCOPE; NEPTUNE GJ 436B; SECONDARY ECLIPSE AB Motivated by recent spectroscopic evidence for carbon-rich atmospheres on some transiting exoplanets, we investigate the influence of the C/O ratio on the chemistry, composition, and spectra of extrasolar giant planets both from a thermochemical equilibrium perspective and from consideration of disequilibrium processes like photochemistry and transport-induced quenching. We find that although CO is predicted to be a major atmospheric constituent on hot Jupiters for all C/O ratios, other oxygen-bearing molecules like H2O and CO2 are much more abundant when C/O < 1, whereas CH4, HCN, and C2H2 gain significantly in abundance when C/O > 1. Other notable species like N-2 and NH3 that do not contain carbon or oxygen are relatively unaffected by the C/O ratio. Disequilibrium processes tend to enhance the abundance of CH4, NH3, HCN, and C2H2 over a wide range of C/O ratios. We compare the results of our models with secondary-eclipse photometric data from the Spitzer Space Telescope and conclude that (1) disequilibrium models with C/O similar to 1 are consistent with spectra of WASP-12b, XO-1b, and CoRoT-2b, confirming the possible carbon-rich nature of these planets; (2) spectra from HD 189733b are consistent with C/O less than or similar to 1, but as the assumed metallicity is increased above solar, the required C/O ratio must increase toward 1 to prevent too much H2O absorption; (3) species like HCN can have a significant influence on spectral behavior in the 3.6 and 8.0 mu m Spitzer channels, potentially providing even more opacity than CH4 when C/O > 1; and (4) the very high CO2 abundance inferred for HD 189733b from near-infrared observations cannot be explained through equilibrium or disequilibrium chemistry in a hydrogen-dominated atmosphere. We discuss possible formation mechanisms for carbon-rich hot Jupiters, including scenarios in which the accretion of CO-rich, H2O-poor gas dominates the atmospheric envelope, and scenarios in which the planets accrete carbon-rich solids while migrating through disk regions inward of the snow line. The C/O ratio and bulk atmospheric metallicity provide important clues regarding the formation and evolution of the giant planets. C1 [Moses, J. I.] Space Sci Inst, Boulder, CO 80301 USA. [Madhusudhan, N.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Madhusudhan, N.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Visscher, C.] SW Res Inst, Boulder, CO 80302 USA. [Freedman, R. S.] SETI Inst, Mountain View, CA 94043 USA. [Freedman, R. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Moses, JI (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. EM jmoses@spacescience.org RI Moses, Julianne/I-2151-2013 OI Moses, Julianne/0000-0002-8837-0035 FU NASA Planetary Atmospheres Program [NNX11AD64G]; Yale Center of Astronomy and Astrophysics through a YCAA Postdoctoral Fellowship; [NNX10AF64G] FX We thank Mark Marley and Jonathan Fortney for interesting exoplanet science discussions. The first author (J.M.) gratefully acknowledges support from the NASA Planetary Atmospheres Program grant number NNX11AD64G, C.V. acknowledges support from NNX10AF64G, and N.M. acknowledges support from the Yale Center of Astronomy and Astrophysics through a YCAA Postdoctoral Fellowship. NR 212 TC 56 Z9 57 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 25 DI 10.1088/0004-637X/763/1/25 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700025 ER PT J AU Ofek, EO Fox, D Cenko, SB Sullivan, M Gnat, O Frail, DA Horesh, A Corsi, A Quimby, RM Gehrels, N Kulkarni, SR Gal-Yam, A Nugent, PE Yaron, O Filippenko, AV Kasliwal, MM Bildsten, L Bloom, JS Poznanski, D Arcavi, I Laher, RR Levitan, D Sesar, B Surace, J AF Ofek, E. O. Fox, D. Cenko, S. B. Sullivan, M. Gnat, O. Frail, D. A. Horesh, A. Corsi, A. Quimby, R. M. Gehrels, N. Kulkarni, S. R. Gal-Yam, A. Nugent, P. E. Yaron, O. Filippenko, A. V. Kasliwal, M. M. Bildsten, L. Bloom, J. S. Poznanski, D. Arcavi, I. Laher, R. R. Levitan, D. Sesar, B. Surace, J. TI X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: mass-loss; supernovae: general; supernovae: individual (SN 2006jc, SN 2010jl) ID CORE-COLLAPSE SUPERNOVAE; LIGHT CURVES; LUMINOUS SUPERNOVAE; IIN SUPERNOVA; SN 1978K; BREAKOUT; WIND; DISCOVERY; TELESCOPE; TRANSIENT AB The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (tau greater than or similar to 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model. We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected. C1 [Ofek, E. O.; Gal-Yam, A.; Yaron, O.; Arcavi, I.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Fox, D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cenko, S. B.; Filippenko, A. V.; Bloom, J. S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Sullivan, M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Gnat, O.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Horesh, A.; Kulkarni, S. R.; Levitan, D.; Sesar, B.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Corsi, A.] CALTECH, LIGO Lab, Div Phys, Pasadena, CA 91125 USA. [Quimby, R. M.] Univ Tokyo, Kavli IPMU, Kashiwa, Chiba 2778583, Japan. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kasliwal, M. M.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Bildsten, L.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Bildsten, L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Poznanski, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Laher, R. R.; Surace, J.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Ofek, EO (reprint author), Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. RI Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Sullivan, Mark/0000-0001-9053-4820 FU Israeli Ministry of Science; Royal Society; LIGO; National Science Foundation [PHY-0757058]; NSF [AST-0507734, PHY 05-51164, AST 07-07633, AST-0908886, AST-1211916]; Israeli; German-Israeli; U.S.-Israel Binational Science Foundations; Minerva grant; Lord Sieff of Brimpton fund; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Scientific Discovery through Advanced Computing program [DE-FG02-06ER06-04]; NSF/OIA [AST-0941742]; Hubble Fellowship; Carnegie-Princeton Fellowship; Gary & Cynthia Bengier; Richard & Rhoda Goldman Fund; Christopher R. Redlich Fund; TABASGO Foundation FX We thank Ehud Nakar, Boaz Katz, and Nir Sapir for many discussions, and the anonymous referee for constructive comments. This paper is based on observations obtained with the Samuel Oschin Telescope as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. E.O.O. is incumbent of the Arye Dissentshik career development chair and is grateful to support by a grant from the Israeli Ministry of Science. M. S. acknowledges support from the Royal Society. A. C. acknowledges support from LIGO, which was constructed by the California Institute of Technology and the Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058. S.R.K. and his group are partially supported by the NSF grant AST-0507734. A.G. acknowledges support by the Israeli, German-Israeli, and the U.S.-Israel Binational Science Foundations, a Minerva grant, and the Lord Sieff of Brimpton fund. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for the PTF project. P.E.N. acknowledges support from the U.S. Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. J.S.B.'s work on PTF was supported by NSF/OIA award AST-0941742 ("Real-Time Classification of Massive Time-Series Data Streams"). L.B. is supported by the NSF under grants PHY 05-51164 and AST 07-07633. M.M.K. acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship. A.V.F.'s supernova group at UC Berkeley is supported by Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grants AST-0908886 and AST-1211916. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, Auto-Scope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. NR 128 TC 28 Z9 28 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 42 DI 10.1088/0004-637X/763/1/42 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700042 ER PT J AU Street, RA Choi, JY Tsapras, Y Han, C Furusawa, K Hundertmark, M Gould, A Sumi, T Bond, IA Wouters, D Zellem, R Udalski, A Snodgrass, C Horne, K Dominik, M Browne, P Kains, N Bramich, DM Bajek, D Steele, IA Ipatov, S Abe, F Bennett, DP Botzler, CS Chote, P Freeman, M Fukui, A Harris, P Itow, Y Ling, CH Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagayama, T Nishimaya, S Ohnishi, K Rattenbury, N Saito, T Sullivan, DJ Suzuki, D Sweatman, WL Tristram, PJ Wada, K Yock, PCM Szymanski, MK Kubiak, M Pietrzynski, G Soszynski, I Poleski, R Ulaczyk, K Wyrzykowski, L Yee, J Dong, S Shin, IG Lee, CU Skowron, J De Almeida, LA Depoy, DL Gaudi, BS Hung, LW Jablonski, F Kaspi, S Klein, N Hwang, KH Koo, JR Maoz, D Munoz, JA Pogge, RW Polishhook, D Shporer, A McCormick, J Christie, G Natusch, T Allen, B Drummond, J Moorhouse, D Thornley, G Knowler, M Bos, M Bolt, G Beaulieu, JP Albrow, MD Batista, V Brillant, S Caldwell, JAR Cassan, A Cole, A Corrales, E Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Bachelet, E Greenhill, J Kane, SR Kubas, D Marquette, JB Martin, R Menzies, J Pollard, KR Sahu, KC Wambsganss, J Williams, A Zub, M Alsubai, KA Bozza, V Burgdorf, MJ Novati, SC Dodds, P Dreizler, S Finet, F Gerner, T Hardis, S Harpsoe, K Hessman, F Hinse, TC Jorgensen, UG Kerins, E Liebig, C Mancini, L Mathiasen, M Penny, MT Proft, S Rahvar, S Ricci, D Scarpetta, G Schafer, S Schonebeck, F Southworth, J Surdej, J AF Street, R. A. Choi, J. -Y. Tsapras, Y. Han, C. Furusawa, K. Hundertmark, M. Gould, A. Sumi, T. Bond, I. A. Wouters, D. Zellem, R. Udalski, A. Snodgrass, C. Horne, K. Dominik, M. Browne, P. Kains, N. Bramich, D. M. Bajek, D. Steele, I. A. Ipatov, S. Abe, F. Bennett, D. P. Botzler, C. S. Chote, P. Freeman, M. Fukui, A. Harris, P. Itow, Y. Ling, C. H. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagayama, T. Nishimaya, S. Ohnishi, K. Rattenbury, N. Saito, To. Sullivan, D. J. Suzuki, D. Sweatman, W. L. Tristram, P. J. Wada, K. Yock, P. C. M. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Soszynski, I. Poleski, R. Ulaczyk, K. Wyrzykowski, L. Yee, J. Dong, S. Shin, I. -G. Lee, C. -U. Skowron, J. Andrade De Almeida, L. DePoy, D. L. Gaudi, B. S. Hung, L. -W. Jablonski, F. Kaspi, S. Klein, N. Hwang, K. -H. Koo, J. -R. Maoz, D. Munoz, J. A. Pogge, R. W. Polishhook, D. Shporer, A. McCormick, J. Christie, G. Natusch, T. Allen, B. Drummond, J. Moorhouse, D. Thornley, G. Knowler, M. Bos, M. Bolt, G. Beaulieu, J. -P. Albrow, M. D. Batista, V. Brillant, S. Caldwell, J. A. R. Cassan, A. Cole, A. Corrales, E. Coutures, Ch. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Bachelet, E. Greenhill, J. Kane, S. R. Kubas, D. Marquette, J. -B. Martin, R. Menzies, J. Pollard, K. R. Sahu, K. C. Wambsganss, J. Williams, A. Zub, M. Alsubai, K. A. Bozza, V. Burgdorf, M. J. Novati, S. Calchi Dodds, P. Dreizler, S. Finet, F. Gerner, T. Hardis, S. Harpsoe, K. Hessman, F. Hinse, T. C. Jorgensen, U. G. Kerins, E. Liebig, C. Mancini, L. Mathiasen, M. Penny, M. T. Proft, S. Rahvar, S. Ricci, D. Scarpetta, G. Schaefer, S. Schoenebeck, F. Southworth, J. Surdej, J. CA RoboNet Collaboration MOA Collaboration OGLE Collaboration MFUN Collaboration PLANET Collaboration MiNDSTEp TI MOA-2010-BLG-073L: AN M-DWARF WITH A SUBSTELLAR COMPANION AT THE PLANET/BROWN DWARF BOUNDARY SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; gravitational lensing: micro; planetary systems; planets and satellites: formation; planets and satellites: general; techniques: photometric ID GRAVITATIONAL LENSING EXPERIMENT; DIFFERENCE IMAGE-ANALYSIS; GAS GIANT PLANETS; BROWN DWARFS; MICROLENSING EVENTS; GALACTIC BULGE; VARIABLE-STARS; MINIMUM MASS; VARIABILITY; EVOLUTION AB We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V - I)(S),(0), is 1.221 +/- 0.051 mag, and from our lens model we derive a source radius of 14.7 +/- 1.3 R-circle dot, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 +/- 0.0006. The Einstein crossing time of the event, t(E) = 44.3 +/- 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, D-L = 2.8 +/- 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M-L,M-1 = 0.16 +/- 0.03 M-circle dot, while the companion has M-L,M-2 = 11.0 +/- 2.0 M-J, putting it in the boundary zone between planets and brown dwarfs. C1 [Street, R. A.; Tsapras, Y.; Shporer, A.] LCOGT, Goleta, CA 93117 USA. [Choi, J. -Y.; Han, C.; Shin, I. -G.; Hwang, K. -H.] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 361763, South Korea. [Tsapras, Y.] Univ London, Sch Math Sci, London E1 4NS, England. [Furusawa, K.; Abe, F.; Fukui, A.; Itow, Y.; Masuda, K.; Matsubara, Y.; Miyake, N.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Hundertmark, M.; Horne, K.; Dominik, M.; Browne, P.; Bajek, D.; Dodds, P.; Liebig, C.] Univ St Andrews, Dept Phys & Astron, SUPA St Andrews, St Andrews KY16 9SS, Fife, Scotland. [Gould, A.; Yee, J.; Skowron, J.; Gaudi, B. S.; Hung, L. -W.; Pogge, R. W.; Batista, V.; Penny, M. T.] Ohio State Univ, Dept Astron, McPherson Lab, Columbus, OH 43210 USA. [Sumi, T.; Suzuki, D.; Wada, K.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Bond, I. A.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Wouters, D.; Beaulieu, J. -P.] Inst Astrophys, UMR 7095, UPMC, CNRS, F-75014 Paris, France. [Zellem, R.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Kains, N.; Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Wirral CH41 1LD, Merseyside, England. [Ipatov, S.; Alsubai, K. A.] Qatar Fdn, Doha, Qatar. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Botzler, C. S.; Freeman, M.; Rattenbury, N.; Yock, P. C. M.; Pollard, K. R.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Chote, P.; Harris, P.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Nagayama, T.] Nagoya Univ, Fac Sci, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Nishimaya, S.] Natl Astron Observ Japan, Extrasolar Planet Detect Project Off, Mitaka, Tokyo 1818588, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Lee, C. -U.; Koo, J. -R.; Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Andrade De Almeida, L.; Jablonski, F.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [DePoy, D. L.; Shporer, A.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Kaspi, S.; Klein, N.; Maoz, D.; Polishhook, D.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Kaspi, S.; Klein, N.; Maoz, D.; Polishhook, D.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Munoz, J. A.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [McCormick, J.] Farm Cove Observ, Auckland 2010, New Zealand. [Christie, G.; Natusch, T.] Auckland Observ, Auckland, New Zealand. [Allen, B.] Vintage Lane Observ, Blenheim, New Zealand. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Moorhouse, D.; Thornley, G.; Knowler, M.] Kumeu Observ, Kumeu, W Auckland, New Zealand. [Bos, M.] Molehill Astron Observ, N Shore City, New Zealand. [Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Brillant, S.] European So Observ, Santiago 19, Chile. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Cassan, A.; Corrales, E.; Coutures, Ch.; Marquette, J. -B.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cole, A.; Dieters, S.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Fouque, P.; Bachelet, E.] Univ Toulouse, UPS OMP, IRAP, Inst Rech Astrophys & Planetol, F-31028 Toulouse 04, France. [Fouque, P.; Bachelet, E.; Kubas, D.] IRAP, CNRS, F-31400 Toulouse, France. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wambsganss, J.; Zub, M.; Gerner, T.; Proft, S.; Schoenebeck, F.] Heidelberg Univ, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Bozza, V.; Mancini, L.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, SA, Italy. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Novati, S. Calchi; Mancini, L.] Ist Int Alti Studi Sci, I-84019 Vietri Sul Mare, SA, Italy. [Dreizler, S.; Hessman, F.; Schaefer, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Hardis, S.; Jorgensen, U. G.; Mathiasen, M.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Harpsoe, K.; Penny, M. T.] Geol Museum, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Kerins, E.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mancini, L.] Max Planck Inst Astron, D-619117 Heidelberg, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Scarpetta, G.] Ist Nazl Fis Nucl, Grp Collegato Salerno, Sez Napoli, Naples, Italy. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. RP Han, C (reprint author), Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 361763, South Korea. EM rstreet@lcogt.net RI Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Almeida, L./G-7188-2012; Williams, Andrew/K-2931-2013; Skowron, Jan/M-5186-2014; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; Ipatov, Sergei/O-2302-2014; OI Cole, Andrew/0000-0003-0303-3855; Zellem, Robert/0000-0001-7547-0398; Williams, Andrew/0000-0001-9080-0105; Skowron, Jan/0000-0002-2335-1730; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Dominik, Martin/0000-0002-3202-0343; Ipatov, Sergei/0000-0002-1413-9180; Ricci, Davide/0000-0002-9790-0552; Penny, Matthew/0000-0001-7506-5640; Snodgrass, Colin/0000-0001-9328-2905 FU Qatar Foundation, QNRF [NPRP-09-476-1-078]; National Research Foundation of Korea [2009-0081561]; European Union [268421]; European Research Council under European Community [246678]; National Aeronautics and Space Administration; National Science Foundation; Korea Research Council for Fundamental Science and Technology (KRCF) through Young Research Scientist Fellowship Program; KASI (Korea Astronomy and Space Science Institute) [2012-1-410-02]; Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe; NSF [AST-1103471, AST-0807444]; NASA [NNX12AB99G]; National Science Foundation Graduate Research Fellowship [2009068160]; Ralph E. and Doris M. Hansmann Membership at the IAS; [JSPS20340052]; [JSPS22403003]; [JSPS19340058] FX R.A.S. is grateful to the Chungbuk University group and especially to C. Han and J.-Y. Choi for their advice and hospitality in Korea, where much of this work was completed. R. A. S. also expresses appreciation for Y. Tsapras, K. Horne, M. Hundertmark, S. Dong, and P. Fouque for many useful discussions. K. A., D. M. B., M. D., K. H., M. H., C. L., C. S., R. A. S., and Y. T. thank the Qatar Foundation for support from QNRF grant NPRP-09-476-1-078. Work by C. Han was supported by the Creative Research Initiative Program (2009-0081561) of the National Research Foundation of Korea. C. S. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 268421. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 246678 to AU. This publication makes use of data products from the Exoplanet Encyclopeida and the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. M.O.A. acknowledges funding JSPS20340052, JSPS22403003, and JSPS19340058. T. C. H. gratefully acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Program. C. U. L. and T. C. H. acknowledge financial support from KASI (Korea Astronomy and Space Science Institute) grant number 2012-1-410-02. D. R. (boursier FRIA), F. F. (boursier ARC), and J. Surdej acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe. A. Gould acknowledges support from NSF AST-1103471. B. S. Gaudi, A. Gould, and R. W. Pogge acknowledge support from NASA grant NNX12AB99G. Work by J. C. Yee is supported by a National Science Foundation Graduate Research Fellowship under grant No. 2009068160. S. D. is supported through a Ralph E. and Doris M. Hansmann Membership at the IAS and NSF grant AST-0807444. NR 75 TC 13 Z9 13 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2013 VL 763 IS 1 AR 67 DI 10.1088/0004-637X/763/1/67 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 069SH UT WOS:000313456700067 ER PT J AU Gopalswamy, N Yashiro, S Makela, P Michalek, G Shibasaki, K Hathaway, DH AF Gopalswamy, N. Yashiro, S. Maekelae, P. Michalek, G. Shibasaki, K. Hathaway, D. H. TI BEHAVIOR OF SOLAR CYCLES 23 AND 24 REVEALED BY MICROWAVE OBSERVATIONS (vol 750, L42, 2012) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Correction C1 [Gopalswamy, N.; Yashiro, S.; Maekelae, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yashiro, S.; Maekelae, P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Michalek, G.] Nobeyama Solar Radio Observ, Nobeyama, Japan. [Shibasaki, K.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Hathaway, D. H.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 3 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 20 PY 2013 VL 763 IS 1 AR L24 DI 10.1088/2041-8205/763/1/L24 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 071CY UT WOS:000313564500024 ER PT J AU Hinkley, S Hillenbrand, L Oppenheimer, BR Rice, EL Pueyo, L Vasisht, G Zimmerman, N Kraus, AL Ireland, MJ Brenner, D Beichman, C Dekany, R Roberts, JE Parry, IR Roberts, LC Crepp, JR Burruss, R Wallace, JK Cady, E Zhai, CX Shao, M Lockhart, T Soummer, R Sivaramakrishnan, A AF Hinkley, Sasha Hillenbrand, Lynne Oppenheimer, Ben R. Rice, Emily L. Pueyo, Laurent Vasisht, Gautam Zimmerman, Neil Kraus, Adam L. Ireland, Michael J. Brenner, Douglas Beichman, Charles Dekany, Richard Roberts, Jennifer E. Parry, Ian R. Roberts, Lewis C., Jr. Crepp, Justin R. Burruss, Rick Wallace, J. Kent Cady, Eric Zhai, Chengxing Shao, Michael Lockhart, Thomas Soummer, Remi Sivaramakrishnan, Anand TI HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; instrumentation: adaptive optics; stars: individual (Z CMa); stars: pre-main sequence ID Z-CMA; ADAPTIVE OPTICS; COMPANION; OBJECTS; HERBIG; SCALE; DISK; ACCRETION; EVOLUTION; DISCOVERY AB We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young (less than or similar to 1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly (similar to 30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 mu m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system. C1 [Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Oppenheimer, Ben R.; Rice, Emily L.; Zimmerman, Neil; Brenner, Douglas] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Rice, Emily L.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Pueyo, Laurent; Soummer, Remi; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C., Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Shao, Michael; Lockhart, Thomas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zimmerman, Neil] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kraus, Adam L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ireland, Michael J.] Macquarie Univ, Dept Phys & Astron, Macquarie Pk, NSW 2109, Australia. [Ireland, Michael J.] Australian Astron Observ, Epping, NSW 1710, Australia. [Beichman, Charles] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Dekany, Richard] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Parry, Ian R.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP Hinkley, S (reprint author), CALTECH, Dept Astron, 1200 E Calif Blvd,MC 249-17, Pasadena, CA 91125 USA. RI Rice, Emily/G-4446-2013; OI Rice, Emily/0000-0002-3252-5886; Zimmerman, Neil/0000-0001-5484-1516 FU NASA through the Sagan Fellowship Program; National Science Foundation [AST-1203023, AST-0804417, 0334916, 0215793, 0520822, 1245018]; internal Research and Technology Development funds; W. M. Keck Foundation FX This work was performed in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. A portion of this work was supported by the National Science Foundation under grant Nos. AST-1203023, AST-0804417, 0334916, 0215793, 0520822, and 1245018. A portion of the research in this Letter was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and was funded by internal Research and Technology Development funds. The authors thank Pat Hartigan for his help obtaining the Keck/NIRSPEC observations. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 46 TC 11 Z9 11 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 20 PY 2013 VL 763 IS 1 AR L9 DI 10.1088/2041-8205/763/1/L9 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 071CY UT WOS:000313564500009 ER PT J AU Nelson, EJ van Dokkum, PG Momcheva, I Brammer, G Lundgren, B Skelton, RE Whitaker, KE Da Cunha, E Schreiber, NF Franx, M Fumagalli, M Kriek, M Labbe, I Leja, J Patel, S Rix, HW Schmidt, KB van der Wel, A Wuyts, S AF Nelson, Erica June van Dokkum, Pieter G. Momcheva, Ivelina Brammer, Gabriel Lundgren, Britt Skelton, Rosalind E. Whitaker, Katherine E. Da Cunha, Elisabete Schreiber, Natascha Foerster Franx, Marijn Fumagalli, Mattia Kriek, Mariska Labbe, Ivo Leja, Joel Patel, Shannon Rix, Hans-Walter Schmidt, Kasper B. van der Wel, Arjen Wuyts, Stijn TI THE RADIAL DISTRIBUTION OF STAR FORMATION IN GALAXIES AT z similar to 1 FROM THE 3D-HST SURVEY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: kinematics and dynamics; galaxies: star formation; galaxies: structure ID INTEGRAL FIELD SPECTROSCOPY; GREATER-THAN 1; MASSIVE GALAXIES; FORMING GALAXIES; SINS SURVEY; MILKY-WAY; KINEMATICS; DISKS; EVOLUTION; DYNAMICS AB The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H alpha emission for a sample of 54 strongly star-forming galaxies at z similar to 1 in the 3D-HST Treasury survey. By stacking the H alpha emission, we find that star formation occurred in approximately exponential distributions at z similar to 1, with a median Sersic index of n = 1.0 +/- 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 +/- 0.09 in H alpha consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90-330 km s(-1). The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z similar to 1 generally occurred in disks. The disks appear to be "scaled-up" versions of nearby spiral galaxies: they have EW(H alpha) similar to 100 angstrom out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds. C1 [Nelson, Erica June; van Dokkum, Pieter G.; Momcheva, Ivelina; Skelton, Rosalind E.; Leja, Joel] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Brammer, Gabriel] European So Observ, Santiago 19, Chile. [Lundgren, Britt] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Whitaker, Katherine E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Da Cunha, Elisabete; Rix, Hans-Walter; van der Wel, Arjen] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Schreiber, Natascha Foerster; Wuyts, Stijn] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Franx, Marijn; Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Kriek, Mariska] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Schmidt, Kasper B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Nelson, EJ (reprint author), Yale Univ, Dept Astron, New Haven, CT 06511 USA. RI Skelton, Rosalind/S-1845-2016; OI Skelton, Rosalind/0000-0001-7393-3336; Leja, Joel/0000-0001-6755-1315; da Cunha, Elisabete/0000-0001-9759-4797 FU [HST GO-12177] FX We thank the referee for a thorough report which improved the Letter. Support from grant HST GO-12177 is gratefully acknowledged. NR 49 TC 24 Z9 24 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 20 PY 2013 VL 763 IS 1 AR L16 DI 10.1088/2041-8205/763/1/L16 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 071CY UT WOS:000313564500016 ER PT J AU Ray, PS Ransom, SM Cheung, CC Giroletti, M Cognard, I Camilo, F Bhattacharyya, B Roy, J Romani, RW Ferrara, EC Guillemot, L Johnston, S Keith, M Kerr, M Kramer, M Pletsch, HJ Parkinson, PMS Wood, KS AF Ray, P. S. Ransom, S. M. Cheung, C. C. Giroletti, M. Cognard, I. Camilo, F. Bhattacharyya, B. Roy, J. Romani, R. W. Ferrara, E. C. Guillemot, L. Johnston, S. Keith, M. Kerr, M. Kramer, M. Pletsch, H. J. Parkinson, P. M. Saz Wood, K. S. TI RADIO DETECTION OF THE FERMI-LAT BLIND SEARCH MILLISECOND PULSAR J1311-3430 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: individual (PSR J1311-3430) ID X-RAY; BINARY AB We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of similar to 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(-3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies. C1 [Ray, P. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Cognard, I.] CNRS, LPCE, UMR 6115, F-45071 Orleans 02, France. [Cognard, I.] Observ Paris, CNRS, Stn Radioastron Nancay, INSU, F-18330 Nancay, France. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Camilo, F.] Arecibo Observ, Arecibo, PR 00612 USA. [Bhattacharyya, B.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Roy, J.] Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India. [Romani, R. W.; Kerr, M.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Romani, R. W.; Kerr, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guillemot, L.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Johnston, S.; Keith, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kramer, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Pletsch, H. J.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany. [Pletsch, H. J.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Ray, PS (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM Paul.Ray@nrl.navy.mil RI Saz Parkinson, Pablo Miguel/I-7980-2013; OI Giroletti, Marcello/0000-0002-8657-8852; Ransom, Scott/0000-0001-5799-9714; Ray, Paul/0000-0002-5297-5278 FU Fermi Guest Observer Program; NRL; NASA [DPR S-15633-Y]; ASI-INAF [I/009/10/0] FX This work was partially supported by the Fermi Guest Observer Program, administered by NASA. The work of C. C. C. was completed while under contract with NRL and supported by NASA DPR S-15633-Y. M. G. acknowledges financial contribution from the agreement ASI-INAF I/009/10/0. We thank John Sarkissian for help with observations at Parkes. NR 23 TC 24 Z9 24 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 20 PY 2013 VL 763 IS 1 AR L13 DI 10.1088/2041-8205/763/1/L13 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 071CY UT WOS:000313564500013 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beattie, K Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Bruijn, R Brunner, J Buitink, S Carson, M Casey, J Casier, M Chirkin, D Christy, B Clevermann, F Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Dunkman, M Eagan, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Hanson, K Heereman, D Heimann, P Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jlelati, O Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lesiak-Bzdak, M Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Movit, SM Nahnhauer, R Naumann, U Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L Pepper, JA de los Heros, CP Pieloth, D Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonherr, L Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Seo, SH Sestayo, Y Seunarine, S Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zilles, A Zoll, M AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beattie, K. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Bruijn, R. Brunner, J. Buitink, S. Carson, M. Casey, J. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Dunkman, M. Eagan, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heimann, P. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jlelati, O. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lesiak-Bzdak, M. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Naumann, U. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Pepper, J. A. de los Heros, C. Perez Pieloth, D. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenherr, L. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Seo, S. H. Sestayo, Y. Seunarine, S. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zilles, A. Zoll, M. CA IceCube Collaboration TI Search for relativistic magnetic monopoles with IceCube SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINO TELESCOPE; SELECTION; AMANDA; FIELDS; FLUX AB We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km(3). This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km(3) of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Phi(90%C.L.) similar to 3 x 10(-18) cm(-2) sr(-1) s(-1) for beta >= 0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost gamma below 10(7). This result is then interpreted for a wide range of mass and kinetic energy values. DOI: 10.1103/PhysRevD.87.022001 C1 [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Laihem, K.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Huelsnitz, W.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown BB11000, Barbados. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Buitink, S.; Casier, M.; De Clercq, C.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.; Nowicki, S. C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Carson, M.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Koepke, L.; Kroll, G.; Luenemann, J.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bell, M.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Berg Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Bai, X.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Montaruli, T.] Univ Bari, Dipartmento Fis, Sez INFN, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Christy, B (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM brian.christy@fandm.edu RI Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Hallgren, Allan/A-8963-2013; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012; Wiebusch, Christopher/G-6490-2012; Taavola, Henric/B-4497-2011; OI Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886 FU U.S. National Science Foundation Office of Polar Programs; U.S. National Science Foundation Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute; Belgian Federal Science Policy Office (BELSPO); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge the support from the following agencies: U.S. National Science Foundation Office of Polar Programs, U.S. National Science Foundation Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and the Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (BELSPO); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); and the Swiss National Science Foundation (SNSF), Switzerland. NR 31 TC 12 Z9 12 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN 18 PY 2013 VL 87 IS 2 AR 022001 DI 10.1103/PhysRevD.87.022001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 073PA UT WOS:000313753800001 ER PT J AU Garcia-Fernandez, D Alvarez-Muniz, J Carvalho, WR Romero-Wolf, A Zas, E AF Garcia-Fernandez, Daniel Alvarez-Muniz, Jaime Carvalho, Washington R., Jr. Romero-Wolf, Andres Zas, Enrique TI Calculations of electric fields for radio detection of ultrahigh energy particles SO PHYSICAL REVIEW D LA English DT Article ID AIR-SHOWERS; CHERENKOV RADIATION; NEUTRINO DETECTION; COSMIC NEUTRINOS; HADRONIC SHOWERS; EMISSION; PULSES; SIMULATIONS; SEARCH; CHARGE AB The detection of electromagnetic pulses from high energy showers is used as a means to search for ultrahigh energy cosmic ray and neutrino interactions. An approximate formula has been obtained to numerically evaluate the radio pulse emitted by a charged particle that instantaneously accelerates, moves at constant speed along a straight track, and halts again instantaneously. The approximate solution is applied to the particle track after dividing it in smaller subintervals. The resulting algorithm [often referred to as the Zas-Halzen-Stanev (ZHS) algorithm] is also the basis for most of the simulations of the electric field produced in high energy showers in dense media. In this work, the electromagnetic pulses as predicted with the ZHS algorithm are compared to those obtained with an exact solution of the electric field produced by a charged particle track. The precise conditions that must apply for the algorithm to be valid are discussed and its accuracy is addressed. This comparison is also made for electromagnetic showers in dense media. The ZHS algorithm is shown to describe Cherenkov radiation and to be valid for most situations of interest concerning detectors searching for ultrahigh energy neutrinos. The results of this work are also relevant for the simulation of pulses emitted from air showers. DOI: 10.1103/PhysRevD.87.023003 C1 [Garcia-Fernandez, Daniel; Alvarez-Muniz, Jaime; Carvalho, Washington R., Jr.; Zas, Enrique] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela 15782, Spain. [Garcia-Fernandez, Daniel; Alvarez-Muniz, Jaime; Carvalho, Washington R., Jr.; Zas, Enrique] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias, Santiago De Compostela 15782, Spain. [Romero-Wolf, Andres] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Garcia-Fernandez, D (reprint author), Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela 15782, Spain. RI Carvalho Jr., Washington/H-9855-2015; zas, enrique/I-5556-2015; Alvarez-Muniz, Jaime/H-1857-2015 OI Carvalho Jr., Washington/0000-0002-2328-7628; zas, enrique/0000-0002-4430-8117; Alvarez-Muniz, Jaime/0000-0002-2367-0803 NR 56 TC 4 Z9 4 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN 18 PY 2013 VL 87 IS 2 AR 023003 DI 10.1103/PhysRevD.87.023003 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 073PA UT WOS:000313753800002 ER PT J AU Pereira, HM Ferrier, S Walters, M Geller, GN Jongman, RHG Scholes, RJ Bruford, MW Brummitt, N Butchart, SHM Cardoso, AC Coops, NC Dulloo, E Faith, DP Freyhof, J Gregory, RD Heip, C Hoft, R Hurtt, G Jetz, W Karp, DS McGeoch, MA Obura, D Onoda, Y Pettorelli, N Reyers, B Sayre, R Scharlemann, JPW Stuart, SN Turak, E Walpole, M Wegmann, M AF Pereira, H. M. Ferrier, S. Walters, M. Geller, G. N. Jongman, R. H. G. Scholes, R. J. Bruford, M. W. Brummitt, N. Butchart, S. H. M. Cardoso, A. C. Coops, N. C. Dulloo, E. Faith, D. P. Freyhof, J. Gregory, R. D. Heip, C. Hoeft, R. Hurtt, G. Jetz, W. Karp, D. S. McGeoch, M. A. Obura, D. Onoda, Y. Pettorelli, N. Reyers, B. Sayre, R. Scharlemann, J. P. W. Stuart, S. N. Turak, E. Walpole, M. Wegmann, M. TI Essential Biodiversity Variables SO SCIENCE LA English DT Editorial Material ID GLOBAL BIODIVERSITY; INDICATORS; SYSTEM; MAP C1 [Pereira, H. M.] Univ Lisbon, Fac Ciencias, Ctr Biol Ambiental, Lisbon, Portugal. [Geller, G. N.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Jongman, R. H. G.] Alterra, Wageningen Ur, Netherlands. [Bruford, M. W.] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales. [Coops, N. C.] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V5Z 1M9, Canada. [Faith, D. P.] Australian Museum, Sydney, NSW 2000, Australia. [Hurtt, G.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Jetz, W.] Yale Univ, New Haven, CT 06520 USA. [Karp, D. S.] Stanford Univ, Ctr Conservat Biol, Stanford, CA 94305 USA. [McGeoch, M. A.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia. [Onoda, Y.] Kyoto Univ, Grad Sch Agr, Kyoto 6068501, Japan. [Pettorelli, N.] Zool Soc London, Inst Zool, London, England. [Sayre, R.] US Geol Survey, Washington, DC USA. [Scharlemann, J. P. W.] Univ Sussex, Sch Life Sci, Brighton BN1 9RH, E Sussex, England. [Turak, E.] Off Environm & Heritage, Sydney, NSW, Australia. [Wegmann, M.] Univ Wurzburg, Dept Geog & Geol, Wurzburg, Germany. RP Pereira, HM (reprint author), Univ Lisbon, Fac Ciencias, Ctr Biol Ambiental, Lisbon, Portugal. EM hpereira@fc.ul.pt RI Pereira, Henrique/B-3975-2009; Ferrier, Simon/C-1490-2009; Scharlemann, Jorn/A-4737-2008; Bruford, Michael/D-3750-2009; Onoda, Yusuke/L-7179-2015; Coops, Nicholas/J-1543-2012; OI Scholes, Robert/0000-0001-5537-6935; Pereira, Henrique/0000-0003-1043-1675; Obura, David/0000-0003-2256-6649; Ferrier, Simon/0000-0001-7884-2388; Scharlemann, Jorn/0000-0002-2834-6367; Turak, Eren/0000-0001-7383-9112; Geller, Gary/0000-0002-4490-6002; Bruford, Michael/0000-0001-6357-6080; Onoda, Yusuke/0000-0001-6245-2342; Coops, Nicholas/0000-0002-0151-9037; McGeoch, Melodie/0000-0003-3388-2241 NR 19 TC 186 Z9 204 U1 30 U2 429 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 18 PY 2013 VL 339 IS 6117 BP 277 EP 278 DI 10.1126/science.1229931 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 071UW UT WOS:000313622000029 PM 23329036 ER PT J AU Neumann, GA Cavanaugh, JF Sun, XL Mazarico, EM Smith, DE Zuber, MT Mao, DD Paige, DA Solomon, SC Ernst, CM Barnouin, OS AF Neumann, Gregory A. Cavanaugh, John F. Sun, Xiaoli Mazarico, Erwan M. Smith, David E. Zuber, Maria T. Mao, Dandan Paige, David A. Solomon, Sean C. Ernst, Carolyn M. Barnouin, Olivier S. TI Bright and Dark Polar Deposits on Mercury: Evidence for Surface Volatiles SO SCIENCE LA English DT Article ID PHASE FUNCTION; NORTH-POLE; ICE; MESSENGER; STABILITY; MISSION; IMAGES; MOON AB Measurements of surface reflectance of permanently shadowed areas near Mercury's north pole reveal regions of anomalously dark and bright deposits at 1064-nanometer wavelength. These reflectance anomalies are concentrated on poleward-facing slopes and are spatially collocated with areas of high radar backscatter postulated to be the result of near-surface water ice. Correlation of observed reflectance with modeled temperatures indicates that the optically bright regions are consistent with surface water ice, whereas dark regions are consistent with a surface layer of complex organic material that likely overlies buried ice and provides thermal insulation. Impacts of comets or volatile-rich asteroids could have provided both dark and bright deposits. C1 [Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mazarico, Erwan M.; Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Mao, Dandan] Sigma Space Corp, Lanham, MD 20706 USA. [Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Ernst, Carolyn M.; Barnouin, Olivier S.] Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA. RP Neumann, GA (reprint author), NASA, Goddard Space Flight Ctr, Code 698, Greenbelt, MD 20771 USA. EM gregory.a.neumann@nasa.gov RI Sun, Xiaoli/B-5120-2013; Ernst, Carolyn/I-4902-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; Barnouin, Olivier/I-7475-2015 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X; Barnouin, Olivier/0000-0002-3578-7750 FU NASA [NAS5-97271, NASW-00002] FX The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to the Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. We are grateful for the myriad of contributions from the MLA instrument and MESSENGER spacecraft teams and for comments by P. Lucey and two anonymous referees that improved the manuscript. NR 27 TC 37 Z9 38 U1 0 U2 50 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 18 PY 2013 VL 339 IS 6117 BP 296 EP 300 DI 10.1126/science.1229764 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 071UW UT WOS:000313622000037 PM 23196910 ER PT J AU Paige, DA Siegler, MA Harmon, JK Neumann, GA Mazarico, EM Smith, DE Zuber, MT Harju, E Delitsky, ML Solomon, SC AF Paige, David A. Siegler, Matthew A. Harmon, John K. Neumann, Gregory A. Mazarico, Erwan M. Smith, David E. Zuber, Maria T. Harju, Ellen Delitsky, Mona L. Solomon, Sean C. TI Thermal Stability of Volatiles in the North Polar Region of Mercury SO SCIENCE LA English DT Article ID COMET HALLEY; POLES; ICE; DEPOSITS; WATER; MOON AB Thermal models for the north polar region of Mercury, calculated from topographic measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice. MESSENGER measurements of near-infrared surface reflectance indicate bright surfaces in the coldest areas where water ice is predicted to be stable at the surface, and dark surfaces within and surrounding warmer areas where water ice is predicted to be stable only in the near subsurface. We propose that the dark surface layer is a sublimation lag deposit that may be rich in impact-derived organic material. C1 [Paige, David A.; Siegler, Matthew A.; Harju, Ellen] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Siegler, Matthew A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Harmon, John K.] Natl Astron & Ionosphere Ctr, Arecibo, PR 00612 USA. [Neumann, Gregory A.; Mazarico, Erwan M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Delitsky, Mona L.] Calif Specialty Engn, Flintridge, CA 91012 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Paige, DA (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. EM dap@moon.ucla.edu RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU NASA [NNX07AR64G, NAS5-97271, NASW-00002] FX Supported by NASA grant NNX07AR64G. We thank L. Carter, A. McEwen, D. Schriver, and M. Slade for assistance with this research. The MESSENGER project is supported by the NASA Discovery Program under contract NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. MESSENGER data used in this study are available through the NASA Planetary Data System Geosciences Node. Arecibo radar data used in this study are available at www.naic.edu/~radarusr/Mercpole. NR 36 TC 29 Z9 29 U1 0 U2 37 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 18 PY 2013 VL 339 IS 6117 BP 300 EP 303 DI 10.1126/science.1231106 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 071UW UT WOS:000313622000038 ER PT J AU Sitnov, MI Buzulukova, N Swisdak, M Merkin, VG Moore, TE AF Sitnov, M. I. Buzulukova, N. Swisdak, M. Merkin, V. G. Moore, T. E. TI Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COLLISIONLESS MAGNETIC RECONNECTION; EARTHS MAGNETOTAIL; SIMULATIONS; TAIL; EQUILIBRIA; STABILITY; DYNAMICS; SHEETS; MODEL AB We present full-particle simulations of 2-D magnetotail current sheet equilibria with open boundaries and zero driving. The simulations show that spontaneous formation of dipolarization fronts and subsequent formation of magnetic islands are possible in equilibria with an accumulation of magnetic flux at the tailward end of a sufficiently thin current sheet. These results confirm recent findings in the linear stability of the ion tearing mode, including the predicted dependence of the tail current sheet stability on the amount of accumulated magnetic flux expressed in terms of the specific destabilization parameter. The initial phase of reconnection onset associated with the front formation represents a process of slippage of magnetic field lines with frozen-in electrons relative to the ion plasma species. This non-MHD process characterized by different motions of ion and electron species generates a substantial charge separation electric field normal to the front. Citation: Sitnov, M. I., N. Buzulukova, M. Swisdak, V. G. Merkin, and T. E. Moore (2013), Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail, Geophys. Res. Lett., 40, 22-27, doi: 10.1029/2012GL054701. C1 [Sitnov, M. I.; Merkin, V. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Buzulukova, N.; Moore, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Swisdak, M.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Sitnov, MI (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Mikhail.Sitnov@jhuapl.edu RI Moore, Thomas/D-4675-2012; Merkin, Viacheslav/D-5982-2016; Sitnov, Mikhail/H-2316-2016 OI Moore, Thomas/0000-0002-3150-1137; Merkin, Viacheslav/0000-0003-4344-5424; FU NASA [NNX09AH98G, NNX09AJ82G, NNX12AD31G]; NSF [AGS0903890]; NASA Magnetospheric Multiscale Mission FX This work was supported by NASA grants NNX09AH98G, NNX09AJ82G, and NNX12AD31G, as well as NSF grant AGS0903890. The contribution of NB and TEM was supported by the NASA Magnetospheric Multiscale Mission. Simulations were made possible by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 34 TC 32 Z9 32 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 16 PY 2013 VL 40 IS 1 BP 22 EP 27 DI 10.1029/2012GL054701 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 129GF UT WOS:000317826300005 ER PT J AU Storelvmo, T Kristjansson, JE Muri, H Pfeffer, M Barahona, D Nenes, A AF Storelvmo, T. Kristjansson, J. E. Muri, H. Pfeffer, M. Barahona, D. Nenes, A. TI Cirrus cloud seeding has potential to cool climate SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; ICE NUCLEI; SENSITIVITY; MICROPHYSICS; AEROSOLS; SCHEMES; ALBEDO; CAM5 AB Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth's climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming. Citation: Storelvmo T., J. E. Kristjansson, H. Muri, M. Pfeffer, D. Barahona and A. Nenes (2013), Cirrus cloud seeding has potential to cool climate, Geophys. Res. Lett., 40, 178-182, doi:10.1029/2012GL054201. C1 [Storelvmo, T.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06511 USA. [Kristjansson, J. E.; Muri, H.; Pfeffer, M.] Univ Oslo, Dept Geosci, Oslo, Norway. [Barahona, D.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. [Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Nenes, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Storelvmo, T (reprint author), Yale Univ, Dept Geol & Geophys, 210 Whitney Ave, New Haven, CT 06511 USA. EM trude.storelvmo@yale.edu RI Barahona, Donifan/G-4157-2011; Muri, Helene/D-4845-2015; OI Muri, Helene/0000-0003-4738-493X; Pfeffer, Melissa/0000-0002-1689-1739 FU Research Council of Norway [216763/F11]; [184714/S30]; [207711/E10] FX The work presented in this paper was supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center. The Research Council of Norway, through grant number 216763/F11, made this collaboration possible, and H. M. and M. P. were supported through the grants 184714/S30 and 207711/E10. T. S. is thankful to B. Dobbins (Yale University) for technical support and to J. Wettlaufer (Yale University) for helpful comments. NR 26 TC 19 Z9 19 U1 4 U2 36 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 16 PY 2013 VL 40 IS 1 BP 178 EP 182 DI 10.1029/2012GL054201 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 129GF UT WOS:000317826300033 ER PT J AU Brown, D Worden, J Noone, D AF Brown, Derek Worden, John Noone, David TI Characteristics of tropical and subtropical atmospheric moistening derived from Lagrangian mass balance constrained by measurements of HDO and H2O SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR; GLOBAL PRECIPITATION; ISOTOPE COMPOSITION; LAST SATURATION; STABLE-ISOTOPES; IMG/ADEOS DATA; TROPOSPHERE; CONVECTION; MOISTURE; VARIABILITY AB Regional tropospheric water balance depends on local mixing rates, moistening and precipitation efficiency associated with cloud processes, and large-scale moisture advection. Conventional data sets are insufficient to disentangle how these processes affect the regional humidity, and models are limited by their need to parameterize many of the pertinent mechanisms, including precipitation efficiency, evaporation of cloud condensate, and mixing rates. This study provides new insight by constraining a Lagrangian mass balance model with satellite measurements of specific humidity and the HDO/H2O ratio in water vapor. Seasonal estimates of mixing rates, moistening efficiency, isotopic composition of source waters, and effective isotopic fractionation in clouds are calculated. Analysis shows that the water source is dominated by cloud evaporation in the dry subtropics, subcloud rainfall recycling in the humid subtropics, and convective detrainment and postcondensational exchange during tropical monsoons. Moistening efficiency is shown to be as twice as strong over the wintertime subtropics as over other regions. Over monsoonal areas, however, moistening efficiency decreases during times of most intense mixing, since postcondensational exchange and convective recycling effects act to dehydrate and isotopically deplete the local water sources. A robust relationship is found between precipitation efficiency derived from rainfall profile measurements and differences in effective and equilibrium isotopic fractionation rates, suggesting that isotopic observations might enable estimates of this illusive parameter to be inferred directly. In spite of the simple modeling framework employed, the results provide insight in to the gains that can be expected by assimilating satellite observations of isotope ratios into more comprehensive, isotope-enabled general circulation models. Citation: Brown, D., J. Worden, D. Noone (2013), Characteristics of tropical and subtropical atmospheric moistening derived from Lagrangian mass balance constrained by measurements of HDO and H2O, J. Geophys. Res. Atmos., 118, 54-72, doi: 10.1029/2012JD018507. C1 [Brown, Derek; Noone, David] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Brown, Derek; Noone, David] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Worden, John] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Brown, D (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. EM Derek.Brown@colorado.edu FU Graduate Research Environmental Fellowship from the U.S. Department of Energy's Office of Biological and Environmental Research; Jet Propulsion Laboratory; NASA Atmospheric Composition Program [NNX08AR23G]; NASA Energy and Water Cycle Study [07-NEWS07-0020]; National Aeronautics and Space Administration FX Support for this study came from a Graduate Research Environmental Fellowship from the U.S. Department of Energy's Office of Biological and Environmental Research, funding from the Jet Propulsion Laboratory, and grants from the NASA Atmospheric Composition Program (NNX08AR23G) and the NASA Energy and Water Cycle Study (07-NEWS07-0020). A portion of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The NASA ROSES Aura Science Team NNH07ZDA001N-AST 07-AST07-0069 contributed to the support of the analysis. NR 73 TC 5 Z9 5 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 16 PY 2013 VL 118 IS 1 BP 54 EP 72 DI 10.1029/2012JD018507 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129JI UT WOS:000317834900005 ER PT J AU Tian, BJ Fetzer, EJ Kahn, BH Teixeira, J Manning, E Hearty, T AF Tian, Baijun Fetzer, Eric J. Kahn, Brian H. Teixeira, Joao Manning, Evan Hearty, Thomas TI Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC INFRARED SOUNDER; MOIST THERMODYNAMIC STRUCTURE; WATER-VAPOR RETRIEVALS; IN-SITU; GLOBAL ENERGY; AMIP I; SIMULATIONS; SATELLITE; OCEAN; VALIDATION AB This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1K. MERRA is also drier (similar to 10%) than AIRS in the tropical boundary layer but wetter (similar to 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA). Citation: Tian, B., E. J. Fetzer, B. H. Kahn, J. Teixeira, E. Manning, and T. Hearty (2013), Evaluating CMIP5 Models using AIRS Tropospheric Air Temperature and Specific Humidity Climatology, J. Geophys. Res. Atmos., 118, 114-134, doi: 10.1029/2012JD018607. C1 [Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Hearty, Thomas] Goddard Space Flight Ctr Wyle Informat Syst, Greenbelt, MD USA. RP Tian, BJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM baijun.tian@jpl.nasa.gov RI Tian, Baijun/A-1141-2007 OI Tian, Baijun/0000-0001-9369-2373 FU National Aeronautics and Space Administration (NASA); Atmospheric Infrared Sounder (AIRS) project at JPL FX This research was performed at Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with National Aeronautics and Space Administration (NASA). It was supported by the Atmospheric Infrared Sounder (AIRS) project at JPL. We acknowledge the World Climate Research Program's (WCRP) Working Group on Coupled Modeling (WGCM), which is responsible for Coupled Model Intercomparison Project (CMIP), and the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison (PCMDI), which provides coordinating support and leads development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the climate modeling groups around the world including BCC, CCCMA, CNRM-CERFACS, CSIRO-QCCCE, GFDL, GISS, IPSL, MIROC, MOHC, MPI-M, MRI, NCAR, and NCC (listed in Table 2 of this paper) for producing and making available their model output. We also want to thank Duane Waliser, Evan Fishbein, Sun Wong, Hui Su, Jonathan Jiang, Steve Ghan (editor) and three anonymous reviewers for valuable suggestions. (C) 2013. All rights reserved. NR 72 TC 34 Z9 35 U1 2 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 16 PY 2013 VL 118 IS 1 BP 114 EP 134 DI 10.1029/2012JD018607 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129JI UT WOS:000317834900009 ER PT J AU Randles, CA Colarco, PR da Silva, A AF Randles, C. A. Colarco, P. R. da Silva, A. TI Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: aerosol-climate interactions due to prognostic versus prescribed aerosols SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; BLACK CARBON AEROSOLS; MARINE STRATOCUMULUS; OPTICAL-PROPERTIES; STRATIFORM CLOUDS; BOUNDARY-LAYER; PRECIPITATION; IMPACTS; SCHEME; SMOKE AB The present-day climate response to aerosol direct and semi-direct effects is investigated using the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model. We focus our investigation on aerosol-climate interactions by using either prognostic aerosols from an online aerosol module or aerosols from a climatology based on the prognostic aerosols. As found in previous studies, forcing from all aerosols cools the land surface, warms the troposphere, and impacts global mean circulation, affecting both the strength of the Hadley cell and the zonal mean wind. Less absorbing natural aerosol alone tends to have weaker impacts on global climate. We find that removing the feedback of meteorology on aerosol distributions can significantly impact the climate response depending on the parameter, region, and season considered. Much of the differing climate response to prognostic and prescribed aerosols occurs in regions remote from direct aerosol forcing, such as in the stratosphere and the northern and southern high latitudes. This suggests that aerosol-climate interactions may induce remote dynamical responses to aerosol forcing in global models. The largest effect of removing coupling is to enhance the aerosol optical depth globally over the oceans. This enhancement is due to the removal of the co-variability between aerosol mass and relative humidity on sub-monthly timescales in the high humidity oceanic environment. Citation: Randles, C.A., P.R. Colarco, and A. da Silva (2013), Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: aerosol-climate interactions due to prognostic versus prescribed aerosols, J. Geophys. Res. Atmos., 118, 149-169, doi: 10.1029/2012JD018388. C1 [Randles, C. A.] Morgan State Univ, GESTAR, Baltimore, MD 21239 USA. [Randles, C. A.; Colarco, P. R.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [da Silva, A.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Randles, CA (reprint author), Morgan State Univ, GESTAR, Baltimore, MD 21239 USA. EM Cynthia.A.Randles@nasa.gov RI Colarco, Peter/D-8637-2012 OI Colarco, Peter/0000-0003-3525-1662 FU NASA Modeling Analysis and Prediction (MAP) [08-MAP-80]; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center [SMD-11-2567] FX We thank Editor Steve Ghan and three anonymous reviewers for thoughtful comments and suggestions that have helped to improve this manuscript. CAR, PRC, and AMdS acknowledge funding from NASA Modeling Analysis and Prediction (MAP) overseen by David Considine under project 08-MAP-80. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center under project SMD-11-2567. NR 67 TC 11 Z9 11 U1 0 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 16 PY 2013 VL 118 IS 1 BP 149 EP 169 DI 10.1029/2012JD018388 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129JI UT WOS:000317834900011 ER PT J AU Suzuki, K Stephens, GL Lebsock, MD AF Suzuki, Kentaroh Stephens, Graeme L. Lebsock, Matthew D. TI Aerosol effect on the warm rain formation process: Satellite observations and modeling SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLOUD MICROPHYSICS; DROPLET GROWTH; PART II; SYSTEM; PRECIPITATION; ALGORITHM; CLIMATE; PARAMETERIZATION; MACROPHYSICS; CONVECTION AB This study demonstrates how aerosols influence the liquid precipitation formation process. This demonstration is provided by the combined use of satellite observations and global high-resolution model simulations. Methodologies developed to examine the warm cloud microphysical processes are applied to both multi-sensor satellite observations and aerosol-coupled global cloud-resolving model (GCRM) results to illustrate how the warm rain formation process is modulated under different aerosol conditions. The observational analysis exhibits process-scale signatures of rain suppression due to increased aerosols, providing observational evidence of the aerosol influence on precipitation. By contrast, the corresponding statistics obtained from the model show a much faster rain formation even for polluted aerosol conditions and much weaker reduction of precipitation in response to aerosol increase. It is then shown that this reduced sensitivity points to a fundamental model bias in the warm rain formation process that in turn biases the influence of aerosol on precipitation. A method of improving the model bias is introduced in the context of a simplified single-column model (SCM) that represents the cloud-to-rain water conversion process in a manner similar to the original GCRM. Sensitivity experiments performed by modifying the model assumptions in the SCM and their comparisons to satellite statistics both suggest that the auto-conversion scheme has a critical role in determining the precipitation response to aerosol perturbations and also provide a novel way of constraining key parameters in the auto-conversion schemes of global models. Citation: Suzuki, K., G. L. Stephens, and M. D. Lebsock (2013), Aerosol effect on the warm rain formation process: Satellite observations and modeling, J. Geophys. Res. Atmos., 118, 170-184, doi: 10.1002/jgrd.50043. C1 [Suzuki, Kentaroh; Stephens, Graeme L.; Lebsock, Matthew D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Suzuki, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Kentaro.Suzuki@jpl.nasa.gov RI Suzuki, Kentaroh/C-3624-2011 FU National Aeronautics and Space Administration (NASA) [NNX07AR11G, NNX09AJ45G]; NASA FX This study was supported by National Aeronautics and Space Administration (NASA) grant NNX07AR11G and NNX09AJ45G, and carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. K.S. is grateful to J. Haynes and H. Okamoto for their providing a code of radar signal simulator. NR 54 TC 9 Z9 9 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 16 PY 2013 VL 118 IS 1 BP 170 EP 184 DI 10.1002/jgrd.50043 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129JI UT WOS:000317834900012 ER PT J AU Siskind, DE Stevens, MH Englert, CR Mlynczak, MG AF Siskind, David E. Stevens, Michael H. Englert, Christoph R. Mlynczak, M. G. TI Comparison of a photochemical model with observations of mesospheric hydroxyl and ozone SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UPPER-STRATOSPHERE; LOWER THERMOSPHERE; EXPLORER; PHOTODISSOCIATION; SPECTROMETER; DEFICIT; CLO; O2; O-3; NM AB We present a comparison of a photochemical model with mesospheric hydroxyl (OH) data from the Spatial Heterodyne Imager for Mesospheric Radicals (SHIMMER) and mesospheric ozone (O-3) data from the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER). Although SHIMMER and SABER do not measure the atmosphere coincidently, by sampling the photochemical model at the appropriate local time of each measurement, an effective concurrent test of mesospheric odd oxygen and odd hydrogen theory can be achieved. Consistent with previous, more limited analyses of SHIMMER data, we find no evidence of a systematic model overprediction of mesospheric OH. However, at 80 km, the standard chemical scheme shows a model deficit in the morning hours and a dramatic model excess in the late afternoon. Using a higher rate coefficient for the H + O-2 + M -> HO2 + M reaction ameliorates this problem. Such a higher rate is consistent with the only reported laboratory measurements at the low temperatures appropriate to the mesosphere. Regarding the SABER ozone, the model significantly underpredicts the data. Some of this could be explained by a previously reported, systematic high bias to the SABER ozone, and comparisons of our model with Microwave Limb Sounder data support that suggestion. Nonetheless, a persistent model ozone deficit remains. Since the model agreement with SHIMMER OH is generally very good, this model ozone deficit is unlikely to be due to a mischaracterization of mesospheric HOx. Citation: Siskind, D. E., M. H. Stevens, and C. R. Englert (2013), Comparison of a photochemical model with observations of mesospheric hydroxyl and ozone, J. Geophys. Res. Atmos., 118, 195-207, doi: 10.1029/2012JD017971. C1 [Siskind, David E.; Stevens, Michael H.; Englert, Christoph R.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Siskind, DE (reprint author), USN, Res Lab, Div Space Sci, 4555 Overlook Ave SW, Washington, DC 20375 USA. EM david.siskind@nrl.navy.mil OI Englert, Christoph/0000-0002-2145-6168; Stevens, Michael/0000-0003-1082-8955 FU NASA's Geospace SRT program; Office of Naval Research; DoD Space Test Program; NASA Heliophysics Division; NASA AIM Explorer Science Project FX This work was supported by a grant from the NASA's Geospace SR&T program. SHIMMER was a joint program between NRL and the DoD Space Test Program. Support was provided by the Office of Naval Research, the DoD Space Test Program and the NASA Heliophysics Division. The NOGAPS-ALPHA analysis, which was used to provide the inputs to the photochemical model, was supported by the Office of Naval Research and the NASA AIM Explorer Science Project. We also thank the SABER team and J. M. Russell, PI, for helpful conversations about their data, the MLS team for the access to their data, and T. Slanger for the references on alternative ozone sources. NR 47 TC 7 Z9 8 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 16 PY 2013 VL 118 IS 1 BP 195 EP 207 DI 10.1029/2012JD017971 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129JI UT WOS:000317834900014 ER PT J AU Tsigaridis, K Koch, D Menon, S AF Tsigaridis, Kostas Koch, Dorothy Menon, Surabi TI Uncertainties and importance of sea spray composition on aerosol direct and indirect effects SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; SECONDARY ORGANIC AEROSOL; MARINE AEROSOL; GLOBAL DISTRIBUTION; TROPOSPHERIC OZONE; CLOUD MICROPHYSICS; GODDARD-INSTITUTE; GISS MODELE; IN-SITU; SALT AB Although ocean-derived aerosols play a critical role in modifying the radiative balance over much of the Earth, their sources are still subject to large uncertainties, concerning not only their total mass flux but also their size distribution and chemical composition. These uncertainties are linked primarily to their source drivers, which is mainly wind speed, but are also linked to other factors, such as the presence of organic compounds in sea spray in addition to sea salt. In order to quantify these uncertainties and identify the larger knowledge gaps, we performed several model runs with online calculation of aerosol sources, removal, and underlying climate. In these simulations, both the direct and indirect aerosol effects on climate are included. The oceanic source of organic aerosols was found to be heavily dependent on the sea-salt parameterization selected. For only a factor of 2 change in assumed fine-mode sea-salt size, a factor of 10 difference in mass emissions was calculated for both sea salt and primary oceanic organics. The annual emissions of oceanic organics were calculated to range from 7.5 to 76 Tg yr(-1). The model's performance against remote oceanic measurements was greatly improved when including the high estimates of organics. However, the uncertainty could not be further reduced by bulk sea-salt measurements alone since most parameterizations tested agree reasonably well with measurements of both the (coarse-mode-dominated) sea salt and aerosol optical depth due to large changes in lifetime and optical properties of aerosols when different aerosol sizes are used. Citation: Tsigaridis, K., D. Koch, and S. Menon (2013), Uncertainties and importance of sea spray composition on aerosol direct and indirect effects, J. Geophys. Res. Atmos., 118, 220-235, doi: 10.1029/2012JD018165. C1 [Tsigaridis, Kostas; Koch, Dorothy] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Tsigaridis, Kostas; Koch, Dorothy] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Koch, Dorothy] US DOE, Washington, DC 20585 USA. [Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Menon, Surabi] ClimateWorks Fdn, San Francisco, CA USA. RP Tsigaridis, K (reprint author), Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. EM kostas.tsigaridis@columbia.edu RI Tsigaridis, Kostas/K-8292-2012 OI Tsigaridis, Kostas/0000-0001-5328-819X FU NASA-MAP (NASA award) [NNX09AK32G]; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center FX The authors would like to thank Ernie Lewis and Steven Schwartz for helpful discussions on the sea spray parameterization; Joseph Prospero and Dennis Savoie for providing their sea-salt aerosol data set; Ranjit Bahadur, Lynn Russell, and Jean Sciare for providing their organic aerosol data set; NASA Goddard Space Flight Center for providing the SeaWiFS data; and the anonymous reviewers for their constructive comments, which significantly improved the paper. This work was supported by NASA-MAP (NASA award NNX09AK32G). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. NR 56 TC 20 Z9 20 U1 3 U2 52 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JAN 16 PY 2013 VL 118 IS 1 BP 220 EP 235 DI 10.1029/2012JD018165 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 129JI UT WOS:000317834900016 ER PT J AU Barghouty, AF Brofferio, C Capelli, S Clemenza, M Cremonesi, O Cebrian, S Fiorini, E Haight, RC Norman, EB Pavan, M Previtali, E Quiter, BJ Sisti, M Smith, AR Wender, SA AF Barghouty, A. F. Brofferio, C. Capelli, S. Clemenza, M. Cremonesi, O. Cebrian, S. Fiorini, E. Haight, R. C. Norman, E. B. Pavan, M. Previtali, E. Quiter, B. J. Sisti, M. Smith, A. R. Wender, S. A. TI Measurements of proton-induced radionuclide production cross sections to evaluate cosmic-ray activation of tellurium SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Proton activation; Nuclear physics; Induced radioactivity ID DOUBLE-BETA-DECAY; ENERGY NUCLEAR-REACTIONS; ASTROPHYSICAL APPLICATIONS; MONITOR REACTIONS; CUORE EXPERIMENT; RADIOACTIVITY; BACKGROUNDS; GERMANIUM; REDUCTION; DETECTORS AB We have measured a large number of proton-induced radionuclide production cross sections from tellurium targets of natural isotopic composition at incident energies of 0.80, 1.4, and 23 GeV. The results of these measurements are compared to semi-empirical calculations and the contribution of this cosmogenic activity to the background of the CUORE experiment, presently being realized, is evaluated. (C) 2012 Elsevier B.V. All rights reserved. C1 [Barghouty, A. F.] NASA, George C Marshall Space Flight Ctr, MSFC, Huntsville, AL 35812 USA. [Brofferio, C.; Capelli, S.; Clemenza, M.; Cremonesi, O.; Fiorini, E.; Pavan, M.; Previtali, E.; Sisti, M.] Univ Milano Bicocca, Sez Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Brofferio, C.; Capelli, S.; Clemenza, M.; Cremonesi, O.; Fiorini, E.; Pavan, M.; Previtali, E.; Sisti, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Cebrian, S.] Univ Zaragoza, E-50009 Zaragoza, Spain. [Haight, R. C.; Wender, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Norman, E. B.; Quiter, B. J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Norman, E. B.; Smith, A. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Norman, E. B.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. RP Fiorini, E (reprint author), Univ Milano Bicocca, Sez Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. EM ettore.fiorini@mib.infn.it RI Sisti, Monica/B-7550-2013; capelli, silvia/G-5168-2012; OI Sisti, Monica/0000-0003-2517-1909; capelli, silvia/0000-0002-0300-2752; Wender, Stephen/0000-0002-2446-5115; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834 FU U. S. Department of Energy [DE-AC52-07NA27344, DE-AC02-05CH11231] FX We would like to express our gratitude to the ISOLDE Collaboration and in particular to Alexander Helert and Ulli Koester and to the ISOLDE Technical group for assistance and support. We are also grateful to the CERN IRRADIATION FACILITY and in particular to Maurice Glaser for help and advice in the exposures at 23 GeV. This work was supported in part by the U. S. Department of Energy under contract numbers DE-AC52-07NA27344 at LLNL and DE-AC02-05CH11231 at LBNL. NR 59 TC 6 Z9 6 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JAN 15 PY 2013 VL 295 BP 16 EP 21 DI 10.1016/j.nimb.2012.10.008 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 083QS UT WOS:000314480900004 ER PT J AU Yamamoto, A Mitchell, JW Yoshimura, K Abe, K Fuke, H Haino, S Hams, T Hasegawa, M Horikoshi, A Itazaki, A Kim, KC Kumazawa, T Kusumoto, A Lee, MH Makida, Y Matsuda, S Matsukawa, Y Matsumoto, K Moiseev, AA Myers, Z Nishimura, J Nozaki, M Orito, R Ormes, JF Sakai, K Sasaki, M Seo, ES Shikaze, Y Shinoda, R Streitmatter, RE Suzuki, J Takasugi, Y Takeuchi, K Tanaka, K Taniguchi, T Thakur, N Yamagami, T Yoshida, T AF Yamamoto, A. Mitchell, J. W. Yoshimura, K. Abe, K. Fuke, H. Haino, S. Hams, T. Hasegawa, M. Horikoshi, A. Itazaki, A. Kim, K. C. Kumazawa, T. Kusumoto, A. Lee, M. H. Makida, Y. Matsuda, S. Matsukawa, Y. Matsumoto, K. Moiseev, A. A. Myers, Z. Nishimura, J. Nozaki, M. Orito, R. Ormes, J. F. Sakai, K. Sasaki, M. Seo, E. S. Shikaze, Y. Shinoda, R. Streitmatter, R. E. Suzuki, J. Takasugi, Y. Takeuchi, K. Tanaka, K. Taniguchi, T. Thakur, N. Yamagami, T. Yoshida, T. CA BESS Collaboration TI Search for cosmic-ray antiproton origins and for cosmological antimatter with BESS SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Cosmic rays; Antiproton; Antimatter; Primordial black hole; Solar modulation; Solar BESS ID PRIMORDIAL BLACK-HOLES; PARTICLE ASTROPHYSICS; SOLAR MODULATION; CURRENT SHEET; ANTIHELIUM; FLUX; SPECTRUM; PROGRESS; SPECTROMETER; PROPAGATION AB The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes, and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific results, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008). (c) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Yamamoto, A.; Yoshimura, K.; Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M.; Suzuki, J.; Tanaka, K.; Taniguchi, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Mitchell, J. W.; Hams, T.; Moiseev, A. A.; Myers, Z.; Sasaki, M.; Streitmatter, R. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R.; Shikaze, Y.; Takasugi, Y.; Takeuchi, K.] Kobe Univ, Kobe, Hyogo 6578501, Japan. [Fuke, H.; Yamagami, T.; Yoshida, T.] Japan Aerosp Explorat Agcy ISAS JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Kim, K. C.; Lee, M. H.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Nishimura, J.; Sakai, K.; Shinoda, R.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Ormes, J. F.; Thakur, N.] Univ Denver, Denver, CO 80208 USA. [Hams, T.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Sasaki, M.] Univ Maryland, College Pk, MD 20742 USA. RP Yamamoto, A (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. EM akira.yamamoto@kek.jp OI Seo, Eun-Suk/0000-0001-8682-805X FU National Science Foundation; Raytheon Polar Services Corporation; NASA Astrophysics Research and Analysis program in the U.S.; 'Kaken-hi' Grant in Aid, special promotion and fundamental research programs, MEXT, in Japan FX The authors thank NASA Headquarters, ISAS/JAXA, GSFC, and KEK for continuous support and encouragement in the US-Japan cooperative BESS program. The authors also thank the NASA Balloon Program Office and the NASA Columbia Scientific Balloon Facility for their highly professional support of BESS conventional and long-duration balloon flight operations, and the National Science Foundation and Raytheon Polar Services Corporation for their support of the United States Antarctic Program. BESS-Polar is supported by the NASA Astrophysics Research and Analysis program in the U.S., and by the 'Kaken-hi' Grant in Aid, special promotion and fundamental research programs, MEXT, in Japan. NR 42 TC 5 Z9 5 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JAN 15 PY 2013 VL 51 IS 2 BP 227 EP 233 DI 10.1016/j.asr.2011.07.012 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 083RM UT WOS:000314482900004 ER PT J AU Kim, KC Abe, K Fuke, H Hams, T Lee, MH Makida, Y Matsuda, S Mitchell, JW Nishimura, J Ormes, JF Sasaki, M Seo, ES Shikaze, Y Streitmatter, RE Suzuki, J Tanaka, K Yamagami, T Yamamoto, A Yoshida, T Yoshimura, K AF Kim, K. C. Abe, K. Fuke, H. Hams, T. Lee, M. H. Makida, Y. Matsuda, S. Mitchell, J. W. Nishimura, J. Ormes, J. F. Sasaki, M. Seo, E. S. Shikaze, Y. Streitmatter, R. E. Suzuki, J. Tanaka, K. Yamagami, T. Yamamoto, A. Yoshida, T. Yoshimura, K. TI Cosmic ray H-2/H-1 ratio measured from BESS in 2000 during solar maximum SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Cosmic rays; Isotopes; Reacceleration ID BALLOON-BORNE EXPERIMENT; HELIUM SPECTRA; SPECTROMETER; PROGRAM; PROTON; H-2 AB The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) was flown from Lynn Lake, Manitoba, Canada in August, 2000, during the maximum solar modulation period, with an average residual atmospheric overburden of 4.3 g/cm(2). Precise spectral measurements of cosmic ray hydrogen isotopes from 0.178 GeV/n to 1.334 GeV/n were made during the 28.7 h of flight. This paper presents the measured energy spectra and their ratio, H-2/H-1. The results are also compared with previous measurements and theoretical predictions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Kim, K. C.; Lee, M. H.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Abe, K.; Shikaze, Y.] Kobe Univ, Kobe, Hyogo 6578501, Japan. [Fuke, H.; Yamagami, T.; Yoshida, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Hams, T.; Mitchell, J. W.; Sasaki, M.; Streitmatter, R. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Makida, Y.; Matsuda, S.; Suzuki, J.; Tanaka, K.; Yamamoto, A.; Yoshimura, K.] High Enegy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Nishimura, J.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Ormes, J. F.] Univ Denver, Denver, CO 80208 USA. RP Kim, KC (reprint author), Univ Maryland, IPST, College Pk, MD 20742 USA. EM kckim@umd.edu FU NASA under the Astrophysics Research and Analysis program [NNX08AD70G] FX This work has been supported in the US by NASA under the Astrophysics Research and Analysis program, including grant NNX08AD70G and predecessors, and in Japan by Grant-in-Aid for Scientific Research, MEXT. NR 16 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JAN 15 PY 2013 VL 51 IS 2 BP 234 EP 237 DI 10.1016/j.asr.2012.01.015 PG 4 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 083RM UT WOS:000314482900005 ER PT J AU Galper, AM Adriani, O Aptekar, RL Arkhangelskaja, IV Arkhangelskiy, AI Boezio, M Bonvicini, V Boyarchuk, KA Gusakov, YV Farber, MO Fradkin, MI Kachanov, VA Kaplin, VA Kheymits, MD Leonov, AA Longo, F Maestro, P Marrocchesi, P Mazets, EP Mocchiutti, E Moiseev, AA Mori, N Moskalenko, I Naumov, PY Papini, P Picozza, P Rodin, VG Runtso, MF Sparvoli, R Spillantini, P Suchkov, SI Tavani, M Topchiev, NP Vacchi, A Vannuccini, E Yurkin, YT Zampa, N Zverev, VG AF Galper, A. M. Adriani, O. Aptekar, R. L. Arkhangelskaja, I. V. Arkhangelskiy, A. I. Boezio, M. Bonvicini, V. Boyarchuk, K. A. Gusakov, Yu. V. Farber, M. O. Fradkin, M. I. Kachanov, V. A. Kaplin, V. A. Kheymits, M. D. Leonov, A. A. Longo, F. Maestro, P. Marrocchesi, P. Mazets, E. P. Mocchiutti, E. Moiseev, A. A. Mori, N. Moskalenko, I. Naumov, P. Yu. Papini, P. Picozza, P. Rodin, V. G. Runtso, M. F. Sparvoli, R. Spillantini, P. Suchkov, S. I. Tavani, M. Topchiev, N. P. Vacchi, A. Vannuccini, E. Yurkin, Yu. T. Zampa, N. Zverev, V. G. TI Status of the GAMMA-400 project SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Cosmic rays; Gamma rays; Electrons; Positrons; Nuclei ID RAY EMISSION; EGRET OBSERVATIONS; BALLOON PROJECT; TELESCOPE; ENERGIES; TEV; CALIBRATION; DETECTOR; MISSION; NUCLEI AB The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 degrees at E-gamma similar to 100 MeV and similar to 0.01 degrees at E-gamma > 100 GeV, its energy resolution similar to 1% at E gamma > 100 GeV, and the proton rejection factor similar to 10(6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Galper, A. M.; Gusakov, Yu. V.; Fradkin, M. I.; Suchkov, S. I.; Topchiev, N. P.] Russian Acad Sci, PN Lebedev Phys Inst, RU-119991 Moscow, Russia. [Galper, A. M.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Farber, M. O.; Kaplin, V. A.; Kheymits, M. D.; Leonov, A. A.; Naumov, P. Yu.; Runtso, M. F.; Yurkin, Yu. T.; Zverev, V. G.] Natl Res Nucl Univ MEPhI, RU-115409 Moscow, Russia. [Adriani, O.; Mori, N.; Papini, P.; Spillantini, P.; Vannuccini, E.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Adriani, O.; Mori, N.; Papini, P.; Spillantini, P.; Vannuccini, E.] Univ Florence, Dept Phys, I-50019 Florence, Italy. [Aptekar, R. L.; Mazets, E. P.] Russian Acad Sci, AF Ioffe Phys Tech Inst, RU-194021 St Petersburg, Russia. [Boezio, M.; Bonvicini, V.; Longo, F.; Mocchiutti, E.; Vacchi, A.; Zampa, N.] Ist Nazl Fis Nucl, Sez Trieste, I-34012 Trieste, Italy. [Boyarchuk, K. A.] Open Joint Stock Co, Res Inst Electromech, RU-143502 Istra, Moscow Region, Russia. [Kachanov, V. A.] Inst High Energy Phys, RU-142281 Protvino, Moscow Region, Russia. [Maestro, P.; Marrocchesi, P.] Ist Nazl Fis Nucl, Sez Pisa, I-53100 Siena, Italy. [Maestro, P.; Marrocchesi, P.] Univ Os Siena, Dept Phys, I-53100 Siena, Italy. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moiseev, A. A.] Univ Maryland, CRESST, Greenbelt, MD 20771 USA. [Moskalenko, I.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Moskalenko, I.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Picozza, P.; Sparvoli, R.] Ist Nazl Fis Nucl, Sez Roma 2, I-00133 Rome, Italy. [Picozza, P.; Sparvoli, R.; Tavani, M.] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy. [Rodin, V. G.] Russian Acad Sci, Inst Space Res, RU-117997 Moscow, Russia. [Tavani, M.] Ist Nazl Astrofis IASF, I-00133 Rome, Italy. RP Topchiev, NP (reprint author), Russian Acad Sci, PN Lebedev Phys Inst, Leninskii Pr 53, RU-119991 Moscow, Russia. EM tnp51@rambler.ru RI Mocchiutti, Emiliano/I-8049-2013; maestro, paolo/E-3280-2010; Vacchi, Andrea/C-1291-2010; Aptekar, Raphail/B-3456-2015; Moskalenko, Igor/A-1301-2007; Mori, Nicola/D-9459-2016; Архангельский, Андрей/O-3676-2016; Suchkov, Sergey/M-6671-2015; Marrocchesi, Pier Simone/N-9068-2015; Topchiev, Nikolay/M-6670-2015; Leonov, Alexey/E-4698-2016; Galper, Arkady/M-9610-2015 OI Sparvoli, Roberta/0000-0002-6314-6117; Picozza, Piergiorgio/0000-0002-7986-3321; Papini, Paolo/0000-0003-4718-2895; Boezio, Mirko/0000-0002-8015-2981; Tavani, Marco/0000-0003-2893-1459; Kheymits, Maxim/0000-0002-3415-1187; Mocchiutti, Emiliano/0000-0001-7856-551X; maestro, paolo/0000-0002-4193-1288; Vacchi, Andrea/0000-0003-3855-5856; Moskalenko, Igor/0000-0001-6141-458X; Mori, Nicola/0000-0003-2138-3787; Архангельский, Андрей/0000-0001-6406-6736; Marrocchesi, Pier Simone/0000-0003-1966-140X; Topchiev, Nikolay/0000-0002-2875-8978; FU Space Council of the Russian Academy of Sciences; Russian Space Agency FX This work was supported by Space Council of the Russian Academy of Sciences and the Russian Space Agency. NR 44 TC 46 Z9 46 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JAN 15 PY 2013 VL 51 IS 2 BP 297 EP 300 DI 10.1016/j.asr.2012.01.019 PG 4 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 083RM UT WOS:000314482900015 ER PT J AU Cable, ML Stockton, AM Mora, MF Willis, PA AF Cable, Morgan L. Stockton, Amanda M. Mora, Maria F. Willis, Peter A. TI Low-Temperature Microchip Nonaqueous Capillary Electrophoresis of Aliphatic Primary Amines: Applications to Titan Chemistry SO ANALYTICAL CHEMISTRY LA English DT Article ID IN-SITU ANALYSIS; ZONE-ELECTROPHORESIS; UPPER-ATMOSPHERE; SUBZERO TEMPERATURES; LIQUID-CHROMATOGRAPHY; MASS-SPECTROMETRY; HUYGENS PROBE; SEPARATION; DERIVATIZATION; HYDROLYSIS AB We demonstrate microchip nonaqueous capillary electrophoresis (mu NACE) analysis of primary aliphatic amines (C1-C18) in ethanol down to -20 degrees C as a first step in adapting microfluidic protocols for in situ analysis on Titan. To our knowledge, this is the first report of a nonaqueous separation at 20 degrees C on-chip. Limits of detection (LODs) ranged from 1.0 nM to 2.6 nM, and we identified several primary amines ranging in length from C2 to C16 in Titan aerosol analogue (tholin) samples; new amines were also detected in a tholin sample exposed to oxygen and liquid water. This preliminary work validates the sensitivity and efficacy of microfluidic chemical analysis of complex organics with relevance to Titan aerosols and surface deposits. C1 [Cable, Morgan L.; Stockton, Amanda M.; Mora, Maria F.; Willis, Peter A.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP Willis, PA (reprint author), CALTECH, NASA Jet Prop Lab, Mail Stop 302-231,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Peter.A.Willis@jpl.nasa.gov RI Mora, Maria/C-9753-2009; Willis, Peter/I-6621-2012 FU NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory; NASA; NASA Astrobiology Science and Technology Development (ASTID) Program [104320] FX The authors thank Mark Smith and Chao He for providing the tholin samples as part of the collaborative effort of the National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) entitled "Titan as a Prebiotic Chemical System". M.L.C. also thanks Rob Hodyss and Panayotis Lavvas for helpful discussions, Kris Stone for finding a more permanent solution to adhering nanoports, and Mathieu Choukroun and Troy Hudson for use of the cold room. M.L.C. and P.A.W. are grateful to John Choi, Hong Jiao, Anita Fisher, and Astrid Muller for help building and troubleshooting the mu NACE-LIF system. M.L.C. and A.M.S. were funded through the NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory, administered by the Oak Ridge Associated Universities through a contract with NASA. M.F.M. and P.A.W. were funded through the NASA Astrobiology Science and Technology Development (ASTID) Program (Project No. 104320). This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 50 TC 11 Z9 12 U1 3 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JAN 15 PY 2013 VL 85 IS 2 SI SI BP 1124 EP 1131 DI 10.1021/ac3030202 PG 8 WC Chemistry, Analytical SC Chemistry GA 072JY UT WOS:000313668400066 PM 23214444 ER PT J AU Knyazikhin, Y Schull, MA Stenberg, P Mottus, M Rautiainen, M Yang, Y Marshak, A Carmona, PL Kaufmann, RK Lewis, P Disney, MI Vanderbilt, V Davis, AB Baret, F Jacquemoud, S Lyapustin, A Myneni, RB AF Knyazikhin, Yuri Schull, Mitchell A. Stenberg, Pauline Mottus, Matti Rautiainen, Miina Yang, Yan Marshak, Alexander Latorre Carmona, Pedro Kaufmann, Robert K. Lewis, Philip Disney, Mathias I. Vanderbilt, Vern Davis, Anthony B. Baret, Frederic Jacquemoud, Stephane Lyapustin, Alexei Myneni, Ranga B. TI Hyperspectral remote sensing of foliar nitrogen content SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE radiative effect; spurious regression; plant ecology; carbon cycle ID PHOTON RECOLLISION PROBABILITY; CANOPY SPECTRAL INVARIANTS; LEAF OPTICAL-PROPERTIES; CLIMATE FEEDBACKS; FOREST ECOSYSTEMS; BOREAL FORESTS; REFLECTANCE; VEGETATION; TEMPERATE; MODEL AB A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact-it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N. C1 [Knyazikhin, Yuri; Yang, Yan; Kaufmann, Robert K.; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Schull, Mitchell A.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Stenberg, Pauline; Rautiainen, Miina] Univ Helsinki, Dept Forest Sci, FI-00014 Helsinki, Finland. [Mottus, Matti] Univ Helsinki, Dept Geosci & Geog, FI-00014 Helsinki, Finland. [Marshak, Alexander; Lyapustin, Alexei] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA. [Latorre Carmona, Pedro] Univ Jaume 1, Dept Lenguajes & Sistemas Informat, Castellon de La Plana 12071, Spain. [Lewis, Philip; Disney, Mathias I.] UCL, Dept Geog, London WC1E 6BT, England. [Lewis, Philip; Disney, Mathias I.] UCL, Natl Ctr Earth Observat, London WC1E 6BT, England. [Vanderbilt, Vern] NASA, Ames Res Ctr, Div Earth Sci, Biospher Sci Branch, Moffett Field, CA 94035 USA. [Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Baret, Frederic] INRA Site Agroparc, Unite Mixte Rech Environm Mediterraneen & Modelis, F-84914 Avignon, France. [Jacquemoud, Stephane] Univ Paris Diderot, CNRS 7154, Inst Phys Globe Paris, UMR, F-75013 Paris, France. RP Knyazikhin, Y (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. EM jknjazi@bu.edu RI Lewis, Philip/C-1588-2008; Disney, Mathias/C-1889-2008; Rautiainen, Miina/A-4208-2009; Jacquemoud, Stephane/F-8842-2010; Mottus, Matti/A-4130-2009; Marshak, Alexander/D-5671-2012; Lyapustin, Alexei/H-9924-2014; Myneni, Ranga/F-5129-2012; Beckley, Matthew/D-4547-2013; Baret, Fred/C-4135-2011 OI Lewis, Philip/0000-0002-8562-0633; Rautiainen, Miina/0000-0002-6568-3258; Mottus, Matti/0000-0002-2745-1966; Lyapustin, Alexei/0000-0003-1105-5739; Baret, Fred/0000-0002-7655-8997 FU National Aeronautics and Space Administration Earth Science Division FX We thank Dr. S. V. Ollinger and L. Lepine for providing data on canopy foliar mass-based nitrogen concentration and distribution of the species canopy foliar dry mass fraction published in ref. 11. This research was funded by the National Aeronautics and Space Administration Earth Science Division. NR 55 TC 67 Z9 67 U1 5 U2 130 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 15 PY 2013 VL 110 IS 3 BP E185 EP E192 DI 10.1073/pnas.1210196109 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 075TI UT WOS:000313909100005 PM 23213258 ER PT J AU Grange, ML Pidgeon, RT Nemchin, AA Timms, NE Meyer, C AF Grange, M. L. Pidgeon, R. T. Nemchin, A. A. Timms, N. E. Meyer, C. TI Interpreting U-Pb data from primary and secondary features in lunar zircon SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CRYSTAL-PLASTIC DEFORMATION; SINGLE SHOCKED ZIRCONS; VREDEFORT DOME; IMPACT; CATHODOLUMINESCENCE; EVOLUTION; MICROSTRUCTURES; GEOCHRONOLOGY; METAMORPHISM; SYSTEMATICS AB In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.] Curtin Univ Technol, Dept Appl Geol, Western Australian Sch Mines, Perth, WA 6845, Australia. [Nemchin, A. A.] Univ Munster, Inst Mineral, D-48149 Munster, Germany. [Meyer, C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Grange, ML (reprint author), Curtin Univ Technol, Dept Appl Geol, Western Australian Sch Mines, GPO Box U1987, Perth, WA 6845, Australia. EM m.grange@curtin.edu.au RI Grange, Marion/B-1449-2013; OI Timms, Nicholas/0000-0003-2997-4303; Grange, Marion/0000-0001-6405-8795 FU Curtin Internal Research Grant; ARC [DP120102457]; ARC Centre of Excellence CCFS FX We thank NASA, and especially the crew of Apollo 14 and Apollo 17 for the provision of the samples. We are also grateful to E. Gnos who provides us with image of zircon grain from the meteorite SaU169. M. G. and N.T. acknowledge funding from a Curtin Internal Research Grant. A.N. and M.G. acknowledge ARC Discovery Project DP120102457. M.G. wants to thank the ARC Centre of Excellence CCFS for funding. Rob Hart is thanked for his assistance with scanning electron microscopy. We would also like to thank R. Korotev for his comments on a previous version of the manuscript, the associate editor Y. Amelin, and F. Corfu, A. Cavosie and an anonymous reviewer for their comments that help improve the manuscript. NR 51 TC 27 Z9 27 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JAN 15 PY 2013 VL 101 BP 112 EP 132 DI 10.1016/j.gca.2012.10.013 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 061NM UT WOS:000312854900008 ER PT J AU Norman, RB Blattnig, SR AF Norman, Ryan B. Blattnig, Steve R. TI Validation of nuclear models used in space radiation shielding applications SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Model validation; Validation metrics; Experimental measurement uncertainty; Median uncertainty; Cumulative uncertainty ID FRAGMENTATION CROSS-SECTIONS; RELATIVISTIC NUCLEI; CARBON TARGETS; COSMIC-RAY; HYDROGEN; GEV/NUCLEON; FE-56; AR-40; AR-36; PROJECTILES AB A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space. (C) 2012 Elsevier Inc. All rights reserved. C1 [Norman, Ryan B.; Blattnig, Steve R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Norman, RB (reprint author), NASA, Langley Res Ctr, MS 188E, Hampton, VA 23681 USA. EM Ryan.B.Norman@nasa.gov RI Norman, Ryan/D-5095-2017 OI Norman, Ryan/0000-0002-9103-7225 FU NASA [NNX08AM65A]; NASA Postdoctoral Program at the Langley Research Center FX The authors thank Lawrence Townsend, William Oberkampf, Mike Hemsch, and Cary Zeitlin for their insight and helpful discussions concerning this work and Francis Cucinotta for access to the QMSFRG database. The authors would also like to thank Dimos Sampsonidis for kindly allowing us access to experimental data. This work was supported, in part, by NASA Research Grant NNX08AM65A and the NASA Postdoctoral Program at the Langley Research Center. NR 51 TC 5 Z9 5 U1 0 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JAN 15 PY 2013 VL 233 BP 464 EP 479 DI 10.1016/j.jcp.2012.09.006 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 044SP UT WOS:000311644200026 ER PT J AU Briggs, RM Frez, C Bagheri, M Borgentun, CE Gupta, JA Witinski, MF Anderson, JG Forouhar, S AF Briggs, Ryan M. Frez, Clifford Bagheri, Mahmood Borgentun, Carl E. Gupta, James A. Witinski, Mark F. Anderson, James G. Forouhar, Siamak TI Single-mode 2.65 mu m InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection SO OPTICS EXPRESS LA English DT Article ID ROOM-TEMPERATURE; SPECTROSCOPY; OPERATION AB We demonstrate index-coupled distributed-feedback diode lasers at 2.65 mu m that are capable of tuning across strong absorption lines of HDO and other isotopologues of H2O. The lasers employ InGaAsSb/AlInGaAsSb multi-quantum-well structures grown by molecular beam epitaxy on GaSb, and single-mode emission is generated using laterally coupled second-order Bragg gratings etched alongside narrow ridge waveguides. We verify near-critical coupling of the gratings by analyzing the modal characteristics of lasers of different length. With an emission facet anti-reflection coating, 2-mm-long lasers exhibit a typical current threshold of 150 mA at 20 degrees C and are capable of emitting more than 25 mW in a single longitudinal mode, which is significantly higher than the output power reported for loss-coupled distributed-feedback lasers operating at similar wavelengths. (C) 2013 Optical Society of America C1 [Briggs, Ryan M.; Frez, Clifford; Bagheri, Mahmood; Borgentun, Carl E.; Forouhar, Siamak] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gupta, James A.] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A OR6, Canada. [Witinski, Mark F.; Anderson, James G.] Harvard Univ, Cambridge, MA 01238 USA. RP Briggs, RM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM siamak.forouhar@jpl.nasa.gov NR 19 TC 14 Z9 14 U1 1 U2 25 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 14 PY 2013 VL 21 IS 1 BP 1317 EP 1323 DI 10.1364/OE.21.001317 PG 7 WC Optics SC Optics GA 104JF UT WOS:000315988100156 PM 23389025 ER PT J AU Mikellides, IG Katz, I Hofer, RR Goebel, DM AF Mikellides, Ioannis G. Katz, Ira Hofer, Richard R. Goebel, Dan M. TI Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster SO APPLIED PHYSICS LETTERS LA English DT Article AB We demonstrate by numerical simulations and experiments that the unmagnetized ion beam formed in a Hall thruster can be controlled by an applied magnetic field in a manner that reduces by 2-3 orders of magnitude deleterious ion bombardment of the containing walls. The suppression of wall erosion in Hall thrusters to such low levels has remained elusive for decades. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776192] C1 [Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mikellides, IG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ioannis.G.Mikellides@jpl.nasa.gov FU JPL Research and Technology Development program FX This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded by the JPL Research and Technology Development program. The authors are grateful to Al Owens and Ray Swindlehurst for assisting with the experiments in the Owens vacuum chamber at JPL. NR 10 TC 18 Z9 18 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 14 PY 2013 VL 102 IS 2 AR 023509 DI 10.1063/1.4776192 PG 5 WC Physics, Applied SC Physics GA 072KQ UT WOS:000313670200104 ER PT J AU Burke, BJ Peterson, WT Beckman, BR Morgan, C Daly, EA Litz, M AF Burke, Brian J. Peterson, William T. Beckman, Brian R. Morgan, Cheryl Daly, Elizabeth A. Litz, Marisa TI Multivariate Models of Adult Pacific Salmon Returns SO PLOS ONE LA English DT Article ID NORTHERN CALIFORNIA CURRENT; COHO ONCORHYNCHUS-KISUTCH; SPRING CHINOOK SALMON; SIZE-SELECTIVE MORTALITY; EARLY MARINE RESIDENCE; WIRE TAG RECOVERIES; COLUMBIA RIVER; OCEANOGRAPHIC CONDITIONS; INTERANNUAL VARIABILITY; JUVENILE SALMON AB Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. C1 [Burke, Brian J.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fish Ecol Div, Washington, DC USA. [Peterson, William T.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fish Ecol Div, Newport, OR USA. [Beckman, Brian R.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Resource Enhancement & Utilizat Div, Seattle, WA USA. [Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa] Oregon State Univ, Cooperat Inst Marine Resources Studies, Newport, OR USA. RP Burke, BJ (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fish Ecol Div, Washington, DC USA. EM brian.burke@noaa.gov FU Bonneville Power Administration [1998-014-00]; National Oceanic and Atmospheric Administration - Comparative Analysis of Marine Ecosystem Organization [NA09NMF4720182]; National Oceanic and Atmospheric Administration - Global Ocean Ecosystems Dynamics [NA67RJ0151] FX Funding for this came from Bonneville Power Administration, project #1998-014-00 (http://www.bpa.gov/), National Oceanic and Atmospheric Administration - Comparative Analysis of Marine Ecosystem Organization grant #NA09NMF4720182 (http://cameo.noaa.gov/), and National Oceanic and Atmospheric Administration - Global Ocean Ecosystems Dynamics grant #NA67RJ0151 (http://www.usglobec.org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 57 TC 31 Z9 31 U1 1 U2 58 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 11 PY 2013 VL 8 IS 1 AR e54134 DI 10.1371/journal.pone.0054134 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 086RY UT WOS:000314705800111 PM 23326586 ER PT J AU Wicks, RT Mallet, A Horbury, TS Chen, CHK Schekochihin, AA Mitchell, JJ AF Wicks, R. T. Mallet, A. Horbury, T. S. Chen, C. H. K. Schekochihin, A. A. Mitchell, J. J. TI Alignment and Scaling of Large-Scale Fluctuations in the Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRONG IMBALANCED TURBULENCE; MAGNETIC-FIELD; ALFVEN WAVES; MAGNETOHYDRODYNAMIC TURBULENCE; HYDROMAGNETIC TURBULENCE; INTERPLANETARY MEDIUM; CROSS-HELICITY; MHD TURBULENCE; 1/F NOISE; EVOLUTION AB We investigate the dependence of solar wind fluctuations measured by the Wind spacecraft on scale and on the degree of alignment between oppositely directed Elsasser fields. This alignment controls the strength of the nonlinear interactions and, therefore, the turbulence. We find that at scales larger than the outer scale of the turbulence the Elsasser fluctuations become on average more antialigned as the outer scale is approached from above. Conditioning structure functions using the alignment angle reveals turbulent scaling of unaligned fluctuations at scales previously believed to lie outside the turbulent cascade in the "1/f range.'' We argue that the 1/f range contains a mixture of a noninteracting antialigned population of Alfven waves and magnetic force-free structures plus a subdominant population of unaligned cascading turbulent fluctuations. DOI: 10.1103/PhysRevLett.110.025003 C1 [Wicks, R. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mallet, A.; Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Horbury, T. S.; Mitchell, J. J.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2AZ, England. [Chen, C. H. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Wicks, RT (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM robert.t.wicks@nasa.gov RI Wicks, Robert/A-1180-2009 OI Wicks, Robert/0000-0002-0622-5302 FU NASA Postdoctoral Program at the Goddard Space Flight Center; STFC; NASA [NNX09AE41G]; Leverhulme Trust Network for Magnetized Plasma Turbulence FX This research was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center (R. T. W.), STFC (R. T. W., A. M., T. S. H.), NASA Grant No. NNX09AE41G (C. H. K. C.), and the Leverhulme Trust Network for Magnetized Plasma Turbulence. Wind data were obtained from the NSSDC [43]. NR 40 TC 13 Z9 13 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 11 PY 2013 VL 110 IS 2 AR 025003 DI 10.1103/PhysRevLett.110.025003 PG 5 WC Physics, Multidisciplinary SC Physics GA 069FZ UT WOS:000313422000011 PM 23383909 ER PT J AU Fichot, CG Kaiser, K Hooker, SB Amon, RMW Babin, M Belanger, S Walker, SA Benner, R AF Fichot, Cedric G. Kaiser, Karl Hooker, Stanford B. Amon, Rainer M. W. Babin, Marcel Belanger, Simon Walker, Sally A. Benner, Ronald TI Pan-Arctic distributions of continental runoff in the Arctic Ocean SO SCIENTIFIC REPORTS LA English DT Article ID DISSOLVED ORGANIC-MATTER; FRESH-WATER; RIVER DISCHARGE; BEAUFORT GYRE; CARBON; TEMPERATURE; OXIDATION; LIGNIN; BASIN; ICE AB Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. C1 [Fichot, Cedric G.; Kaiser, Karl; Benner, Ronald] Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USA. [Benner, Ronald] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA. [Hooker, Stanford B.] NASA, Ocean Ecol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kaiser, Karl; Amon, Rainer M. W.; Walker, Sally A.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA. [Kaiser, Karl; Amon, Rainer M. W.; Walker, Sally A.] Texas A&M Univ, Dept Oceanog, Galveston, TX 77553 USA. [Babin, Marcel] Univ Laval, Dept Biol & Quebec Ocean, CNRS France, Takuvik Joint Int Lab,UMI 3376,Univ Laval Canada, Laval, PQ G1V 0A6, Canada. [Babin, Marcel] Univ Paris 06, CNRS, UMR 7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Belanger, Simon] Univ Quebec, BOREAS, Dept Biol Chem & Geog, Rimouski, PQ G5L 3A1, Canada. [Walker, Sally A.] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. RP Fichot, CG (reprint author), Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USA. EM cgfichot@gmail.com RI Benner, Ronald/M-4412-2015 OI Benner, Ronald/0000-0002-1238-2777 FU ANR (Agence nationale de la recherche); INSU-CNRS (Institut national des sciences de l'univers, Centre national de la recherche scientifique); CNES (Centre national d'etudes spatiales); ESA (European Space Agency); Government of Canada (IPY) [96]; NASA (National Aeronautics and Space Administration); US-NSF (National Science Foundation); NOAA (National Oceanographic and Atmospheric Administration); ONR (Office of Naval Research); JAMSTEC (Japan Marine Science and Technology Center); NSF [0713915, 0850653, 0229302, 0425582, 0713991]; NASA FX This study was conducted as part of: 1) the Malina Scientific Program (http://malina.obs-vlfr.fr) funded by ANR (Agence nationale de la recherche), INSU-CNRS (Institut national des sciences de l'univers, Centre national de la recherche scientifique), CNES (Centre national d'etudes spatiales) and ESA (European Space Agency); 2) the Circumpolar Flaw Lead (CFL) study (http://www.ipy-api.gc.ca/pg_IPYAPI_029-eng.html) funded by the Government of Canada (IPY #96); 3) the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) program (http://www.espo.nasa.gov/icescape/) funded by NASA (National Aeronautics and Space Administration); 4) the Nansen and Amundsen Basin Observational System (NABOS) project (http://nabos.iarc.uaf.edu/index.php) funded by the US-NSF (National Science Foundation), NOAA (National Oceanographic and Atmospheric Administration), the ONR (Office of Naval Research) and JAMSTEC (Japan Marine Science and Technology Center). This work was directly supported by NSF grants 0713915 and 0850653 to R. B., NSF grants 0229302, 0425582, 0713991 to R. A., and NASA funding to S.H. NR 43 TC 56 Z9 56 U1 6 U2 115 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 11 PY 2013 VL 3 AR 1053 DI 10.1038/srep01053 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 069ET UT WOS:000313418800002 PM 23316278 ER PT J AU Giacomazzo, B Perna, R Rezzolla, L Troja, E Lazzati, D AF Giacomazzo, Bruno Perna, Rosalba Rezzolla, Luciano Troja, Eleonora Lazzati, Davide TI COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; gamma-ray burst: general; gravitational waves; methods: numerical; stars: neutron ID NEUTRON-STAR MERGERS; BLACK-HOLES; ACCRETION DISKS; SIMULATIONS; CONSTRAINTS; GALAXIES; CATALOG; ENERGY; FLOWS; TORUS AB In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, epsilon(jet) = 10%, we find that most of the tori have masses smaller than 0.01 M-circle dot, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses greater than or similar to 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of similar to 0.9 or higher. C1 [Giacomazzo, Bruno; Perna, Rosalba] Univ Colorado, JILA, Boulder, CO 80309 USA. [Giacomazzo, Bruno] NIST, Boulder, CO 80309 USA. [Perna, Rosalba] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Rezzolla, Luciano] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany. [Troja, Eleonora] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Troja, Eleonora] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lazzati, Davide] NC State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Giacomazzo, B (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. OI Giacomazzo, Bruno/0000-0002-6947-4023; Lazzati, Davide/0000-0002-9190-662X FU NSF [AST 1009396]; NASA [NNX12AO67G]; DFG [SFB/Transregio 7]; "CompStar," a Research Networking Programme of the ESF FX We thank J. M. Demopoulos, H.-T. Janka, and S. T. McWilliams for useful comments. B. G. and R. P. acknowledge support from NSF Grant No. AST 1009396 and NASA Grant No. NNX12AO67G. L. R. acknowledges support from the DFG grant SFB/Transregio 7 and by "CompStar," a Research Networking Programme of the ESF. NR 41 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 10 PY 2013 VL 762 IS 2 AR L18 DI 10.1088/2041-8205/762/2/L18 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237ND UT WOS:000325876300003 ER PT J AU Krause, E Chang, TC Dore, O Umetsu, K AF Krause, Elisabeth Chang, Tzu-Ching Dore, Olivier Umetsu, Keiichi TI THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: theory; dark matter; gravitational lensing: weak; large-scale structure of universe ID CLUSTER MASS PROFILES; DARK-MATTER; MAGNIFICATION AB The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias. C1 [Krause, Elisabeth; Dore, Olivier] CALTECH, Dept Astrophys, Pasadena, CA 91125 USA. [Krause, Elisabeth] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Chang, Tzu-Ching; Umetsu, Keiichi] Acad Sinica, IAA, Taipei 10617, Taiwan. [Dore, Olivier] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. RP Krause, E (reprint author), CALTECH, Dept Astrophys, MC 249-17, Pasadena, CA 91125 USA. OI Umetsu, Keiichi/0000-0002-7196-4822 FU National Science Foundation [1066293]; National Science Council of Taiwan [NSC100-2112-M-001-008-MY3]; Academia Sinica Career Development Award FX We thank Peter Schneider for critical comments, and acknowledge useful discussions with Eric Huff, Bhuvnesh Jain, Peter Melchior, and Fabian Schmidt. This work is supported in part by the National Science Foundation under grant No. 1066293 and the hospitality of the Aspen Center for Physics. This research is supported in part by the National Science Council of Taiwan grant NSC100-2112-M-001-008-MY3. K. U. acknowledges support from the Academia Sinica Career Development Award. Part of the research described in this Letter was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 25 TC 30 Z9 30 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 10 PY 2013 VL 762 IS 2 AR L20 DI 10.1088/2041-8205/762/2/L20 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237ND UT WOS:000325876300005 ER PT J AU Zitrin, A Meneghetti, M Umetsu, K Broadhurst, T Bartelmann, M Bouwens, R Bradley, L Carrasco, M Coe, D Ford, H Kelson, D Koekemoer, AM Medezinski, E Moustakas, J Moustakas, LA Nonino, M Postman, M Rosati, P Seidel, G Seitz, S Sendra, I Shu, X Vega, J Zheng, W AF Zitrin, A. Meneghetti, M. Umetsu, K. Broadhurst, T. Bartelmann, M. Bouwens, R. Bradley, L. Carrasco, M. Coe, D. Ford, H. Kelson, D. Koekemoer, A. M. Medezinski, E. Moustakas, J. Moustakas, L. A. Nonino, M. Postman, M. Rosati, P. Seidel, G. Seitz, S. Sendra, I. Shu, X. Vega, J. Zheng, W. TI CLASH: THE ENHANCED LENSING EFFICIENCY OF THE HIGHLY ELONGATED MERGING CLUSTER MACS J0416.1-2403 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dark matter; galaxies: clusters: general; galaxies: clusters: individual (MACS J0416.1-2403); galaxies: high-redshift; gravitational lensing: strong ID GALAXY CLUSTERS; GRAVITATIONAL LENSES; MASS-DISTRIBUTION; EINSTEIN RADII; MERGERS; HUBBLE; J1206.2-0847; PROFILES; IMPACT; IMAGES AB We perform a strong lensing analysis of the merging galaxy cluster MACS J0416.1-2403 (M0416; z = 0.42) in recent CLASH/HST observations. We identify 70 new multiple images and candidates of 23 background sources in the range 0.7 less than or similar to z(phot) less than or similar to 6.14 including two probable high-redshift dropouts, revealing a highly elongated lens with axis ratio similar or equal to 5:1, and a major axis of similar to 100 '' (z(s) similar to 2). Compared to other well-studied clusters, M0416 shows an enhanced lensing efficiency. Although the critical area is not particularly large (similar or equal to 0.6 square'; z(s) similar to 2), the number of multiple images, per critical area, is anomalously high. We calculate that the observed elongation boosts the number of multiple images, per critical area, by a factor of similar to 2.5x, due to the increased ratio of the caustic area relative to the critical area. Additionally, we find that the observed separation between the two main mass components enlarges the critical area by a factor of similar to 2. These geometrical effects can account for the high number (density) of multiple images observed. We find in numerical simulations that only similar to 4% of the clusters (with M-vir >= 6 x 10(14) h(-1) M-circle dot) exhibit critical curves as elongated as in M0416. C1 [Zitrin, A.; Bartelmann, M.; Carrasco, M.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Meneghetti, M.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Meneghetti, M.] INFN, Sez Bologna, I-40127 Bologna, Italy. [Umetsu, K.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Broadhurst, T.; Sendra, I.] Univ Basque Country UPV EHU, Dept Theoret Phys, E-48080 Bilbao, Spain. [Broadhurst, T.] Basque Fdn Sci, IKERBASQUE, E-48008 Bilbao, Spain. [Bouwens, R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bradley, L.; Coe, D.; Koekemoer, A. M.; Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21208 USA. [Carrasco, M.] Pontificia Univ Catolica Chile, AIUC, Dept Astron & Astrophys, Santiago, Chile. [Ford, H.; Medezinski, E.; Zheng, W.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kelson, D.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Moustakas, J.] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nonino, M.] Osserv Astron Trieste, INAF, I-40131 Trieste, Italy. [Rosati, P.] ESO European So Observ, D-85748 Garching, Germany. [Seidel, G.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Seitz, S.] Univ Observ Munich, D-81679 Munich, Germany. [Seitz, S.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Shu, X.] Univ Sci & Technol China, Dept Astron, Hefei 230026, Anhui, Peoples R China. [Vega, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain. [Vega, J.] Observ Paris, UMR CNRS 8112, LERMA, F-75014 Paris, France. RP Zitrin, A (reprint author), Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. EM adizitrin@gmail.com RI Bartelmann, Matthias/A-5336-2014; Meneghetti, Massimo/O-8139-2015; Shu, Xinwen/D-7294-2017; OI Meneghetti, Massimo/0000-0003-1225-7084; Shu, Xinwen/0000-0002-7020-4290; Nonino, Mario/0000-0001-6342-9662; Sendra, Irene/0000-0002-1148-8377; Vega Ferrero, Jesus/0000-0003-2338-5567; Umetsu, Keiichi/0000-0002-7196-4822; Moustakas, Leonidas/0000-0003-3030-2360; Koekemoer, Anton/0000-0002-6610-2048 FU Baden Wurttemberg Stiftung [II/2-6]; DFG cluster of excellence Origin and Structure of the Universe; National Science Council of Taiwan [NSC100-2112-M-001-008-MY3]; Academia Sinica Career Development Award; NASA [NAS 5-32865, NAS 5-26555] FX We thank the anonymous reviewer of this work for very valuable comments. A.Z. is supported by contract research "Internationale Spitzenforschung II/2-6" of the Baden Wurttemberg Stiftung. P. R. acknowledges partial support by the DFG cluster of excellence Origin and Structure of the Universe. K. U. acknowledges partial support from the National Science Council of Taiwan (grant NSC100-2112-M-001-008-MY3) and from the Academia Sinica Career Development Award. The work of L. A. M. was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. ACS was developed under NASA contract NAS 5-32865. Results are based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This work is based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan. NR 39 TC 54 Z9 54 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 10 PY 2013 VL 762 IS 2 AR L30 DI 10.1088/2041-8205/762/2/L30 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 237ND UT WOS:000325876300015 ER PT J AU Anderson, N Czapla-Myers, J Leisso, N Biggar, S Burkhart, C Kingston, R Thome, K AF Anderson, Nikolaus Czapla-Myers, Jeffrey Leisso, Nathan Biggar, Stuart Burkhart, Charles Kingston, Rob Thome, Kurtis TI Design and calibration of field deployable ground-viewing radiometers SO APPLIED OPTICS LA English DT Article ID RAILROAD VALLEY PLAYA; LIGHT-EMITTING-DIODES; VICARIOUS CALIBRATION; SUN PHOTOMETER; PERFORMANCE; INSTRUMENT; DETECTORS; SENSORS; RANGE AB Three improved ground-viewing radiometers were built to support the Radiometric Calibration Test Site (RadCaTS) developed by the Remote Sensing Group (RSG) at the University of Arizona. Improved over previous light-emitting diode based versions, these filter-based radiometers employ seven silicon detectors and one InGaAs detector covering a wavelength range of 400-1550 nm. They are temperature controlled and designed for greater stability and lower noise. The radiometer systems show signal-to-noise ratios of greater than 1000 for all eight channels at typical field calibration signal levels. Predeployment laboratory radiance calibrations using a 1 m spherical integrating source compare well with in situ field calibrations using the solar radiation based calibration method; all bands are within +/- 2.7% for the case tested. (C) 2013 Optical Society of America C1 [Anderson, Nikolaus; Czapla-Myers, Jeffrey; Biggar, Stuart; Burkhart, Charles; Kingston, Rob] Univ Arizona, Coll Opt Sci, Remote Sensing Grp, Tucson, AZ 85721 USA. [Thome, Kurtis] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Anderson, N (reprint author), Univ Arizona, Coll Opt Sci, Remote Sensing Grp, 1630 E Univ Blvd, Tucson, AZ 85721 USA. EM nanderson@optics.arizona.edu RI Thome, Kurtis/D-7251-2012; OI Czapla-Myers, Jeffrey/0000-0003-4804-5358 FU NASA [NNX08AC55A, NNX11AG28G]; Bureau of Land Management (Battle Mountain District); Bureau of Land Management (Tonopah Field Office); USGS; NASA AERONET program FX We would like to acknowledge support from NASA grant number NNX08AC55A for funding of the research and development of this instrumentation. We would also like to acknowledge support from NASA grant number NNX11AG28G for continued funding of RSG vicarious calibration work in support of the Landsat mission. This work would not be possible without support from the Bureau of Land Management (particularly the Battle Mountain District and Tonopah Field Office), the USGS, and the NASA AERONET program. NR 38 TC 13 Z9 14 U1 1 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 10 PY 2013 VL 52 IS 2 BP 231 EP 240 DI 10.1364/AO.52.000231 PG 10 WC Optics SC Optics GA 073MC UT WOS:000313746100016 PM 23314640 ER PT J AU Latvakoski, H Mlynczak, MG Johnson, DG Cageao, RP Kratz, DP Johnson, K AF Latvakoski, Harri Mlynczak, Martin G. Johnson, David G. Cageao, Richard P. Kratz, David P. Johnson, Kendall TI Far-infrared spectroscopy of the troposphere: instrument description and calibration performance SO APPLIED OPTICS LA English DT Article AB The far-infrared spectroscopy of the troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the Earth's thermal emission spectrum with a particular emphasis on far-infrared (far-IR) wavelengths greater than 15 mu m. FIRST was developed under NASA's Instrument Incubator Program to demonstrate technology for providing measurements from 10 to 100 mu m (1000 to 100 cm(-1)) on a single focal plane with a spectral resolution finer than 1 cm(-1). Presently no spectrometers in orbit are capable of directly observing the Earth's far-IR spectrum. This fact, coupled with the fundamental importance of the far-IR to Earth's climate system, provided the impetus for the development of FIRST. In this paper the FIRST instrument is described and results of a detailed absolute laboratory calibration are presented. Specific channels in FIRST are shown to be accurate in the far-IR to better than 0.3 K at 270 K scene temperature, 0.5 K at 247 K, and 1 K at 225 K. (C) 2013 Optical Society of America C1 [Latvakoski, Harri; Johnson, Kendall] Space Dynam Lab, N Logan, UT 84341 USA. [Mlynczak, Martin G.; Kratz, David P.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Johnson, David G.; Cageao, Richard P.] NASA, Langley Res Ctr, Engn Directorate, Hampton, VA 23681 USA. RP Mlynczak, MG (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 420, Hampton, VA 23681 USA. EM m.g.mlynczak@nasa.gov RI Johnson, David/F-2376-2015; Richards, Amber/K-8203-2015 OI Johnson, David/0000-0003-4399-5653; NR 11 TC 2 Z9 2 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 10 PY 2013 VL 52 IS 2 BP 264 EP 273 DI 10.1364/AO.52.000264 PG 10 WC Optics SC Optics GA 073MC UT WOS:000313746100020 PM 23314644 ER PT J AU Atli, KC Karaman, I Noebe, RD Gaydosh, D AF Atli, K. C. Karaman, I. Noebe, R. D. Gaydosh, D. TI The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Shape memory alloys; Martensitic transformation; Thermomechanical training; Two-way shape memory effect; Thermal stability ID SEVERE PLASTIC-DEFORMATION; SINGLE-CRYSTAL NITI; ZN-AL ALLOYS; TI-NI; WIDE HYSTERESIS; TRANSFORMATION; BEHAVIOR; MARTENSITE; STABILITY; DEGRADATION AB The propensity for various high-temperature shape memory alloys (HTSMA), i.e., Ni28.5Ti50.5Pt21,Ni24.5Ti50.5Pd25 and Ni24.5Ti50Pd25Sc0.5, to exhibit two-way shape memory effect (TWSME) was compared to that of a conventional binary Ni49.9Ti50.1 shape memory alloy (SMA). Thermomechanical training in the form of thermal cycling under constant stress levels was employed to induce two-way shape memory behavior in the various materials. The resulting TWSME was characterized for its magnitude and stability under stress-free conditions, while parameters such as training stress and upper cycle temperature during training were investigated for their influence on this phenomenon. For Ni49.9Ti50.1, a negative correlation was found between an increasing training stress, from 80 MPa to 200 MPa, and the magnitude of the resulting TWSM strain, while a positive correlation was observed for Ni24.5Ti50.5Pd25 and Ni24.5Ti50Pd25SC0.5. The stability of the TWSME for the Ni49.9Ti50.1. measured by the strain evolution of the cold (martensitic) and hot (austenitic) shapes of the samples upon stress-free thermal cycling, was found to depend on the stress and temperature interval during training. Conversely, the stability of the NiTiPd based HTSMAs was much greater and less sensitive to these parameters over the stress and temperature intervals investigated. No TWSME was seen in Ni28.5Ti50.5Pt21 due to the higher upper cycle temperatures required during thermal cycling, which resulted in the recovery of any favorable dislocation structures generated during training. (C) 2012 Elsevier B.V. All rights reserved. C1 [Atli, K. C.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Karaman, I.] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Noebe, R. D.; Gaydosh, D.] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. RP Karaman, I (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Atli, Kadri/D-6978-2013; Karaman, Ibrahim/E-7450-2010 OI Atli, Kadri/0000-0002-4807-2113; Karaman, Ibrahim/0000-0001-6461-4958 FU NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project [NNX07AB56A]; Aeronautical Sciences Project; US Air Force Office of Scientific Research [FA9550-12-1-0218] FX The authors gratefully acknowledge insightful discussions with Ji Ma (Graduate research assistant at Texas A&M University) and the Shape Memory Alloy and Active Structures Group at NASA Glenn Research Center. Particular thanks to Brian E. Franco (Graduate research assistant at Texas A&M University) for his help with the construction of the thermomechanical test setup and training of samples. This study has been supported by the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project through Cooperative Agreement No. NNX07AB56A, with additional support from the Aeronautical Sciences Project. IK also acknowledges the support from the US Air Force Office of Scientific Research, Grant No. FA9550-12-1-0218. NR 67 TC 18 Z9 18 U1 4 U2 81 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 10 PY 2013 VL 560 BP 653 EP 666 DI 10.1016/j.msea.2012.10.009 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 065NO UT WOS:000313155400078 ER PT J AU Turyshev, SG Toth, VT Sazhin, MV AF Turyshev, Slava G. Toth, Viktor T. Sazhin, Mikhail V. TI General relativistic observables of the GRAIL mission SO PHYSICAL REVIEW D LA English DT Article ID TIME AB We present a realization of astronomical relativistic reference frames in the Solar System and its application to the Gravity Recovery and Interior Laboratory (GRAIL) mission. We model the necessary space-time coordinate transformations for light-trip time computations and address some practical aspects of the implementation of the resulting model. We develop all the relevant relativistic coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to compute all observable quantities. We take into account major relativistic effects contributing to the dual one-way range observable, which is derived from one-way signal travel times between the two GRAIL spacecrafts. We develop a general relativistic model for this fundamental observable of GRAIL, accurate to 1 mu m. We develop and present a relativistic model for another key observable of this experiment, the dual one-way range rate, accurate to 1 mu m/s. The presented formulation justifies the basic assumptions behind the design of the GRAIL mission. It may also be used to further improve the already impressive results of this lunar gravity recovery experiment after the mission is complete. Finally, we present transformation rules for frequencies and gravitational potentials and their application to GRAIL. DOI: 10.1103/PhysRevD.87.024020 C1 [Turyshev, Slava G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Turyshev, Slava G.; Sazhin, Mikhail V.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Toth, Viktor/D-3502-2009 OI Toth, Viktor/0000-0003-3651-9843 FU National Aeronautics and Space Administration FX We thank Sami W. Asmar, William M. Folkner, Nathaniel E. Harvey, Alexander S. Konopliv, Gerhard L. Kruizinga, Ryan S. Park, Michael M. Watkins, James G. Williams, Dah-Ning Yuan of JPL and Maria T. Zuber of MIT for their interest and support during the work and preparation of this manuscript. We also thank Sergey M. Kopeikin and Sergey A. Klioner for their insightful comments and suggestions. We also thank the anonymous referee for valuable comments on this manuscript. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 35 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 10 PY 2013 VL 87 IS 2 AR 024020 DI 10.1103/PhysRevD.87.024020 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 069HT UT WOS:000313426600003 ER PT J AU Arlen, T Aune, T Beilicke, M Benbow, W Bouvier, A Buckley, JH Bugaev, V Cesarini, A Ciupik, L Connolly, MP Cui, W Dickherber, R Dumm, J Errando, M Falcone, A Federici, S Feng, Q Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Griffin, S Grube, J Gyuk, G Hanna, D Holder, J Humensky, TB Kaaret, P Karlsson, N Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Maier, G Moriarty, P Mukherjee, R Nelson, T de Bhroithe, AO Ong, RA Orr, M Park, N Perkins, JS Pichel, A Pohl, M Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Saxon, DB Schroedter, M Sembroski, GH Staszak, D Telezhinsky, I Tesic, G Theiling, M Tsurusaki, K Varlotta, A Vincent, S Wakely, SP Weekes, TC Weinstein, A Welsing, R Williams, DA Zitzer, B Jorstad, SG MacDonald, NR Marscher, AP Smith, PS Walker, RC Hovatta, T Richards, J Max-Moerbeck, W Readhead, A Lister, ML Kovalev, YY Pushkarev, AB Gurwell, MA Lahteenmaki, A Nieppola, E Tornikoski, M Jarvela, E AF Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bouvier, A. Buckley, J. H. Bugaev, V. Cesarini, A. Ciupik, L. Connolly, M. P. Cui, W. Dickherber, R. Dumm, J. Errando, M. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Holder, J. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Maier, G. Moriarty, P. Mukherjee, R. Nelson, T. de Bhroithe, A. O'Faolain Ong, R. A. Orr, M. Park, N. Perkins, J. S. Pichel, A. Pohl, M. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Saxon, D. B. Schroedter, M. Sembroski, G. H. Staszak, D. Telezhinsky, I. Tesic, G. Theiling, M. Tsurusaki, K. Varlotta, A. Vincent, S. Wakely, S. P. Weekes, T. C. Weinstein, A. Welsing, R. Williams, D. A. Zitzer, B. Jorstad, S. G. MacDonald, N. R. Marscher, A. P. Smith, P. S. Walker, R. C. Hovatta, T. Richards, J. Max-Moerbeck, W. Readhead, A. Lister, M. L. Kovalev, Y. Y. Pushkarev, A. B. Gurwell, M. A. Lahteenmaki, A. Nieppola, E. Tornikoski, M. Jarvela, E. CA VERITAS Collaboration TI RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (BL Lacertae, VER J2202+422); gamma rays: galaxies ID ACTIVE GALACTIC NUCLEI; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; MULTIWAVELENGTH OBSERVATIONS; POLARIMETRIC OBSERVATIONS; RELATIVISTIC JETS; HIGH-FREQUENCIES; RADIO-SOURCES; PKS 1222+216; BLAZARS; VARIABILITY AB We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 +/- 0.6) x 10(-6) photons m(-2) s(-1), roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 +/- 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 +/- 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results. C1 [Arlen, T.; Ong, R. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Bouvier, A.; Furniss, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Bouvier, A.; Furniss, A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Cesarini, A.; Connolly, M. P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Karlsson, N.; Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Davey Lab 525, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Federici, S.; Maier, G.; Pohl, M.; Prokoph, H.] DESY, D-15738 Zeuthen, Germany. [Federici, S.; Pohl, M.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Finnegan, G.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gall, D.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Griffin, S.; Hanna, D.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Krennrich, F.; Orr, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Park, N.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Jorstad, S. G.; MacDonald, N. R.; Marscher, A. P.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Jorstad, S. G.] St Petersburg State Univ, Astron Inst, St Petersburg 198504, Russia. [Smith, P. S.] Univ Arizona, Steward Observ, Tucson, AZ 85716 USA. [Walker, R. C.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Hovatta, T.; Max-Moerbeck, W.; Readhead, A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Kovalev, Y. Y.] Russian Acad Sci, Astro Space Ctr Lebedev Phys Inst, Moscow, Russia. [Kovalev, Y. Y.] Max Planck Inst Radio Astron, D-53121 Bonn, Germany. [Pushkarev, A. B.] Pulkovo Astron Observ, St Petersburg 196140, Russia. [Pushkarev, A. B.] Crimean Astrophys Observ, UA-98409 Nauchnyi, Ukraine. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lahteenmaki, A.; Nieppola, E.; Tornikoski, M.; Jarvela, E.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. RP Arlen, T (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM cui@purdue.edu; qfeng@purdue.edu RI Kovalev, Yuri/J-5671-2013; Lahteenmaki, Anne/L-5987-2013; Khassen, Yerbol/I-3806-2015; Jorstad, Svetlana/H-6913-2013; Pushkarev, Alexander/M-9997-2015; OI Kovalev, Yuri/0000-0001-9303-3263; Khassen, Yerbol/0000-0002-7296-3100; Jorstad, Svetlana/0000-0001-9522-5453; Smith, Paul/0000-0002-5083-3663; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Errando, Manel/0000-0002-1853-863X FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K; NASA [NNX08AV65G, NNX08AV61G, NNX09AT99G, NNX11AQ03G, NNX08AW31G, NNX11A043G, NNX08AV67G]; NSF [AST-0907893, AST-0808050, AST-1109911]; Russian Foundation for Basic Research [11-02-00368, 12-02-33101]; Physical Sciences Division of the Russian Academy of Sciences; Dynasty Foundation; Academia Sinica; Fermi Guest Investigator grants [NNX08AW56G, NNX09AU10G]; Academy of Finland [212656, 210338, 121148] FX Q.F. and W.C. thank Dimitrios Giannios for useful comments on the manuscript. The work of the VERITAS Collaboration was supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748) and by STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.; The Boston University effort was supported in part by NASA through Fermi grants NNX08AV65G, NNX08AV61G, NNX09AT99G, and NNX11AQ03G, and by NSF grant AST-0907893.; The OVRO 40 m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911.; The MOJAVE project is supported under NASA-Fermi grant NNX08AV67G. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Y.Y.K. and K. V. S. were partly supported by the Russian Foundation for Basic Research (project 11-02-00368, 12-02-33101) and the basic research program "Active processes in galactic and extragalactic objects" of the Physical Sciences Division of the Russian Academy of Sciences. Y.Y.K. was supported by the Dynasty Foundation.; The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica.; The Steward Observatory spectropolarimetric monitoring project is supported by Fermi Guest Investigator grants NNX08AW56G and NNX09AU10G.; The Metsahovi team acknowledges the support from the Academy of Finland to observing projects (numbers 212656, 210338, 121148, and others). NR 72 TC 29 Z9 29 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 92 DI 10.1088/0004-637X/762/2/92 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900026 ER PT J AU Brosius, JW AF Brosius, Jeffrey W. TI CHROMOSPHERIC EVAPORATION IN SOLAR FLARE LOOP STRANDS OBSERVED WITH THE EXTREME-ULTRAVIOLET IMAGING SPECTROMETER ON BOARD HINODE SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: transition region; Sun: UV radiation ID CORONAL DIAGNOSTIC SPECTROMETER; XIX RESONANCE LINE; GENERAL SPECTRAL PROPERTIES; BRAGG CRYSTAL SPECTROMETER; HIGH TIME RESOLUTION; X-RAY-SPECTRA; IMPULSIVE PHASE; CA-XIX; RADIATIVE HYDRODYNAMICS; ATOMIC DATABASE AB The entire profile of the Fe XXIII line at 263.8 angstrom, formed at temperature approximate to 14 MK, was blueshifted by an upward velocity -122 +/- 33 km s(-1) when it was first detected by the Extreme-ultraviolet Imaging Spectrometer operating in rapid cadence (11.18 s) stare mode during a C1 solar flare. The entire profile became even more blueshifted over the next two exposures, when the upward velocity reached its maximum of -208 +/- 14 km s(-1) before decreasing to zero over the next 12 exposures. After that, a weak, secondary blueshifted component appeared for five exposures, reached a maximum upward velocity of -206 +/- 33 km s(-1), and disappeared after the maximum line intensity (stationary plus blueshifted) was achieved. Velocities were measured relative to the intense stationary profile observed near the flare's peak and early during its decline. The initial episode during which the entire profile was blueshifted lasted about 156 s, while the following episode during which a secondary blueshifted component was detected lasted about 56 s. The first episode likely corresponds to chromospheric evaporation in a single loop strand, while the second corresponds to evaporation in an additional strand, as described in multi-strand flare loop models proposed by Hori et al. and Warren & Doschek. Line emission from progressively cooler ions (Fe XVII, XVI, and XIV) brightened at successively later times, consistent with cooling of flare-heated plasma. C1 Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Brosius, JW (reprint author), Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. EM Jeffrey.W.Brosius@nasa.gov FU NASA support through SRT grant [NNX10AC08G] FX J.W.B. acknowledges NASA support through SR&T grant NNX10AC08G. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), and the University of Cambridge (UK). Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners; it is operated by these agencies in cooperation with ESA and NSC (Norway). SOHO is a project of international cooperation between NASA and ESA. The AIA data used are provided courtesy of NASA/SDO and the AIA science team. NR 50 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 133 DI 10.1088/0004-637X/762/2/133 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900067 ER PT J AU Demorest, PB Ferdman, RD Gonzalez, ME Nice, D Ransom, S Stairs, IH Arzoumanian, Z Brazier, A Burke-Spolaor, S Chamberlin, SJ Cordes, JM Ellis, J Finn, LS Freire, P Giampanis, S Jenet, F Kaspi, VM Lazio, J Lommen, AN McLaughlin, M Palliyaguru, N Perrodin, D Shannon, RM Siemens, X Stinebring, D Swiggum, J Zhu, WW AF Demorest, P. B. Ferdman, R. D. Gonzalez, M. E. Nice, D. Ransom, S. Stairs, I. H. Arzoumanian, Z. Brazier, A. Burke-Spolaor, S. Chamberlin, S. J. Cordes, J. M. Ellis, J. Finn, L. S. Freire, P. Giampanis, S. Jenet, F. Kaspi, V. M. Lazio, J. Lommen, A. N. McLaughlin, M. Palliyaguru, N. Perrodin, D. Shannon, R. M. Siemens, X. Stinebring, D. Swiggum, J. Zhu, W. W. TI LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; methods: data analysis; pulsars: general; pulsars: individual (J0030+0451, J0613-0200, J1012+5307, J1455-3330, J1600-3053, J1640+2224, J1643-1224, J1713+0747, J1744-1134, J1853+1308, B1855+09, J1909-3744; J1910+1256, J1918-0642, B1953+29, J2145-0750, J2317+1439) ID PULSAR TIMING ARRAYS; RADIO ASTRONOMICAL POLARIMETRY; HOLE BINARY-SYSTEMS; MILLISECOND PULSARS; INTERSTELLAR PLASMA; NOISE; EMISSION; PACKAGE; TEMPO2 AB We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are similar to 30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h(c)(1 yr(-1)) < 7 x 10(-15) (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744. C1 [Demorest, P. B.; Ransom, S.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ferdman, R. D.; Kaspi, V. M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gonzalez, M. E.; Stairs, I. H.; Zhu, W. W.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Nice, D.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Arzoumanian, Z.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Arzoumanian, Z.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Arzoumanian, Z.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Brazier, A.; Cordes, J. M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Burke-Spolaor, S.; Lazio, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Chamberlin, S. J.; Ellis, J.; Giampanis, S.; Siemens, X.] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53201 USA. [Finn, L. S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Freire, P.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Jenet, F.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Lommen, A. N.; Perrodin, D.] Franklin & Marshall Coll, Dept Phys & Astron, Lancaster, PA 17604 USA. [McLaughlin, M.; Palliyaguru, N.; Swiggum, J.] W Virginia Univ, Dept Phys, Morgantown, WV 26505 USA. [Shannon, R. M.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Stinebring, D.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. RP Demorest, PB (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. RI Finn, Lee Samuel/A-3452-2009; Perrodin, Delphine/L-1916-2016; OI Finn, Lee Samuel/0000-0002-3937-0688; Perrodin, Delphine/0000-0002-1806-2483; Shannon, Ryan/0000-0002-7285-6348; Nice, David/0000-0002-6709-2566; Ransom, Scott/0000-0001-5799-9714 FU National Science Foundation (NSF) [0968296]; NSERC; National Radio Astronomy Observatory; NSF [07-48580] FX The NANOGrav project receives support from the National Science Foundation (NSF) PIRE program award number 0968296. NANOGrav research at UBC is supported by an NSERC Discovery Grant and Discovery Accelerator Supplement. P. B. D. acknowledges support from a Jansky Fellowship of the National Radio Astronomy Observatory during 2007-2010. A.N.L. gratefully acknowledges the support of NSF grant AST CAREER 07-48580. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. The authors thank Rutger van Haasteren for helpful discussions about his previous work on this topic. NR 52 TC 123 Z9 124 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 94 DI 10.1088/0004-637X/762/2/94 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900028 ER PT J AU Fortenberry, RC Crawford, TD Lee, TJ AF Fortenberry, Ryan C. Crawford, T. Daniel Lee, Timothy J. TI THE POSSIBLE INTERSTELLAR ANION CH2CN-: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: ISM; ISM: lines and bands; ISM: molecules; molecular data; radio lines: ISM ID ACETALDEHYDE ENOLATE ANION; QUARTIC FORCE-FIELDS; BASIS-SET CONVERGENCE; GAS-PHASE; AUTODETACHMENT SPECTROSCOPY; ASTRONOMICAL DETECTION; EXCITED-STATES; LINEAR C3H3+; MICROWAVE; ATOMS AB The A B-1(1) <- (X) over tilde (1)A' excitation into the dipole-bound state of the cyanomethyl anion (CH2CN-) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for (X) over tilde (1)A' CH2CN- in order to assist in laboratory studies and astronomical observations. C1 [Fortenberry, Ryan C.; Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crawford, T. Daniel] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. RP Fortenberry, RC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Ryan.C.Fortenberry@nasa.gov; Timothy.J.Lee@nasa.gov RI Lee, Timothy/K-2838-2012; Crawford, Thomas/A-9271-2017 OI Crawford, Thomas/0000-0002-7961-7016 FU NASA Postdoctoral Program; U.S. National Science Foundation (NSF) Multi-User Chemistry Research Instrumentation and Facility (CRIF:MU) [CHE-0741927]; NSF [CHE-1058420]; NASA [10-APRA10-0167]; NASA's Laboratory Astrophysics "Carbon in the Galaxy" Consortium Grant [NNH10ZDA001N] FX R.C.F. was funded, in part, through the NASA Postdoctoral Program administered by Oak Ridge Associated Universities. The computational hardware utilized in this work was made available by T. D. C. from the U.S. National Science Foundation (NSF) Multi-User Chemistry Research Instrumentation and Facility (CRIF:MU) award CHE-0741927. T. D. C. also acknowledges funding from NSF grant CHE-1058420. The work undertaken by T.J.L. was made possible through NASA Grant 10-APRA10-0167. The CheMVP program was used to created Figure 1. The authors thank Dr. Julia Rice of IBM Almaden for assistance with editing the manuscript. R. C. F. also acknowledges Dr. Martin Cordiner of the NASA Goddard Space Flight Center for initiating the discussions that led to the execution of this project. Support from NASA's Laboratory Astrophysics "Carbon in the Galaxy" Consortium Grant (NNH10ZDA001N) is gratefully acknowledged. NR 71 TC 23 Z9 23 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 121 DI 10.1088/0004-637X/762/2/121 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900055 ER PT J AU Hartlep, T Zhao, J Kosovichev, AG Mansour, NN AF Hartlep, T. Zhao, J. Kosovichev, A. G. Mansour, N. N. TI SOLAR WAVE-FIELD SIMULATION FOR TESTING PROSPECTS OF HELIOSEISMIC MEASUREMENTS OF DEEP MERIDIONAL FLOWS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; Sun: helioseismology; Sun: interior; Sun: oscillations ID TIME-DISTANCE HELIOSEISMOLOGY; DIFFERENTIAL ROTATION; CONVECTION ZONE; CIRCULATION; SUN AB The meridional flow in the Sun is an axisymmetric flow that is generally directed poleward at the surface, and is presumed to be of fundamental importance in the generation and transport of magnetic fields. Its true shape and strength, however, are debated. We present a numerical simulation of helioseismic wave propagation in the whole solar interior in the presence of a prescribed, stationary, single-cell, deep meridional circulation serving as synthetic data for helioseismic measurement techniques. A deep-focusing time-distance helioseismology technique is applied to the synthetic data, showing that it can in fact be used to measure the effects of the meridional flow very deep in the solar convection zone. It is shown that the ray approximation that is commonly used for interpretation of helioseismology measurements remains a reasonable approximation even for very long distances between 12 degrees and 42 degrees corresponding to depths between 52 and 195 Mm. From the measurement noise, we extrapolate that time-resolved observations on the order of a full solar cycle may be needed to probe the flow all the way to the base of the convection zone. C1 [Hartlep, T.; Zhao, J.; Kosovichev, A. G.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Mansour, N. N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hartlep, T (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. RI Zhao, Junwei/A-1177-2007; OI Hartlep, Thomas/0000-0002-5062-9507 NR 31 TC 7 Z9 7 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 132 DI 10.1088/0004-637X/762/2/132 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900066 ER PT J AU King, AL Miller, JM Raymond, J Fabian, AC Reynolds, CS Gultekin, K Cackett, EM Allen, SW Proga, D Kallman, TR AF King, A. L. Miller, J. M. Raymond, J. Fabian, A. C. Reynolds, C. S. Gueltekin, K. Cackett, E. M. Allen, S. W. Proga, D. Kallman, T. R. TI REGULATION OF BLACK HOLE WINDS AND JETS ACROSS THE MASS SCALE SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; galaxies: active; galaxies: jets ID ACTIVE GALACTIC NUCLEI; QUASAR OUTFLOW CONTRIBUTION; GALAXY IRAS 18325-5926; ACCRETION DISK WIND; X-RAY ABSORBERS; GRO J1655-40; XMM-NEWTON; WARM ABSORBERS; AGN FEEDBACK; MICROQUASAR H1743-322 AB We present a study of the mechanical power generated by both winds and jets across the black hole mass scale. We begin with the study of ionized X-ray winds and present a uniform analysis using Chandra grating spectra. The high-quality grating spectra facilitate the characterization of the outflow velocity, ionization, and column density of the absorbing gas. We find that the kinetic power of the winds, derived from these observed quantities, scales with increasing bolometric luminosity as log(L-wind,L-42/C-v) = (1.58 +/- 0.07) log(L-Bol,L-42) - (3.19 +/- 0.19). This suggests that supermassive black holes may be more efficient than stellar-mass black holes in launching winds, per unit filling factor, C-v. If the black hole binary (BHB) and active galactic nucleus (AGN) samples are fit individually, the slopes flatten to alpha(BHB) = 0.91 +/- 0.31 and alpha(AGN) = 0.63 +/- 0.30 (formally consistent within errors). The broad fit and individual fits both characterize the data fairly well, and the possibility of common slopes may point to common driving mechanisms across the mass scale. For comparison, we examine jet production, estimating jet power based on the energy required to inflate local bubbles. The jet relation is log(L-Jet,L-42) = (1.18 +/- 0.24) log(L-Bondi,L-42) - (0.96 +/- 0.43). The energetics of the bubble associated with Cygnus X-1 are particularly difficult to determine, and the bubble could be a background supernova remnant. If we exclude Cygnus X-1 from our fits, then the jets follow a relation consistent with the winds, but with a higher intercept, log(L-Jet,L-42) = (1.34 +/- 0.50) log(L-Bondi,L-42) - (0.80 +/- 0.82). The formal consistency in the wind and jet scaling relations, when assuming that L-Bol and L-Bondi are both proxies for mass accretion rate, suggests that a common launching mechanism may drive both flows; magnetic processes, such as magnetohydrodynamics and magnetocentrifugal forces, are viable possibilities. We also examine winds that are moving at especially high velocities, v > 0.01c. These ultra-fast outflows tend to resemble the jets more than the winds in terms of outflow power, indicating that we may be observing a regime in which winds become jets. A transition at approximately L-Bol approximate to 10(-2) L-Edd is apparent when outflow power is plotted versus Eddington fraction. At low Eddington fractions, the jet power is dominant, and at high Eddington fractions, the wind power is dominant. This study allows for the total power from black hole accretion, both mechanical and radiative, to be characterized in a simple manner and suggests possible connections between winds and jets. X-ray wind data and jet cavity data will enable stronger tests. C1 [King, A. L.; Miller, J. M.; Gueltekin, K.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Raymond, J.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Fabian, A. C.; Cackett, E. M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cackett, E. M.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48120 USA. [Allen, S. W.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophysiccs & Cosmol, Stanford, CA 94305 USA. [Allen, S. W.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Proga, D.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Proga, D.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Kallman, T. R.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP King, AL (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. EM ashking@umich.edu OI Gultekin, Kayhan/0000-0002-1146-0198 FU NASA through the NESSF program; NASA FX The authors thank the anonymous referee for their invaluable comments to improve this paper. A. L. K. acknowledges support from NASA through the NESSF program. J.M.M. thanks NASA for support through its guest observer programs. NR 106 TC 41 Z9 41 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 103 DI 10.1088/0004-637X/762/2/103 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900037 ER PT J AU Lo Faro, B Franceschini, A Vaccari, M Silva, L Rodighiero, G Berta, S Bock, J Burgarella, D Buat, V Cava, A Clements, DL Cooray, A Farrah, D Feltre, A Solares, EAG Hurley, P Lutz, D Magdis, G Magnelli, B Marchetti, L Oliver, SJ Page, MJ Popesso, P Pozzi, F Rigopoulou, D Rowan-Robinson, M Roseboom, IG Scott, D Smith, AJ Symeonidis, M Wang, L Wuyts, S AF Lo Faro, B. Franceschini, A. Vaccari, M. Silva, L. Rodighiero, G. Berta, S. Bock, J. Burgarella, D. Buat, V. Cava, A. Clements, D. L. Cooray, A. Farrah, D. Feltre, A. Solares, E. A. Gonzalez Hurley, P. Lutz, D. Magdis, G. Magnelli, B. Marchetti, L. Oliver, S. J. Page, M. J. Popesso, P. Pozzi, F. Rigopoulou, D. Rowan-Robinson, M. Roseboom, I. G. Scott, Douglas Smith, A. J. Symeonidis, M. Wang, L. Wuyts, S. TI THE COMPLEX PHYSICS OF DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFTS AS REVEALED BY HERSCHEL AND SPITZER SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: general; galaxies: interactions; galaxies: starburst ID SPECTRAL ENERGY-DISTRIBUTION; LUMINOUS INFRARED GALAXIES; SIMILAR-TO 1; STARBURST GALAXIES; SUBMILLIMETER GALAXIES; RADIATIVE-TRANSFER; EVOLUTION; DISTRIBUTIONS; EMISSION; MODELS AB We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z similar to 1 and 2 selected in GOODS-S with 24 mu m fluxes between 0.2 and 0.5 mJy. We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR <= 100 M-circle dot yr(-1)). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history. We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by Delta A(V) similar to 0.81 and 1.14) and higher stellar masses (by Delta log(M-*) similar to 0.16 and 0.36 dex) for z similar to 1 and z similar to 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from LIR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through "cirrus" emission (similar to 73% and similar to 66% of the total L-IR for z similar to 1 and z similar to 2 (U)LIRGs, respectively). C1 [Lo Faro, B.; Franceschini, A.; Vaccari, M.; Rodighiero, G.; Feltre, A.; Marchetti, L.] Univ Padua, Dipartimento Fis & Astron, I-35122 Padua, Italy. [Vaccari, M.] Univ Western Cape, Dept Phys, Astrophys Grp, ZA-7535 Cape Town, South Africa. [Silva, L.] INAF OATs, I-34131 Trieste, Italy. [Berta, S.; Lutz, D.; Magnelli, B.; Popesso, P.; Pozzi, F.; Wuyts, S.] MPE, D-85741 Garching, Germany. [Bock, J.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Burgarella, D.; Buat, V.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Cava, A.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [Clements, D. L.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Farrah, D.; Hurley, P.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Magdis, G.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Rigopoulou, D.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Roseboom, I. G.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Lo Faro, B (reprint author), Univ Padua, Dipartimento Fis & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. EM barbara.lofaro@studenti.unipd.it RI Magdis, Georgios/C-7295-2014; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Magdis, Georgios/0000-0002-4872-2294; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Rodighiero, Giulia/0000-0002-9415-2296 FU ASI [I/005/11/0]; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA) FX We acknowledge support from ASI (Herschel Science Contract I/005/11/0). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM(France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including: Univ. Leth-bridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). NR 53 TC 17 Z9 17 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 108 DI 10.1088/0004-637X/762/2/108 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900042 ER PT J AU Marsh, KA Wright, EL Kirkpatrick, JD Gelino, CR Cushing, MC Griffith, RL Skrutskie, MF Eisenhardt, PR AF Marsh, Kenneth A. Wright, Edward L. Kirkpatrick, J. Davy Gelino, Christopher R. Cushing, Michael C. Griffith, Roger L. Skrutskie, Michael F. Eisenhardt, Peter R. TI PARALLAXES AND PROPER MOTIONS OF ULTRACOOL BROWN DWARFS OF SPECTRAL TYPES Y AND LATE T SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; brown dwarfs; stars: low-mass ID SPITZER-SPACE-TELESCOPE; NEAR-INFRARED CAMERA; SURVEY-EXPLORER WISE; SKY SURVEY; ASTROMETRY; PHOTOMETRY; DISCOVERY; MISSION; MASS AB We present astrometric measurements of 11 nearby ultracool brown dwarfs of spectral types Y and late-T, based on imaging observations from a variety of space-based and ground-based telescopes. These measurements have been used to estimate relative parallaxes and proper motions via maximum likelihood fitting of geometric model curves. To compensate for the modest statistical significance (less than or similar to 7) of our parallax measurements we have employed a novel Bayesian procedure for distance estimation which makes use of an a priori distribution of tangential velocities, V-tan, assumed similar to that implied by previous observations of T dwarfs. Our estimated distances are therefore somewhat dependent on that assumption. Nevertheless, the results have yielded distances for five of our eight Y dwarfs and all three T dwarfs. Estimated distances in all cases are greater than or similar to 3 pc. In addition, we have obtained significant estimates of V-tan for two of the Y dwarfs; both are <100 km s(-1), consistent with membership in the thin disk population. Comparison of absolute magnitudes with model predictions as a function of color shows that the Y dwarfs are significantly redder in J - H than predicted by a cloud-free model. C1 [Marsh, Kenneth A.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Marsh, Kenneth A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Wright, Edward L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Cushing, Michael C.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Skrutskie, Michael F.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Eisenhardt, Peter R.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Marsh, KA (reprint author), CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. EM ken.marsh@astro.cf.ac.uk FU National Aeronautics and Space Administration; NASA by JPL/Caltech [70062, 80109]; NASA [NAS 5-26555]; NASA through Space Telescope Science Institute [12330]; SIMBAD database FX We thank C. Morley for providing the results of model calculations and also the referee for very helpful comments. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued to programs 70062 and 80109 by JPL/Caltech. This work is also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12330, support for which was provided by NASA through a grant from the Space Telescope Science Institute. This paper also includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. This research has made use of the NASA/IPAC Infrared Science Archive (IRSA), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and also the SIMBAD database, operated at CDS, Strasbourg, France. NR 38 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 119 DI 10.1088/0004-637X/762/2/119 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900053 ER PT J AU Roming, PWA Pritchard, TA Prieto, JL Kochanek, CS Fryer, CL Davidson, K Humphreys, RM Bayless, AJ Beacom, JF Brown, PJ Holland, ST Immler, S Kuin, NPM Oates, SR Pogge, RW Pojmanski, G Stoll, R Shappee, BJ Stanek, KZ Szczygiel, DM AF Roming, P. W. A. Pritchard, T. A. Prieto, J. L. Kochanek, C. S. Fryer, C. L. Davidson, K. Humphreys, R. M. Bayless, A. J. Beacom, J. F. Brown, P. J. Holland, S. T. Immler, S. Kuin, N. P. M. Oates, S. R. Pogge, R. W. Pojmanski, G. Stoll, R. Shappee, B. J. Stanek, K. Z. Szczygiel, D. M. TI THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht (vol 92, pg 751, 2012) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Roming, P. W. A.; Bayless, A. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. [Roming, P. W. A.; Pritchard, T. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Prieto, J. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stoll, R.; Shappee, B. J.; Stanek, K. Z.; Szczygiel, D. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stanek, K. Z.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Fryer, C. L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, C. L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Davidson, K.; Humphreys, R. M.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Beacom, J. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Brown, P. J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Holland, S. T.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kuin, N. P. M.; Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pojmanski, G.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. RP Roming, PWA (reprint author), SW Res Inst, Space Sci & Engn Div, PO Drawer 28510, San Antonio, TX 78228 USA. EM proming@swri.edu NR 1 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 136 DI 10.1088/0004-637X/762/2/136 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900070 ER PT J AU ZuHone, JA Markevitch, M Brunetti, G Giacintucci, S AF ZuHone, J. A. Markevitch, M. Brunetti, G. Giacintucci, S. TI TURBULENCE AND RADIO MINI-HALOS IN THE SLOSHING CORES OF GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; magnetohydrodynamics (MHD); radio continuum: galaxies; turbulence; X-rays: galaxies: clusters ID PIECEWISE-PARABOLIC METHOD; ADAPTIVE MESH REFINEMENT; COOLING FLOW CLUSTERS; COLD-FRONT FORMATION; MAGNETIC-FIELDS; COMPRESSIBLE TURBULENCE; INTRACLUSTER MEDIUM; MAGNETOHYDRODYNAMIC TURBULENCE; PARTICLE REACCELERATION; NONTHERMAL EMISSION AB A number of relaxed, cool-core galaxy clusters exhibit diffuse, steep-spectrum radio sources in their central regions, known as radio mini-halos. It has been proposed that the relativistic electrons responsible for the emission have been reaccelerated by turbulence generated by the sloshing of the cool core gas. We present a high-resolution MHD simulation of gas sloshing in a galaxy cluster coupled with subgrid simulations of relativistic electron acceleration to test this hypothesis. Our simulation shows that the sloshing motions generate turbulence on the order of delta nu similar to 50-200 km s (1) on spatial scales of similar to 50-100 kpc and below in the cool core region within the envelope of the sloshing cold fronts, whereas outside the cold fronts, there is negligible turbulence. This turbulence is potentially strong enough to reaccelerate relativistic electron seeds (with initial gamma similar to 100-500) to gamma similar to 10(4) via damping of magnetosonic waves and non-resonant compression. The seed electrons could remain in the cluster from, e. g., past active galactic nucleus activity. In combination with the magnetic field amplification in the core, these electrons then produce diffuse radio synchrotron emission that is coincident with the region bounded by the sloshing cold fronts, as indeed observed in X-rays and the radio. The result holds for different initial spatial distributions of pre-existing relativistic electrons. The power and the steep spectral index (alpha approximate to 1-2) of the resulting radio emission are consistent with observations of mini-halos, though the theoretical uncertainties of the acceleration mechanisms are high. We also produce simulated maps of inverse-Compton hard X-ray emission from the same population of relativistic electrons. C1 [ZuHone, J. A.; Markevitch, M.] NASA, Astrophys Sci Div, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brunetti, G.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Giacintucci, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP ZuHone, JA (reprint author), NASA, Astrophys Sci Div, High Energy Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. OI Brunetti, Gianfranco/0000-0003-4195-8613 FU NASA; grant PRIN-INAF; DOE FX J.A.Z. thanks Pasquale Mazzotta, Uri Keshet, Dan Wik, and Eric Hallman for useful discussions and advice, and in particular Franco Vazza and Ian Parrish for guidance and advice regarding the velocity power spectra. Calculations were performed using the computational resources of the National Institute for Computational Sciences at the University of Tennessee and the NASA Advanced Supercomputing Division. Analysis of the simulation data was carried out using the AMR analysis and visualization tool set yt (Turk et al. 2011), which is available for download at http://yt-project.org. J.A.Z. is supported under the NASA Postdoctoral Program. G. B. acknowledges partial support by grant PRIN-INAF-2009. The software used in this work was in part developed by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. NR 78 TC 44 Z9 44 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 78 DI 10.1088/0004-637X/762/2/78 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900012 ER PT J AU ZuHone, JA Markevitch, M Ruszkowski, M Lee, D AF ZuHone, J. A. Markevitch, M. Ruszkowski, M. Lee, D. TI COLD FRONTS AND GAS SLOSHING IN GALAXY CLUSTERS WITH ANISOTROPIC THERMAL CONDUCTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE conduction; galaxies: clusters: general; instabilities; magnetohydrodynamics (MHD); X-rays: galaxies: clusters ID X-RAY-EMISSION; MAGNETOHYDRODYNAMIC SIMULATIONS; INTRACLUSTER MEDIUM; MAGNETIC-FIELD; PLASMA INSTABILITIES; COOLING FLOWS; RADIO BUBBLES; CHANDRA; TURBULENCE; STABILITY AB Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are "draped" parallel to the front surfaces, suppressing conduction perpendicular to the sloshing fronts. We present a series of MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature distribution of the core and the appearance of the cold fronts. Though magnetic field lines are draping parallel to the front surfaces, preventing conduction directly across them, the temperature jumps across the fronts are nevertheless reduced. The geometry of the field is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front that are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may nevertheless be preserved. By modifying the gas density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps seen in Chandra observations of cold front clusters do not form. Therefore, the presence of cold fronts in hot clusters is in contradiction with our simulations with full Spitzer conduction. This suggests that the presence of cold fronts in hot clusters could be used to place upper limits on conduction in the bulk of the intracluster medium. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central (r similar to 5 kpc) regions of the cool core (where something else is required, such as active galactic nucleus feedback), it reduces significantly the mass of gas that experiences a cooling catastrophe outside those small radii. C1 [ZuHone, J. A.; Markevitch, M.] NASA, Astrophys Sci Div, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ruszkowski, M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Ruszkowski, M.] Michigan Ctr Theoret Phys, Randall Lab 3444, Ann Arbor, MI 48109 USA. [Lee, D.] Univ Chicago, Flash Ctr Computat Sci, Chicago, IL 60637 USA. RP ZuHone, JA (reprint author), NASA, Astrophys Sci Div, High Energy Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. FU NSF [1008454]; NASA Postdoctoral Program FX J.A.Z. thanks Ian Parrish and Mikhail Medvedev for useful discussions and advice. Calculations were performed using the computational resources of the National Institute for Computational Sciences at the University of Tennessee and the Advanced Supercomputing Division at NASA/Ames Research Center. Analysis of the simulation data was carried out using the AMR analysis and visualization toolset yt (Turk et al. 2011), which is available for download at http://yt-project.org. J.A.Z. is supported by the NASA Postdoctoral Program. M.R. acknowledges NSF grant 1008454. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. NR 59 TC 24 Z9 24 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2013 VL 762 IS 2 AR 69 DI 10.1088/0004-637X/762/2/69 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 063OH UT WOS:000313008900003 ER PT J AU Saatchi, S Asefi-Najafabady, S Malhi, Y Aragao, LEOC Anderson, LO Myneni, RB Nemani, R AF Saatchi, Sassan Asefi-Najafabady, Salvi Malhi, Yadvinder Aragao, Luiz E. O. C. Anderson, Liana O. Myneni, Ranga B. Nemani, Ramakrishna TI Persistent effects of a severe drought on Amazonian forest canopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE radar; canopy water content; rainforest; QSCAT; canopy disturbance ID RAIN-FOREST; EL-NINO; TROPICAL FORESTS; CLIMATE-CHANGE; MORTALITY; TREE; IMPACT; BASIN AB Recent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Satellite and in situ observations have shown an increase in fire occurrence during drought years and tree mortality following severe droughts, but to date there has been no assessment of long-term impacts of these droughts across landscapes in Amazonia. Here, we use satellite microwave observations of rainfall and canopy backscatter to show that more than 70 million hectares of forest in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy structure and moisture. Remarkably, and despite the gradual recovery in total rainfall in subsequent years, the decrease in canopy backscatter persisted until the next major drought, in 2010. The decline in backscatter is attributed to changes in structure and water content associated with the forest upper canopy. The persistence of low backscatter supports the slow recovery (>4 y) of forest canopy structure after the severe drought in 2005. The result suggests that the occurrence of droughts in Amazonia at 5-10 y frequency may lead to persistent alteration of the forest canopy. C1 [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Saatchi, Sassan; Asefi-Najafabady, Salvi] Univ Calif Los Angeles, Inst Environm, Los Angeles, CA 90045 USA. [Malhi, Yadvinder; Anderson, Liana O.] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford OX1 3QY, England. [Aragao, Luiz E. O. C.] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England. [Anderson, Liana O.] Natl Inst Space Res INPE, Remote Sensing Div, BR-12227010 Sao Paulo, Brazil. [Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Nemani, Ramakrishna] NASA, Biospher Sci Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Saatchi, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM saatchi@jpl.nasa.gov RI Anderson, Liana/G-8389-2012; Myneni, Ranga/F-5129-2012 OI Anderson, Liana/0000-0001-9545-5136; FU National Aeronautics and Space Administration (NASA); Japan National Space Development Agency (NASDA); NASA Office of Earth Sciences; NASA at the Jet Propulsion Laboratory; UCLA Institute of Environment; Natural Environment Research Council (London) at the University of Exeter [NE/F015356/2, NE/l018123/1]; University of Oxford, United Kingdom [NE/F005806/1] FX We thank Ryan Harrington from the University of California at Los Angeles (UCLA) Center for Tropical Research for his contribution in time-series analysis. The enhanced-resolution QSCAT data were produced by Prof. David Long at Brigham Young University as part of the National Aeronautics and Space Administration (NASA)-sponsored Scatterometer Climate Record Pathfinder. The precipitation data used in this study were acquired as part of the TRMM project jointly sponsored by the Japan National Space Development Agency (NASDA) and NASA Office of Earth Sciences. The research was partially supported by NASA grants at the Jet Propulsion Laboratory and the UCLA Institute of Environment and by Natural Environment Research Council (London) Grants NE/F015356/2 and NE/l018123/1 at the University of Exeter and Grant NE/F005806/1 at the University of Oxford, United Kingdom. NR 30 TC 82 Z9 83 U1 8 U2 136 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 8 PY 2013 VL 110 IS 2 BP 565 EP 570 DI 10.1073/pnas.1204651110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 075SK UT WOS:000313906600042 PM 23267086 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beattie, K Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Bruijn, R Brunner, J Buitink, S Carson, M Casey, J Casier, M Chirkin, D Christy, B Clevermann, F Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Dunkman, M Eagan, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Hanson, K Heereman, D Heimann, P Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jlelati, O Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lesiak-Bzdak, M Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Movit, SM Nahnhauer, R Naumann, U Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L Pepper, JA de los Heros, CP Pieloth, D Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonherr, L Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Seo, SH Sestayo, Y Seunarine, S Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zilles, A Zoll, M AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beattie, K. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Bruijn, R. Brunner, J. Buitink, S. Carson, M. Casey, J. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Dunkman, M. Eagan, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heimann, P. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jlelati, O. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lesiak-Bzdak, M. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. . Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Naumann, U. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Pepper, J. A. de los Heros, C. Perez Pieloth, D. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenherr, L. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Seo, S. H. Sestayo, Y. Seunarine, S. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zilles, A. Zoll, M. CA IceCube Collaboration TI Lateral distribution of muons in IceCube cosmic ray events SO PHYSICAL REVIEW D LA English DT Article ID ENERGIES; GLUON; MODEL; TEV AB In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations. DOI: 10.1103/PhysRevD.87.012005 C1 [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Laihem, K.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T. .; O'Murchadha, A.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Buitink, S.; Casier, M.; De Clercq, C.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.; Nowicki, S. C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Carson, M.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Koepke, L.; Kroll, G.; Luenemann, J.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bell, M.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Bai, X.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gerhardt, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM lgerhardt@lbl.gov RI Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; OI Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing (SNIC), Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. NR 35 TC 10 Z9 10 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 7 PY 2013 VL 87 IS 1 AR 012005 DI 10.1103/PhysRevD.87.012005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 065PJ UT WOS:000313160400001 ER PT J AU Thums, M Meekan, M Stevens, J Wilson, S Polovina, J AF Thums, Michele Meekan, Mark Stevens, John Wilson, Steven Polovina, Jeff TI Evidence for behavioural thermoregulation by the world's largest fish SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Article DE whale shark; thermal recovery; Rhincodon typus; vertical migration; diving behaviour ID WHALE SHARKS; DIVING BEHAVIOR; RHINCODON-TYPUS; FORAGING BEHAVIOR; MOVEMENTS; STRATEGIES; OCEAN; DEPTH; TUNA AB Many fishes make frequent ascents to surface waters and often show prolonged surface swimming following descents to deep water. This affinity for the surface is thought to be related to the recovery of body heat lost at depth. We tested this hypothesis using data from time-depth recorders deployed on four whale sharks (Rhincodon typus). We summarized vertical movements into bouts of dives and classified these into three main types, using cluster analysis. In addition to day and night 'bounce' dives where sharks rapidly descended and ascended, we found a third type: single deep (mean: 340 m), long (mean: 169 min) dives, occurring in daytime with extremely long post-dive surface durations (mean: 146 min). Only sharks that were not constrained by shallow bathymetry performed these dives. We found a negative relationship between the mean surface duration of dives in the bout and the mean minimum temperature of dives in the bout that is consistent with the hypothesis that thermoregulation was a major factor driving use of the surface. The relationship broke down when sharks were diving in mean minimum temperatures around 25 degrees C, suggesting that warmer waters did not incur a large metabolic cost for diving and that other factors may also influence surface use. C1 [Thums, Michele] Univ Western Australia M470, Sch Environm Syst Engn, Crawley, WA 6009, Australia. [Thums, Michele] Univ Western Australia M470, UWA Oceans Inst, Crawley, WA 6009, Australia. [Thums, Michele; Meekan, Mark] Australian Inst Marine Sci, UWA Oceans Inst M096, Crawley, WA 6009, Australia. [Stevens, John] CSIRO Marine & Atmospher Res, Hobart, Tas 7001, Australia. [Wilson, Steven] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. [Polovina, Jeff] NOAA, Pacific Islands Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96822 USA. RP Thums, M (reprint author), Univ Western Australia M470, Sch Environm Syst Engn, 35 Stirling Highway, Crawley, WA 6009, Australia. EM Michele.Thums@uwa.edu.au NR 26 TC 12 Z9 12 U1 5 U2 138 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 EI 1742-5662 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD JAN 6 PY 2013 VL 10 IS 78 AR 20120477 DI 10.1098/rsif.2012.0477 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 048UT UT WOS:000311939400001 PM 23075547 ER PT J AU Cerracchio, P Gherlone, M Di Sciuva, M Tessler, A AF Cerracchio, Priscilla Gherlone, Marco Di Sciuva, Marco Tessler, Alexander BE Idelsohn, S Papadrakakis, M Schrefler, B TI SHAPE AND STRESS SENSING OF MULTILAYERED COMPOSITE AND SANDWICH STRUCTURES USING AN INVERSE FINITE ELEMENT METHOD SO COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V LA English DT Proceedings Paper CT 5th International Conference on Computational Methods for Coupled Problems in Science and Engineering CY JUN 17-19, 2013 CL Santa Eulalia, SPAIN DE Composite Structures; Sandwich Structures; Shape Sensing; Stress Sensing; Inverse Finite Element Method; Inverse Plate Element ID LAMINATED COMPOSITE; PLATES; SHEAR AB The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape-and stress-sensing. Presented herein is a computationally efficient shape-and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape-and stress-sensing. C1 [Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. [Tessler, Alexander] NASA Langley Res Ctr, Structural Mech & Concepts Branch, Hampton, VA 23681 USA. RP Cerracchio, P (reprint author), Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM priscilla.cerracchio@polito.it; marco.gherlone@polito.it; marco.disciuva@polito.it; Alexander.tessler-1@nasa.gov OI Gherlone, Marco/0000-0002-5711-0046 FU NASA; European Commission FX The authors would like to acknowledge the support of this research by the NASA Aviation Safety Program (Vehicle Systems Safety Technologies Project). Special thanks are extended to the National Institute of Aerospace (NIA) and NASA Langley research Center, Hampton, Virginia, for hosting Professors Marco Di Sciuva and Marco Gherlone, as well as doctoral student Priscilla Cerracchio in the fall of 2012. Priscilla Cerracchio, Marco Gherlone and Marco Di Sciuva also acknowledge the financial support from the European Commission in the framework of FP7-CLEANSKY-GRA project. NR 13 TC 0 Z9 0 U1 1 U2 1 PU INT CENTER NUMERICAL METHODS ENGINEERING PI 08034 BARCELONA PA GRAN CAPITAN, S-N, CAMPUS NORTE UPC, MODULO C1, 08034 BARCELONA, SPAIN BN 978-84-941407-6-1 PY 2013 BP 311 EP 322 PG 12 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA BB6YP UT WOS:000345147900026 ER PT J AU Iurlaro, L Gherlone, M Di Sciuva, M Tessler, A AF Iurlaro, Luigi Gherlone, Marco Di Sciuva, Marco Tessler, Alexander BE Idelsohn, S Papadrakakis, M Schrefler, B TI A MULTI-SCALE REFINED ZIGZAG THEORY FOR MULTILAYERED COMPOSITE AND SANDWICH PLATES WITH IMPROVED TRANSVERSE SHEAR STRESSES SO COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V LA English DT Proceedings Paper CT 5th International Conference on Computational Methods for Coupled Problems in Science and Engineering CY JUN 17-19, 2013 CL Santa Eulalia, SPAIN DE Multi-scale plate theory; Reissner's mixed variational theorem; refined zigzag theory; multilayered composite plate; sandwich plate; transverse shear stresses ID DEFORMATION-THEORY; MODELS; BEAMS AB The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT((m)), where "m" stands for "mixed". Herein, the RZT((m)) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels. C1 [Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. [Tessler, Alexander] NASA Langley Res Ctr, Structural Mech & Concepts Branch, Hampton, VA 23681 USA. RP Iurlaro, L (reprint author), Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM luigi.iurlaro@polito.it; marco.gherlone@polito.it; marco.disciuva@polito.it; alexander.tessler-1@nasa.gov OI Gherlone, Marco/0000-0002-5711-0046 FU NASA; European Commission FX The authors would like to acknowledge the support of this research by the NASA Aviation Safety Program (Vehicle Systems Safety Technologies Project). Special thanks are extended to the National Institute of Aerospace (NIA) and NASA Langley research Center, Hampton, Virginia, for hosting Professors Marco Di Sciuva and Marco Gherlone in the fall of 2012. Luigi Iurlaro, Marco Gherlone and Marco Di Sciuva also acknowledge the financial support from the European Commission in the framework of FP7-CLEANSKY-GRA project. NR 17 TC 0 Z9 0 U1 0 U2 2 PU INT CENTER NUMERICAL METHODS ENGINEERING PI 08034 BARCELONA PA GRAN CAPITAN, S-N, CAMPUS NORTE UPC, MODULO C1, 08034 BARCELONA, SPAIN BN 978-84-941407-6-1 PY 2013 BP 355 EP 366 PG 12 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA BB6YP UT WOS:000345147900030 ER PT S AU Roth, TO Fosbury, R AF Roth, Tim Otto Fosbury, Robert BE Blassnigg, M TI Colour Beyond the Sky: The Chromatic Revolution in Astronomy SO LIGHT IMAGE IMAGINATION SE Framing Film LA English DT Article; Book Chapter C1 [Roth, Tim Otto] Univ Tubingen DE, Tubingen, Germany. [Roth, Tim Otto] Kunsthsch Kassel DE, Kassel, Germany. [Roth, Tim Otto; Fosbury, Robert] ESO, Garching, Germany. [Roth, Tim Otto] ESA, F-75738 Paris 15, France. [Roth, Tim Otto] NASA, Washington, DC USA. [Roth, Tim Otto] Max Planck Gesell, Munich, Germany. [Fosbury, Robert] ESA, Hubble Space Telescope Project, F-75738 Paris 15, France. [Fosbury, Robert] NASA, Hubble Space Telescope Project, Washington, DC USA. [Fosbury, Robert] RGO, Herstmonceux, England. [Fosbury, Robert] CERN, CH-1211 Geneva 23, Switzerland. RP Roth, TO (reprint author), Acad Media Arts Cologne, Cologne, Germany. NR 51 TC 0 Z9 0 U1 0 U2 0 PU AMSTERDAM UNIV PRESS PI AMSTERDAM 1071 PA PRINSENGRACHI 747-51, AMSTERDAM 1071, NETHERLANDS SN 2352-5576 BN 978-90-485-1943-9; 978-9-08-964384-1 J9 FRAM FILM PY 2013 BP 241 EP 268 PG 28 WC Film, Radio, Television SC Film, Radio & Television GA BB4UF UT WOS:000343326300019 ER PT S AU Georganopoulos, M Meyer, ET AF Georganopoulos, Markos Meyer, Eileen T. BE Gomez, JL TI The X-ray emission mechanism of large scale powerful quasar jets: Fermi rules out IC/CMB for 3C 273 SO INNERMOST REGIONS OF RELATIVISTIC JETS AND THEIR MAGNETIC FIELDS SE EPJ Web of Conferences LA English DT Proceedings Paper CT International Symposium on Innermost Regions of Relativistic Jets and their Magnetic Field CY JUN 10-14, 2013 CL CSIC, Inst Astrofisica Andalucia, Granada, SPAIN SP RadioNet, Consejo Super Investigaciones Cientificas, Junta Andalucia HO CSIC, Inst Astrofisica Andalucia ID HUBBLE-SPACE-TELESCOPE; PKS 0637-752; CHANDRA OBSERVATIONS; 3C-273; RADIATION; DIAGNOSTICS; SYNCHROTRON; MORPHOLOGY; SPECTRA; AGN AB The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background photons (IC/CMB) and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the gamma-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the upper limit from Fermi puts a limit on the Doppler beaming factor of at least delta<9, assuming equipartition fields, and possibly as low as delta<5 assuming no major deceleration of the jet from knots A through D1. C1 [Georganopoulos, Markos] Univ Maryland Baltimore Cty, Dept Phys Dept, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meyer, Eileen T.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Georganopoulos, M (reprint author), Univ Maryland Baltimore Cty, Dept Phys Dept, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM georgano@umbc.edu; meyer@stsci.edu FU Fermi [NNX12AF01G, NNX10AO42G] FX MG acknowledges support from Fermi grant NNX12AF01G. EM acknowledges support from Fermi grant NNX10AO42G. NR 25 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2013 VL 61 AR UNSP 08001 DI 10.1051/epjconf/20136108001 PG 5 WC Physics, Applied; Physics, Multidisciplinary SC Physics GA BB5CU UT WOS:000343671600080 ER PT S AU Kreikenbohm, A Kadler, M Wilms, J Schulz, R Muller, C Ojha, R Ros, E Mannheim, K Elsasser, D AF Kreikenbohm, A. Kadler, M. Wilms, J. Schulz, R. Mueller, C. Ojha, R. Ros, E. Mannheim, K. Elsaesser, D. BE Gomez, JL TI X-ray monitoring of the radio and gamma-ray loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 SO INNERMOST REGIONS OF RELATIVISTIC JETS AND THEIR MAGNETIC FIELDS SE EPJ Web of Conferences LA English DT Proceedings Paper CT International Symposium on Innermost Regions of Relativistic Jets and their Magnetic Field CY JUN 10-14, 2013 CL CSIC, Inst Astrofisica Andalucia, Granada, SPAIN SP RadioNet, Consejo Super Investigaciones Cientificas, Junta Andalucia HO CSIC, Inst Astrofisica Andalucia ID ACTIVE GALACTIC NUCLEI AB We present preliminary results of the X-ray analysis of XMM-Newton and Swift observations as part of a multi-wavelength monitoring campaign in 2012 of the radio-loud narrow line Seyfert 1 galaxy PKS 2004-447. The source was recently detected in gamma-rays by Fermi/LAT among only four other galaxies of that type. The 0.5 - 10 keV X-ray spectrum is well-described by a simple absorbed powerlaw (Gamma similar to 1.6). The source brightness exhibits variability on timescales of months to years with indications for spectral variability, which follows a "bluer-when-brighter" behaviour, similar to blazars. C1 [Kreikenbohm, A.; Kadler, M.; Schulz, R.; Mueller, C.; Mannheim, K.; Elsaesser, D.] Univ Wurzburg, Lehrstuhl Astron, D-97070 Wurzburg, Germany. [Kreikenbohm, A.; Wilms, J.; Schulz, R.; Mueller, C.] Univ Erlangen Nurnberg, Sternwarte & ECAP, Bamberg, Germany. [Ojha, R.] NASA, GSFC, ORAU, Greenbelt, MD USA. [Ros, E.] Univ Valencia, Observ Astron, E-46003 Valencia, Spain. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46003 Valencia, Spain. [Ros, E.] Max Planck Inst Radioastron, Bonn, Germany. RP Kreikenbohm, A (reprint author), Univ Wurzburg, Lehrstuhl Astron, D-97070 Wurzburg, Germany. EM akreikenbohm@astro.uni-wuerzburg.de NR 9 TC 1 Z9 1 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2013 VL 61 AR UNSP 04017 DI 10.1051/epjconf/20136104017 PG 3 WC Physics, Applied; Physics, Multidisciplinary SC Physics GA BB5CU UT WOS:000343671600041 ER PT S AU Graff, P Feroz, F Hobson, MP Lasenby, A AF Graff, Philip Feroz, Farhan Hobson, Michael P. Lasenby, Anthony BE Ding, W Washio, T Xiong, H Karypis, G Thuraisingham, B Cook, D Wu, X TI Neural Networks for Astronomical Data Analysis and Bayesian Inference SO 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW) SE International Conference on Data Mining Workshops LA English DT Proceedings Paper CT IEEE 13th International Conference on Data Mining (ICDM) CY DEC 07-10, 2013 CL Dallas, TX SP IEEE, IEEE Comp Soc, NSF, Toshiba, KNIME, TechMatrix, Univ Texas Dallas, Univ Texas Dallas, Erik Jonsson Sch Engn & Comp Sci, Dept Comp Sci ID COSMOLOGICAL PARAMETER-ESTIMATION; EFFICIENT; MODELS AB We present our generic neural network training algorithm, called SKYNET and the accelerated Bayesian inference algorithm, BAMBI. SKYNET combines multiple techniques already developed individually in the literature to create an efficient and robust machine-learning tool that is able to train large and deep feed-forward neural networks for use in a wide range of learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SKYNET uses a powerful 'pre-training' method, to obtain a set of network parameters close to the true global maximum of the training objective function, followed by further optimisation using an automatically-regularised variant of Newton's method that uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimise using standard backpropagation techniques. The blind accelerated multimodal Bayesian inference (BAMBI) algorithm implements the MULTINEST package for nested sampling as well as the training of an artificial neural network by SKYNET to learn the likelihood function. In the case of computationally expensive likelihoods, this allows the substitution of a much more rapid approximation in order to increase significantly the speed of the analysis. Astrophysical examples are provided for both SKYNET and BAMBI. C1 [Graff, Philip] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Feroz, Farhan; Hobson, Michael P.] Astrophys Grp, Cavendish Lab, Cambridge CB3 0HE, England. [Lasenby, Anthony] Kavli Inst Cosmol, Cambridge CB3 0HA, England. RP Graff, P (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 36 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2375-9232 BN 978-0-7695-5109-8 J9 INT CONF DAT MIN WOR PY 2013 BP 16 EP 23 DI 10.1109/ICDMW.2013.82 PG 8 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA BB5AQ UT WOS:000343602800003 ER PT S AU Guzman-Alvarez, C Castejon, P Onaindia, E Frank, J AF Guzman-Alvarez, Cesar Castejon, Pablo Onaindia, Eva Frank, Jeremy BE Pan, JS Wozniak, M Quintian, H Polycarpou, MM DdeCarvalho, ACPLF Corchado, E TI Multi-agent Reactive Planning for Solving Plan Failures SO HYBRID ARTIFICIAL INTELLIGENT SYSTEMS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 8th International Conference on Hybrid Artificial Intelligent Systems (HAIS) CY SEP 11-13, 2013 CL Salamanca, SPAIN SP IEEE Secc Espana, IEEE Syst Man & Cybernet Capitulo Espanol, AEPIA, Univ Salamanca, World Federat Soft Comp, MIR Labs, IT4Innovat Ctr Excellence, Int Federat Computat Log, Minist DE reactive planner; multi-agent planner; coordination; execution AB In this paper we present a multi-agent reactive planning mechanism for recovering from plan failures with the help of multiple agents. Our contribution is twofold: a proposal of a dynamic execution architecture embedded into a more general multi-agent planning framework, and a mechanism based on statetransition systems that allows execution agents to reactively and cooperatively attend a plan failure during execution. Specifically, we propose a flexible dynamic execution architecture that allows agents to find solutions for a successful plan execution during a plan failure. C1 [Guzman-Alvarez, Cesar; Castejon, Pablo; Onaindia, Eva] Univ Politecn Valencia, Camino Vera S-N, E-46071 Valencia, Spain. [Frank, Jeremy] NASA, Ames Res Ctr, Moffett Field, CA USA. RP Guzman-Alvarez, C (reprint author), Univ Politecn Valencia, Camino Vera S-N, E-46071 Valencia, Spain. RI Onaindia, Eva/L-9594-2014; OI Onaindia, Eva/0000-0001-6931-8293; GUZMAN ALVAREZ, CESAR AUGUSTO/0000-0002-0552-0967 NR 16 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-40846-5 J9 LECT NOTES COMPUT SC PY 2013 VL 8073 BP 530 EP 539 PG 10 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA BB3NP UT WOS:000342910700053 ER PT S AU Wu, D Qu, JJ Hao, XJ Xiong, J AF Wu, Di Qu, John J. Hao, Xianjun Xiong, Jack GP IEEE TI The 2012 Agricultural drought Assessment in Nebraska using MODIS Satellite Data SO 2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS) SE International Conference on Agro-Geoinformatics LA English DT Proceedings Paper CT 2nd International Conference on Agro-Geoinformatics (Agro-Geoinformatics) CY AUG 12-16, 2013 CL Fairfax, VA SP George Mason Univ, USDA Natl Inst Food & Agr, IEEE Geoscience & Remote Sensing Soc, USDA Natl Agr Stat Serv, Open Geospatial Consortium, Remote Sensing Open Access Journal, Waterborne Environm Inc, Republ Korea, Minist Sci, ICT & Future Planning, Ctr Spatial Informat Sci & Syst, USDA DE Agricultural drought; Nebraska; NDVI; Anomaly; VHI; USDM ID DIFFERENCE VEGETATION INDEX; LAND-SURFACE TEMPERATURE; AFRICA; MONITOR AB Among many human-related sectors, agriculture is often the first and most vulnerable sector to be affected by drought events. In 2012, nearly two-thirds of the contiguous U. S. had been hit by severe drought. The Great Plains had most severe drought conditions, with states such as Nebraska suffering successive and widespread exceptional drought. In Nebraska, where grain and soybean account for nearly 90 percent of agricultural output, the 2012 exceptional drought profoundly and distinctly affected local agricultural productivity. In this study, MODIS-based Vegetation Health Index (VHI) and Normalized Difference Vegetation Index (NDVI) were used to monitor agricultural drought in Nebraska during the corn-growing season of 2012. The temporal variations and spatial features of drought captured by both of indices were analyzed. Results showed that both VHI and NDVI Anomaly could capture drought development quite well, and spatial similarities were found between VHI and NDVI Anomaly drought maps for most agricultural areas. C1 [Wu, Di; Qu, John J.; Hao, Xianjun] George Mason Univ, Coll Sci, Dept GGS, Global Environm & Nat Resources Inst,Environm Sci, Fairfax, VA 22030 USA. [Xiong, Jack] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wu, D (reprint author), George Mason Univ, Coll Sci, Dept GGS, Global Environm & Nat Resources Inst,Environm Sci, Fairfax, VA 22030 USA. NR 24 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2334-3168 J9 INT CONF AGRO-GEOINF PY 2013 BP 169 EP 174 PG 6 WC Computer Science, Information Systems; Geography, Physical; Remote Sensing SC Computer Science; Physical Geography; Remote Sensing GA BB3GY UT WOS:000342772000035 ER PT S AU Gao, F He, T Masek, JG Shuai, YM Schaaf, CB Wang, ZS AF Gao, Feng He, Tao Masek, Jeffrey G. Shuai, Yanmin Schaaf, Crystal B. Wang, Zhuosen GP IEEE TI Influence of Angular Effects and Adjustment on Medium Resolution Sensors for Crop Monitoring SO 2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS) SE International Conference on Agro-Geoinformatics LA English DT Proceedings Paper CT 2nd International Conference on Agro-Geoinformatics (Agro-Geoinformatics) CY AUG 12-16, 2013 CL Fairfax, VA SP George Mason Univ, USDA Natl Inst Food & Agr, IEEE Geoscience & Remote Sensing Soc, USDA Natl Agr Stat Serv, Open Geospatial Consortium, Remote Sensing Open Access Journal, Waterborne Environm Inc, Republ Korea, Minist Sci, ICT & Future Planning, Ctr Spatial Informat Sci & Syst, USDA DE BRDF; directional reflectance; Landsat; AWiFS; crop condition; time-series analysis ID REFLECTANCE DISTRIBUTION FUNCTION; BIDIRECTIONAL REFLECTANCE; NADIR REFLECTANCE; FOREST CANOPY; LANDSAT DATA; BRDF; SURFACE; INVERSION; ALBEDO; MODELS AB Remote sensing imagery at medium spatial resolution (30-60m) like Landsat and AWiFS have been widely used in mapping crop types and monitoring crop conditions. Angular effects from wide swath remote sensing data have been observed. This paper examines the influence of angular effects on surface reflectance of typical surface and crop types for both narrow swath (e.g. Landsat) and wide swath (e.g. AWiFS) sensors. A bi-directional reflectance distribution function (BRDF) look-up table (LUT) for surface types from cropland data layer (CDL) was established. A LUT-based approach is proposed to correct angular effects for crops and natural vegetations. The angular corrected reflectance will provide a consistent data source for crop condition monitoring and long-term time-series analysis. C1 [Gao, Feng] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. [He, Tao] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Shuai, Yanmin] NASA, Goddard Space Flight Ctr, Earth Resources Technol Inc, Greenbelt, MD 20771 USA. [Schaaf, Crystal B.; Wang, Zhuosen] Univ Massachusetts, Sch Environm, Boston, MA 02125 USA. RP Gao, F (reprint author), ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. FU NASA EOS; US Geological Survey (USGS) FX This work was supported by the NASA EOS program and the US Geological Survey (USGS) Landsat Science Team program. USDA and NASA are an equal opportunity providers and employers. NR 21 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2334-3168 J9 INT CONF AGRO-GEOINF PY 2013 BP 295 EP 300 PG 6 WC Computer Science, Information Systems; Geography, Physical; Remote Sensing SC Computer Science; Physical Geography; Remote Sensing GA BB3GY UT WOS:000342772000058 ER PT S AU Choi, T Qu, JJ Xiong, XX AF Choi, Taeyoung (Jason) Qu, John J. Xiong, Xiaoxiong (Jack) GP IEEE TI A Thirteen-year Analysis of Drought in the Horn of Africa with MODIS NDVI and NWDI Measurements SO 2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS) SE International Conference on Agro-Geoinformatics LA English DT Proceedings Paper CT 2nd International Conference on Agro-Geoinformatics (Agro-Geoinformatics) CY AUG 12-16, 2013 CL Fairfax, VA SP George Mason Univ, USDA Natl Inst Food & Agr, IEEE Geoscience & Remote Sensing Soc, USDA Natl Agr Stat Serv, Open Geospatial Consortium, Remote Sensing Open Access Journal, Waterborne Environm Inc, Republ Korea, Minist Sci, ICT & Future Planning, Ctr Spatial Informat Sci & Syst, USDA DE MODIS; Drought; Horn of Africa; NDVI; NDWI; Student's T-test ID VEGETATION AB Satellite remotely sensed visible and infrared surface reflectance measurements are utilized to detect long-term changes of vegetation drought conditions in the horn of Africa from 2000 to early 2013. The horn of Africa area has been experiencing drought problems due to the warming of the Indian Ocean, which produces hot and dry air that descend across the area. A region of interests (ROI) is defined based on MODIS land surface reflectance 8-day L3 Global 500m (MOD09A1) product, which covers most of the horn of Africa area. The ROI is defined by latitudes from 0 to 10 degrees and longitudes from 40 to 51 degrees excluding the ocean area. Based on a land classification scheme, the ROI is composed of mostly open shrub land, barren land and some grass land. The MODIS reflective solar band observations are utilized to measure well-known indexes called normalized difference vegetation index (NDVI) and normalized difference water index (NDWI). A linear regression of the filtered data shows that the NDWI has non-negligible degradation over the thirteen years observation period approximately from -0.05 to -0.10, whereas NDVI remained the same level. The NDWI long-term degradation indicates the portion of soil over vegetation has been increased because of the dry condition in the ROL On top of the degradation, a recent NDWI value in early 2013 shows a significant drop from the linear trend, which signifies that there is a recent severe drought condition on-going in the horn of Africa. Utilizing hypothesis testing, we show that the NDWI provides more statistically meaningful information than the NDVI. It suggests that NDWI is a better drought indicator over in the Horn of Africa areas. The results also show that the ROI is mostly affected by the long-term drought condition especially during the second yearly growing season from September to December. C1 [Choi, Taeyoung (Jason)] Sigma Space Corp, MODIS Calibrat Support Team, 4801 Forbes Blvd, Lanham, MD 20706 USA. [Qu, John J.] George Mason Univ, Coll Sci, GENRI, ESTC, Fairfax, VA 20171 USA. [Xiong, Xiaoxiong (Jack)] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Choi, T (reprint author), Sigma Space Corp, MODIS Calibrat Support Team, 4801 Forbes Blvd, Lanham, MD 20706 USA. EM tchoi@sigmaspace.com; jqu@gmu.edu; xiaoxiong.xiong-1@nasa.gov NR 16 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2334-3168 J9 INT CONF AGRO-GEOINF PY 2013 BP 301 EP 306 PG 6 WC Computer Science, Information Systems; Geography, Physical; Remote Sensing SC Computer Science; Physical Geography; Remote Sensing GA BB3GY UT WOS:000342772000059 ER PT S AU Lawston, P Santanello, J AF Lawston, Patricia Santanello, Joseph, Jr. GP IEEE TI Impact of Irrigation Methods on LSM Spinup and Initialization of WRF Forecasts SO 2013 SECOND INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS) SE International Conference on Agro-Geoinformatics LA English DT Proceedings Paper CT 2nd International Conference on Agro-Geoinformatics (Agro-Geoinformatics) CY AUG 12-16, 2013 CL Fairfax, VA SP George Mason Univ, USDA Natl Inst Food & Agr, IEEE Geoscience & Remote Sensing Soc, USDA Natl Agr Stat Serv, Open Geospatial Consortium, Remote Sensing Open Access Journal, Waterborne Environm Inc, Republ Korea, Minist Sci, ICT & Future Planning, Ctr Spatial Informat Sci & Syst, USDA DE Irrigation; Regional Climate Modeling; Southern Great Plains; WRF AB Irrigation represents the largest consumption of freshwater in the United States and has been shown to modify local hydrology and regional climate. This study utilizes both the Land Information System (LIS) and the Weather Research and Forecasting model (WRF) to investigate changes in land-atmosphere interactions resulting from drip, flood, and sprinkler irrigation methods in the Southern Great Plains. Five-year irrigated LIS spin-ups are used to initialize two-day WRF forecasts in relatively dry and wet years (2006 and 2008, respectively). The offline and coupled simulation results show that both LIS spin-ups and LIS-WRF forecasts are sensitive to irrigation and irrigation methods, as exhibited by significant changes to temperature, soil moisture, boundary layer height, and the partitioning of latent and sensible heat fluxes. Dry year impacts are greater than those in the wet year suggesting that the magnitude of these changes is dependent on the existing precipitation regime. Sprinkler and flood irrigation schemes impact the LIS-WRF forecast the most, while drip irrigation has a comparatively small effect. C1 [Lawston, Patricia] Univ Delaware, Dept Geog, 216 Pearson Hall, Newark, DE 19716 USA. [Santanello, Joseph, Jr.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA. RP Lawston, P (reprint author), Univ Delaware, Dept Geog, 216 Pearson Hall, Newark, DE 19716 USA. EM pmlawsto@udel.edu; joseph.a.santanello@nasa.gov RI Santanello, Joseph/D-4438-2012 OI Santanello, Joseph/0000-0002-0807-6590 NR 4 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2334-3168 J9 INT CONF AGRO-GEOINF PY 2013 BP 506 EP 509 PG 4 WC Computer Science, Information Systems; Geography, Physical; Remote Sensing SC Computer Science; Physical Geography; Remote Sensing GA BB3GY UT WOS:000342772000101 ER PT S AU Carn, SA Krotkov, NA Yang, K Krueger, AJ AF Carn, S. A. Krotkov, N. A. Yang, K. Krueger, A. J. BE Pyle, DM Mather, TA Biggs, J TI Measuring global volcanic degassing with the Ozone Monitoring Instrument (OMI) SO REMOTE SENSING OF VOLCANOES AND VOLCANIC PROCESSES: INTEGRATING OBSERVATION AND MODELLING SE Geological Society Special Publication LA English DT Article; Book Chapter ID SULFUR-DIOXIDE EMISSIONS; MAPPING SPECTROMETER; CENTRAL ANDES; EL-CHICHON; SO2; PLUMES; SULFATE; GAS; RETRIEVAL; ERUPTION AB The ultraviolet (UV) Ozone Monitoring Instrument (OMI), launched on NASA's Aura satellite in July 2004, was the first space-based sensor to provide operational sulphur dioxide (SO2) measurements (OMSO2) for use by the scientific community. Herein, we discuss the application of OMSO2 data for the monitoring of global volcanic SO2 emissions, with an emphasis on lower tropospheric volcanic plumes. We review the algorithms used to produce OMSO2 data and highlight some key measurement sensitivity issues. The data processing scheme used to generate web-based OMSO2 data subsets for volcanic regions and estimate SO2 burdens in volcanic plumes is outlined. We describe three techniques to derive SO2 emission rates from the OMSO2 measurements, and employ one method (using single OMI pixels to estimate SO2 fluxes) to elucidate SO2 flux detection thresholds on a global scale. Applications of OMSO2 data to volcanic degassing studies are demonstrated using four case studies. These examples show how OMSO2 measurements correlate with changes in eruptive activity at Kilauea volcano (Hawaii), constrain small, potentially significant SO2 releases from reawakening, historically inactive volcanoes, track long-term changes in SO2 degassing from Nyiragongo volcano (D.R. Congo), and detect SO2 emissions from the remote Lastarria Volcano (Chile), in the actively deforming Lazufre region. C1 [Carn, S. A.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Krotkov, N. A.; Yang, K.] NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Yang, K.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Krueger, A. J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Carn, SA (reprint author), Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. EM scarn@mtu.edu NR 103 TC 18 Z9 18 U1 0 U2 3 PU GEOLOGICAL SOC PUBLISHING HOUSE PI BATH PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON, ENGLAND SN 0305-8719 BN 978-1-86239-362-2 J9 GEOL SOC SPEC PUBL JI Geol. Soc. Spec. Publ. PY 2013 VL 380 BP 229 EP 257 DI 10.1144/SP380.12 PG 29 WC Geochemistry & Geophysics; Geology; Remote Sensing SC Geochemistry & Geophysics; Geology; Remote Sensing GA BB3MC UT WOS:000342848600011 ER PT S AU Pieri, D Diaz, JA Bland, G Fladeland, M Madrigal, Y Corrales, E Alegria, O Alan, A Realmuto, V Miles, T Abtahi, A AF Pieri, David Andres Diaz, Jorge Bland, Geoffrey Fladeland, Matthew Madrigal, Yetty Corrales, Ernesto Alegria, Oscar Alan, Alfredo Realmuto, Vincent Miles, Ted Abtahi, Ali BE Pyle, DM Mather, TA Biggs, J TI In situ observations and sampling of volcanic emissions with NASA and UCR unmanned aircraft, including a case study at Turrialba Volcano, Costa Rica SO REMOTE SENSING OF VOLCANOES AND VOLCANIC PROCESSES: INTEGRATING OBSERVATION AND MODELLING SE Geological Society Special Publication LA English DT Article; Book Chapter ID MASS-SPECTROMETER SYSTEM; SULFUR-DIOXIDE EMISSIONS; KILAUEA VOLCANO; ERUPTION CLOUD; ASH-CLOUD; GAS-ANALYSIS; MOUNT-ETNA; PLUMES; PARTICLES; HAWAII AB Scientific knowledge of transient and difficult-to-access airborne volcanic emissions comes primarily from remote sensing observations, and a few in situ data from sporadic heroic or inadvertent airborne encounters. In the past, patchy knowledge of the composition and behaviour of such plumes from explosive volcanic eruptions, and associated drifting ash and gas clouds, have centrally contributed to unwanted and dangerous aircraft encounters that have put crews at risk and, in some cases, greatly damaged aircraft. Thus, improved knowledge of boundary conditions and plume composition, as inputs to both mass retrieval and predictive models for cloud trajectories, would be of benefit. In this paper, we describe how small robotic unmanned aerial vehicles (sUAVs) can address a variety of measurements that are typically beyond the reach of, and sometimes too dangerous for, manned aircraft. The direct measurements and sampling that can be achieved by sUAVs address serious gaps in knowledge of volcanic processes, and provide important validation data for estimations of volcanogenic ash and gas concentrations gleaned using remote sensing techniques. These data, in turn, constrain key proximal and distal boundary conditions for aerosol and gas transport models on which are based a number of decisions and evaluations by hazard responders and regulatory agencies. We briefly describe a case study from our ongoing field study at Turrialba Volcano in Costa Rica, where we are conducting an international campaign of systematic airborne in situ measurements of volcanogenic SO2 and other gases, as well as aerosols, with sUAVs and aerostats (e.g. tethered balloons and kites), in conjunction with data acquisitions by the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer onboard the NASA Terra Earth orbital platform. To our knowledge, this is the first such systematic in situ UAV- and aerostat-based observation programme for SO2 and particulates in a volcanic plume for correlation with orbital data. We preliminarily report good agreement between our UAV/aerostat and ASTER SO2 retrievals within a 5 km radius of the volcano summit, at altitudes of up to 12 500 ft (c. 3850 m) above sea level (asl) for concentrations within the range of 5-20 ppmv (ppm by volume). Additional work continues. C1 [Pieri, David; Realmuto, Vincent] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Andres Diaz, Jorge; Madrigal, Yetty; Corrales, Ernesto; Alegria, Oscar; Alan, Alfredo] Univ Costa Rica, CICANUM, GASLAB, San Jose, Costa Rica. [Bland, Geoffrey; Miles, Ted] NASA Wallops Flight Facil Goddard SFC, Wallops Isl, VA 23337 USA. [Fladeland, Matthew] NASA Ames Res Ctr, Mountain View, CA USA. [Abtahi, Ali] Teladaq LLC, Santa Clarita, CA 91351 USA. RP Pieri, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dave.pieri@jpl.nasa.gov NR 127 TC 9 Z9 9 U1 0 U2 7 PU GEOLOGICAL SOC PUBLISHING HOUSE PI BATH PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON, ENGLAND SN 0305-8719 BN 978-1-86239-362-2 J9 GEOL SOC SPEC PUBL JI Geol. Soc. Spec. Publ. PY 2013 VL 380 BP 321 EP 352 DI 10.1144/SP380.13 PG 32 WC Geochemistry & Geophysics; Geology; Remote Sensing SC Geochemistry & Geophysics; Geology; Remote Sensing GA BB3MC UT WOS:000342848600014 ER PT S AU Bardin, JC Ravindran, P Chang, SW Kumar, R Stern, JA Shaw, MD Russell, DS Farr, WH AF Bardin, Joseph C. Ravindran, Prasana Chang, Su-Wei Kumar, Raghavan Stern, Jeffrey A. Shaw, Matthew D. Russell, Damon S. Farr, William H. GP IEEE TI A High-Speed Cryogenic SiGe Channel Combiner IC For Large Photon-Starved SNSPD Arrays SO 2013 IEEE BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING (BCTM) SE IEEE Bipolar BiCMOS Circuits and Technology Meeting LA English DT Proceedings Paper CT IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) CY SEP 30-OCT 03, 2013 CL Bordeaux, FRANCE SP IEEE, Analog Devices, IBM, Maxim, NXP, RFMD, Tektronix, Anadigics, Microsemi, Skyworks, Texas Instruments ID SPACE AB In this paper, the design and characterization of a cryogenic eight-channel pixel combiner circuit designed to read-out superconducting nanowire single photon detectors (SNSPDs) is presented. The circuit is designed to amplify, digitize, edge detect, and combine the output signals of an array of eight SNSPDs. The design has been enabled by the development of novel large-signal cryogenic HBT simulation models. The circuit has been fabricated and measurement results demonstrate excellent agreement with simulation. C1 [Bardin, Joseph C.; Ravindran, Prasana; Chang, Su-Wei; Kumar, Raghavan] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA. [Stern, Jeffrey A.; Shaw, Matthew D.; Russell, Damon S.; Farr, William H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Bardin, JC (reprint author), Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA. EM jbardin@ecs.umass.edu; jeffrey.a.stern@jpl.nasa.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1088-9299 BN 978-1-4799-0129-6 J9 IEEE BIPOL BICMOS PY 2013 BP 215 EP 218 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BB3AW UT WOS:000342622100049 ER PT S AU Tonn, B Diallo, M Savage, N Scott, N Alvarez, P MacDonald, A Feldman, D Liarakos, C Hochella, M AF Tonn, Bruce Diallo, Mamadou Savage, Nora Scott, Norman Alvarez, Pedro MacDonald, Alexander Feldman, David Liarakos, Chuck Hochella, Michael BE Roco, MC Bainbridge, WS Tonn, B Whitesides, G TI Convergence Platforms: Earth-Scale Systems SO CONVERGENCE OF KNOWLEDGE, TECHNOLOGY AND SOCIETY: BEYOND CONVERGENCE OF NANO-BIO-INFO-COGNITIVE TECHNOLOGIES SE Science Policy Reports LA English DT Article; Book Chapter ID NORTHEAST BRAZIL; CLIMATE; INFORMATION; SCIENCE; POLICY; RISK; MANAGEMENT; BENEFITS; POLITICS; TARGETS C1 [Tonn, Bruce] Univ Tennessee, Knoxville, TN 37996 USA. [Diallo, Mamadou] CALTECH, Pasadena, CA 91125 USA. [Diallo, Mamadou] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Savage, Nora] US EPA, Washington, DC 20460 USA. [Scott, Norman] Cornell Univ, Ithaca, NY USA. [Alvarez, Pedro] Rice Univ, Houston, TX USA. [MacDonald, Alexander] NASA, Washington, DC 20546 USA. [Feldman, David] Univ Calif Irvine, Irvine, CA USA. [Liarakos, Chuck] Natl Sci Fdn, Arlington, VA 22230 USA. [Hochella, Michael] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Tonn, B (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. NR 62 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 2213-1965 BN 978-3-319-02204-8; 978-3-319-02203-1 J9 SCI POL REP PY 2013 BP 95 EP 137 DI 10.1007/978-3-319-02204-8_3 D2 10.1007/978-3-319-02204-8 PG 43 WC Computer Science, Information Systems; Nanoscience & Nanotechnology SC Computer Science; Science & Technology - Other Topics GA BA6EE UT WOS:000337112300005 ER PT S AU Cao, J Meador, MA Baba, ML Ferreira, PM Madou, M Scacchi, W Spohrer, JC Teague, C Westmoreland, P Zhang, X AF Cao, Jian Meador, Michael A. Baba, Marietta L. Ferreira, Placid Mathew Madou, Marc Scacchi, Walt Spohrer, James C. Teague, Clayton Westmoreland, Philip Zhang, Xiang BE Roco, MC Bainbridge, WS Tonn, B Whitesides, G TI Implications: Societal Collective Outcomes, Including Manufacturing SO CONVERGENCE OF KNOWLEDGE, TECHNOLOGY AND SOCIETY: BEYOND CONVERGENCE OF NANO-BIO-INFO-COGNITIVE TECHNOLOGIES SE Science Policy Reports LA English DT Article; Book Chapter ID SUPERLENS; SYSTEMS; FIELD C1 [Cao, Jian] Northwestern Univ, Evanston, IL 60208 USA. [Meador, Michael A.] NASA, Washington, DC 20546 USA. [Baba, Marietta L.] Michigan State Univ, E Lansing, MI 48824 USA. [Ferreira, Placid Mathew] Univ Illinois, Champaign, IL USA. [Madou, Marc; Scacchi, Walt] Univ Calif Irvine, Irvine, CA USA. [Spohrer, James C.] IBM Corp, Armonk, NY 10504 USA. [Westmoreland, Philip] N Carolina State Univ, Raleigh, NC 27695 USA. [Zhang, Xiang] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Cao, J (reprint author), Northwestern Univ, Evanston, IL 60208 USA. RI Madou, Marc/E-5869-2013 OI Madou, Marc/0000-0003-4847-3117 NR 38 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 2213-1965 BN 978-3-319-02204-8; 978-3-319-02203-1 J9 SCI POL REP PY 2013 BP 255 EP 285 DI 10.1007/978-3-319-02204-8_7 D2 10.1007/978-3-319-02204-8 PG 31 WC Computer Science, Information Systems; Nanoscience & Nanotechnology SC Computer Science; Science & Technology - Other Topics GA BA6EE UT WOS:000337112300009 ER PT S AU Roco, MC Rejeski, D Whitesides, G Dunagan, J MacDonald, A Fisher, E Thompson, G Mason, R Berne, R Appelbaum, R Feldman, D Suchman, M AF Roco, Mihail C. Rejeski, David Whitesides, George Dunagan, Jake MacDonald, Alexander Fisher, Erik Thompson, George Mason, Robert Berne, Rosalyn Appelbaum, Richard Feldman, David Suchman, Mark BE Roco, MC Bainbridge, WS Tonn, B Whitesides, G TI Innovative and Responsible Governance of Converging Technologies SO CONVERGENCE OF KNOWLEDGE, TECHNOLOGY AND SOCIETY: BEYOND CONVERGENCE OF NANO-BIO-INFO-COGNITIVE TECHNOLOGIES SE Science Policy Reports LA English DT Article; Book Chapter ID PRODUCTIVITY GROWTH; NANOTECHNOLOGY; SCIENCE; WELFARE; CHINA C1 [Roco, Mihail C.] Natl Sci Fdn, Arlington, VA 22230 USA. [Rejeski, David] Woodrow Wilson Int Ctr Scholars, Washington, DC 20560 USA. [Whitesides, George] Harvard Univ, Cambridge, MA 02138 USA. [Dunagan, Jake] Inst Future, Palo Alto, CA USA. [MacDonald, Alexander] NASA, Washington, DC 20546 USA. [Fisher, Erik] Arizona State Univ, Phoenix, AZ USA. [Thompson, George] Intel Corp, Santa Clara, CA USA. [Mason, Robert] Univ Washington, Seattle, WA 98195 USA. [Berne, Rosalyn] Univ Virginia, Charlottesville, VA USA. [Appelbaum, Richard] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Feldman, David] Univ Calif Irvine, Irvine, CA USA. [Suchman, Mark] Brown Univ, Providence, RI 02912 USA. RP Roco, MC (reprint author), Natl Sci Fdn, 4201 Wilson Blvd, Arlington, VA 22230 USA. NR 121 TC 1 Z9 1 U1 1 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 2213-1965 BN 978-3-319-02204-8; 978-3-319-02203-1 J9 SCI POL REP PY 2013 BP 433 EP 489 DI 10.1007/978-3-319-02204-8_10 D2 10.1007/978-3-319-02204-8 PG 57 WC Computer Science, Information Systems; Nanoscience & Nanotechnology SC Computer Science; Science & Technology - Other Topics GA BA6EE UT WOS:000337112300012 ER PT S AU Kolano, PZ AF Kolano, Paul Z. BE Caragiannis, I Alexander, M Badia, RM Cannataro, M Costan, A Danelutto, M Desprez, F Krammer, B Sahuquillo, J Scott, SL Weidendorfer, J TI High Performance Reliable File Transfers Using Automatic Many-to-Many Parallelization SO EURO-PAR 2012: PARALLEL PROCESSING WORKSHOPS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 18th International Conference on Euro-Par Parallel Processing CY AUG 27-31, 2012 CL Rhodes Island, GREECE SP Comp Technol Inst & Press Diophantus AB Shift is a lightweight framework for high performance local and remote file transfers that provides resiliency across a wide variety of failure scenarios. Shift supports multiple file transport protocols with automatic selection of the most appropriate mechanism between each pair of participating hosts allowing it to adapt to heterogeneous clients with differing software and network access restrictions. File system information is gathered from clients and servers to detect file system equivalence and enable path rewriting so that multiple clients can be automatically spawned in parallel to carry out both single and multi-file transfers to multiple servers selected according to load and availability. This improves both reliability and performance by eliminating single points of failure and overcoming single system bottlenecks. End-to-end integrity is provided using cryptographic hashes at the source and destination with support for partial file retransmission of only corrupted portions. This paper presents the design and implementation of Shift and details the mechanisms utilized to enhance the reliability and performance of file transfers. C1 NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Kolano, PZ (reprint author), NASA, Ames Res Ctr, Adv Supercomp Div, M-S 258-6, Moffett Field, CA 94035 USA. EM paul.kolano@nasa.gov NR 17 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-36949-0 J9 LECT NOTES COMPUT SC PY 2013 VL 7640 BP 463 EP 473 PG 11 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Mathematical & Computational Biology SC Computer Science; Mathematical & Computational Biology GA BB1OF UT WOS:000341240400052 ER PT S AU Alonso, J Grottke, M Nikora, AP Trivedi, KS AF Alonso, Javier Grottke, Michael Nikora, Allen P. Trivedi, Kishor S. GP IEEE TI An Empirical Investigation of Fault Repairs and Mitigations in Space Mission System Software SO 2013 43RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN) SE International Conference on Dependable Systems and Networks LA English DT Proceedings Paper CT 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) CY JUN 24-27, 2013 CL Budapest, HUNGARY SP IEEE, IFIP AB Faults in software systems can have different characteristics. In an earlier paper, the anomaly reports for a number of JPL/NASA missions were analyzed and the underlying faults were classified as Bohrbugs, non-aging-related Mandelbugs, and aging-related bugs. In another paper the times to failure for each of these fault types were examined to identify trends within missions as well as across the missions. The results of those papers are now starting to provide guidance to improve the dependability of space mission software. Just as there are different types of faults, there are different kinds of mitigations of faults and failures. This paper analyzes the mitigations associated with each fault studied in our previous papers. We identify trends of mitigation type proportions within missions as well as from mission to mission. We also look for relationships between fault types and mitigation types. The results will be used to increase the reliability of space mission software. C1 [Alonso, Javier; Trivedi, Kishor S.] Duke Univ, Durham, NC 27706 USA. [Grottke, Michael] Friedrich Alexander Univ, Erlangen, Germany. [Nikora, Allen P.] CALTECH, Jet Propuls Lab, Pasadena, CA 91125 USA. RP Alonso, J (reprint author), Duke Univ, Durham, NC 27706 USA. EM javier.alonso@duke.edu; Michael.Grottke@fau.de; Allen.P.Nikora@jpl.nasa.gov; ktrivedi@duke.edu FU Jet Propulsion Laboratory; California Institute of Technology and at Duke University; National Aeronautics and Space Administration's Office of Safety and Mission Assurance Software Assurance Research Program; NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program (SARP) under the JPL [1440119]; Dr. Theo and Friedl Schoeller Research Center for Business and Society FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology and at Duke University. The research was sponsored by the National Aeronautics and Space Administrations Office of Safety and Mission Assurance Software Assurance Research Program. This task is managed locally by JPLs Assurance Technology Program Office. Duke research was supported in part by the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program (SARP) under the JPL subcontract #1440119. FAU research was supported by the Dr. Theo and Friedl Schoeller Research Center for Business and Society. NR 30 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1530-0889 BN 978-1-4799-0181-4; 978-1-4673-6471-3 J9 I C DEPEND SYS NETWO PY 2013 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BB1GX UT WOS:000341129700058 ER PT S AU Wang, M Grandidier, J Jones, SM Atwater, HA AF Wang, Max Grandidier, Jonathan Jones, Steven M. Atwater, Harry A. GP IEEE TI Graded Index Sol-Gel Antireflection Coatings SO 2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) SE IEEE Photovoltaic Specialists Conference LA English DT Proceedings Paper CT 39th IEEE Photovoltaic Specialists Conference (PVSC) CY JUN 16-21, 2013 CL Tampa, FL SP Inst Elect & Elect Engineers, Inst Elect & Elect Engineers Electron Devices Soc, Inst Elect & Elect Engineers Photon Soc, Inst Elect & Elect Engineers Power & Energy Soc, US Photovolta Mfg Consort, AZoCleantech Com, Latin Amer Renovable, Photovolta Int, PVTech, Solar Novus Today & Photon, Photon DE Solgel; antireflection coating; photovoltaic cells; silicon ID AEROGEL AB We explore graded index antireflection coatings that can reduce reflection of light at the ambient/cell or ambient/module boundary at all wavelengths and incidence angles. Simulations show that graded index coatings individually enhance absorption in solar cells across nearly the entire wavelength range. Silica sol-gel coatings with varying refractive indices deposited onto glass and silicon substrates are used to form graded index coatings, and the sol-gel layer processes have been adjusted so that the refractive indices are tunable from n=1.1 to n=1.5. Reflectance measurements also show that reflectivity decreases across the entire spectrum with added sol-gel multilayers. C1 [Wang, Max; Grandidier, Jonathan; Atwater, Harry A.] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. [Grandidier, Jonathan; Jones, Steven M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wang, M (reprint author), CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. FU Department of Energy Basic Energy Sciences; Office of Science through Light Material Interactions Energy Frontier Research Center [DE-SC0001293] FX We acknowledge the Department of Energy Basic Energy Sciences, Office of Science through the Light Material Interactions Energy Frontier Research Center under contract number DE-SC0001293. NR 5 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0160-8371 BN 978-1-4799-3299-3 J9 IEEE PHOT SPEC CONF PY 2013 BP 1919 EP 1921 PG 3 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA BB0AV UT WOS:000340054100428 ER PT S AU Fraas, LM Landis, GA Palisoc, A AF Fraas, Lewis M. Landis, Geoffrey A. Palisoc, Arthur GP IEEE TI Mirror Satellites in Polar Orbit Beaming Sunlight to Terrestrial Solar Fields at Dawn and Dusk SO 2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) SE IEEE Photovoltaic Specialists Conference LA English DT Proceedings Paper CT 39th IEEE Photovoltaic Specialists Conference (PVSC) CY JUN 16-21, 2013 CL Tampa, FL SP Inst Elect & Elect Engineers, Inst Elect & Elect Engineers Electron Devices Soc, Inst Elect & Elect Engineers Photon Soc, Inst Elect & Elect Engineers Power & Energy Soc, US Photovolta Mfg Consort, AZoCleantech Com, Latin Amer Renovable, Photovolta Int, PVTech, Solar Novus Today & Photon, Photon DE Space solar power; photovoltaic cells; PV; terrestrial concentrated solar power; CSP ID POWER AB Large terrestrial solar electric power fields are being built around the world. However, sunlight is only available during normal daylight hours but not in the evenings. If lightweight mirrors can be deployed in space in a sun-synchronous dawn/dusk orbit, these mirrors can reflect sunlight down to these terrestrial solar farms to provide solar electricity in the evening and early morning, extending the field operating hours and reducing the cost of solar electric power. The idea of mirrors in space reflecting sunlight to earth is not new. What is new here is the idea of a constellation of 18 mirror array satellites in a 1000 km high sun-synchronous dawn/dusk orbit in combination with multiple 5-GW solar farms distributed around the world. In this scenario, the projected payback time for the mirror constellation given the additional revenues from the multiple solar fields is approximately 2 years. C1 [Fraas, Lewis M.] JX Crystals Inc, Issaquah, WA 98027 USA. [Landis, Geoffrey A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Palisoc, Arthur] LGarde Inc, Tustin, CA 92780 USA. RP Fraas, LM (reprint author), JX Crystals Inc, Issaquah, WA 98027 USA. NR 8 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0160-8371 BN 978-1-4799-3299-3 J9 IEEE PHOT SPEC CONF PY 2013 BP 2764 EP 2769 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA BB0AV UT WOS:000340054100630 ER PT S AU Fatemi, N Lyons, J Eskenazi, M AF Fatemi, Navid Lyons, John Eskenazi, Mike GP IEEE TI Qualification and Production of Emcore ZTJ Solar Panels for Space Missions SO 2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) SE IEEE Photovoltaic Specialists Conference LA English DT Proceedings Paper CT 39th IEEE Photovoltaic Specialists Conference (PVSC) CY JUN 16-21, 2013 CL Tampa, FL SP Inst Elect & Elect Engineers, Inst Elect & Elect Engineers Electron Devices Soc, Inst Elect & Elect Engineers Photon Soc, Inst Elect & Elect Engineers Power & Energy Soc, US Photovolta Mfg Consort, AZoCleantech Com, Latin Amer Renovable, Photovolta Int, PVTech, Solar Novus Today & Photon, Photon DE Multi-junction; space solar cells; MMS; CRS; AMOS-6; NuStar AB Emcore's latest generation InGaP/InGaAs/Ge ZTJ triple-junction space-grade high-efficiency solar cells have been in volume production since 2009, with over 300,000 flight cells produced to power more than 35 separate satellites. The ZTJ cells, CICs (Coverglass-Interconnected-Cell) and solar panels have also been characterized and qualified to both the AIAA-S-111 and AIAA-S-112 standards. More than 10 life-cycle coupon panels have been thermal cycled to temperature extremes representing varied orbital conditions such as GEO (geosynchronous), LEO (low-earth) and highly elliptical orbits. In its larger 1-cell-per-wafer form factor, the ZTJ solar cell has been used to manufacture solar panels for a dozen NASA and other commercial spacecraft. Currently Emcore Photovoltaics is under contract to NASA's Goddard Space Flight Center (GSFC) to build and deliver the solar panels for the Magnetospheric Multiscale (MMS) Mission and to ATK Space Systems for the Commercial Resupply (CRS) mission to the International Space Station (ISS) and the AMOS-6 commercial telecommunication satellite. In this paper, the results of the qualification, production and testing of the life-cycle coupons and the solar panels for these missions is presented. In addition, the initial on-orbit telemetry performance results of NASA's NuStar (Nuclear Spectroscopic Telescope Array) spacecraft solar array will be presented. The NuStar spacecraft was launched in June of 2012 and built by Orbital Sciences Corporation It is powered by an ATK solar array populated with ZTJ solar cells. C1 [Fatemi, Navid] Emcore Photovolta, Albuquerque, NM 87122 USA. [Lyons, John] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eskenazi, Mike] ATK Space Syst, Goleta, CA 93117 USA. RP Fatemi, N (reprint author), Emcore Photovolta, Albuquerque, NM 87122 USA. NR 3 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0160-8371 BN 978-1-4799-3299-3 J9 IEEE PHOT SPEC CONF PY 2013 BP 2793 EP 2796 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA BB0AV UT WOS:000340054100636 ER PT S AU Jenkins, PP Bentz, DC Barnds, J Binz, CR Messenger, SR Warner, JH Krasowski, MJ Prokop, NF Spina, DC O'Neill, M Eskenazi, M Brandhorst, HW Downard, E Crist, KC AF Jenkins, Phillip P. Bentz, Douglas C. Barnds, Jim Binz, Christopher R. Messenger, Scott R. Warner, Jeffrey H. Krasowski, Michael J. Prokop, Norman F. Spina, Dan C. O'Neill, Mark Eskenazi, Michael Brandhorst, Henry W. Downard, Eric Crist, Kevin C. GP IEEE TI Initial Results from the TacSat-4 Solar Cell Experiment SO 2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) SE IEEE Photovoltaic Specialists Conference LA English DT Proceedings Paper CT 39th IEEE Photovoltaic Specialists Conference (PVSC) CY JUN 16-21, 2013 CL Tampa, FL SP Inst Elect & Elect Engineers, Inst Elect & Elect Engineers Electron Devices Soc, Inst Elect & Elect Engineers Photon Soc, Inst Elect & Elect Engineers Power & Energy Soc, US Photovolta Mfg Consort, AZoCleantech Com, Latin Amer Renovable, Photovolta Int, PVTech, Solar Novus Today & Photon, Photon DE radiation effects; photovoltaic cells AB The TacSat-4 spacecraft carries a solar cell experiment characterizing a string of 3 triple-junction 1-sun solar cells and a string of triple junction solar cells under a flexible, linear Fresnel lens providing approximately 6 times solar concentration. TacSat-4 flies in a highly elliptical, four hour orbit, passing through proton and electron radiation belts 12 times per day. The damage to solar cells in this environment is severe. In this paper we examine the solar cell damage rates of the two solar cell strings. C1 [Jenkins, Phillip P.; Barnds, Jim; Binz, Christopher R.; Messenger, Scott R.; Warner, Jeffrey H.] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. [Bentz, Douglas C.] S GSS, West Melbourne, FL 32904 USA. [Krasowski, Michael J.; Prokop, Norman F.; Spina, Dan C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [O'Neill, Mark] LLC, Keller, TX 76244 USA. [Eskenazi, Michael] ATK Space, Goleta, CA 93117 USA. [Brandhorst, Henry W.] LLC, Carbon Free Energy, Auburn, AL 36832 USA. [Downard, Eric; Crist, Kevin C.] EMCORE Photovolta, Albuquerque, NM 87123 USA. RP Jenkins, PP (reprint author), US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. FU The Office of Naval Research (ONR); Office of Force Transformation (OFT); Operationally Responsive Space (ORS) FX The Office of Naval Research (ONR) sponsored the TSCE payload, as well as the TacSat-4 mission. Additionally, the Office of Force Transformation (OFT) and Operationally Responsive Space (ORS) Office sponsored portions of TacSat-4 development and operations. NR 10 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0160-8371 BN 978-1-4799-3299-3 J9 IEEE PHOT SPEC CONF PY 2013 BP 3108 EP 3111 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA BB0AV UT WOS:000340054100701 ER PT S AU Adams, JGJ Elarde, VC Hillier, G Stender, C Tuminello, F Wibowo, A Youtsey, C Bittner, Z Hubbard, SM Clark, EB Piszczor, MF Osowski, M AF Adams, Jessica G. J. Elarde, Victor C. Hillier, Glen Stender, Christopher Tuminello, Francis Wibowo, Andree Youtsey, Chris Bittner, Zachary Hubbard, Seth M. Clark, Eric B. Piszczor, Michael F. Osowski, Mark GP IEEE TI Improved Radiation Resistance of Epitaxial Lift-Off Inverted Metamorphic Solar Cells SO 2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) SE IEEE Photovoltaic Specialists Conference LA English DT Proceedings Paper CT 39th IEEE Photovoltaic Specialists Conference (PVSC) CY JUN 16-21, 2013 CL Tampa, FL SP Inst Elect & Elect Engineers, Inst Elect & Elect Engineers Electron Devices Soc, Inst Elect & Elect Engineers Photon Soc, Inst Elect & Elect Engineers Power & Energy Soc, US Photovolta Mfg Consort, AZoCleantech Com, Latin Amer Renovable, Photovolta Int, PVTech, Solar Novus Today & Photon, Photon DE Multi-junction; III-V; Radiation Resistance; Space Solar Cell; Inverted Metamorphic; Epitaxial Lift-Off AB The inverted metamorphic (IMM) solar cell has a high specific power compared to traditional germanium-based multi-junction solar cells, which may prove beneficial for space applications where costs are weight-driven. In addition, the mechanical flexibility of the IMM cell may be beneficial for new technologies, such as high-power, flexible, deployable arrays currently under development. However, IMM solar cells have not yet demonstrated radiation resistance equal to that of traditional Ge-based multi-junction cells, largely due to degradation in the In GaAs bottom subcell. A structure and process have been developed to incorporate a back surface reflector on the epitaxial lift-off (ELO) IMM solar cell, permitting the In GaAs subcell to be thinned whilst maintaining high optical absorption. The thinner subcell can better tolerate degraded base diffusion lengths following irradiation. In this manner, a significant improvement in the end of life efficiency of ELO IMM solar cells is demonstrated following irradiation with 1 MeV electrons at a fluence of 1x10(15) cm(-2). C1 [Adams, Jessica G. J.; Elarde, Victor C.; Hillier, Glen; Stender, Christopher; Tuminello, Francis; Wibowo, Andree; Youtsey, Chris; Osowski, Mark] MicroLink Devices, Niles, IL 60714 USA. [Bittner, Zachary; Hubbard, Seth M.] Rochester Inst Technol, Rochester, NY 14623 USA. [Clark, Eric B.; Piszczor, Michael F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Adams, JGJ (reprint author), MicroLink Devices, Niles, IL 60714 USA. FU NASA [NNX11CA60] FX The authors acknowledge the support of NASA for this work under contract number NNX11CA60. NR 4 TC 1 Z9 1 U1 1 U2 7 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0160-8371 BN 978-1-4799-3299-3 J9 IEEE PHOT SPEC CONF PY 2013 BP 3229 EP 3232 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA BB0AV UT WOS:000340054100724 ER PT S AU Viswanathan, A Tan, K Neuman, C AF Viswanathan, Arun Tan, Kymie Neuman, Clifford BE Stolfo, SJ Stavrou, A Wright, CV TI Deconstructing the Assessment of Anomaly-based Intrusion Detectors SO RESEARCH IN ATTACKS, INTRUSIONS, AND DEFENSES SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th International Symposium on Research in Attacks, Intrusions, and Defenses (RAID) CY OCT 23-25, 2013 CL Rodney Bay, ST LUCIA SP Symantec, Google, MIT Lincoln Lab, Damballa, AT&T DE Anomaly-based Intrusion Detection; Anomaly Detector Evaluation; Error Taxonomy AB Anomaly detection is a key strategy for cyber intrusion detection because it is conceptually capable of detecting novel attacks. This makes it an appealing defensive technique for environments such as the nation's critical infrastructure that is currently facing increased cyber adversarial activity. When considering deployment within the purview of such critical infrastructures it is imperative that the technology is well understood and reliable, where its performance is benchmarked on the results of principled assessments. This paper works towards such an imperative by analyzing the current state of anomaly detector assessments with a view toward mission critical deployments. We compile a framework of key evaluation constructs that identify how and where current assessment methods may fall short in providing sufficient insight into detector performance characteristics. Within the context of three case studies from literature, we show how error factors that influence the performance of detectors interact with different phases of a canonical evaluation strategy to compromise the integrity of the final results. C1 [Viswanathan, Arun; Neuman, Clifford] USC, Inst Informat Sci, Los Angeles, CA 90089 USA. [Tan, Kymie] CALTECH, Jet Propuls Lab, Pasadena, CA 91125 USA. RP Viswanathan, A (reprint author), USC, Inst Informat Sci, Los Angeles, CA 90089 USA. NR 29 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-41284-4; 978-3-642-41283-7 J9 LECT NOTES COMPUT SC PY 2013 VL 8145 BP 286 EP 306 PG 21 WC Computer Science, Information Systems; Computer Science, Theory & Methods; Telecommunications SC Computer Science; Telecommunications GA BB0QC UT WOS:000340599600015 ER PT B AU Berkman, E Donde, R Rock, D AF Berkman, Elliot Donde, Ruth Rock, David BE David, S Clutterbuck, D Megginson, D TI A Social Neuroscience Approach to Goal Setting for Coaches SO BEYOND GOALS: EFFECTIVE STRATEGIES FOR COACHING AND MENTORING LA English DT Article; Book Chapter ID FRONTAL EEG ASYMMETRY; SELF-CONTROL STRENGTH; COGNITIVE CONTROL; BEHAVIORAL ACTIVATION; ACTION IDENTIFICATION; CEREBRAL ASYMMETRY; EMOTION; SYSTEMS; GRATIFICATION; INHIBITION C1 [Berkman, Elliot] Univ Oregon, Eugene, OR 97403 USA. [Rock, David] CIMBA, Venice, Italy. [Rock, David] Oxfords Sa Business Sch, Oxford, England. [Rock, David] NASA, Washington, DC USA. [Rock, David] Amer Express, New York, NY USA. [Rock, David] Juniper Networks, Sunnyvale, CA USA. [Rock, David] Nokia Siemens Networks, Espoo, Finland. RP Berkman, E (reprint author), Univ Oregon, Eugene, OR 97403 USA. NR 41 TC 0 Z9 0 U1 2 U2 2 PU GOWER PUBL CO PI NEW YORK PA 1185 AVE OF THE AMERICAS, NEW YORK, NY 10036 USA BN 978-1-4094-1852-8; 978-1-4094-1851-1 PY 2013 BP 109 EP 123 PG 15 WC Psychology, Applied; Management SC Psychology; Business & Economics GA BA8IS UT WOS:000338188500008 ER PT B AU Steenburgh, WJ Redmond, KT Kunkel, KE Doesken, N Gillies, RR Horel, JD Hoerling, MP Painter, TH AF Steenburgh, W. James Redmond, Kelly T. Kunkel, Kenneth E. Doesken, Nolan Gillies, Robert R. Horel, John D. Hoerling, Martin P. Painter, Thomas H. BE Garfin, G Jardine, A Merideth, R Black, M LeRoy, S TI Present Weather and Climate: Average Conditions SO ASSESSMENT OF CLIMATE CHANGE IN THE SOUTHWEST UNITED STATES: A REPORT PREPARED FOR THE NATIONAL CLIMATE ASSESSMENT SE NCA Regional Input Reports LA English DT Article; Book Chapter ID WESTERN UNITED-STATES; NORTH-AMERICAN-MONSOON; ATMOSPHERIC RIVERS; METEOROLOGICAL CHARACTERISTICS; 21ST-CENTURY DROUGHT; SUMMER PRECIPITATION; BIG THOMPSON; HEAT-WAVE; CALIFORNIA; VARIABILITY C1 [Steenburgh, W. James; Horel, John D.] Univ Utah, Salt Lake City, UT 84112 USA. [Redmond, Kelly T.] Western Reg Climate Ctr, Reno, NV USA. [Redmond, Kelly T.] Desert Res Inst, Reno, NV USA. [Kunkel, Kenneth E.] N Carolina State Univ, NOAA, Cooperat Inst Climate & Satellites, Raleigh, NC 27695 USA. [Kunkel, Kenneth E.] Natl Climate Data Ctr, Asheville, NC USA. [Doesken, Nolan] Colorado State Univ, Ft Collins, CO 80523 USA. [Gillies, Robert R.] Utah State Univ, Logan, UT 84322 USA. [Hoerling, Martin P.] NOAA, Earth Syst Res Lab, Silver Spring, MD USA. [Painter, Thomas H.] Jet Prop Lab, Pasadena, CA USA. RP Steenburgh, WJ (reprint author), Univ Utah, Salt Lake City, UT 84112 USA. NR 94 TC 0 Z9 0 U1 0 U2 1 PU ISLAND PRESS PI WASHINGTON PA 1718 CONNECTICUT AVE NW, SUITE 300, WASHINGTON, DC 20009 USA BN 978-1-61091-484-0; 978-1-59726-420-4 J9 NCA REGION INPUT REP PY 2013 BP 56 EP 73 DI 10.5822/978-1-61091-484-0_4 D2 10.5822/978-1-61091-484-0 PG 18 WC Environmental Sciences; Environmental Studies; Geography; Geography, Physical SC Environmental Sciences & Ecology; Geography; Physical Geography GA BA8DA UT WOS:000337976900004 ER PT B AU Hoerling, MP Dettinger, M Wolter, K Lukas, J Eischeid, J Nemani, R Liebmann, B Kunkel, KE AF Hoerling, Martin P. Dettinger, Michael Wolter, Klaus Lukas, Jeff Eischeid, Jon Nemani, Rama Liebmann, Brant Kunkel, Kenneth E. BE Garfin, G Jardine, A Merideth, R Black, M LeRoy, S TI Present Weather and Climate: Evolving Conditions SO ASSESSMENT OF CLIMATE CHANGE IN THE SOUTHWEST UNITED STATES: A REPORT PREPARED FOR THE NATIONAL CLIMATE ASSESSMENT SE NCA Regional Input Reports LA English DT Article; Book Chapter ID WESTERN UNITED-STATES; COLORADO RIVER; SOUTHERN-OSCILLATION; NORTH-AMERICA; 21ST-CENTURY DROUGHT; TEMPORAL VARIATIONS; CHANGING CLIMATE; WATER-RESOURCES; SNOWMELT RUNOFF; SIERRA-NEVADA C1 [Hoerling, Martin P.] NOAA, Earth Syst Res Lab, Silver Spring, MD 20910 USA. [Dettinger, Michael] US Geol Survey, Reston, VA USA. [Dettinger, Michael] Scripps Inst Oceanog, La Jolla, CA USA. [Wolter, Klaus; Lukas, Jeff; Eischeid, Jon; Liebmann, Brant] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Nemani, Rama] NASA, Ames, IA USA. [Kunkel, Kenneth E.] N Carolina State Univ, NOAA, Cooperat Inst Climate & Satellites, Raleigh, NC 27695 USA. [Kunkel, Kenneth E.] Natl Climate Data Ctr, Asheville, NC USA. RP Hoerling, MP (reprint author), NOAA, Earth Syst Res Lab, Silver Spring, MD 20910 USA. NR 79 TC 15 Z9 15 U1 0 U2 3 PU ISLAND PRESS PI WASHINGTON PA 1718 CONNECTICUT AVE NW, SUITE 300, WASHINGTON, DC 20009 USA BN 978-1-61091-484-0; 978-1-59726-420-4 J9 NCA REGION INPUT REP PY 2013 BP 74 EP 100 DI 10.5822/978-1-61091-484-0_5 D2 10.5822/978-1-61091-484-0 PG 27 WC Environmental Sciences; Environmental Studies; Geography; Geography, Physical SC Environmental Sciences & Ecology; Geography; Physical Geography GA BA8DA UT WOS:000337976900005 ER PT B AU Kohli, R AF Kohli, Rajiv BE Kohli, R Mittal, KL TI Surface Contamination Removal Using Dense-Phase Fluids: Liquid and Supercritical Carbon Dioxide SO DEVELOPMENTS IN SURFACE CONTAMINATION AND CLEANING, VOL 5: CONTAMINANT REMOVAL AND MONITORING SE Developments in Surface Contamination and Cleaning LA English DT Article; Book Chapter ID EQUATION-OF-STATE; PARTIAL MOLAL PROPERTIES; THERMODYNAMIC PROPERTIES; TRANSPORT-PROPERTIES; HIGH-PRESSURES; HIGH-TEMPERATURES; AQUEOUS-SOLUTIONS; GROUP ADDITIVITY; ELEVATED-TEMPERATURES; DEVICE FABRICATION C1 NASA, Lyndon B Johnson Space Ctr, Aerosp Corp, Houston, TX 77058 USA. RP Kohli, R (reprint author), NASA, Lyndon B Johnson Space Ctr, Aerosp Corp, 2525 Bay Area Blvd,Suite 600, Houston, TX 77058 USA. NR 298 TC 2 Z9 2 U1 0 U2 0 PU WILLIAM ANDREW INC PI NORWICH PA 13 EATON AVE, NORWICH, NY 13815 USA BN 978-1-4377-7882-3; 978-1-4377-7881-6 J9 DEV SURF CONTAM CL PY 2013 VL 5 BP 1 EP 54 DI 10.1016/B978-1-4377-7881-6.00001-6 PG 54 WC Chemistry, Applied; Environmental Sciences; Materials Science, Multidisciplinary SC Chemistry; Environmental Sciences & Ecology; Materials Science GA BA8AJ UT WOS:000337922100002 ER PT B AU Kohli, R Mittal, K AF Kohli, Rajiv Mittal, Kash BE Kohli, R Mittal, KL TI Developments in Surface Contamination and Cleaning Volume Five Contaminant Removal and Monitoring Preface SO DEVELOPMENTS IN SURFACE CONTAMINATION AND CLEANING, VOL 5: CONTAMINANT REMOVAL AND MONITORING SE Developments in Surface Contamination and Cleaning LA English DT Editorial Material; Book Chapter C1 [Kohli, Rajiv] Aerosp Corp, El Segundo, CA 90245 USA. [Kohli, Rajiv] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Mittal, Kash] IBM Corp, Armonk, NY USA. RP Kohli, R (reprint author), Aerosp Corp, El Segundo, CA 90245 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILLIAM ANDREW INC PI NORWICH PA 13 EATON AVE, NORWICH, NY 13815 USA BN 978-1-4377-7882-3; 978-1-4377-7881-6 J9 DEV SURF CONTAM CL PY 2013 VL 5 BP VII EP IX PG 3 WC Chemistry, Applied; Environmental Sciences; Materials Science, Multidisciplinary SC Chemistry; Environmental Sciences & Ecology; Materials Science GA BA8AJ UT WOS:000337922100001 ER PT S AU Ratnakumar, BV Smart, MC Krause, FC Hwang, C Degrosse, P Santee, S Puglia, FJ AF Ratnakumar, B. V. Smart, M. C. Krause, F. C. Hwang, C. Degrosse, P., Jr. Santee, S. Puglia, F. J. BE Smart, MC Inaba, M Fenton, J Henderson, W Ue, M Doughty, DH Jow, TR Ishikawa, M Bugga, RV Tatsumi, K Lucht, B Trulove, PC TI Effect of Low Cell Voltages on the Performance of MCMB anode and LiNi0.8Co0.2O2 cathode SO LITHIUM-ION BATTERIES -AND- NON-AQUEOUS ELECTROLYTES FOR LITHIUM BATTERIES - PRIME 2012 SE ECS Transactions LA English DT Proceedings Paper CT Symposia on Lithium-Ion Batteries and Non-Aqueous Electrolytes for Lithium Batteries CY OCT 07-12, 2012 CL Honolulu, HI SP Electrochem Soc, Electrochem Soc Japan, Japan Soc Appl Phys, Korean Electrochem Soc, Royal Australian Chem Inst, Electrochemistry Div, Chinese Soc Electrochemistry, Battery Div, Energy Technol Div, Phys & Analyt Electrochemistry Div ID ION BATTERY ELECTROLYTES; ELECTROCHEMICAL STABILITY; COPPER AB Lithium-ion cells employing graphitic anodes (graphite or MCMB) and lithiated metal oxide cathodes, Li(Ni,Co,Al)O-2 are generally intolerant to low cell voltages, which is often attributed to the side reactions on the anode. Even though dissolution of the copper substrate at the anode is not thermodynamically favored at the anode potentials positive to lithium, mild copper dissolution was often reported to occur at positive potentials. Furthermore, the cell performance appears to degrade upon exposure to low voltages, even without any visible copper dissolution. One of the engineering batteries for the NASA Mars Science Laboratory (MSL) mission sustained a high impedance short due to a failure in the harness insulation, which resulted in the deep-discharge of multiple cells to low voltages, and an overall performance loss in these cells. Results from the laboratory test cells confirm the trend in the performance degradation as a function of low voltage exposure and point to, surprisingly, a degradation of the cathode, more than the anode. Electrochemical measurements, both ac impedance (EIS) and DC polarization show an unexpected trend that the cathode kinetics are affected by the deep-discharges to low voltages. C1 [Ratnakumar, B. V.; Smart, M. C.; Krause, F. C.; Hwang, C.; Degrosse, P., Jr.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Santee, S.; Puglia, F. J.] Yardney Techn Products, Pawcatuck, CT 06379 USA. RP Ratnakumar, BV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA's Office of Chief Technologist; Mars Science Laboratory Project FX The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) and under sponsorship of the NASAs Office of Chief Technologist and Mars Science Laboratory Project. NR 8 TC 0 Z9 0 U1 1 U2 13 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-414-5 J9 ECS TRANSACTIONS PY 2013 VL 50 IS 26 BP 161 EP 171 DI 10.1149/05026.0161ecst PG 11 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BA8VT UT WOS:000338893200014 ER PT S AU Smart, MC Hwang, C Krause, FC Soler, J West, WC Ratnakumar, BV Amine, K AF Smart, M. C. Hwang, C. Krause, F. C. Soler, J. West, W. C. Ratnakumar, B. V. Amine, K. BE Smart, MC Inaba, M Fenton, J Henderson, W Ue, M Doughty, DH Jow, TR Ishikawa, M Bugga, RV Tatsumi, K Lucht, B Trulove, PC TI Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-ion Cells SO LITHIUM-ION BATTERIES -AND- NON-AQUEOUS ELECTROLYTES FOR LITHIUM BATTERIES - PRIME 2012 SE ECS Transactions LA English DT Proceedings Paper CT Symposia on Lithium-Ion Batteries and Non-Aqueous Electrolytes for Lithium Batteries CY OCT 07-12, 2012 CL Honolulu, HI SP Electrochem Soc, Electrochem Soc Japan, Japan Soc Appl Phys, Korean Electrochem Soc, Royal Australian Chem Inst, Electrochemistry Div, Chinese Soc Electrochemistry, Battery Div, Energy Technol Div, Phys & Analyt Electrochemistry Div ID CATHODE MATERIALS; BATTERIES; PERFORMANCE; ELECTRODES; ADDITIVES AB A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li1.2Ni0.15Co0.10Mn0.55O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato) borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi0.80Co0.15Al0.05O2-based systems, rather than being influenced strongly by the electrolyte type. C1 [Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Amine, K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Smart, MC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Batteries for Advanced Transportation Technologies (BATT) Program [6879235] FX The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) and under sponsorship by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No 6879235 under the Batteries for Advanced Transportation Technologies (BATT) Program. NR 12 TC 1 Z9 1 U1 2 U2 14 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-414-5 J9 ECS TRANSACTIONS PY 2013 VL 50 IS 26 BP 355 EP 364 DI 10.1149/05026.0355ecst PG 10 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BA8VT UT WOS:000338893200031 ER PT S AU Smart, MC Krause, FC Hwang, C Soler, J West, WC Ratnakumar, BV Prakash, GKS AF Smart, M. C. Krause, F. C. Hwang, C. Soler, J. West, W. C. Ratnakumar, B. V. Prakash, G. K. S. BE Smart, MC Inaba, M Fenton, J Henderson, W Ue, M Doughty, DH Jow, TR Ishikawa, M Bugga, RV Tatsumi, K Lucht, B Trulove, PC TI Electrolytes with Improved Safety Developed for High Specific Energy Li-ion Cells with Si-Based Anodes SO LITHIUM-ION BATTERIES -AND- NON-AQUEOUS ELECTROLYTES FOR LITHIUM BATTERIES - PRIME 2012 SE ECS Transactions LA English DT Proceedings Paper CT Symposia on Lithium-Ion Batteries and Non-Aqueous Electrolytes for Lithium Batteries CY OCT 07-12, 2012 CL Honolulu, HI SP Electrochem Soc, Electrochem Soc Japan, Japan Soc Appl Phys, Korean Electrochem Soc, Royal Australian Chem Inst, Electrochemistry Div, Chinese Soc Electrochemistry, Battery Div, Energy Technol Div, Phys & Analyt Electrochemistry Div ID ELECTROCHEMICAL PERFORMANCE; ELECTRODES; BATTERIES; CARBONATE AB A number of electrolyte formulations that have improved safety characteristics have been developed for use with high capacity silicon-based anodes. To improve the compatibility with Si-based anodes, a number of technical approaches have been employed, including: (1) the use of mono-fluoroethylene carbonate (FEC) in conjunction with, or in lieu of, ethylene carbonate (EC), (2) the use of high proportions of fluorinated co-solvents, (3) the use of vinylene carbonate (VC) to stabilize the Si/C electrode, and (4) the use of lithium bis(oxalato) borate (LiBOB) to improve the compatibility of the electrolyte when Si/C electrodes are used in conjunction with high voltage cathodes. Candidate electrolytes were studied in Li/Si-C and Si-C/Li(MnNiCo)O-2 (NMC) coin cells, as well as in larger Si-C/NMC three-electrode cells equipped with lithium reference electrodes. In summary, many electrolytes that contain triphenyl phosphate (TPP), which is used as a flame retardant additive up to concentrations of 15 volume percent, and possess FEC as a co-solvent have been demonstrated to outperform the all-carbonate baseline electrolytes when evaluated in Si-C/Li(MnNiCo)O-2 cells. C1 [Smart, M. C.; Hwang, C.; Soler, J.; West, W. C.; Ratnakumar, B. V.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Krause, F. C.; Prakash, G. K. S.] Univ Southern Calif, Los Angeles, CA 90089 USA. RP Smart, MC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration (NASA); NASA-Office of Chief Technology FX The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) and under sponsorship of the Game Changing Technologies Development Program from the NASA-Office of Chief Technology. NR 16 TC 1 Z9 1 U1 3 U2 13 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-414-5 J9 ECS TRANSACTIONS PY 2013 VL 50 IS 26 BP 365 EP 374 DI 10.1149/05026.0365ecst PG 10 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BA8VT UT WOS:000338893200032 ER PT J AU Merriam, EG Jones, JE Magleby, SP Howell, LL AF Merriam, E. G. Jones, J. E. Magleby, S. P. Howell, L. L. TI Monolithic 2 DOF fully compliant space pointing mechanism SO MECHANICAL SCIENCES LA English DT Article ID FLEXURAL PIVOTS; DESIGN AB This paper describes the conception, modeling, and development of a fully compliant two-degree-of-freedom pointing mechanism for application in spacecraft thruster, antenna, or solar array systems. The design objectives and the advantages of a compliant solution are briefly discussed. Detailed design decisions to meet project objectives are described. Analytical and numerical models are developed and subsequently verified by prototype testing and measurements in several iterations. A final design of the 3-D printed titanium monolithic pointing mechanism is described in detail and its performance is measured. C1 [Merriam, E. G.; Magleby, S. P.; Howell, L. L.] Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA. [Jones, J. E.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Howell, LL (reprint author), Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA. EM lhowell@byu.edu RI Howell, Larry/A-6828-2008 OI Howell, Larry/0000-0001-8132-8822 FU National Science Foundation; Air Force Office of Scientific Research through NSF [1240417]; NASA Marshall Space Flight Center through NASA [NNX13AF52G] FX The authors acknowledge Eric Wilcox for his support in building testing apparatus, and Scott Thompson, Ph.D. for his help with the stereoscopic imaging code. This work was supported by the National Science Foundation and Air Force Office of Scientific Research through NSF Grant No. 1240417 and by NASA Marshall Space Flight Center through NASA Grant No. NNX13AF52G. NR 20 TC 4 Z9 4 U1 3 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2191-9151 EI 2191-916X J9 MECH SCI JI Mech. Sci. PY 2013 VL 4 IS 2 BP 381 EP 390 DI 10.5194/ms-4-381-2013 PG 10 WC Engineering, Mechanical SC Engineering GA AK3OM UT WOS:000338334000012 ER PT S AU Su, YJ Retterer, JM Caton, RG Stoneback, RA Pfaff, RF Roddy, PA Groves, KM AF Su, Yi-Jiun Retterer, John M. Caton, Ronald G. Stoneback, Russell A. Pfaff, Robert F. Roddy, Patrick A. Groves, Keith M. BE Huba, J Schunk, R Khazanov, G TI Air Force Low-Latitude Ionosphe SO MODELING THE IONOSPHERE-THERMOSPHERE SYSTEM SE Geophysical Monograph Book Series LA English DT Proceedings Paper CT AGU Chapman Conference on Modeling the Ionosphere/Thermosphere System CY MAY 06-12, 2011 CL Charleston, SC SP AGU ID EQUATORIAL SPREAD F; SCINTILLATION; JICAMARCA; DRIFTS AB In this article, we describe and demonstrate the capabilities of the low-latitude physics-based ionospheric model (PBMOD) developed at the Air Force Research Laboratory to specify radio scintillations using data collected during an April 2009 campaign dedicated to measurements with the Communication/Navigation Outage Forecasting System (C/NOFS). The electric fields/plasma drifts are believed to be the primary driver of the dynamics in the low-latitude ionosphere. With electric field measurements ingested into PBMOD, estimated scintillation strengths (S4) were comparable with ground measurements at 250 MHz recorded at Anocn, Peru; Christmas Island; and Kwajalein Atoll. These scintillations were associated with upward plasma drifts, although in some places, actual conditions were not precisely determined due to data gaps caused by spurious fields. We also present simulation results obtained from PBMOD driven by four different empirical drift models to specify global ionospheric densities. Discrete longitudinal structures are evident in both averaged density and drift observations. Density outputs from C/NOFS-driven simulations present similar wave 3 or wave 4 structures in geographical longitudes. In contrast, such density structures, likely associated with atmospheric tides, are absent when driving PBMOD with Scherliess-Fejer drifts. Model results have been quantitatively compared with in situ density measurements obtained from C/NOFS, Defense Meteorological Satellite Program, and CHAMP at altitudes ranging from similar to 350 to 850 km. We found that, on average, the smallest error in modeled densities came from simulations driven by the Ion Velocity Drift Meter drifts. We expect to increase the accuracy of forecasted low-latitude ionospheric densities with more accurate and continuous plasma drift measurements. C1 [Su, Yi-Jiun; Caton, Ronald G.; Roddy, Patrick A.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. [Retterer, John M.; Groves, Keith M.] Boston Coll, Inst Sci Res, Chestnut Hill, MA USA. [Stoneback, Russell A.] Univ Texas Dallas, Dept Phys, Dallas, TX USA. [Stoneback, Russell A.] Univ Texas Dallas, Ctr Space Sci, Dallas, TX USA. [Pfaff, Robert F.] Natl Aeronaut & Space Adm, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Su, YJ (reprint author), Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. EM Yi-Jiun.Su@kirtland.af.mil FU AFRL; Department of Defense Space Test Program; National Aeronautics and Space Administration; Naval ResearchLaboratory; Aerospace Corporation; NASA [NNH09AK051]; AFOSR [11RV04COR, 12RV10COR] FX The C/NOFS mission is supported by the AFRL, the Department of Defense Space Test Program, the National Aeronautics and Space Administration, the Naval ResearchLaboratory, and the Aerospace Corporation. The first author thanks the IVM principle investigator, R. A. Heelis, for supporting the usage of drift data. This research task was supported, in part, by the NASA grant NNH09AK051, the AFOSR grants 11RV04COR and 12RV10COR to AFRL, and the Ionospheric Impacts on RF Systems 6.2 program at AFRL. NR 37 TC 0 Z9 0 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0065-8448 BN 978-1-118-70441-7; 978-0-87590-490-0 J9 GEOPHYS MONOGR SER PY 2013 VL 201 BP 107 EP 117 DI 10.1029/2012GM001268 PG 11 WC Geochemistry & Geophysics; Mathematics, Interdisciplinary Applications; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Mathematics; Meteorology & Atmospheric Sciences GA BA8FV UT WOS:000338043600011 ER PT S AU Shim, JS Kuznetsova, M Rastatter, L Bilitza, D Butala, M Codrescu, M Emery, BA Foster, B Fuller-Rowell, TJ Huba, J Mannucci, AJ Pi, X Ridley, A Scherliess, L Schunk, RW Sojka, JJ Stephens, P Thompson, DC Weimer, D Zhu, L Anderson, D Chau, JL Sutton, E AF Shim, J. S. Kuznetsova, M. Rastaetter, L. Bilitza, D. Butala, M. Codrescu, M. Emery, B. A. Foster, B. Fuller-Rowell, T. J. Huba, J. Mannucci, A. J. Pi, X. Ridley, A. Scherliess, L. Schunk, R. W. Sojka, J. J. Stephens, P. Thompson, D. C. Weimer, D. Zhu, L. Anderson, D. Chau, J. L. Sutton, E. BE Huba, J Schunk, R Khazanov, G TI Systematic Evaluation of Ionosphere/Thermosphere (IT) Models: CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge (2009-2010) SO MODELING THE IONOSPHERE-THERMOSPHERE SYSTEM SE Geophysical Monograph Book Series LA English DT Proceedings Paper CT AGU Chapman Conference on Modeling the Ionosphere/Thermosphere System CY MAY 06-12, 2011 CL Charleston, SC SP AGU ID GENERAL-CIRCULATION MODEL; COUPLED ELECTRODYNAMICS AB Systematic quantitative assessment of ionosphere/thermosphere (IT) models is critical in evaluating different modeling approaches, better understanding strengths and weaknesses of the models, and tracking model improvements. The coupling energetics and dynamics of atmospheric regions (CEDAR) community has been leading the CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge since June 2009 in order to address such a need. In the first round of the CEDAR ETI Challenge, we evaluated the performance of about 10 IT models in predicting a number of selected physical parameters, such as vertical ion drifts near the magnetic equator, and electron and neutral densities during the selected nine events, which correspond to three different geomagnetic conditions. To quantify the performance, we obtained four skill scores (RMS error, prediction efficiency, ratio of (maximum (max)-minimum), and ratio of max amplitude). The four skill scores were calculated as a function of geomagnetic activity level and geographic latitude in order to investigate how the model performance depends on them. We found a noticeable dependence of the model performance on geomagnetic activity and latitude. We also observed that the model performance mostly varies with the type of parameters and metrics used. C1 [Shim, J. S.] NASA, GPHI, UMBC, GSFC, Greenbelt, MD 20771 USA. RP Shim, JS (reprint author), NASA, GPHI, UMBC, GSFC, Greenbelt, MD 20771 USA. EM jasoon.shim@nasa.gov RI Sutton, Eric/A-1574-2016; Ridley, Aaron/F-3943-2011; OI Sutton, Eric/0000-0003-1424-7189; Ridley, Aaron/0000-0001-6933-8534; Scherliess, Ludger/0000-0002-7388-5255 FU National Science Foundation (NSF) [AGS-0905448] FX The Jicamarca Radio Observatory is a facility of the Instituto Geofisico del Peru operated with support from the National Science Foundation (NSF) award AGS-0905448 throughCornell University. The CHAMP neutral density data used in this study are obtained NR 48 TC 1 Z9 1 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0065-8448 BN 978-1-118-70441-7; 978-0-87590-490-0 J9 GEOPHYS MONOGR SER PY 2013 VL 201 BP 145 EP 160 DI 10.1029/2012GM001293 PG 16 WC Geochemistry & Geophysics; Mathematics, Interdisciplinary Applications; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Mathematics; Meteorology & Atmospheric Sciences GA BA8FV UT WOS:000338043600014 ER PT S AU Hebert, P Howard, T Hudson, N Ma, J Burdick, JW AF Hebert, Paul Howard, Thomas Hudson, Nicolas Ma, Jeremy Burdick, Joel W. GP IEEE TI The Next Best Touch for Model-Based Localization SO 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 06-10, 2013 CL Karlsruhe, GERMANY SP IEEE AB This paper introduces a tactile or contact method whereby an autonomous robot equipped with suitable sensors can choose the next sensing action involving touch in order to accurately localize an object in its environment. The method uses an information gain metric based on the uncertainty of the object's pose to determine the next best touching action. Intuitively, the optimal action is the one that is the most informative. The action is then carried out and the state of the object's pose is updated using an estimator. The method is further extended to choose the most informative action to simultaneously localize and estimate the object's model parameter or model class. Results are presented both in simulation and in experiment on the DARPA Autonomous Robotic Manipulation Software (ARM-S) robot. C1 [Hebert, Paul; Howard, Thomas; Hudson, Nicolas; Ma, Jeremy] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Burdick, Joel W.] CALTECH, Pasadena, CA 91124 USA. RP Hebert, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Science and Engineering Research Council of Canada (NSERC); DARPA FX The author wishes to acknowledge the support of the work by the National Science and Engineering Research Council of Canada (NSERC) and DARPAs Autonomous Robotic Manipulation Software Track (ARM-S) program through an agreement with NASA. c 2013. All rights reserved. NR 22 TC 4 Z9 4 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 BN 978-1-4673-5641-1; 978-1-4673-5643-5 J9 IEEE INT CONF ROBOT PY 2013 BP 99 EP 106 PG 8 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA7KQ UT WOS:000337617300015 ER PT S AU Hebert, P Hudson, N Ma, J Burdick, JW AF Hebert, Paul Hudson, Nicolas Ma, Jeremy Burdick, Joel W. GP IEEE TI Dual Arm Estimation for Coordinated Bimanual Manipulation SO 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 06-10, 2013 CL Karlsruhe, GERMANY SP IEEE AB This paper develops an estimation framework for sensor-guided dual-arm manipulation of a rigid object. Using an unscented Kalman Filter (UKF), the approach combines both visual and kinesthetic information to track both the manipulators and object. From visual updates of the object and manipulators, and tactile updates, the method estimates both the robot's internal state and the object's pose. Nonlinear constraints are incorporated into the framework to deal with the an additional arm and ensure the state is consistent. Two frameworks are compared in which the first framework run two single arm filters in parallel and the second consists of the augment dual arm filter with nonlinear constraints. Experiments on a wheel changing task are demonstrated using the DARPA ARM-S system, consisting of dual Barrett (TM) WAM manipulators. C1 [Hebert, Paul; Hudson, Nicolas; Ma, Jeremy] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Burdick, Joel W.] CALTECH, Pasadena, CA 91125 USA. RP Hebert, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Science and Engineering Research Council of Canada (NSERC); DARPA FX The author gratefully acknowledges the support from the National Science and Engineering Research Council of Canada (NSERC). The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, with funding from the DARPA Autonomous Robotic Manipulation Software Track (ARM-S) program and the U.S. Army under the Robotics Collaborative Technology Alliance through an agreement with NASA. (c) 2013. All rights reserved. NR 27 TC 4 Z9 4 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 BN 978-1-4673-5641-1; 978-1-4673-5643-5 J9 IEEE INT CONF ROBOT PY 2013 BP 120 EP 125 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA7KQ UT WOS:000337617300018 ER PT S AU Wolf, MT Assad, C Vernacchia, MT Fromm, J Jethani, HL AF Wolf, Michael T. Assad, Christopher Vernacchia, Matthew T. Fromm, Joshua Jethani, Henna L. GP IEEE TI Gesture-Based Robot Control with Variable Autonomy from the JPL BioSleeve SO 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 06-10, 2013 CL Karlsruhe, GERMANY SP IEEE AB This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands. C1 [Wolf, Michael T.; Assad, Christopher] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Vernacchia, Matthew T.; Jethani, Henna L.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Fromm, Joshua] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Wolf, MT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM wolf@jpl.nasa.gov; christopher.assad@jpl.nasa.gov FU Defense Advanced Research Projects Agency (DARPA) [MIPR2C080XR010] FX Part of this work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through the Army Research Office, Contract No. MIPR2C080XR010. We would also like to thank Dr. Nicolas Hudson and the JPL DARPA ARM team NR 19 TC 9 Z9 9 U1 2 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 BN 978-1-4673-5641-1; 978-1-4673-5643-5 J9 IEEE INT CONF ROBOT PY 2013 BP 1160 EP 1165 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA7KQ UT WOS:000337617301024 ER PT S AU Achtelik, MW Weiss, S Chli, M Siegwart, R AF Achtelik, Markus W. Weiss, Stephan Chli, Margarita Siegwart, Roland GP IEEE TI Path Planning for Motion Dependent State Estimation on Micro Aerial Vehicles SO 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 06-10, 2013 CL Karlsruhe, GERMANY SP IEEE ID CALIBRATION AB With navigation algorithms reaching a certain maturity in the field of mobile robots, the community now focuses on more advanced tasks like path planning towards increased autonomy. While the goal is to efficiently compute a path to a target destination, the uncertainty in the robot's perception cannot be ignored if a realistic path is to be computed. With most state of the art navigation systems providing the uncertainty in motion estimation, here we propose to exploit this information. This leads to a system that can plan safe avoidance of obstacles, and more importantly, it can actively aid navigation by choosing a path that minimizes the uncertainty in the monitored states. Our proposed approach is applicable to systems requiring certain excitations in order to render all their states observable, such as a MAV with visual-inertial based localization. In this work, we propose an approach which takes into account this necessary motion during path planning: by employing Rapidly exploring Random Belief Trees (RRBT), the proposed approach chooses a path to a goal which allows for best estimation of the robot's states, while inherently avoiding motion in unobservable modes. We discuss our findings within the scenario of vision-based aerial navigation as one of the most challenging navigation problem, requiring sufficient excitation to reach full observability. C1 [Achtelik, Markus W.; Chli, Margarita; Siegwart, Roland] Swiss Fed Inst Technol, Zurich, Switzerland. [Weiss, Stephan] NASA Jet Propuls Lab, Weissis Technol II Comp Vis Grp, Pasadena, CA USA. RP Achtelik, MW (reprint author), Swiss Fed Inst Technol, Zurich, Switzerland. EM markus.achtelik@mavt.ethz.ch; stephan.m.weiss@jpl.nasa.gov; margarita.chli@mavt.ethz.ch; r.siegwart@ieee.org FU European Community [266470] FX The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7) under grant agreement n.266470 (myCopter). Markus Achtelik is currently PhD student, Margarita Chli is senior researcher and Roland Siegwart is full professor at the ETH Zurich and head of the Autonomous Systems Lab. Stephan Weiss is Technologist II in the Computer Vision Group of the NASA Jet ropulsion Laboratory. (email: {markus.achtelik, margarita.chli}@mavt.ethz.ch, stephan.m.weiss@jpl.nasa.gov, r.siegwart@ieee.org). NR 18 TC 6 Z9 6 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 BN 978-1-4673-5641-1; 978-1-4673-5643-5 J9 IEEE INT CONF ROBOT PY 2013 BP 3926 EP 3932 PG 7 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA7KQ UT WOS:000337617303139 ER PT S AU Allen, R Pavone, M McQuin, C Nesnas, IAD Castillo-Rogez, JC Nguyen, TN Hoffman, JA AF Allen, Ross Pavone, Marco McQuin, Christopher Nesnas, Issa A. D. Castillo-Rogez, Julie C. Tam-Nguyen Nguyen Hoffman, Jeffrey A. GP IEEE TI Internally-Actuated Rovers for All-Access Surface Mobility: Theory and Experimentation SO 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 06-10, 2013 CL Karlsruhe, GERMANY SP IEEE ID WALKING AB The future exploration of small Solar System bodies will, in part, depend on the availability of mobility platforms capable of performing both large surface coverage and short traverses to specific locations. Weak gravitational fields, however, make the adoption of traditional mobility systems difficult. In this paper we present a planetary mobility platform (called "spacecraft/rover hybrid") that relies on internal actuation. A hybrid is a small (similar to 5 kg), multifaceted robot enclosing three mutually orthogonal flywheels and surrounded by external spikes or contact surfaces. By accelerating/decelerating the flywheels and by exploiting the low-gravity environment, such a platform can perform both long excursions (by hopping) and short, precise traverses (through controlled "tumbles"). This concept has the potential to lead to small, quasi-expendable, yet maneuverable rovers that are robust as they have no external moving parts. In the first part of the paper we characterize the dynamics of such platforms (including fundamental limitations of performance) and we discuss control and planning algorithms. In the second part, we discuss the development of a prototype and present experimental results both in simulations and on physical test stands emulating low-gravity environments. Collectively, our results lay the foundations for the design of internally-actuated rovers with controlled mobility (as opposed to random hopping motion). C1 [Allen, Ross; Pavone, Marco] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [McQuin, Christopher; Nesnas, Issa A. D.; Castillo-Rogez, Julie C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tam-Nguyen Nguyen; Hoffman, Jeffrey A.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. RP Allen, R (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. EM rallen10@stanford.edu; pavone@stanford.edu; christopher.mcquin@jpl.nasa.gov; issa.a.nesnas@jpl.nasa.gov; julie.c.castillo@jpl.nasa.gov; tamz@mit.edu; jhoffmal@mit.edu FU NASA; JPL FX The research described in this paper was partially carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, and was partially supported by NASA under the Innovative Advanced Concepts program, and by JPL under the R&TD and CAP programs. The authors wish to acknowledge insightful discussions with Dr. Cinzia Zuffada (JPL), Dr. Tom Cwik (JPL), and Dr. Jonas Zmuidzinas (JPL). Government sponsorship acknowledged. NR 17 TC 4 Z9 4 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 BN 978-1-4673-5641-1; 978-1-4673-5643-5 J9 IEEE INT CONF ROBOT PY 2013 BP 5481 EP 5488 PG 8 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA7KQ UT WOS:000337617305075 ER PT S AU Tanner, MM Burdick, JW Nesnas, IAD AF Tanner, Melissa M. Burdick, Joel W. Nesnas, Issa A. D. GP IEEE TI Online Motion Planning for Tethered Robots in Extreme Terrain SO 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 06-10, 2013 CL Karlsruhe, GERMANY SP IEEE ID SHORTEST PATHS AB Several potentially important science targets have been observed in extreme terrains (steep or vertical slopes, possibly covered in loose soil or granular media) on other planets. Robots which can access these extreme terrains will likely use tethers to provide climbing and stabilizing force. To prevent tether entanglement during descent and subsequent ascent through such terrain, a motion planning procedure is needed. Abad-Manterola, Nesnas, and Burdick [1] previously presented such a motion planner for the case in which the geometry of the terrain is known a priori with high precision. Their algorithm finds ascent/descent paths of fixed homotopy, which minimizes the likelihood of tether entanglement. This paper presents an extension of the algorithm to the case where the terrain is poorly known prior to the start of the descent. In particular, we develop new results for how the discovery of previously unknown obstacles modifies the homotopy classes underlying the motion planning problem. We also present a planning algorithm which takes the modified homotopy into account. An example illustrates the methodology. C1 [Tanner, Melissa M.; Burdick, Joel W.] CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA. [Nesnas, Issa A. D.] Jet Prop Lab, Pasadena, CA 91109 USA. RP Tanner, MM (reprint author), CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA. EM mmtanner@caltech.edu; jwb@robotics.caltech.edu; nesnas@jpl.nasa.gov FU Keck Institute; JPL RTD FX This work was supported by the Keck Institute for Space Studies. In addition, the third author was supported by the JPL RTD program. NR 15 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 BN 978-1-4673-5641-1; 978-1-4673-5643-5 J9 IEEE INT CONF ROBOT PY 2013 BP 5557 EP 5564 PG 8 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA7KQ UT WOS:000337617305087 ER PT S AU Jacobson, NS AF Jacobson, N. S. BE Jacobson, N Markus, T TI Mass Spectrometric Studies of Oxides SO PROCEEDINGS OF THE WORKSHOP ON KNUDSEN EFFUSION MASS SPECTROMETRY SE ECS Transactions LA English DT Proceedings Paper CT Workshop on Knudsen Effusion Mass Spectrometry (KEMS) CY APR 23-25, 2012 CL Julich, GERMANY SP High Temp Mat Div ID IONIZATION CROSS-SECTIONS; HIGH-TEMPERATURE; BORIC OXIDE; PHASE-EQUILIBRIA; VAPOR-PRESSURE; THERMODYNAMICS; VAPORIZATION; SYSTEM; MOLECULES; B2O3(1) AB Current studies at NASA Glenn on oxide thermodynamics are discussed. Previous studies on the vaporization of B2O3 in reducing atmospheres led to inconsistent studies when B was used as a reductant. It is shown that liquid B2O3 does not wet B and a clear phase separation was noted in the Knudsen cell. This problem was solved by using FeB and Fe2B to supply a different and constant activity of B. The thermodynamic data thus derived are compared to quantum chemical composite calculations. A major problem in high temperature mass spectrometry is the determination of accurate ionization cross sections, particularly for molecules. The method of Deutsch and Mark shows promise and some sample calculations are discussed. Finally current studies on the thermodynamics of rare earth silicates are discussed. Here the problems are obtaining a measurable signal from SiO2 vaporization and non-equilibrium vaporization. The use of a Ta reducing agent provides a stronger signal, which is related to silica activity. The Whitman-Motzfeld relation adapted to KEMS measurements is applied to obtain equilibrium pressures. C1 NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. RP Jacobson, NS (reprint author), NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. NR 38 TC 2 Z9 2 U1 0 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-384-1 J9 ECS TRANSACTIONS PY 2013 VL 46 IS 1 BP 39 EP 53 DI 10.1149/04601.0039ecst PG 15 WC Electrochemistry; Spectroscopy SC Electrochemistry; Spectroscopy GA BA7SP UT WOS:000337746600003 ER PT S AU Copland, EH Auping, JV Jacobson, NS AF Copland, E. H. Auping, J. V. Jacobson, N. S. BE Jacobson, N Markus, T TI The Process of Developing a Multi-Cell KEMS Instrument SO PROCEEDINGS OF THE WORKSHOP ON KNUDSEN EFFUSION MASS SPECTROMETRY SE ECS Transactions LA English DT Proceedings Paper CT Workshop on Knudsen Effusion Mass Spectrometry (KEMS) CY APR 23-25, 2012 CL Julich, GERMANY SP High Temp Mat Div ID SYSTEM AB Multi-cell KEMS offers many advantages over single cell instruments in regard to in-situ temperature calibration and studies on high temperature alloys and oxides of interest to NASA. The instrument at NASA Glenn is a 90 degrees magnetic sector instrument originally designed for single cell operation. The conversion of this instrument to a multi-cell instrument with restricted collimation is discussed. For restricted collimation, the 'field aperture' is in the copper plate separating the Knudsen Cell region and the ionizer and the 'source aperture' is adjacent to the ionizer box. A computer controlled x-y table allows positioning of one of the three cells into the sampling region. Heating is accomplished via a Ta sheet element and temperature is measured via an automatic pyrometer from the bottom of the cells. The computer control and data system have been custom developed for this instrument and are discussed. Future improvements are also discussed. C1 [Copland, E. H.] CSIRO CMSE, Lindfield, NSW 2070, Australia. [Auping, J. V.; Jacobson, N. S.] NASA Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. RP Copland, EH (reprint author), CSIRO CMSE, Lindfield, NSW 2070, Australia. FU NASA's Fundamental Aeronautics Program FX We thank Prof. Christian Chatillon, Grenoble, France for the many useful papers and discussions which led to the development of this system at NASA Glenn. We also thank Ben Ebihara of NASA Glenn who did the initial design of the multi-cell flange. We are also grateful to the expert machinists at Glenn who worked on various aspects of this instrument. This work was funded by NASA's Fundamental Aeronautics Program. NR 8 TC 0 Z9 0 U1 0 U2 0 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-384-1 J9 ECS TRANSACTIONS PY 2013 VL 46 IS 1 BP 197 EP 209 DI 10.1149/04601.0197ecst PG 13 WC Electrochemistry; Spectroscopy SC Electrochemistry; Spectroscopy GA BA7SP UT WOS:000337746600015 ER PT S AU Davis, AB Garay, MJ Xu, F Qu, Z Emde, C AF Davis, Anthony B. Garay, Michael J. Xu, Feng Qu, Zheng Emde, Claudia BE Shaw, JA LeMaster, DA TI 3D radiative transfer effects in multi-angle/multispectral radio-polarimetric signals from a mixture of clouds and aerosols viewed by a non-imaging sensor SO POLARIZATION SCIENCE AND REMOTE SENSING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Polarization Science and Remote Sensing VI CY AUG 26-29, 2013 CL San Diego, CA SP SPIE DE ID vector radiative transfer; 3D vector radiative transfer; aerosol remote sensing; cloud contamination; unresolved cloud adjacency effects; APS; Glory satellite mission; POLDER; PARASOL satellite mission; ACE satellite mission ID LARGE-EDDY SIMULATION; POLARIZATION MEASUREMENTS; SIMULTANEOUS RETRIEVAL; SOFTWARE PACKAGE; CAPABILITIES; VALIDATION AB When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only ID vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal not noise for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed. C1 [Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Qu, Zheng] Raytheon Co, Pasadena, CA 91101 USA. [Emde, Claudia] Univ Munich, Fak Phys, Meteorologisches Inst, D-80333 Munich, Germany. RP Davis, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Anthony.B.Davis@jpl.nasa.gov; Michael.J.Garay@jpl.nasa.gov; Feng.Xu@jpl.nasa.gov; zheng.qu@jpl.nasa.gov; claudia.emde@lmu.de RI Emde, Claudia/B-5447-2010 FU NASA's Radiation Sciences Program FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We are grateful for financial support from NASAs Radiation Sciences Program managed by Dr. Hal Maring. We thank Drs. David J. Diner and Olga Kalashnikova at JPL, Drs. Michael I. Mishchenko and Brian Cairns at NASA/GISS, as well as Drs. Alexan- der Kokhanovsky (Bremen U.) and Otto Hasekamp (SRON) for fruitful discussions on multi-angle spectro- polarimetry with and without imaging. Finally, we thank Prof. Bernhard Mayer of Ludwig Maximilians Univer- sity for permission to use MYSTIC and help in taming it. NR 25 TC 3 Z9 3 U1 1 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9723-9 J9 PROC SPIE PY 2013 VL 8873 AR UNSP 887309 DI 10.1117/12.2023733 PG 18 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BA5MT UT WOS:000336801500008 ER PT S AU Diner, DJ Garay, MJ Kalashnikova, OV Rheingans, BE Geier, S Bull, MA Jovanovic, VM Xu, F Bruegge, CJ Davis, A Crabtree, K Chipman, RA AF Diner, David J. Garay, Michael J. Kalashnikova, Olga V. Rheingans, Brian E. Geier, Sven Bull, Michael A. Jovanovic, Veljko M. Xu, Feng Bruegge, Carol J. Davis, Ab Crabtree, Karlton Chipman, Russell A. BE Shaw, JA LeMaster, DA TI Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) observations over California during NASA's Polarimeter Definition Experiment (PODEX) SO POLARIZATION SCIENCE AND REMOTE SENSING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Polarization Science and Remote Sensing VI CY AUG 26-29, 2013 CL San Diego, CA SP SPIE DE imaging polarimetry; remote sensing; aerosols; clouds; AirMSPI ID RESEARCH SCANNING POLARIMETER; AEROSOL PROPERTIES; POLARIZATION MEASUREMENTS; RETRIEVAL; CLOUDS; GLORIES; OCEAN; ULTRAVIOLET; INTENSITY; SUNLIGHT AB The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a +/- 67 degrees along-track range. The instrument flies aboard NASA's high-altitude ER-2 aircraft, and acquires Earth imagery with similar to 10 m spatial resolution across an 11-km wide swath. Radiance data are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers also enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. During January-February 2013, AirMSPI data were acquired over California as part of NASA's Polarimeter Definition Experiment (PODEX), a field campaign designed to refine requirements for the future Aerosol-Cloud-Ecosystem (ACE) satellite mission. Observations of aerosols, low-and mid-level cloud fields, cirrus, aircraft contrails, and clear skies were obtained over the San Joaquin Valley and the Pacific Ocean during PODEX. Example radiance and polarization images are presented to illustrate some of the instrument's capabilities. C1 [Diner, David J.; Garay, Michael J.; Kalashnikova, Olga V.; Rheingans, Brian E.; Geier, Sven; Bull, Michael A.; Jovanovic, Veljko M.; Xu, Feng; Bruegge, Carol J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Davis, Ab] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. [Crabtree, Karlton; Chipman, Russell A.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Diner, DJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM David.J.Diner@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology; NASA; University of Texas Center for Space Research; University of Arizona College of Optical Sciences; JPL; NASA Earth Science Instrument Incubator; Airborne Instrument Technology Transition FX This research is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA, at the University of Texas Center for Space Research, and the University of Arizona College of Optical Sciences, under subcontract with JPL. Funding from the NASA Earth Science Instrument Incubator, Airborne Instrument Technology Transition, Research, and Flight Programs is gratefully acknowledged. NR 44 TC 2 Z9 3 U1 1 U2 9 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9723-9 J9 PROC SPIE PY 2013 VL 8873 AR UNSP 88730B DI 10.1117/12.2024605 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BA5MT UT WOS:000336801500009 ER PT S AU Lu, XM Hu, YX Liu, ZY Zeng, S Trepte, C AF Lu, Xiaomei Hu, Yongxiang Liu, Zhaoyan Zeng, Shan Trepte, Charles BE Shaw, JA LeMaster, DA TI CALIOP receiver transient response stud SO POLARIZATION SCIENCE AND REMOTE SENSING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Polarization Science and Remote Sensing VI CY AUG 26-29, 2013 CL San Diego, CA SP SPIE DE Lidar; CALIOP; Transient response; cloud and aerosol; PMT ID SIGNAL-INDUCED NOISE; LIDAR; RETRIEVAL; CLOUDS; TAIL AB The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), an instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), was operated as an atmospheric lidar system to study the impact of clouds and aerosols on the Earth's radiation budget and climate. This paper discusses the receiver transient response of the CALIOP instrument, which is useful for getting a reliable attenuated backscatter profile from CALIOP data products. The noise tail effect (slow decaying rate) of PMT and broadening effect of the low-pass filter are both considered in modeling of the receiver transient response. An analytical expression of the CALIOP transient response function was obtained by the least square fitting of lidar measurements from land surfaces. C1 [Lu, Xiaomei; Zeng, Shan] NASA Langley Res Ctr, Hampton, VA 23666 USA. RP Lu, XM (reprint author), NASA Langley Res Ctr, Hampton, VA 23666 USA. EM yongxiang.hu-1@nasa.gov RI Liu, Zhaoyan/B-1783-2010; Hu, Yongxiang/K-4426-2012 OI Liu, Zhaoyan/0000-0003-4996-5738; NR 17 TC 1 Z9 1 U1 0 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9723-9 J9 PROC SPIE PY 2013 VL 8873 AR UNSP 887316 DI 10.1117/12.2033589 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BA5MT UT WOS:000336801500033 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Flight dynamics and system identification for modern feedback control Avian-inspired robots Introduction SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Editorial Material; Book Chapter DE state of the art; scope; contributions AB This chapter introduces the reader to how ornithopters currently reside in our world, from where they were conceived, and where they are headed. First, the current design market for unmanned air vehicles is discussed, followed by the niche that ornithopters fill. Then current knowledge on the design, aerodynamics, vehicle dynamics, and feedback control is summarized. The chapter ends with defining a path for the contributions presented in this manuscript. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 1 EP 13 DI 10.1533/9780857094674.1 PG 13 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700002 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Ornithopter test platform characterizations SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE aircraft dynamics; flight data; mass distribution AB The form and structure of mathematical models describing conventional aircraft flight dynamics are well known; however, it is not obvious whether these same models can be used to describe the flight dynamics of ornithopters. This chapter presents experimental investigations into flapping-wing flight using an ornithopter test platform. Standard nomenclature for describing aircraft flight dynamics is introduced, followed by a description of the ornithopter test platform. Afterwards, flight data is presented that exhibits nonlinear phenomenon including fast and large amplitude motions, as well as limit cycle oscillations. The mass distribution of the ornithopter is then explored, and it is shown that the flapping wings induce significant changes in the center of mass location, inertia tensor, and inertia rates. An experiment is summarized where measured lift and thrust forces were modeled using quasi-steady aerodynamics. Finally, implications for flight dynamics modeling are discussed and a new model for flapping-wing aircraft is outlined. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 15 EP 36 DI 10.1533/9780857094674.15 PG 22 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700003 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Flight dynamics and system identification for modern feedback control Avian-inspired robots Preface SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Editorial Material; Book Chapter RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP XVII EP + PG 12 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700001 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Rigid multibody vehicle dynamics SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE rigid multibody dynamics; Lagrange; equations of motion AB Chapter 2 concluded with a recommendation to model ornithopter flight dynamics using nonlinear multibody techniques. In this chapter, the nonlinear equations of motion are derived for a multibody ornithopter. The model configuration is first presented, where the ornithopter is simplified as a system of three rigid bodies. The kinematic equations are then derived for this system, followed by the dynamic equations. Energy methods were employed, which resulted in a minimum state model, cast into a canonical form and having Lyapunov functions derived from scalar energy functions. At the conclusion of this chapter, only the aerodynamics model remains to be determined. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 37 EP 49 DI 10.1533/9780857094674.37 PG 13 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700004 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI System identification of aerodynamic models SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE system identification; aerodynamics; nonlinear AB In Chapter 2 it was determined that a nonlinear multibody model was needed to describe the flight dynamics of the ornithopter. In Chapter 3 the rigid body equations of motion, as well as the gravitational effects, were derived from first principles. The aerodynamics for an arbitrary flapping wing vehicle are difficult to model analytically, and are determined in this work using system identification methods with experimental data. This chapter begins with a presentation of the system identification methods employed herein. Afterwards, tail aerodynamic models are identified from wind tunnel data, and wing aerodynamic models are identified from flight test data. This chapter concludes the nonlinear multibody model of the ornithopter flight dynamics. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 51 EP 71 DI 10.1533/9780857094674.51 PG 21 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700005 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Simulation results SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE numerical linearization; linear time-invariant; linear time-periodic AB In the previous chapters, the equations of motion were determined for the ornithopter. In this chapter, those equations are programmed into a nonlinear flight simulator for the purposes of simulation and model simplification. An overview of the simulation environment is first presented. Afterwards, a method is discussed for trimming the model for straight and level mean flight. Numerical methods are then employed to numerically linearize the model about straight and level mean flight, resulting in both a conventional time-invariant model as well as a time-periodic model. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 73 EP 96 DI 10.1533/9780857094674.71 PG 24 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700006 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Flight dynamics and system identification for modern feedback control Avian-inspired robots Concluding remarks SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Editorial Material; Book Chapter DE summary AB This chapter summarizes the work presented within this book. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 97 EP 102 DI 10.1533/9780857094674.95 PG 6 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700007 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Field calibration of inertial measurement units SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE IMU calibration; least-squares; flight data AB Inertial measurement units (IMUs) consist of orthogonal triads of magnetometers, gyroscopes, and accelerometers, and are used in autopilots to provide information on the vehicle pose and motion. The IMUs used on unmanned aircraft suffer from the low signal-to-noise ratios and strong temperature dependencies typical of Microelectromechcanical systems (MEMS) devices, requiring tedious laboratory testing or on-board state estimators for calibration. In this appendix, a method is presented for estimating IMU calibration constants, based on three successive least-squares computations. Memory and computation requirements are low enough for implementation on 8 bit microprocessors, and experimental data shows adequate calibration results. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 103 EP 110 PG 8 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700008 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Actuator dynamics system identification SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE actuators; dynamic models; system identification AB The ornithopter has on board a Feigao GF2030 brushless motor to drive the flapping motion, and two Hitec HS-56 servo motors to orient the tail. Due to time lags observed in flight, models for the actuator dynamics were identified to determine actuator bandwidths and to enable higher fidelity models of the flight dynamics. This section presents the system identification experiments and modeling results. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 111 EP 118 PG 8 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700009 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Equations of motion for single-body flight vehicles SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE rigid body dynamics; Boltzmann-Hamel equations; conventional aircraft AB Many flight vehicles, including conventional fixed-wing aircraft, rotary-wing aircraft, and spacecraft, can often be modeled as a single body. Derivation of the equations of motion is most commonly performed using the Newton-Euler approach [1, 37]; however, to provide familiarity with the energy approach presented in Chapter 3, the equations of motion for a single-body vehicle are derived here using the Boltzmann-Hamel equations. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 119 EP 121 PG 3 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700010 ER PT S AU Grauer, J AF Grauer, Jared BA Grauer, JA Hubbard, JE BF Grauer, JA Hubbard, JE TI Linearization of a conventional aircraft model SO FLIGHT DYNAMICS AND SYSTEM IDENTIFICATION FOR MODERN FEEDBACK CONTROL: AVIAN-INSPIRED ROBOTS SE Woodhead Publishing in Mechanical Engineering LA English DT Article; Book Chapter DE linearization; central finite differences; conventional aircraft AB This section presents the linearization of a conventional aircraft model to provide a baseline for comparison with the results presented in Chapter 5. The aircraft chosen was the single-seat fighter F-16 Fighting Falcon, which has a nominal 9279 kg mass and 9.96 m wing span. A nonlinear dynamics model is contained within SIDPAC, and is documented in references [37, 2, 86]. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2048-0571 BN 978-0-85709-467-4; 978-0-85709-466-7 J9 WOODHEAD PUBL MECH E PY 2013 BP 123 EP 127 PG 5 WC Automation & Control Systems; Engineering, Aerospace; Engineering, Mechanical; Robotics SC Automation & Control Systems; Engineering; Robotics GA BA2TW UT WOS:000333899700011 ER PT J AU Eltoft, T Grahn, J Doulgeris, A Brekke, C Ferro-Famil, L Holt, B AF Eltoft, T. Grahn, J. Doulgeris, A. Brekke, C. Ferro-Famil, L. Holt, B. GP IEEE TI Multi-frequency polarimetric analysis of sea ice SO CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR) LA English DT Proceedings Paper CT 4th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR) CY SEP 23-27, 2013 CL Tsukuba, JAPAN SP IEEE, IEEE GRSS, Japan Chapter, EIC AB This paper explores the frequency dependency of polarimetric properties of SAR backscatter from Arctic sea ice. The study focus on L and C-band full polarimetric SAR (PolSAR) data from the Beaufort Sea, collected by the NASA/JPL AIRSAR system in December 2004. An area showing various types of first year ice, plus regions of multi-year ice, is selected for a polarimetric analysis, which included a non-negative eigenvalue Freeman-Durden decomposition of the two PolSAR images. The analysis shows clear evidence of differences in the scattering mechanisms associated with L and C band frequencies. C1 [Eltoft, T.; Grahn, J.; Doulgeris, A.; Brekke, C.; Ferro-Famil, L.] Univ Tromso, Dept Phys & Technol, Tromso, Norway. [Ferro-Famil, L.] Univ Rennes 1, IETR, Rennes, France. [Holt, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Eltoft, T.] No Res Inst, Tromso, Norway. RP Eltoft, T (reprint author), Univ Tromso, Dept Phys & Technol, Tromso, Norway. EM torbjorn.eltoft@uit.no NR 6 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA PY 2013 BP 96 EP 99 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BA4HP UT WOS:000335733900030 ER PT B AU Aboudi, J Arnold, S Bednarcyk, B AF Aboudi, Jacob Arnold, Steve Bednarcyk, Brett BA Aboudi, J Arnold, SM Bednarcyk, BA BF Aboudi, J Arnold, SM Bednarcyk, BA TI Constituent Material Modeling SO MICROMECHANICS OF COMPOSITE MATERIALS: A GENERALIZED MULTISCALE ANALYSIS APPROACH LA English DT Article; Book Chapter C1 [Aboudi, Jacob] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Arnold, Steve; Bednarcyk, Brett] NASA, Glenn Res Ctr, Washington, DC USA. RP Aboudi, J (reprint author), Tel Aviv Univ, IL-69978 Tel Aviv, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-397759-5; 978-0-12-397035-0 PY 2013 BP 19 EP 85 DI 10.1016/B978-0-12-397035-0.00002-1 PG 67 WC Materials Science, Characterization & Testing; Materials Science, Composites; Physics, Applied SC Materials Science; Physics GA BA0NO UT WOS:000331955800003 ER PT B AU Fox, JM Poffenberger, M AF Fox, Jefferson M. Poffenberger, Mark BE Poffenberger, M TI LAND USE AND FOREST CHANGE IN RATANAKIRI SO CAMBODIAS CONTESTED FOREST DOMAIN: THE ROLE OF COMMUNITY FORESTRY IN THE NEW MILLENNIUM SE Asian Studies LA English DT Article; Book Chapter C1 [Fox, Jefferson M.] East West Ctr, Honolulu, HI 96848 USA. [Fox, Jefferson M.] NASA, Washington, DC USA. [Poffenberger, Mark] East West Ctr, Honolulu, HI USA. [Poffenberger, Mark] United Nations Forum Forests, Istanbul, Turkey. RP Fox, JM (reprint author), East West Ctr, Honolulu, HI 96848 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ATENEO DE MANILA UNIV PI QUEZON CITY PA LOYOLA HEIGHTS, QUEZON CITY 1108, PHILIPPINES BN 978-971-550-653-3 J9 ASIAN STUD PY 2013 BP 103 EP 126 PG 24 WC Environmental Studies; Forestry SC Environmental Sciences & Ecology; Forestry GA BA2IM UT WOS:000333431900006 ER PT S AU Boghosian, M Narvaez, P Herman, R AF Boghosian, Mary Narvaez, Pablo Herman, Ray GP IEEE TI Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications SO 2013 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC) SE IEEE International Symposium on Electromagnetic Compatibility LA English DT Proceedings Paper CT IEEE International Symposium on Electromagnetic Compatibility (EMC) CY AUG 05-09, 2013 CL Denver, CO SP IEEE, Adv Test Equipment Rentals, ANDRO, ETS LINDGREN, FEKO, Gauss Instruments, Infield Sci Inc, Retlif Testing Labs, CCPIT Gen Ind Sub Council, ECN, EMV Europe, ENR, Evaluat Engn, In Compliance, ITEM Media, Microwave Journal, Safety & EMC China, Webcom Commun, Wireless Design & Dev AB The Aerospace Corporation (Aerospace) with Jet Propulsion Laboratory (JPL) and Lockheed Martin Space Systems (LMSS) participated in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The JUNO magnetic cleanliness program was applied from early flight system development up through system level environmental testing. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities applied for the magnetic cleanliness program. C1 [Boghosian, Mary; Herman, Ray] Aerosp Corp, Pasadena, CA 91101 USA. [Narvaez, Pablo] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Boghosian, M (reprint author), Aerosp Corp, Pasadena, CA 91101 USA. EM Mary.H.Boghosian@aero.org; rayherman@live.com NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2158-110X BN 978-1-4799-0409-9; 978-1-4799-0408-2 J9 IEEE INT SYMP ELEC PY 2013 BP 265 EP 270 PG 6 WC Engineering, Electrical & Electronic SC Engineering GA BA3WJ UT WOS:000334998800051 ER PT S AU Burnham, K Scully, R Norgard, J AF Burnham, Karen Scully, Robert Norgard, John GP IEEE TI NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes SO 2013 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC) SE IEEE International Symposium on Electromagnetic Compatibility LA English DT Proceedings Paper CT IEEE International Symposium on Electromagnetic Compatibility (EMC) CY AUG 05-09, 2013 CL Denver, CO SP IEEE, Adv Test Equipment Rentals, ANDRO, ETS LINDGREN, FEKO, Gauss Instruments, Infield Sci Inc, Retlif Testing Labs, CCPIT Gen Ind Sub Council, ECN, EMV Europe, ENR, Evaluat Engn, In Compliance, ITEM Media, Microwave Journal, Safety & EMC China, Webcom Commun, Wireless Design & Dev AB The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability. C1 [Burnham, Karen; Scully, Robert; Norgard, John] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Burnham, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM karen.burnham@nasa.gov; robert.c.scully@nasa.gov; john.d.norgard@nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2158-110X BN 978-1-4799-0409-9; 978-1-4799-0408-2 J9 IEEE INT SYMP ELEC PY 2013 BP 365 EP 370 PG 6 WC Engineering, Electrical & Electronic SC Engineering GA BA3WJ UT WOS:000334998800069 ER PT S AU Foote, KG Holt, SM Williams, AJ AF Foote, Kenneth G. Holt, Stephen M. Williams, Albert J., III GP IEEE TI OES Standards Initiative SO 2013 OCEANS - SAN DIEGO SE OCEANS-IEEE LA English DT Proceedings Paper CT MTS/IEEE Oceans Conference CY SEP 23-27, 2013 CL San Diego, CA SP IEEE, Marine Technol Soc, IEEE Oceanic Engn Soc, Newfoundland Labrador, Seacon, UC San Diego, Scripps Inst Oceanog DE standards; protocols; quality assurance procedures; best practices; calibration ID SEAWATER; CALIBRATION; SONAR AB Information on standards, protocols, quality assurance (QA) procedures, and best practices that are important in ocean engineering is widely scattered throughout the literature, both published and unpublished. To promote good practice in ocean engineering, the OES Standards Initiative of the IEEE Oceanic Engineering Society aims to compile and disseminate such information through the OES website on a dedicated "Standards" webpage under Technical Activities. This publication will be supported by papers to OCEANS Conferences and other conferences, meetings, and symposia. The OES Standards Committee is coordinating this work, as well as promoting collaboration with the other Technology Committees of OES. The Committee is also soliciting information on standards from the ocean engineering and oceanographic communities. In this presentation, three examples of standards information are described in the manner of their intended publication on the webpage. These include standards on the equation of state of sea water; standards used in the offshore oil and gas industry; and standards and protocols for the calibration of electroacoustic transducers and sonars. C1 [Foote, Kenneth G.; Williams, Albert J., III] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Holt, Stephen M.] Caelum Res Corp, NASA Goddard Space Flight Ctr, Space Telescope Operat Control Ctr, Greenbelt, MD 20771 USA. RP Foote, KG (reprint author), Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. EM kfoote@whoi.edu; smdholt@gmail.com; awilliams@whoi.edu NR 21 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-0-933957-40-4 J9 OCEANS-IEEE PY 2013 PG 6 WC Engineering, Marine; Oceanography SC Engineering; Oceanography GA BA3ER UT WOS:000334165802063 ER PT S AU Frank, D Foster, D Chou, P Kao, YM Calantoni, J Sou, IM AF Frank, Donya Foster, Diane Chou, Pai Kao, Yu-Min Calantoni, Joseph Sou, In-Mei GP IEEE TI Direct Measurements of Sediment Response to Waves with "Smart Sediment Grains" SO 2013 OCEANS - SAN DIEGO SE OCEANS-IEEE LA English DT Proceedings Paper CT MTS/IEEE Oceans Conference CY SEP 23-27, 2013 CL San Diego, CA SP IEEE, Marine Technol Soc, IEEE Oceanic Engn Soc, Newfoundland Labrador, Seacon, UC San Diego, Scripps Inst Oceanog ID CONTINENTAL-SHELF; INCIPIENT MOTION; BOUNDARY-LAYER; BOTTOM; FLOW; BED AB Measurements of sediment motion have been primarily limited to indirect observations with acoustic and optical instruments. A micro-electro-mechanical systems device that can measure and record Lagrangian observations of coastal sediments at incipient motion has been developed. These sensors move freely, measure acceleration in the six degrees of freedom and their mobility characteristics are similar to coarse gravel. Experiments conducted in a small oscillating flow tunnel and a large wave flume verified that the sensors detect incipient motion under various hydrodynamic conditions. Analysis of complementary fluid velocity measurements suggest the influence of pressure gradient induced sediment motion. C1 [Frank, Donya] Univ New Hampshire, Ctr Ocean Engn, Durham, NH 03824 USA. [Foster, Diane] Univ New Hampshire, Dept Engn Mech, Durham, NH 03824 USA. [Chou, Pai] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA USA. [Kao, Yu-Min] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan. [Calantoni, Joseph; Sou, In-Mei] Stennis Space Ctr, Marine Geosci Div, Naval Res Lab, Hancock, MS USA. RP Frank, D (reprint author), Univ New Hampshire, Ctr Ocean Engn, Durham, NH 03824 USA. EM donya.frank@unh.edu; diane.foster@unh.edu; pai.chou@uci.edu; kkming761128kk@gmail.com; joe.calantoni@nrlssc.navy.mil; InMei.Sou.ctr.pt@nrlssc.navy.mil FU National Science Foundation FX We would like to thank The National Science Foundation for funding, as well as, our collaborators and colleagues for their support and advice. NR 22 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-0-933957-40-4 J9 OCEANS-IEEE PY 2013 PG 5 WC Engineering, Marine; Oceanography SC Engineering; Oceanography GA BA3ER UT WOS:000334165801132 ER PT S AU Hooker, SB Morrow, JH AF Hooker, Stanford B. Morrow, John H. GP IEEE TI Microradiometers: Hybrid Instrument Building Blocks for Next-Generation Ocean Color Instruments SO 2013 OCEANS - SAN DIEGO SE OCEANS-IEEE LA English DT Proceedings Paper CT MTS/IEEE Oceans Conference CY SEP 23-27, 2013 CL San Diego, CA SP IEEE, Marine Technol Soc, IEEE Oceanic Engn Soc, Newfoundland Labrador, Seacon, UC San Diego, Scripps Inst Oceanog DE microradiometer; radiometer; photodetector; apparent optical properties (AOPs); radiance; irradiance; profiles; hybrid instruments ID APPARENT OPTICAL-PROPERTIES; CANADIAN BEAUFORT SEA; ARCTIC-OCEAN AB NASA has a current and next-generation requirement to collect high-quality in-situ data for the vicarious calibration of ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. As aquatic remote sensing shifts from the legacy perspective of optically simplistic open oceans toward next-generation observations of myriad optically complex water masses in the coastal zone and polar regions, instrument deployments from small platforms are a necessity. In response to this need, NASA funded the development of a new approach to measuring light: the microradiometer. A microradiometer consists of a photodetector, preamplifier with controllable gain, high resolution (24 bit) analog-to-digital converter (ADC), microprocessor, and an addressable digital port. The microradiometer interface electronics allows sensors that were not traditionally considered "radiometers" to be treated in like fashion by the system electronics, greatly simplifying the addition of other detectors, such as temperature, water pressure, platform angle, or even supply voltage and current. This latter feature inherently leads to the concept of hybrid microradiometers, and because microradiometers simply plug onto the aggregator board stack, unique configurations of hybrid sensing and detecting capabilities are readily imagined. C1 [Hooker, Stanford B.] NASA GSFC, Greenbelt, MD 20771 USA. [Morrow, John H.] Biospher Instrument Inc, San Diego, CA 92110 USA. RP Hooker, SB (reprint author), NASA GSFC, Greenbelt, MD 20771 USA. EM stanford.b.hooker@nasa.gov; morrow@biospherical.com NR 15 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-0-933957-40-4 J9 OCEANS-IEEE PY 2013 PG 7 WC Engineering, Marine; Oceanography SC Engineering; Oceanography GA BA3ER UT WOS:000334165802114 ER PT S AU Ahmad, T Bebis, G Regentova, EE Nefian, A AF Ahmad, Touqeer Bebis, George Regentova, Emma E. Nefian, Ara BE Bebis, G Boyle, R Parvin, B Koracin, D Li, B Porikli, F Zordan, V Klosowski, J Coquillart, S Luo, X Chen, M Gotz, D TI A Machine Learning Approach to Horizon Line Detection Using Local Features SO ADVANCES IN VISUAL COMPUTING, ISVC 2013, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 9th International Symposium on Visual Computing (ISVC) CY JUL 29-31, 2013 CL Rethymnon, GREECE SP UNR Comp Vis Lab, Desert Res Inst, LBNL, NASA Ames, BAE Syst, Intel, Ford, Hewlett Packard, Mitsubishi Elect Res Labs, Toyota, Gen Elect AB Planetary rover localization is a challenging problem since no conventional methods such as GPS, structural landmarks etc. are available. Horizon line is a promising visual cue which can be exploited for estimating the rover's position and orientation during planetary missions. By matching the horizon line detected in 2D images captured by the rover with virtually generated horizon lines from 3D terrain models (e. g., Digital Elevation Maps(DEMs)), the localization problem can be solved in principle. In this paper, we propose a machine learning approach for horizon line detection using edge images and local features (i.e., SIFT). Given an image, first we apply Canny edge detection using various parameters and keep only those edges which survive over a wide range of thresholds. We refer to these edges as Maximally Stable Extremal Edges (MSEEs). Using ground truth information, we then train an Support Vector Machine (SVM) classifier to classify MSEE pixels into two categories: horizon and non-horizon. Each MSSE pixel is described using SIFT features which becomes input to the SVM classifier. Given a novel image, we use the same procedure to extract MSSEs; then, we classify each MSEE pixel as horizon or non-horizon using the SVM classifier. MSEE pixels classified as horizon are then provided to a Dynamic Programming shortest path finding algorithm which returns a consistent horizon line. In general, Dynamic Programming returns different solutions (i.e., due to gaps) when searching for the optimum horizon line in a left-to-right or right-to-left fashion. We use the actual output of the SVM classifier to resolve ambiguities in places where the left-to-right and right-to-left solutions are different. The final solution, is typically a combination of edge segments from the left-to-right or right-to-left solutions. Moreover, we use the SVM classifier to fill in small gaps in the horizon line; this is in contrast to the traditional dynamic programming approach which relies on mere interpolation. We report promising experimental results using a set of real images. C1 [Ahmad, Touqeer; Bebis, George] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA. [Regentova, Emma E.] Univ Nevada, Dept Elect & Comp Engn, Reno, NV 89557 USA. [Nefian, Ara] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Nefian, Ara] NASA, Ames Res, Ames, IA USA. RP Ahmad, T (reprint author), Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA. EM sh.touqeerahmad@gmail.com; bebis@cse.unr.edu; Emma.Regentova@unlv.edu; ara.nefian@nasa.gov FU NASA EPSCoR [NNX10AR89A] FX This material is based upon work supported by NASA EPSCoR under Cooperative Agreement No. NNX10AR89A. NR 15 TC 1 Z9 2 U1 1 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-41913-3; 978-3-642-41914-0 J9 LECT NOTES COMPUT SC PY 2013 VL 8033 BP 181 EP 193 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; Mathematical & Computational Biology SC Computer Science; Mathematical & Computational Biology GA BA4DG UT WOS:000335391300019 ER PT S AU Stepanyan, D Nahapetian, A AF Stepanyan, Davit Nahapetian, Ani GP IEEE TI ADDRESSING RESPONSIVENESS IN INTERACTIVE, PERVASIVE GAMES SO ELECTRONIC PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW) SE IEEE International Conference on Multimedia and Expo Workshops LA English DT Proceedings Paper CT IEEE International Conference on Multimedia and Expo Workshops (ICMEW) CY JUL 15-19, 2013 CL San Jose, CA SP IEEE DE Mobile devices; sensor fusion; pervasive games; motion visualization; WebGL AB This paper presents a mobile, infrastructure-based game, which coordinates the networked interaction between pairs of players on mobile devices and a server-based visualization and processing component. There Is No Ball (TINB) system is a web and mobile based game system, which allows users to play a game of paddle board without a physical ball. A common instance of the game involves two players using tablets as paddles, to gather and communicate sensor information and simulate the hitting of an imaginary ball back and forth between the two devices. A third device interfaces with the server and the WebGL-based ball visualization to display the calculated location of the ball and project its moving image. The key challenge of game responsiveness in a highly-interactive game dependent on communication with a remote server and WebGL visualization is addressed. Specifically, local filtering strategies are applied to improve the responsiveness of actuation, and to deliver an enjoyable game experience. C1 [Stepanyan, Davit] Jet Prop Lab, Pasadena, CA 91109 USA. [Stepanyan, Davit; Nahapetian, Ani] Calif State Univ Northridge, Northridge, CA 91330 USA. RP Stepanyan, D (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA. EM davit.stepanyan@jpl.nasa.gov; ani@csun.edu NR 11 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2330-7927 J9 IEEE INT CONF MULTI PY 2013 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA4AC UT WOS:000335245800231 ER PT S AU Barth, T AF Barth, Timothy BE Bijl, H Lucor, D Mishra, S Schwab, C TI Non-intrusive Uncertainty Propagation with Error Bounds for Conservation Laws Containing Discontinuities SO UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL FLUID DYNAMICS SE Lecture Notes in Computational Science and Engineering LA English DT Article; Book Chapter ID STOCHASTIC DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; COLLOCATION METHOD; POLYNOMIAL CHAOS; DENSITY-FUNCTION; QUANTIFICATION AB The propagation of statistical model parameter uncertainty in the numerical approximation of nonlinear conservation laws is considered. Of particular interest are nonlinear conservation laws containing uncertain parameters resulting in stochastic solutions with discontinuities in both physical and random variable dimensions. Using a finite number of deterministic numerical realizations, our objective is the accurate estimation of output uncertainty statistics (e. g. expectation and variance) for quantities of interest such as functionals, graphs, and fields. Given the error in numerical realizations, error bounds for output statistics are derived that may be numerically estimated and included in the calculation of output statistics. Unfortunately, the calculation of output statistics using classical techniques such as polynomial chaos, stochastic collocation, and sparse grid quadrature can be severely compromised by the presence of discontinuities in random variable dimensions. An alternative technique utilizing localized piecewise approximation combined with localized subscale recovery is shown to significantly improve the quality of calculated statistics when discontinuities are present. The success of this localized technique motivates the development of the HYbrid Global and Adaptive Polynomial (HYGAP) method described in Sect. 4.4. HYGAP employs a high accuracy global approximation when the solution data varies smoothly in a random variable dimension and local adaptive polynomial approximation with local postprocessing when the solution is non-smooth. To illustrate strengths and weaknesses of classical and newly proposed uncertainty propagation methods, a number of computational fluid dynamics (CFD) model problems containing various sources of parameter uncertainty are calculated including 1-D Burgers' equation, subsonic and transonic flow over 2-D single-element and multi-element airfoils, transonic Navier-Stokes flow over a 3-D ONERA M6 wing, and supersonic Navier-Stokes flow over a greatly simplified Saturn-V rocket. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Barth, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Timothy.J.Barth@nasa.gov NR 44 TC 2 Z9 2 U1 2 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1439-7358 BN 978-3-319-00885-1; 978-3-319-00884-4 J9 LECT NOTES COMP SCI PY 2013 VL 92 BP 1 EP 57 DI 10.1007/978-3-319-00885-1_1 D2 10.1007/978-3-319-00885-1 PG 57 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA BA1II UT WOS:000332623300002 ER PT J AU Glette, K Kaufmann, P Assad, C Wolf, MT AF Glette, Kyrre Kaufmann, Paul Assad, Christopher Wolf, Michael T. GP IEEE TI Investigating Evolvable Hardware Classification for the BioSleeve Electromyographic Interface SO PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON EVOLVABLE SYSTEMS (ICES) LA English DT Proceedings Paper CT IEEE International Conference on Evolvable Systems (ICES) CY APR 16-19, 2013 CL Singapore, SINGAPORE SP IEEE, IEEE Computat Intelligence Soc ID SUPPORT VECTOR MACHINES; PATTERN-RECOGNITION AB We investigate the applicability of an evolvable hardware classifier architecture for electromyography (EMG) data from the BioSleeve wearable human-machine interface, with the goal of having embedded training and classification. We investigate classification accuracy for datasets with 17 and 11 gestures and compare to results of Support Vector Machines (SVM) and Random Forest classifiers. Classification accuracies are 91.5% for 17 gestures and 94.4% for 11 gestures. Initial results for a field programmable array (FPGA) implementation of the classifier architecture are reported, showing that the classifier architecture fits in a Xilinx XC6SLX45 FPGA. We also investigate a bagging-inspired approach for training the individual components of the classifier with a subset of the full training data. While showing some improvement in classification accuracy, it also proves useful for reducing the number of training instances and thus reducing the training time for the classifier. C1 [Glette, Kyrre] Univ Oslo, Dept Informat, Oslo, Norway. [Kaufmann, Paul] Univ Kassel, Fac EE, Kassel, Germany. [Kaufmann, Paul] Univ Kassel, Fac CS, Kassel, Germany. [Assad, Christopher; Wolf, Michael T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Glette, K (reprint author), Univ Oslo, Dept Informat, Oslo, Norway. EM kyrrehg@ifi.uio.no; paul.kaufmann@gmail.com; chris.assad@jpl.nasa.gov; wolf@jpl.nasa.gov RI Glette, Kyrre/A-1210-2008 OI Glette, Kyrre/0000-0003-3550-3225 FU Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; Defense Advanced Research Projects Agency (DARPA); MTO; Army Research Office [MIPR2C080XR010] FX Kyrre Glette would like to acknowledge Adrian Stoica for hosting his research stay at the Jet Propulsion Laboratory, and the U.S. - Norway Fulbright Foundation for Educational Exchange for sponsorship. Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Part of this work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through the Army Research Office, Contract No. MIPR2C080XR010. NR 27 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5869-9 PY 2013 BP 73 EP 80 PG 8 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA3VL UT WOS:000334931400011 ER PT S AU Fuyi, T Abdullah, K Lim, HS MatJafri, MZ Welton, EJ Lolli, S AF Fuyi, T. Abdullah, K. Lim, H. S. MatJafri, M. Z. Welton, Ellsworth J. Lolli, Simone BE Abdullah, M Misran, N Hasbi, AM Mansor, MF Bahari, SA TI An initial assessment of ground based lidar backscattered signal in Penang Island SO 2013 IEEE INTERNATIONAL CONFERENCE ON SPACE SCIENCE AND COMMUNICATION (ICONSPACE) SE International Conference on Space Science and Communication LA English DT Proceedings Paper CT IEEE 3rd International Conference on Space Science and Communication (IconSpace) CY JUL 01-03, 2013 CL MALAYSIA SP IEEE, Angkasa, Inst Elect & Elect Engineers Malaysia Sect, Univ Kebangsaan Malaysia, Union Radio Sci Int, Sci Comm Solar Terr Phys, Malaysian Ind Govt Grp High Technol, Plug in Sarl, Global trak Syst Sdn Bhd, IEEE Malaysia Commun Soc & Vehicular Technol Soc Joint Chapter DE lidar; backscatter; range corrected signal; planetary boundary layer; cloud; aerosol AB A backscattering lidar at 355 nm wavelength with Raman channel produced by Raymetrics was operated in Universiti Sains Malaysia (USM) in Penang Island. This lidar is currently taking measurements of the vertical distribution of clouds and aerosol layers over Penang Island. Background subtraction such as solar radiation for the range corrected signal during day time is needed. Dead-time correction was then applied to improve the lidar signal. In order to obtain the better signal for near and far range, gluing both analog and photon counting (PC) is necessary. Temporal evolution is plotted to determine variation planetary boundary layer (PBL) structure and the altitude of PBL also can be identify from time to time. Cloud distribution and cloud base layer can be retrieved from the temporal evolution plot and aerosol concentration pattern also can be determined. C1 [Fuyi, T.; Abdullah, K.; Lim, H. S.; MatJafri, M. Z.] Univ Sains Malaysia, Sch Phys, George Town, Malaysia. [Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lolli, Simone] JCET NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fuyi, T (reprint author), Univ Sains Malaysia, Sch Phys, George Town, Malaysia. EM fuyitan@yahoo.com; ellsworth.j.welton@nasa.gov; Simone.lolli@nasa.gov RI Lim, Hwee San/F-6580-2010 OI Lim, Hwee San/0000-0002-4835-8015 FU USM fellowship; RU [1001/PFIZIK/811228]; Universiti Sains Malaysia (USM) [304/PFIZIK/6310057] FX The authors gratefully acknowledge the financial support from USM fellowship; the RU grants, account number: 1001/PFIZIK/811228 and Universiti Sains Malaysia (USM) Short term grant 304/PFIZIK/6310057 used to carry out this project. NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2165-4301 BN 978-1-4673-5233-8 J9 INT CONF SPACE SCI PY 2013 BP 228 EP 232 PG 5 WC Astronomy & Astrophysics; Engineering, Electrical & Electronic; Telecommunications SC Astronomy & Astrophysics; Engineering; Telecommunications GA BA2WP UT WOS:000333962400049 ER PT S AU Havelund, K AF Havelund, Klaus BE Legay, A Bensalem, S TI A Scala DSL for Rete-Based Runtime Verification SO RUNTIME VERIFICATION, RV 2013 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 4th International Conference on Runtime Verification (RV) CY SEP 24-27, 2013 CL Rennes, FRANCE SP Univ Rennes 1, INRIA, Fondat Metivier, SISCOM Bretagne AB Runtime verification (RV) consists in part of checking execution traces against formalized specifications. Several systems have emerged, most of which support specification notations based on state machines, regular expressions, temporal logic, or grammars. The field of Artificial Intelligence (AI) has for an even longer period of time studied rule-based production systems, which at a closer look appear to be relevant for RV, although seemingly focused on slightly different application domains, such as for example business processes and expert systems. The core algorithm in many of these systems is the Rete algorithm. We have implemented a Rete-based runtime verification system, named LOGFIRE (originally intended for offline log analysis but also applicable to online analysis), as an internal DSL in the Scala programming language, using Scala's support for defining DSLs. This combination appears attractive from a practical point of view. Our contribution is in part conceptual in arguing that such rule-based frameworks originating from AI may be suited for RV. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Havelund, K (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 10 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-40787-1; 978-3-642-40786-4 J9 LECT NOTES COMPUT SC PY 2013 VL 8174 BP 322 EP 327 PG 6 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Logic SC Computer Science; Science & Technology - Other Topics GA BA3CD UT WOS:000334102800019 ER PT S AU Veruttipong, W Khayatian, B Hoppe, D Long, E AF Veruttipong, Watt Khayatian, Behrouz Hoppe, Daniel Long, Ezra GP IEEE Antennas & Propagat Soc TI Multi-Step Ka/Ka Dichroic Plate with Rounded Corners for NASA's 34m Beam Waveguide Antenna SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS AB A multi-step Ka/Ka dichroic plate (Frequency Selective Surface (FSS)) is designed, manufactured and tested for use in NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas. The proposed design allows ease of manufacturing and ability to handle the increased transmit power (reflected off the FSS) of the DSN BWG antennas from 20kW to 100 kW. The dichroic is designed using HFSS and results agree well with measured data considering the manufacturing tolerances that could be achieved on the dichroic. C1 [Veruttipong, Watt; Khayatian, Behrouz; Hoppe, Daniel; Long, Ezra] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Veruttipong, W (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 466 EP 467 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766800230 ER PT S AU Fink, PW Khayat, MA AF Fink, Patrick W. Khayat, Michael A. GP IEEE Antennas & Propagat Soc TI A Transformation for Near Strongly Singular Integrals SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS AB A simple transformation using a singularity cancellation technique is presented that enables accurate and efficient computation of near strongly singular integrals involving the gradient of Helmholtz-type potentials for projected observation points that lie external to the source element. The coordinate reference is offset from the projection of the observation point onto the plane containing the source element. In many cases, this permits highly accurate results without the splitting of the source element. C1 [Fink, Patrick W.; Khayat, Michael A.] NASA Johnson Space Ctr, Antenna & Wireless Syst Branch, Avion Syst Div, Houston, TX 77058 USA. RP Fink, PW (reprint author), NASA Johnson Space Ctr, Antenna & Wireless Syst Branch, Avion Syst Div, Houston, TX 77058 USA. EM patrick.w.fink@nasa.gov; michael.a.khayat@nasa.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 916 EP 917 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766801007 ER PT S AU Jamnejad, V Statman, J AF Jamnejad, Vahraz Statman, Joseph GP IEEE Antennas & Propagat Soc TI Analysis of Near-Field of Circular Aperture Antennas with Application to Study of High Intensity Radio Frequency (HIRF) Hazards to Aviation from JPL/NASA Deep Space Network Antennas SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS AB This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required. C1 [Jamnejad, Vahraz; Statman, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Jamnejad, V (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Vahraz.jamnejad@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 944 EP 945 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766801020 ER PT S AU Arumugam, DD AF Arumugam, Darmindra D. GP IEEE Antennas & Propagat Soc TI Full-Wave Exact Integral Solutions of a Current Carrying Loop in a General Half-Space SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS DE Electromagnetic fields; magnetoquasistatics; radio position measurement; radio tracking AB The full-wave exact integral solutions of a current carrying loop immersed in a general half-space is presented. The result is an eigenfunction reflection coefficient that is perfectly symmetric with respect to the interchange of the half-space mediums, which is in contrast to the traditional form of Sommerfeld's original solution for the current loop above earth. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Arumugam, DD (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Darmindra.D.Arumugam@jpl.nasa.gov NR 3 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 1038 EP 1039 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766801066 ER PT S AU Cable, V Lux, J Haque, S AF Cable, Vaughn Lux, James Haque, Salman GP IEEE Antennas & Propagat Soc TI Target & Propagation Models for the FINDER Radar SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS AB Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile. C1 [Cable, Vaughn; Lux, James; Haque, Salman] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. RP Cable, V (reprint author), NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 1614 EP 1615 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766801336 ER PT S AU Nessel, JA Acosta, RJ Miranda, FA AF Nessel, James A. Acosta, Roberto J. Miranda, Felix A. GP IEEE Antennas & Propagat Soc TI Preliminary Experiments for the Assessment of V/W-band Links for Space-Earth Communications SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS AB Since September 2012, NASA Glenn Research Center has deployed a microwave profiling radiometer at White Sands, NM, to estimate atmospheric propagation effects on communications links in the V and W bands (71-86GHz). Estimates of attenuation statistics in the millimeter wave due to gaseous and cloud components of the atmosphere show good agreement with current ITU-R models, but fail to predict link performance in the presence of moderate to heavy rain rates, due to the inherent limitations of passive radiometry. Herein, we discuss the preliminary results of these measurements and describe a design for a terrestrial link experiment to validate/refine existing rain attenuation models in the V/W-bands. C1 [Nessel, James A.; Acosta, Roberto J.; Miranda, Felix A.] NASA Glenn Res Ctr, Antennas & Opt Commun Branch, Cleveland, OH 44135 USA. RP Nessel, JA (reprint author), NASA Glenn Res Ctr, Antennas & Opt Commun Branch, Cleveland, OH 44135 USA. EM james.a.nessel@nasa.gov NR 4 TC 0 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 1616 EP 1617 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766801337 ER PT S AU Focardi, P Harrell, J Vacchione, J AF Focardi, Paolo Harrell, Jefferson Vacchione, Joseph GP IEEE Antennas & Propagat Soc TI Large / Complex Antenna Performance Validation for Spaceborne Radar / Radiometeric Instruments SO 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI) SE IEEE Antennas and Propagation Society International Symposium LA English DT Proceedings Paper CT International Symposium of the IEEE-Antennas-and-Propagation-Society CY JUL 07-13, 2013 CL Orlando, FL SP Inst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, APS AB Over the past decade, Earth observing missions which employ spaceborne combined radar & radiometric instruments have been developed and implemented. These instruments include the use of large and complex deployable antennas whose radiation characteristics need to be accurately determined over 4p steradians. Given the size and complexity of these antennas, the performance of the flight units cannot be readily measured. In addition, the radiation performance is impacted by the presence of the instrument's service platform which cannot easily be included in any measurement campaign. In order to meet the system performance knowledge requirements, a two pronged approach has been employed. The first is to use modeling tools to characterize the system and the second is to build a scale model of the system and use RF measurements to validate the results of the modeling tools. This paper demonstrates the resulting level of agreement between scale model and numerical modeling for two recent missions: (1) the earlier Aquarius instrument currently in Earth orbit and (2) the upcoming Soil Moisture Active Passive (SMAP) mission. The results from two modeling approaches, Ansoft's High Frequency Structure Simulator (HFSS) and TICRA's General RF Applications Software Package (GRASP), were compared with measurements of similar to 1/10th scale models of the Aquarius and SMAP systems. Generally good agreement was found between the three methods but each approach had its shortcomings as will be detailed in this paper. C1 [Focardi, Paolo; Harrell, Jefferson; Vacchione, Joseph] CALTECH, Jet Prop Lab, Flight Commun Syst Sect, Spacecraft Antennas Grp, Pasadena, CA 91125 USA. RP Focardi, P (reprint author), CALTECH, Jet Prop Lab, Flight Commun Syst Sect, Spacecraft Antennas Grp, Pasadena, CA 91125 USA. EM Paolo.Focardi@jpl.nasa.gov; Jefferson.Harrell@jpl.nasa.gov; Joseph.Vacchione@jpl.nasa.gov NR 0 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1522-3965 BN 978-1-4673-5317-5 J9 IEEE ANTENNAS PROP PY 2013 BP 2175 EP 2176 PG 2 WC Telecommunications SC Telecommunications GA BA1OQ UT WOS:000332766802105 ER PT S AU Pandya, S Lu, T Chao, TH AF Pandya, Sagar Lu, Thomas Chao, Tien-Hsin BE Roning, J Casasent, D TI Optimizing feature selection strategy for adaptive object identification in a noisy environment SO INTELLIGENT ROBOTS AND COMPUTER VISION XXX: ALGORITHMS AND TECHNIQUES SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Intelligent Robots and Computer Vision XXX - Algorithms and Techniques CY FEB 04-06, 2013 CL Burlingame, CA SP Soc Imaging Sci & Technol, SPIE, Qualcomm Inc DE optimization; target detection; saliency; vision ID VISUAL-ATTENTION AB We present the development of a multi-stage automatic target recognition (MS-ATR) system for computer vision in robotics. This paper discusses our work in optimizing the feature selection strategies of the MS-ATR system. Past implementations have utilized Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filtering as an initial feature selection method, and principal component analysis (PCA) as a feature extraction strategy before the classification stage. Recent work has been done in the implementation of a modified saliency algorithm as a feature selection method. Saliency is typically implemented as a "bottom-up" search process using visual sensory information such as color, intensity, and orientation to detect salient points in the imagery. It is a general saliency mapping algorithm that receives no input from the user on what is considered salient. We discuss here a modified saliency algorithm that accepts the guidance of target features in locating regions of interest (ROI). By introducing target related input parameters, saliency becomes more focused and task oriented. It is used as an initial stage for the fast ROI detection method. The ROIs are passed to the later stages for feature extraction and target identification process. C1 [Pandya, Sagar] Univ Southern Calif, Los Angeles, CA 90089 USA. [Lu, Thomas; Chao, Tien-Hsin] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Pandya, S (reprint author), Univ Southern Calif, Los Angeles, CA 90089 USA. EM Thomas.T.Lu@jpl.nasa.gov FU Summer Internship Program (SIP) through JPL and Caltech. FX This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with the National Aeronautics and Space Administration (NASA), and under the sponsorship of the Summer Internship Program (SIP) through JPL and Caltech. All of the saliency related work complete during this project was with the support and guidanc of Dr. Laurent Itti and his lab, iLab, at the University of Southern California. MS--]ATR specific portions of this project were implemented with the help of Brian Walker from Georgia Tech. NR 6 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9435-1 J9 PROC SPIE PY 2013 VL 8662 AR UNSP 866209 DI 10.1117/12.2005248 PG 9 WC Engineering, Electrical & Electronic; Robotics; Optics SC Engineering; Robotics; Optics GA BA2ZI UT WOS:000334022000007 ER PT J AU Filieri, A Pasareanu, CS Visser, W AF Filieri, Antonio Pasareanu, Corina S. Visser, Willem BE Notkin, D Cheng, BHC Pohl, K TI Reliability Analysis in Symbolic Pathfinder SO PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013) LA English DT Proceedings Paper CT 35th International Conference on Software Engineering (ICSE) CY MAY 18-26, 2013 CL San Francisco, CA SP Assoc Comp Machinery, ACM Special Interest Grp Software Engn, IEEE Comp Soc, Tech Council Software Engn ID PREDICTION; EXECUTION AB Software reliability analysis tackles the problem of predicting the failure probability of software. Most of the current approaches base reliability analysis on architectural abstractions useful at early stages of design, but not directly applicable to source code. In this paper we propose a general methodology that exploit symbolic execution of source code for extracting failure and success paths to be used for probabilistic reliability assessment against relevant usage scenarios. Under the assumption of finite and countable input domains, we provide an efficient implementation based on Symbolic PathFinder that supports the analysis of sequential and parallel programs, even with structured data types, at the desired level of confidence. The tool has been validated on both NASA prototypes and other test cases showing a promising applicability scope. C1 [Filieri, Antonio] Univ Stuttgart, Inst Software Technol, D-70174 Stuttgart, Germany. [Pasareanu, Corina S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Visser, Willem] Univ Stellenbosch, ZA-7600 Stellenbosch, South Africa. RP Filieri, A (reprint author), Univ Stuttgart, Inst Software Technol, D-70174 Stuttgart, Germany. EM antonio.filieri@informatik.uni-stuttgart.de; corina.s.pasareanu@nasa.gov; wvisser@cs.sun.ac.za OI Filieri, Antonio/0000-0001-9646-646X FU European Commission; IDEAS-ERC; [227977-SMScom] FX This research has been partially funded by the European Commission, Programme IDEAS-ERC, Project 227977- SMScom. NR 29 TC 14 Z9 14 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-3076-3 PY 2013 BP 622 EP 631 PG 10 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA2WS UT WOS:000333965800063 ER PT J AU Yang, GW Khurshid, S Pasareanu, CS AF Yang, Guowei Khurshid, Sarfraz Pasareanu, Corina S. BE Notkin, D Cheng, BHC Pohl, K TI Memoise: A Tool for Memoized Symbolic Execution SO PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013) LA English DT Proceedings Paper CT 35th International Conference on Software Engineering (ICSE) CY MAY 18-26, 2013 CL San Francisco, CA SP Assoc Comp Machinery, ACM Special Interest Grp Software Engn, IEEE Comp Soc, Tech Council Software Engn AB This tool paper presents a tool for performing memoized symbolic execution (Memoise), an approach we developed in previous work for more efficient application of symbolic execution. The key idea in Memoise is to allow re-use of symbolic execution results across different runs of symbolic execution without having to re-compute previously computed results as done in earlier approaches. Specifically, Memoise builds a trie-based data structure to record path exploration information during a run of symbolic execution, optimizes the trie for the next run, and re-uses the resulting trie during the next run. Our tool optimizes symbolic execution in three standard scenarios where it is commonly applied: iterative deepening, regression analysis, and heuristic search. Our tool Memoise builds on the Symbolic PathFinder framework to provide more efficient symbolic execution of Java programs and is available online for download. The tool demonstration video is available at http://www.youtube.com/watch?v=ppfYOB0Z2vY. C1 [Yang, Guowei; Khurshid, Sarfraz] Univ Texas Austin, Austin, TX 78712 USA. [Pasareanu, Corina S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Yang, GW (reprint author), Univ Texas Austin, Austin, TX 78712 USA. EM guoweiyang@utexas.edu; khurshid@utexas.edu; corina.s.pasareanu@nasa.gov FU NSF [CCF-0845628] FX This work was supported by NSF Grant CCF-0845628 and Google Summer of Code 2011. NR 12 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-3076-3 PY 2013 BP 1343 EP 1346 PG 4 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA2WS UT WOS:000333965800167 ER PT J AU Mehlitz, P Rungta, N Visser, W AF Mehlitz, Peter Rungta, Neha Visser, Willem BE Notkin, D Cheng, BHC Pohl, K TI A Hands-On Java PathFinder Tutorial SO PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013) LA English DT Proceedings Paper CT 35th International Conference on Software Engineering (ICSE) CY MAY 18-26, 2013 CL San Francisco, CA SP Assoc Comp Machinery, ACM Special Interest Grp Software Engn, IEEE Comp Soc, Tech Council Software Engn AB Java Pathfinder (JPF) is an open source analysis system that automatically verifies Java programs. The JPF tutorial provides an opportunity to software engineering researchers and practitioners to learn about JPF, be able to install and run JPF, and understand the concepts required to extend JPF. The hands-on tutorial will expose the attendees to the basic architecture framework of JPF, demonstrate the ways to use it for analyzing their artifacts, and illustrate how they can extend JPF to implement their own analyses. One of the defining qualities of JPF is its extensibility. JPF has been extended to support symbolic execution, directed automated random testing, different choice generation, configurable state abstractions, various heuristics for enabling bug detection, configurable search strategies, checking temporal properties and many more. JPF supports these extensions at the design level through a set of stable well defined interfaces. The interfaces are designed to not require changes to the core, yet enable the development of various JPF extensions. In this tutorial we provide attendees a hands on experience of developing different interfaces in order to extend JPF. The tutorial is targeted toward a general software engineering audience-software engineering researchers and practitioners. The attendees need to have a good understanding of the Java programming language and be fairly comfortable with Java program development. The attendees are not required to have any background in Java Pathfinder, software model checking or any other formal verification techniques. The tutorial will be self-contained. C1 [Mehlitz, Peter; Rungta, Neha] NASA, Ames Res Ctr, Washington, DC 20546 USA. RP Mehlitz, P (reprint author), NASA, Ames Res Ctr, Washington, DC 20546 USA. EM pcmehlitz@gmail.com; neha.s.rungta@nasa.gov; willem@gmail.com NR 0 TC 2 Z9 4 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-3076-3 PY 2013 BP 1493 EP 1495 PG 3 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA2WS UT WOS:000333965800210 ER PT J AU Denney, E Pai, G Habli, I Kelly, T Knight, J AF Denney, Ewen Pai, Ganesh Habli, Ibrahim Kelly, Tim Knight, John BE Notkin, D Cheng, BHC Pohl, K TI 1st International Workshop on Assurance Cases for Software-Intensive Systems (ASSURE 2013) SO PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013) LA English DT Proceedings Paper CT 35th International Conference on Software Engineering (ICSE) CY MAY 18-26, 2013 CL San Francisco, CA SP Assoc Comp Machinery, ACM Special Interest Grp Software Engn, IEEE Comp Soc, Tech Council Software Engn DE Software engineering; assurance cases; safety; security; certification; argumentation; evidence AB Software plays a key role in high-risk systems, i.e., safety and security-critical systems. Several certification standards and guidelines, e. g., in the defense, transportation (aviation, automotive, rail), and healthcare domains, now recommend and/or mandate the development of assurance cases for software-intensive systems. As such, there is a need to understand and evaluate (a) the application of assurance cases to software, and (b) the relationship between the development and assessment of assurance cases, and software engineering concepts, processes and techniques. The ICSE 2013 Workshop on Assurance Cases for Software-intensive Systems (ASSURE) aims to provide an international forum for high-quality contributions (research, practice, and position papers) on the application of assurance case principles and techniques for software assurance, and on the treatment of assurance cases as artifacts to which the full range of software engineering techniques can be applied. C1 [Denney, Ewen; Pai, Ganesh] NASA, Ames Res Ctr, SGT, Moffett Field, CA 94035 USA. RP Denney, E (reprint author), NASA, Ames Res Ctr, SGT, Moffett Field, CA 94035 USA. EM ewen.denney@nasa.gov; ganesh.pai@nasa.gov; ibrahim.habli@york.ac.uk; tim.kelly@york.ac.uk; knight@cs.virginia.edu RI Pai, Ganesh/G-4516-2013 OI Pai, Ganesh/0000-0002-9848-3754 NR 9 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-3076-3 PY 2013 BP 1505 EP 1506 PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA2WS UT WOS:000333965800213 ER PT S AU Diaz, E Balboa, C Escobar, J Espano, ZJ Rad, K Boussalis, H AF Diaz, Eric Balboa, Cheyenne Escobar, Juan Espano, Zarah Jane Rad, Khosrow Boussalis, Helen BE Antsaklis, P Valavanis, K Tsourveloudis, N Zingaretti, P Moreno, L TI Linearization of a Nonlinear Geometric System Model for Robust Controller Design SO 2013 21ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED) SE Mediterranean Conference on Control and Automation LA English DT Proceedings Paper CT 21st Mediterranean Conference on Control and Automation (MED) CY JUN 25-28, 2013 CL Platanias, GREECE SP Mediterranean Control Assoc, IEEE Control Syst Soc, IEEE Robot & Automat Soc, Tech Univ Crete, Univ Denver, IEEE DE pointing control; model linearization; segmented telescope AB A large order flexible space structure, such as a segmented reflector space telescope, requires a high degree of precision and accuracy in order to maintain its nominal shape in order to form clear images. The tracking control for the pointing of such a large complex multiple-input multiple-output (MIMO) system requires a robust controller to maintain the telescope pointing accurately and reliably at it's target. The segmented space telescope testbed at the Structures, Propulsion, And Controls Engineering (SPACE) NASA University Research Center (URC) of Excellence at California State University, Los Angeles, utilizes a segmented primary mirror and a novel motorized laser platform for simulating the testbed's intended target and demonstrating the testbed's pointing accuracy. The motorized platform along with two sets of accessory mirrors comprises a Peripheral Pointing Architecture (PPA). In order to design a suitable controller, the highly nonlinear geometric model describing the laser paths from source to optical detector plane was linearized to produce an LTI state-space model for controller design. C1 [Diaz, Eric; Balboa, Cheyenne; Escobar, Juan; Espano, Zarah Jane; Rad, Khosrow; Boussalis, Helen] Calif State Univ Los Angeles, NASA, Space Ctr, Los Angeles, CA 90023 USA. RP Diaz, E (reprint author), Calif State Univ Los Angeles, NASA, Space Ctr, 5151 State Univ Dr, Los Angeles, CA 90023 USA. EM ericdiaz@usc.edu; cheyennebalboa90@gmail.com; ju.escobar@ymail.com; zjbe23@gmail.com; krad@calstatela.edu; hboussa@calstatela.edu NR 18 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2325-369X BN 978-1-4799-0995-7; 978-1-4799-0997-1 J9 MED C CONTR AUTOMAT PY 2013 BP 658 EP 662 PG 5 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA BA2BG UT WOS:000333245100104 ER PT J AU Lall, P Mirza, K Harsha, M Suhling, J Goebel, K AF Lall, Pradeep Mirza, Kazi Harsha, Mahendra Suhling, Jeff Goebel, Kai GP IEEE TI Damage Pre-Cursor Based Assessment of Impact of High Temperature Storage on Reliability of Leadfree Electronics SO 2013 IEEE 63RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC) LA English DT Proceedings Paper CT IEEE 63rd Electronic Components and Technology Conference (ECTC) CY MAY 28-31, 2013 CL Las Vegas, NV SP IEEE, IEEE Components, Packaging & Mfg Technol Soc ID BOUNDARY-SCAN; TESTABILITY; DESIGN; BIST; BIT AB Electronic systems may be subjected to prolonged and intermittent periods of storage prior to deployment or usage. Prior studies have shown that leadfree solder interconnects show measurable degradation in the mechanical properties even after brief exposures to high temperature. In this paper, a method has been developed for the determining equivalent storage time to produce identical damage at a different temperature. Electronics subjected to accelerated tests often have a well-defined thermal profile for a specified period of time. Quantification of the thermal profile in field deployed electronics may be often difficult because of variance in the environment conditions and usage profile. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. Approach for mapping damage in leadfree second-level interconnects under between thermal conditions is new. High reliability applications such as avionics and missile systems may be often exposed to long periods of storage prior to deployment. Effect of storage at different temperature conditions can be mapped using the presented approach. A framework has been developed to investigate the system state and estimate the remaining useful life of solder ball subjected to a variety of isothermal aging conditions including 60 degrees C, 75 degrees C and 125 degrees C for periods of time between 1-week and 4-week. Data on damage precursors has been collected and analyzed to derive physics based damage mapping relationships for aging. Mathematical relationships have been derived for the damage mapping to various thermal storage environments to facilitate determining appropriate time-temperature combination to reach a particular level of damage state. Activation energy for the leading indicators of failure is also computed. Specific damage proxies examined include the phase-growth indicator and the intermetallic thickness. The viability of the approach has been demonstrated for leadfree test assemblies subjected to multiple thermal aging at 60 degrees C, 75 degrees C and 125 degrees C. Damage mapping relationships are derived from data based on the two separate leading indicators. C1 [Lall, Pradeep; Mirza, Kazi; Harsha, Mahendra; Suhling, Jeff] Auburn Univ, Dept Mech Engn, NSF Elect Res Ctr CAVE3, Auburn, AL 36849 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lall, P (reprint author), Auburn Univ, Dept Mech Engn, NSF Elect Res Ctr CAVE3, Auburn, AL 36849 USA. EM lall@auburn.edu FU industrial members of the NSF-CAVE3Electronics Research Center at Auburn University FX The research results presented in this paper are based on projects supported by industrial members of the NSF-CAVE3Electronics Research Center at Auburn University. NR 26 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-0233-0 PY 2013 BP 817 EP 826 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA BA1ON UT WOS:000332764900126 ER PT J AU Feather, MS Markosian, LZ AF Feather, Martin S. Markosian, Lawrence Z. GP IEEE TI Architecting and Generalizing a Safety Case for Critical Condition Detection Software SO 2013 1ST INTERNATIONAL WORKSHOP ON ASSURANCE CASES FOR SOFTWARE-INTENSIVE SYSTEMS (ASSURE) LA English DT Proceedings Paper CT 1st International Workshop on Assurance Cases for Software-Intensive Systems (ASSURE) CY MAY 19, 2013 CL San Francisco, CA DE Software safety; safety cases; assurance cases AB Safety cases and, specifically, software safety cases, have had virtually no presence in engineering practice in the US. Recent interest, in addition to an early attempt to introduce them into practice in the NASA Constellation Program, motivated us to develop a partial safety case for a safety critical subsystem for the Ares I vehicle, namely the abort detection, notification and response (AFDNR) system. This paper relates our experience applying the safety case concept to AFDNR, particularly from the perspective of generalizing the safety issues to similar fault management systems. We also provide lessons learned, including a discussion of issues that led to our current refactoring of our initial safety case. C1 [Feather, Martin S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Markosian, Lawrence Z.] SGT Inc, Moffett Field, CA USA. RP Feather, MS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Martin.S.Feather@jpl.nasa.gov; LZMarkosian@sgt-inc.com FU NASA Office of Safety and Mission Assurance under the Software Assurance Research Program led by the NASA Software IVV Facility FX The work was sponsored by the NASA Office of Safety and Mission Assurance under the Software Assurance Research Program led by the NASA Software IV&V Facility. This activity is managed locally at JPL through the Assurance and Technology Program Office NR 12 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-6324-2 PY 2013 BP 29 EP 33 PG 5 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BA2CF UT WOS:000333276800006 ER PT B AU Welch, R Limonadi, D Samuels, J Warner, N Morantz, C AF Welch, Richard Limonadi, Daniel Samuels, Jessica Warner, Noah Morantz, Chaz GP IEEE TI Verification and Validation of Mars Science Laboratory Surface System SO 2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE) LA English DT Proceedings Paper CT 8th International Conference on System of Systems Engineering CY JUN 02-06, 2013 CL Maui, HI SP IEEE, IEEE SMC Soc, Rochester Inst Technol, MABL, rackspace, IEEE Reliabil Soc, Int Council Syst Engn, Univ Texas San Antonio, ACE DE Mars; Rovers; Verification; Validation; Testing; Robotics AB This paper will discuss the system level verification and validation test program for the surface capability of the Mars Science Laboratory (MSL) Curiosity Rover. MSL has many similarities to its predecessors, the Mars Exploration Rovers Spirit and Opportunity. However, Curiosity's diverse science payload, new sampling system, and overall scale led to new challenges in development and testing. The rover hardware and software were developed to allow certain functions to work in parallel to maximize the science that could be done each day on Mars. This led to complex behavioral interactions, which had to be tested and verified before they could be trusted. An incremental test program was developed that first exercised and verified individual functions and then validated system capabilities in mission-like scenarios. The plans, execution and results of these mission-like surface system tests will be presented. C1 [Welch, Richard; Limonadi, Daniel; Samuels, Jessica; Warner, Noah; Morantz, Chaz] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Welch, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM richard.welch@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5597-1; 978-1-4673-5596-4 PY 2013 BP 64 EP 69 PG 6 WC Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BA1QM UT WOS:000332884000011 ER PT B AU Welch, R Limonadi, D Manning, R AF Welch, Richard Limonadi, Daniel Manning, Robert GP IEEE TI Systems Engineering the Curiosity Rover: A Retrospective SO 2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE) LA English DT Proceedings Paper CT 8th International Conference on System of Systems Engineering CY JUN 02-06, 2013 CL Maui, HI SP IEEE, IEEE SMC Soc, Rochester Inst Technol, MABL, rackspace, IEEE Reliabil Soc, Int Council Syst Engn, Univ Texas San Antonio, ACE DE Mars; Rovers; Systems Engineering; Robotics ID MARS AB This paper will discuss systems engineering challenges in development of the Mars Science Laboratory Curiosity Rover. As of the writing of this paper, Curiosity has been successfully exploring the surface of Mars for months, but during development it was not always clear it would be a success. MSL is by design three spacecraft in one: The cruise system to get from Earth to Mars; the entry descent and landing system; and the Rover to perform the intended scientific exploration. Each of these has it own unique challenges and is intertwined given the integrated nature of the design. The rover's complex science payload, sampling system and overall scale resulted in many technical challenges. This paper will present a few examples of the systems engineering challenges overcome during the development of the Curiosity rover. C1 [Welch, Richard; Limonadi, Daniel; Manning, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Welch, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM richard.welch@jpl.nasa.gov NR 5 TC 1 Z9 1 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5597-1; 978-1-4673-5596-4 PY 2013 BP 70 EP 75 PG 6 WC Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BA1QM UT WOS:000332884000012 ER PT B AU Kim, WS Leger, C Peters, S Carsten, J Diaz-Calderon, A AF Kim, Won S. Leger, Chris Peters, Stephen Carsten, Joseph Diaz-Calderon, Antonio GP IEEE TI Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing SO 2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE) LA English DT Proceedings Paper CT 8th International Conference on System of Systems Engineering CY JUN 02-06, 2013 CL Maui, HI SP IEEE, IEEE SMC Soc, Rochester Inst Technol, MABL, rackspace, IEEE Reliabil Soc, Int Council Syst Engn, Univ Texas San Antonio, ACE DE Frame tree; Coordinate transform; quaternion; flight software; target pointing AB The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly. C1 [Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Diaz-Calderon, Antonio] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Kim, WS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Won.S.Kim@jpl.nasa.gov; Antonio.Diaz-Calderon@jhuapl.edu NR 4 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5597-1; 978-1-4673-5596-4 PY 2013 BP 111 EP 116 PG 6 WC Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BA1QM UT WOS:000332884000018 ER PT B AU Kim, WS Leger, C Carsten, J Helmick, D Kuhn, S Redick, R Trujillo, D AF Kim, Won S. Leger, Chris Carsten, Joseph Helmick, Daniel Kuhn, Stephen Redick, Richard Trujillo, Diana GP IEEE TI Mars Science Laboratory CHIMRA/IC/DRT Flight Software for Sample Acquisition and Processing SO 2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE) LA English DT Proceedings Paper CT 8th International Conference on System of Systems Engineering CY JUN 02-06, 2013 CL Maui, HI SP IEEE, IEEE SMC Soc, Rochester Inst Technol, MABL, rackspace, IEEE Reliabil Soc, Int Council Syst Engn, Univ Texas San Antonio, ACE DE flight software; software design; task scenario; sequence diagram; state machine; sample processing AB The design methodologies of using sequence diagrams, multi-process functional flow diagrams, and hierarchical state machines were successfully applied in designing three MSL (Mars Science Laboratory) flight software modules responsible for handling actuator motions of the CHIMRA (Collection and Handling for In situ Martian Rock Analysis), IC (Inlet Covers), and DRT (Dust Removal Tool) mechanisms. The methodologies were essential to specify complex interactions with other modules, support concurrent foreground and background motions, and handle various fault protections. Studying task scenarios with multi-process functional flow diagrams yielded great insight to overall design perspectives. Since the three modules require three different levels of background motion support, the methodologies presented in this paper provide an excellent comparison. All three modules are fully operational in flight. C1 [Kim, Won S.; Leger, Chris; Carsten, Joseph; Helmick, Daniel; Kuhn, Stephen; Redick, Richard; Trujillo, Diana] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kim, WS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Won.S.Kim@jpl.nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5597-1; 978-1-4673-5596-4 PY 2013 BP 117 EP 122 PG 6 WC Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BA1QM UT WOS:000332884000019 ER PT B AU Lee, GY Donaldson, JA AF Lee, Gene Y. Donaldson, James A. GP IEEE TI Dreaming on Mars: How Curiosity Performs Actuator Warm-Up while Sleeping SO 2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE) LA English DT Proceedings Paper CT 8th International Conference on System of Systems Engineering CY JUN 02-06, 2013 CL Maui, HI SP IEEE, IEEE SMC Soc, Rochester Inst Technol, MABL, rackspace, IEEE Reliabil Soc, Int Council Syst Engn, Univ Texas San Antonio, ACE DE Dream Mode; Curiosity; Mars; sleep; thermal; fault protection AB Before the Curiosity rover can perform its science activities for the day, such as driving, moving its robotic arm, or drilling, it first has to ensure that its actuators are within their allowable flight temperatures (AFTs). When the rover is awake, flight software uses heaters to warm up and maintain thermal zones at operational temperatures. However, Curiosity spends about 70% of its time sleeping, with the flight computer off, in order to conserve energy. Dream Mode is a special behavior that allows the rover to execute warm-up activities while sleeping. Using Dream Mode, actuators can be warmed up to their AFTs before the flight computer wakes up and uses them - saving power and improving operational efficiency. This paper describes the motivation behind Dream Mode, how it was implemented and tested on Curiosity, and the challenges and lessons learned along the way. C1 [Lee, Gene Y.] CALTECH, Jet Prop Lab, Syst Engn Sect, Pasadena, CA 91125 USA. [Donaldson, James A.] CALTECH, Jet Prop Lab, Flight Elect & Software Syst Sect, Pasadena, CA 91125 USA. RP Lee, GY (reprint author), CALTECH, Jet Prop Lab, Syst Engn Sect, Pasadena, CA 91125 USA. EM Gene.Y.Lee@jpl.nasa.gov; James.A.Donaldson@jpl.nasa.gov NR 1 TC 0 Z9 0 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5597-1; 978-1-4673-5596-4 PY 2013 BP 123 EP 128 PG 6 WC Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BA1QM UT WOS:000332884000020 ER PT B AU Wright, JR Hartman, F Maxwell, S Cooper, B Yen, J AF Wright, John R. Hartman, Frank Maxwell, Scott Cooper, Brian Yen, Jeng GP IEEE TI Updates to the Rover Driving Tools for Curiosity SO 2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE) LA English DT Proceedings Paper CT 8th International Conference on System of Systems Engineering CY JUN 02-06, 2013 CL Maui, HI SP IEEE, IEEE SMC Soc, Rochester Inst Technol, MABL, rackspace, IEEE Reliabil Soc, Int Council Syst Engn, Univ Texas San Antonio, ACE DE Mars Science Laboratory; rover; in-situ exploration AB The Rover Sequencing and Visualization Program (RSVP) is a tool suite used for building command sequences for the Mars Science Laboratory rover Curiosity. RSVP was previously used for other missions and for in-house research projects and proposal efforts. RSVP has undergone extensive modifications and enhancements over previous versions in order to support more challenging requirements and to make it more adaptable for future missions. This paper will provide a brief overview of many of the specific enhancements made for the MSL mission. C1 [Wright, John R.; Hartman, Frank; Maxwell, Scott] CALTECH, Jet Prop Lab, Visual Environm & Simulat Applicat Grp, Pasadena, CA 91125 USA. RP Wright, JR (reprint author), CALTECH, Jet Prop Lab, Visual Environm & Simulat Applicat Grp, Pasadena, CA 91125 USA. EM john.r.wright@jpl.nasa.gov NR 8 TC 3 Z9 3 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-5597-1; 978-1-4673-5596-4 PY 2013 BP 147 EP 152 PG 6 WC Engineering, Industrial; Engineering, Electrical & Electronic; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA BA1QM UT WOS:000332884000023 ER EF