FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Novati, SC Gould, A Udalski, A Menzies, JW Bond, IA Shvartzvald, Y Street, RA Hundertmark, M Beichman, CA Yee, JC Carey, S Poleski, R Skowron, J Kozlowski, S Mroz, P Pietrukowicz, P Pietrzynski, G Szymanski, MK Soszynski, I Ulaczyk, K Wyrzykowski, L Albrow, M Beaulieu, JP Caldwell, JAR Cassan, A Coutures, C Danielski, C Prester, DD Donatowicz, J Loncaric, K McDougall, A Morales, JC Ranc, C Zhu, W Abe, F Barry, RK Bennett, DP Bhattacharya, A Fukunaga, D Inayama, K Koshimoto, N Namba, S Sumi, T Suzuki, D Tristram, PJ Wakiyama, Y Yonehara, A Maoz, D Kaspi, S Friedmann, M Bachelet, E Jaimes, RF Bramich, DM Tsapras, Y Horne, K Snodgrass, C Wambsganss, J Steele, IA Kains, N Bozza, V Dominik, M Jorgensen, UG Alsubai, KA Ciceri, S D'Ago, G Haugbolle, T Hessman, FV Hinse, TC Juncher, D Korhonen, H Mancini, L Popovas, A Rabus, M Rahvar, S Scarpetta, G Schmidt, RW Skottfelt, J Southworth, J Starkey, D Surdej, J Wertz, O Zarucki, M Gaudi, BS Pogge, RW De Poy, DL The OGLE Collaboration AF Novati, S. Calchi Gould, A. Udalski, A. Menzies, J. W. Bond, I. A. Shvartzvald, Y. Street, R. A. Hundertmark, M. Beichman, C. A. Yee, J. C. Carey, S. Poleski, R. Skowron, J. Kozlowski, S. Mroz, P. Pietrukowicz, P. Pietrzynski, G. Szymanski, M. K. Soszynski, I. Ulaczyk, K. Wyrzykowski, L. Albrow, M. Beaulieu, J. P. Caldwell, J. A. R. Cassan, A. Coutures, C. Danielski, C. Prester, D. Dominis Donatowicz, J. Loncaric, K. McDougall, A. Morales, J. C. Ranc, C. Zhu, W. Abe, F. Barry, R. K. Bennett, D. P. Bhattacharya, A. Fukunaga, D. Inayama, K. Koshimoto, N. Namba, S. Sumi, T. Suzuki, D. Tristram, P. J. Wakiyama, Y. Yonehara, A. Maoz, D. Kaspi, S. Friedmann, M. Bachelet, E. Jaimes, R. Figuera Bramich, D. M. Tsapras, Y. Horne, K. Snodgrass, C. Wambsganss, J. Steele, I. A. Kains, N. Bozza, V. Dominik, M. Jorgensen, U. G. Alsubai, K. A. Ciceri, S. D'Ago, G. Haugbolle, T. Hessman, F. V. Hinse, T. C. Juncher, D. Korhonen, H. Mancini, L. Popovas, A. Rabus, M. Rahvar, S. Scarpetta, G. Schmidt, R. W. Skottfelt, J. Southworth, J. Starkey, D. Surdej, J. Wertz, O. Zarucki, M. Gaudi, B. S. Pogge, R. W. De Poy, D. L. Collaboration, The O. G. L. E. CA The PLANET Collaboration The MOA Collaboration The Wise Grp The RoboNet Collaboration The MiNDSTEp Consortium The FUN Collaboration TI PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems; planets and satellites: dynamical evolution and stability ID SPACE-TELESCOPE; ISOLATED STAR; MASS; BULGE; COMPANIONS; PHOTOMETRY; FREQUENCY; NETWORK; SYSTEMS; MACHOS AB We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was similar to 1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated. C1 [Novati, S. Calchi; Beichman, C. A.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Novati, S. Calchi; Bozza, V.; D'Ago, G.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy. [Novati, S. Calchi; Scarpetta, G.; Zarucki, M.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Gould, A.; Poleski, R.; Zhu, W.; Gaudi, B. S.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Udalski, A.; Poleski, R.; Skowron, J.; Kozlowski, S.; Mroz, P.; Pietrukowicz, P.; Pietrzynski, G.; Szymanski, M. K.; Soszynski, I.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Menzies, J. W.] S African Astron Observ, Observ 7935, Cape Town, South Africa. [Bond, I. A.] Massey Univ, North Shore Mail Ctr, Inst Nat & Math Sci, Auckland, New Zealand. [Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Friedmann, M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Street, R. A.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Hundertmark, M.; Jorgensen, U. G.; Haugbolle, T.; Juncher, D.; Korhonen, H.; Popovas, A.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hundertmark, M.; Jaimes, R. Figuera; Horne, K.; Dominik, M.; Starkey, D.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Yee, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Carey, S.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Albrow, M.; McDougall, A.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Beaulieu, J. P.; Cassan, A.; Coutures, C.; Ranc, C.] UPMC, CNRS, Inst Astrophys, UMR 7095, F-75014 Paris, France. [Beaulieu, J. P.; Morales, J. C.] LESIA, Sect Meudon 5, Observ Paris, F-92195 Meudon, France. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Danielski, C.] Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Prester, D. Dominis; Loncaric, K.] Univ Rijeka, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1040 Vienna, Austria. [Abe, F.; Fukunaga, D.; Wakiyama, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Barry, R. K.] NASA Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Bennett, D. P.; Bhattacharya, A.; Suzuki, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Inayama, K.; Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan. [Koshimoto, N.; Namba, S.; Sumi, T.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Tristram, P. J.] Mt John Univ Observ, Lake Tekapo, New Zealand. [Bachelet, E.; Bramich, D. M.; Alsubai, K. A.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Jaimes, R. Figuera; Kains, N.] European So Observ, D-85748 Garching, Germany. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Snodgrass, C.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [Wambsganss, J.; Schmidt, R. W.] Zentrum Astron Univ Heidelberg ZAH, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Bozza, V.; D'Ago, G.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ciceri, S.; Mancini, L.; Rabus, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Hessman, F. V.] Univ Gottingen, Inst Astrophys, D-37073 Gottingen, Germany. [Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Korhonen, H.] Turku Univ, Finnish Ctr Astron ESO, FI-21500 Piikkio, Finland. [Rabus, M.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrophys, Santiago 22, Chile. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Surdej, J.; Wertz, O.] Univ Liege, Inst Astrophys & Geophys, B-4000 Cointe Ougree, Belgium. [De Poy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Novati, SC (reprint author), CALTECH, NASA Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. RI Hundertmark, Markus/C-6190-2015; Ranc, Clement/B-1958-2016; Skowron, Jan/M-5186-2014; Korhonen, Heidi/E-3065-2016; Morales, Juan Carlos/H-5548-2015; D'Ago, Giuseppe/N-8318-2016; Kozlowski, Szymon/G-4799-2013; OI Snodgrass, Colin/0000-0001-9328-2905; Hundertmark, Markus/0000-0003-0961-5231; Ranc, Clement/0000-0003-2388-4534; Skowron, Jan/0000-0002-2335-1730; Korhonen, Heidi/0000-0003-0529-1161; Morales, Juan Carlos/0000-0003-0061-518X; D'Ago, Giuseppe/0000-0001-9697-7331; Kozlowski, Szymon/0000-0003-4084-880X; Dominik, Martin/0000-0002-3202-0343 FU JPL grant [1500811]; NSF [AST 1103471]; NASA [NNX12AB99G]; European Research Council under the European Community's Seventh Framework Programme (FP7)/ ERC grant [246678]; NASA through the Sagan Fellowship Program; University of Rijeka project [13.12.1.3.02]; Marsden Fund of the Royal Society of New Zealand [MAU1104]; I-CORE program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; US-Israel Binational Science Foundation; Danish Natural Science Foundation (FNU); NPRP grants from the Qatar National Research Fund (a member of Qatar Foundation) [09-476-1-078, X-019-1-006]; Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe; Villum Foundation; European Union Seventh Framework Programme (FP7) [268421]; [JSPS23103002]; [JSPS24253004]; [JSPS26247023]; [JSPS25103508]; [JSPS23340064] FX Work by C.A.B. was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Work by J.C.Y. A.G., and S.C. was supported by JPL grant 1500811. A.G. and B.S.G. were supported by NSF grant AST 1103471. A.G., B.S.G., and R. W.P. were supported by NASA grant NNX12AB99G. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement no. 246678 to A.U. Work by J.C.Y. was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. Work by D.D.P. and K.L. was supported by the University of Rijeka project 13.12.1.3.02. Work by T.S. is supported by grants JSPS23103002, JSPS24253004, and JSPS26247023. Work by I.A.B. was supported by the Marsden Fund of the Royal Society of New Zealand, contract no. MAU1104. The MOA project is supported by the grant JSPS25103508 and 23340064. Work by D.M. is supported by the I-CORE program of the Planning and Budgeting Committee and the Israel Science Foundation, Grant 1829/12. D.M. and A.G. acknowledge support by the US-Israel Binational Science Foundation. The operation of the Danish 1.54 m telescope at ESO's La Silla Observatory is financed by a grant to U.G.J. from the Danish Natural Science Foundation (FNU). This publication was made possible by NPRP grants 09-476-1-078 and X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). O.W. (FNRS research fellow) and J. Surdej acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe. M.H. acknowledges support from the Villum Foundation. C.S. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 268421. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 41 TC 17 Z9 17 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 20 DI 10.1088/0004-637X/804/1/20 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500020 ER PT J AU Pirzkal, N Coe, D Frye, BL Brammer, G Moustakas, J Rothberg, B Broadhurst, TJ Bouwens, R Bradley, L van der Wel, A Kelson, DD Donahue, M Zitrin, A Moustakas, L Barker, E AF Pirzkal, Nor Coe, Dan Frye, Brenda L. Brammer, Gabriel Moustakas, John Rothberg, Barry Broadhurst, Thomas J. Bouwens, Rychard Bradley, Larry van der Wel, Arjen Kelson, Daniel D. Donahue, Megan Zitrin, Adi Moustakas, Leonidas Barker, Elizabeth TI NOT IN OUR BACKYARD: SPECTROSCOPIC SUPPORT FOR THE CLASH z=11 CANDIDATE MACS 0647-JD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; techniques: spectroscopic ID STAR-FORMING GALAXIES; ULTRA DEEP FIELD; HUBBLE-SPACE-TELESCOPE; EMISSION-LINE; LUMINOSITY FUNCTION; GRISM SPECTROSCOPY; REDSHIFT; UDFJ-39546284; CONSTRAINTS; DENSITY AB We report on our first set of spectroscopic Hubble Space Telescope observations of the z approximate to 11 candidate galaxy, which is strongly lensed by the MACSJ 0647.7+7015 galaxy cluster. The three lensed images are faint and we show that these early slitless grism observations are of sufficient depth to investigate whether this high-redshift candidate, identified by its strong photometric break at approximate to 1.5 mu m, could possibly be an emission line galaxy at a much lower redshift. While such an interloper would imply the existence of a rather peculiar object, we show here that such strong emission lines would clearly have been detected. Comparing realistic, two-dimensional simulations to these new observations, we would expect the necessary emission lines to be detected at >5 sigma, though we see no evidence for such lines in the dispersed data of any of the three lensed images. We therefore exclude that this object could be a low-redshift emission line interloper, which significantly increases the likelihood of this candidate being a bona fide z approximate to 11 galaxy. C1 [Pirzkal, Nor; Coe, Dan; Brammer, Gabriel; Bradley, Larry; Barker, Elizabeth] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Frye, Brenda L.] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA. [Moustakas, John] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. [Rothberg, Barry] Univ Arizona, Large Binocular Telescope Observ, Tucson, AZ 85721 USA. [Rothberg, Barry] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Broadhurst, Thomas J.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Bouwens, Rychard] Leiden Univ, NL-2300 RA Leiden, Netherlands. [van der Wel, Arjen] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kelson, Daniel D.] Carnegie Inst Sci, Washington, DC USA. [Donahue, Megan] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Zitrin, Adi] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Moustakas, Leonidas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pirzkal, N (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM npirzkal@stsci.edu OI Moustakas, Leonidas/0000-0003-3030-2360 FU NASA through the Hubble Fellowship grant [HST-HF2-51334.001 A]; Space Telescope Science Institute [HST-GO-13317.13]; AURA under the NASA [NAS5-26555] FX We would like to thank the referee for his or her comments and suggestions to improve the quality of this paper. Support for AZ was provided by NASA through the Hubble Fellowship grant #HST-HF2-51334.001 A awarded by STScI. This work was supported in part by grant HST-GO-13317.13 from the Space Telescope Science Institute, which is operated by AURA under the NASA contract NAS5-26555. NR 30 TC 6 Z9 6 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 11 DI 10.1088/0004-637X/804/1/11 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500011 ER PT J AU Raettig, N Klahr, H Lyra, W AF Raettig, Natalie Klahr, Hubert Lyra, Wladimir TI PARTICLE TRAPPING AND STREAMING INSTABILITY IN VORTICES IN PROTOPLANETARY DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; hydrodynamics; instabilities; methods: numerical; turbulence ID DUST GROWTH PEBBLES; CIRCUMSTELLAR DISKS; ACCRETION DISKS; PLANETESIMAL FORMATION; SOLAR NEBULA; CONVECTIVE OVERSTABILITY; ELECTROSTATIC BARRIER; NONLINEAR SATURATION; TURBULENCE DRIVEN; GAS DISKS AB We analyze the concentration of solid particles in vortices created and sustained by radial buoyancy in protoplanetary disks, e.g., baroclinic vortex growth. Besides the gas drag acting on particles, we also allow for back-reaction from dust onto the gas. This becomes important when the local dust-to-gas ratio approaches unity. In our two-dimensional, local, shearing sheet simulations, we see high concentrations of grains inside the vortices for a broad range of Stokes numbers, St. An initial dust-to-gas ratio of 1:100 can easily be reversed to 100:1 for St = 1.0. The increased dust-to-gas ratio triggers the streaming instability, thus counter-intuitively limiting the maximal achievable overdensities. We find that particle trapping inside vortices opens the possibility for gravity assisted planetesimal formation even for small particles (St = 0.01) and a low initial dust-to-gas ratio of 1: 10(4), e.g., much smaller than in the previously studied magnetohydrodynamic zonal flow case. C1 [Raettig, Natalie; Klahr, Hubert] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lyra, Wladimir] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Lyra, Wladimir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Raettig, N (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM raettig@mpia.de; klahr@mpia.de; wlyra@caltech.edu FU German Federal Ministry of Education and Research (BMBF); German State Ministries for Research of Baden-Wuttemberg (MWK); Bayern (StMWFK); Nordrhein-Westfalen (MIWF) FX The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large Scale Project on the GCS share of the supercomputer JUQUEEN at Julich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universitat Stuttgart), JSC (Forschungszentrum Julich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Wuttemberg (MWK), Bayern (StMWFK), and Nordrhein-Westfalen (MIWF). NR 62 TC 9 Z9 9 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 35 DI 10.1088/0004-637X/804/1/35 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500035 ER PT J AU Siana, B Shapley, AE Kulas, KR Nestor, DB Steidel, CC Teplitz, HI Alavi, A Brown, TM Conselice, CJ Ferguson, HC Dickinson, M Giavalisco, M Colbert, JW Bridge, CR Gardner, JP de Mello, DF AF Siana, Brian Shapley, Alice E. Kulas, Kristin R. Nestor, Daniel B. Steidel, Charles C. Teplitz, Harry I. Alavi, Anahita Brown, Thomas M. Conselice, Christopher J. Ferguson, Henry C. Dickinson, Mark Giavalisco, Mauro Colbert, James W. Bridge, Carrie R. Gardner, Jonathan P. de Mello, Duilia F. TI A DEEP HUBBLE SPACE TELESCOPE AND KECK SEARCH FOR DEFINITIVE IDENTIFICATION OF LYMAN CONTINUUM EMITTERS AT z similar to 3.1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; galaxies: starburst; intergalactic medium; ultraviolet: galaxies ID STAR-FORMING GALAXIES; HIGH-REDSHIFT GALAXIES; HOPKINS-ULTRAVIOLET-TELESCOPE; QUASAR LUMINOSITY FUNCTION; SIMILAR-TO 3; IONIZING-RADIATION; STARBURST GALAXIES; ESCAPE FRACTION; BREAK GALAXIES; INTERGALACTIC MEDIUM AB Narrowband imaging of the rest-frame Lyman continuum (LyC) of galaxies at z similar to 3.1 has produced a large number of candidate LyC-emitting galaxies. These samples are contaminated by galaxies at lower redshift. To better understand LyC escape, we need an uncontaminated sample of galaxies that emit strongly in the LyC. Here we present deep Hubble Space Telescope imaging of five bright galaxies at z similar to 3.1 that had previously been identified as candidate LyC emitters with ground-based images. The WFC3 F336W images probe the LyC of galaxies at z > 3.06 and provide an order-of-magnitude increase in spatial resolution over ground-based imaging. The non-ionizing UV images often show multiple galaxies (or components) within similar to 1 '' of the candidate LyC emission seen from the ground. In each case, only one of the components is emitting light in the F336W filter, which would indicate LyC escape if that component is at z > 3.06. We use Keck/NIRSPEC near-IR spectroscopy to measure redshifts of these components to distinguish LyC emitters from foreground contamination. We find that two candidates are low-redshift contaminants, one candidate had a previously misidentified redshift, and the other two cannot be confirmed as LyC emitters. The level of contamination is consistent with previous estimates. For the galaxies with z > 3.06, we derive strong 1 sigma limits on the relative escape fraction between 0.07 and 0.09. We still do not have a sample of definitive LyC emitters, and a much larger study of low-luminosity galaxies is required. The combination of high-resolution imaging and deep spectroscopy is critical for distinguishing LyC emitters from foreground contaminants. C1 [Siana, Brian; Alavi, Anahita] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Shapley, Alice E.; Kulas, Kristin R.; Nestor, Daniel B.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Kulas, Kristin R.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Steidel, Charles C.; Bridge, Carrie R.] CALTECH, Pasadena, CA 91125 USA. [Teplitz, Harry I.; Colbert, James W.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Brown, Thomas M.; Ferguson, Henry C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Conselice, Christopher J.] Univ Nottingham, Nottingham NG7 2RD, England. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Siana, B (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. OI Brown, Thomas/0000-0002-1793-9968 FU NASA through a grant from the Space Telescope Science Institute; NASA [NAS 5-26555] FX Support for program 11636 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 62 TC 32 Z9 32 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 17 DI 10.1088/0004-637X/804/1/17 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500017 ER PT J AU Skowron, J Shin, IG Udalski, A Han, C Sumi, T Shvartzvald, Y Gould, A Prester, DD Street, RA Jorgensen, UG Bennett, DP Bozza, V Szymanski, MK Kubiak, M Pietrzynski, G Soszynski, I Poleski, R Kozlowski, S Pietrukowicz, P Ulaczyk, K Wyrzykowski, L Abe, F Bhattacharya, A Bond, IA Botzler, CS Freeman, M Fukui, A Fukunaga, D Itow, Y Ling, CH Koshimoto, N Masuda, K Matsubara, Y Muraki, Y Namba, S Ohnishi, K Philpott, LC Rattenbury, N Saito, T Sullivan, DJ Suzuki, D Tristram, PJ Yock, PCM Maoz, D Kaspi, S Friedmann, M Almeida, LA Batista, V Christie, G Choi, JY Depoy, DL Gaudi, BS Henderson, C Hwang, KH Jablonski, F Jung, YK Lee, CU McCormick, J Natusch, T Ngan, H Park, H Pogge, RW Yee, JC Albrow, MD Bachelet, E Beaulieu, JP Brillant, S Caldwell, JAR Cassan, A Cole, A Corrales, E Coutures, CH Dieters, S Donatowicz, J Fouque, P Greenhill, J Kains, N Kane, SR Kubas, D Marquette, JB Martin, R Menzies, J Pollard, KR Ranc, C Sahu, KC Wambsganss, J Williams, A Wouters, D Tsapras, Y Bramich, DM Horne, K Hundertmark, M Snodgrass, C Steele, IA Alsubai, KA Browne, P Burgdorf, MJ Novati, SC Dodds, P Dominik, M Dreizler, S Fang, XS Gu, CH Hardis Harpsoe, K Hessman, FV Hinse, TC Hornstrup, A Jessen-Hansen, J Kerins, E Liebig, C Lund, M Lundkvist, M Mancini, L Mathiasen, M Penny, MT Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Southworth, J Surdej, J Tregloan-Reed, J Wertz, O AF Skowron, J. Shin, I. -G. Udalski, A. Han, C. Sumi, T. Shvartzvald, Y. Gould, A. Prester, D. Dominis Street, R. A. Jorgensen, U. G. Bennett, D. P. Bozza, V. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Soszynski, I. Poleski, R. Kozlowski, S. Pietrukowicz, P. Ulaczyk, K. Wyrzykowski, L. Abe, F. Bhattacharya, A. Bond, I. A. Botzler, C. S. Freeman, M. Fukui, A. Fukunaga, D. Itow, Y. Ling, C. H. Koshimoto, N. Masuda, K. Matsubara, Y. Muraki, Y. Namba, S. Ohnishi, K. Philpott, L. C. Rattenbury, N. Saito, T. Sullivan, D. J. Suzuki, D. Tristram, P. J. Yock, P. C. M. Maoz, D. Kaspi, S. Friedmann, M. Almeida, L. A. Batista, V. Christie, G. Choi, J. -Y. Depoy, D. L. Gaudi, B. S. Henderson, C. Hwang, K. -H. Jablonski, F. Jung, Y. K. Lee, C. -U. McCormick, J. Natusch, T. Ngan, H. Park, H. Pogge, R. W. Yee, J. C. Albrow, M. D. Bachelet, E. Beaulieu, J. -P. Brillant, S. Caldwell, J. A. R. Cassan, A. Cole, A. Corrales, E. Coutures, C. H. Dieters, S. Donatowicz, J. Fouque, P. Greenhill, J. Kains, N. Kane, S. R. Kubas, D. Marquette, J. -B. Martin, R. Menzies, J. Pollard, K. R. Ranc, C. Sahu, K. C. Wambsganss, J. Williams, A. Wouters, D. Tsapras, Y. Bramich, D. M. Horne, K. Hundertmark, M. Snodgrass, C. Steele, I. A. Alsubai, K. A. Browne, P. Burgdorf, M. J. Novati, S. Calchi Dodds, P. Dominik, M. Dreizler, S. Fang, X. -S. Gu, C. -H. Hardis Harpsoe, K. Hessman, F. V. Hinse, T. C. Hornstrup, A. Jessen-Hansen, J. Kerins, E. Liebig, C. Lund, M. Lundkvist, M. Mancini, L. Mathiasen, M. Penny, M. T. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Southworth, J. Surdej, J. Tregloan-Reed, J. Wertz, O. CA OGLE Collaboration MOA Collaboration Wise Grp FUN Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI OGLE-2011-BLG-0265Lb: A JOVIAN MICROLENSING PLANET ORBITING AN M DWARF SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID SURFACE BRIGHTNESS RELATIONS; GRAVITATIONAL BINARY-LENS; GALACTIC BULGE; MASS PLANET; OGLE-III; JUPITER/SATURN ANALOG; ANGULAR SIZES; GIANT PLANETS; SNOW LINE; STARS AB We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal, combined with extended observations throughout the event, allows us to accurately model the observed light curve. However, the final microlensing solution remains degenerate, yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is M-p = 0.9 +/- 0.3 M-J, and the planet is orbiting a star with a mass M = 0.22 +/- 0.06 M-circle dot. The second possible configuration (2 sigma away) consists of a planet with M-p = 0.6 +/- 0.3M(J) and host star with M = 0.14 +/- 0.06M(circle dot). The system is located in the Galactic disk 3-4 kpc toward the Galactic bulge. In both cases, with an orbit size of 1.5-2.0 AU, the planet is a "cold Jupiter"-located well beyond the "snow line" of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate. C1 [Skowron, J.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Poleski, R.; Kozlowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Shin, I. -G.; Han, C.; Choi, J. -Y.; Hwang, K. -H.; Jung, Y. K.; Park, H.] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. [Sumi, T.; Koshimoto, N.; Namba, S.; Suzuki, D.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Friedmann, M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Gould, A.; Poleski, R.; Batista, V.; Gaudi, B. S.; Henderson, C.; Pogge, R. W.; Yee, J. C.; Penny, M. T.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia. [Street, R. A.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Jorgensen, U. G.; Hardis; Harpsoe, K.; Hinse, T. C.; Mathiasen, M.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Ctr Star & Planet Format, Geol Museum, DK-1350 Copenhagen, Denmark. [Bennett, D. P.; Bhattacharya, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bozza, V.; Novati, S. Calchi; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy. [Bozza, V.; Scarpetta, G.] Ist Nazl Fis Nucl, Sezione Napoli, Italy. [Soszynski, I.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bond, I. A.; Ling, C. H.] Massey Univ, Inst Informat & Math Sci, North Shore Mail Ctr, Auckland, New Zealand. [Botzler, C. S.; Freeman, M.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1, New Zealand. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, Okayama 7190232, Japan. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Philpott, L. C.] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V6T 1Z4, Canada. [Saito, T.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Sullivan, D. J.; Tristram, P. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Almeida, L. A.; Jablonski, F.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Christie, G.; Natusch, T.; Ngan, H.] Auckland Observ, Auckland 1023, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lee, C. -U.; Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Natusch, T.] AUT Univ, Inst Radiophys & Space Res, Auckland, New Zealand. [Yee, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Bachelet, E.; Dieters, S.; Fouque, P.] Univ Toulouse, IRAP, UPS OMP, F-31400 Toulouse, France. [Beaulieu, J. -P.; Cassan, A.; Corrales, E.; Coutures, C. H.; Kubas, D.; Marquette, J. -B.; Ranc, C.; Wouters, D.] UPMC, CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Brillant, S.; Kubas, D.] European So Observ, Santiago 19001 19, Chile. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Cole, A.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Fouque, P.] CFHT Corp, Kamuela, HI 96743 USA. [Kains, N.] European So Observ, D-85748 Garching, Germany. [Kains, N.; Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kane, S. R.; Novati, S. Calchi] CALTECH, Exoplanet Sci Inst, NASA, Pasadena, CA 91125 USA. [Martin, R.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Wambsganss, J.; Williams, A.] Zentrum Astron Univ Heidelberg ZAH, Astron Rech Inst, D-69120 Heidelberg, Germany. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Bramich, D. M.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Horne, K.; Hundertmark, M.; Browne, P.; Dodds, P.; Dominik, M.; Liebig, C.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Hundertmark, M.; Dreizler, S.; Hessman, F. V.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Alsubai, K. A.] Qatar Fdn, Doha, Qatar. [Burgdorf, M. J.] HE Space Operat GmbH, D-28199 Bremen, Germany. [Novati, S. Calchi; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare Salerno, Italy. [Fang, X. -S.; Gu, C. -H.; Hornstrup, A.] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Natl Astron Observat Yunnan Observ, Kunming 650011, Peoples R China. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Kerins, E.; Penny, M. T.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Jessen-Hansen, J.; Lund, M.; Lundkvist, M.] Aarhus Univ, Dept Phys & Astron, Aarhus C, Denmark. [Lundkvist, M.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Mancini, L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Ricci, D.] Ist Astrofis Spaziale & Fis Cosm, INAF, Bologna, Italy. [Ricci, D.] UNAM, Inst Astron, Ensenada 22800, Baja California, Mexico. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Tregloan-Reed, J.; Wertz, O.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Tregloan-Reed, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Hundertmark, Markus/C-6190-2015; Almeida, L./G-7188-2012; Ranc, Clement/B-1958-2016; Skowron, Jan/M-5186-2014; Kozlowski, Szymon/G-4799-2013; OI Snodgrass, Colin/0000-0001-9328-2905; Hundertmark, Markus/0000-0003-0961-5231; Ranc, Clement/0000-0003-2388-4534; Skowron, Jan/0000-0002-2335-1730; Kozlowski, Szymon/0000-0003-4084-880X; Philpott, Lydia/0000-0002-5286-8528; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855 FU European Research Council under the European Community's Seventh Framework Programme (FP7) / ERC [246678]; Polish Ministry of Science and Higher Education (MNiSW) through the program "Iuventus Plus" [IP2011 026771]; Creative Research Initiative Program of National Research Foundation of Korea [2009-0081561]; JSPS [24253004, JSPS23540339, JSPS19340058]; Distinguished University Fellowship from The Ohio State University and in part under contract with the California Institute of Technology (Caltech) - NASA through the Sagan Fellowship Program; NSF [AST 1103471]; NASA [NNX12AB99G]; European Union [268421]; Danish Natural Science Foundation (FNU); German Research Foundation (DFG); Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe; Qatar National Research Fund (QNRF), Qatar Foundation [NPRP 09-476-1-078]; University of Rijeka Project [13.12.1.3.02]; I-CORE program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; US-Israel Binational Science Foundation; [JSPS22403003]; [JSPS23340064]; [JSPS23340044]; [JSPS24253004] FX The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 246678 to A.U. This research was partly supported by the Polish Ministry of Science and Higher Education (MNiSW) through the program "Iuventus Plus" award No. IP2011 026771. Work by C.H. was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. The MOA experiment was supported by grants JSPS22403003 and JSPS23340064. T.S. acknowledges the support of JSPS 24253004. T.S. is supported by the grant JSPS23340044. Y.M. acknowledges support from JSPS grants JSPS23540339 and JSPS19340058. Work by J.C.Y. is supported in part by a Distinguished University Fellowship from The Ohio State University and in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. Work by A.G. and B.S.G was supported by NSF grant AST 1103471. Work by A.G., B.S.G., and RWP was supported by NASA grant NNX12AB99G. T.S. acknowledges support from the grants JSPS23340044 and JSPS24253004. C.S. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 268421. This work is based in part on data collected by MiNDSTEp with the Danish 1.54 m telescope at the ESO La Silla Observatory. The Danish 1.54 m telescope is operated based on a grant from the Danish Natural Science Foundation (FNU). The MiNDSTEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search; Dominik et al. 2008, AN 329, 248). M.H. acknowledges support by the German Research Foundation (DFG). D.R. (boursier FRIA) and J.S. acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe. K.A., D.M.B., M.D., K.H., M.H., C.L., C.S., R.A.S., and Y.T. are thankful to the Qatar National Research Fund (QNRF), member of Qatar Foundation, for support by grant NPRP 09-476-1-078. Work by D.D.P. was supported by the University of Rijeka Project 13.12.1.3.02. This research was supported by the I-CORE program of the Planning and Budgeting Committee and the Israel Science Foundation, grant 1829/12. D.M. and A.G. acknowledge support by the US-Israel Binational Science Foundation. NR 63 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 33 DI 10.1088/0004-637X/804/1/33 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500033 ER PT J AU Sturrock, PA Bush, R Gough, DO Scargle, JD AF Sturrock, P. A. Bush, R. Gough, D. O. Scargle, J. D. TI INDICATIONS OF R-MODE OSCILLATIONS IN SOHO/MDI SOLAR RADIUS MEASUREMENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; Sun: oscillations ID POWER-SPECTRUM ANALYSIS; SPACED DATA; ROTATION; DIAMETER; CONSTANCY; TACHOCLINE; INTERIOR AB Analysis of solar radius measurements acquired by the Michelson Doppler Imager on the Solar and Heliospheric Observatory spacecraft supports previously reported evidence of solar internal r-mode oscillations in Mt Wilson radius data and in Sr-90 beta-decay data. The frequencies of these oscillations are compatible with oscillations in a putative inner tachocline that separates a slowly rotating core from the radiative envelope. C1 [Sturrock, P. A.] Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Sturrock, P. A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Bush, R.; Gough, D. O.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Gough, D. O.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gough, D. O.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0HA, England. [Scargle, J. D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sturrock, PA (reprint author), Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. EM sturrock@stanford.edu FU NASA [NAS5-02139] FX We express our appreciation to Marcelo Emilio for help in processing the MDI radius measurements, and to Ephraim Fischbach and Alexander Kosovichev for helpful discussions related to this project. D.O.G. thanks Philip H. Scherrer for his hospitality. This work was supported in part by NASA Contract NAS5-02139. NR 23 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 47 DI 10.1088/0004-637X/804/1/47 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500047 ER PT J AU Vacca, WD Hamilton, RT Savage, M Shenoy, S Becklin, EE McLean, IS Logsdon, SE Marion, GH Ashok, NM Banerjee, DPK Evans, A Fox, OD Garnavich, P Gehrz, RD Greenhouse, M Helton, LA Kirshner, RP Shenoy, D Smith, N Spyromilio, J Starrfield, S Wooden, DH Woodward, CE AF Vacca, William D. Hamilton, Ryan T. Savage, Maureen Shenoy, Sachindev Becklin, E. E. McLean, Ian S. Logsdon, Sarah E. Marion, G. H. Ashok, N. M. Banerjee, D. P. K. Evans, A. Fox, O. D. Garnavich, P. Gehrz, R. D. Greenhouse, M. Helton, L. A. Kirshner, R. P. Shenoy, D. Smith, Nathan Spyromilio, J. Starrfield, S. Wooden, D. H. Woodward, C. E. TI OBSERVATIONS OF TYPE Ia SUPERNOVA 2014J WITH FLITECAM ON SOFIA SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: stars; supernovae: general; supernovae: individual (SN 2014J) ID NEAR-INFRARED SPECTRA; SN 2014J; TELESCOPE FACILITY; M82; SPECTROGRAPH; ULTRAVIOLET; ASTRONOMY; BINARIES; MODELS; TIME AB We present medium-resolution near-infrared (NIR) spectra, covering 1.1-3.4 mu m, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument on board Stratospheric Observatory for Infrared Astronomy (SOFIA) between 17 and 26 days after maximum B light. Our 2.8-3.4 mu m spectra may be the first similar to 3 mu m spectra of an SN Ia ever published. The spectra spanning the 1.5-2.7 mu m range are characterized by a strong emission feature at similar to 1.77 mu m with a FWHM of similar to 11,000-13,000 kms(-1). We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. and find that the models agree with the spectra remarkably well in the 1.5-2.7 mu m wavelength range. Based on this comparison we identify the similar to 1.77 mu m emission peak as a blend of permitted lines of Co II. Other features seen in the 2.0-2.5 mu m spectra are also identified as emission from permitted transitions of Co II. However, the models are not as successful at reproducing the spectra in the 1.1-1.4 mu m range or between 2.8 and 3.4 mu m. These observations demonstrate the promise of SOFIA, which allows access to wavelength regions inaccessible from the ground, and serve to draw attention to the usefulness of the regions between the standard ground-based NIR passbands for constraining SN models. C1 [Vacca, William D.; Hamilton, Ryan T.; Savage, Maureen; Shenoy, Sachindev; Becklin, E. E.; Helton, L. A.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [McLean, Ian S.; Logsdon, Sarah E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Marion, G. H.] Univ Texas Austin, Austin, TX 78712 USA. [Ashok, N. M.; Banerjee, D. P. K.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Evans, A.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Fox, O. D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Garnavich, P.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Gehrz, R. D.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Greenhouse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kirshner, R. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Shenoy, D.; Woodward, C. E.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Smith, Nathan] Steward Observ, Tucson, AZ 85719 USA. [Spyromilio, J.] European So Observ, D-85748 Garching, Germany. [Starrfield, S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Wooden, D. H.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Vacca, WD (reprint author), NASA, Ames Res Ctr, SOFIA USRA, Mail Stop N232-12, Moffett Field, CA 94035 USA. EM wvacca@sofia.usra.edu FU NSF; NASA; NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; SOFIA Cycle 2 GI Research Grant [75-0001, 75-0002, 02-0100]; NASA through USRA [08500-05] FX We would like to thank the USRA/DSI science and mission operations teams and the engineering and support staff at NASA Armstrong and Ames for their pivotal roles in making SOFIA a reality. We also thank Luc Dessart and Stephane Blondin for sharing their SN models with us. R.D.G. thanks R. G. Arendt, E. Dwek, and T. Temim for providing useful input during the formulation of the scientific case for the observing program as members of the DDT proposal team. Similarly, P.G. thanks P. Milne, E. Hsiao, M. Phillips, and N. Suntzeff for their contributions to the science case of the accepted DDT proposal. S.S. acknowledges support from NSF and NASA grants to ASU.; Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Financial support for R.T.H., R.D.G., and P.G. was provided in part by SOFIA Cycle 2 GI Research Grant #'s 75-0001, 75-0002, and 02-0100, respectively, issued by USRA, on behalf of NASA. I.S.M. and S.E.L. were supported by NASA through grant 08500-05 from USRA for the development of FLITECAM. NR 44 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 66 DI 10.1088/0004-637X/804/1/66 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500066 ER PT J AU Younes, G Kouveliotou, C Grefenstette, BW Tomsick, JA Tennant, A Finger, MH Furst, F Pottschmidt, K Bhalerao, V Boggs, SE Boirin, L Chakrabarty, D Christensen, FE Craig, WW Degenaar, N Fabian, AC Gandhi, P Gogus, E Hailey, CJ Harrison, FA Kennea, JA Miller, JM Stern, D Zhang, WW AF Younes, G. Kouveliotou, C. Grefenstette, B. W. Tomsick, J. A. Tennant, A. Finger, M. H. Fuerst, F. Pottschmidt, K. Bhalerao, V. Boggs, S. E. Boirin, L. Chakrabarty, D. Christensen, F. E. Craig, W. W. Degenaar, N. Fabian, A. C. Gandhi, P. Gogus, E. Hailey, C. J. Harrison, F. A. Kennea, J. A. Miller, J. M. Stern, D. Zhang, W. W. TI SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: general; stars: individual (GRO J1744-28); X-rays: binaries; X-rays: bursts ID X-RAY PULSARS; SPECTROSCOPIC-TELESCOPE-ARRAY; MAGNETIC NEUTRON-STARS; ACTIVE GALACTIC NUCLEI; ACCRETION DISK CORONA; CYCLOTRON LINE; BLACK-HOLE; KVANT OBSERVATIONS; NUSTAR DISCOVERY; TIMING-EXPLORER AB We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(7) cm, which translates to a surface dipole field B approximate to 9 x 10(10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components. C1 [Younes, G.; Finger, M. H.] Univ Space Res Assoc, Huntsville, AL 35806 USA. [Younes, G.; Kouveliotou, C.; Tennant, A.; Finger, M. H.] NSSTC, Huntsville, AL 35805 USA. [Kouveliotou, C.; Tennant, A.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, Huntsville, AL 35812 USA. [Grefenstette, B. W.; Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Bhalerao, V.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Boirin, L.] Observ Astron, F-67000 Strasbourg, France. [Chakrabarty, D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, F. E.; Miller, J. M.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Degenaar, N.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gandhi, P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Gogus, E.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Younes, G (reprint author), Univ Space Res Assoc, 6767 Old Madison Pike, Huntsville, AL 35806 USA. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bhalerao, Varun/0000-0002-6112-7609 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 96 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 43 DI 10.1088/0004-637X/804/1/43 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500043 ER PT J AU Baars, WJ Ruf, JH Tinney, CE AF Baars, W. J. Ruf, J. H. Tinney, C. E. TI Non-stationary shock motion unsteadiness in an axisymmetric geometry with pressure gradient SO EXPERIMENTS IN FLUIDS LA English DT Article ID TURBULENT-BOUNDARY-LAYER; COMPRESSION RAMP INTERACTION; LOW-FREQUENCY UNSTEADINESS; INDUCED SEPARATION; ROCKET NOZZLES; WAVE STRUCTURE; FLUCTUATIONS; MODEL; OSCILLATION; FLOW AB Shock wave/boundary layer interaction (SWBLI) is studied in a large area-ratio axisymmetric nozzle comprising a design exit Mach number of 5.58. Shock motion unsteadiness is captured by way of the dynamic wall pressure and is evaluated during overexpanded operations up to a nozzle pressure ratio of 65. Stationary SWBLI is first considered at a nozzle pressure ratio of 28.7 such that the internal flow structure is in a restricted shock separated state; the mean position of the annular separation shock resides at a fixed position. Conditional averages of the wall pressure fluctuations show how the motion of the incipient separation shock is out of phase with pressure fluctuations measured in the separated region downstream of the shock; pressure decreases when the shock moves downstream and vice versa. This is indicative of a long intermittent region, in terms of the boundary layer thickness, as the observed phenomena can be explained by translating the static wall pressure profile along with the shock motion. Non-stationary SWBLI is then considered by increasing the nozzle pressure ratio over time (transient start-up). Under these conditions, the shock pattern varies in strength and structure as it sweeps through the nozzle. A time-frequency analyses of the fluctuating wall pressure during the non-stationary operations, and at the same location that the stationary unsteadiness is analyzed, reveals a similar spectral footprint. However, for relatively slower start-ups, the amplitude of the unsteadiness is reduced by a factor of about seven. The findings demonstrate how the rate at which the nozzle pressure ratio increases can have a significant influence on the amplitude of the unsteady shock foot motion. C1 [Baars, W. J.] Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia. [Ruf, J. H.] NASA MSFC, Fluid Dynam Branch, Huntsville, AL 35812 USA. [Tinney, C. E.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. RP Baars, WJ (reprint author), Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia. EM wbaars@unimelb.edu.au RI Baars, Woutijn/F-6600-2016 OI Baars, Woutijn/0000-0003-1526-3084 FU Air Force Office of Scientific Research [FA9550-11-1-0203]; NASA Engineering and Safety Center; Australian Research Council FX Funding for this effort was graciously provided by a grant from the Air Force Office of Scientific Research (FA9550-11-1-0203) with Dr. J. Schmisseur as technical monitor, as well as the NASA Engineering and Safety Center. A great portion of this work was written while WJB was a Post-Doctoral Research Fellow at the University of Melbourne, Australia and being supported by funds of the Australian Research Council. NR 44 TC 0 Z9 0 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD MAY PY 2015 VL 56 IS 5 AR 92 DI 10.1007/s00348-015-1958-y PG 18 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CI1BA UT WOS:000354473900006 ER PT J AU Hecht, BC Hard, JJ Thrower, FP Nichols, KM AF Hecht, Benjamin C. Hard, Jeffrey J. Thrower, Frank P. Nichols, Krista M. TI Quantitative Genetics of Migration-Related Traits in Rainbow and Steelhead Trout SO G3-GENES GENOMES GENETICS LA English DT Article DE anadromy; animal model; genetic correlation; heritability; steelhead trout ID SPRING CHINOOK SALMON; ONCORHYNCHUS-MYKISS; LIFE-HISTORY; BROOK CHARR; SALVELINUS-FONTINALIS; ANADROMOUS STEELHEAD; SMOLT TRANSFORMATION; GROWTH MODULATION; BODY MORPHOLOGY; ANIMAL-MODEL AB Rainbow trout (Oncorhynchus mykiss) exhibit remarkable life history diversity throughout their native range, and among the most evident is variation in migratory propensity. Although some populations and ecotypes will remain resident in freshwater habitats throughout their life history, others have the ability to undertake tremendous marine migrations. Those that migrate undergo a suite of behavioral, morphological, and physiological adaptations in a process called smoltification. We describe a quantitative genetic analysis of 22 growth, size, and morphological traits in addition to overall life history classification (resident or migrant) over the temporal process of smoltification in a large multi-generation experimental pedigree (n = 16,139) of migratory and resident rainbow trout derived from a wild population, which naturally segregates for migratory propensity. We identify significant additive genetic variance and covariance among the suite of traits that make up a component of the migratory syndrome in this species. Additionally, we identify high heritability estimates for the life history classifications and observe a strong negative genetic correlation between the migratory and resident life history trajectories. Given the large heritability estimates of all of the traits that segregate between migratory and resident rainbow trout, we conclude that these traits can respond to selection. However, given the high degree of genetic correlation between these traits, they do not evolve in isolation, but rather as a suite of coordinated characters in a predictable manner. C1 [Hecht, Benjamin C.; Nichols, Krista M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Nichols, Krista M.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. [Hecht, Benjamin C.] Univ Idaho, Inst Aquaculture Res, Hagerman Fish Culture Expt Stn, Hagerman, ID 83332 USA. [Hecht, Benjamin C.] Columbia River Intertribal Fish Commiss, Fishery Sci Dept, Hagerman, ID 83332 USA. [Hard, Jeffrey J.; Nichols, Krista M.] NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. [Thrower, Frank P.] NOAA, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Nichols, KM (reprint author), NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd, Seattle, WA 98112 USA. EM krista.nichols@noaa.gov FU [NSF-DEB-0845265] FX The authors thank T. Cummins, D. Cummins, B. Weinlaeder, N. Goodwin, A. Celewycz, M. Zanis, J. Myers, M. Baird, O. Johnson, J. Miller, P. Malecha, J. Malecha, J. Joyce, K. O'Malley, and C. Waters, who assisted in the rearing, husbandry, and/or data collection of rainbow and steelhead trout at the Little Port Walter Research Station, Baranof Island, Alaska. We thank K. Gray for helpful discussions regarding quantitative genetic analyses, and S. Narum for support during the analysis and writing of the results. We also appreciate the comments from anonymous reviewers, which have strengthened the manuscript. This work was funded in part by a NSF-DEB-0845265 Career Award (to K.M.N.). NR 76 TC 6 Z9 6 U1 15 U2 57 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD MAY 1 PY 2015 VL 5 IS 5 BP 873 EP 889 DI 10.1534/g3.114.016469 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA CH8BX UT WOS:000354262000016 PM 25784164 ER PT J AU Hall, DK Nghiem, SV Rigor, IG Miller, JA AF Hall, Dorothy K. Nghiem, Son V. Rigor, Ignatius G. Miller, Jeffrey A. TI Uncertainties of Temperature Measurements on Snow-Covered Land and Sea Ice from In Situ and MODIS Data during BROMEX SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Snow cover; Temperature; Instrumentation; sensors; Remote sensing; Satellite observations ID SURFACE-TEMPERATURE; SATELLITE; GREENLAND; EMISSIVITY; VALIDATION; PRODUCTS; CLIMATE; WINDOW; OZONE AB The Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted in March and April of 2012 near Barrow, Alaska, to investigate impacts of Arctic sea ice reduction on chemical processes. During BROMEX, multiple sensors were deployed to measure air and surface temperature. The uncertainties in temperature measurement on snow-covered land and sea ice surfaces were examined using in situ data and temperature measurements that were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and are part of the Terra and Aqua ice-surface temperature and land-surface temperature (LST) standard data products. Following an 24-h cross-calibration study, two Thermochrons (small temperature-sensing devices) were deployed at each of three field sites: a sea ice site in the Chukchi Sea, a mixed-cover site, and a homogeneous tundra site. At each site, one Thermochron was shielded from direct sunlight and one was left unshielded, and they were placed on top of the snow or ice. The best agreement between the Thermochron- and MODIS-derived temperatures was found between the shielded Thermochrons and the Aqua MODIS LSTs, with an average agreement of 0.6 degrees +/- 2.0 degrees C (sample size of 84) at the homogeneous tundra site. The results highlight some uncertainties associated with obtaining consistent air and surface temperature measurements in the harsh Arctic environment, using both in situ and satellite sensors. It is important to minimize uncertainties that could introduce biases in long-term temperature trends. C1 [Hall, Dorothy K.; Miller, Jeffrey A.] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nghiem, Son V.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rigor, Ignatius G.] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Miller, Jeffrey A.] Wyle Inc, Houston, TX USA. RP Hall, DK (reprint author), NASA, Cryospher Sci Lab, GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM dorothy.k.hall@nasa.gov FU NASA Cryospheric Sciences Program; NASA FX The research carried out at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and at the Jet Propulsion Laboratory, California Institute of Technology, was supported by the NASA Cryospheric Sciences Program. Author I. Rigor is funded by NASA and other contributors to the U.S. Interagency Arctic Buoy Program. We thank Jody Hoon-Starr for programming help, Paul Morin from the University of Minnesota for high-resolution imagery, and Chris Linder of the University of Washington for the GigaPan photography. We also thank Christopher Shuman of NASA and the University of Maryland, Baltimore County, Joint Center for Earth Systems Technology and Brian Wenny and Jack Xiong of the MCST at NASA/GSFC for discussions about MODIS sensor calibration. In addition, we thank the UMIAQ Company, the Barrow whaling community, and the Barrow Arctic Science Consortium for their assistance during BROMEX. NR 33 TC 2 Z9 2 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2015 VL 54 IS 5 BP 966 EP 978 DI 10.1175/JAMC-D-14-0175.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI2FI UT WOS:000354560200004 ER PT J AU Zhou, YP Lau, WKM Huffman, GJ AF Zhou, Yaping Lau, William K. M. Huffman, George J. TI Mapping TRMM TMPA into Average Recurrence Interval for Monitoring Extreme Precipitation Events SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Statistical techniques; Emergency response; Societal impacts ID SATELLITE RAINFALL PRODUCTS; INTENSE PRECIPITATION; CHANGING CLIMATE; UNITED-STATES; FLOOD; STATISTICS; TRENDS; SCALES; RECORD; MODEL AB A prototype online extreme precipitation monitoring system is developed from the TRMM TMPA near-real-time precipitation product. The system utilizes estimated equivalent average recurrence interval (ARI) for up-to-date precipitation accumulations from the past 1, 2, 3, 5, 7, and 10 days to locate locally severe events. The mapping of precipitation accumulations into ARI is based on local statistics fitted into generalized extreme value (GEV) distribution functions. Initial evaluation shows that the system captures historic extreme precipitation events quite well. The system provides additional rarity information for ongoing precipitation events based on local climatology that could be used by the general public and decision makers for various hazard management applications. Limitations of the TRMM ARI due to short record length and data accuracy are assessed through comparison with long-term high-resolution gauge-based rainfall datasets from the NOAA Climate Prediction Center and the Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE) project. TMPA-based extreme climatology captures extreme distribution patterns from gauge data, but a strong tendency to overestimate from TMPA over regimes of complex orography exists. C1 [Zhou, Yaping] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Zhou, Yaping; Lau, William K. M.; Huffman, George J.] NASA, Div Earth Sci, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Zhou, YP (reprint author), Morgan State Univ, GESTAR, Climate & Radiat Lab, NASA,GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM yaping.zhou-1@nasa.gov RI Huffman, George/F-4494-2014; Lau, William /E-1510-2012 OI Huffman, George/0000-0003-3858-8308; Lau, William /0000-0002-3587-3691 FU Precipitation Measuring Mission, NASA Earth Science Division [NNX13AF73G] FX This work is supported by the Precipitation Measuring Mission under Project NNX13AF73G (Headquarters Manager: Dr. R. Kakar), NASA Earth Science Division. The TMPA data are obtained from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC): ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/Derived_Products/3B42RT/Da ily/. We thank Dr. Siegfried Shubert's group for providing sample code for GEV calculation and three anonymous reviewers for providing many constructive suggestions. NR 61 TC 1 Z9 1 U1 1 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2015 VL 54 IS 5 BP 979 EP 995 DI 10.1175/JAMC-D-14-0269.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI2FI UT WOS:000354560200005 ER PT J AU Gatlin, PN Thurai, M Bringi, VN Petersen, W Wolff, D Tokay, A Carey, L Wingo, M AF Gatlin, Patrick N. Thurai, Merhala Bringi, V. N. Petersen, Walter Wolff, David Tokay, Ali Carey, Lawrence Wingo, Matthew TI Searching for Large Raindrops: A Global Summary of Two-Dimensional Video Disdrometer Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Hail; Rainfall; Cloud microphysics; Drop size distribution; Radars; Radar observations; Remote sensing ID DROP-SIZE-DISTRIBUTION; BAND POLARIMETRIC RADAR; SMALL-SCALE VARIABILITY; POLARIZATION RADAR; WIND-TUNNEL; DISTRIBUTION TRUNCATION; DISTRIBUTION PARAMETERS; RAINFALL ESTIMATION; CONVECTIVE CLOUDS; TERMINAL VELOCITY AB A dataset containing 9637 h of two-dimensional video disdrometer observations consisting of more than 240 million raindrops measured at diverse climatological locations was compiled to help characterize underlying drop size distribution (DSD) assumptions that are essential to make precise retrievals of rainfall using remote sensing platforms. This study concentrates on the tail of the DSD, which largely impacts rainfall retrieval algorithms that utilize radar reflectivity. The maximum raindrop diameter was a median factor of 1.8 larger than the mass-weighted mean diameter and increased with rainfall rate. Only 0.4% of the 1-min DSD spectra were found to contain large raindrops exceeding 5 mm in diameter. Large raindrops were most abundant at the tropical locations, especially in Puerto Rico, and were largely concentrated during the spring, especially at subtropical locations. Giant raindrops exceeding 8 mm in diameter occurred at tropical, subtropical, and high-latitude continental locations. The greatest numbers of giant raindrops were found in the subtropical locations, with the largest being a 9.7-mm raindrop that occurred in northern Oklahoma during the passage of a hail-producing thunderstorm. These results suggest large raindrops are more likely to fall from clouds that contain hail, especially those raindrops exceeding 8 mm in diameter. C1 [Gatlin, Patrick N.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Thurai, Merhala; Bringi, V. N.] Colorado State Univ, Ft Collins, CO 80523 USA. [Petersen, Walter; Wolff, David] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Carey, Lawrence; Wingo, Matthew] Univ Alabama, Huntsville, AL 35899 USA. RP Gatlin, PN (reprint author), NASA, MSFC, ZP11,320 Sparkman Dr, Huntsville, AL 35805 USA. EM patrick.gatlin@nasa.gov RI Measurement, Global/C-4698-2015; OI Gatlin, Patrick/0000-0001-9345-1457 FU NASA Marshall Space Flight Center Earth Science Office; NASA Pathways Intern Employment Program; NASA's GPM Project Office; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division FX This work was supported in part by the NASA Marshall Space Flight Center Earth Science Office and the NASA Pathways Intern Employment Program. The NASA GPM GV 2DVDs were funded by Dr. Mathew Schwaller and the late Dr. Arthur Hou of NASA's GPM Project Office. The DOE 2DVD datasets were provided by the Atmospheric Radiation Measurement Program, which is sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. The University of Iowa 2DVD dataset collected during TEFLUN-B and TRMM-LBA was kindly provided by Dr. Witek Krajewski, and the Shimane University (Japan) 2DVD dataset collected in Sumatra was kindly provided by Drs. Toshiaki Kozu and Toyoshi Shimomai. We also thank Pat Kennedy for collecting and providing the CSU-CHILL radar data presented herein. We thank the three anonymous reviewers who provided very helpful suggestions that strengthened this paper as well as Dr. Paul Smith for the insightful discussions on disdrometer sampling of Dmax. The authors are very grateful for the exceptionally gracious, continued customer support of these 2DVDs provided throughout the years by Dr. Michael Schonhuber and Mr. Gunter Lammer of Joanneum Research in Graz, Austria. We are also grateful to the countless others who contributed to the deployment and careful maintenance/calibration of these 2DVDs. NR 93 TC 8 Z9 8 U1 2 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2015 VL 54 IS 5 BP 1069 EP 1089 DI 10.1175/JAMC-D-14-0089.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI2FI UT WOS:000354560200011 ER PT J AU Roth, DJ Rauser, RW Shin, EE Martin, RE Burke, C AF Roth, D. J. Rauser, R. W. Shin, E. E. Martin, R. E. Burke, C. TI Fine Scale Metrology on Cylindrical Structures using X-ray Micro-computed Tomography SO MATERIALS EVALUATION LA English DT Article DE software; computed tomography; imaging; cylinder; metrology AB The ability to use state-of-the-art X-ray microcomputed tomography to perform fine scale (low tens of microns) external and internal measurements on cylindrical structures is explored. Software was developed to automate the process of rapidly analyzing hundreds of computed tomography slices. First, a model system consisting of various-sized cylindrical steel boring tools placed one inside the other was computed tomography scanned and analyzed for roundness, circularity, concentricity, and radius and gap thickness uniformity. Then, a complex real-world metallic cylindrical structure was computed tomography scanned and analyzed for the same characteristics. The structure was heated to several temperatures to measure thermal expansion using computed tomography. C1 [Roth, D. J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Rauser, R. W.] Univ Toledo, Toledo, OH 43606 USA. [Shin, E. E.] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Martin, R. E.] Cleveland State Univ, Cleveland, OH 44115 USA. [Burke, C.] Sierra Lobo Inc, Milan, OH 44846 USA. RP Roth, DJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD MAY PY 2015 VL 73 IS 5 BP 611 EP 620 PG 10 WC Materials Science, Characterization & Testing SC Materials Science GA CI1MD UT WOS:000354507400042 ER PT J AU Roth, DJ Martin, RE Rauser, RW Nichols, CT Bonacuse, PJ AF Roth, D. J. Martin, R. E. Rauser, R. W. Nichols, C. T. Bonacuse, P. J. TI NDT Software Nondestructive Testing Software Developed at NASA Glenn Research Center SO MATERIALS EVALUATION LA English DT Article C1 [Roth, D. J.; Bonacuse, P. J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Martin, R. E.] Cleveland State Univ, Cleveland, OH 44115 USA. [Rauser, R. W.] Univ Toledo, Toledo, OH 43606 USA. [Nichols, C. T.] NASA, JSC White Sands Test Facil, Las Cruces, NM 88004 USA. RP Roth, DJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD MAY PY 2015 VL 73 IS 5 PG 7 WC Materials Science, Characterization & Testing SC Materials Science GA CI1MD UT WOS:000354507400040 ER PT J AU Gockel, J Fox, J Beuth, J Hafley, R AF Gockel, J. Fox, J. Beuth, J. Hafley, R. TI Integrated melt pool and microstructure control for Ti-6Al-4V thin wall additive manufacturing SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE Additive manufacturing; Microstructure control; Melt pool geometry control; Ti-6Al-4V; Process mapping; Finite element modelling; Thin walled deposits ID SOLID FREEFORM FABRICATION; PROCESS MAPS AB In additive manufacturing (AM), melt pool dimension control is needed to accurately build a geometry and determine process precision. Microstructure control is needed for its effect on mechanical properties. This research addresses both for Ti-6Al-4V thin walled structures fabricated by wire feed electron beam AM. Model results show that beam power and beam velocity combinations yielding constant melt pool cross-sectional areas also yield constant solidification cooling rates. Experimental measurements back up this finding and show roughly 20 beta grains across the width of a thin wall deposit which is consistent with an earlier study of single bead deposits, suggesting that links between melt pool geometry and beta grain size are independent of deposition geometry, with significant implications for AM process control. C1 [Gockel, J.; Fox, J.; Beuth, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Hafley, R.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Beuth, J (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM beuth@andrew.cmu.edu FU National Science Foundation [CMMI-1131579]; National Defense Science and Engineering Graduate (NDSEG); Carnegie Mellon University Institute; John and Claire Bertucci Fellowship FX This research was supported by the National Science Foundation under grant CMMI-1131579, by a National Defense Science and Engineering Graduate (NDSEG) Fellowship, by the Carnegie Mellon University Institute for Complex Engineered Systems Northrop Grumman Fellowship, and by the John and Claire Bertucci Fellowship. NR 24 TC 4 Z9 4 U1 12 U2 61 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD MAY PY 2015 VL 31 IS 8 BP 912 EP 916 DI 10.1179/1743284714Y.0000000704 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CI1IQ UT WOS:000354497600005 ER PT J AU Horch, EP van Altena, WF Demarque, P Howell, SB Everett, ME Ciardi, DR Teske, JK Henry, TJ Winters, JG AF Horch, Elliott P. van Altena, William F. Demarque, Pierre Howell, Steve B. Everett, Mark E. Ciardi, David R. Teske, Johanna K. Henry, Todd J. Winters, Jennifer G. TI OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS-LUMINOSITY RELATION SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; binaries: visual; techniques: high angular resolution; techniques: interferometric; techniques: photometric ID LINED SPECTROSCOPIC BINARIES; PROPER-MOTION STARS; PHOTOELECTRIC RADIAL-VELOCITIES; GENEVA-COPENHAGEN SURVEY; CD-ROM; SOLAR NEIGHBORHOOD; DIFFRACTION LIMIT; GLOBULAR-CLUSTERS; ORBITAL SOLUTIONS; HIPPARCOS STARS AB In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory. C1 [Horch, Elliott P.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [van Altena, William F.; Demarque, Pierre] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Teske, Johanna K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Teske, Johanna K.] Carnegie Inst Sci, Carnegie Observ, Washington, DC 20015 USA. [Henry, Todd J.; Winters, Jennifer G.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. RP Horch, EP (reprint author), So Connecticut State Univ, Dept Phys, 501 Crescent St, New Haven, CT 06515 USA. EM horche2@southernct.edu; william.vanaltena@yale.edu; pierre.demarque@yale.edu; steve.b.howell@nasa.gov; everett@noao.edu; ciardi@ipac.caltech.edu; jteske@carnegiescience.edu; thenry@astro.gsu.edu; winters@astro.gsu.edu OI Ciardi, David/0000-0002-5741-3047 FU Kepler Science Office located at the NASA Ames Research Center; Kepler Science Office; NSF [AST-1429015] FX We thank the Kepler Science Office located at the NASA Ames Research Center for providing partial financial support for the upgraded DSSI instrument. It is also a pleasure to thank Steve Hardash, Andy Adamson, Inger Jorgensen, John White, and the entire summit crew for their excellent work in getting the instrument to the telescope and installing it. This work was funded by the Kepler Science Office and NSF grant AST-1429015. It made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the SIMBAD database, operated at CDS, Strasbourg, France, and the 9th Catalog of Spectroscopic Orbits of Binary Stars. NR 43 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 151 DI 10.1088/0004-6256/149/5/151 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200002 ER PT J AU Keel, WC Maksym, WP Bennert, VN Lintott, CJ Chojnowski, SD Moiseev, A Smirnova, A Schawinski, K Urry, CM Evans, DA Pancoast, A Scott, B Showley, C Flatland, K AF Keel, William C. Maksym, W. Peter Bennert, Vardha N. Lintott, Chris J. Chojnowski, S. Drew Moiseev, Alexei Smirnova, Aleksandrina Schawinski, Kevin Urry, C. Megan Evans, Daniel A. Pancoast, Anna Scott, Bryan Showley, Charles Flatland, Kelsi TI HST IMAGING OF FADING AGN CANDIDATES. I. HOST-GALAXY PROPERTIES AND ORIGIN OF THE EXTENDED GAS SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 5792, NGC 5252, UGC 7342, UGC 11185, Mkn 1498) galaxies: interactions; galaxies: Seyfert ID DIGITAL-SKY-SURVEY; IONIZATION-CONE STRUCTURES; EMISSION-LINE REGIONS; NGC 5252; ELLIPTIC GALAXIES; HANNYS VOORWERP; SEYFERT-GALAXIES; STAR-FORMATION; IC 2497; QUASAR AB We present narrow- and medium-band Hubble Space Telescope imaging, with additional supporting ground-based imaging, spectrophotometry, and Fabry-Perot interferometric data, for eight galaxies identified as hosting a fading active galactic nucleus (AGN). These are selected to have AGN-ionized gas projected > 10 kpc from the nucleus and energy budgets with a significant shortfall of ionizing radiation between the requirement to ionize the distant gas and the AGN as observed directly, indicating fading of the AGN on approximate to 50,000 yr timescales. This paper focuses on the host-galaxy properties and origin of the gas. In every galaxy, we identify evidence of ongoing or past interactions, including tidal tails, shells, and warped or chaotic dust structures; a similarly selected sample of obscured AGNs with extended ionized clouds shares this high incidence of disturbed morphologies. Several systems show multiple dust lanes in different orientations, broadly fit by differentially precessing disks of accreted material viewed similar to 1.5 Gyr after its initial arrival. The host systems are of early Hubble type; most show nearly pure de Vaucouleurs surface brightness profiles and Sersic indices appropriate for classical bulges, with one S0 and one SB0 galaxy. The gas has a systematically lower metallicity than the nuclei; three systems have abundances uniformly well below solar, consistent with an origin in tidally disrupted low-luminosity galaxies, while some systems have more nearly solar abundances (accompanied by such signatures as multiple Doppler components), which may suggest redistribution of gas by outflows within the host galaxies themselves. These aspects are consistent with a tidal origin for the extended gas in most systems, although the ionized gas and stellar tidal features do not always match closely. Unlike extended emission regions around many radio-loud AGNs, these clouds are kinematically dominated by rotation, in some cases in warped disks. Outflows can play important kinematic roles only in localized regions near some of the AGNs. We find only a few sets of young star clusters potentially triggered by AGN outflows. In UGC 7342 and UGC 11185, multiple luminous star clusters are seen just within the projected ionization cones, potentially marking star formation triggered by outflows. As in the discovery example, Hanny's Voorwerp/IC 2497, there are regions in these clouds where the lack of a strong correlation between Ha surface brightness and ionization parameter indicates that there is unresolved fine structure in the clouds. Together with thin coherent filaments spanning several kpc, persistence of these structures over their orbital lifetimes may require a role for magnetic confinement. Overall, we find that the sample of fading AGNs occur in interacting and merging systems, that the very extended ionized gas is composed of tidal debris rather than galactic winds, and that these host systems are bulge-dominated and show no strong evidence of triggered star formation in luminous clusters. C1 [Keel, William C.; Maksym, W. Peter] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Bennert, Vardha N.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Lintott, Chris J.] Univ Oxford, Astrophys, Chicago, IL 60605 USA. [Chojnowski, S. Drew] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Moiseev, Alexei; Smirnova, Aleksandrina] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Russia. [Schawinski, Kevin] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Urry, C. Megan] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Evans, Daniel A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pancoast, Anna] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Scott, Bryan; Showley, Charles; Flatland, Kelsi] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Scott, Bryan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Showley, Charles] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. RP Keel, WC (reprint author), Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. EM wkeel@ua.edu; wpmaksym@ua.edu; vbennert@calpoly.edu; cjl@astro.ox.ac.uk; kevin.schawinski@phys.ethz.ch RI Moiseev, Alexey/H-9391-2013; OI Maksym, Walter/0000-0002-2203-7889; Schawinski, Kevin/0000-0001-5464-0888; Urry, Meg/0000-0002-0745-9792; Keel, William/0000-0002-6131-9539 FU NASA [HST-GO-12525.01-A, HST-GO-12525.01-B]; Active Processes in Galactic and Extragalactic Objects basic research programme of the Department of Physical Sciences of the RAS [OFN-17]; Ministry of Education and Science of the Russian Federation [N14.619.21.0004, RFMEFI61914X0004]; University of Alabama Research Stimulation Program; National Science Foundation (NSF) Research at Undergraduate Institutions (RUI) grant [AST-1312296]; Leverhulme Trust; STFC Science in Society Program; Dynasty Foundation; President of the Russian Federation [MD3623.2015.2]; NASA Einstein Fellowship at Yale; Swiss National Science Foundation [PP00P2 138979/1]; Jim Gray Research Fund from Microsoft; National Aeronautics and Space Administration FX This work was supported by NASA through STScI grants HST-GO-12525.01-A and -B. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). This research has made use of NASA's Astrophysics Data System and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank Linda Dressel for advice on setting up the observations, especially reducing intrusive reflections. Giles Novak provided useful pointers on magnetic fields in the ISM. Identification of this galaxy sample was possible through the efforts of nearly 200 Galaxy Zoo volunteers; we are grateful for their contributions, and thank once more the list of participants in Keel et al. (2012a). This work was partly supported by the Active Processes in Galactic and Extragalactic Objects basic research programme of the Department of Physical Sciences of the RAS OFN-17. The observations obtained with the 6 m telescope of the SAO of the RAS were carried out with the financial support of the Ministry of Education and Science of the Russian Federation (contract no. N14.619.21.0004, the project RFMEFI61914X0004). W.P. Maksym is grateful for support by the University of Alabama Research Stimulation Program. V.N. Bennert acknowledges assistance from a National Science Foundation (NSF) Research at Undergraduate Institutions (RUI) grant AST-1312296. Note that findings and conclusions do not necessarily represent views of the NSF. C.J. Lintott acknowledges funding from The Leverhulme Trust and the STFC Science in Society Program. A. Moiseev is also grateful for the financial support of the Dynasty Foundation and a grant from the President of the Russian Federation (MD3623.2015.2). K. Schawinski was supported by a NASA Einstein Fellowship at Yale, and gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2 138979/1. Galaxy Zoo was made possible by funding from a Jim Gray Research Fund from Microsoft and The Leverhulme Trust. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 51 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 155 DI 10.1088/0004-6256/149/5/155 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200006 ER PT J AU Mainzer, A Grav, T Bauer, J Conrow, T Cutri, RM Dailey, J Fowler, J Giorgini, J Jarrett, T Masiero, J Spahr, T Statler, T Wright, EL AF Mainzer, A. Grav, T. Bauer, J. Conrow, T. Cutri, R. M. Dailey, J. Fowler, J. Giorgini, J. Jarrett, T. Masiero, J. Spahr, T. Statler, T. Wright, E. L. TI SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: numerical; minor planets, asteroids: general; surveys; techniques: image processing; telescopes ID INFRARED-ASTRONOMICAL-SATELLITE; MIDCOURSE-SPACE-EXPERIMENT; MAIN BELT ASTEROIDS; THERMAL-MODEL CALIBRATION; MINOR PLANET SURVEY; ALL-SKY SURVEY; WISE/NEOWISE OBSERVATIONS; PHYSICAL-CHARACTERIZATION; SURVEY-EXPLORER; NEOWISE AB We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 mu m HgCdTe detector arrays capable of operating at similar to 35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey. C1 [Mainzer, A.; Bauer, J.; Giorgini, J.; Masiero, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Planetary Sci Inst, Tucson, AZ USA. [Bauer, J.; Conrow, T.; Cutri, R. M.; Dailey, J.; Fowler, J.; Jarrett, T.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Jarrett, T.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Spahr, T.] Harvard Smithsonian Ctr Astrophys, Minor Planet Ctr, Cambridge, MA 02138 USA. [Statler, T.] Ohio Univ, Inst Astrophys, Athens, OH 45701 USA. [Statler, T.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Wright, E. L.] Univ Calif Los Angeles, Dept Astron & Astrophys, Los Angeles, CA USA. RP Mainzer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Masiero, Joseph/0000-0003-2638-720X; Cutri, Roc/0000-0002-0077-2305 FU National Aeronautics and Space Administration FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. We thank the referee, Dr. Alan Harris of Pasadena, for helpful suggestions that greatly improved the manuscript. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 91 TC 5 Z9 5 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 172 DI 10.1088/0004-6256/149/5/172 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200023 ER PT J AU Ricci, F Massaro, F Landoni, M D'Abrusco, R Milisavljevic, D Stern, D Masetti, N Paggi, A Smith, HA Tosti, G AF Ricci, F. Massaro, F. Landoni, M. D'Abrusco, R. Milisavljevic, D. Stern, D. Masetti, N. Paggi, A. Smith, Howard A. Tosti, G. TI OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. IV. RESULTS OF THE 2014 FOLLOW-UP CAMPAIGN SO ASTRONOMICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: active; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BL LACERTAE OBJECTS; ALL-SKY SURVEY; FERMI UNASSOCIATED SOURCES; SOURCE CATALOG; RADIO; COUNTERPARTS; SAMPLE; I. AB The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: (1) to confirm the nature of these candidates, and (2) whenever possible, determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the northern hemisphere with Kitt Peak National Observatory and in the southern hemisphere with the Southern Astrophysical Research telescopes. We also report three sources observed with the Magellan and Palomar telescopes. Our selection of blazar-like sources that could be potential counterparts of UGSs is based on their peculiar infrared colors and on their combination with radio observations both at high and low frequencies (i.e., above and below similar to 1 GHz) in publicly available large radio surveys. We present the optical spectra of 27 objects. We confirm the blazar-like nature of nine sources that appear to be potential low-energy counterparts of UGSs. Then we present new spectroscopic observations of 10 active galaxies of uncertain type associated with Fermi sources, classifying all of them as blazars. In addition, we present the spectra for five known gamma-ray blazars with uncertain redshift estimates and three BL Lac candidates that were observed during our campaign. We also report the case for WISE J173052.85-035247.2, candidate counterpart of the source 2FGL J1730.6-0353, which has no radio counterpart in the major radio surveys. We confirm that our selection of gamma-ray blazars candidates can successfully indentify low-energy counterparts to Fermi unassociated sources and allow us to discover new blazars. C1 [Ricci, F.] Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. [Ricci, F.; D'Abrusco, R.; Milisavljevic, D.; Paggi, A.; Smith, Howard A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Massaro, F.] Univ Turin, Dipartmento Fis, I-10125 Turin, Italy. [Massaro, F.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Landoni, M.] Osservatorio Astronomico Brera, INAF, I-23807 Merate, Italy. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Masetti, N.] Ist Astrofis Spaziale & Fis Cosm Bologna, INAF, I-40129 Bologna, Italy. [Tosti, G.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. RP Ricci, F (reprint author), Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. EM riccif@fis.uniroma3.it RI D'Abrusco, Raffaele/L-2767-2016; Massaro, Francesco/L-9102-2016; Paggi, Alessandro/C-1219-2017; OI D'Abrusco, Raffaele/0000-0003-3073-0605; Massaro, Francesco/0000-0002-1704-9850; Paggi, Alessandro/0000-0002-5646-2410; Ricci, Federica/0000-0001-5742-5980 FU NASA [NNX12AO97G, NNX13AP20G]; MIUR [PRIN 2010-2011, INAF-PRIN 2011]; NASA/JPL grant RSAs [1369566, 1369556, 1369565]; ASI/INAF [I/005/12/0]; National Science Foundation; Australian Research Council; Science Foundation for Physics within the University of Sydney; NASA; NSF FX We are grateful to. D. Hammer and S. Points for their help scheduling, preparing, and performing the KPNO and the SOAR observations, respectively. We are grateful to F. La Franca for the fruitful discussions that significantly improved the paper. This investigation is supported by the NASA grants NNX12AO97G and NNX13AP20G. F. Ricci acknowledges the grants MIUR PRIN 2010-2011 and INAF-PRIN 2011. H. A. Smith acknowledges partial support from NASA/JPL grant RSAs 1369566, 1369556, and 1369565. The work by G. Tosti is supported by the ASI/INAF contract I/005/12/0. Part of this work is based on archival data, software or online services provided by the ASI Science Data Center. This research has made use of data obtained from the high-energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center; the SIMBAD database operated at CDS, Strasbourg, France; the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA. Part of this work is based on the NVSS (NRAO VLA Sky Survey): the National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation and on the VLA low-frequency Sky Survey (VLSS). The Molonglo Observatory site manager, D. Campbell-Wilson, and the staff, J. Webb, M. White and J. Barry, are responsible for the smooth operation of Molonglo Observatory Synthesis Telescope (MOST) and the day-to-day observing programme of SUMSS. The SUMSS survey is dedicated to M. Large whose expertise and vision made the project possible. The MOST is operated by the School of Physics with the support of the Australian Research Council and the Science Foundation for Physics within the University of Sydney. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and NSF. This research has made use of the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station. 15 Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, the U.S. Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions.; r The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the JointInstitute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-PlanckInstitute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. The WENSS project was a collaboration between the Netherlands Foundation for Research in Astronomy and the Leiden Observatory. We acknowledge the WENSS team consisted of G. de Bruyn, Y. Tang, R. Rengelink, G. Miley, H. Rottgering, M. Bremer, M. Bremer, W. Brouw, E. Raimond and D. Fullagar for the extensive work aimed at producing the WENSS catalog. TOPCAT16 (Taylor 2005) for the preparation and manipulation of the tabular data and the images. The Aladin Java applet17 was used to create the finding charts reported in this paper (Bonnarel et al. 2000). It can be started from the CDS (Strasbourg, France), from the CFA (Harvard, USA), from the ADAC (Tokyo, Japan), from the IUCAA (Pune, India), from the UKADC (Cambridge, UK), or from the CADC (Victoria, Canada). NR 62 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 160 DI 10.1088/0004-6256/149/5/160 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200011 ER PT J AU McGinnis, PT Alencar, SHP Guimaraes, MM Sousa, AP Stauffer, J Bouvier, J Rebull, L Fonseca, NNJ Venuti, L Hillenbrand, L Cody, AM Teixeira, PS Aigrain, S Favata, F Furesz, G Vrba, FJ Flaccomio, E Turner, NJ Gameiro, JF Dougados, C Herbst, W Morales-Calderon, M Micela, G AF McGinnis, P. T. Alencar, S. H. P. Guimaraes, M. M. Sousa, A. P. Stauffer, J. Bouvier, J. Rebull, L. Fonseca, N. N. J. Venuti, L. Hillenbrand, L. Cody, A. M. Teixeira, P. S. Aigrain, S. Favata, F. Furesz, G. Vrba, F. J. Flaccomio, E. Turner, N. J. Gameiro, J. F. Dougados, C. Herbst, W. Morales-Calderon, M. Micela, G. TI CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion; accretion disks; stars: pre-main sequence; techniques: photometric; techniques: spectroscopic ID YOUNG STELLAR OBJECTS; ALPHA LINE EMISSION; LOW-MASS STARS; MAGNETOSPHERIC ACCRETION; MHD SIMULATIONS; SPITZER OBSERVATIONS; CIRCUMSTELLAR DISKS; PROTOSTELLAR DISKS; MAGNETIC TOPOLOGY; LIGHT CURVES AB Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims. The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods. In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results. AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions. The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M-circle dot less than or similar to M less than or similar to 2.0 M-circle dot. Assuming random inclinations, we estimate that nearly all systems in this mass range likely possess an inner disk warp. We attribute this to a possible change in magnetic field configurations among stars of lower mass. C1 [McGinnis, P. T.; Alencar, S. H. P.; Sousa, A. P.; Fonseca, N. N. J.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Guimaraes, M. M.] UFSJ, Dept Fis & Mat, BR-36420000 Ouro Branco, MG, Brazil. [Stauffer, J.; Rebull, L.; Cody, A. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Bouvier, J.; Fonseca, N. N. J.; Venuti, L.; Dougados, C.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bouvier, J.] CNRS, IPAG, F-38000 Grenoble, France. [Hillenbrand, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Teixeira, P. S.] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria. [Aigrain, S.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Favata, F.] European Space Agcy, F-75738 Paris 15, France. [Furesz, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Vrba, F. J.] US Naval Observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Flaccomio, E.] Observ Astron Palermo, INAF, I-90134 Palermo, Italy. [Turner, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gameiro, J. F.] Univ Porto, Inst Astrofis & Ciencias Espaciais, P-4150762 Oporto, Portugal. [Gameiro, J. F.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal. [Herbst, W.] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Morales-Calderon, M.] CSIC, INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28691, Spain. RP McGinnis, PT (reprint author), Univ Fed Minas Gerais, ICEx, Dept Fis, Av Antonio Carlos 6627, BR-30270901 Belo Horizonte, MG, Brazil. EM pauline@fisica.ufmg.br RI Gameiro, Jorge/M-5057-2013; McGinnis, Pauline/F-6490-2015; Teixeira, Paula Stella/O-2289-2013; Guimaraes, Marcelo/H-5897-2012; Morales-Calderon, Maria/C-8384-2017; OI Gameiro, Jorge/0000-0002-1970-7001; McGinnis, Pauline/0000-0001-7476-7253; Teixeira, Paula Stella/0000-0002-3665-5784; Guimaraes, Marcelo/0000-0002-0517-4507; Morales-Calderon, Maria/0000-0001-9526-9499; Micela, Giuseppina/0000-0002-9900-4751; Flaccomio, Ettore/0000-0002-3638-5788; Rebull, Luisa/0000-0001-6381-515X FU NASA; CAPES; CNPq; FAPEMIG; Cofecub; CNES; [ANR 2011 Blanc SIMI5-6 020 01] FX The authors thank the referee V. Grinin for his contribution to the discussion. This work is based on data collected by the CoRoT satellite, and in part on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. PTM, SHPA, MMG, APS and NNJF acknowledge funding support from CAPES, CNPq, FAPEMIG, and Cofecub. J.B. acknowledges funding support from Cofecub, CNES, and the grant ANR 2011 Blanc SIMI5-6 020 01. NR 64 TC 19 Z9 19 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2015 VL 577 AR A11 DI 10.1051/0004-6361/201425475 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8RT UT WOS:000353579600011 ER PT J AU Rauch, T Werner, K Quinet, P Kruk, JW AF Rauch, T. Werner, K. Quinet, P. Kruk, J. W. TI Stellar laboratories IV. New Ga IV, Ga V, and Ga VI oscillator strengths and the gallium abundance in the hot white dwarfs G191-B2B and RE0503-289 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE atomic data; line: identification; stars: abundances; stars: individual: G191-B2B; stars: individual: RE 0503-289; virtual observatory tools ID SPECTRAL-ANALYSIS; RE 0503-289; GE VI; ZN V; VALIDATION AB Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These atmospheres are strongly dependent on the reliability of the atomic data that are used to calculate them. Aims. Reliable Ga IV-VI oscillator strengths are used to identify Ga lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ga abundances. Methods. We newly calculated Ga IV-VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for analyzing of Ga lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results. We unambiguously detected 20 isolated and 6 blended (with lines of other species) Ga V lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The identification of Ga IV and Ga VI lines is uncertain because they are weak and partly blended by other lines. The determined Ga abundance is 3.5 +/- 0.5 x 10(-5) (mass fraction, about 625 times the solar value). The Ga IV/Ga V ionization equilibrium, which is a very sensitive indicator for the effective temperature, is well reproduced in RE 0503-289. We identified the strongest Ga IV lines (at 1258.801, 1338.129 angstrom) in the HST/STIS spectrum of G191-B2B and measured a Ga abundance of 2.0 +/- 0.5 x 10(-6) (about 22 times solar). Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. The observed Ga IV-V line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed us to determine the photospheric Ga abundance in white dwarfs. C1 [Rauch, T.; Werner, K.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Quinet, P.] Univ Mons, UMONS, Astrophys & Spect, B-7000 Mons, Belgium. [Quinet, P.] Univ Liege, IPNAS, B-4000 Liege, Belgium. [Kruk, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rauch, T (reprint author), Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM rauch@astro.uni-tuebingen.de FU German Aerospace Center (DLR) [05 OR 1402]; Belgian FRS-FNRS; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX T.R. is supported by the German Aerospace Center (DLR, grant 05 OR 1402). Financial support from the Belgian FRS-FNRS is also acknowledged. P.Q. is research director of this organization. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 26 TC 9 Z9 9 U1 2 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2015 VL 577 AR A6 DI 10.1051/0004-6361/201425326 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8RT UT WOS:000353579600006 ER PT J AU Ursini, F Boissay, R Petrucci, PO Matt, G Cappi, M Bianchi, S Kaastra, J Harrison, F Walton, DJ di Gesu, L Costantini, E De Marco, B Kriss, GA Mehdipour, M Paltani, S Peterson, BM Ponti, G Steenbrugge, KC AF Ursini, F. Boissay, R. Petrucci, P. -O. Matt, G. Cappi, M. Bianchi, S. Kaastra, J. Harrison, F. Walton, D. J. di Gesu, L. Costantini, E. De Marco, B. Kriss, G. A. Mehdipour, M. Paltani, S. Peterson, B. M. Ponti, G. Steenbrugge, K. C. TI Anatomy of the AGN in NGC 5548 III. The high-energy view with NuSTAR and INTEGRAL SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SEYFERT-1 GALAXY NGC-5548; X-RAY-SPECTRA; XMM-NEWTON; MRK 509; MULTIWAVELENGTH CAMPAIGN; COMPTON REFLECTION; EMISSION-LINE; BEPPOSAX OBSERVATIONS; PHYSICAL CONDITIONS AB We describe the analysis of the seven broad-band X-ray continuum observations of the archetypal Seyfert 1 galaxy NGC 5548 that were obtained with XMM-Newton or Chandra, simultaneously with high-energy (>10 keV) observations with NuSTAR and INTEGRAL. These data were obtained as part of a multiwavelength campaign undertaken from the summer of 2013 till early 2014. We find evidence of a high-energy cut-off in at least one observation, which we attribute to thermal Comptonization, and a constant reflected component that is likely due to neutral material at least a few light months away from the continuum source. We confirm the presence of strong, partial covering X-ray absorption as the explanation for the sharp decrease in flux through the soft X-ray band. The obscurers appear to be variable in column density and covering fraction on time scales as short as weeks. A fit of the average spectrum over the range 0.3-400 keV with a realistic Comptonization model indicates the presence of a hot corona with a temperature of 40(-10)(+40) keV and an optical depth of 2.7(-1.2)(+0.7) if a spherical geometry is assumed. C1 [Ursini, F.; Petrucci, P. -O.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ursini, F.; Petrucci, P. -O.] CNRS, IPAG, F-38000 Grenoble, France. [Ursini, F.; Matt, G.; Bianchi, S.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Boissay, R.; Paltani, S.] Univ Geneva, Dept Astron, CH-1290 Versoix, Switzerland. [Cappi, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Kaastra, J.; di Gesu, L.; Costantini, E.; Mehdipour, M.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Harrison, F.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Walton, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [De Marco, B.; Ponti, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kriss, G. A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kriss, G. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Mehdipour, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Peterson, B. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Peterson, B. M.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Steenbrugge, K. C.] Univ Catolica Norte, Inst Astron, Antofagasta, Chile. [Steenbrugge, K. C.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. RP Ursini, F (reprint author), Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. EM francesco.ursini@obs.ujf-grenoble.fr RI Bianchi, Stefano/B-4804-2010; OI Bianchi, Stefano/0000-0002-4622-4240; Cappi, Massimo/0000-0001-6966-8920 FU NASA; ESA Member States; USA (NASA); French-Italian International Project of Scientific Collaboration: PICS-INAF project [181542]; CNES; Universite Franco-Italienne (Vinci Ph.D. fellowship); Italian Space Agency [ASI/INAF I/037/12/0-011/13]; NASA [13184, NAS5-26555]; US NSF [AST-1008882]; E.U. Marie Curie Intra-European fellowship [FP-PEOPLE-2012-IEF- 331095]; Fondo Fortalecimiento de la Productividad Cientifica VRIDT; ISSI in Bern; Netherlands Organization for Scientific Research; UK STFC; French CNES; CNRS/PICS; CNRS/PNHE; Swiss SNSF; Italian INAF/PICS; German Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR) [FKZ 50 OR 1408] FX We are grateful to the anonymous referee for his/her helpful comments, which have improved the manuscript. This work is based on observations obtained with: the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory and funded by NASA; INTEGRAL, an ESA project with instrument and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland and with the participation of Russia and the USA; XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The data used in this research are stored in the public archives of the international space observatories involved. This research has made use of data, software and/or web tools obtained from NASA's High Energy Astrophysics Science Archive Research Center (HEASARC), a service of Goddard Space Flight Center and the Smithsonian Astrophysical Observatory. F.U., P.O.P., G.M., and S.B. acknowledge support from the French-Italian International Project of Scientific Collaboration: PICS-INAF project number 181542. F.U., P.O.P. acknowledge support from CNES. F.U. acknowledges support from Universite Franco-Italienne (Vinci Ph.D. fellowship). F.U., G.M. acknowledges financial support from the Italian Space Agency under grant ASI/INAF I/037/12/0-011/13. G.A.K. was supported by NASA through grants for HST program number 13184 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. B.M.P. acknowledges support from the US NSF through grant AST-1008882. G.P. acknowledges support via an E.U. Marie Curie Intra-European fellowship under contract no. FP-PEOPLE-2012-IEF- 331095. K.C.S. acknowledges financial support from the Fondo Fortalecimiento de la Productividad Cientifica VRIDT 2013. We acknowledge support by ISSI in Bern; The Netherlands Organization for Scientific Research; the UK STFC; the French CNES, CNRS/PICS and CNRS/PNHE; the Swiss SNSF; the Italian INAF/PICS; the German Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR, FKZ 50 OR 1408); we acknowledge support from the Italian Space Agency under grants ASI-INAF I/037/12/P1 and ASI/INAF NuSTAR I/037/12/0. NR 54 TC 12 Z9 12 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2015 VL 577 AR A38 DI 10.1051/0004-6361/201425401 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8RT UT WOS:000353579600038 ER PT J AU Yates, EL Iraci, LT Austerberry, D Pierce, RB Roby, MC Tadic, JM Loewenstein, M Gore, W AF Yates, Emma L. Iraci, Laura T. Austerberry, David Pierce, R. Bradley Roby, Matthew C. Tadic, Jovan M. Loewenstein, Max Gore, Warren TI Characterizing the impacts of vertical transport and photochemical ozone production on an exceedance area SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Tropospheric ozone; Air quality; San Joaquin Valley ID UNITED-STATES; SURFACE OZONE; CALIFORNIA OZONE; NORTHERN MIDLATITUDES; TROPOSPHERIC OZONE; BACKGROUND OZONE; GLOBAL-MODEL; AIR-QUALITY; EMISSIONS; AMERICA AB Offshore and inland vertical profiles of ozone (O-3) were measured from an aircraft during 16 flights from January 2012 to January 2013 over the northern San Joaquin Valley (SJV) and over the Pacific Ocean. Analysis of in situ measurements presents an assessment of the seasonality and magnitude of net O-3 production and transport within the lower troposphere above the SJV. During the high O-3 season (May -October), the Dobson Unit sum of O-3 in the 0-2 km above sea level (km.a.s.l.) layer above the SJV exceeds that above the offshore profile by up to 20.5%, implying net 03 production over the SJV or vertical transport from above. During extreme events (e.g. Stratosphere-to-troposphere transport) vertical features (areas of enhanced or depleted O-3 or water vapor) are observed in the offshore and SJV profiles at different altitudes, demonstrating the scale of vertical mixing during transport. Correlation analysis between offshore O-3 profiles and O-3 surface sites in the SJV lends further support the hypothesis of vertical mixing. Correlation analysis indicates that O-3 mixing ratios at surface sites in the northern and middle SJV show significant correlations to the 1.5-2 km.a.s.l. offshore altitude range. Southern SJV O-3 surface sites show a shift towards maximum correlations at increased time-offsets, and O-3 surface sites at elevated altitudes show significant correlations with higher offshore altitudes (2.5-4 km.a.s.l.). (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yates, Emma L.; Iraci, Laura T.; Austerberry, David; Roby, Matthew C.; Tadic, Jovan M.; Loewenstein, Max; Gore, Warren] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. [Pierce, R. Bradley] NOAA, NESDIS, Adv Satellite Prod Branch, Madison, WI 53706 USA. [Roby, Matthew C.] San Jose State Univ, Dept Meteorol, San Jose, CA 95192 USA. RP Yates, EL (reprint author), NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. EM emma.l.yates@nasa.gov RI Pierce, Robert Bradley/F-5609-2010; Tadic, Jovan/P-3677-2016 OI Pierce, Robert Bradley/0000-0002-2767-1643; FU H211 L.L.C.; San Jose State University Research Foundation; Bay Area Environmental Research Institute; Ames Research Center Director's Funds FX The authors gratefully recognize the support and partnership of H211 L.L.C., with particular thanks to K. Ambrose, R. Simone, B. Quiambao, J. Lee and R. Fisher. Funding was provided by the San Jose State University Research Foundation (E.Y.) and the Bay Area Environmental Research Institute (M.R.). Funding for instrumentation and aircraft integration is acknowledged from Ames Research Center Director's Funds. Technical contributions from Z. Young, E. Quigley, R. Walker, and A. Trias made this project possible. Helpful suggestions from two anonymous reviewers are appreciated. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. NR 31 TC 3 Z9 3 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2015 VL 109 BP 342 EP 350 DI 10.1016/j.atmosenv.2014.09.002 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CH6MF UT WOS:000354150000036 ER PT J AU Schmidt, GA Sherwood, S AF Schmidt, Gavin A. Sherwood, Steven TI A practical philosophy of complex climate modelling SO EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE LA English DT Article DE Climate models; Complex simulation; Model skill ID CMIP5; PROJECTIONS; PREDICTIONS; OCEAN; CONFIRMATION; UNCERTAINTY; SENSITIVITY; GENERATION; ENSEMBLE; SCIENCE AB We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP). We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work. C1 [Schmidt, Gavin A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Sherwood, Steven] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia. RP Schmidt, GA (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM gavin.a.schmidt@nasa.gov; s.sherwood@unsw.edu.au RI Schmidt, Gavin/D-4427-2012; Sherwood, Steven/B-5673-2008 OI Schmidt, Gavin/0000-0002-2258-0486; Sherwood, Steven/0000-0001-7420-8216 NR 82 TC 2 Z9 2 U1 5 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1879-4912 EI 1879-4920 J9 EUR J PHILOS SCI JI Eur. J. Philos. Sci. PD MAY PY 2015 VL 5 IS 2 BP 149 EP 169 DI 10.1007/s13194-014-0102-9 PG 21 WC History & Philosophy Of Science SC History & Philosophy of Science GA CH9XY UT WOS:000354391200002 ER PT J AU Finch, TK AF Finch, Tehani K. TI Coordinate families for the Schwarzschild geometry based on radial timelike geodesics SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article DE Schwarzschild geometry; Painleve-Gullstrand coordinates; Spacetime slicing; Black hole volume ID SPACETIMES AB We explore the connections between various coordinate systems associated with observers moving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon. We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lemaitre coordinates as well. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Finch, TK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM tehani.k.finch@nasa.gov FU Howard University Department of Physics and Astronomy; NASA Postdoctoral Fellowship through the Oak Ridge Associated Universities FX The author gratefully acknowledges fruitful correspondence with Brandon DiNunno and Richard Matzner; commentary from Tristan Hubsch and Bernard Kelly; discussions with James Lindesay that introduced him to Painleve-Gullstrand coordinates; suggestions from an anonymous referee; support from the Howard University Department of Physics and Astronomy, where this work was begun; and support from a NASA Postdoctoral Fellowship through the Oak Ridge Associated Universities. NR 23 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 EI 1572-9532 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD MAY PY 2015 VL 47 IS 5 AR 56 DI 10.1007/s10714-015-1891-7 PG 25 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CH7IC UT WOS:000354208200010 ER PT J AU Chattopadhyay, G Coccetti, F Pierantoni, L Wallis, TM Mehdi, I AF Chattopadhyay, Goutam Coccetti, Fabio Pierantoni, Luca Wallis, Thomas Mitchell Mehdi, Imran TI SPECIAL ISSUE ON TERAHERTZ NANOMATERIALS AND APPLICATIONS SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Chattopadhyay, Goutam; Mehdi, Imran] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Coccetti, Fabio] CNRS, LAAS, F-31077 Toulouse, France. [Pierantoni, Luca] Univ Politech Marche, Dipartimento Ingn Informaz, I-60131 Ancona, Italy. [Wallis, Thomas Mitchell] NIST, Boulder, CO 80305 USA. RP Chattopadhyay, G (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2015 VL 5 IS 3 SI SI BP 332 EP 334 DI 10.1109/TTHZ.2015.2418573 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA CH3AE UT WOS:000353897000004 ER PT J AU Hartley, TT Veillette, RJ Adams, JL Lorenzo, CF AF Hartley, Tom T. Veillette, Robert J. Adams, Jay L. Lorenzo, Carl F. TI Energy storage and loss in fractional-order circuit elements SO IET CIRCUITS DEVICES & SYSTEMS LA English DT Article AB The efficiency of a general fractional-order circuit element as an energy storage device is analysed. Simple expressions are derived for the proportions of energy that may be transferred into and then recovered from a fractional-order element by either constant-current or constant-voltage charging and discharging. For a half-order element, it is shown that the efficiency of the charging phase of the cycle is equal to the efficiency of the discharging phase. The results demonstrate the duality of the fractional capacitive and inductive elements, in that the efficiency of one under constant-current cycling is the same as the efficiency of the other under constant-voltage cycling, and vice-versa. C1 [Hartley, Tom T.; Veillette, Robert J.; Adams, Jay L.] Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA. [Lorenzo, Carl F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Hartley, TT (reprint author), Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA. EM veillette@uakron.edu NR 14 TC 7 Z9 7 U1 2 U2 8 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-858X EI 1751-8598 J9 IET CIRC DEVICE SYST JI IET Circ. Devices Syst. PD MAY PY 2015 VL 9 IS 3 BP 227 EP 235 DI 10.1049/iet-cds.2014.0132 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CH4YV UT WOS:000354041400010 ER PT J AU Lee, YG Kim, J Ho, CH An, SI Cho, HK Mao, R Tian, BJ Wu, D Lee, JN Kalashnikova, O Choi, Y Yeh, SW AF Lee, Yun Gon Kim, Jhoon Ho, Chang-Hoi An, Soon-Il Cho, Hi-Ku Mao, Rui Tian, Baijun Wu, Dong Lee, Jae N. Kalashnikova, Olga Choi, Yunsoo Yeh, Sang-Wook TI The effects of ENSO under negative AO phase on spring dust activity over northern China: an observational investigation SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE Asian dust; dust index; Arctic Oscillation; El Nino; Southern Oscillation ID ASIAN WINTER MONSOON; TRANS-PACIFIC TRANSPORT; ARCTIC OSCILLATION; INTERANNUAL VARIABILITY; EXTRATROPICAL CIRCULATION; ATMOSPHERIC CIRCULATION; SIMULATED CLIMATOLOGY; SOUTHERN OSCILLATION; HADLEY CIRCULATION; STORM FREQUENCY AB The effects of El Nino/Southern Oscillation (ENSO) under negative Arctic Oscillation (AO) phase on the Asian dust activity are investigated for springs of the period 1961-2002. The spring dust index (DI) describing the monthly frequencies of three types of dust events (e.g. dust storm, blowing dust, and floating dust) exhibits a significant increase in the years of negative AO phase (hereafter AO-) and El Nino, compared with that in the years of AO- and La Nina. Averaged over all observation stations, the spring DI (49.7) during the El Nino/AO- years is higher by 11.4% or 29.8% than that (38.3) during the La Nina/AO- years. We suggest possible physical mechanism that the anomalous large-scale environments associated with AO- and El Nino are more effective to provide favourable conditions to enhance Asian dust activity. During the El Nino/AO- years, meridional gradients of pressure and temperature over the dust source regions are significantly enhanced by decreasing the geopotential height and warming air temperature that originated from the north and south of source regions, respectively, under the influence of AO- and El Nino. These also intensify the zonal wind shear and atmospheric baroclinicity, thereby producing enhanced cyclogenesis and dust occurrences over the major source regions. At the same time, dust transport paths with the stronger westerly winds are developed by the combined constraints of anomalous cyclone over the Siberia and the Mongolia and anomalous anticyclone over the western North Pacific, and thus strengthen dust transport to the downwind regions. C1 [Lee, Yun Gon; Kim, Jhoon; An, Soon-Il; Cho, Hi-Ku] Yonsei Univ, Dept Atmospher Sci IEAA BK21, Seoul 120749, South Korea. [Lee, Yun Gon; Ho, Chang-Hoi] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151, South Korea. [Mao, Rui] Beijing Normal Univ, State Key Lab Land Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Tian, Baijun; Wu, Dong; Lee, Jae N.; Kalashnikova, Olga] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Choi, Yunsoo] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA. [Yeh, Sang-Wook] Hanyang Univ, Dept Marine Sci & Convergent Technol, Ansan, South Korea. RP Kim, J (reprint author), Yonsei Univ, Dept Atmospher Sci, Global Environm Lab, Seoul 120749, South Korea. EM jkim2@yonsei.ac.kr RI Ho, Chang-Hoi/H-8354-2015; Tian, Baijun/A-1141-2007; mao, rui/C-3499-2013 OI Tian, Baijun/0000-0001-9369-2373; FU GEMS program of the Ministry of Environment, Korea; Eco Innovation Program of KEITI [2012000160002]; National Research Foundation of Korea (NRF) project [NRF-2012R1A1A2039649]; Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA; project 'Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate for the Past and Present of Korea Polar Research Institute' [PE14010] FX This research was supported by the GEMS program of the Ministry of Environment, Korea and the Eco Innovation Program of KEITI (2012000160002). In addition, this research was partially supported by the National Research Foundation of Korea (NRF) project (NRF-2012R1A1A2039649). BT, DW, JNL and OK's contribution was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. R. Mao was supported by project 'Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate for the Past and Present (PE14010) of Korea Polar Research Institute'. NR 55 TC 0 Z9 0 U1 3 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD MAY PY 2015 VL 35 IS 6 BP 935 EP 947 DI 10.1002/joc.4028 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH4FE UT WOS:000353987800011 ER PT J AU Tompson, SR AF Tompson, Sara R. TI Geek Physics: Surprising Answers to the Planet's Most Interesting Questions, 2d edition SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD MAY 1 PY 2015 VL 140 IS 8 BP 96 EP 97 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA CH3ND UT WOS:000353936500192 ER PT J AU Radke, CD McManamen, JP Kastengren, AL Halls, BR Meyer, TR AF Radke, Christopher D. McManamen, J. Patrick Kastengren, Alan L. Halls, Benjamin R. Meyer, Terrence R. TI Quantitative time-averaged gas and liquid distributions using x-ray fluorescence and radiography in atomizing sprays SO OPTICS LETTERS LA English DT Article ID DENSE SPRAYS; FUEL SPRAYS AB A method for quantitative measurements of gas and liquid distributions is demonstrated using simultaneous x-ray fluorescence and radiography of both phases in an atomizing coaxial spray. Synchrotron radiation at 10.1 keV from the Advanced Photon Source at Argonne National Laboratory is used for x-ray fluorescence of argon gas and two tracer elements seeded into the liquid stream. Simultaneous time-resolved x-ray radiography combined with time-averaged dual-tracer fluorescence measurements enabled corrections for reabsorption of x-ray fluorescence photons for accurate, line-of-sight averaged measurements of the distribution of the gas and liquid phases originating from the atomizing nozzle. (C) 2015 Optical Society of America C1 [Radke, Christopher D.; McManamen, J. Patrick] NASA, Johnson Space Ctr, Propuls & Power Div, Houston, TX 77058 USA. [Radke, Christopher D.; Halls, Benjamin R.; Meyer, Terrence R.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Radke, CD (reprint author), NASA, Johnson Space Ctr, Propuls & Power Div, Houston, TX 77058 USA. EM Christopher.D.Radke@NASA.gov FU Propulsion and Power Division at the NASA-Johnson Space Center; Army Research Office; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The work was sponsored by the Propulsion and Power Division at the NASA-Johnson Space Center and by the Army Research Office (Dr. Ralph Anthenien, Program Manager). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to express gratitude to J.C. Melcher and Robert Morehead for their technical assistance. NR 24 TC 4 Z9 4 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2015 VL 40 IS 9 BP 2029 EP 2032 DI 10.1364/OL.40.002029 PG 4 WC Optics SC Optics GA CH3IQ UT WOS:000353924600038 PM 25927776 ER PT J AU Newman, K Guyon, O Balasubramanian, K Belikov, R Jovanovic, N Martinache, F Wilson, D AF Newman, K. Guyon, O. Balasubramanian, K. Belikov, R. Jovanovic, N. Martinache, F. Wilson, D. TI An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID PHASE-MASK; STELLAR CORONAGRAPH; PRINCIPLE AB Developments in coronagraph technology are close to achieving the technical requirements necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. We present a new focal plane mask which operates conceptually as an opaque disk occulter, but uses a phase mask technique to improve performance and solve the "size chromaticity- problem. This achromatic focal plane mask would maximize the potential planet detection space without allowing starlight leakage to degrade the system contrast. Compared with a conventional opaque disk focal plane mask, the achromatic mask allows coronagraph operation over a broader range of wavelengths and allows the detection of exoplanets closer to their host star. We present the generalized design for the achromatic focal plane mask, implementation within the Subaru Coronagraph Extreme Adaptive Optics instrument, and laboratory results which demonstrate the size-scaling property of the mask. C1 [Newman, K.; Guyon, O.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Newman, K.; Belikov, R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guyon, O.; Jovanovic, N.; Martinache, F.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Balasubramanian, K.; Wilson, D.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Newman, K (reprint author), Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. EM knewman@email.arizona.edu FU National Aeronautics and Space Administration's Ames Research Center; NASA Astrophysics Research and Analysis (APRA) program at NASA's Science Mission Directorate [NNH09ZDA001N-APRA]; NASA Space Technology Research Fellowship FX This work was supported in part by the National Aeronautics and Space Administration's Ames Research Center, as well as the NASA Astrophysics Research and Analysis (APRA) program through solicitation NNH09ZDA001N-APRA at NASA's Science Mission Directorate. It was carried out at the NASA Ames Research Center, Subaru Telescope, and Stanford Nanofabrication Facility. Any opinions, findings, and conclusions or recommendations expressed in this article arc those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration. This work was also supported by a NASA Space Technology Research Fellowship. NR 15 TC 6 Z9 6 U1 2 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2015 VL 127 IS 951 BP 437 EP 444 DI 10.1086/681242 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH3FL UT WOS:000353913600003 ER PT J AU Rice, EL Oppenheimer, R Zimmerman, N Roberts, LC Hinkley, S AF Rice, Emily L. Oppenheimer, Rebecca Zimmerman, Neil Roberts, Lewis C., Jr. Hinkley, Sasha TI A New Method for Characterizing Very Low-Mass Companions with Low-Resolution Near-Infrared Spectroscopy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID EXTRASOLAR GIANT PLANETS; YOUNG BROWN DWARFS; VERY-LOW MASS; HR 8799; T-DWARFS; EVOLUTIONARY MODELS; TELESCOPE FACILITY; STELLAR COMPANION; ULTRACOOL DWARFS; BETA-PICTORIS AB We present a new and computationally efficient method for characterizing very low-mass companions using low-resolution (R similar to 30), near-infrared (1/JH) spectra from high-contrast imaging campaigns with integral field spectrograph (IFS) units. We conduct a detailed quantitative comparison of the efficacy of this method through tests on simulated data comparable in spectral coverage and resolution to the currently operating direct-imaging systems around the world. In particular, we simulate Project 1640 data as an example of the use, accuracy, and precision of this technique. We present results from comparing simulated spectra of M. L, and T dwarfs with a large and finely sampled grid of synthetic spectra using Markov-chain Monte Carlo techniques. We determine the precision and accuracy of effective temperature and surface gravity inferred from fits to PHOENIX dusty and cond, which we find reproduce the low-resolution spectra of all objects within the adopted flux uncertainties. Uncertainties in effective temperature decrease from +/- 100-500 K for M dwarfs to as small as +/- 30 K for some L and T spectral types. Surface gravity is constrained to within 0.2-0.4 dex for mid-L through T dwarfs, but uncertainties are as large as 1.0 dex or more for M dwarfs. Results for effective temperature from low-resolution Y spectra generally match predictions from published spectral type-temperature relationships except for L T transition objects and young objects. Single-band spectra (i.e., narrower wavelength coverage) result in larger uncertainties and often discrepant results, suggesting that high-contrast IFS observing campaigns can compensate for low spectral resolution by expanding the wavelength coverage for reliable characterization of detected companions. We find that S/N similar to 10 is sufficient to characterize temperature and gravity as well as possible given the model grid. Most relevant for direct-imaging campaigns targeting young primary stars is our finding that low-resolution near-infrared spectra of known young objects, compared to field objects of the same spectral type, result in similar best-fit surface gravities but lower effective temperatures, highlighting the need for better observational and theoretical understanding of the entangled effects of temperature, gravity, and dust on near-infrared spectra in cool low-gravity atmospheres. C1 [Rice, Emily L.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Rice, Emily L.; Oppenheimer, Rebecca] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Zimmerman, Neil] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hinkley, Sasha] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Hinkley, Sasha] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England. RP Rice, EL (reprint author), CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. EM emily.rice@csi.cuny.edu OI Oppenheimer, Rebecca/0000-0001-7130-7681; Zimmerman, Neil/0000-0001-5484-1516; Rice, Emily/0000-0002-3252-5886 FU American Astronomical Society's Small Research Grant Program; NASA Astrophysics Data Analysis Program (ADAP) award [11-ADAP11-0169]; National Science Foundation [1211568]; NASA Origins of the Solar System Grant [NMO7100830/102190]; National Aeronautics and Space Administration (NASA); internal Research and Technology Development funds; NASA through Sagan Fellowship Program; Cordelia Corporation [1640]; Vincent Astor Fund FX This research was supported in part by the American Astronomical Society's Small Research Grant Program, NASA Astrophysics Data Analysis Program (ADAP) award 11-ADAP11-0169, and by the National Science Foundation under Grant No. 1211568. A portion of this work was supported by NASA Origins of the Solar System Grant No. NMO7100830/102190. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and was funded by internal Research and Technology Development funds. In addition, part of this work was performed under a contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. The members of the Project 1640 team are also grateful for support from the Cordelia Corporation, Hilary and Ethel Lipsitz, the Vincent Astor Fund, Judy Vale, Andrew Goodwin, and an anonymous donor. This research has made use of the IRTF Spectral Library, the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. NR 80 TC 4 Z9 4 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2015 VL 127 IS 951 BP 479 EP 498 DI 10.1086/681765 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH3FL UT WOS:000353913600006 ER PT J AU Davis, JR Richard, EE Keeton, KE AF Davis, Jeffrey R. Richard, Elizabeth E. Keeton, Kathryn E. TI Open Innovation at NASA A New Business Model for Advancing Human Health and Performance Innovations SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Article DE Culture change; Business-model innovation; Open innovation; Crowdsourcing AB This paper describes a new business model for advancing NASA human health and performance innovations and demonstrates how open innovation, including the use of crowdsourcing and technology solution sourcing services, shaped its development. A 45 percent research and technology development budget reduction drove formulation of a strategic plan grounded in collaboration. We describe the strategy execution, including adoption and results of open innovation initiatives, the challenges of culture change, and the development of a knowledge management tool to educate and engage the workforce in the new strategy and promote culture change. C1 [Davis, Jeffrey R.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Davis, Jeffrey R.] Human Hlth & Performance, Houston, TX 77058 USA. [Richard, Elizabeth E.; Keeton, Kathryn E.] Wyles Sci Technol & Engn Grp, Houston, TX USA. [Richard, Elizabeth E.] NASA, Lyndon B Johnson Space Ctr, Human Hlth & Performance Directorate, Houston, TX USA. [Richard, Elizabeth E.] NASA, Human Hlth & Performance Ctr, Houston, TX USA. RP Davis, JR (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM jeffrey.r.davis@nasa.gov; erichard@wylehou.com; kathryn.keeton@nasa.gov NR 10 TC 1 Z9 1 U1 7 U2 52 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2300 CLARENDON BLVD, STE 400, ARLINGTON, VA 22201 USA SN 0895-6308 EI 1930-0166 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAY-JUN PY 2015 VL 58 IS 3 BP 52 EP 58 DI 10.5437/08956308X5803325 PG 7 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA CH3ML UT WOS:000353934700011 ER PT J AU Crusan, J AF Crusan, Jason TI Light-Touch Management with Social Media: Jason Crusan SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 NASA, Adv Explorat Syst Div, Washington, DC 20546 USA. RP Crusan, J (reprint author), NASA, Adv Explorat Syst Div, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2300 CLARENDON BLVD, STE 400, ARLINGTON, VA 22201 USA SN 0895-6308 EI 1930-0166 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAY-JUN PY 2015 VL 58 IS 3 BP 68 EP 68 DI 10.5437/08956308X5803006 PG 1 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA CH3ML UT WOS:000353934700016 ER PT J AU Buratti, BJ Hicks, MD Dalba, PA Chu, D O'Neill, A Hillier, JK Masiero, J Banholzer, S Rhoades, H AF Buratti, B. J. Hicks, M. D. Dalba, P. A. Chu, Devin O'Neill, Ariel Hillier, J. K. Masiero, J. Banholzer, Sophianna Rhoades, H. TI PHOTOMETRY OF PLUTO 2008-2014: EVIDENCE OF ONGOING SEASONAL VOLATILE TRANSPORT AND ACTIVITY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Kuiper belt objects: individual (Pluto); planets and satellites: surfaces ID ATMOSPHERE; CONSTRAINTS; LIGHTCURVE; PERIHELION AB The New Horizons. spacecraft will encounter Pluto in 2015 July. As this fast flyby will yield a picture of Pluto frozen in time, ground-based observations are key to understanding this dwarf ice planet, especially with regard to the seasonal transport of surface volatiles. This paper reports on changes in Pluto's rotational light curve as evidence for this transport. Historical observations are consistent with a stable frost pattern, but since 2002, changes began to appear in both light curves and Hubble Space Telescope. maps. Our BVR. observations at Table Mountain Observatory from 2008 to 2014 show evidence for sustained and continued albedo and color changes on Pluto. The B and V albedos are stable, but Pluto is becoming redder in color, particularly on its low-albedo side. This view is consistent with the transport of a bright volatile (nitrogen) with the uncovering of a substrate of red material such as photolyzed methane. As Buie et al. reported a B - V of 0.96 in 2002-2003, and our B - V was higher in 2008-2012, Pluto may have experienced a transient reddening in the 1999-2012 period. We also discovered an opposition supersurge in all three colors at very small solar phase angles (similar to 0.degrees 10). Explosive geysers have been observed on Triton and Mars, the two other celestial bodies with receding polar caps. Because the physical conditions existing on Pluto are similar to those on Triton, we predict that plume deposits and possibly active plumes will be found on its surface. C1 [Buratti, B. J.; Hicks, M. D.; O'Neill, Ariel; Masiero, J.; Banholzer, Sophianna; Rhoades, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dalba, P. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Chu, Devin] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Hillier, J. K.] Grays Harbor Coll, Aberdeen, WA 98520 USA. RP Buratti, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bonnie.buratti@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU NASA Planetary Astronomy Program FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. We acknowledge support from the NASA Planetary Astronomy Program. NR 19 TC 2 Z9 2 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2015 VL 804 IS 1 AR L6 DI 10.1088/2041-8205/804/1/L6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH1YK UT WOS:000353819400006 ER PT J AU Gopalswamy, N Xie, H Akiyama, S Makela, P Yashiro, S Michalek, G AF Gopalswamy, N. Xie, H. Akiyama, S. Maekelae, P. Yashiro, S. Michalek, G. TI THE PECULIAR BEHAVIOR OF HALO CORONAL MASS EJECTIONS IN SOLAR CYCLE 24 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares; sunspots AB We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by similar to 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance >= 60 degrees twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos. C1 [Gopalswamy, N.; Xie, H.; Akiyama, S.; Maekelae, P.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Xie, H.; Akiyama, S.; Maekelae, P.; Yashiro, S.] Catholic Univ Amer, Washington, DC 20064 USA. [Michalek, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU NASA/LWS program; NSF [AGS-1358274]; NASA [NNX15AB77G, NNX15AB70G]; NCN [UMO-2013/09/B/ST9/00034] FX SOHO is a project of international collaboration between ESA and NASA. STEREO is a mission in NASA's Solar Terrestrial Probes program. The work of N.G., S.Y., and S.A. was supported by NASA/LWS program. P.M. was partially supported by NSF grant AGS-1358274 and NASA grant NNX15AB77G. H.X. was partially supported by NASA grant NNX15AB70G. G.M. was supported by NCN through the grant UMO-2013/09/B/ST9/00034. The authors thank the anonymous referee for helpful comments. NR 15 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2015 VL 804 IS 1 AR L23 DI 10.1088/2041-8205/804/1/L23 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH1YK UT WOS:000353819400023 ER PT J AU Mendel, JT Saglia, RP Bender, R Beifiori, A Chan, J Fossati, M Wilman, DJ Bandara, K Brammer, GB Schreiber, NMF Galametz, A Kulkarni, S Momcheva, IG Nelson, EJ van Dokkum, PG Whitaker, KE Wuyts, S AF Mendel, J. Trevor Saglia, Roberto P. Bender, Ralf Beifiori, Alessandra Chan, Jeffrey Fossati, Matteo Wilman, David J. Bandara, Kaushala Brammer, Gabriel B. Schreiber, Natascha M. Foerster Galametz, Audrey Kulkarni, Sandesh Momcheva, Ivelina G. Nelson, Erica J. van Dokkum, Pieter G. Whitaker, Katherine E. Wuyts, Stijn TI FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF UVJ-SELECTED QUIESCENT GALAXIES AT 1.5 < z < 2 FROM KMOS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift ID ABSORPTION-LINE SPECTROSCOPY; EXTRAGALACTIC LEGACY SURVEY; STAR-FORMING GALAXIES; INITIAL MASS FUNCTION; PHOTOMETRIC CATALOGS; SIZE GROWTH; EVOLUTION; POPULATIONS; SEQUENCE; SPECTRA AB We investigate the stellar populations of 25 massive galaxies (log[ M-*/M-circle dot] >= 10.9) at 1.5 C=N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission dearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ali, A.; Sittler, E. C., Jr.; Chornay, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ali, A.; Chornay, D.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Rowe, B. R.] Univ Rennes 1, CNRS, Inst Phys Rennes Equipe Asbochim Expt, F-35042 Rennes, France. [Puzzarini, C.] Univ Bologna, Dipartimento Chim Giacomo Ciamician, I-40126 Bologna, Italy. RP Ali, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ashraf.ali@nasa.gov; cristina.puzzarini@unibo.it RI PUZZARINI, CRISTINA/E-4640-2015 OI PUZZARINI, CRISTINA/0000-0002-2395-8532 FU NASA Goddard Space Flight Center by the Cassini Plasma Spectrometer (CAPS) Project through NASA Jet Propulsion Laboratory Contract [1243218]; Southwest Research Institute in San Antonio, Texas; Italian MIUR (PRIN); University of Bologna (RFO funds) FX This work was supported in part at NASA Goddard Space Flight Center by the Cassini Plasma Spectrometer (CAPS) Project through NASA Jet Propulsion Laboratory Contract 1243218 with Southwest Research Institute in San Antonio, Texas. C.P. acknowledges support by Italian MIUR (PRIN 2012: Project "STAR: Spectroscopic and computational Techniques for Astrophysical and atmospheric Research") and by the University of Bologna (RFO funds). We are grateful to both anonymous referees for a careful reading of the manuscript and of the different perspectives provided. The interested readers may treat the highlighted portion in a bulleted format in the last section of this manuscript as a footnote. NR 147 TC 4 Z9 4 U1 3 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2015 VL 109 BP 46 EP 63 DI 10.1016/j.pss.2015.01.015 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH0YY UT WOS:000353749500005 ER PT J AU Franz, HB Trainer, MG Wong, MH Mahaffy, PR Atreya, SK Manning, HLK Stern, JC AF Franz, Heather B. Trainer, Melissa G. Wong, Michael H. Mahaffy, Paul R. Atreya, Sushil K. Manning, Heidi L. K. Stern, Jennifer C. TI Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars; Atmosphere; Isotopes; Mars Science Laboratory; Curiosity rover; Sample Analysis at Mars investigation ID PROBE AB The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is a miniature geochemical laboratory designed to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). SAM began sampling the martian atmosphere to measure its chemical and isotopic composition shortly after Curiosity landed in Mars' Gale Crater in August 2012 (Mahaffy et al., 2013). Analytical methods and constants required for atmospheric measurements with SAM's quadrupole mass spectrometer (QMS) were provided in a previous contribution (Franz et al., 2014). Review of results obtained through application of these constants to repeated analyses over a full martian year and supporting studies with laboratory instruments offer new insights into QMS performance that allow refinement of the calibration constants and critical reassessment of their estimated uncertainties. This report describes the findings of these studies, provides updated calibration constants for atmospheric analyses with the SAM QMS, and compares volume mixing ratios for the martian atmosphere retrieved with the revised constants to those initially reported (Mahaffy et al., 2013). Sufficient confidence is enabled by the extended data set to support calculation of precise abundances for CO rather than an upper limit. Reanalysis of data acquired on mission sols 45 and 77 (at solar longitudes of 175 degrees and 193 degrees, respectively) with the revised constants leads to the following average volume mixing ratios: CO2 0.957(+/- 0.016), N-2 0.0203(+/- 0.0003), Ar 0.0207(+/- 0.0002), O-2 1.73(+/- 0.06) x 10(-3), CO 749(+/- 0.026) x 10(-4). (C) 2015 Elsevier Ltd. All rights reserved. C1 [Franz, Heather B.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, UMBC, Greenbelt, MD 20771 USA. [Franz, Heather B.; Trainer, Melissa G.; Mahaffy, Paul R.; Stern, Jennifer C.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Wong, Michael H.; Atreya, Sushil K.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Manning, Heidi L. K.] Concordia Coll, Moorhead, MN 56562 USA. RP Franz, HB (reprint author), NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 699, Greenbelt, MD 20771 USA. EM heather.b.franz@nasa.gov FU NASA FX NASA provided support for the development of SAM. Data from all SAM experiments are archived in the Planetary Data System (pds.nasa.gov). The authors thank J. Fuentes and H.V. Graham for measuring the isotopic composition of SAM calibration gases used in this study and R. Becker and W. Brinckerhoff for insightful discussion. NR 13 TC 4 Z9 4 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2015 VL 109 BP 154 EP 158 DI 10.1016/j.pss.2015.02.014 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH0YY UT WOS:000353749500014 ER PT J AU Dunham, DW Farquhar, RW Loucks, M Roberts, CE Wingo, D Cowing, KL Garcia, LN Craychee, T Nickel, C Ford, A Colleluori, M Folta, DC Giorgini, JD Nace, E Spohr, JE Dove, W Mogk, N Furfaro, R Martin, WL AF Dunham, David W. Farquhar, Robert W. Loucks, Michel Roberts, Craig E. Wingo, Dennis Cowing, Keith L. Garcia, Leonard N. Craychee, Tim Nickel, Craig Ford, Anthony Colleluori, Marco Folta, David C. Giorgini, Jon D. Nace, Edward Spohr, John E. Dove, William Mogk, Nathan Furfaro, Roberto Martin, Warren L. TI The 2014 Earth return of the ISEE-3/ICE spacecraft SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 65th International Astronautical Congress (IAC) CY SEP 29-OCT 03, 2014 CL Toronto, CANADA SP Canadian Aeronaut & Space Inst, Int Astronaut Assoc DE Spinning spacecraft; Maneuver; Libration-point orbit; Gravity assist; Comet; Solar wind AB In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second LW (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was performed on July 2nd, the first since 1987. A 7 m/s Delta V maneuver was attempted on July 8th, to target the August lunar swingby. But the maneuver failed; telemetry showed that only about 0.15 m/s of Delta V was accomplished, then the thrust quickly decayed. The telemetry indicated that the nitrogen pressurant was gone so hydrazine could not be forced to the thrusters. The experience showed how a spacecraft can survive 30 years of space weather. The spacecraft flew 18 thousand km from the Moon, resulting in a heliocentric orbit that will return near the Earth in 2029. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Dunham, David W.; Farquhar, Robert W.] KinetX Inc, Tempe, AZ 85284 USA. [Loucks, Michel] Space Explorat Engn, Friday Harbor, WA 98250 USA. [Roberts, Craig E.] Ai Solut Inc, Lanham, MD 20706 USA. [Wingo, Dennis; Colleluori, Marco] SkyCorp Inc, Moffett Field, CA 94035 USA. [Cowing, Keith L.] SpaceRef Interact Inc, Reston, VA 20195 USA. [Garcia, Leonard N.] Wyle Informat Syst LLC, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Craychee, Tim; Nickel, Craig] Appl Def Solut Inc, Columbia, MD 21044 USA. [Ford, Anthony] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Folta, David C.; Nace, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giorgini, Jon D.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Dove, William] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mogk, Nathan; Furfaro, Roberto] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. [Martin, Warren L.] Commun Consultants, La Canada Flintridge, CA 91011 USA. RP Dunham, DW (reprint author), KinetX Inc, 2050 East ASU Circle,Suite 107, Tempe, AZ 85284 USA. EM david.dunham@kinetx.com; robert.farquhar@kinetx.com; loucks@see.com; Craig.Roberts@ai-solutions.com; wingod@skycorpinc.com; kcowing@spaceref.com; leonard.n.garcia@nasa.gov; tcraychee@applieddefense.com; cnickel@applieddefense.com; aford@naic.edu; colleluorim@skycorpinc.com; david.c.folta@nasa.gov; jdg@tycho.jpl.nasa.gov; edward.m.nace@nasa.gov; ice3js@comcast.net; William.Dove@jhuapl.edu; nmogk@email.arizona.edu; robertof@email.arizona.edu; WLMartin@earthlink.net NR 10 TC 0 Z9 0 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAY-JUN PY 2015 VL 110 BP 29 EP 42 DI 10.1016/j.actaastro.2015.01.002 PG 14 WC Engineering, Aerospace SC Engineering GA CG8YC UT WOS:000353600600004 ER PT J AU Folta, DC Bosanac, N Guzzetti, D Howell, KC AF Folta, David C. Bosanac, Natasha Guzzetti, Davide Howell, Kathleen C. TI An Earth-Moon system trajectory design reference catalog SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 2nd IAA Conference on Dynamics and Control of Space Systems (DYCOSS) CY MAR 24-26, 2014 CL Rome, ITALY SP Int Acad Astronaut DE Trajectory design; Multi-body systems; Three-body problem; Libration points AB As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination. (C) 2014 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Folta, David C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47906 USA. RP Bosanac, N (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47906 USA. EM david.c.folta@nasa.gov; nbosanac@purdue.edu; dguzzett@purdue.edu; howell@purdue.edu OI Howell, Kathleen/0000-0002-1298-5017 NR 19 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAY-JUN PY 2015 VL 110 BP 341 EP 353 DI 10.1016/j.actaastro.2014.07.037 PG 13 WC Engineering, Aerospace SC Engineering GA CG8YC UT WOS:000353600600030 ER PT J AU Moores, JE Lemmon, MT Rafkin, SCR Francis, R Pla-Garcia, J Juarez, MD Bean, K Kass, D Haberle, R Newman, C Mischna, M Vasavada, A Renno, N Bell, J Calef, F Cantor, B Mcconnochie, TH Harri, AM Genzer, M Wong, M Smith, MD Martin-Torres, FJ Zorzano, MP Kemppinen, O McCullough, E AF Moores, John E. Lemmon, Mark T. Rafkin, Scot C. R. Francis, Raymond Pla-Garcia, Jorge Juarez, Manuel de la Torre Bean, Keri Kass, David Haberle, Robert Newman, Claire Mischna, Michael Vasavada, Ashwin Renno, Nilton Bell, Jim Calef, Fred Cantor, Bruce Mcconnochie, Timothy H. Harri, Ari-Matti Genzer, Maria Wong, Michael Smith, Michael D. Javier Martin-Torres, F. Zorzano, Maria-Paz Kemppinen, Osku McCullough, Emily TI Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Mars; Clouds; Atmospheric dynamics; Water cycle ID LANDER SITE; PRECIPITATION; LITHOSPHERE; SURFACE; ROVER AB We report on the first 360 sols (L-s 150 degrees to 5 degrees), representing just over half a Martian year, of atmospheric monitoring movies acquired using the NavCam imager from the Mars Science Laboratory (MSL) Rover Curiosity. Such movies reveal faint clouds that are difficult to discern in single images. The data set acquired was divided into two different classifications depending upon the orientation and intent of the observation. Up to sol 360, 73 Zenith movies and 79 Supra-Horizon movies have been acquired and time-variable features could be discerned in 25 of each. The data set from MSL is compared to similar observations made by the Surface Stereo Imager (SSI) onboard the Phoenix Lander and suggests a much drier environment at Gale Crater (4.6 degrees S) during this season than was observed in Green Valley (68.2 degrees N) as would be expected based on latitude and the global water cycle. The optical depth of the variable component of clouds seen in images with features are up to 0.047 +/- 0.009 with a granularity to the features observed which averages 3.8 degrees. MCS also observes clouds during the same period of comparable optical depth at 30 and 50 km that would suggest a cloud spacing of 2.0 to 3.3 km. Multiple motions visible in atmospheric movies support the presence of two distinct layers of clouds. At Gale Crater, these clouds are likely caused by atmospheric waves given the regular spacing of features observed in many Zenith movies and decreased spacing towards the horizon in sunset movies consistent with clouds forming at a constant elevation. Reanalysis of Phoenix data in the light of the NavCam equatorial dataset suggests that clouds may have been more frequent in the earlier portion of the Phoenix mission than was previously thought. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Moores, John E.] York Univ, CRESS, N York, ON M3J 1P3, Canada. [Lemmon, Mark T.; Bean, Keri] Texas A&M Univ, College Stn, TX 77843 USA. [Rafkin, Scot C. R.] SW Res Inst, San Antonio, TX USA. [Francis, Raymond; McCullough, Emily] Univ Western Ontario, London, ON N6A 3K7, Canada. [Pla-Garcia, Jorge; Zorzano, Maria-Paz] Ctr Astrobiol, Madrid, Spain. [Juarez, Manuel de la Torre; Kass, David; Mischna, Michael; Vasavada, Ashwin; Calef, Fred] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Haberle, Robert] Ames Res Ctr, Mountain View, CA USA. [Newman, Claire] Ashima Res Corp, Tucson, AZ USA. [Renno, Nilton; Wong, Michael] Univ Michigan, Ann Arbor, MI 48109 USA. [Bell, Jim] Arizona State Univ, Tempe, AZ 85287 USA. [Cantor, Bruce] Malin Space Sci Syst, San Diego, CA USA. [Mcconnochie, Timothy H.] GSFC U Maryland, Boston, MA USA. [Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku] Finnish Meteorol Inst, Helsinki, Finland. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Houston, TX USA. [Javier Martin-Torres, F.] CSIC UGR, Inst Andaluz Ciencias Tierra, Granada, Spain. [Javier Martin-Torres, F.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden. RP Moores, JE (reprint author), York Univ, CRESS, N York, ON M3J 1P3, Canada. EM jmoores@yorku.ca; lemmon@tamu.edu; rafkin@boulder.swri.edu; Raymond.francis@cpsx.uwo.ca; jpla@cab.inta-csic.es; mtj@jpl.nasa.gov; Keri.Bean@jpl.nasa.gov; David.Kass@jpl.nasa.gov; Robert.M.Haberle@nasa.gov; Claire@ashimaresearch.com; Michael.A.Mischna@jpl.nasa.gov; Ashwin.R.Vasavada@jpl.nasa.gov; nrenno@umich.edu; Jim.Bell@asu.edu; Fred.Calef@jpl.nasa.gov; cantor@msss.com; timothy.h.mcconnochie@nasa.gov; Ari-Matti.Harri@fmi.fi; Maria.Genzer@fmi.fi; mike.wong@umich.edu; michael.d.smith@nasa.gov; javiermt@iact.ugr-csic.es; zorzanomm@cab.inta-csic.es; osku.kemppinen@fmi.fi; emccull2@uwo.ca RI Lemmon, Mark/E-9983-2010; Martin-Torres, Francisco Javier/G-6329-2015; Zorzano, Maria-Paz/C-5784-2015; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015 OI Lemmon, Mark/0000-0002-4504-5136; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Zorzano, Maria-Paz/0000-0002-4492-9650; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650 FU Canadian Space Agency; Spanish Ministry of Economy and Competitiveness [AYA2011-25720, AYA2012-38707] FX JEM would like to acknowledge the contributions of the Mars Science Laboratory Participating Scientist Program for access to the science team and to rover operations and of the Canadian Space Agency for providing funding for this work. JP-G, FJM-T, and M.-P.Z would like to acknowledge financial support provided by the Spanish Ministry of Economy and Competitiveness (AYA2011-25720 and AYA2012-38707). The text of this manuscript was substantially improved by the contributions of two anonymous reviewers. NR 50 TC 6 Z9 6 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 1 PY 2015 VL 55 IS 9 BP 2217 EP 2238 DI 10.1016/j.asr.2015.02.007 PG 22 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CG2AX UT WOS:000353078400005 ER PT J AU Schimel, D Pavlick, R Fisher, JB Asner, GP Saatchi, S Townsend, P Miller, C Frankenberg, C Hibbard, K Cox, P AF Schimel, David Pavlick, Ryan Fisher, Joshua B. Asner, Gregory P. Saatchi, Sassan Townsend, Philip Miller, Charles Frankenberg, Christian Hibbard, Kathy Cox, Peter TI Observing terrestrial ecosystems and the carbon cycle from space SO GLOBAL CHANGE BIOLOGY LA English DT Review DE arctic; boreal; carbon; climate feedback; diversity; fluroescence; spectroscopy; tropics ID EARTH SYSTEM MODELS; CHLOROPHYLL FLUORESCENCE; ATMOSPHERIC CO2; IMAGING SPECTROSCOPY; FOREST PRODUCTIVITY; AMAZONIAN FOREST; GLOBAL PATTERNS; GROWING-SEASON; DATA SET; CLIMATE AB Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, but their responses are highly uncertain. Models and tipping point analyses suggest the tropics and arctic/boreal zone carbon-climate feedbacks could be disproportionately large. In situ observations in those regions are sparse, resulting in high uncertainties in carbon fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant traits, are also sparsely observed in the tropics, with the most diverse biome on the planet treated as a single type in models. We analyzed the spatial distribution of in situ data for carbon fluxes, stocks and plant traits globally and also evaluated the potential of remote sensing to observe these quantities. New satellite data products go beyond indices of greenness and can address spatial sampling gaps for specific ecosystem properties and parameters. Because environmental conditions and access limit in situ observations in tropical and arctic/boreal environments, use of space-based techniques can reduce sampling bias and uncertainty about tipping point feedbacks to climate. To reliably detect change and develop the understanding of ecosystems needed for prediction, significantly, more data are required in critical regions. This need can best be met with a strategic combination of remote and in situ data, with satellite observations providing the dense sampling in space and time required to characterize the heterogeneity of ecosystem structure and function. C1 [Schimel, David; Pavlick, Ryan; Fisher, Joshua B.; Saatchi, Sassan; Miller, Charles; Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. [Asner, Gregory P.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Townsend, Philip] Univ Wisconsin, Madison, WI 53706 USA. [Hibbard, Kathy] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cox, Peter] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. RP Schimel, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. EM dschimel@jpl.nasa.gov RI Cox, Peter/B-3299-2012; Townsend, Philip/B-5741-2008; Frankenberg, Christian/A-2944-2013; OI Townsend, Philip/0000-0001-7003-8774; Frankenberg, Christian/0000-0002-0546-5857; Schimel, David/0000-0003-3473-8065; Fisher, Joshua/0000-0003-4734-9085 FU National Aeronautics and Space Administration; IGBP; European Space Agency FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was under a contract with the National Aeronautics and Space Administration. This study made use of TRENDY terrestrial process model output downloaded in January 2012 (Fig. 3). We thank the TRENDY modelers: Stephen Sitch, Chris Huntingford, Ben Poulter, Anders Ahlstrom, Mark Lomas, Peter Levy, Sam Levis, Sonke Zaehle, Nicolas Viovy and Ning Zeng. We also thank Jens Kattge and the TRY database project participants for access to data and metadata on plant traits, and Bev Law and Dennis Baldocchi for comments and encouragement. This manuscript is in part an outcome of an International Geosphere Biosphere Project workshop held at Merton College, Oxford, and we thank the IGBP and the European Space Agency for their support. NR 88 TC 42 Z9 42 U1 33 U2 174 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAY PY 2015 VL 21 IS 5 BP 1762 EP 1776 DI 10.1111/gcb.12822 PG 15 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CG3ZX UT WOS:000353220500003 PM 25472464 ER PT J AU Kuang, D Bar-Sever, Y Haines, B AF Kuang, Da Bar-Sever, Yoaz Haines, Bruce TI Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters SO JOURNAL OF GEODESY LA English DT Article DE Geocenter; GPS; LEO; Reference frame; Orbital configuration AB We use a series of simulated scenarios to characterize the observability of geocenter location with GPS tracking data. We examine in particular the improvement realized when a GPS receiver in low Earth orbit (LEO) augments the ground network. Various orbital configurations for the LEO are considered and the observability of geocenter location based on GPS tracking is compared to that based on satellite laser ranging (SLR). The distance between a satellite and a ground tracking-site is the primary measurement, and Earth rotation plays important role in determining the geocenter location. Compared to SLR, which directly and unambiguously measures this distance, terrestrial GPS observations provide a weaker (relative) measurement for geocenter location determination. The estimation of GPS transmitter and receiver clock errors, which is equivalent to double differencing four simultaneous range measurements, removes much of this absolute distance information. We show that when ground GPS tracking data are augmented with precise measurements from a GPS receiver onboard a LEO satellite, the sensitivity of the data to geocenter location increases by more than a factor of two for Z-component. The geometric diversity underlying the varying baselines between the LEO and ground stations promotes improved global observability, and renders the GPS technique comparable to SLR in terms of information content for geocenter location determination. We assess a variety of LEO orbital configurations, including the proposed orbit for the geodetic reference antenna in space mission concept. The results suggest that a retrograde LEO with altitude near 3,000 km is favorable for geocenter determination. C1 [Kuang, Da; Bar-Sever, Yoaz; Haines, Bruce] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kuang, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM dakuang@jpl.nasa.gov FU National Aeronautics and Space Administration FX The work described in this paper is carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Detailed review and valuable suggestions from the anonymous reviewers are very much appreciated. NR 28 TC 2 Z9 2 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD MAY PY 2015 VL 89 IS 5 BP 471 EP 481 DI 10.1007/s00190-015-0792-6 PG 11 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA CF9PX UT WOS:000352898800005 ER PT J AU Peng, TS He, JJ Xiang, YB Liu, YM Saxena, A Celaya, J Goebel, K AF Peng, Tishun He, Jingjing Xiang, Yibing Liu, Yongming Saxena, Abhinav Celaya, Jose Goebel, Kai TI Probabilistic fatigue damage prognosis of lap joint using Bayesian updating SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES LA English DT Article DE Bayesian updating; uncertainties; fatigue; lamb wave; prognosis ID WAFER ACTIVE SENSORS; PIEZOELECTRIC SENSOR/ACTUATOR NETWORK; HEALTH MONITORING-SYSTEM; TRANSDUCERS; DIAGNOSTICS; GENERATION; PLATES AB A general framework for probabilistic prognosis and uncertainty management under fatigue cyclic loading is proposed in this article. First, the general idea using the Bayesian updating in prognosis is introduced. Several sources of uncertainties are discussed and included in the Bayesian updating framework. An equivalent stress level model is discussed for the mechanism-based fatigue crack growth analysis, which serves as the deterministic model for the lap joint fatigue life prognosis. Next, an in situ lap joint fatigue test with pre-installed piezoelectric sensors is designed and performed to collect experimental data. Signal processing techniques are used to extract damage features for crack length estimation. Following this, the proposed methodology is demonstrated using the experimental data under both constant and variable amplitude loadings. Finally, detailed discussion on validation metrics of the proposed prognosis algorithm is given. Several conclusions and future work are drawn based on the proposed study. C1 [Peng, Tishun; Xiang, Yibing; Liu, Yongming] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [He, Jingjing] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY USA. [Saxena, Abhinav; Celaya, Jose] NASA, SGT, Ames Res Ctr, Moffett Field, CA 94035 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Liu, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM yongming.liu@asu.edu FU NASA ARMD/AvSPIVHM; SSAT projects [NRANNX09AY54A] FX The research reported in this article was supported by the NASA ARMD/AvSPIVHM and SSAT projects under NRANNX09AY54A. NR 47 TC 4 Z9 4 U1 2 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1045-389X EI 1530-8138 J9 J INTEL MAT SYST STR JI J. Intell. Mater. Syst. Struct. PD MAY PY 2015 VL 26 IS 8 BP 965 EP 979 DI 10.1177/1045389X14538328 PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA CG6NT UT WOS:000353419600007 ER PT J AU Balucani, N Ceccarelli, C Taquet, V AF Balucani, Nadia Ceccarelli, Cecilia Taquet, Vianney TI Formation of complex organic molecules in cold objects: the role of gas-phase reactions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM: abundances; ISM: molecules ID DENSE INTERSTELLAR CLOUDS; GRAIN SURFACE-CHEMISTRY; HOT CORE; METHYL FORMATE; COMPACT RIDGE; DESORPTION; MODELS; DECOMPOSITION; MANTLES AB While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( a parts per thousand(3) 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry. C1 [Balucani, Nadia] Univ Perugia, Dip Chim Biol & Biotecnol, I-06123 Perugia, Italy. [Balucani, Nadia; Ceccarelli, Cecilia] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Balucani, Nadia; Ceccarelli, Cecilia] CNRS, IPAG, F-38000 Grenoble, France. [Taquet, Vianney] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Taquet, Vianney] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Balucani, N (reprint author), Univ Perugia, Dip Chim Biol & Biotecnol, I-06123 Perugia, Italy. EM Cecilia.Ceccarelli@obs.ujf-grenoble.fr RI Balucani, Nadia/B-8211-2011 OI Balucani, Nadia/0000-0001-5121-5683 FU Universite Joseph Fourier; Observatoire de Grenoble; French Space Agency CNES; NASA FX NB acknowledges the financial support from the Universite Joseph Fourier and the Observatoire de Grenoble, CC from the French Space Agency CNES, VT from the NASA postdoctoral programme. We thank S.J. Klippenstein for useful discussions on radiative association reactions, and A. Jaber and C. Vastel for exchanges on their work. We also thank an anonymous referee whose comments helped to improve the article. NR 43 TC 29 Z9 29 U1 3 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2015 VL 449 IS 1 BP L16 EP L20 DI 10.1093/mnrasl/slv009 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8KA UT WOS:000353555000004 ER PT J AU Mesnil, O Leckey, CA Ruzzene, M AF Mesnil, Olivier Leckey, Cara A. C. Ruzzene, Massimo TI Instantaneous and local wavenumber estimations for damage quantification in composites SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE Guided waves; composite materials; nondestructive evaluation; structural health monitoring ID LAMB WAVES AB The continued and expanded use of composite materials in aerospace applications necessitates structural health monitoring and/or nondestructive evaluation techniques that can provide quantitative and detailed damage information for layered plate-like components (such as composite laminates). Guided wavefield methods are at the basis of a number of promising techniques for the detection and the characterization of damage in plate-like structures. Among the processing techniques that have been proposed for guided wavefield analysis, the estimation of instantaneous and local wavenumbers can lead to effective metrics that quantify the size and the depth of delaminations in composite laminates. This article reports the application of both instantaneous and local wavenumber damage quantification techniques to guided wavefield data for delaminated composite laminates. The techniques are applied to experimental data for a simple single delamination case and to simulated data for a more complex multi-ply delamination case. The two techniques are compared in terms of accuracy in damage characterization and computational demand. The proposed methodologies can be considered as steps toward a hybrid structural health monitoring/nondestructive evaluation approach for damage assessment in composites. C1 [Mesnil, Olivier; Ruzzene, Massimo] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Leckey, Cara A. C.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Ruzzene, Massimo] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Mesnil, O (reprint author), Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. EM omesnil3@gatech.edu FU NASA [NRANNH11ZEA001N-VSST1]; Georgia Institute of Technology FX This work was funded by NASA under a collaborative agreement (NRANNH11ZEA001N-VSST1) with Georgia Institute of Technology. NR 31 TC 6 Z9 6 U1 4 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 EI 1741-3168 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD MAY PY 2015 VL 14 IS 3 BP 193 EP 204 DI 10.1177/1475921714560073 PG 12 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CG3WM UT WOS:000353210300001 ER PT J AU Srivastava, PK Mehta, A Gupta, M Singh, SK Islam, T AF Srivastava, Prashant K. Mehta, Abhinav Gupta, Manika Singh, Sudhir Kumar Islam, Tanvir TI Assessing impact of climate change on Mundra mangrove forest ecosystem, Gulf of Kutch, western coast of India: a synergistic evaluation using remote sensing SO THEORETICAL AND APPLIED CLIMATOLOGY LA English DT Article ID SEA-LEVEL RISE; MAXIMUM-LIKELIHOOD CLASSIFICATION; LAND-USE CHANGE; MARINE ECOSYSTEMS; SATELLITE DATA; FUTURE; GIS; MANAGEMENT; RECONSTRUCTION; SALINITY AB Mangrove cover changes have globally raised the apprehensions as the changes influence the coastal climate as well as the marine ecosystem services. The main goals of this research are focused on the monitoring of land cover and mangrove spatial changes particularly for the Mundra forest in the western coast of Gujarat state, India, which is famous for its unique mangrove bio-diversity. The multi-temporal Indian Remote Sensing (IRS) Linear Imaging Self Scanning (LISS)-II (IRS-1B) and III (IRS 136/RESOURCESAT-1) images captured in the year 1994 and 2010 were utilized for the spatio-temporal analysis of the area. The land cover and mangrove density was estimated by a unique hybrid classification which consists of K means unsupervised following maximum likelihood classification (MLC) supervised classification-based approach. The vegetation and non-vegetation layers has been extracted and separated by unsupervised classification technique while the training-based MLC was applied on the separated vegetation and nonvegetation classes to classify them into 11 land use/land cover classes, The climatic variables of the area involves wind, temperature, dew point, precipitation, and mean sea level investigated for the period of 17 years over the site. To understand the driving factors, the anthropogenic variables were also taken into account such as historical population datasets. The overall analysis indicates a significant change in the frequency and magnitude of sea-level rise from 1994 to 2010. The analysis of the meteorological variables indicates a high pressure and changes in mangrove density during the 17 years of time, which reveals that if appropriate actions are not initiated soon, the Mundra mangroves might become the victims of climate change-induced habitat loss. After analyzing all the factors, some recommendations and suggestions are provided for effective mangrove conservation and resilience, which could be used by forest official to protect this precious ecosystem. C1 [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Mehta, Abhinav] Birla Inst Technol, Dept Remote Sensing & Geoinformat, Ranchi, Bihar, India. [Mehta, Abhinav] Gujarat Inst Desert Ecol, Bhuj, Gujarat, India. [Gupta, Manika] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi, India. [Singh, Sudhir Kumar] Univ Allahabad, Nehru Sci Ctr, K Banerjee Ctr Atmospher & Ocean Studies, IIDS, Allahabad 211002, Uttar Pradesh, India. [Islam, Tanvir] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. RP Srivastava, PK (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. EM prashant.k.srivastava@nasa.gov OI Islam, Tanvir/0000-0003-2429-3074 NR 84 TC 2 Z9 2 U1 9 U2 53 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-798X EI 1434-4483 J9 THEOR APPL CLIMATOL JI Theor. Appl. Climatol. PD MAY PY 2015 VL 120 IS 3-4 BP 685 EP 700 DI 10.1007/s00704-014-1206-z PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG3ZZ UT WOS:000353220700023 ER PT J AU Lenas, SA Burleigh, SC Tsaoussidis, V AF Lenas, Sotirios-Angelos Burleigh, Scott C. Tsaoussidis, Vassilis TI Bundle streaming service: design, implementation and performance evaluation SO Transactions on Emerging Telecommunications Technologies LA English DT Article ID DELAY-TOLERANT; NETWORKING; INTERNET; SPACE AB We present bundle streaming service (BSS), a communication framework that allows for reliable data streaming over delay/disruptive tolerant networks. BSS improves the reception and storage of data streams through the application of sophisticated forwarding tactics and the exploitation of inherent delay/disruptive tolerant networking (DTN) architecture features. The proposed framework, which targets easy configuration and deployment, comprises two elements: a bundle forwarder and a software library. Both elements were implemented as part of the interplanetary overlay network DTN platform. Using European Space Agency's DTN testbed, we experimentally evaluate BSS performance across a wide range of network scenarios. Based on these emulation results, we discuss the associated performance trade-offs along with potential improvement opportunities and demonstrate BSS's suitability for both terrestrial and space environments. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Lenas, Sotirios-Angelos; Tsaoussidis, Vassilis] Democritus Univ Thrace, Space Internetworking Ctr, Xanthi 67100, Greece. [Burleigh, Scott C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Lenas, SA (reprint author), Democritus Univ Thrace, Space Internetworking Ctr, Xanthi 67100, Greece. EM slenas@ee.duth.gr FU European Community [264226] FX The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013/FP7-REGPOT-2010-1, SP4 Capacities, Coordination and Support Actions) under grant agreement no 264226 (project title: Space Internetworking Center-SPICE). This paper reflects only the authors' views and the community is not liable for any use that may be made of the information contained therein. Also, some of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 31 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2161-3915 J9 T EMERG TELECOMMUN T JI Trans. Emerg. Telecommun. Technol. PD MAY PY 2015 VL 26 IS 5 BP 905 EP 917 DI 10.1002/ett.2762 PG 13 WC Telecommunications SC Telecommunications GA CG6HK UT WOS:000353399700013 ER PT J AU Friedlander, DJ Georgiadis, NJ Turner, MG Orkwis, PD AF Friedlander, David J. Georgiadis, Nicholas J. Turner, Mark G. Orkwis, Paul D. TI Numerical Simulations of the University of Michigan Shock Boundary-Layer Interaction Experiments SO AIAA JOURNAL LA English DT Article ID TURBULENCE AB Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75 degree wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results showed an improvement in agreement with experimental data with key contributions by adding a laminar zone upstream of the wedge (the flow is considered transitional downstream of the nozzle throat) and the necessity of mimicking PIV particle lag for comparisons. All CFD analyses utilized the OVERFLOW solver. C1 [Friedlander, David J.; Georgiadis, Nicholas J.] NASA, Glenn Res Ctr, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. [Turner, Mark G.; Orkwis, Paul D.] Univ Cincinnati, Sch Aerosp Syst, Cincinnati, OH 45221 USA. RP Friedlander, DJ (reprint author), NASA, Glenn Res Ctr, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. EM d.j.friedlander@nasa.gov; georgiadis@nasa.gov; mark.turner@uc.edu; paul.orkwis@uc.edu FU Air Force Research Laboratory, Air Vehicle Directorate, AFRL/RB; U.S. Air Force Collaborative Center for Aeronautical Sciences; NASA Fundamental Aeronautics Program (Supersonics Project) FX The authors would like to acknowledge the support from the Air Force Research Laboratory, Air Vehicle Directorate, AFRL/RB and the interaction with the U.S. Air Force Collaborative Center for Aeronautical Sciences as well as the NASA Fundamental Aeronautics Program (Supersonics Project). Super-computing resources were provided by NASA's High End Computing Program (HECC). Also appreciated is the base grid (of which all grids used were derived from) and grid modification codes that were developed by Marshall Galbraith. NR 21 TC 0 Z9 0 U1 1 U2 14 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD MAY PY 2015 VL 53 IS 5 BP 1134 EP 1145 DI 10.2514/1.J053040 PG 12 WC Engineering, Aerospace SC Engineering GA CF5GK UT WOS:000352585200002 ER PT J AU Kunz, H Bishop, NC Spielmann, G Pistillo, M Reed, J Ograjsek, T Park, Y Mehta, SK Pierson, DL Simpson, RJ AF Kunz, Hawley Bishop, Nicolette C. Spielmann, Guillaume Pistillo, Mira Reed, Justin Ograjsek, Teja Park, Yoonjung Mehta, Satish K. Pierson, Duane L. Simpson, Richard J. TI Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise SO EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY LA English DT Article DE Innate mucosal immunity; Salivary antimicrobial proteins; Exercise intensity; Fitness; Exercise training ID INNATE MUCOSAL IMMUNITY; ALPHA-AMYLASE; IMMUNOGLOBULIN-A; INFECTION RISK; HEART-RATE; PEPTIDES; IGA; DEFENSINS; MARKERS; INTENSITY AB Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit. Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to -5, +5 and +15 % of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of alpha-amylase, human neutrophil proteins 1-3 (HNP1-3) lactoferrin, LL-37, lysozyme, and salivary SIgA. The concentration and/or secretion of all sAMPs increased post-exercise, but only alpha-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of alpha-amylase, HNP1-3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including alpha-amylase concentration (+107 %) and secretion (+148 %), HNP1-3 concentration (+97 %) and secretion (+158 %), salivary SIgA concentration (+181 %), lactoferrin secretion (+209 %) and LL-37 secretion (+138 %). We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation. C1 [Kunz, Hawley; Bishop, Nicolette C.; Spielmann, Guillaume; Pistillo, Mira; Reed, Justin; Ograjsek, Teja; Park, Yoonjung; Pierson, Duane L.; Simpson, Richard J.] Univ Houston, Dept Hlth & Human Performance, Lab Integrated Physiol, Houston, TX 77204 USA. [Bishop, Nicolette C.] Loughborough Univ Technol, Sch Sport Exercise & Hlth Sci, Loughborough LE11 3TU, Leics, England. [Mehta, Satish K.; Pierson, Duane L.] NASA Johnson Space Ctr, Div Biomed & Environm Sci, Houston, TX USA. RP Simpson, RJ (reprint author), Univ Houston, Dept Hlth & Human Performance, Lab Integrated Physiol, 3855 Holman St Rm 104 Garrison, Houston, TX 77204 USA. EM rjsimpson@uh.edu OI Klancic, Teja/0000-0002-1883-9803 FU NASA [NNX12AB48G] FX This work was supported by NASA Grant NNX12AB48G to R.J. Simpson. NR 57 TC 9 Z9 9 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1439-6319 EI 1439-6327 J9 EUR J APPL PHYSIOL JI Eur. J. Appl. Physiol. PD MAY PY 2015 VL 115 IS 5 BP 1015 EP 1027 DI 10.1007/s00421-014-3082-8 PG 13 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA CF7FL UT WOS:000352721500015 PM 25557386 ER PT J AU Zhang, B Tang, L DeCastro, J Roemer, MJ Goebel, K AF Zhang, Bin Tang, Liang DeCastro, Jonathan Roemer, Michael J. Goebel, Kai TI A Recursive Receding Horizon Planning for Unmanned Vehicles SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article DE Nonuniform environment; path planning; receding horizon planning (RHP); recursive searching; unmanned robot ID MOBILE ROBOTS; GENETIC ALGORITHM; PATH; SYSTEM; LOCALIZATION; NAVIGATION; SEARCH; TREE AB This paper proposes a recursive receding horizon path planning algorithm for unmanned vehicles in nonuniform environments. In the proposed algorithm, the map is described by grids in which nodes are defined on corners of grids. The planning algorithm considers the map as four areas, namely, implementation, observation, explored, and unknown. The Implementation area is a subset of the Observation area, whereas the Explored area is the union of all the previous Observation areas. The path is planned with a receding horizon planning strategy to generate waypoints and in-between map updates. When a new map update occurs, the path is replanned within the current Observation area if necessary. If no such path exists, the search is extended to the Explored area. Paths can be planned by recursively searching available nodes inside the Explored area that can be connected to available nodes on the boundary of the Explored area. A robot platform is employed to conduct a series of experiments in a laboratory environment to verify the proposed path planning algorithm. C1 [Zhang, Bin] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Tang, Liang] Pratt & Whitney, E Hartford, CT 06118 USA. [DeCastro, Jonathan] Cornell Univ, Dept Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Roemer, Michael J.] Impact Technol LLC, Rochester, NY 14623 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Zhang, B (reprint author), Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. EM zhangbin@cec.sc.edu; mr.tangliang@gmail.com; jdc1177@gmail.com; mike.roemer@impact-tek.com; kai.goebel@nasa.gov FU NASA [NNX09CB61C] FX This work was supported by NASA under Grant NNX09CB61C. NR 40 TC 5 Z9 5 U1 3 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0046 EI 1557-9948 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD MAY PY 2015 VL 62 IS 5 BP 2912 EP 2920 DI 10.1109/TIE.2014.2363632 PG 9 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA CF6ZQ UT WOS:000352706000025 ER PT J AU Lin, Z Stamnes, S Jin, Z Laszlo, I Tsay, SC Wiscombe, WJ Stamnes, K AF Lin, Z. Stamnes, S. Jin, Z. Laszlo, I. Tsay, S. -C. Wiscombe, W. J. Stamnes, K. TI Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Radiative transfer model; BRDF; Cox-Munk; Ross-Li; RPV; Single scattering correction ID ATMOSPHERIC RADIATIVE-TRANSFER; BIDIRECTIONAL REFLECTANCE; MULTIPLE-SCATTERING; HOT-SPOT; SURFACE; MODEL; ALGORITHM AB A successor version 3 of DISORT (DISORT3) is presented with important upgrades that improve the accuracy, efficiency, and stability of the algorithm. Compared with version 2 (DISORT2 released in 2000) these upgrades include (a) a redesigned BRDF computation that improves both speed and accuracy, (b) a revised treatment of the single scattering correction, and (c) additional efficiency and stability upgrades for beam sources. In DISORT3 the BRDF computation is improved in the following three ways: (i) the Fourier decomposition is prepared "off-line", thus avoiding the repeated internal computations done in DISORT2; (ii) a large enough number of terms in the Fourier expansion of the BRDF is employed to guarantee accurate values of the expansion coefficients (default is 200 instead of 50 in DISORT2); (iii) in the post-processing step the reflection of the direct attenuated beam from the lower boundary is included resulting in a more accurate single scattering correction. These improvements in the treatment of the BRDF have led to improved accuracy and a several-fold increase in speed. In addition, the stability of beam sources has been improved by removing a singularity occurring when the cosine of the incident beam angle is too close to the reciprocal of any of the eigenvalues. The efficiency for beam sources has been further improved from reducing by a factor of 2 (compared to DISORT2) the dimension of the linear system of equations that must be solved to obtain the particular solutions, and by replacing the LINPAK routines used in DISORT2 by LAPACK 3.5 in DISORT3. These beam source stability and efficiency upgrades bring enhanced stability and an additional 5-7% improvement in speed. Numerical results are provided to demonstrate and quantify the improvements in accuracy and efficiency of DISORT3 compared to DISORT2. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Lin, Z.; Stamnes, K.] Stevens Inst Technol, Dept Phys & Engineer Phys, Hoboken, NJ 07030 USA. [Stamnes, S.; Jin, Z.] NASA, Langley Res Ctr, Hampton, VA USA. [Jin, Z.] Sci Syst & Applicat, Hampton, VA USA. [Laszlo, I.] NOAA, Ctr Satellite Applicat & Res, Natl Environm Satellite Data & Informat Serv, College Pk, MD USA. [Laszlo, I.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Tsay, S. -C.; Wiscombe, W. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lin, Z (reprint author), Stevens Inst Technol, Dept Phys & Engineer Phys, Hoboken, NJ 07030 USA. EM lzhenyi@stevens.edu; snorre.a.stamnes@nasa.gov; zhonghai.jin-1@nasa.gov; Istvan.Laszlo@noaa.gov; Si-Chee.Tsay@nasa.gov; Warren.J.Wiscombe@nasa.gov; Knut.Stamnes@stevens.edu RI Laszlo, Istvan/F-5603-2010; Richards, Amber/K-8203-2015; OI Laszlo, Istvan/0000-0002-5747-9708; Lin, Zhenyi/0000-0002-0237-2727 FU National Aeronautics and Space Administration (NASA) through a grant from NASA's Remote Sensing Theory Program FX Support from the National Aeronautics and Space Administration (NASA) through a grant from NASA's Remote Sensing Theory Program to Stevens Institute of Technology is gratefully acknowledged. NR 28 TC 4 Z9 5 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAY PY 2015 VL 157 BP 119 EP 134 DI 10.1016/j.jqsrt.2015.02.014 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CG2CV UT WOS:000353083400009 ER PT J AU Srivastava, PK Islam, T Gupta, M Petropoulos, G Dai, Q AF Srivastava, Prashant K. Islam, Tanvir Gupta, Manika Petropoulos, George Dai, Qiang TI WRF Dynamical Downscaling and Bias Correction Schemes for NCEP Estimated Hydro-Meteorological Variables SO WATER RESOURCES MANAGEMENT LA English DT Article DE Hydro-meteorological variables; Weather research and forecastingmodel; WRF downscaling; RVM, GLM, Bias correction ID NUMERICAL WEATHER PREDICTION; LAND-SURFACE TEMPERATURE; RELEVANCE VECTOR MACHINE; SMOS SOIL-MOISTURE; PRECIPITATION ESTIMATION; RAINFALL ESTIMATION; MODEL; NETWORK; SIMULATIONS; EVAPOTRANSPIRATION AB Rainfall and Reference Evapotranspiration (ETo) are the most fundamental and significant variables in hydrological modelling. However, these variables are generally not available over ungauged catchments. ETo estimation usually needs measurements of weather variables such as wind speed, air temperature, solar radiation and dew point. After the development of reanalysis global datasets such as the National Centre for Environmental Prediction (NCEP) and high performance modelling framework Weather Research and Forecasting (WRF) model, it is now possible to estimate the rainfall and ETo for any coordinates. In this study, the WRF modelling system was employed to downscale the global NCEP reanalysis datasets over the Brue catchment, England, U.K. After downscaling, two statistical bias correction schemes were used, the first was based on sophisticated computing algorithms i.e., Relevance Vector Machine (RVM), while the second was based on the more simple Generalized Linear Model (GLM). The statistical performance indices for bias correction such as %Bias, index of agreement (d), Root Mean Square Error (RMSE), and Correlation (r) indicated that the RVM model, on the whole, displayed a more accomplished bias correction of the variability of rainfall and ETo in comparison to the GLM. The study provides important information on the performance of WRF derived hydro-meteorological variables using NCEP global reanalysis datasets and statistical bias correction schemes which can be used in numerous hydro-meteorological applications. C1 [Srivastava, Prashant K.; Gupta, Manika] NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Islam, Tanvir] NOAA, NESDIS Ctr Satellite Applicat & Res, Greenbelt, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Petropoulos, George] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3FG, Dyfed, Wales. [Dai, Qiang] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. [Gupta, Manika] Univ Space Res Assoc, Columbia, MD USA. RP Srivastava, PK (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. EM prashant.k.srivastava@nasa.gov RI Petropoulos, George/F-2384-2013; OI Petropoulos, George/0000-0003-1442-1423; Islam, Tanvir/0000-0003-2429-3074 FU Commonwealth Scholarship Commission, British Council, United Kingdom; Ministry of Human Resource Development, Government of India; European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO"; High Performance Computing Facilities of Wales "PREMIER-EO" projects FX The first authors would like to thank the Commonwealth Scholarship Commission, British Council, United Kingdom and Ministry of Human Resource Development, Government of India for providing the necessary support and funding for this research. The authors are also thankful to Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). The authors would like to acknowledge the British Atmospheric Data Centre, United Kingdom for providing the ground observation datasets. The authors also acknowledge the Advanced Computing Research Centre at University of Bristol for providing the access to supercomputer facility (The Blue Crystal). Dr. Petropoulos's contribution was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO" and the High Performance Computing Facilities of Wales "PREMIER-EO" projects. Authors would also like to thank Gareth Ireland for the language proof reading of the manuscript. Authors are also grateful to the anonymous reviewers for their useful criticism which helped improving the manuscript. The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NOAA/NASA or the authors' affiliated institutions. NR 57 TC 9 Z9 9 U1 1 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-4741 EI 1573-1650 J9 WATER RESOUR MANAG JI Water Resour. Manag. PD MAY PY 2015 VL 29 IS 7 BP 2267 EP 2284 DI 10.1007/s11269-015-0940-z PG 18 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA CF8OZ UT WOS:000352822700011 ER PT J AU Peters-Lidard, CD Kemp, EM Matsui, T Santanello, JA Kumar, SV Jacob, JP Clune, T Tao, WK Chin, M Hou, A Case, JL Kim, D Kim, KM Lau, W Liu, YQ Shi, J Starr, D Tan, Q Tao, ZN Zaitchik, BF Zavodsky, B Zhang, SQ Zupanski, M AF Peters-Lidard, Christa D. Kemp, Eric M. Matsui, Toshihisa Santanello, Joseph A., Jr. Kumar, Sujay V. Jacob, Jossy P. Clune, Thomas Tao, Wei-Kuo Chin, Mian Hou, Arthur Case, Jonathan L. Kim, Dongchul Kim, Kyu-Myong Lau, William Liu, Yuqiong Shi, Jainn Starr, David Tan, Qian Tao, Zhining Zaitchik, Benjamin F. Zavodsky, Bradley Zhang, Sara Q. Zupanski, Milija TI Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Earth system modeling; Aerosols; Clouds; Precipitation; Land surface modeling; Satellites; High performance computing; Frameworks; Interoperability; Earth system studies ID DATA ASSIMILATION SYSTEM; WRF NU-WRF; GLOBAL-MODEL; UNITED-STATES; GOCART MODEL; CONVECTIVE SYSTEMS; INFORMATION-SYSTEM; SOIL-MOISTURE; DUST AEROSOLS; AIR-QUALITY AB With support from NASA's Modeling and Analysis Program, we have recently developed the NASA Unified-Weather Research and Forecasting model (NU-WRF). NU-WRF is an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. "Satellite-resolved" scales (roughly 1-25 km), bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the National Center for Atmospheric Research (NCAR) Advanced Research WRF (ARW) dynamical core model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the GOddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (G-SDSU), and custom boundary/initial condition preprocessors into a single software release, with source code available by agreement with NASA/GSFC. Full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local and regional water and energy cycles. Published by Elsevier Ltd. C1 [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Div, Greenbelt, MD 20771 USA. [Kemp, Eric M.; Jacob, Jossy P.] NASA, Goddard Space Flight Ctr, SSAI, GSFC, Greenbelt, MD 20771 USA. [Matsui, Toshihisa; Liu, Yuqiong] NASA, Goddard Space Flight Ctr, ESSIC UMCP, GSFC, Greenbelt, MD 20771 USA. [Santanello, Joseph A., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, SAIC, GSFC, Greenbelt, MD 20771 USA. [Clune, Thomas; Tao, Wei-Kuo; Chin, Mian; Hou, Arthur; Kim, Kyu-Myong; Lau, William; Starr, David; Tan, Qian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Case, Jonathan L.] NASA, ENSCO Inc, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Kim, Kyu-Myong; Tao, Zhining] NASA, Goddard Space Flight Ctr, USRA, GSFC, Greenbelt, MD 20771 USA. [Shi, Jainn] Morgan State Univ, NASA, Goddard Space Flight Ctr, GSFC, Greenbelt, MD 20771 USA. [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Zavodsky, Bradley] NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Zhang, Sara Q.] NASA, Goddard Space Flight Ctr, SAIC, GSFC, Greenbelt, MD 20771 USA. [Zupanski, Milija] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. RP Peters-Lidard, CD (reprint author), NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Div, Code 610HB, Greenbelt, MD 20771 USA. EM christa.peters@nasa.gov RI Santanello, Joseph/D-4438-2012; Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012; Kim, Dongchul/H-2256-2012; Chin, Mian/J-8354-2012 OI Santanello, Joseph/0000-0002-0807-6590; Peters-Lidard, Christa/0000-0003-1255-2876; Kim, Dongchul/0000-0002-5659-1394; FU NASA's Modeling and Analysis Program [NNH08ZDA001N-MAP, NNH12ZDA001N-MAP] FX We thank two anonymous reviewers for constructive comments that helped to improve the manuscript. The development of NU-WRF has been funded by NASA's Modeling and Analysis Program (Solicitations NNH08ZDA001N-MAP and NNH12ZDA001N-MAP PI: Peters-Lidard). This paper is dedicated to Dr. Arthur Y. Hou, who died Nov. 20, 2013. Dr. Hou was the GPM Project Scientist and Co-Principal Investigator of NU-WRF project. We would also like to acknowledge the software engineering contributions of Rob Burns, Shujia Zhou, Phil Hayes, Hamid Oloso, and Jules Kouatchou. NR 80 TC 15 Z9 15 U1 4 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD MAY PY 2015 VL 67 BP 149 EP 159 DI 10.1016/j.envsoft.2015.01.007 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA CE6WI UT WOS:000351978500013 ER PT J AU Saatchi, S Mascaro, J Xu, L Keller, M Yang, Y Duffy, P Espirito-Santo, FDB Baccini, A Chambers, J Schimel, D AF Saatchi, Sassan Mascaro, Joseph Xu, Liang Keller, Michael Yang, Yan Duffy, Paul Espirito-Santo, Fernando D. B. Baccini, Alessandro Chambers, Jeffery Schimel, David TI Seeing the forest beyond the trees SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Letter DE Allometry; biomass; lidar; remote sensing; spatial modelling; tree height; tropical forests; wood density ID ABOVEGROUND LIVE BIOMASS; WOOD SPECIFIC-GRAVITY; TROPICAL FOREST; CARBON-DENSITY; PATTERNS; AMAZONIA; STOCKS; PANAMA; BASIN; LIDAR AB In a recent paper (Mitchard etal. 2014, Global Ecology and Biogeography, 23, 935-946) a new map of forest biomass based on a geostatistical model of field data for the Amazon (and surrounding forests) was presented and contrasted with two earlier maps based on remote-sensing data Saatchi etal. (2011; RS1) and Baccini etal. (2012; RS2). Mitchard etal. concluded that both the earlier remote-sensing based maps were incorrect because they did not conform to Mitchard etal. interpretation of the field-based results. In making their case, however, they misrepresented the fundamental nature of primary field and remote-sensing data and committed critical errors in their assumptions about the accuracy of research plots, the interpolation methodology and the statistical analysis. By ignoring the large uncertainty associated with ground estimates of biomass and the significant under-sampling and spatial bias of research plots, Mitchard etal. reported erroneous trends and artificial patterns of biomass over Amazonia. Because of these misrepresentations and methodological flaws, we find their critique of the satellite-derived maps to be invalid. C1 [Saatchi, Sassan; Espirito-Santo, Fernando D. B.; Schimel, David] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. [Saatchi, Sassan; Xu, Liang; Yang, Yan] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA. [Mascaro, Joseph] Amer Assoc Advancement Sci, Washington, DC 20001 USA. [Keller, Michael] US Forest Serv, USDA, Int Inst Trop Forestry, San Juan, PR USA. [Duffy, Paul] Neptune & Co Inc, Lakewood, CO 80215 USA. [Baccini, Alessandro] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Chambers, Jeffery] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. RP Saatchi, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM saatchi@jpl.nasa.gov RI Keller, Michael/A-8976-2012; Chambers, Jeffrey/J-9021-2014; Espirito-Santo, Fernando/O-4371-2014 OI Keller, Michael/0000-0002-0253-3359; Chambers, Jeffrey/0000-0003-3983-7847; Espirito-Santo, Fernando/0000-0001-7497-3639 NR 39 TC 12 Z9 12 U1 4 U2 48 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1466-822X EI 1466-8238 J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD MAY PY 2015 VL 24 IS 5 BP 606 EP 610 DI 10.1111/geb.12256 PG 5 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA CF4OY UT WOS:000352530900010 ER PT J AU Paine, N Mehling, JS Holley, J Radford, NA Johnson, G Fok, CL Sentis, L AF Paine, Nicholas Mehling, Joshua S. Holley, James Radford, Nicolaus A. Johnson, Gwendolyn Fok, Chien-Liang Sentis, Luis TI Actuator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID FLEXIBLE-JOINT ROBOTS; IMPEDANCE CONTROL; ROBONAUT; SPACE; DESIGN AB This paper discusses the actuator-level control of Valkyrie, a new humanoid robot designed by NASA's Johnson Space Center in collaboration with several external partners. Several topics pertaining to Valkyrie's series elastic actuators are presented including control architecture, controller design, and implementation in hardware. A decentralized approach is taken in controlling Valkyrie's many series elastic degrees of freedom. By conceptually decoupling actuator dynamics from robot limb dynamics, the problem of controlling a highly complex system is simplified and the controller development process is streamlined compared to other approaches. This hierarchical control abstraction is realized by leveraging disturbance observers in the robot's joint-level torque controllers. A novel analysis technique is applied to understand the ability of a disturbance observer to attenuate the effects of unmodeled dynamics. The performance of this control approach is demonstrated in two ways. First, torque tracking performance of a single Valkyrie actuator is characterized in terms of controllable torque resolution, tracking error, bandwidth, and power consumption. Second, tests are performed on Valkyrie's arm, a serial chain of actuators, to demonstrate the robot's ability to accurately track torques with the presented decentralized control approach. C1 [Paine, Nicholas] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. [Mehling, Joshua S.; Holley, James; Radford, Nicolaus A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Johnson, Gwendolyn; Fok, Chien-Liang; Sentis, Luis] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Paine, N (reprint author), Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. EM npaine@utexas.edu; joshua.s.mehling@nasa.gov; james.j.holley@nasa.gov; nicolaus.a.radford@nasa.gov; gwendolynbrook@gmail.com; liangfok@utexas.edu; lsentis@austin.utexas.edu NR 37 TC 19 Z9 20 U1 6 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAY PY 2015 VL 32 IS 3 SI SI BP 378 EP 396 DI 10.1002/rob.21556 PG 19 WC Robotics SC Robotics GA CF5ZV UT WOS:000352637100005 ER PT J AU Radford, NA Strawser, P Hambuchen, K Mehling, JS Verdeyen, WK Donnan, AS Holley, J Sanchez, J Nguyen, V Bridgwater, L Berka, R Ambrose, R Markee, MM Fraser-Chanpong, NJ McQuin, C Yamokoski, JD Hart, S Guo, R Parsons, A Wightman, B Dinh, P Ames, B Blakely, C Edmondson, C Sommers, B Rea, R Tobler, C Bibby, H Howard, B Niu, L Lee, A Conover, M Truong, L Reed, R Chesney, D Platt, R Johnson, G Fok, CL Paine, N Sentis, L Cousineau, E Sinnet, R Lack, J Powell, M Morris, B Ames, A Akinyode, J AF Radford, Nicolaus A. Strawser, Philip Hambuchen, Kimberly Mehling, Joshua S. Verdeyen, William K. Donnan, A. Stuart Holley, James Sanchez, Jairo Vienny Nguyen Bridgwater, Lyndon Berka, Reginald Ambrose, Robert Markee, Mason Myles Fraser-Chanpong, N. J. McQuin, Christopher Yamokoski, John D. Hart, Stephen Guo, Raymond Parsons, Adam Wightman, Brian Dinh, Paul Ames, Barrett Blakely, Charles Edmondson, Courtney Sommers, Brett Rea, Rochelle Tobler, Chad Bibby, Heather Howard, Brice Niu, Lei Lee, Andrew Conover, Michael Lily Truong Reed, Ryan Chesney, David Platt, Robert, Jr. Johnson, Gwendolyn Fok, Chien-Liang Paine, Nicholas Sentis, Luis Cousineau, Eric Sinnet, Ryan Lack, Jordan Powell, Matthew Morris, Benjamin Ames, Aaron Akinyode, Jide TI Valkyrie: NASA's First Bipedal Humanoid Robot SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID ROBONAUT AB In December 2013, 16 teams from around the world gathered at Homestead Speedway near Miami, FL to participate in the DARPA Robotics Challenge (DRC) Trials, an aggressive robotics competition partly inspired by the aftermath of the Fukushima Daiichi reactor incident. While the focus of the DRC Trials is to advance robotics for use in austere and inhospitable environments, the objectives of the DRC are to progress the areas of supervised autonomy and mobile manipulation for everyday robotics. NASA's Johnson Space Center led a team comprised of numerous partners to develop Valkyrie, NASA's first bipedal humanoid robot. Valkyrie is a 44 degree-of-freedom, series elastic actuator-based robot that draws upon over 18 years of humanoid robotics design heritage. Valkyrie's application intent is aimed at not only responding to events like Fukushima, but also advancing human spaceflight endeavors in extraterrestrial planetary settings. This paper presents a brief system overview, detailing Valkyrie's mechatronic subsystems, followed by a summarization of the inverse kinematics-based walking algorithm employed at the Trials. Next, the software and control architectures are highlighted along with a description of the operator interface tools. Finally, some closing remarks are given about the competition, and a vision of future work is provided. C1 [Radford, Nicolaus A.; Strawser, Philip; Hambuchen, Kimberly; Mehling, Joshua S.; Verdeyen, William K.; Donnan, A. Stuart; Holley, James; Sanchez, Jairo; Vienny Nguyen; Bridgwater, Lyndon; Berka, Reginald; Ambrose, Robert; Markee, Mason Myles; Fraser-Chanpong, N. J.] NASA, Johnson Space Ctr, Washington, DC 20546 USA. [McQuin, Christopher] NASA, Jet Prop Lab, Washington, DC USA. [Platt, Robert, Jr.] Northeastern Univ, Boston, MA USA. [Johnson, Gwendolyn; Fok, Chien-Liang; Paine, Nicholas; Sentis, Luis] Univ Texas Austin, Austin, TX 78712 USA. [Cousineau, Eric; Sinnet, Ryan; Lack, Jordan; Powell, Matthew; Morris, Benjamin; Ames, Aaron] Texas A&M Univ, College Stn, TX 77843 USA. [Akinyode, Jide] Hamilton Sundstrand, Windsor Locks, CT USA. RP Verdeyen, WK (reprint author), NASA, Johnson Space Ctr, Washington, DC 20546 USA. EM william.k.verdeyen@nasa.gov FU DARPA; State of Texas; State of Texas' Emerging Technology Fund; Jacobs Engineering FX The authors would like to send a special thanks to Dr. Gill Pratt who funded and supported this work and all the staff at DARPA who helped organize and run the DRC event's successful execution. It was an amazing opportunity to be a part of this worldwide endeavor. The authors would also like to thank the following: 1) directorate and division management within NASA's Johnson Space Center and especially Dr. Michael Gazarik, Associate Administrator of the Space Technology Mission Directorate at NASA Headquarters, for supporting this work and additionally funding the development in conjunction with DARPA; 2) Laurie Rich, Deputy Director and Special Advisor on Higher Education at the State of Texas, and the State of Texas' Emerging Technology Fund, which funded the Texas universities involvement in NASA's team; and 3) Jacobs Engineering for supporting this work with their Innovation Fund and working through the many challenges of delayed government funding. NR 46 TC 14 Z9 15 U1 4 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAY PY 2015 VL 32 IS 3 SI SI BP 397 EP 419 DI 10.1002/rob.21560 PG 23 WC Robotics SC Robotics GA CF5ZV UT WOS:000352637100006 ER PT J AU Zheng, Y Kumar, A Niyogi, D AF Zheng, Yue Kumar, Anil Niyogi, Dev TI Impacts of land-atmosphere coupling on regional rainfall and convection SO CLIMATE DYNAMICS LA English DT Article DE Land-atmosphere interaction; Surface exchange coefficient; Surface coupling strength; Surface fluxes; Mesoscale convection; PBL ID MESOSCALE ETA-MODEL; PART I; OBSERVATIONAL EVIDENCE; MONSOON DEPRESSIONS; DATA ASSIMILATION; SURFACE FLUXES; SOIL-MOISTURE; PRECIPITATION; IHOP-2002; WRF AB By analyzing rainfall events over four landatmosphere coupling hotspot regions, the study assesses the need for adopting a dynamic coupling strength within the land surface model. The study aims to investigate the impacts of land-atmosphere coupling on mesoscale convection and rainfall over different hotspot regions. Impacts of land-atmosphere coupling are analyzed using Noah land model and Weather Research and Forecasting (WRF) model simulations over U.S. Southern Great Plains (SGP), Europe, northern India, and West Africa. The SGP stands out as a region of strong land-atmosphere coupling. While, over India and West Africa the default WRF model leads to too strong coupling effects. The results show improvements by adopting the dynamic coupling coefficient in simulating surface fluxes and resulting atmospheric state. For the four regions, the results indicate that the surface coupling coefficient does not affect the general location but could improve the intensity of the simulated precipitation. There is high uncertainty in land-atmosphere coupling and the results from this and prior studies need to be considered with caution. In particular, zones identified as coupling hotspots in climate studies and their coupling strength would likely change depending on the model formulations and coupling coefficient assigned. Results support the use of the dynamic coupling formulation for use in future studies but with a caution for use over complex terrains. Overall, these results highlight that evaluating and improving land-atmosphere coupling could potentially improve model performance across the globe. C1 [Zheng, Yue; Niyogi, Dev] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Kumar, Anil] NASA GSFC, Hydrol Sci Branch, Greenbelt, MD USA. [Kumar, Anil] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20771 USA. [Kumar, Anil] Purdue Univ, W Lafayette, IN 47907 USA. [Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. RP Niyogi, D (reprint author), Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. EM climate@purdue.edu FU USDA/NIFA Drought Triggers Grant through Texas AM University FX This research benefited through the DOEARM/CLASIC project, NSF CAREER, and USDA/NIFA Drought Triggers Grant through Texas A&M University. NR 50 TC 1 Z9 1 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2015 VL 44 IS 9-10 BP 2383 EP 2409 DI 10.1007/s00382-014-2442-8 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD9ZE UT WOS:000351459800004 ER PT J AU Daigle, MJ Roychoudhury, I Bregon, A AF Daigle, Matthew J. Roychoudhury, Indranil Bregon, Anibal TI Qualitative event-based diagnosis applied to a spacecraft electrical power distribution system SO CONTROL ENGINEERING PRACTICE LA English DT Article DE Fault diagnosis; Model-based diagnosis; Structural model decomposition; Electrical power systems; ADAPT ID FAULT-DIAGNOSIS; SUPERVISION; CONFLICTS AB Quick, robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A fault detection, isolation, and identification framework is developed for three separate diagnosis algorithms: the first using global model; the second using minimal submodels, which allows the approach to scale easily; and the third using both the global model and minimal submodels, combining the strengths of the first two. The diagnosis framework is applied to the Advanced Diagnostics and Prognostics Testbed that functionally represents spacecraft electrical power distribution systems. The practical implementation of these algorithms is described, and their diagnosis performance using real data is compared. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roychoudhury, Indranil] NASA, Ames Res Ctr, Stinger Ghaffarian Technol Inc, Moffett Field, CA 94035 USA. [Bregon, Anibal] Univ Valladolid, Dept Comp Sci, E-47011 Valladolid, Spain. RP Bregon, A (reprint author), Univ Valladolid, Dept Comp Sci, E-47011 Valladolid, Spain. EM matthew.j.daigle@nasa.gov; indranil.roychoudhury@nasa.gov; anibal@infor.uva.es FU NASA System-wide Safety and Assurance Technologies (SSAT) project; Spanish MINECO [DPI2013-45414-R] FX M. Daigle and I. Roychoudhury's work has been partially supported by the NASA System-wide Safety and Assurance Technologies (SSAT) project.; A. Bregon's funding for this work has been provided by the Spanish MINECO DPI2013-45414-R grant. NR 41 TC 2 Z9 2 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0661 EI 1873-6939 J9 CONTROL ENG PRACT JI Control Eng. Practice PD MAY PY 2015 VL 38 BP 75 EP 91 DI 10.1016/j.conengprac.2015.01.007 PG 17 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA CE4FL UT WOS:000351786400007 ER PT J AU Sandu, C Mukherjee, R AF Sandu, Corina Mukherjee, Rudranarayan TI Special Issue: Multibody Dynamics for Vehicle Systems SO JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS LA English DT Editorial Material C1 [Sandu, Corina] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. [Mukherjee, Rudranarayan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sandu, C (reprint author), Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. EM csandu@vt.edu; rudranarayan.m.mukherjee@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1555-1423 EI 1555-1415 J9 J COMPUT NONLIN DYN JI J. Comput. Nonlinear Dyn. PD MAY PY 2015 VL 10 IS 3 AR 030301 DI 10.1115/1.4029693 PG 2 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CE4AL UT WOS:000351772500001 ER PT J AU Haldane, DW Casarez, CS Karras, JT Lee, J Li, C Pullin, AO Schaler, EW Yun, D Ota, H Javey, A Fearing, RS AF Haldane, Duncan W. Casarez, Carlos S. Karras, Jaakko T. Lee, Jessica Li, Chen Pullin, Andrew O. Schaler, Ethan W. Yun, Dongwon Ota, Hiroki Javey, Ali Fearing, Ronald S. TI Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots SO JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME LA English DT Article ID DESIGN; ROBOTS AB Inspired by the exoskeletons of insects, we have developed a number of manufacturing methods for the fabrication of structures for attachment, protection, and sensing. This manufacturing paradigm is based on infrared laser machining of lamina and the bonding of layered structures. The structures have been integrated with an inexpensive palm-sized legged robot, the VelociRoACH [Haldane et al., 2013, "Animal-Inspired Design and Aerodynamic Stabilization of a Hexapedal Millirobot," IEEE/RSJ International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, pp. 3279-3286]. We also present a methodology to design and fabricate folded robotic mechanisms, and have released an open-source robot, the OpenRoACH, as an example implementation of these techniques. We present new composite materials which enable the fabrication of stronger, larger scale smart composite microstructures (SCM) robots. We demonstrate how thermoforming can be used to manufacture protective structures resistant to water and capable of withstanding terminal velocity falls. A simple way to manufacture traction enhancing claws is demonstrated. An electronics layer can be incorporated into the robot structure, enabling the integration of distributed sensing. We present fabrication methods for binary and analog force sensing arrays, as well as a carbon nanotube (CNT) based strain sensor which can be fabricated in place. The presented manufacturing methods take advantage of low-cost, high accuracy two-dimensional fabrication processes which will enable low-cost mass production of robots integrated with mechanical linkages, an exoskeleton, and body and limb sensing. C1 [Haldane, Duncan W.; Casarez, Carlos S.; Lee, Jessica; Pullin, Andrew O.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Karras, Jaakko T.] NASA, Robot Actuat & Sensing Grp, Jet Prop Lab, Pasadena, CA 91101 USA. [Li, Chen] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. [Li, Chen] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Schaler, Ethan W.; Yun, Dongwon; Ota, Hiroki; Javey, Ali; Fearing, Ronald S.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Haldane, DW (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM dhaldane@berkeley.edu; ronf@eecs.berkeley.edu RI Li, Chen/A-4003-2013; Javey, Ali/B-4818-2013 OI Li, Chen/0000-0001-7516-3646; FU National Science Foundation [DGE-0903711]; Graduate Research Fellowship Program [CNS-0931463]; NSF NASCENT Center; Miller Institute for Basic Research in Science of UC Berkeley; DARPA Maximum Mobility and Manipulation program; United States Army Research Laboratory under the Micro Autonomous Science and Technology Collaborative Technology Alliance FX This material is based upon work supported by the National Science Foundation under IGERT Grant No. DGE-0903711, the Graduate Research Fellowship Program, Grant No. CNS-0931463, the NSF NASCENT Center; also by the Miller Institute for Basic Research in Science of UC Berkeley, the DARPA Maximum Mobility and Manipulation program, and the United States Army Research Laboratory under the Micro Autonomous Science and Technology Collaborative Technology Alliance. NR 45 TC 3 Z9 3 U1 4 U2 26 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1942-4302 EI 1942-4310 J9 J MECH ROBOT JI J. Mech. Robot. PD MAY PY 2015 VL 7 IS 2 SI SI AR 021011 DI 10.1115/1.4029495 PG 19 WC Engineering, Mechanical; Robotics SC Engineering; Robotics GA CE2TX UT WOS:000351672900012 ER PT J AU Mishchenko, MI Dlugach, JM Chowdhary, J Zakharova, NT AF Mishchenko, Michael I. Dlugach, Janna M. Chowdhary, Jacek Zakharova, Nadezhda T. TI Polarized bidirectional reflectance of optically thick sparse particulate layers: An efficient numerically exact radiative-transfer solution SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Particulate media; Polarization; Electromagnetic scattering; Radiative transfer; Stokes parameters; Ambartsumian's nonlinear integral equation; Benchmark results ID T-MATRIX METHOD; DISCRETE-DIPOLE APPROXIMATION; INVARIANT IMBEDDING METHOD; NONSPHERICAL ICE CRYSTALS; LIGHT-SCATTERING; MULTIPLE-SCATTERING; PLANETARY-ATMOSPHERES; ABSORBING MEDIUM; ELECTROMAGNETIC SCATTERING; INHOMOGENEOUS PARTICLES AB We describe a simple yet efficient numerical algorithm for computing polarized bidirectional reflectance of an optically thick (semi-infinite), macroscopically flat layer composed of statistically isotropic and mirror symmetric random particles. The spatial distribution of the particles is assumed to be sparse, random, and statistically uniform. The 4 x 4 Stokes reflection matrix is calculated by iterating the Ambartsumian's vector nonlinear integral equation. The result is a numerically exact solution of the vector radiative transfer equation and as such fully satisfies the energy conservation law and the fundamental reciprocity relation. Since this technique bypasses the computation of the internal radiation field, it is very fast and highly accurate. The FORTRAN implementation of the technique is publicly available on the World Wide Web at http://www.giss.nasa.gov/staff/mmishchenko/brf. It can be combined with several existing computer programs providing the requisite single-scattering properties of spherical or morphologically complex particles and applied to a wide range of optical characterization problems. Benchmark results obtained with this program can be used for testing alternative solvers of the vector radiative transfer equation. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.; Chowdhary, Jacek] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. [Chowdhary, Jacek] Columbia Univ, New York, NY 10025 USA. [Zakharova, Nadezhda T.] Trinnovim LLC, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov RI Mishchenko, Michael/D-4426-2012 FU NASA ACE Project; National Academy of Sciences of Ukraine FX M.I.M. and J.C. acknowledge support from the NASA ACE Project managed by Hal Maring, Paula Bontempi, and David Starr. J.M.D. was supported by the National Academy of Sciences of Ukraine. NR 83 TC 8 Z9 8 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAY PY 2015 VL 156 BP 97 EP 108 DI 10.1016/j.jqsrt.2015.02.003 PG 12 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CE6SY UT WOS:000351969700011 ER PT J AU Greene, CM Blackhart, K Nohner, J Candelmo, A Nelson, DM AF Greene, Correigh M. Blackhart, Kristan Nohner, Joe Candelmo, Allison Nelson, David Moe TI A National Assessment of Stressors to Estuarine Fish Habitats in the Contiguous USA SO ESTUARIES AND COASTS LA English DT Article DE Estuary; Habitat assessment; River flow; Pollution; Eutrophication; Land cover ID GULF-OF-MEXICO; COASTAL EUTROPHICATION; MARINE ECOSYSTEMS; CHESAPEAKE BAY; UNITED-STATES; HUDSON RIVER; SALT MARSHES; LAND-USE; HYPOXIA; WATER AB Estuaries provide vital habitat to a wide variety of fish species, so understanding how human activities impact estuarine habitats has important implications for management and conservation of fish stocks. We used nationwide datasets on anthropogenic disturbance to perform a quantitative assessment of habitat stressors in US estuaries. Habitat stressors were characterized by four categories of indicator datasets: (1) land cover/land use, (2) alteration of river flows, (3) pollution sources, and (4) eutrophication. These datasets were combined using a multiscale hierarchical spatial framework to provide a composite stressor index for 196 estuaries throughout the contiguous USA. Investigation of indicator patterns among 13 defined USA coastal subregions revealed clear differences across the USA attributable to both natural variation as well as differences in anthropogenic activities. We compared the mean composite scores for each subregion and found the lowest stressor index scores in the Downeast Maine and the Oregon Coast subregions. Subregions with the highest stressor index scores were the Southern California Bight (due to land cover changes, river flow alteration, and pollution) and Mid-Atlantic Bight (due to land cover changes, pollution, and eutrophication). Inland-based measures of pollutants, river flow, and land use all showed strong correlations with eutrophication measured within estuaries. Our approach provides an indicator-based assessment for a larger number of estuaries than has been possible in previous assessments, and in the case of river flow, for variables which previously have not been evaluated at a broad spatial scale. The results of this assessment can be applied to help prioritize watershed and estuarine restoration and protection across the contiguous USA. C1 [Greene, Correigh M.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Blackhart, Kristan] NOAA, Natl Marine Fisheries Serv, Off Sci & Technol, Seattle, WA 98115 USA. [Nohner, Joe] Natl Marine Fisheries Serv, Off Sci & Technol, Silver Spring, MD USA. [Candelmo, Allison] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Highlands, NJ USA. [Nelson, David Moe] NOAA, NOS Ctr Coastal Monitoring & Assessment, Silver Spring, MD USA. RP Greene, CM (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. EM Correigh.Greene@noaa.gov NR 84 TC 5 Z9 5 U1 7 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD MAY PY 2015 VL 38 IS 3 BP 782 EP 799 DI 10.1007/s12237-014-9855-9 PG 18 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA CE1ZY UT WOS:000351613100006 ER PT J AU Bridges, NT Tamppari, LK AF Bridges, Nathan T. Tamppari, Leslie K. TI Dynamic Mars from long-term observations: Introduction SO ICARUS LA English DT Editorial Material C1 [Bridges, Nathan T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Tamppari, Leslie K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bridges, NT (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM nathan.bridges@jhuapl.edu; leslie.tamppari@jpl.nasa.gov RI Bridges, Nathan/D-6341-2016 NR 23 TC 2 Z9 2 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 1 EP 4 DI 10.1016/j.icarus.2015.03.001 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300001 ER PT J AU Shirley, JH McConnochie, TH Kass, DM Kleinbohl, A Schofield, JT Heavens, NG McCleese, DJ Benson, J Hinson, DP Bandfield, JL AF Shirley, James H. McConnochie, Timothy H. Kass, David M. Kleinboehl, Armin Schofield, John T. Heavens, Nicholas G. McCleese, Daniel J. Benson, Jennifer Hinson, David P. Bandfield, Joshua L. TI Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES SO ICARUS LA English DT Article DE Mars, climate; Mars, atmosphere; Tides, atmospheric; Atmospheres, structure ID THERMAL EMISSION SPECTROMETER; RADIO OCCULTATION MEASUREMENTS; GLOBAL SURVEYOR; INTERANNUAL VARIABILITY; MARTIAN ATMOSPHERE; MIDDLE ATMOSPHERE; TES; MISSION AB We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (L-s = 70-80 degrees) and latitudes (55-70 degrees N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 +/- 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 +/- 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 +/- 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70 degrees N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities are dissimilar; TES profiles exhibit colder temperatures when TES water ice opacities are greater than those observed by MCS. Our comparisons reveal a possible systematic offset of TES and MCS temperatures at the highest altitudes resolved in the TES retrievals; TES temperatures are consistently colder than the corresponding MCS temperatures at pressures <= 1 Pa (altitudes >= 58 km). We otherwise find no evidence of systematic bias between TES limb sounding and MCS retrieved atmospheric quantities between 610 Pa and 1 Pa. Inter-annual variability is noted in comparisons of latitudinal temperature gradients from 55 to 70 degrees N, in the amplitude of inversions linked with thermal tides in the middle atmosphere, and in the abundance and vertical distribution of water ice aerosols from 55 to 70 degrees N during the aphelion season. (C) 2014 Elsevier Inc. All rights reserved. C1 [Shirley, James H.; Kass, David M.; Kleinboehl, Armin; Schofield, John T.; McCleese, Daniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McConnochie, Timothy H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Heavens, Nicholas G.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Benson, Jennifer] NASA, Goddard Spaceflight Ctr, Greenbelt, MD 20071 USA. [Hinson, David P.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Bandfield, Joshua L.] Space Sci Inst, Boulder, CO 80301 USA. RP Shirley, JH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM James.H.Shirley@jpl.nasa.gov OI Heavens, Nicholas/0000-0001-7654-503X NR 47 TC 2 Z9 2 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 26 EP 49 DI 10.1016/j.icarus.2014.05.011 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300004 ER PT J AU Trokhimovskiy, A Fedorova, A Korablev, O Montmessin, F Bertaux, JL Rodin, A Smith, MD AF Trokhimovskiy, Alexander Fedorova, Anna Korablev, Oleg Montmessin, Franck Bertaux, Jean-Loup Rodin, Alexander Smith, Michael D. TI Mars' water vapor mapping by the SPICAM IR spectrometer: Five martian years of observations SO ICARUS LA English DT Article DE Mars; Spectroscopy; Atmospheres, composition ID MOLECULAR SPECTROSCOPIC DATABASE; EMISSION IMAGING-SYSTEM; ART. NO. 5115; ATMOSPHERIC OBSERVATIONS; VERTICAL-DISTRIBUTION; INFRARED OBSERVATIONS; THARSIS VOLCANOS; OPTICAL DEPTH; DUST STORM; PFS DATA AB The SPICAM IR instrument on the Mars Express mission continuously observes the water vapor in the martian atmosphere starting from 2004 in the 1.38-mu m spectral band. The water vapor column abundance is retrieved from nadir observations to characterize its spatial, seasonal and interannual variations. A reference set of SPICAM water vapor column abundances (zonally averaged) covering the time period from 2004 to 2013 (martian years 27-31) is available for a grid of 2 degrees Ls x 2 degrees latitude, along with an average reference map of water vapor abundance combining all the martian years of Mars Express observations. Compared to the previous data retrieval by Fedorova et al. (Fedorova, A., Korablev, O., Bertaux, J.L., Rodin, A., Kiselev, A., Perrier, S. [2006]. J. Geophys. Res. 111, E09S08) the new processing algorithm includes many improvements concerning the calibration and assumed parameters. A major improvement is the account for aerosol scattering based on dust and water ice cloud optical depths measured by THEMIS/Mars Odyssey (Smith, M.D. [2009]. Icarus 202, 444-452). The account for multiple scattering by aerosol particles increases the retrieved water vapor amount by similar to 10% in polar areas during summer, and up to 60-70% for large solar zenith angles. The sensitivity of the results to aerosol properties, surface albedo, solar spectrum, and water vapor vertical distribution has also been studied. The retrieved water vapor reveals nominal annual cycle with maximum abundance of about 60-70 pr. lam for the Northern summer and similar to 20 pr. mu m for the Southern summer. The annual average amount of water has been estimated to be of 10-20 pr. mu m, in agreement with other measurements. From year to year the seasonal cycle of water vapor abundance is very stable. An observed decrease during the MY 28 global dust storm cannot be fully attributed to the masking effect of dust, and indicates a real decrease of water amount near or above the surface. No evidence of diurnal variation of column water vapor amount was found, even though the 1.38-mu m measurements are sensitive to the few lowermost kilometers above the surface. (C) 2014 Elsevier Inc. All rights reserved. C1 [Trokhimovskiy, Alexander; Fedorova, Anna; Korablev, Oleg; Rodin, Alexander] RAS, Space Res Inst, Moscow 117997, Russia. [Trokhimovskiy, Alexander; Fedorova, Anna; Korablev, Oleg; Rodin, Alexander] MIPT, Dolgoprudnyi 141700, Moscow Region, Russia. [Montmessin, Franck; Bertaux, Jean-Loup] UVSQ UPMC CNRS, LATMOS, F-78280 Guyancourt, France. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Trokhimovskiy, A (reprint author), RAS, Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia. EM trokh@iki.rssi.ru RI Rodin, Alexander/L-1904-2013; OI Rodin, Alexander/0000-0002-3601-7790; Korablev, Oleg/0000-0003-1115-0656 FU CNES; Roscosmos; Russian Government grant [11.G34.31.0074]; Presidium of Russian Academy of Science [22] FX The authors thank Luca Maltagliati and Alexey Pankine for the useful remarks and suggestions that helped to improve this paper. SPICAM operations are funded by CNES and Roscosmos. A.T., A.F., A.R. and O.K. acknowledge support from the Russian Government grant to the Moscow Institute of Physics and Technology No. 11.G34.31.0074, and from the Grant of Presidium of Russian Academy of Science, Program #22. NR 73 TC 12 Z9 12 U1 5 U2 29 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 50 EP 64 DI 10.1016/j.icarus.2014.10.007 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300005 ER PT J AU Montabone, L Forget, F Millour, E Wilson, RJ Lewis, SR Cantor, B Kass, D Klembohl, A Lemmon, MT Smith, MD Wolff, MJ AF Montabone, L. Forget, F. Millour, E. Wilson, R. J. Lewis, S. R. Cantor, B. Kass, D. Klemboehl, A. Lemmon, M. T. Smith, M. D. Wolff, M. J. TI Eight-year climatology of dust optical depth on Mars SO ICARUS LA English DT Article DE Mars, atmosphere; Mars, climate; Data reduction techniques ID IMAGING-SYSTEM THEMIS; MARTIAN ATMOSPHERE; GLOBAL SURVEYOR; MGS TES; INTERANNUAL VARIABILITY; NORTHERN-HEMISPHERE; GENERAL-CIRCULATION; ASSIMILATION; SURFACE; STORMS AB We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by Pan-Cam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling applications. The two datasets for the eight available martian years are publicly available and distributed with open access on the MCD website. (C) 2015 Elsevier Inc. All rights reserved. C1 [Montabone, L.; Forget, F.; Millour, E.] Univ Paris 06, Lab Meteorol Dynam, F-75252 Paris 05, France. [Montabone, L.] Univ Oxford, Dept Phys, Oxford, England. [Montabone, L.; Wolff, M. J.] Space Sci Inst, Boulder, CO 80301 USA. [Wilson, R. J.] NOAA, GFDL, Princeton, NJ 08540 USA. [Lewis, S. R.] Open Univ, Dept Phys Sci, Milton Keynes, Bucks, England. [Cantor, B.] Malin Space Sci Syst, San Diego, CA 92121 USA. [Kass, D.; Klemboehl, A.] JPL, Pasadena, CA 91109 USA. [Lemmon, M. T.] Texas A&M Univ, College Stn, TX 77843 USA. [Smith, M. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Montabone, L (reprint author), Univ Paris 06, Lab Meteorol Dynam, Tour 45-55,3eme Etage,4 Pl Jussieu, F-75252 Paris 05, France. EM lmontabone@SpaceScience.org RI Lemmon, Mark/E-9983-2010; OI Lemmon, Mark/0000-0002-4504-5136; Millour, Ehouarn/0000-0003-4808-9203; Lewis, Stephen/0000-0001-7237-6494 FU European Space Agency; French Centre National de la Recherche Scientifique (CNRS); American National Aeronautics and Space Administration (NASA) [NNX13AK02G] FX The work published in this paper was funded by contracts with the European Space Agency to develop the Mars Climate Database. LM also acknowledges funding from the French Centre National de la Recherche Scientifique (CNRS) and the American National Aeronautics and Space Administration (NASA) under grant no. NNX13AK02G issued through the Mars Data Analysis Program 2012. The authors are indebted to many people whose direct or indirect help made it possible to write this paper. A particular mention is due to Aymeric Spiga, who always believed this paper would be finished one day, and provided time and competence during long discussion sessions. LM is grateful to Mathieu Vincendon, Joachim Audouard, Tanguy Bertrand, Frank Daerden, Melinda Kahre, and Daniel Tyler Jr. for feedback on earlier versions of the dust scenario maps, and to Helen Wang for initially guiding us through the MARCI images. We are also particularly grateful to Mathieu Vincendon and another anonymous reviewer for their comments and suggestions, which greatly helped to improve the paper. Last but not the least, LM wishes to thank his wife, HeloIse, for accepting the loss of many days of vacation during the long period he worked on this paper, and his newborn daughter, Lara, for having given him a good reason to speed up the writing! NR 72 TC 24 Z9 24 U1 4 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 65 EP 95 DI 10.1016/j.icarus.2014.12.034 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300006 ER PT J AU Lemmon, MT Wolff, MJ Bell, JF Smith, MD Cantor, BA Smith, PH AF Lemmon, Mark T. Wolff, Michael J. Bell, James F., III Smith, Michael D. Cantor, Bruce A. Smith, Peter H. TI Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission SO ICARUS LA English DT Article DE Mars, atmosphere; Atmospheres, composition; Meteorology ID MARTIAN ATMOSPHERE; GLOBAL SURVEYOR; ORBITER IMAGES; PATHFINDER; CAMERA; OPACITY; STORMS; TES; SURFACES; ALBEDO AB Dust aerosol plays a fundamental role in the behavior and evolution of the martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 mu m effective radius during northern summer and a 2 mu m effective radius at the onset of a dust lifting event. The solar longitude (L-s) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near Ls = 50 degrees and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site. (C) 2014 Elsevier Inc. All rights reserved. C1 [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Wolff, Michael J.] Space Sci Inst, Boulder, CO 80301 USA. [Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cantor, Bruce A.] Malin Space Sci Syst, San Diego, CA 92191 USA. [Smith, Peter H.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. RP Lemmon, MT (reprint author), Texas A&M Univ, Dept Atmospher Sci, TAMU 3150, College Stn, TX 77843 USA. EM lemmon@tamu.edu RI Lemmon, Mark/E-9983-2010 OI Lemmon, Mark/0000-0002-4504-5136 FU NASA through the Mars Exploration Rover Project FX We thank the entire MER science and operations team, whose daily efforts have led to the existence of this data set. We thank David Kass for a helpful review of the manuscript. This work was funded by NASA through the Mars Exploration Rover Project, a portion of which was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 64 TC 27 Z9 28 U1 6 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 96 EP 111 DI 10.1016/j.icarus.2014.03.029 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300007 ER PT J AU Shirley, JH AF Shirley, James H. TI Solar System dynamics and global-scale dust storms on Mars SO ICARUS LA English DT Article DE Mars; Mars, atmosphere; Mars, climate; Planetary dynamics ID INTERANNUAL VARIABILITY; MARTIAN ATMOSPHERE; GENERAL-CIRCULATION; INERTIAL MOTION; MESOSCALE MODEL; SUNS MOTION; CYCLE; SIMULATION; EARTHQUAKES; HISTORY AB Global-scale dust storms occur during the southern summer season on Mars in some Mars years but not in others. We present an updated catalog of Mars years including such storms (n = 9) and Mars years without global-scale storms (n = 11) through the year 2013. A remarkable relationship links the occurrence and non-occurrence of global-scale dust storms on Mars with changes in the orbital angular momentum of Mars with respect to the Solar System barycenter (L-Mars). All of the global-scale dust storms became planet-encircling in both latitude and longitude during periods when L-Mars, was increasing or near maxima. Statistical significance at the 1% level is obtained for the clustering tendency of L-Mars phases for the 5 mid-season storms with L-s ranging from 208 degrees to 262 degrees (1956, 1971, 1982, 1994, and 2007). The II Mars years without global-scale dust storms exhibit mainly decreasing and minimum values of L-Mars during the first half of the dust storm season; this tendency is statistically significant at the 5% level. A systematic progression is present in the phasing of the solar irradiance and L-Mars, waveforms for the global-scale storm years. L-Mars phases for the early season global-scale storms of 1977 and 2001 are advanced in phase with respect to those of the mid-season storms, while the phase for the late season storm of 1973 is delayed with respect to those of the mid-season storms cluster. Factors internal to the Mars climate system, such as a spatial redistribution of surface dust from year to year, must be invoked to account for the non-occurrence of global-scale dust storms in five years (1986, 2003, 2005, 2009, and 2013) when the L-Mars phase was otherwise favorable. Our results suggest that the occurrence of increasing or peak values of L-Mars immediately prior to and during the Mars dust storm season may be a necessary-but-not-sufficient condition for the initiation of global-scale dust storms on Mars. (C) 2014 Elsevier Inc. All rights reserved. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shirley, JH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA FX Nick Heavens and David Kass provided comments on an early version of a portion of this manuscript. I thank Armin Kleinbohl, Dan McCleese, Tim Schofield, Michael Mischna, and Rich Zurek for useful discussions. Critical comments and suggestions from the referees materially improved this presentation. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 87 TC 2 Z9 2 U1 5 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 128 EP 144 DI 10.1016/j.icarus.2014.09.038 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300009 ER PT J AU Piqueux, S Kleinbohl, A Hayne, PO Kass, DM Schofield, JT McCleese, DJ AF Piqueux, Sylvain Kleinboehl, Armin Hayne, Paul O. Kass, David M. Schofield, John T. McCleese, Daniel J. TI Variability of the martian seasonal CO2 cap extent over eight Mars Years SO ICARUS LA English DT Article DE Mars; Mars, polar caps; Mars, atmosphere; Mars, climate; Ices ID SOUTH POLAR-CAP; THERMAL EMISSION SPECTROMETER; ORBITER CAMERA OBSERVATIONS; HUBBLE-SPACE-TELESCOPE; GLOBAL DUST STORM; WATER ICE; INTERANNUAL VARIABILITY; CARBON-DIOXIDE; VIKING OBSERVATIONS; ATMOSPHERIC OBSERVATIONS AB We present eight Mars Years of nearly continuous tracking of the CO2 seasonal cap edges from Mars Year (MY) 24 to 31 using Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and Mars Reconnaissance Orbiter (MRO) Mars Climate Sounder (MCS) thermal infrared data. Spatial and temporal resolutions are 1 pixel per degree and 10 degrees L-s (aerocentric longitude of the Sun). The seasonal caps are defined as the regions where the diurnal radiometric temperature variations at similar to 32 mu m wavelength do not exceed 5 K. With this definition, terrains with small areal fraction of defrosted regolith able to experience measurable diurnal temperature cycles are not mapped as part of the cap. This technique is adequate to distinguish CO2 from H2O ices, and effective during the polar night or under low illumination conditions. The present analysis answers outstanding questions stemming from fragmented observations at visible wavelengths: (1) the previously sparsely documented growth of the North seasonal caps (160 degrees < L-s < 270 degrees) is shown to be repeatable within 1-2 degrees equivalent latitude, and monotonic over the MY 24-31 time period; high repeatability is observed during the retreat of the caps in non-dusty years (similar to 1 degrees or less equivalent latitude); (2) the MY 25 storm does not seem to have impacted the growth rate, maximal extents, or recession rate of the North seasonal caps, whereas the MY 28 dust storm clearly sped up the recession of the cap (similar to 2 degrees smaller on average after the storm, during the recession, compared to other years); (3) during non-dusty years, the growth of the South seasonal cap (350 degrees < L-s < 100 degrees) presents noticeable variability (up to 4 equivalent latitude near L-s = 20 degrees) with a maximum extent reached near L-s = 90 degrees; (4) the retreat of the Southern seasonal cap (100 degrees < L-s < 310 degrees) exhibits large inter-annual variability, especially near 190 degrees < L-s < 220 degrees; (5) the recession of the MY 25 South seasonal cap is significantly accelerated during the equinox global dust storm, with surface temperatures suggesting increased patchiness or enhanced dust mantling on the CO2 ice. These results suggest that atmospheric temperatures and dust loading are the primary source of variability in an otherwise remarkably repeatable cycle of seasonal cap growth and recession. (C) 2014 Elsevier Inc. All rights reserved. C1 [Piqueux, Sylvain; Kleinboehl, Armin; Hayne, Paul O.; Kass, David M.; Schofield, John T.; McCleese, Daniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Piqueux, S (reprint author), CALTECH, Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sylvain.Piqueux@jpl.nasa.gov FU National Aeronautics and Space Administration FX SP would like to thank K. Murray at ASU for her help with TES data queries. Comments and suggestions from three reviewers were appreciated and have helped improve this paper. Work at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration. NR 97 TC 9 Z9 9 U1 1 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 164 EP 180 DI 10.1016/j.icarus.2014.10.045 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300011 ER PT J AU Sizemore, HG Zent, AP Rempel, AW AF Sizemore, Hanna G. Zent, Aaron P. Rempel, Alan W. TI Initiation and growth of martian ice lenses SO ICARUS LA English DT Article DE Mars; Mars, climate; Mars, surface; Ices ID GROUND-ICE; FROST HEAVE; PREMELTING DYNAMICS; SUBSURFACE ICE; NEAR-SURFACE; DRY VALLEYS; MARS; WATER; MODEL; PERCHLORATE AB Water ice in the upper meters of the martian regolith is a major volatile reservoir. Although the geographic extent, burial depth, and thermal stability of this shallow ice are well understood, its origin, history, and stratigraphy are not. Over the past decade, a growing body of observational evidence has indicated that shallow ground ice exceeds the pore volume of its host soil over large regions of both martian hemispheres. This is confounding, given that (1) the physical theory that accurately predicts the location of ground ice also assumes that ice should be pore-filling in the upper meter of regolith, and (2) the Phoenix spacecraft uncovered far more pore-filling ice than excess ice at its landing site in the northern hemisphere. The development of ice lenses by low-temperature in situ segregation - analogous to the processes that generate frost heave on Earth - has been hypothesized to explain shallow excess ice on Mars. We have developed a numerical model of ice lens initiation and growth in the martian environment, and used it to test this hypothesis for the first time. We carried out a large suite of numerical simulations in order to place quantitative constraints on the timing and location of ice lens initiation, and on the magnitude of ice lens growth in a variety of host soils. We find that ice lens initiation is a ubiquitous process in the martian high latitudes, but the ultimate magnitude of lens growth, or frost heave, is sensitive to the properties of the host soil. Depending on the specific properties of martian soils, in situ segregation may be a very slow process sufficient to explain the excess ice observed in the Dodo-Goldilocks trench at the Phoenix landing site, but without regionally significant effects. Alternatively, if clay-sized particles or perchlorate salts are present, in situ segregation may be a vigorous process that has significantly affected the stratigraphy of ground ice in the upper meter of regolith throughout the high latitudes. (C) 2014 Elsevier Inc. All rights reserved. C1 [Sizemore, Hanna G.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Zent, Aaron P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rempel, Alan W.] 1272 Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. RP Sizemore, HG (reprint author), Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM sizemore@psi.edu; rempel@uoregon.edu FU NASA [MFR-203959-02-02-20-01]; NASA Postdoctoral Program FX This work was funded by NASA Grant MFR-203959-02-02-20-01 and the NASA Postdoctoral Program. The authors would like to thank Shane Byrne and an anonymous reviewer for thoughtful comments that improved the manuscript, as well as Nathaniel Sizemore for technical support with version tracking software and scripting. NR 77 TC 8 Z9 8 U1 3 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 191 EP 210 DI 10.1016/j.icarus.2014.04.013 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300013 ER PT J AU Dundas, CM Diniega, S McEwen, AS AF Dundas, Colin M. Diniega, Serina McEwen, Alfred S. TI Long-term monitoring of martian gully formation and evolution with MRO/HiRISE SO ICARUS LA English DT Article DE Mars, surface; Mars, climate; Geological processes; Ices ID POTENTIAL FORMATION MECHANISMS; LATITUDE-DEPENDENT MANTLE; SURFACE GROUND ICE; DRY-GRANULAR FLOWS; LIQUID WATER; HIGH OBLIQUITY; DEBRIS FLOWS; MARS; DEPOSITS; CONSTRAINTS AB Gully landforms are commonly taken as evidence for surface liquid water in the recent geological history of Mars. Repeat observations with the High Resolution Imaging Science Experiment (HiRISE) instrument on the Mars Reconnaissance Orbiter demonstrate widespread activity in gullies in the southern hemisphere, particularly in those with the freshest morphologies. This activity includes substantial channel incision and large-scale mass movements, and constitutes ongoing gully formation rather than degradation of older landforms. New apron deposits that are bright, dark and neutrally toned have all been observed. The timing of gully activity is seasonally controlled and occurs during the period when seasonal frost is present and defrosting. These observations support a model in which currently active gully formation is driven mainly by seasonal CO2 frost. Gullies in the northern hemisphere are far less active than those in the south. This may be due to the current timing of perihelion near the northern winter solstice. Integrated over time, activity like that observed within the past few years appears capable of forming all of the martian gully landforms on timescales of millions of years. Additionally, the current style and rate of activity is able to erase meter- to decameter-scale surface features that might have been uniquely produced by other processes during the last obliquity high similar to 0.4 Ma. Although it is impossible to rule out a past role for water in the formation of martian gullies, a model in which gullies form only through currently active processes with little or no liquid water is consistent with our observations. Published by Elsevier Inc. C1 [Dundas, Colin M.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Diniega, Serina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McEwen, Alfred S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Dundas, CM (reprint author), US Geol Survey, Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM cdundas@usgs.gov OI Dundas, Colin/0000-0003-2343-7224 FU NASA Mars Data Analysis Program Grant [NNH13AV85I]; MRO Project FX We thank the HiRISE operations team for their work in acquiring the data used in this study, and the CTX team for suggesting several sites of possible activity for HiRISE imaging. Shane Byrne, Candy Hansen, Robin Fergason and Justin Hagerty provided helpful comments and suggestions on early drafts. We also thank Jay Dickson and an anonymous referee for helpful review comments. CMD was funded by NASA Mars Data Analysis Program Grant NNH13AV85I. ASM was funded by the MRO Project. NR 108 TC 18 Z9 18 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 244 EP 263 DI 10.1016/j.icarus.2014.05.013 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300016 ER PT J AU Hansen, CJ Diniega, S Bridges, N Byrne, S Dundas, C McEwen, A Portyankina, G AF Hansen, C. J. Diniega, S. Bridges, N. Byrne, S. Dundas, C. McEwen, A. Portyankina, G. TI Agents of change on Mars' northern dunes: CO2 ice and wind SO ICARUS LA English DT Article DE Mars, polar caps; Mars, surface; Mars ID SEASONAL POLAR-CAP; MARTIAN GULLIES; EOLIAN DUNES; SAND DUNES; HYPOTHESIS; ATMOSPHERE; EROSION; SURFACE; REGION; VOLUME AB Both wind and seasonal CO2 ice sculpt the dunes of Mars in today's climate. The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter has returned extensive temporal coverage of changes on the north polar dunes for nearly four Mars years. The processes driving dune morphology changes such as the formation of new alcoves have been investigated. Considerable interannual variability has been observed. Most changes occur in the period of time when HiRISE cannot image: late summer and fall when light levels are too low to see subtle changes on the dunes and the polar hood obscures the surface, and winter when the cap is in polar night. This is consistent with seasonal control but does not allow us to directly differentiate between eolian processes vs. CO2 ice as the driving agent for alcove formation. Circumstantial evidence and observations of analog processes in the southern mid-latitudes however implicates processes associated with frost emplacement and removal. (C) 2014 Elsevier Inc. All rights reserved. C1 [Hansen, C. J.] Planetary Sci Inst, St George, UT 84770 USA. [Diniega, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bridges, N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Byrne, S.; McEwen, A.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dundas, C.] US Geol Survey, Flagstaff, AZ 86001 USA. [Portyankina, G.] Univ Colorado, Lab Air & Space Phys, Boulder, CO 80309 USA. RP Hansen, CJ (reprint author), Planetary Sci Inst, 389 N Ind Rd,Suite 5, St George, UT 84770 USA. EM cjhansen@psi.edu FU MRO mission under NASA FX This research was supported by the MRO mission operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. S. Diniega's contribution was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank our two excellent reviewers. NR 47 TC 4 Z9 4 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 264 EP 274 DI 10.1016/j.icarus.2014.11.015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300017 ER PT J AU Piqueux, S Byrne, S Kieffer, HH Titus, TN Hansen, CJ AF Piqueux, Sylvain Byrne, Shane Kieffer, Hugh H. Titus, Timothy N. Hansen, Candice J. TI Enumeration of Mars years and seasons since the beginning of telescopic exploration SO ICARUS LA English DT Article DE Mars; Mars, polar caps; Mars, atmosphere; Mars, climate ID WATER-ICE CLOUDS; INTERANNUAL VARIABILITY; DUST STORMS; MODEL; CYCLE; TES AB A clarification for the enumeration of Mars years prior to 1955 is presented, along with a table providing the Julian Dates associated with L-s = 0 degrees for Mars years -183 (beginning of the telescopic study of Mars) to 100. A practical algorithm for computing L-s as a function of the Julian Date is provided. No new science results are presented. (C) 2015 Elsevier Inc. All rights reserved. C1 [Piqueux, Sylvain] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Byrne, Shane] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Kieffer, Hugh H.] Celestial Reasonings, Genoa, NV 89411 USA. [Kieffer, Hugh H.] Space Sci Inst, Boulder, CO 80301 USA. [Titus, Timothy N.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Hansen, Candice J.] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Piqueux, S (reprint author), CALTECH, Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sylvain.Piqueux@jpl.nasa.gov NR 40 TC 8 Z9 8 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 332 EP 338 DI 10.1016/j.icarus.2014.12.014 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300021 ER PT J AU Bindlish, R Jackson, T Cosh, M Zhao, TJ O'Neill, P AF Bindlish, Rajat Jackson, Thomas Cosh, Michael Zhao, Tianjie O'Neill, Peggy TI Global Soil Moisture From the Aquarius/SAC-D Satellite: Description and Initial Assessment SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Aquarius; microwave radiometer; soil moisture ID VALIDATION AB Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology. Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(3)/m(3), Bias = -0.007 m(3)/m(3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center. C1 [Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [O'Neill, Peggy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bindlish, R (reprint author), USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. FU National Aeronautics and Space Administration [NNH10AN10I] FX This work was supported by the National Aeronautics and Space Administration under Interagency Agreement NNH10AN10I. NR 15 TC 21 Z9 21 U1 2 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD MAY PY 2015 VL 12 IS 5 BP 923 EP 927 DI 10.1109/LGRS.2014.2364151 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD9IQ UT WOS:000351412200001 ER PT J AU Yanovsky, I Davis, AB AF Yanovsky, Igor Davis, Anthony B. TI Separation of a Cirrus Layer and Broken Cumulus Clouds in Multispectral Images SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Cloud layer separation; image decomposition; multispectral image analysis; passive atmospheric tomography; scale separation; sparse optimization; total variation minimization ID ACTIVE CONTOURS; VARIATIONAL APPROACH; AEROSOLS; ALGORITHM; NOISE; RECONSTRUCTION; APPROXIMATION; MINIMIZATION; RESTORATION; ATMOSPHERE AB We introduce a methodology for separating reflective layers of clouds in Earth remote sensing images. We propose a single-channel layer separation framework and extend it to multispectral layer separation. Efficient alternating minimization and fast operator-splitting methods are used to solve minimization problems. Specifically, we apply our methodology to separate strongly stratified and optically thin upper (cirrus) clouds from optically thick lower convective (cumulus) clouds in atmospheric imagery approximated as additive contributions to the observed signal. After setting up synthetic "truth" scenarios, we evaluate the accuracy of the two-layer separation results while varying the effective opaqueness of each of two types of cloud. We show that multispectral cloud layer separation is consistently more accurate than channel-by-channel cloud layer separation. C1 [Yanovsky, Igor; Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Yanovsky, Igor; Davis, Anthony B.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. RP Yanovsky, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM igor.yanovsky@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA) Earth Science Technology Office [AIST-QRS-12-0003]; NASA's Radiation Sciences programs; National Science Foundation [DMS 1217239] FX This work was supported by the National Aeronautics and Space Administration (NASA) Earth Science Technology Office AIST-QRS-12-0003 Grant (3D-TRACE project). The work of A. B. Davis was supported by NASA's Radiation Sciences programs. The work of I. Yanovsky was supported by National Science Foundation under Grant DMS 1217239. NR 42 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2275 EP 2285 DI 10.1109/TGRS.2014.2352319 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100001 ER PT J AU McIntire, J Moyer, D Efremova, B Oudrari, H Xiong, XX AF McIntire, Jeff Moyer, David Efremova, Boryana Oudrari, Hassan Xiong, Xiaoxiong TI On-Orbit Characterization of S-NPP VIIRS Transmission Functions SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; Suomi National Polar-orbiting Partnership (S-NPP); Visible Infrared Imager Radiometer Suite (VIIRS); yaw maneuvers ID MODIS AB The Suomi National Polar-orbiting Partnership (S-NPP) spacecraft executed a series of yaw maneuvers on February 15 and 16, 2012. Data collected during these maneuvers were used to characterize the transmission functions of the Visible Infrared Imager Radiometer Suite (VIIRS) instrument solar diffuser (SD) and solar diffuser stability monitor (SDSM) views. On orbit, only the product of the attenuation screen transmittance and SD bidirectional reflectance distribution function (BRDF) can be measured for the VIIRS detector and SDSM SD views. For the SDSM solar view, the attenuation screen transmittance was also measured. The angular sampling provided by the yaw maneuver data of this solar view was too coarse to capture the fine structure of the transmission function; a model was developed to include this structure in the vignetting function by combining solar observation data from the first nine months of the mission with the yaw maneuver-derived vignetting function. The derived transmission functions were delivered for implementation in the operational processing stream (the derived VIIRS detector view transmittance produced up to 0.4% difference in the instrument responsivity, and SDSM transmission functions impacted the BRDF tracking by up to 3.0%). An uncertainty analysis was also conducted on all transmission functions delivered. C1 [McIntire, Jeff; Efremova, Boryana; Oudrari, Hassan] Sigma Space Corp, Lanham, MD 20706 USA. [Moyer, David] Aerosp Corp, El Segundo, CA 90245 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McIntire, J (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. NR 18 TC 12 Z9 12 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2354 EP 2365 DI 10.1109/TGRS.2014.2358935 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100007 ER PT J AU Patel, A Paden, J Leuschen, C Kwok, R Gomez-Garcia, D Panzer, B Davidson, MWJ Gogineni, S AF Patel, Aqsa Paden, John Leuschen, Carl Kwok, Ron Gomez-Garcia, Daniel Panzer, Ben Davidson, Malcolm W. J. Gogineni, Sivaprasad TI Fine-Resolution Radar Altimeter Measurements on Land and Sea Ice SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Airborne radar; frequency-modulated continuous wave (FMCW); radar altimetry review; sea ice; snow; ultrawideband radar ID THRESHOLD RETRACKING ALGORITHM; SATELLITE RADAR; AIRBORNE LASER; SURFACE-PROPERTIES; CHIRP GENERATOR; ENVISAT RADAR; FRAM STRAIT; WIDE-BAND; SHEET; SNOW AB Satellite radar altimeter (RA) measurements are important for continued monitoring of rapidly changing polar regions. In 2010, the European Space Agency launched CryoSat-2 carrying SIRAL, a Ku-band RA with objectives of determining the thickness and extent of sea ice and the topography of the ice sheets. One difficulty with Ku-band radar surveys over snow and ice is unknown penetration of RA signal into snow cover. Improving our understanding of the interactions of RA signals with snow and ice is needed to produce accurate elevation products. To this end, we developed a low-power, ultrawideband (12-18 GHz) RA for airborne surveys to provide fine resolution measurements capable of detecting both scattering from the surface and layers within sea ice and ice sheets. These measurements provide a means of identifying the dominant scattering location of lower resolution RA measurements comparable to satellite-based instruments. We generated two products: a full-bandwidth waveform (FBW) to identify scattering targets at fine resolution and a reduced-bandwidth waveform (RBW) to represent conventional RA measurements. Retrackers are used to generate height estimates over various surface conditions for comparisons. Over ice sheets, the leading-edge tracker provided consistent ice-surface elevation measurements between the FBW and RBW results; however, there were significant differences between the results from the centroid tracker. Over sea ice, the location of the dominant return between the results from snow-covered sea ice is highly variable. This paper provides an overview of RA surveys in polar regions, a description of the CReSIS system, and a discussion of the results. C1 [Patel, Aqsa; Paden, John; Leuschen, Carl; Gomez-Garcia, Daniel; Panzer, Ben; Gogineni, Sivaprasad] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66044 USA. [Kwok, Ron] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davidson, Malcolm W. J.] European Space Agcy, EOP SMS, NL-2201 AZ Noordwijk, Netherlands. RP Patel, A (reprint author), Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66044 USA. RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU U.S. National Science Foundation [ANT-0424589]; U.S. National Aeronautics and Space Administration [NNX09AR77G, NNG10HP19C, NNX10AT68G, NNX13AD53A] FX This paper was supported in part by the U.S. National Science Foundation under Grant ANT-0424589 and in part by the U.S. National Aeronautics and Space Administration under Grant NNX09AR77G, Grant NNG10HP19C, Grant NNX10AT68G, and Grant NNX13AD53A. NR 72 TC 4 Z9 4 U1 2 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2547 EP 2564 DI 10.1109/TGRS.2014.2361641 PG 18 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100022 ER PT J AU McNairn, H Jackson, TJ Wiseman, G Belair, S Berg, A Bullock, P Colliander, A Cosh, MH Kim, SB Magagi, R Moghaddam, M Njoku, EG Adams, JR Homayouni, S Ojo, ER Rowlandson, TL Shang, JL Goita, K Hosseini, M AF McNairn, Heather Jackson, Thomas J. Wiseman, Grant Belair, Stephane Berg, Aaron Bullock, Paul Colliander, Andreas Cosh, Michael H. Kim, Seung-Bum Magagi, Ramata Moghaddam, Mahta Njoku, Eni G. Adams, Justin R. Homayouni, Saeid Ojo, Emmanuel RoTimi Rowlandson, Tracy L. Shang, Jiali Goita, Kalifa Hosseini, Mehdi TI The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Passive microwave; soil moisture; Soil Moisture Active Passive (SMAP); synthetic aperture radar ID L-BAND; HYDROLOGY EXPERIMENT; RADAR OBSERVATIONS; SAR DATA; RETRIEVAL; SURFACE; SENSOR; ROUGHNESS; SMEX02; BACKSCATTERING AB The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in January 2015. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a need for long-duration combined active and passive L-band microwave observations. In response to this need, a joint Canada-U.S. field experiment (SMAPVEX12) was conducted in Manitoba (Canada) over a six-week period in 2012. Several times per week, NASA flew two aircraft carrying instruments that could simulate the observations the SMAP satellite would provide. Ground crews collected soil moisture data, crop measurements, and biomass samples in support of this campaign. The objective of SMAPVEX12 was to support the development, enhancement, and testing of SMAP soil moisture retrieval algorithms. This paper details the airborne and field data collection as well as data calibration and analysis. Early results from the SMAP active radar retrieval methods are presented and demonstrate that relative and absolute soil moisture can be delivered by this approach. Passive active L-band sensor (PALS) antenna temperatures and reflectivity, as well as backscatter, closely follow dry down and wetting events observed during SMAPVEX12. The SMAPVEX12 experiment was highly successful in achieving its objectives and provides a unique and valuable data set that will advance algorithm development. C1 [McNairn, Heather; Shang, Jiali; Hosseini, Mehdi] Agr & Agri Food Canada, Sci & Technol Branch, Ottawa, ON K1A 0C6, Canada. [Jackson, Thomas J.; Cosh, Michael H.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Wiseman, Grant] Stantec, Winnipeg, MB R3C 3R6, Canada. [Belair, Stephane] Environm Canada, Meteorol Res Branch, Dorval, PQ H9P 1J3, Canada. [Berg, Aaron; Adams, Justin R.; Rowlandson, Tracy L.] Univ Guelph, Dept Geog, Guelph, ON N1G 2W1, Canada. [Bullock, Paul; Ojo, Emmanuel RoTimi] Univ Manitoba, Dept Soil Sci, Winnipeg, MB R3T 2N2, Canada. [Colliander, Andreas; Kim, Seung-Bum; Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Magagi, Ramata; Goita, Kalifa; Hosseini, Mehdi] Univ Sherbrooke, Dept Geomat Appl, Sherbrooke, PQ J1K 2R1, Canada. [Moghaddam, Mahta] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Homayouni, Saeid] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. RP McNairn, H (reprint author), Agr & Agri Food Canada, Sci & Technol Branch, Ottawa, ON K1A 0C6, Canada. EM heather.mcnairn@agr.gc.ca OI Cosh, Michael/0000-0003-4776-1918; Homayouni, Saeid/0000-0002-0214-5356 FU Canadian Space Agency FX The authors would like to thank the entire SMAPVEX12 crew who worked tirelessly to make the campaign a great success. Canadian participation in SMAPVEX12 was partially funded by the Canadian Space Agency. The U.S. Department of Agriculture is an Equal Opportunity Employer. Finally, we would like to thank the anonymous reviewers who provided many excellent suggestions to improve this manuscript. The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 55 TC 36 Z9 36 U1 7 U2 59 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2784 EP 2801 DI 10.1109/TGRS.2014.2364913 PG 18 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100039 ER PT J AU Sun, XL Neumann, GA AF Sun, Xiaoli Neumann, Gregory A. TI Calibration of the Mercury Laser Altimeter on the MESSENGER Spacecraft SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Laser ranging; lidar ID MARS; MISSION; PERFORMANCE AB This paper gives a detailed description of the prelaunch and in-orbit calibrations of the Mercury Laser Altimeter (MLA) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which was launched on August 3, 2004 and has been operating in orbit about Mercury since March 2011. A brief summary of the MLA instrument is given, followed by the instrument measurement model and calibration formulas. The prelaunch tests used to determine the values of various calibration coefficients are described. The boresight alignment parameters were verified and recalibrated by special tests, with the MESSENGER spacecraft en route to Mercury. The MLA instrument model and the calibration methods were largely derived from airborne and spaceborne lidar for Earth science observation at the NASA Goddard Space Flight Center and will benefit future space lidar developments for Earth and space science. C1 [Sun, Xiaoli; Neumann, Gregory A.] NASA, Laser Remote Sensing Lab, Greenbelt, MD 20771 USA. RP Sun, XL (reprint author), NASA, Laser Remote Sensing Lab, Greenbelt, MD 20771 USA. EM xiaoli.sun-1@nasa.gov RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 NR 25 TC 4 Z9 4 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2860 EP 2874 DI 10.1109/TGRS.2014.2366080 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100045 ER PT J AU Brice, CA Dennis, N AF Brice, Craig A. Dennis, Noah TI Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DENDRITE ARM SPACINGS; AL-CU ALLOYS; SOLIDIFICATION; MICROSEGREGATION AB Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 mu m. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 mu m. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification. (C) The Minerals, Metals & Materials Society and ASM International 2015 C1 NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Dennis, Noah] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Brice, CA (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM craig.a.brice@nasa.gov NR 21 TC 1 Z9 1 U1 8 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2015 VL 46A IS 5 BP 2304 EP 2308 DI 10.1007/s11661-015-2775-x PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CE0VP UT WOS:000351527200044 ER PT J AU Palace, MW Sullivan, FB Ducey, MJ Treuhaft, RN Herrick, C Shimbo, JZ Mota-E-Silva, J AF Palace, Michael W. Sullivan, Franklin B. Ducey, Mark J. Treuhaft, Robert N. Herrick, Christina Shimbo, Julia Z. Mota-E-Silva, Jonas TI Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Tropical forest; Biomass; Lorey's height; Lidar; dbh distribution; Remote sensing; Forest model; Field measurement; Costa Rica; La Selva ID LEAF-AREA INDEX; ESTIMATING CANOPY STRUCTURE; NEOTROPICAL RAIN-FOREST; LARGE-FOOTPRINT LIDAR; BIOMASS ESTIMATION; SPECIES-DIVERSITY; AIRBORNE LIDAR; AMAZON FOREST; WAVE-FORMS; ABOVEGROUND BIOMASS AB Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return Light Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10 degrees 26' N, 83 degrees 59' W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r(2) = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r(2) = 0.51) and tree density (p-value = 0.002, r(2) = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r(2) = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties. (C) 2015 The Authors. Published by Elsevier Inc. C1 [Palace, Michael W.; Sullivan, Franklin B.; Herrick, Christina] Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA. [Ducey, Mark J.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. [Treuhaft, Robert N.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Shimbo, Julia Z.] Univ Brasilia, Inst Ciencias Biol, BR-70910900 Brasilia, DF, Brazil. [Mota-E-Silva, Jonas] Univ Brasilia, Inst Geociencias, BR-70910900 Brasilia, DF, Brazil. RP Palace, MW (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA. RI Ducey, Mark/K-1101-2016 FU NASA Terrestrial Ecology [NNX08AL29G]; NASA New Investigators in Earth Science [NNX10AQ82G]; NASA Carbon Science [NNX08AI24G]; NASA IDS [NNX10AP11G, NNX14AD31G]; USAID [12DG11132762416]; Gordon and Betty Moore Foundation FX This research was supported by NASA Terrestrial Ecology (NNX08AL29G), NASA New Investigators in Earth Science (NNX10AQ82G), NASA Carbon Science (NNX08AI24G), NASA IDS (NNX10AP11G and NNX14AD31G), and USAID (12DG11132762416). Lidar data in this publication were provided by the Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution, and the Wildlife Conservation Society, and partially funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. NR 112 TC 15 Z9 15 U1 5 U2 82 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY PY 2015 VL 161 BP 1 EP 11 DI 10.1016/j.rse.2015.01.020 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CE2OI UT WOS:000351654500001 ER PT J AU Franch, B Vermote, EF Becker-Reshef, I Claverie, M Huang, J Zhang, J Justice, C Sobrino, JA AF Franch, B. Vermote, E. F. Becker-Reshef, I. Claverie, M. Huang, J. Zhang, J. Justice, C. Sobrino, J. A. TI Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Winter wheat; Yield; Production; GDD; MODIS; NCAR ID REMOTE-SENSING DATA; BIDIRECTIONAL REFLECTANCE; GRAIN-YIELD; SPATIAL-RESOLUTION; CROP PRODUCTION; USE EFFICIENCY; BURKINA-FASO; NDVI DATA; MODEL; REANALYSIS AB Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely production forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) developed an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel (area within the CMG pixel occupied by wheat), and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: the Unites States (US), Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest), while conserving an accuracy of 10% in the production forecast. (C) 2015 Elsevier Inc. All rights reserved. C1 [Franch, B.; Becker-Reshef, I.; Claverie, M.; Justice, C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Franch, B.; Vermote, E. F.; Claverie, M.; Zhang, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Huang, J.] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China. [Sobrino, J. A.] Univ Valencia, Global Change Unit, Image Proc Lab UCG IPL, E-46003 Valencia, Spain. RP Franch, B (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. FU NASA LCLUC grant [NNX13AB70]; NASA Applied Sciences grant [NNX12AJ91G] FX The authors would like to thank NASA LCLUC grant NNX13AB70 and NASA Applied Sciences grant NNX12AJ91G. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, US, from their Web site at http://www.esrl.noaa.gov/psd/. We would like to acknowledge Melanie Rosenberg for reviewing the English of this manuscript. NR 56 TC 7 Z9 9 U1 5 U2 35 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY PY 2015 VL 161 BP 131 EP 148 DI 10.1016/j.rse.2015.02.014 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CE2OI UT WOS:000351654500010 ER PT J AU Bomarito, GF Lin, Y Warner, DH AF Bomarito, G. F. Lin, Y. Warner, D. H. TI An atomistic modeling survey of the shear strength of twist grain boundaries in aluminum SO SCRIPTA MATERIALIA LA English DT Article DE Aluminum; Grain boundary structure; Grain boundary sliding; Plastic deformation; Atomistic simulation ID INTERGRANULAR FRACTURE; MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS; CONTINUUM; METALS; SIMULATION; ENERGY; COPPER AB A computational survey of the shear strength of 343 unique grain boundaries was performed. For each boundary, the strength was surveyed as a function of shear direction. The results suggest that: (1) the shear strength cannot be comprehensively predicted by common grain boundary descriptors, (2) the shear strength depends significantly and simply on shear direction due to the faceted geometry of boundary planes, and (3) grain boundary shear strengths in an ordinary material can be represented by a simple statistical distribution. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bomarito, G. F.] NASA, Langley Res Ctr, Durabil Damage Tolerance & Reliabil Branch, Hampton, VA 23681 USA. [Bomarito, G. F.; Lin, Y.; Warner, D. H.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Warner, DH (reprint author), Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. EM dhw52@cornell.edu RI Warner, Derek/A-2303-2012 FU ONR [N000141010323] FX Support for this work was provided by Paul Hess at ONR (Grant No. N000141010323). NR 22 TC 3 Z9 3 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2015 VL 101 BP 72 EP 75 DI 10.1016/j.scriptamat.2015.01.022 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CD2TV UT WOS:000350932800019 ER PT J AU White, SC Weaver, PM Wu, KC AF White, Simon C. Weaver, Paul M. Wu, K. Chauncey TI Post-buckling analyses of variable-stiffness composite cylinders in axial compression SO COMPOSITE STRUCTURES LA English DT Article DE Shell buckling; Variable-stiffness; Composite materials; Collapse ID CYLINDRICAL-SHELLS; BUCKLING RESPONSE; BEHAVIOR; IMPERFECTIONS; LOCALIZATION AB Variable-stiffness shells are thin composite structures in which the reinforcement direction is a function of its surface co-ordinates. This paper presents a numerical investigation into the buckling and post-buckling of two variable-stiffness cylinders under axial compression. Both shell walls are made from unidirectional carbon fiber slit tapes that are steered to give them a piecewise-continuous fiber-angle variation around the circumference. Dynamic analyses of the complete loading and unloading cycles are computed using a time-integrated finite element model (Abaqus). The numerical results generated herein are compared with test data and are found to be in good agreement, in terms of axial force versus end-shortening and global displacement fields. The analyses provide significant new insight into the mechanisms underpinning collapse behavior of the shells. For example, the development of the initial nonlinear buckle, its dynamic snap-through, and the formation of a post-budded configuration are clearly visible. One effect elucidated by this investigation is the symmetry-breaking mechanism of the circumferential stiffness variation. In contrast to a constant-stiffness cylinder, in which the total strain energy is invariant to the translation of a dimple of fixed dimensions, the present structures exhibit a single dominant post-buckling mode that are associated with the formation of 'trapped' surface dimples. In one case, this dominant mode is found to be stable over a significant amount of further end shortening. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license C1 [White, Simon C.; Weaver, Paul M.] Univ Bristol, Adv Composite Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England. [Wu, K. Chauncey] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23665 USA. RP Weaver, PM (reprint author), Univ Bristol, Adv Composite Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England. EM simon.white@bristol.ac.uk; paul.weaver@bristol.ac.uk; k.c.wu@nasa.gov OI Weaver, Paul/0000-0002-1905-4477 FU Engineering and Physical Sciences Research Council; ACCIS Centre [EP/G036772/1] FX The authors would like to thank Dr. Bret Stanford for his help in the generation of the finite-element models. The authors would also like to thank the Engineering and Physical Sciences Research Council for supporting the ACCIS Centre for Doctoral Training. Grant No. EP/G036772/1. NR 27 TC 5 Z9 5 U1 1 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD MAY PY 2015 VL 123 BP 190 EP 203 DI 10.1016/j.compstruct.2014.12.013 PG 14 WC Materials Science, Composites SC Materials Science GA CD0SJ UT WOS:000350783900020 ER PT J AU Trueba, L Heredia, G Rybicki, D Johannes, LB AF Trueba, Luis, Jr. Heredia, Georgina Rybicki, Daniel Johannes, Lucie B. TI Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE Friction stir welding; Aluminum alloy 6061-T6; Surface quality; Weld strength; Defect formation; Additive-manufactured tooling ID MECHANICAL-PROPERTIES AB Six unique tool shoulder designs were produced with the objective of improved metal constraint and flow to the pin. The six tools were made of Ti-6AI-4V by metallic additive manufacturing. Each tool was used to produce butt welds using aluminum 6061-T6 plates. The welds were subjected to nondestructive evaluation and tensile testing to determine weld soundness and strength. A FSW tool shoulder having a raised spiral design produced the weld with the best combination of surface quality and mechanical properties. The additive-manufactured Ti-6AI-4V tooling had good wear characteristics and appears to be a suitable route to rapidly produce unique FSW tool designs. (C) 2015 Elsevier B.V. All rights reserved. C1 [Trueba, Luis, Jr.] Univ Texas Permian Basin, Mech Engn, Odessa, TX 79762 USA. [Heredia, Georgina] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA. [Rybicki, Daniel; Johannes, Lucie B.] NASA, Lyndon B Johnson Space Ctr, Mat & Proc Branch, Houston, TX 77058 USA. RP Trueba, L (reprint author), Univ Texas Permian Basin, Mech Engn, 4901 East Univ, Odessa, TX 79762 USA. EM trueba_l@utpb.edu OI Johannes, Lucie/0000-0001-8867-9465 FU Material and Processes Branch at NASA Johnson Space Center FX The authors gratefully acknowledge the financial support of this research provided by the Material and Processes Branch at NASA Johnson Space Center. NR 7 TC 2 Z9 3 U1 6 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD MAY PY 2015 VL 219 BP 271 EP 277 DI 10.1016/j.jmatprotec.2014.12.027 PG 7 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CC7BF UT WOS:000350522000027 ER PT J AU Stysley, PR Coyle, DB Kay, RB Frederickson, R Poulios, D Cory, K Clarke, G AF Stysley, Paul R. Coyle, D. Barry Kay, Richard B. Frederickson, Robert Poulios, Demetrios Cory, Ken Clarke, Greg TI Long term performance of the High Output Maximum Efficiency Resonator (HOMER) laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar SO OPTICS AND LASER TECHNOLOGY LA English DT Article DE Laser; Nd:YAG; Altimetry AB We report the results of a 2 year, continuous operational life test of the diode pumped, solid state HOMER laser; a flight-quality prototype, producing over 16 billion, 15 mJ, 10 ns Q-switched laser pulses with an acceptable measured decay rate. Published by Elsevier Ltd. C1 [Stysley, Paul R.; Coyle, D. Barry] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kay, Richard B.; Poulios, Demetrios; Clarke, Greg] Amer Univ, Dept Phys, Washington, DC 20016 USA. [Frederickson, Robert; Cory, Ken] Sci Syst Applicat Inc, Lanham, MD USA. RP Stysley, PR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM paul.stysley@nasa.gov NR 9 TC 8 Z9 8 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0030-3992 EI 1879-2545 J9 OPT LASER TECHNOL JI Opt. Laser Technol. PD MAY PY 2015 VL 68 BP 67 EP 72 DI 10.1016/j.optlastec.2014.11.001 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA CB6HP UT WOS:000349728400012 ER PT J AU Newman, JA Abate, A Abdalla, FB Allam, S Allen, SW Ansari, R Bailey, S Barkhouse, WA Beers, TC Blanton, MR Brodwin, M Brownstein, JR Brunner, RJ Kind, MC Cervantes-Cota, JL Cheu, E Chisari, NE Colless, M Comparat, J Coupons, J Cunha, CE de la Macorra, A Dell'Antonio, IP Frye, BL Gawiser, EJ Gehrels, N Grady, K Hagen, A Hall, PB Hearin, AP Hildebrand, H Hirata, CM Ho, S Honscheid, K Huterer, D Ivezic, Z Kneib, JP Kruk, JW Lahav, O Mandelbaum, R Marshall, JL Matthews, DJ Menard, B Miguel, R Moniez, M Moos, HW Moustakas, J Myers, AD Papovich, C Peacock, JA Park, C Rahman, M Rhodes, J Ricol, JS Sadeh, I Slozar, A Schmidt, SJ Stern, DK Tyson, JA von der Linden, A Wechsler, RH Wood-Vasey, WM Zentner, AR AF Newman, Jeffrey A. Abate, Alexandra Abdalla, Filipe B. Allam, Sahar Allen, Steven W. Ansari, Reza Bailey, Stephen Barkhouse, Wayne A. Beers, Timothy C. Blanton, Michael R. Brodwin, Mark Brownstein, Joel R. Brunner, Robert J. Kind, Matias Carrasco Cervantes-Cota, Jorge L. Cheu, Elliott Chisari, Nora Elisa Colless, Matthew Comparat, Johan Coupons, Jean Cunha, Carlos E. de la Macorra, Axel Dell'Antonio, Ian P. Frye, Brenda L. Gawiser, Eric J. Gehrels, Neil Grady, Kevin Hagen, Alex Hall, Patrick B. Hearin, Andew P. Hildebrand, Hendrik Hirata, Christopher M. Ho, Shirley Honscheid, Klaus Huterer, Dragan Ivezic, Zeljko Kneib, Jean-Paul Kruk, Jeffrey W. Lahav, Ofer Mandelbaum, Rachel Marshall, Jennifer L. Matthews, Daniel J. Menard, Brice Miguel, Ramon Moniez, Marc Moos, H. W. Moustakas, John Myers, Adam D. Papovich, Casey Peacock, John A. Park, Changbom Rahman, Mubdi Rhodes, Jason Ricol, Jean-Stephane Sadeh, Iftach Slozar, Anze Schmidt, Samuel J. Stern, Daniel K. Tyson, J. Anthony von der Linden, Anja Wechsler, Risa H. Wood-Vasey, W. M. Zentner, Andrew R. TI Spectroscopic needs for imaging dark energy experiments (vol 63, pg 81, 2015) SO ASTROPARTICLE PHYSICS LA English DT Correction C1 [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Abate, Alexandra] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdalla, Filipe B.] UCL, Dept Phys & Astron, Astrophys Grp, London WC1E 6BT, England. [Allam, Sahar] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Allen, Steven W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ansari, Reza] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bailey, Stephen] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Barkhouse, Wayne A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beers, Timothy C.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Beers, Timothy C.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Blanton, Michael R.] NYU, Dept Phys, New York, NY 10003 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Brownstein, Joel R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Brownstein, Joel R.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Brunner, Robert J.] Inst Nacl Invest Nucl, Mexico City 11801, DF, Mexico. [Kind, Matias Carrasco] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cervantes-Cota, Jorge L.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Cheu, Elliott] UAM, CSIC, E-28049 Madrid, Spain. [Chisari, Nora Elisa] Univ Geneva, Astron Observ, CH-1290 Versoix, Switzerland. [Colless, Matthew] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Comparat, Johan] Univ Nacl Autonoma Mexico, Dept Fis Teor, Mexico City, DF, Mexico. [Comparat, Johan] Univ Nacl Autonoma Mexico, IAC, Mexico City, DF, Mexico. [Coupons, Jean] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Cunha, Carlos E.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Cunha, Carlos E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [de la Macorra, Axel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Dell'Antonio, Ian P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 2077 USA. [Frye, Brenda L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gawiser, Eric J.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Gehrels, Neil] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT USA. [Grady, Kevin] Argelander Inst Astron, D-53121 Bonn, Germany. [Hagen, Alex] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Hearin, Andew P.] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Hildebrand, Hendrik] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hirata, Christopher M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hirata, Christopher M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ho, Shirley] EPFL, Observ Sauverny, Astrophys Lab, CH-1290 Versoix, Switzerland. [Honscheid, Klaus] Univ Aix Marseille, LAM, F-13388 Marseille, France. [Honscheid, Klaus] CNRS, UMR7326, F-13388 Marseille, France. [Huterer, Dragan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Ivezic, Zeljko] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kneib, Jean-Paul] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Kruk, Jeffrey W.] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. [Marshall, Jennifer L.; Menard, Brice] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Miguel, Ramon; Moniez, Marc; Moos, H. W.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Menard, Brice; Moniez, Marc; Moos, H. W.] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea. [Moos, H. W.; Moustakas, John; Myers, Adam D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Papovich, Casey; Peacock, John A.] Lab Phys Subatom & Cosmol Grenoble, F-38026 Grenoble, France. [Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Anze; Schmidt, Samuel J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.] ICREA, E-08010 Barcelona, Spain. RP Newman, JA (reprint author), Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. EM janewman@pitt.edu RI Kneib, Jean-Paul/A-7919-2015; Mandelbaum, Rachel/N-8955-2014; EPFL, Physics/O-6514-2016 OI Kneib, Jean-Paul/0000-0002-4616-4989; Mandelbaum, Rachel/0000-0003-2271-1527; NR 1 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2015 VL 65 BP 112 EP 113 DI 10.1016/j.astropartphys.2014.12.008 PG 2 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB6GK UT WOS:000349725300012 ER PT J AU Rai, AK Schmitt, MP Bhattacharya, RS Zhu, DM Wolfe, DE AF Rai, Amarendra K. Schmitt, Michael P. Bhattacharya, Rabi S. Zhu, Dongming Wolfe, Douglas E. TI Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE TBC; YSZ; Pyrochlore oxides; Thermal conductivity; Sintering AB Pyrochlore oxides have most of the relevant attributes for use as next generation thermal bather coatings (TBCs) such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state of the art TBC material, yttria (6-8 wt.%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz. Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 degrees C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Rai, Amarendra K.; Bhattacharya, Rabi S.] UES Inc, Dayton, OH 45432 USA. [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Zhu, Dongming] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Rai, AK (reprint author), UES Inc, 4401 Dayton Xenia Rd, Dayton, OH 45432 USA. EM arai@ues.com FU Department of Energy (DOE) STTR [DE-SC0004356] FX This research was sponsored by the Department of Energy (DOE) STTR under award number DE-SC0004356 (Dr. Patcharin Burke). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US DOE. NR 15 TC 8 Z9 8 U1 7 U2 88 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAY PY 2015 VL 35 IS 5 BP 1605 EP 1612 DI 10.1016/j.jeurceramsoc.2014.11.003 PG 8 WC Materials Science, Ceramics SC Materials Science GA CA1QG UT WOS:000348686200027 ER PT J AU Gould, A Huber, D Penny, M Stello, D AF Gould, Andrew Huber, Daniel Penny, Matthew Stello, Dennis TI WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY SO JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY LA English DT Article DE astrometry; gravitational microlensing; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; GALACTIC BULGE; RED GIANTS; ECLIPSING BINARY; CHARA ARRAY; KEPLER; STARS; MASS; INTERFEROMETRY; PHOTOMETRY AB WFIRST microlensing observations will return high-precision parallaxes, sigma(pi) less than or similar to 0.3 mu as, for the roughly 1 million stars with H < 14 in its 2.8 deg(2) field toward the Galactic bulge. Combined with its 40,000 epochs of high precision photometry (similar to 0.7 mmag at H-vega = 14 and similar to 0.1 mmag at H = 8), this will yield a wealth of asteroseismic data of giant stars, primarily in the Galactic bulge but including a substantial fraction of disk stars at all Galactocentric radii interior to the Sun. For brighter stars, the astrometric data will yield an external check on the radii derived from the two asteroseismic parameters, the large-frequency separation and the frequency of maximum oscillation power v(max), while for the fainter ones, it will enable a mass measurement from the single measurable asteroseismic parameter v(max). Simulations based on Kepler data indicate that WFIRST will be capable of detecting oscillations in stars from slightly less luminous than the red clump to the tip of the red giant branch, yielding roughly 1 million detections. C1 [Gould, Andrew; Penny, Matthew] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Huber, Daniel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA. [Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Stello, Dennis] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. RP Gould, A (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM gould@astronomy.ohio-state.edu; huber@physics.usyd.edu.au; stello@physics.usyd.edu.au FU NSF [AST 1103471]; NASA [NNX12AB99G, NNX14AB92G]; Thomas Jefferson Chair for Discovery and Space Exploration FX Work by AG was supported by NSF grant AST 1103471 and NASA grant NNX12AB99G. MP acknowledges support by The Thomas Jefferson Chair for Discovery and Space Exploration. DH acknowledges support by NASA Grant NNX14AB92G issued through the Kepler Participating Scientist Program. NR 35 TC 7 Z9 7 U1 0 U2 1 PU KOREAN ASTRONOMICAL SOCIETY PI TAEJON PA 61-1 HWA-AM DONG, YUSUNG KU, TAEJON, 305-348, SOUTH KOREA SN 1225-4614 J9 J KOREAN ASTRON SOC JI J. Korean Astron. Soc. PD APR 30 PY 2015 VL 48 IS 2 BP 93 EP 104 DI 10.5303/JKAS.2015.48.2.93 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI0II UT WOS:000354419900001 ER PT J AU Aguilar, M Aisa, D Alpat, B Alvino, A Ambrosi, G Andeen, K Arruda, L Attig, N Azzarello, P Bachlechner, A Barao, F Barrau, A Barrin, L Bartoloni, A Basara, L Battarbee, M Battiston, R Bazo, J Becker, U Behlmann, M Beischer, B Berdugo, J Bertucci, B Bigongiari, G Bindi, V Bizzaglia, S Bizzarri, M Boella, G de Boer, W Bollweg, K Bonnivard, V Borgia, B Borsini, S Boschini, MJ Bourquin, M Burger, J Cadoux, F Cai, XD Capell, M Caroff, S Casaus, J Cascioli, V Castellini, G Cernuda, I Cerreta, D Cervelli, F Chae, MJ Chang, YH Chen, AI Chen, H Cheng, GM Chen, HS Cheng, L Chou, HY Choumilov, E Choutko, V Chung, CH Clark, C Clavero, R Coignet, G Consolandi, C Contin, A Corti, C Gil, EC Coste, B Creus, W Crispoltoni, M Cui, Z Dai, YM Delgado, C Della Torre, S Demirkoz, MB Derome, L Di Falco, S Di Masso, L Dimiccoli, F Diaz, C von Doetinchem, P Donnini, F Du, WJ Duranti, M D'Urso, D Eline, A Eppling, FJ Eronen, T Fan, YY Farnesini, L Feng, J Fiandrini, E Fiasson, A Finch, E Fisher, P Galaktionov, Y Gallucci, G Garcia, B Garcia-Lopez, R Gargiulo, C Gast, H Gebauer, I Gervasi, M Ghelfi, A Gillard, W Giovacchini, F Goglov, P Gong, J Goy, C Grabski, V Grandi, D Graziani, M Guandalini, C Guerri, I Guo, KH Haas, D Habiby, M Haino, S Han, KC He, ZH Heil, M Hoffman, J Hsieh, TH Huang, ZC Huh, C Incagli, M Ionica, M Jang, WY Jinchi, H Kanishev, K Kim, GN Kim, KS Kirn, T Kossakowski, R Kounina, O Kounine, A Koutsenko, V Krafczyk, MS La Vacca, G Laudi, E Laurenti, G Lazzizzera, I Lebedev, A Lee, HT Lee, SC Leluc, C Levi, G Li, HL Li, JQ Li, Q Li, Q Li, TX Li, W Li, Y Li, ZH Li, ZY Lim, S Lin, CH Lipari, P Lippert, T Liu, D Liu, H Lolli, M Lomtadze, T Lu, MJ Lu, SQ Lu, YS Luebelsmeyer, K Luo, JZ Lv, SS Majka, R Mana, C Marin, J Martin, T Martinez, G Masi, N Maurin, D Menchaca-Rocha, A Meng, Q Mo, DC Morescalchi, L Mott, P Muller, M Ni, JQ Nikonov, N Nozzoli, F Nunes, P Obermeier, A Oliva, A Orcinha, M Palmonari, F Palomares, C Paniccia, M Papi, A Pauluzzi, M Pedreschi, E Pensotti, S Pereira, R Picot-Clemente, N Pilo, F Piluso, A Pizzolotto, C Plyaskin, V Pohl, M Poireau, V Postaci, E Putze, A Quadrani, L Qi, XM Qin, X Qu, ZY Raiha, T Rancoita, PG Rapin, D Ricol, JS Rodriguez, I Rosier-Lees, S Rozhkov, A Rozza, D Sagdeev, R Sandweiss, J Saouter, P Sbarra, C Schael, S Schmidt, SM von Dratzig, AS Schwering, G Scolieri, G Seo, ES Shan, BS Shan, YH Shi, JY Shi, XY Shi, YM Siedenburg, T Son, D Spada, F Spinella, F Sun, W Sun, WH Tacconi, M Tang, CP Tang, XW Tang, ZC Tao, L Tescaro, D Ting, SCC Ting, SM Tomassetti, N Torsti, J Turkoglu, C Urban, T Vagelli, V Valente, E Vannini, C Valtonen, E Vaurynovich, S Vecchi, M Velasco, M Vialle, JP Vitale, V Vitillo, S Wang, LQ Wang, NH Wang, QL Wang, RS Wang, X Wang, ZX Weng, ZL Whitman, K Wienkenhover, J Wu, H Wu, X Xia, X Xie, M Xie, S Xiong, RQ Xin, GM Xu, NS Xu, W Yan, Q Yang, J Yang, M Ye, QH Yi, H Yu, YJ Yu, ZQ Zeissler, S Zhang, JH Zhang, MT Zhang, XB Zhang, Z Zheng, ZM Zhuang, HL Zhukov, V Zichichi, A Zimmermann, N Zuccon, P Zurbach, C AF Aguilar, M. Aisa, D. Alpat, B. Alvino, A. Ambrosi, G. Andeen, K. Arruda, L. Attig, N. Azzarello, P. Bachlechner, A. Barao, F. Barrau, A. Barrin, L. Bartoloni, A. Basara, L. Battarbee, M. Battiston, R. Bazo, J. Becker, U. Behlmann, M. Beischer, B. Berdugo, J. Bertucci, B. Bigongiari, G. Bindi, V. Bizzaglia, S. Bizzarri, M. Boella, G. de Boer, W. Bollweg, K. Bonnivard, V. Borgia, B. Borsini, S. Boschini, M. J. Bourquin, M. Burger, J. Cadoux, F. Cai, X. D. Capell, M. Caroff, S. Casaus, J. Cascioli, V. Castellini, G. Cernuda, I. Cerreta, D. Cervelli, F. Chae, M. J. Chang, Y. H. Chen, A. I. Chen, H. Cheng, G. M. Chen, H. S. Cheng, L. Chou, H. Y. Choumilov, E. Choutko, V. Chung, C. H. Clark, C. Clavero, R. Coignet, G. Consolandi, C. Contin, A. Corti, C. Gil, E. Cortina Coste, B. Creus, W. Crispoltoni, M. Cui, Z. Dai, Y. M. Delgado, C. Della Torre, S. Demirkoz, M. B. Derome, L. Di Falco, S. Di Masso, L. Dimiccoli, F. Diaz, C. von Doetinchem, P. Donnini, F. Du, W. J. Duranti, M. D'Urso, D. Eline, A. Eppling, F. J. Eronen, T. Fan, Y. Y. Farnesini, L. Feng, J. Fiandrini, E. Fiasson, A. Finch, E. Fisher, P. Galaktionov, Y. Gallucci, G. Garcia, B. Garcia-Lopez, R. Gargiulo, C. Gast, H. Gebauer, I. Gervasi, M. Ghelfi, A. Gillard, W. Giovacchini, F. Goglov, P. Gong, J. Goy, C. Grabski, V. Grandi, D. Graziani, M. Guandalini, C. Guerri, I. Guo, K. H. Haas, D. Habiby, M. Haino, S. Han, K. C. He, Z. H. Heil, M. Hoffman, J. Hsieh, T. H. Huang, Z. C. Huh, C. Incagli, M. Ionica, M. Jang, W. Y. Jinchi, H. Kanishev, K. Kim, G. N. Kim, K. S. Kirn, Th. Kossakowski, R. Kounina, O. Kounine, A. Koutsenko, V. Krafczyk, M. S. La Vacca, G. Laudi, E. Laurenti, G. Lazzizzera, I. Lebedev, A. Lee, H. T. Lee, S. C. Leluc, C. Levi, G. Li, H. L. Li, J. Q. Li, Q. Li, Q. Li, T. X. Li, W. Li, Y. Li, Z. H. Li, Z. Y. Lim, S. Lin, C. H. Lipari, P. Lippert, T. Liu, D. Liu, H. Lolli, M. Lomtadze, T. Lu, M. J. Lu, S. Q. Lu, Y. S. Luebelsmeyer, K. Luo, J. Z. Lv, S. S. Majka, R. Mana, C. Marin, J. Martin, T. Martinez, G. Masi, N. Maurin, D. Menchaca-Rocha, A. Meng, Q. Mo, D. C. Morescalchi, L. Mott, P. Mueller, M. Ni, J. Q. Nikonov, N. Nozzoli, F. Nunes, P. Obermeier, A. Oliva, A. Orcinha, M. Palmonari, F. Palomares, C. Paniccia, M. Papi, A. Pauluzzi, M. Pedreschi, E. Pensotti, S. Pereira, R. Picot-Clemente, N. Pilo, F. Piluso, A. Pizzolotto, C. Plyaskin, V. Pohl, M. Poireau, V. Postaci, E. Putze, A. Quadrani, L. Qi, X. M. Qin, X. Qu, Z. Y. Raeihae, T. Rancoita, P. G. Rapin, D. Ricol, J. S. Rodriguez, I. Rosier-Lees, S. Rozhkov, A. Rozza, D. Sagdeev, R. Sandweiss, J. Saouter, P. Sbarra, C. Schael, S. Schmidt, S. M. von Dratzig, A. Schulz Schwering, G. Scolieri, G. Seo, E. S. Shan, B. S. Shan, Y. H. Shi, J. Y. Shi, X. Y. Shi, Y. M. Siedenburg, T. Son, D. Spada, F. Spinella, F. Sun, W. Sun, W. H. Tacconi, M. Tang, C. P. Tang, X. W. Tang, Z. C. Tao, L. Tescaro, D. Ting, Samuel C. C. Ting, S. M. Tomassetti, N. Torsti, J. Turkoglu, C. Urban, T. Vagelli, V. Valente, E. Vannini, C. Valtonen, E. Vaurynovich, S. Vecchi, M. Velasco, M. Vialle, J. P. Vitale, V. Vitillo, S. Wang, L. Q. Wang, N. H. Wang, Q. L. Wang, R. S. Wang, X. Wang, Z. X. Weng, Z. L. Whitman, K. Wienkenhoever, J. Wu, H. Wu, X. Xia, X. Xie, M. Xie, S. Xiong, R. Q. Xin, G. M. Xu, N. S. Xu, W. Yan, Q. Yang, J. Yang, M. Ye, Q. H. Yi, H. Yu, Y. J. Yu, Z. Q. Zeissler, S. Zhang, J. H. Zhang, M. T. Zhang, X. B. Zhang, Z. Zheng, Z. M. Zhuang, H. L. Zhukov, V. Zichichi, A. Zimmermann, N. Zuccon, P. Zurbach, C. CA AMS Collaboration TI Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station SO PHYSICAL REVIEW LETTERS LA English DT Article ID ABSORPTION CROSS-SECTIONS; HELIUM SPECTRA; BESS SPECTROMETER; GEV-C; NUCLEI; ORIGIN; AMS-02; FLIGHT; DETECTOR; PHYSICS AB A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities. C1 [Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Mueller, M.; Obermeier, A.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, Inst Phys 1, D-52056 Aachen, Germany. [Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Mueller, M.; Obermeier, A.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, JARA FAME, D-52056 Aachen, Germany. [Demirkoz, M. B.; Postaci, E.; Turkoglu, C.] Middle E Tech Univ, Dept Phys, TR-06800 Ankara, Turkey. [Basara, L.; Caroff, S.; Coignet, G.; Feng, J.; Fiasson, A.; Goy, C.; Kossakowski, R.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Basara, L.; Caroff, S.; Coignet, G.; Feng, J.; Fiasson, A.; Goy, C.; Kossakowski, R.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] Univ Savoie Mont Blanc, F-74941 Annecy Le Vieux, France. [Li, W.; Shan, B. S.; Shan, Y. H.; Zheng, Z. M.] Beihang Univ BUAA, Beijing 100191, Peoples R China. [Dai, Y. M.; Wang, Q. L.; Yu, Y. J.] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Cheng, G. M.; Chen, H. S.; Li, Z. H.; Lu, Y. S.; Tang, X. W.; Tang, Z. C.; Xu, W.; Yang, M.; Yu, Z. Q.; Zhuang, H. L.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Contin, A.; Guandalini, C.; Laurenti, G.; Levi, G.; Lolli, M.; Masi, N.; Palmonari, F.; Quadrani, L.; Sbarra, C.; Zichichi, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Contin, A.; Guandalini, C.; Laurenti, G.; Levi, G.; Lolli, M.; Masi, N.; Palmonari, F.; Quadrani, L.; Sbarra, C.; Zichichi, A.] Univ Bologna, I-40126 Bologna, Italy. [Becker, U.; Behlmann, M.; Burger, J.; Cai, X. D.; Capell, M.; Chen, A. I.; Chen, H.; Choumilov, E.; Choutko, V.; Eline, A.; Eppling, F. J.; Fisher, P.; Galaktionov, Y.; Goglov, P.; Heil, M.; Hsieh, T. H.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Lebedev, A.; Li, Q.; Plyaskin, V.; Rozhkov, A.; Shi, X. Y.; Sun, W.; Sun, W. H.; Ting, Samuel C. C.; Ting, S. M.; Vaurynovich, S.; Wang, X.; Weng, Z. L.; Xie, M.; Xu, W.; Yan, Q.; Zuccon, P.] MIT, Cambridge, MA 02139 USA. [Chang, Y. H.; Chou, H. Y.; Creus, W.; Gillard, W.; Haino, S.; Hoffman, J.] Natl Cent Univ, Chungli 32054, Tao Yuan, Taiwan. [Sagdeev, R.] Univ Maryland, East West Ctr Space Sci, College Pk, MD 20742 USA. [Picot-Clemente, N.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Huh, C.; Jang, W. Y.; Kim, G. N.; Kim, K. S.; Lim, S.; Son, D.] Kyungpook Natl Univ, CHEP, Taegu 702701, South Korea. [Castellini, G.] CNR, IROE, I-50125 Florence, Italy. [Barrin, L.; Coste, B.; Gargiulo, C.; Kanishev, K.; Tacconi, M.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Azzarello, P.; Bourquin, M.; Cadoux, F.; Gil, E. Cortina; Haas, D.; Habiby, M.; Leluc, C.; Li, Y.; Paniccia, M.; Pohl, M.; Rapin, D.; Saouter, P.; Vitillo, S.; Wu, X.] Univ Geneva, DPNC, CH-1211 Geneva 4, Switzerland. [Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.; Tomassetti, N.] Univ Grenoble Alpes, F-38026 Grenoble, France. [Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.; Tomassetti, N.] CNRS, IN2P3, LPSC, F-38026 Grenoble, France. [Guo, K. H.; He, Z. H.; Huang, Z. C.; Li, T. X.; Lv, S. S.; Mo, D. C.; Ni, J. Q.; Qi, X. M.; Tang, C. P.; Wang, Z. X.; Xu, N. S.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China. [Bindi, V.; Consolandi, C.; Corti, C.; von Doetinchem, P.; Pereira, R.; Whitman, K.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] Jacobs Sverdrup, Houston, TX 77058 USA. [Attig, N.; Lippert, T.; Schmidt, S. M.] Res Ctr Julich, JARA FAME, D-52425 Julich, Germany. [Attig, N.; Lippert, T.; Schmidt, S. M.] Julich Supercomp Ctr, D-52425 Julich, Germany. [Andeen, K.; de Boer, W.; Gebauer, I.; Nikonov, N.; Vagelli, V.; Zeissler, S.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Clavero, R.; Garcia-Lopez, R.; Tescaro, D.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Spain. [Clavero, R.; Garcia-Lopez, R.; Tescaro, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Arruda, L.; Barao, F.; Nunes, P.; Orcinha, M.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000 Lisbon, Portugal. [Han, K. C.; Jinchi, H.] NCSIST, Taoyuan 325, Taiwan. [Aguilar, M.; Berdugo, J.; Casaus, J.; Cernuda, I.; Delgado, C.; Diaz, C.; Garcia, B.; Giovacchini, F.; Mana, C.; Marin, J.; Martinez, G.; Oliva, A.; Palomares, C.; Rodriguez, I.; Velasco, M.; Xia, X.] CIEMAT, E-28040 Madrid, Spain. [Grabski, V.; Menchaca-Rocha, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Boella, G.; Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; La Vacca, G.; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Boella, G.; Gervasi, M.; Pensotti, S.; Tacconi, M.] Univ Milano Bicocca, I-20126 Milan, Italy. [Zurbach, C.] CNRS, IN2P3, LUPM, F-34095 Montpellier, France. [Zurbach, C.] Univ Montpellier 2, F-34095 Montpellier, France. [Gong, J.; Li, J. Q.; Li, Q.; Liu, H.; Luo, J. Z.; Meng, Q.; Shi, J. Y.; Wu, H.; Xiong, R. Q.; Yi, H.; Zhang, J. H.] Southeast Univ, Nanjing 210096, Jiangsu, Peoples R China. [Finch, E.; Majka, R.; Sandweiss, J.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Azzarello, P.; Bazo, J.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Borsini, S.; Cascioli, V.; Cerreta, D.; Crispoltoni, M.; Di Masso, L.; Donnini, F.; Duranti, M.; D'Urso, D.; Farnesini, L.; Fiandrini, E.; Graziani, M.; Ionica, M.; Laudi, E.; Nozzoli, F.; Papi, A.; Pauluzzi, M.; Piluso, A.; Pizzolotto, C.; Qin, X.; Scolieri, G.; Vitale, V.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Aisa, D.; Bertucci, B.; Bizzarri, M.; Cerreta, D.; Crispoltoni, M.; Di Masso, L.; Donnini, F.; Duranti, M.; Fiandrini, E.; Graziani, M.; Ionica, M.; Laudi, E.; Pauluzzi, M.; Piluso, A.] Univ Perugia, I-06100 Perugia, Italy. [Bigongiari, G.; Cervelli, F.; Di Falco, S.; Gallucci, G.; Guerri, I.; Incagli, M.; Lomtadze, T.; Morescalchi, L.; Pedreschi, E.; Pilo, F.; Spinella, F.; Vannini, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bigongiari, G.; Guerri, I.] Univ Pisa, I-56100 Pisa, Italy. [Basara, L.; Battiston, R.; Coste, B.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.; Lu, M. J.] Univ Trent, I-38123 Trento, Italy. [Basara, L.; Battiston, R.; Coste, B.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.; Lu, M. J.] Ist Nazl Fis Nucl, TIFPA, I-38123 Trento, Italy. [Bartoloni, A.; Borgia, B.; Lipari, P.; Spada, F.; Valente, E.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Borgia, B.; Valente, E.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Vecchi, M.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. [Chae, M. J.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Cheng, L.; Cui, Z.; Du, W. J.; Wang, L. Q.; Wang, N. H.; Xin, G. M.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Shi, Y. M.; Wang, R. S.; Xie, S.; Ye, Q. H.] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. [Fan, Y. Y.; Haino, S.; Lee, H. T.; Lee, S. C.; Li, H. L.; Li, Z. Y.; Lin, C. H.; Liu, D.; Lu, S. Q.; Qu, Z. Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Battarbee, M.; Eronen, T.; Torsti, J.; Valtonen, E.] Univ Turku, Lab Space Res, Dept Phys & Astron, FI-20014 Turku, Finland. [Battiston, R.] ASI, I-00133 Rome, Italy. [Gil, E. Cortina] Catholic Univ Louvain, CP3, Louvain, Belgium. [Fan, Y. Y.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. [Feng, J.; Li, Y.; Li, Z. Y.; Lu, S. Q.] Sun Yat Sen Univ, Guangzhou 510275, Peoples R China. [Haas, D.] SRON, Utrecht, Netherlands. [Laudi, E.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Li, H. L.; Qin, X.; Xia, X.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Li, Q.; Xie, M.] Harbin Inst Technol, Harbin 150001, Peoples R China. [Lu, M. J.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Morescalchi, L.] Univ Siena, I-53100 Siena, Italy. [Putze, A.] Univ Savoie Mont Blanc, F-74941 Annecy Le Vieux, France. [Putze, A.] CNRS, LAPTh, F-74941 Annecy Le Vieux, France. [Qu, Z. Y.] Nankai Univ, Tianjin 300071, Peoples R China. [Shi, X. Y.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Sun, W. H.] Southeast Univ, Nanjing 210096, Jiangsu, Peoples R China. RP Aguilar, M (reprint author), CIEMAT, E-28040 Madrid, Spain. RI Pizzolotto, Cecilia/G-5821-2013; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Orcinha, Miguel/O-2362-2016; Paniccia, Mercedes/A-4519-2017; Lazzizzera, Ignazio/E-9678-2015; Delgado, Carlos/K-7587-2014; Berdugo, Javier/A-2858-2015; Vecchi, Manuela/J-9180-2014; alpat, ali behcet/G-6290-2013; Masi, Nicolo/G-7911-2016; Rancoita, Pier Giorgio/J-9896-2015; Zuccon, Paolo/I-7736-2012; Ye, Qinghao/O-5630-2015; Fiandrini, Emanuele/C-4549-2008; Demirkoz, Bilge/C-8179-2014; Palomares, Carmen/H-7783-2015; Duranti, Matteo/I-7691-2013; Tomassetti, Nicola/K-2380-2016; OI Pizzolotto, Cecilia/0000-0003-0200-2408; Orcinha, Miguel/0000-0003-1874-2144; Paniccia, Mercedes/0000-0001-8482-2703; Lazzizzera, Ignazio/0000-0001-5092-7531; Tacconi, Mauro/0000-0002-9344-6305; Quadrani, Lucio/0000-0003-4830-0259; Rozza, Davide/0000-0002-7378-6353; GILLARD, William/0000-0003-4744-9748; Ambrosi, Giovanni/0000-0001-6977-9559; Delgado, Carlos/0000-0002-7014-4101; Berdugo, Javier/0000-0002-7911-8532; alpat, ali behcet/0000-0002-0116-1506; Masi, Nicolo/0000-0002-3729-7608; Rancoita, Pier Giorgio/0000-0002-1990-4283; Zuccon, Paolo/0000-0002-2728-0167; Palomares, Carmen/0000-0003-4374-9065; Duranti, Matteo/0000-0003-0980-6425; Tomassetti, Nicola/0000-0002-0856-9299; La Vacca, Giuseppe/0000-0002-2168-9447; Della Torre, Stefano/0000-0002-7669-0859; Seo, Eun-Suk/0000-0001-8682-805X; Bigongiari, Gabriele/0000-0003-3691-0826; LI, Qiang/0000-0002-2870-4101; Gallucci, Giovanni/0000-0003-3554-9733; Vagelli, Valerio/0000-0002-4495-9331; Basara, Laurent/0000-0002-5726-9954; Corti, Claudio/0000-0001-9127-7133; Morescalchi, Luca/0000-0002-7819-8139; Bertucci, Bruna/0000-0001-7584-293X; Graziani, Maura/0000-0001-7570-2048 FU Jim Siegrist and Michael Salamon of the DOE; MIT and its School of Science; Sao Paulo Research Foundation (FAPESP), Brazil [2014/19149-7, 2014/50747-8]; CAS, China; NSFC, China; MOST, China; NLAA, China; provincial government of Shandong, China; provincial government of Jiangsu, China; provincial government of Guangdong, China; China Scholarship Council, China; Finnish Funding Agency for Innovation (Tekes), Finland [40361/01, 40518/03]; Academy of Finland, Finland [258963]; CNRS, France; IN2P3, France; CNES, France; Enigmass, France; ANR, France; Forschungszentrum Julich, Germany [JARA0052]; DLR, Germany; INFN, Italy; ASI, Italy; ASI Science Data Center under ASI-INFN [C/011/11/1, 2014-037-R.0]; Trento under ASI-INFN [I/002/13/0, 2013-002-R.0]; Kyungpook National University, Korea [NRF-2009-0080142, NRF-2012-010226]; Womans University, Korea [NRF-2013-004883]; Consejo Nacional de Ciencia y Tecnologia at UNAM, Mexico; CIEMAT, Spain; IAC, Spain; SEIDI MINECO, Spain; CDTI, Spain; CPAN, Spain; Swiss National Science Foundation (SNSF), Switzerland; Academia Sinica, Taiwan; Ministry of Science and Technology (MOST), Taiwan [103-2682-M-008-002]; Turkish Atomic Energy Authority at METU, Turkey; CERN; European Space Agency FX We thank former NASA Administrator Daniel S. Goldin for his dedication to the legacy of the ISS as a scientific laboratory and his decision for NASA to fly AMS as a DOE payload. We also acknowledge the continuous support of the NASA leadership including Charles Bolden and William Gerstenmeier and of the JSC and MSFC flight control teams which has allowed AMS to operate optimally on the ISS for over three years. We are grateful for the support of Jim Siegrist and Michael Salamon of the DOE. We also acknowledge the continuous support from MIT and its School of Science, Michael Sipser, Marc Kastner, Ernest Moniz, and Richard Milner. Research supported by: Sao Paulo Research Foundation (FAPESP) Grants No. 2014/19149-7 and No. 2014/50747-8, Brazil; CAS, NSFC, MOST, NLAA, the provincial governments of Shandong, Jiangsu, Guangdong, and the China Scholarship Council, China; the Finnish Funding Agency for Innovation (Tekes) Grants No. 40361/01 and No. 40518/03 and the Academy of Finland Grant No. 258963, Finland; CNRS, IN2P3, CNES, Enigmass, and the ANR, France; J. Trumper, J. D. Woerner, and DLR and Forschungszentrum Julich under Project No. JARA0052, Germany; INFN and ASI, Italy, including the work of J. Bazo, D. D'Urso, F. Nozzoli, C. Pizzolotto, and V. Vitale at the ASI Science Data Center under ASI-INFN Agreements No. C/011/11/1 and No. 2014-037-R.0, work at INFN Sezioni di Bologna, Milano-Bicocca, Perugia, Pisa, Roma, and Trento under ASI-INFN Contracts No. I/002/13/0 and No. 2013-002-R.0; Grants No. NRF-2009-0080142 and No. NRF-2012-010226 at CHEP, Kyungpook National University and No. NRF-2013-004883 at Ewha Womans University, Korea; the Consejo Nacional de Ciencia y Tecnologia at UNAM, Mexico; CIEMAT, IAC, SEIDI MINECO, CDTI, and CPAN, Spain; the Swiss National Science Foundation (SNSF), federal and cantonal authorities, Switzerland; Academia Sinica and the Ministry of Science and Technology (MOST) under Grant No. 103-2682-M-008-002, former President of Academia Sinica Yuan-Tseh Lee and former Ministers of MOST, Maw-Kuen Wu and Luo-Chuan Lee, Taiwan; and the Turkish Atomic Energy Authority at METU, Turkey. We gratefully acknowledge the strong support from CERN, including Rolf-Dieter Heuer, and from the European Space Agency. We are grateful for important discussions with Barry Barish, Jonathan Ellis, Jonathan Feng, Igor Moskalenko, Steve Olsen, George Smoot, Michael Turner, Steven Weinberg, Frank Wilczek, and Arnold Wolfendale. NR 68 TC 76 Z9 77 U1 23 U2 90 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2015 VL 114 IS 17 AR 171103 DI 10.1103/PhysRevLett.114.171103 PG 9 WC Physics, Multidisciplinary SC Physics GA CH0BR UT WOS:000353684400004 PM 25978222 ER PT J AU Perez, K Hailey, CJ Bauer, FE Krivonos, RA Mori, K Baganoff, FK Barriere, NM Boggs, SE Christensen, FE Craig, WW Grefenstette, BW Grindlay, JE Harrison, FA Hong, J Madsen, KK Nynka, M Stern, D Tomsick, JA Wik, DR Zhang, S Zhang, WW Zoglauer, A AF Perez, Kerstin Hailey, Charles J. Bauer, Franz E. Krivonos, Roman A. Mori, Kaya Baganoff, Frederick K. Barriere, Nicolas M. Boggs, Steven E. Christensen, Finn E. Craig, William W. Grefenstette, Brian W. Grindlay, Jonathan E. Harrison, Fiona A. Hong, Jaesub Madsen, Kristin K. Nynka, Melania Stern, Daniel Tomsick, John A. Wik, Daniel R. Zhang, Shuo Zhang, William W. Zoglauer, Andreas TI Extended hard-X-ray emission in the inner few parsecs of the Galaxy SO NATURE LA English DT Article ID XMM-NEWTON OBSERVATIONS; SAGITTARIUS-A-EAST; GALACTIC-CENTER; BLACK-HOLE; MILLISECOND PULSARS; CANDIDATE; RIDGE; SGR; VARIABILITY; LUMINOSITY AB The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems'. Observations of diffuse hardX-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 X 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population'. This could indicate a significantly more massive population of accreting white dwarfs, large populations of lowmass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre. C1 [Perez, Kerstin; Hailey, Charles J.; Mori, Kaya; Nynka, Melania; Zhang, Shuo] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Perez, Kerstin] Haverford Coll, Haverford, PA 19041 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago 7820436, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Krivonos, Roman A.; Barriere, Nicolas M.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Baganoff, Frederick K.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Grindlay, Jonathan E.; Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wik, Daniel R.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Perez, K (reprint author), Columbia Univ, Columbia Astrophys Lab, 550 West 120th St,Room 1027, New York, NY 10027 USA. EM kperez1@haverford.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891; Krivonos, Roman/0000-0003-2737-5673 FU NASA [NNG08FD60C]; Basal-CATA [PFB-06/2007]; CONICYT-Chile [FONDECYT 1141218, EMBIGGEN Anillo ACT1101]; Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009] FX This work was supported by NASA contract no. NNGO8FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). We also than kA. Canipe, J. Dodaro, D. Hong and T.V.T. Luu for assistance with data preparation and analysis. F.E.B. acknowledges support from Basal-CATA PFB-06/2007, CONICYT-Chile (FONDECYT 1141218 and EMBIGGEN Anillo ACT1101), and Project IC120009 "Millennium Institute of Astrophysics (MAS)" funded by the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo. NR 46 TC 15 Z9 15 U1 1 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 30 PY 2015 VL 520 IS 7549 BP 646 EP U138 DI 10.1038/nature14353 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0DQ UT WOS:000353689700043 PM 25925477 ER PT J AU Johnson, SS Chevrette, MG Ehlmann, BL Benison, KC AF Johnson, Sarah Stewart Chevrette, Marc Gerard Ehlmann, Bethany L. Benison, Kathleen Counter TI Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment SO PLOS ONE LA English DT Article ID SOUTHERN WESTERN-AUSTRALIA; COMPLETE GENOME SEQUENCE; SALINE LAKES; CHROMOHALOBACTER-SALEXIGENS; MICROBIAL COMMUNITIES; MINE DRAINAGE; REFLECTANCE SPECTROSCOPY; HALOMONAS-ELONGATA; GEN. NOV.; MARS AB The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed meta-genomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. C1 [Johnson, Sarah Stewart] Georgetown Univ, Sci Technol & Int Affairs, Washington, DC 20057 USA. [Chevrette, Marc Gerard] Harvard Univ Extens, Grad Program Biotechnol & Bioengn, Cambridge, MA USA. [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Benison, Kathleen Counter] W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. RP Johnson, SS (reprint author), Georgetown Univ, Sci Technol & Int Affairs, Washington, DC 20057 USA. EM sarah.johnson@georgetown.edu RI Chevrette, Marc/N-7895-2016 OI Chevrette, Marc/0000-0002-7209-0717 FU William F. Milton Fund FX This research was supported by a William F. Milton Fund grant to SSJ (http://www.faculty.harvard.edu/scholarship-and-research/grants-enabling -research/william-f-milton-fund). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 78 TC 4 Z9 4 U1 3 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 29 PY 2015 VL 10 IS 4 AR e0122869 DI 10.1371/journal.pone.0122869 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0LO UT WOS:000353711600024 PM 25923206 ER PT J AU Hodson, ME Benning, LG Demarchi, B Penkman, KEH Rodriguez-Blanco, JD Schofield, PF Versteegh, EAA AF Hodson, Mark E. Benning, Liane G. Demarchi, Bea Penkman, Kirsty E. H. Rodriguez-Blanco, Juan D. Schofield, Paul F. Versteegh, Emma A. A. TI Biomineralisation by earthworms - an investigation into the stability and distribution of amorphous calcium carbonate SO GEOCHEMICAL TRANSACTIONS LA English DT Article DE Calcite; ACC; CaCO3; FTIR; Synchrotron; Amino acids; Earthworms; Stability ID INTRA-CRYSTALLINE PROTEINS; STRUCTURAL-CHARACTERIZATION; LUMBRICUS-TERRESTRIS; PRECURSOR PHASE; CLOSED-SYSTEM; GRANULES; ACID; ACC; MECHANISM; GROWTH AB Background: Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based mu-FTIR and EMPA electron microprobe analysis. Results: The milky fluid from which granules form is amino acid-rich (<= 136 +/- 3 nmol mg(-1) (n = 3; +/- std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r >= 0.7, p <= 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based mu-FTIR mapping of granule thin sections and the relative intensity of the nu(2): nu(4) peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the mu-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. Conclusions: ACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. C1 [Hodson, Mark E.] Univ York, Dept Environm, York YO10 5DD, N Yorkshire, England. [Benning, Liane G.; Rodriguez-Blanco, Juan D.] Univ Leeds, Sch Earth & Environm, Cohen Labs, Leeds LS2 9JT, W Yorkshire, England. [Benning, Liane G.] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Demarchi, Bea; Penkman, Kirsty E. H.] Univ York, BioArCh, Dept Chem, York YO10 5DD, N Yorkshire, England. [Demarchi, Bea; Penkman, Kirsty E. H.] Univ York, BioArCh, Dept Archaeol, York YO10 5DD, N Yorkshire, England. [Rodriguez-Blanco, Juan D.] Univ Copenhagen, Nanosci Ctr, Dept Chem, DK-2100 Copenhagen, Denmark. [Schofield, Paul F.] Nat Hist Museum, Dept Earth Sci, Mineral & Planetary Sci, London SW7 5BD, England. [Versteegh, Emma A. A.] Univ Reading, Soil Res Ctr, Sch Archaeol Geog & Environm Sci, Dept Geog & Environm Sci, Wokingham RG6 6DW, England. [Versteegh, Emma A. A.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hodson, ME (reprint author), Univ York, Dept Environm, York YO10 5DD, N Yorkshire, England. EM mark.hodson@york.ac.uk RI Rodriguez-Blanco, Juan Diego/D-5197-2013; Penkman, Kirsty/D-1952-2012; OI Rodriguez-Blanco, Juan Diego/0000-0001-5978-3001; Penkman, Kirsty/0000-0002-6226-9799; Demarchi, Beatrice/0000-0002-8398-4409; Benning, Liane G./0000-0001-9972-5578 FU NERC grant [NE/F009623/1, NE/H021914/1A]; White Rose Consortium grant; Diamond Light Source [SM9197, SM8989]; Leverhulme Trust FX The production of granules for the bulk analysis was carried out during NERC grant NE/F009623/1 awarded to MEH, Trevor Piearce (University of Lancaster) and Matt Canti (English Heritage); Denise Lambkin carried out the experiments. We thank Anne Dudley (University of Reading) for assistance with the ICP-OES analysis of these granules. Milky fluid samples were obtained by EAAV as part of NERC grant NE/H021914/1A awarded to MEH and Stuart Black (University of Reading). We thank John Morgan (University of Cardiff) and Trevor Piearce (University of Lancaster), for teaching us how to dissect out calciferous glands from earthworms. A White Rose Consortium grant awarded to MEH, KP, LGB and Andy Brown (School of Process, Environmental and Materials Engineering, University of Leeds), John Harding and Colin Freeman (both Department of Materials Science and Engineering, University of Sheffield) helped support the work on individual granule analyses. We thank the Diamond Light Source for the provision of beamtime under grants SM9197 and SM8989. We thank the beamline scientists Drs Mark Frogley, Katia Wehbe and Gianfelice Cinque for assistance with sample preparation, data acquisition and analysis at Diamond and Stefani Lutz and Beatriz Vallina (Leeds) for help during the beamtime. We thank John Spratt (NHM) for his assistance with the electron microprobe analysis. We thank the Leverhulme Trust for financial support to the NEaar laboratory and Sheila Taylor (University of York) for provision of technical support for amino acid analyses. We thank the three anonymous reviewers and the editors for their helpful suggestions and comments. This study has run on and off since 2008 and MEH thanks everyone for their enthusiasm and patience. NR 74 TC 6 Z9 6 U1 5 U2 33 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD APR 28 PY 2015 VL 16 AR 4 DI 10.1186/s12932-015-0019-z PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CJ0PR UT WOS:000355179700001 ER PT J AU Shuster, JR Chen, LJ Hesse, M Argall, MR Daughton, W Torbert, RB Bessho, N AF Shuster, J. R. Chen, L. -J. Hesse, M. Argall, M. R. Daughton, W. Torbert, R. B. Bessho, N. TI Spatiotemporal evolution of electron characteristics in the electron diffusion region of magnetic reconnection: Implications for acceleration and heating SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; electron diffusion region ID COLLISIONLESS RECONNECTION; X-LINE AB Based on particle-in-cell simulations of collisionless magnetic reconnection, the spatiotemporal evolution of electron velocity distributions in the electron diffusion region (EDR) is reported to illustrate how electrons are accelerated and heated. Approximately when the reconnection rate maximizes, electron distributions in the vicinity of the X line exhibit triangular structures with discrete striations and a temperature (T-e) twice that of the inflow region. T-e increases as the meandering EDR populations mix with inflowing electrons. As the distance from the X line increases within the electron outflow jet, the discrete populations swirl into arcs and gyrotropize by the end of the jet with T-e about 3 times that of the X line. Two dominant processes increase T-e and produce the spatially and temporally evolving EDR distributions: (1) electric field acceleration preferential to electrons which meander in the EDR for longer times and (2) cyclotron turning by the magnetic field normal to the reconnection layer. C1 [Shuster, J. R.; Argall, M. R.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Chen, L. -J.; Hesse, M.; Bessho, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Shuster, JR (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM jrf63@wildcats.unh.edu RI Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NSF [PHY-0903923, AGS-1202537]; NASA [NNX11AH03G]; Theory and Modeling Program of the Magnetospheric Multiscale mission FX The work at UNH was supported in part by NSF grants PHY-0903923 and AGS-1202537, and NASA grant NNX11AH03G, and at NASA GSFC by the Theory and Modeling Program of the Magnetospheric Multiscale mission. The simulation data are available upon request from the authors. The authors would like to thank S. Wang for the test particle tracing tools used in this study. NR 20 TC 18 Z9 18 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2586 EP 2593 DI 10.1002/2015GL063601 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800004 ER PT J AU Simon, AA Li, L Reuter, DC AF Simon, A. A. Li, L. Reuter, D. C. TI Small-scale waves on Jupiter: A reanalysis of New Horizons, Voyager, and Galileo data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Jupiter; atmosphere; waves ID PROBE; OSCILLATION; ATMOSPHERE; TEMPERATURES; STRATOSPHERE; CASSINI; IMAGER; WINDS AB Jupiter's equator-encircling mesoscale waves were a distinguishing feature observed during the New Horizons Jupiter flyby. Measured velocities indicated eastward propagation, inconsistent with standing wave models developed after the Voyager encounters. We present revised New Horizons mesoscale wave velocities of 164 to 176m/s, approximately 90m/s higher than the tropospheric zonal winds on that date, while Voyager and Galileo mesoscale waves do not show any apparent motion. This is consistent with an eastward propagating inertia-gravity or Kelvin wave, or a wave propagating with the wind at certain altitudes, given proper vertical wind shears. New Horizons high solar phase angle methane band observations show wave crest shadows or aerosol clearing, implying altitudes above the cloud deck for the observed features. New Horizons and Voyager data also indicate that wave trains have lifetimes exceeding two Jovian rotations. C1 [Simon, A. A.; Reuter, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Li, L.] Univ Houston, Dept Phys, Houston, TX USA. RP Simon, AA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM amy.simon@nasa.gov RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 FU NASA Planetary Atmospheres Program FX Work by A.A.S. was funded in part by the NASA Planetary Atmospheres Program. Data are publicly available and were obtained from the Planetary Data System Atmospheres Node (mapped Galileo data) and Rings Node (Voyager 2 and New Horizons LORRI data). We thank R. Morales-Juberias, Andrew Ingersoll, and an anonymous reviewer for providing constructive comments. NR 21 TC 2 Z9 2 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2612 EP 2618 DI 10.1002/2015GL063433 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800007 ER PT J AU Hakkinen, S Rhines, PB Worthen, DL AF Haekkinen, Sirpa Rhines, Peter B. Worthen, Denise L. TI Heat content variability in the North Atlantic Ocean in ocean reanalyses SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE heat content ID DATA ASSIMILATION; WARMING HIATUS; CLIMATE; TEMPERATURE; TRANSPORT; CIRCULATION; PACIFIC AB Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000m. Three reanalyses and two observational data sets are compared. The net gain of 5x10(22)J in the upper 2000m is roughly 30% of the global ocean warming over this period. Upper ocean heat content (OHC) is dominated in most regions by heat transport convergence without widespread changes in the potential temperature/salinity relation. The heat convergence is associated with sinking of midthermocline isopycnals, with maximum sinking occurring at potential densities sigma(0)=26.4-27.3, which contain subtropical mode waters. Water masses lighter than sigma(0)=27.3 accumulate heat by increasing their volume, while heavier waters lose heat by decreasing their volume. Spatially, the OHC trend is nonuniform: the low latitudes, 0-30 degrees N are warming steadily while large multidecadal variability occurs at latitudes 30-65 degrees N. C1 [Haekkinen, Sirpa; Worthen, Denise L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rhines, Peter B.] Univ Washington, Seattle, WA 98195 USA. [Worthen, Denise L.] Wyle STE Grp, Houston, TX USA. RP Hakkinen, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM sirpa.hakkinen@nasa.gov FU NASA FX We thank the NASA Ocean Surface Topography Program and the Physical Oceanography Program for support. We also want to thank the anonymous reviewers for their constructive criticism. All data are publicly available from the www.reanalysis.org website and from NOAA/NODC data center (downloaded February 2014). UK Met Office EN4.0.2 data set is available from www.metoffice.gov.uk/hadobs/en4. NR 31 TC 4 Z9 4 U1 2 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2901 EP 2909 DI 10.1002/2015GL063299 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800043 ER PT J AU Yang, X Tang, JW Mustard, JF Lee, JE Rossini, M Joiner, J Munger, JW Kornfeld, A Richardson, AD AF Yang, Xi Tang, Jianwu Mustard, John F. Lee, Jung-Eun Rossini, Micol Joiner, Joanna Munger, J. William Kornfeld, Ari Richardson, Andrew D. TI Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE plant physiology; remote sensing; spectroscopy; chlorophyll fluorescence; gross primary production; carbon cycle ID GROSS PRIMARY PRODUCTION; SUN-INDUCED FLUORESCENCE; NET PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; TERRESTRIAL GROSS; SPECTRAL REFLECTANCE; VEGETATION INDEXES; CARBON-DIOXIDE; WATER-STRESS; MODELS AB Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r(2)=0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r(2)=0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r(2)=0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP. C1 [Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Yang, Xi; Tang, Jianwu] Marine Biol Lab, Ecosyst Ctr, Woods Hole, MA 02543 USA. [Rossini, Micol] Univ Milano Bicocca, Remote Sensing Environm Dynam Lab, DISAT, Milan, Italy. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Munger, J. William] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Munger, J. William] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Kornfeld, Ari] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Tang, JW (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. EM jtang@mbl.edu RI Tang, Jianwu/K-6798-2014; Richardson, Andrew/F-5691-2011; OI Tang, Jianwu/0000-0003-2498-9012; Richardson, Andrew/0000-0002-0148-6714; Rossini, Micol/0000-0002-6052-3140; Yang, Xi/0000-0002-5095-6735; Kornfeld, Ari/0000-0003-1646-307X FU Marine Biological Laboratory; Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences; U.S. Department of Energy Office of Biological and Environmental Research [DE-SC0006951]; National Science Foundation [DBI-959333, AGS-1005663, EF-1065029, DEB-1237491] FX We thank the Editor and three anonymous reviewers for the constructive comments. We thank Joe Berry for insightful suggestions on several versions of the manuscript, Christiaan van der Tol for sharing the SCOPE code, Pablo Zarco-Tejada for the help with the design of FluoSpec, Mark Vanscoy from Harvard Forest and Jerome Girard from MBL with the installation of FluoSpec, and Marc Mayes, Shalanda Grier, Will Werner, and Zhunqiao Liu for the help with fieldwork. We thank Harvard Forest Long-Term Ecological Research site to provide the space and help with the fieldwork, and the weather data used in this study. This research was supported by Marine Biological Laboratory start-up funding for J.T. and the Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences. J.T. was partially supported by the U.S. Department of Energy Office of Biological and Environmental Research grant DE-SC0006951 and the National Science Foundation grants DBI-959333 and AGS-1005663. A.D.R. acknowledges support from the National Science Foundation's Macrosystems Biology (award EF-1065029) and LTER (award DEB-1237491) programs. Meteorological data are downloaded from Harvard Forest LTER (http://harvardforest.fas.harvard.edu/). For the use of solar-induced fluorescence data, please contact Xi Yang (geoxiyang@gmail.com) or Jianwu Tang (jtang@mbl.edu). NR 59 TC 30 Z9 30 U1 28 U2 86 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2977 EP 2987 DI 10.1002/2015GL063201 PG 11 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800052 ER PT J AU Dhomse, SS Chipperfield, MP Feng, W Hossaini, R Mann, GW Santee, ML AF Dhomse, S. S. Chipperfield, M. P. Feng, W. Hossaini, R. Mann, G. W. Santee, M. L. TI Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Pinatubo; ozone; chemical modeling; satellite data ID CHEMICAL-TRANSPORT MODEL; STRATOSPHERIC OZONE; MT. PINATUBO; NORTHERN MIDLATITUDES; NO2; SIMULATIONS; VARIABILITY; SOUTHERN; IMPACT; RECORD AB Following the eruption of Mount Pinatubo, satellite and in situ measurements showed a large enhancement in stratospheric aerosol in both hemispheres, but significant midlatitude column O-3 depletion was observed only in the north. We use a three-dimensional chemical transport model to determine the mechanisms behind this hemispheric asymmetry. The model, forced by European Centre for Medium-Range Weather Forecasts ERA-Interim reanalyses and updated aerosol surface area density, successfully simulates observed large column NO2 decreases and the different extents of ozone depletion in the two hemispheres. The chemical ozone loss is similar in the Northern (NH) and Southern Hemispheres (SH), but the contrasting role of dynamics increases the depletion in the NH and decreases it in the SH. The relevant SH dynamics are not captured as well by earlier ERA-40 reanalyses. Overall, the smaller SH column O-3 depletion can be attributed to dynamical variability and smaller SH background lower stratosphere O-3 concentrations. C1 [Dhomse, S. S.; Chipperfield, M. P.; Feng, W.; Hossaini, R.; Mann, G. W.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Dhomse, S. S.; Chipperfield, M. P.] Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England. [Feng, W.; Mann, G. W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Santee, M. L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Dhomse, SS (reprint author), Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. EM S.S.Dhomse@leeds.ac.uk RI FENG, WUHU/B-8327-2008; Chipperfield, Martyn/H-6359-2013; Dhomse, Sandip/C-8198-2011 OI FENG, WUHU/0000-0002-9907-9120; Chipperfield, Martyn/0000-0002-6803-4149; Dhomse, Sandip/0000-0003-3854-5383 FU NERC SOLCLI project [NE/D002753/1]; NERC MAPLE project [NE/J008621/1]; NCEO; NASA FX This work was supported by the NERC SOLCLI (NE/D002753/1) and MAPLE (NE/J008621/1) projects and NCEO. We thank NASA/NOAA for TOMS, SBUV, MLS, and HALOE data. We are grateful for the use of the Lauder and Jungfraujoch NO2 data which was obtained via the NDACC database and WOUDC for the O3 data. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. We thank the two anonymous reviewers for their comments. NR 33 TC 6 Z9 6 U1 4 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 3038 EP 3047 DI 10.1002/2015GL063052 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800060 PM 27867234 ER PT J AU Ryoo, JM Waliser, DE Waugh, DW Wong, S Fetzer, EJ Fung, I AF Ryoo, Ju-Mee Waliser, Duane E. Waugh, Darryn W. Wong, Sun Fetzer, Eric J. Fung, Inez TI Classification of atmospheric river events on the US West Coast using a trajectory model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE atmospheric river event; precipitation; West Coast of the US; trajectory model; Potential vorticity; diabatic heating ID WARM CONVEYOR BELTS; EXTRATROPICAL CYCLONES; HEAVY PRECIPITATION; CLUSTER-ANALYSIS; UNITED-STATES; MOISTURE TRANSPORT; TROPICAL MOISTURE; UPPER TROPOSPHERE; SIERRA-NEVADA; NORTH PACIFIC AB We investigate transport pathways of water vapor associated with landfalling atmospheric river (AR) events that result in precipitation along the West Coast of the U.S. for winters of 1997-2010. The water vapor transport pathways are determined by computing back trajectories with a trajectory model using the Modern Era Retrospective analysis for Research and Applications reanalysis data set. The majority of AR events (86%) over the West Coast of the U.S. are grouped into three trajectory types, and two of them are closely associated with the AR events. We designate the first type as Ascending near landfall and of Tropical Origin (AT), the second type as Ascending near landfall and of Extratropical Origin (AE), and the third type as Descending or parallel near landfall and of Extratropical Origin (DE), which is accompanied but not directly associated with the AR events. The magnitude and spatial distribution of precipitation of a given AR event are found to be strongly determined by the type of trajectories. In general, AR events composed of both AT and AE trajectories have more frequent precipitation over a broad region of the western U.S. and AR events composed of both AT and DE trajectories have intense precipitation over the southwestern U.S. due to AT trajectories. AR events of AT-only trajectories have intense precipitation, especially over the northwestern U.S., but are less frequent compared to those of AT+AE trajectories. In addition, different patterns of trajectory types among AR events are closely linked to upper level potential vorticity (PV) anomalies; 66% of AR events are associated with anticyclonic Rossby wave breaking events. C1 [Ryoo, Ju-Mee] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. [Waliser, Duane E.; Wong, Sun; Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Waliser, Duane E.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Waugh, Darryn W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Fung, Inez] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Ryoo, JM (reprint author), NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. EM ju-mee.ryoo@nasa.gov RI Waugh, Darryn/K-3688-2016 OI Waugh, Darryn/0000-0001-7692-2798 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The MERRA data used for this study are available at the Modeling and Assimilation Data and information Services Center (MDISC, http://disc.sci.gsfc.nasa.gov/mdisc/), managed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We give sincere thanks to Jonathan Wright for providing the model. We thank Jinwon Kim for providing the Climate Prediction Center (CPC) gridded daily rain gauge precipitation data, and Paul Neiman for providing AR records until 2010. We also thank Bjorn Lambrigtsen for suggestions, Seungbeom Kim for helpful discussion and data processing, and three anonymous reviewers for useful comments. NR 64 TC 4 Z9 4 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3007 EP 3028 DI 10.1002/2014JD022023 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100001 ER PT J AU Oaida, CM Xue, YK Flanner, MG Skiles, SM De Sales, F Painter, TH AF Oaida, Catalina M. Xue, Yongkang Flanner, Mark G. Skiles, S. McKenzie De Sales, Fernando Painter, Thomas H. TI Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western US SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE snow; regional climate; aerosols; WRF; dust; black carbon ID GOCART MODEL; TEMPERATURE-GRADIENT; SPECTRAL ALBEDO; UNITED-STATES; GRAIN-GROWTH; SIMULATIONS; PARTICLES; ICE; COVER; CYCLE AB Two important factors that control snow albedo are snow grain growth and presence of light-absorbing impurities (aerosols) in snow. However, current regional climate models do not include such processes in a physically based manner in their land surface models. We improve snow albedo calculations in the Simplified Simple Biosphere (SSiB) land surface model coupled with the Weather Research and Forecasting (WRF) regional climate model (RCM), by incorporating the physically based SNow ICe And Radiative (SNICAR) scheme. SNICAR simulates snow albedo evolution due to snow aging and presence of aerosols in snow. The land surface model is further modified to account for deposition, movement, and removal by meltwater of such impurities in the snowpack. This paper presents model development technique, validation with in situ observations, and preliminary results from RCM simulations investigating the impact of such impurities in snow on surface energy and water budgets. By including snow-aerosol interactions, the new land surface model is able to realistically simulate observed snow albedo, snow grain size, dust in snow, and surface water and energy balances in offline simulations for a location in western U.S. Preliminary results with the fully coupled RCM show that over western U.S., realistic aerosol deposition in snow induces a springtime average radiative forcing of 16W/m(2) due to a 6% albedo reduction, a regional surface warming of 0.84 degrees C, and a snowpack reduction of 11mm. C1 [Oaida, Catalina M.; Xue, Yongkang] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Xue, Yongkang; Skiles, S. McKenzie; De Sales, Fernando; Painter, Thomas H.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA. [Flanner, Mark G.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Oaida, CM (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM oaidac@ucla.edu RI Flanner, Mark/C-6139-2011; Painter, Thomas/B-7806-2016 OI Flanner, Mark/0000-0003-4012-174X; FU NASA [NNX10A097G]; NSF [AGS-1115506, AGS-1346813]; UCLA Graduate Dissertation Year Fellowship FX We thank Mian Chin of NASA Goddard Space Flight Center and her group for providing the GOCART aerosol deposition data set for use in this study. Additional data used in this study are available from the corresponding author (oaidac@ucla.edu). This research was supported by NASA grant NNX10A097G, NSF grant AGS-1115506,, NSF grant AGS-1346813, and the UCLA Graduate Dissertation Year Fellowship. The WRF model simulations were conducted using NCAR supercomputing resources. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 68 TC 4 Z9 4 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3228 EP 3248 DI 10.1002/2014JD022444 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100015 ER PT J AU Lang, TJ Cummer, SA Petersen, D Flores-Rivera, L Lyons, WA MacGorman, D Beasley, W AF Lang, Timothy J. Cummer, Steven A. Petersen, Danyal Flores-Rivera, Lizxandra Lyons, Walter A. MacGorman, Donald Beasley, William TI Large charge moment change lightning on 31 May to 1 June 2013, including the El Reno tornadic storm SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE lightning; tornado; mesoscale convective system; charge moment change; supercell ID THUNDERSTORM ELECTRIFICATION; SEVERE WEATHER; MAPPING ARRAY; HIGH-PLAINS; SPRITES; RADAR; STEPS; PRECIPITATION; INITIATION; SUPERCELL AB On 31 May 2013, a line of severe tornadic thunderstorms (the El Reno event) developed during the local afternoon in central Oklahoma, USA. Within range of the Oklahoma Lightning Mapping Array, the evolution of the event can be separated into three distinct periods: an Early period (before 02:00 UTC on 1 June) when the storm consisted of discrete supercells, a Middle period (02:00-05:00 UTC) when the convection began merging into a linear feature and stratiform precipitation developed, and a Late period (after 05:00 UTC) featuring a mature mesoscale convective system (MCS). Each of these periods demonstrated distinct patterns in the large (>100Ckm) charge moment change (CMC) lightning that was produced. During the Early period, large-CMC positive cloud-to-ground (+CG) lightning was produced in the convective cores of supercells. These flashes were small in area (typically <500km(2)) and were commonly associated with a sloping midlevel positive charge region in the echo overhang on the storm's forward flank. The Middle period featured a population of larger +CMCs (>500km(2), >300Ckm) in the developing stratiform, similar to typical sprite-parent lightning in MCSs. During the Late period, convective large CMC +CGs ceased and instead large-CMC negative CGs were produced in and near the MCS convection. These flashes neutralized charge both in convection as well as in adjacent stratiform and anvil precipitation. The results suggest that the CMC metric has potential applications for studying tropospheric weather. C1 [Lang, Timothy J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cummer, Steven A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA. [Petersen, Danyal; Beasley, William] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Flores-Rivera, Lizxandra] Univ Puerto Rico, Mayaguez, PR USA. [Lyons, Walter A.] FMA Res Inc, Ft Collins, CO USA. [MacGorman, Donald] Natl Severe Storms Lab, Natl Ocean & Atmospher Adm, Norman, OK 73069 USA. RP Lang, TJ (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM timothy.j.lang@nasa.gov RI Cummer, Steven/A-6118-2008; OI Cummer, Steven/0000-0002-0002-0613; Lang, Timothy/0000-0003-1576-572X; MacGorman, Donald/0000-0002-2395-8196 FU Defense Advanced Research Projects Agency via the Nimbus program; NASA Marshall summer internship program; NASA Lightning Imaging Sensor project FX This research is dedicated in memory of Tim Samaras, his son Paul, and his colleague Carl Young, all of whom lost their lives in the El Reno tornado. Tim Samaras was a valuable collaborator on the Physical Origins of Coupling to the upper Atmosphere from Lightning (PhOCAL) project, and his contributions are greatly missed. The research presented here is part of PhOCAL, which is led by Duke University and funded by the Defense Advanced Research Projects Agency via the Nimbus program. Flores-Rivera's work on this case was supported by the NASA Marshall summer 2013 internship program and the NASA Lightning Imaging Sensor project. The authors gratefully acknowledge the valuable contributions of the NLDN data from Vaisala, Inc., which enables the geolocation of large-CMC events by the CMCN. NLDN data are available commercially from Vaisala (http://www.vaisala.com/en/products/thunderstormandlightningdetection-sy stems/Pages/NLDN.aspx). CMCN data are available upon request from co-author Steve Cummer (cummer@ee.duke.edu). OKLMA data are available upon request from co-authors Don MacGorman (don. macgorman@noaa.gov) or William Beasley (whb@ou.edu). MRMS mosaics are available from NSSL (http://www.nssl.noaa.gov). All IDL and Python scripts used to perform the analyses and create the plots in this report are available upon request from lead author Timothy Lang (timothy.j.lang@nasa.gov). IDL is available for purchase from http://www.exelisvis.com/ProductsServices/IDL.aspx. A free distribution of Python may be obtained from https://store.continuum.io/cshop/anaconda/. The views, opinions, and findings in this report are those of the authors and should not be construed as an official NASA, NOAA, or U.S. Government position, policy, or decision. NR 61 TC 2 Z9 2 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3354 EP 3369 DI 10.1002/2014JD022600 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100021 ER PT J AU Fan, JW Liu, YC Xu, KM North, K Collis, S Dong, XQ Zhang, GJ Chen, Q Kollias, P Ghan, SJ AF Fan, Jiwen Liu, Yi-Chin Xu, Kuan-Man North, Kirk Collis, Scott Dong, Xiquan Zhang, Guang J. Chen, Qian Kollias, Pavlos Ghan, Steven J. TI Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cumulus parameterization; scale aware; deep convection; cloud-resolving models; bin and bulk microphysics ID MESOSCALE MODEL MM5; PART I; CUMULUS ENSEMBLES; EXPLICIT SIMULATION; RESOLVING MODELS; SQUALL LINE; MASS FLUX; SENSITIVITY; PRECIPITATION; INTENSITY AB The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Z(e) in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. C1 [Fan, Jiwen; Liu, Yi-Chin; Kollias, Pavlos; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liu, Yi-Chin] Air Resources Board, Sacramento, CA USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [North, Kirk] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Collis, Scott] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Dong, Xiquan] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA. [Zhang, Guang J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Chen, Qian] Nanjing Univ Informat Sci & Technol, China Meteorol Adm, Key Lab Aerosol Cloud Precipitat, Nanjing, Jiangsu, Peoples R China. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Jiwen.fan@pnnl.gov RI Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Measurement, Global/C-4698-2015; Xu, Kuan-Man/B-7557-2013; OI Ghan, Steven/0000-0001-8355-8699; Xu, Kuan-Man/0000-0001-7851-2629; Dong, Xiquan/0000-0002-3359-6117; North, Kirk/0000-0002-1938-4046 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) [DE-AC02-06CH11357]; ARM Program; NASA Modeling, Analysis and Prediction program; DOE ASR [DE-SC0008468] FX Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Argonne National Laboratory's (ANL) work was supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), under contract DE-AC02-06CH11357 as part of the ARM Program. Kuan-Man Xu was supported by NASA Modeling, Analysis and Prediction program. Xiquan Dong was supported by DOE ASR project with award number DE-SC0008468 at University of North Dakota. The modeling data can be obtained by contacting Jiwen Fan (Jiwen.Fan@pnnl.gov). NARR reanalysis data were from the NOAA/OAR/ESRL Colorado, at the website http://www.esrl.noaa.gov/psd/. NCEP FNL Operational Model Global Tropospheric Analyses were obtained by National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2000), http://dx.doi.org/10.5065/D6M043C6. CPOL radar data and derived products were provided by Peter May at the Centre for Australian Weather and Climate Research and the Australian Bureau of Meteorology; 3-D multi-Doppler wind field from the MC3E were provided by Kirk North at McGill University, Canada; 3-D dual-Doppler wind field from the TWP-ICE were developed by Scott Collis at Argonne National Laboratory. Aircraft measurement and NEXRAD radar were provide by Xiquan Dong at University of North Dakota; ABRFC precipitation data were download from ARM Data Archive, http://www.archive.arm.gov/armlogin/login.jsp. NR 81 TC 8 Z9 8 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3485 EP 3509 DI 10.1002/2014JD022142 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100028 ER PT J AU Liu, YC Fan, JW Zhang, GJ Xu, KM Ghan, SJ AF Liu, Yi-Chin Fan, Jiwen Zhang, Guang J. Xu, Kuan-Man Ghan, Steven J. TI Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cumulus parameterization; scale aware; cloud-resolving model; eddy transport; top-hat approach ID BULK MICROPHYSICS PARAMETERIZATION; SCHUBERT CUMULUS PARAMETERIZATION; PART II; EXPLICIT SIMULATION; ENSEMBLE MODEL; AGGREGATION; STATISTICS; DOWNDRAFTS AB Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales. C1 [Liu, Yi-Chin; Fan, Jiwen; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Guang J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jiwen.fan@pnnl.gov RI Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Measurement, Global/C-4698-2015; Xu, Kuan-Man/B-7557-2013 OI Ghan, Steven/0000-0001-8355-8699; Xu, Kuan-Man/0000-0001-7851-2629 FU Scientific Discovery through Advanced Computing program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; NASA Modeling, Analysis and Prediction Program FX Support for this work was provided through Scientific Discovery through Advanced Computing program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Kuan-Man Xu was supported by the NASA Modeling, Analysis and Prediction Program. The authors would like to thank Heng Xiao, Kyo-Sun Lim, and Zhe Feng from PNNL for their valuable discussion. The data used in this study were produced by the Pacific Northwest National Laboratory (PNNL) and are stored on PNNL Olympus. They will be available upon request by contacting the corresponding author. NR 36 TC 7 Z9 7 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3510 EP 3532 DI 10.1002/2014JD022145 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100029 ER PT J AU Huang, M Bowman, KW Carmichael, GR Lee, M Chai, TF Spak, SN Henze, DK Darmenov, AS da Silva, AM AF Huang, Min Bowman, Kevin W. Carmichael, Gregory R. Lee, Meemong Chai, Tianfeng Spak, Scott N. Henze, Daven K. Darmenov, Anton S. da Silva, Arlindo M. TI Improved western US background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review DE background ozone; nonlocal and local source contributions; multi-scale modeling and assimilation; Aura TES and OMI; NASA ARCTAS campaign ID CHEMICAL-DATA ASSIMILATION; LONG-TERM CHANGES; AIR-QUALITY; UNITED-STATES; TROPOSPHERIC OZONE; ATMOSPHERIC COMPOSITION; NORTH-AMERICA; MONITORING INSTRUMENT; EMISSION CONTROLS; OBSERVED RESPONSE AB Western U.S. near-surface ozone (O-3) concentrations are sensitive to transported background O-3 from the eastern Pacific free troposphere, as well as U.S. anthropogenic and natural emissions. The current 75ppbv U.S. O-3 primary standard may be lowered soon, hence accurately estimating O-3 source contributions, especially background O-3 in this region has growing policy-relevant significance. In this study, we improve the modeled total and background O-3, via repartitioning and redistributing the contributions from nonlocal and local anthropogenic/wildfires sources in a multi-scale satellite data assimilation system containing global Goddard Earth Observing System-Chemistry model (GEOS-Chem) and regional Sulfur Transport and dEposition Model (STEM). Focusing on NASA's ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) field campaign period in June-July 2008, we first demonstrate that the negative biases in GEOS-Chem free simulation in the eastern Pacific at 400-900hPa are reduced via assimilating Aura-Tropospheric Emission Spectrometer (TES) O-3 profiles. Using the TES-constrained boundary conditions, we then assimilated into STEM the tropospheric nitrogen dioxide (NO2) columns from Aura-Ozone Monitoring Instrument to indicate U.S. nitrogen oxides (NOx=NO2+NO) emissions at 12x12km(2) grid scale. Improved model skills are indicated from cross validation against independent ARCTAS measurements. Leveraging Aura observations, we show anomalously high wildfire NOx emissions in this summer in Northern California and the Central Valley while lower anthropogenic emissions in multiple urban areas than those representing the year of 2005. We found strong spatial variability of the daily maximum 8h average background O-3 and its contribution to the modeled total O-3, with the mean value of similar to 48ppbv (similar to 77% of the total). C1 [Huang, Min; Bowman, Kevin W.; Lee, Meemong] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Carmichael, Gregory R.; Spak, Scott N.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Chai, Tianfeng] NOAA, Air Resources Lab, College Pk, MD USA. [Spak, Scott N.] Univ Iowa, Publ Policy Ctr, Iowa City, IA USA. [Henze, Daven K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Darmenov, Anton S.; da Silva, Arlindo M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Huang, M (reprint author), George Mason Univ, Spatial Informat Sci & Syst Ctr, Fairfax, VA 22030 USA. EM mhuang10@gmu.edu RI Spak, Scott/B-7331-2008; Chai, Tianfeng/E-5577-2010; Chem, GEOS/C-5595-2014 OI Spak, Scott/0000-0002-8545-1411; Chai, Tianfeng/0000-0003-3520-2641; FU NASA; NASA Aura-TES project FX This work was mostly carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, supported by the NASA Aura-TES project. We thank the Aura and ARCTAS science teams. G.R.C., D.K.H., and M.H. would like to acknowledge the NASA Air Quality Applied Sciences Team. The DC-8 aircraft measurements used in this study were made by A.J. Weinheimer (NCAR, O3, and NOxy) and R.C. Cohen (UC Berkeley, NO2). We also acknowledge the computational resources at University of Iowa and at NASA Ames Research Center. We also acknowledge open access to the data and model used for this study, downloaded from the following:; AQS: http://www.epa.gov/ttn/airs/airsaqs/detaildata; CASTNET: http://epa.gov/castnet/javaweb/index.html; DC-8: http://www-air.larc.nasa.gov/cgi-bin/arcstat-c; OMI: http://www.temis.nl/airpollution/no2col/data/omi/data_v2/2008/; TES: http://tes.jpl.nasa.gov/data/; M2O2: http://wiki.seas.harvard.edu/geos-chem/index.php/Multi-mission_Observati on_Operator_%28M2O2%29 (C) 2015. All rights reserved.; Ozonesondes: http://www.esrl.noaa.gov/gmd/dv/ftpdata.html NR 120 TC 2 Z9 2 U1 4 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3572 EP 3592 DI 10.1002/2014JD022993 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100032 ER PT J AU Lau, RM Herter, TL Morris, MR Li, Z Adams, D AF Lau, R. M. Herter, T. L. Morris, M. R. Li, Z. Adams, D. TI Old supernova dust factory revealed at the Galactic center SO SCIENCE LA English DT Article ID SAGITTARIUS-A-EAST; PASCHEN-ALPHA SURVEY; II REGION COMPLEX; INTERSTELLAR-MEDIUM; SPACE-TELESCOPE; DATA REDUCTION; EARLY UNIVERSE; HIGH-REDSHIFT; ARRAY CAMERA; EVOLUTION AB Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of similar to 0.02 solar masses of warm (similar to 100 kelvin) dust seen near the center of the similar to 10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density similar to 10(3) centimeters(-3)) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe. C1 [Lau, R. M.; Herter, T. L.; Adams, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Li, Z.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Adams, D.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron SOFIA Sci Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. RP Lau, RM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM ryanl@astro.cornell.edu FU Recruitment Program of Global Youth Experts; USRA under NASA [NAS2-97001]; Deutsches SOFIA Institut under DLR [50 OK 0901]; NASA [8500-98-014] FX We thank the rest of the FORCAST team, M. Hankins, G. Gull, J. Schoenwald, and C. Henderson, the Universities Space Research Association (USRA) Science and Mission Ops teams, and the entire SOFIA staff. Additionally, we thank E. Dwek and the anonymous referees for their insightful comments. Z.L. acknowledges support from the Recruitment Program of Global Youth Experts. This work is based on observations made with the NASA/German Aerospace Center (DLR) SOFIA. SOFIA science mission operations are conducted jointly by the USRA (under NASA contract NAS2-97001) and the Deutsches SOFIA Institut (under DLR contract 50 OK 0901). Financial support for FORCAST was provided by NASA through award 8500-98-014 issued by USRA. Data presented in this paper can be accessed from supplementary materials data S1 (23). NR 38 TC 12 Z9 12 U1 0 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 24 PY 2015 VL 348 IS 6233 BP 413 EP 418 DI 10.1126/science.aaa2208 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG5NF UT WOS:000353338000028 PM 25791082 ER PT J AU Wang, DT Gruen, DS Lollar, BS Hinrichs, KU Stewart, LC Holden, JF Hristov, AN Pohlman, JW Morrill, PL Konneke, M Delwiche, KB Reeves, EP Sutcliffe, CN Ritter, DJ Seewald, JS McIntosh, JC Hemond, HF Kubo, MD Cardace, D Hoehler, TM Ono, S AF Wang, David T. Gruen, Danielle S. Lollar, Barbara Sherwood Hinrichs, Kai-Uwe Stewart, Lucy C. Holden, James F. Hristov, Alexander N. Pohlman, John W. Morrill, Penny L. Koenneke, Martin Delwiche, Kyle B. Reeves, Eoghan P. Sutcliffe, Chelsea N. Ritter, Daniel J. Seewald, Jeffrey S. McIntosh, Jennifer C. Hemond, Harold F. Kubo, Michael D. Cardace, Dawn Hoehler, Tori M. Ono, Shuhei TI Nonequilibrium clumped isotope signals in microbial methane SO SCIENCE LA English DT Article ID HYDROTHERMAL FLUIDS; BIOGENIC METHANE; HYDROGEN; FRACTIONATION; CARBON; BASIN; GAS; REDUCTION; WATER; OXIDATION AB Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (CH3D)-C-13) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (CH3D)-C-13 abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H-2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. C1 [Wang, David T.; Gruen, Danielle S.; Reeves, Eoghan P.; Ono, Shuhei] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Wang, David T.; Gruen, Danielle S.; Seewald, Jeffrey S.] Woods Hole Oceanog Inst, Marine Chem & Geochem Dept, Woods Hole, MA 02543 USA. [Lollar, Barbara Sherwood; Sutcliffe, Chelsea N.] Univ Toronto, Dept Earth Sci, Toronto, ON M5S 3B1, Canada. [Hinrichs, Kai-Uwe; Koenneke, Martin] Univ Bremen, MARUM Ctr Marine Environm Sci, D-28359 Bremen, Germany. [Hinrichs, Kai-Uwe; Koenneke, Martin] Univ Bremen, Dept Geosci, D-28359 Bremen, Germany. [Stewart, Lucy C.; Holden, James F.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Hristov, Alexander N.] Penn State Univ, Dept Anim Sci, University Pk, PA 16802 USA. [Pohlman, John W.] US Geol Survey, Woods Hole Coastal & Marine Sci Ctr, Woods Hole, MA 02543 USA. [Morrill, Penny L.] Mem Univ Newfoundland, Dept Earth Sci, St John, NF A1B 3X5, Canada. [Delwiche, Kyle B.; Hemond, Harold F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Ritter, Daniel J.; McIntosh, Jennifer C.] Univ Arizona, Det Hydrol & Water Resources, Tucson, AZ 85721 USA. [Kubo, Michael D.; Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cardace, Dawn] Univ Rhode Isl, Dept Geosci, Kingston, RI 02881 USA. RP Ono, S (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM sono@mit.edu RI Hinrichs, Kai-Uwe/C-7675-2009; Reeves, Eoghan/M-3542-2013; OI Hinrichs, Kai-Uwe/0000-0002-0739-9291; Reeves, Eoghan/0000-0003-0146-0714; Wang, David/0000-0002-2656-8951; Stewart, Lucy/0000-0001-7352-3329 FU NSF [EAR-1250394, EAR-1322805]; N. R. Braunsdorf and D. J. H. Smit of Shell PTI/EG; Deep Carbon Observatory; Natural Sciences and Engineering Research Council of Canada; Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft [HI 616-14-1]; National Defense Science and Engineering Graduate Fellowship; Neil a nd Anna Rasmussen Foundation Fund; Grayce B. Kerr Fellowship; Shell-MITEI Graduate Fellowship FX We thank J. Hayes, R. Summons, A. Whitehill, S. Zaarur, C. Ruppel, L. T. Bryndzia, N. Blair, D. Vinson, K. Nealson, and M. Schrenk for discussions; W. Olszewski, D. Nelson, G. Lacrampe-Couloume, and B. Topcuoglu for technical assistance; A. Whitehill, G. Luo, A. Apprill, K. Twing, W. Brazelton, A. Wray, J. Oh, A. Rowe, G. Chadwick, and A. Rietze for assistance in the field; R. Michener for the delta Dwater analyses; L. T. Bryndzia (Shell) for providing the shale gas samples; R. Dias (USGS) for sharing the NGS samples; and R. Raiche, D. McCrory, S. Moore (HomestakeMining Co.), the staff of the McLaughlin Natural Reserve, and the well operators for access to samples. Grants from the NSF (EAR-1250394 to S.O. and EAR-1322805 to J.C.M.), N. R. Braunsdorf and D. J. H. Smit of Shell PTI/EG (to S.O.), the Deep Carbon Observatory (to S.O., B. S. L., M.K., and K.-U.H.), the Natural Sciences and Engineering Research Council of Canada (to B. S. L.), and the Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft (HI 616-14-1 to K.-U.H. and M.K.) supported this study. D. T. W. was supported by a National Defense Science and Engineering Graduate Fellowship. D. S. G. was supported by the Neil a nd Anna Rasmussen Foundation Fund, the Grayce B. Kerr Fellowship, and a Shell-MITEI Graduate Fellowship. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. All data used to support the conclusions in this manuscript are provided in the supplementary materials. Author contributions: D. T. W. and S.O. developed the methods, analyzed data, and performed modeling. D. T. W. and D. S. G. performed isotopic analyses. D. S. G., L.C.S., J.F.H., M.K., K.-U.H., and S.O. designed and/or conducted microbiological experiments. D. T. W., D. S. G., B. S. L., P.L.M., K. B. D., A. N. H., C.N.S., M.D.K., D. J. R., J.C.M., D.C., and S.O. designed and/or executed the field-sampling campaigns. D.T.W. and S.O. wrote the manuscript with input from all authors. NR 34 TC 28 Z9 28 U1 14 U2 109 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 24 PY 2015 VL 348 IS 6233 BP 428 EP 431 DI 10.1126/science.aaa4326 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG5NF UT WOS:000353338000032 PM 25745067 ER PT J AU Zhao, MH Ming, B Kim, JW Gibbons, LJ Gu, XH Nguyen, T Park, C Lillehei, PT Villarrubia, JS Vladar, AE Liddle, JA AF Zhao, Minhua Ming, Bin Kim, Jae-Woo Gibbons, Luke J. Gu, Xiaohong Nguyen, Tinh Park, Cheol Lillehei, Peter T. Villarrubia, J. S. Vladar, Andras E. Liddle, J. Alexander TI New insights into subsurface imaging of carbon nanotubes in polymer composites via scanning electron microscopy (vol 26, 085703, 2015) SO NANOTECHNOLOGY LA English DT Correction C1 [Zhao, Minhua; Liddle, J. Alexander] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Ming, Bin; Villarrubia, J. S.; Vladar, Andras E.] NIST, Phys Measurement Lab, Gaithersburg, MD 20899 USA. [Gu, Xiaohong; Nguyen, Tinh] NIST, Engn Lab, Gaithersburg, MD 20899 USA. [Kim, Jae-Woo; Park, Cheol; Lillehei, Peter T.] NASA Langley Res Ctr, Hampton, VA USA. [Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA USA. [Gibbons, Luke J.] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Zhao, Minhua] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Zhao, MH (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RI Kim, Jae-Woo/A-8314-2008; Liddle, James/A-4867-2013 OI Liddle, James/0000-0002-2508-7910 NR 1 TC 1 Z9 1 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 24 PY 2015 VL 26 IS 16 AR 169601 DI 10.1088/0957-4484/26/16/169601 PG 1 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CG2MU UT WOS:000353109600019 ER PT J AU Cohen, JD Meenehan, SM MacCabe, GS Groblacher, S Safavi-Naeini, AH Marsili, F Shaw, MD Painter, O AF Cohen, Justin D. Meenehan, Sean M. MacCabe, Gregory S. Groeblacher, Simon Safavi-Naeini, Amir H. Marsili, Francesco Shaw, Matthew D. Painter, Oskar TI Phonon counting and intensity interferometry of a nanomechanical resonator SO NATURE LA English DT Article ID QUANTUM; NOISE; LASER AB In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms(1) to secure quantum communication(2). Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss(3) to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light(4). As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes(5), as well as to develop technologies for precision sensing(6) and quantum information processing(7,8). Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser(9). Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled(10), including the generation and heralding of single-phonon Fock states(11) and the quantum entanglement of remote mechanical elements(12,13). C1 [Cohen, Justin D.; Meenehan, Sean M.; MacCabe, Gregory S.; Groeblacher, Simon; Painter, Oskar] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA. [Cohen, Justin D.; Meenehan, Sean M.; MacCabe, Gregory S.; Groeblacher, Simon; Safavi-Naeini, Amir H.; Painter, Oskar] CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA. [Groeblacher, Simon] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol VCQ, A-1090 Vienna, Austria. [Safavi-Naeini, Amir H.] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. [Marsili, Francesco; Shaw, Matthew D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Painter, O (reprint author), CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA. EM opainter@caltech.edu FU DARPA; Institute for Quantum Information and Matter; NSF Physics Frontiers Center; Gordon and Betty Moore Foundation; Kavli Nanoscience Institute at Caltech; NASA; NSERC; Marie Curie International Out-going Fellowship within the 7th European Community Framework Programme FX We thank F. Marquardt and A. G. Krause for discussions, and V. B. Verma, R. P. Miriam and S. W. Nam for their help with the single-photon detectors used in this work. This work was supported by the DARPA ORCHID and MESO programmes, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with the support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. A.H.S.-N. acknowledges support from NSERC. S.G. was supported by a Marie Curie International Out-going Fellowship within the 7th European Community Framework Programme. NR 28 TC 34 Z9 34 U1 13 U2 68 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 23 PY 2015 VL 520 IS 7548 BP 522 EP 525 DI 10.1038/nature14349 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG5LX UT WOS:000353334500038 PM 25903632 ER PT J AU Marsat, S AF Marsat, Sylvain TI Cubic-order spin effects in the dynamics and gravitational wave energy flux of compact object binaries SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE gravitational waves; black holes; post-Newtonian theory ID POST-NEWTONIAN EXPANSION; ROTATING BLACK-HOLE; GENERAL-RELATIVITY; RADIATION; BODIES; FIELD; PARTICLES; EQUATIONS; MOTION AB We investigate cubic-in-spin effects for inspiralling compact object binaries, both in the dynamics and in the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it to cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e. in the case where the rotation of the compact object is solely responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter at the third-and-a-half post-Newtonian order, and can be important for binaries involving rapidly spinning black holes. We provide simplified results for spin-aligned circular orbits, and discuss the quantitative importance of the new contributions. C1 [Marsat, Sylvain] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Marsat, Sylvain] Univ Maryland, Joint Space Sci Ctr, Dept Phys, College Pk, MD 20742 USA. [Marsat, Sylvain] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Marsat, S (reprint author), Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. EM smarsat@umd.edu FU NASA [11-ATP-046]; NASA at the University of Maryland College Park [NNX12AN10G] FX I am grateful to Luc Blanchet, Alessandra Buonanno, Guillaume Faye, Tanja Hinderer, Jan Steinhoff and Michele Levi for useful discussions and comments. This work was supported by the NASA grant 11-ATP-046, as well as the NASA grant NNX12AN10G at the University of Maryland College Park. Some of our computations were done using Mathematica (R) and the symbolic tensor calculus package xAct [103]. NR 82 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 23 PY 2015 VL 32 IS 8 AR 085008 DI 10.1088/0264-9381/32/8/085008 PG 35 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CF1KW UT WOS:000352305100009 ER PT J AU Trail, MA Tsimpidi, AP Liu, P Tsigaridis, K Hu, YT Rudokas, JR Miller, PJ Nenes, A Russell, AG AF Trail, Marcus A. Tsimpidi, Alexandra P. Liu, Peng Tsigaridis, Kostas Hu, Yongtao Rudokas, Jason R. Miller, Paul J. Nenes, Athanasios Russell, Armistead G. TI Impacts of Potential CO2-Reduction Policies on Air Quality in the United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FUTURE CLIMATE-CHANGE; HUMAN HEALTH; ENERGY; EMISSIONS; POLLUTION; BENEFITS; OZONE; MODEL; SCENARIOS; VERSION AB Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NO reduction technologies, resulting in an O-3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O-3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities. C1 [Trail, Marcus A.; Tsimpidi, Alexandra P.; Liu, Peng; Hu, Yongtao; Russell, Armistead G.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Liu, Peng; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Tsigaridis, Kostas] NASA Goddard Inst Space Studies, New York, NY 10025 USA. [Rudokas, Jason R.; Miller, Paul J.] Northeast States Coordinated Air Use Management, Boston, MA 02111 USA. [Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Trail, MA (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM mcus2rail@gmail.com RI Hu, Yongtao/H-7543-2016 OI Hu, Yongtao/0000-0002-5161-0592 FU US EPA [EPA-G2008-STAR-J1]; CDC; NASA FX Although this work was supported, in part, by grants from the US EPA (EPA-G2008-STAR-J1), CDC and NASA, reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply their endorsement or recommendation. The views and opinions of authors expressed herein are those of the authors and do not necessarily state or reflect those of the United States Government. NR 40 TC 6 Z9 7 U1 7 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 21 PY 2015 VL 49 IS 8 BP 5133 EP 5141 DI 10.1021/acs.est.5b00473 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CG9BV UT WOS:000353610300042 PM 25811418 ER PT J AU Jones, SF Blain, AW Lonsdale, C Condon, J Farrah, D Stern, D Tsai, CW Assef, RJ Bridge, C Kimball, A Lacy, M Eisenhardt, P Wu, JW Jarrett, T AF Jones, Suzy F. Blain, Andrew W. Lonsdale, Carol Condon, James Farrah, Duncan Stern, Daniel Tsai, Chao-Wei Assef, Roberto J. Bridge, Carrie Kimball, Amy Lacy, Mark Eisenhardt, Peter Wu, Jingwen Jarrett, Tom TI Submillimetre observations of WISE/radio-selected AGN and their environments SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: clusters: general; galaxies: high-redshift; quasars: general; infrared: galaxies; submillimetre: galaxies ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; REDSHIFT RADIO GALAXIES; DEGREE EXTRAGALACTIC SURVEY; SUPERMASSIVE BLACK-HOLES; STAR-FORMING GALAXIES; POINT-SOURCE CATALOG; WARM IRAS SOURCES; DEEP FIELD SOUTH AB We present JCMT SCUBA-2 850 mu m submillimetre (submm) observations of 30 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected jointly by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs) and compact radio counterparts. Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. These galaxies appear to be consistent with a later AGN-dominated phase of merging galaxies, while hot, dust-obscured galaxies are an earlier starburst-dominated phase. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 5, but no sign of radial clustering centred at our primary objects. The WISE/radio-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE/radio-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 mu m observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets are not detected, only four targets are detected at SCUBA-2 850 mu m, and have total IR luminosities >= 10(13) L-circle dot, if their redshifts are consistent with the subset of the 10 SCUBA-2 undetected targets with known redshifts, z similar to 0.44-2.86. C1 [Jones, Suzy F.; Blain, Andrew W.] Univ Leicester, Dept Phys & Astron, XROA, Leicester LE1 7RH, Leics, England. [Lonsdale, Carol; Condon, James; Lacy, Mark] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Farrah, Duncan] Virginia Polytech Inst & State Univ, Dept Phys MC 0435, Blacksburg, VA 24061 USA. [Stern, Daniel; Tsai, Chao-Wei; Eisenhardt, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Assef, Roberto J.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Santiago, Chile. [Bridge, Carrie] Calif Inst Technol MS249 17, Pasadena, CA 91125 USA. [Kimball, Amy] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Wu, Jingwen] Univ Calif Los Angeles, Div Phys & Astron, Los Angeles, CA 90095 USA. [Jarrett, Tom] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. RP Jones, SF (reprint author), Univ Leicester, Dept Phys & Astron, XROA, Univ Rd, Leicester LE1 7RH, Leics, England. EM sfj8@le.ac.uk FU University of Leicester Physics & Astronomy Department; National Aeronautics and Space Administration; Canada Foundation for Innovation; Gemini-CONICYT [32120009]; [M12BU07]; [M13BU02] FX SFJ gratefully acknowledges support from the University of Leicester Physics & Astronomy Department. This publication makes use of data products from the WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.; The James Clerk Maxwell Telescope has historically been operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada and the Netherlands Organization for Scientific Research. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. The programme IDs under which the data were obtained were M12BU07 and M13BU02.; RJA was supported by Gemini-CONICYT grant number 32120009. NR 101 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2015 VL 448 IS 4 BP 3325 EP 3338 DI 10.1093/mnras/stv214 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0WF UT WOS:000351529500026 ER PT J AU De Marco, O Long, J Jacoby, GH Hillwig, T Kronberger, M Howell, SB Reindl, N Margheim, S AF De Marco, Orsola Long, J. Jacoby, George H. Hillwig, T. Kronberger, M. Howell, Steve B. Reindl, N. Margheim, Steve TI Identifying close binary central stars of PN with Kepler SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; binaries: close; stars: evolution; planetary nebulae: individual: J193110888+4324577; planetary nebulae: individual: Kn 61; planetary nebulae: individual: Pa 5 ID DIGITAL SKY SURVEY; INTERMEDIATE-MASS STARS; COMMON-ENVELOPE PHASE; SUBLUMINOUS-B-STARS; GIANT BRANCH STARS; SOLAR-TYPE STARS; NEBULA NGC 6826; PLANETARY-NEBULAE; WHITE-DWARFS; STELLAR EVOLUTION AB Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three of which are newly identified. Of the five central stars of PN with useful Kepler data, one, J193110888+4324577, is the first short-period, post-common envelope binary exhibiting relativistic beaming effects. A second, the central star of the newly identified PN Pa 5, has a rare O(He) spectral type and a periodic variability consistent with an evolved companion, where the orbital axis is almost aligned with the line of sight. The third PN, NGC 6826, has a fast rotating central star, something that can only be achieved in a merger. Fourth, the central star of the newly identified PN Kn 61, has a PG1159 spectral type and a mysterious semi-periodic light variability which we conjecture to be related to the interplay of binarity with a stellar wind. Finally, the central star of the circular PN A61 does not appear to have a photometric variability above 2 mmag. With the possible exception of the variability of Kn 61, all other variability behaviour, would not easily have been detected from the ground. We conclude, based on very low numbers, that there may be many more close binary or close binary products to be discovered with ultra-high-precision photometry. With a larger number of high-precision photometric observations, we will be able to determine how much higher than the currently known 15 per cent, the short-period binary fraction for central stars of PN is likely to be. C1 [De Marco, Orsola] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [De Marco, Orsola] Macquarie Univ, Astron Astrophys & Astrophoton Res Ctr, Sydney, NSW 2109, Australia. [Long, J.; Jacoby, George H.] Giant Magellan Telescope Carnegie Observ, Pasadena, CA 91101 USA. [Hillwig, T.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Kronberger, M.] Deep Sky Hunters Collaborat, Pasadena, CA USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Reindl, N.] Univ Tubingen, D-72074 Tubingen, Germany. [Reindl, N.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany. [Margheim, Steve] Southern Operat Ctr, Gemini Observ, La Serena, Chile. RP De Marco, O (reprint author), Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. EM orsola.demarco@mq.edu.au OI Hillwig, Todd/0000-0002-0816-1090 FU NASA [NNX12AC86G]; Carnegie Observatories, Pasadena, CA; NASA Science Mission directorate; Australian Research Council [FT120100452]; National Science Foundation [AST-1109683]; German Research Foundation (DFG) [WE 1312/41-1] FX This research was supported in part by NASA grant NNX12AC86G, and by the Carnegie Observatories, Pasadena, CA and includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This research made use of PYKE (Still & Barclay 2012), a software package for the reduction and analysis of Kepler data. This open source software project is developed and distributed by the NASA Kepler Guest Observer Office. This research also made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This material is based in part upon work supported by the Australian Research Council Future Fellowship (OD; Grant No. FT120100452), the National Science Foundation under Grant No. AST-1109683 (TH and OD). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NRis supported by the German Research Foundation (DFG, grant WE 1312/41-1). NR 103 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2015 VL 448 IS 4 BP 3587 EP 3602 DI 10.1093/mnras/stv249 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0WF UT WOS:000351529500050 ER PT J AU Eardley, E Peacock, JA McNaught-Roberts, T Heymans, C Norberg, P Alpaslan, M Baldry, I Bland-Hawthorn, J Brough, S Cluver, ME Driver, SP Farrow, DJ Liske, J Loveday, J Robotham, ASG AF Eardley, E. Peacock, J. A. McNaught-Roberts, T. Heymans, C. Norberg, P. Alpaslan, M. Baldry, I. Bland-Hawthorn, J. Brough, S. Cluver, M. E. Driver, S. P. Farrow, D. J. Liske, J. Loveday, J. Robotham, A. S. G. TI Galaxy And Mass Assembly (GAMA): the galaxy luminosity function within the cosmic web SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: luminosity function, mass function; cosmology: observations; large-scale structure of Universe ID DARK-MATTER HALOES; DIGITAL SKY SURVEY; REDSHIFT SURVEY; STAR-FORMATION; ENVIRONMENT; DEPENDENCE; EVOLUTION; CLASSIFICATION; STATISTICS; FILAMENTS AB We investigate the dependence of the galaxy luminosity function on geometric environment within the Galaxy And Mass Assembly (GAMA) survey. The tidal tensor prescription, based on the Hessian of the pseudo-gravitational potential, is used to classify the cosmic web and define the geometric environments: for a given smoothing scale, we classify every position of the surveyed region, 0.04 < z < 0.26, as either a void, a sheet, a filament or a knot. We consider how to choose appropriate thresholds in the eigenvalues of the Hessian in order to partition the galaxies approximately evenly between environments. We find a significant variation in the luminosity function of galaxies between different geometric environments; the normalization, characterized by phi* in a Schechter function fit, increases by an order of magnitude from voids to knots. The turnover magnitude, characterized by M*, brightens by approximately 0.5 mag from voids to knots. However, we show that the observed modulation can be entirely attributed to the indirect local-density dependence. We therefore find no evidence of a direct influence of the cosmic web on the galaxy luminosity function. C1 [Eardley, E.; Peacock, J. A.; Heymans, C.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [McNaught-Roberts, T.; Norberg, P.; Farrow, D. J.] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Alpaslan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Baldry, I.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool L3 5RF, Merseyside, England. [Bland-Hawthorn, J.] Univ Sydney, Sydney Inst Astron, Sch Phys A28, Sydney, NSW 2006, Australia. [Brough, S.] Australian Astron Observ, N Ryde, NSW 1670, Australia. [Cluver, M. E.] Univ Western Cape, Dept Phys, ZA-7530 Bellville, South Africa. [Driver, S. P.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Farrow, D. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Liske, J.] European So Observ, D-85748 Garching, Germany. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Driver, S. P.; Robotham, A. S. G.] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia. RP Eardley, E (reprint author), Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM ee@roe.ac.uk RI Driver, Simon/H-9115-2014; OI Driver, Simon/0000-0001-9491-7327; Liske, Jochen/0000-0001-7542-2927; Robotham, Aaron/0000-0003-0429-3579; Alpaslan, Mehmet/0000-0003-0321-1033; Baldry, Ivan/0000-0003-0719-9385 FU Science and Technology Facilities Council; ERC [DEGAS-259586, DEGAS- 259586]; ERC under the EC [240185]; Royal Society through the award of a University Research Fellowship; STFC (UK); ARC (Australia); AAO; Spanish MultiDark Consolider Project [CSD2009-00064] FX EE acknowledges support from the Science and Technology Facilities Council. TMR acknowledges support from a ERC Starting Grant (DEGAS-259586). CH acknowledges support from the ERC under the EC FP7 grant number 240185. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the ERC, through receipt of a Starting Grant (DEGAS- 259586). Data used in this paper will be available through the GAMA DB (http://www.gama-survey.org/) once the associated redshifts are publicly released. GAMA is a joint European-Australian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KIDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is littp://www.gama-survey.org/.; The MultiDark Database used in this paper and the web application providing online access to it were constructed as part of the activities of the German Astrophysical Virtual Observatory as result of a collaboration between the Leibniz-Institute for Astrophysics Potsdam (AIP) and the Spanish MultiDark Consolider Project CSD2009-00064. The Bolshoi and MultiDark simulations were run on the NASA's Pleiades supercomputer at the NASA Ames Research Center. The MultiDark-Planck (MDPL) and the BigMD simulation suite have been performed in the Supermuc supercomputer at LRZ using time granted by PRACE. NR 51 TC 14 Z9 14 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2015 VL 448 IS 4 BP 3665 EP 3678 DI 10.1093/mnras/stv237 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0WF UT WOS:000351529500054 ER PT J AU Ancel, E Shih, AT Jones, SM Reveley, MS Luxhoj, JT Evans, JK AF Ancel, Ersin Shih, Ann T. Jones, Sharon M. Reveley, Mary S. Luxhoj, James T. Evans, Joni K. TI Predictive safety analytics: inferring aviation accident shaping factors and causation SO JOURNAL OF RISK RESEARCH LA English DT Article DE object-oriented Bayesian network; aviation safety risk; accident causation AB This paper illustrates the development of an object-oriented Bayesian network (OOBN) to integrate the safety risks contributing to an in-flight loss-of-control aviation accident. With the creation of a probabilistic model, inferences about changes to the states of the accident shaping or causal factors can be drawn quantitatively. These predictive safety inferences derive from qualitative reasoning to conclusions based on data, assumptions, and/or premises, and enable an analyst to identify the most prominent causal factors leading to a risk factor prioritization. Such an approach facilitates a mitigation portfolio study and assessment. The model also facilitates the computation of sensitivity values based on perturbations to the estimates in the conditional probability tables. Such computations lead to identifying the most sensitive causal factors with respect to an accident probability. This approach may lead to vulnerability discovery of emerging causal factors for which mitigations do not yet exist that then informs possible future R&D efforts. To illustrate the benefits of an OOBN in a large and complex aviation accident model, the in-flight loss-of-control accident framework model is presented. C1 [Ancel, Ersin] Natl Inst Aerosp, Hampton, VA 23666 USA. [Shih, Ann T.; Jones, Sharon M.] NASA Langley Res Ctr, Hampton, VA USA. [Reveley, Mary S.] NASA Glenn Res Ctr, Cleveland, OH USA. [Luxhoj, James T.] Luxhoj Consulting & Res LLC, Somerset, NJ USA. [Evans, Joni K.] Analyt Mech Associates Inc, Hampton, VA USA. RP Ancel, E (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM ersin.ancel@nasa.gov FU NASA Aviation Safety Program [NNL08AA00B] FX This work was supported by NASA Aviation Safety Program [NNL08AA00B]. NR 24 TC 5 Z9 5 U1 0 U2 39 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 1366-9877 EI 1466-4461 J9 J RISK RES JI J. Risk Res. PD APR 21 PY 2015 VL 18 IS 4 BP 428 EP 451 DI 10.1080/13669877.2014.896402 PG 24 WC Social Sciences, Interdisciplinary SC Social Sciences - Other Topics GA CE0PM UT WOS:000351506500002 ER PT J AU Hanu, AR Prestwich, WV Byun, SH AF Hanu, A. R. Prestwich, W. V. Byun, S. H. TI A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Delay-line readout; Image acquisition system; Time-to-digital converter; FPGA; Micropattern gas detectors ID GEM DETECTORS AB We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of similar to 81ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024 x 1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8 x 10(6) Hz without any loses and will report a maximum event rate of 6.11 x 10(5) Hz for events whose arrival Limes follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hanu, A. R.; Prestwich, W. V.; Byun, S. H.] McMaster Univ, Dept Med Phys & Appl Radiat Sci, Hamilton, ON L8S 4K1, Canada. [Hanu, A. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hanu, AR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM hanua@mcmaster.ca NR 12 TC 1 Z9 1 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2015 VL 780 BP 33 EP 39 DI 10.1016/j.nima.2015.01.053 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CB9XH UT WOS:000349987100006 ER PT J AU Tiranov, A Lavoie, J Ferrier, A Goldner, P Verma, VB Nam, SW Mirin, RP Lita, AE Marsili, F Herrmann, H Silberhorn, C Gisin, N Afzelius, M Bussieres, F AF Tiranov, Alexey Lavoie, Jonathan Ferrier, Alban Goldner, Philippe Verma, Varun B. Nam, Sae Woo Mirin, Richard P. Lita, Adriana E. Marsili, Francesco Herrmann, Harald Silberhorn, Christine Gisin, Nicolas Afzelius, Mikael Bussieres, Felix TI Storage of hyperentanglement in a solid-state quantum memory SO OPTICA LA English DT Article ID COMMUNICATION; ENTANGLEMENT AB Two photons can simultaneously share entanglement between several degrees of freedom such as polarization, energy-time, spatial mode and orbital angular momentum. This resource is known as hyperentanglement, and it has been shown to be an important tool for optical quantum information processing. Here we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for transmission in optical fibre. We measured violations of a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for each degree of freedom, independently of the other one, which proves the successful storage and retrieval of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quantum communication in optical fibre, and is in particular suitable for linear-optical entanglement purification for quantum repeaters. (C) 2015 Optical Society of America C1 [Tiranov, Alexey; Lavoie, Jonathan; Gisin, Nicolas; Afzelius, Mikael; Bussieres, Felix] Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland. [Ferrier, Alban] Univ Paris 06, Sorbonne Univ, F-75005 Paris, France. [Ferrier, Alban; Goldner, Philippe] PSL Res Univ, Chim ParisTech CNRS, Inst Rech Chim Paris, F-75005 Paris, France. [Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.] NIST, Boulder, CO 80305 USA. [Marsili, Francesco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herrmann, Harald; Silberhorn, Christine] Univ Paderborn, Appl Phys Integrated Opt Grp, D-33095 Paderborn, Germany. RP Tiranov, A (reprint author), Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland. EM alexey.tiranov@unige.ch RI Silberhorn, Christine/J-4919-2013; Bussieres, Felix/E-5384-2011; Afzelius, Mikael/N-5825-2016; OI Silberhorn, Christine/0000-0002-2349-5443; Bussieres, Felix/0000-0003-0234-175X; Afzelius, Mikael/0000-0001-8367-6820; Mirin, Richard/0000-0002-4472-4655 FU Swiss National Centres of Competence in Research (NCCR); Natural Sciences and Engineering Research Council of Canada (NSERC); Idex [ANR-10-IDEX-0001-02 PSL*] FX Swiss National Centres of Competence in Research (NCCR); Natural Sciences and Engineering Research Council of Canada (NSERC); Idex ANR-10-IDEX-0001-02 PSL*. NR 38 TC 10 Z9 10 U1 2 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2334-2536 J9 OPTICA JI Optica PD APR 20 PY 2015 VL 2 IS 4 BP 279 EP 287 DI 10.1364/OPTICA.2.000279 PG 9 WC Optics SC Optics GA CI6KG UT WOS:000354867300002 ER PT J AU Boada, S Tilvi, V Papovich, C Quadri, RF Hilton, M Finkelstein, S Guo, YC Bond, N Conselice, C Dekel, A Ferguson, H Giavalisco, M Grogin, NA Kocevski, DD Koekemoer, AM Koo, DC AF Boada, Steven Tilvi, V. Papovich, C. Quadri, R. F. Hilton, M. Finkelstein, S. Guo, Yicheng Bond, N. Conselice, C. Dekel, A. Ferguson, H. Giavalisco, M. Grogin, N. A. Kocevski, D. D. Koekemoer, A. M. Koo, D. C. TI THE ROLE OF BULGE FORMATION IN THE HOMOGENIZATION OF STELLAR POPULATIONS AT Z similar to 2 AS REVEALED BY INTERNAL COLOR DISPERSION IN CANDELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: general; galaxies: stellar content; galaxies: structure ID STAR-FORMING GALAXIES; ULTRA DEEP FIELD; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRAGALACTIC LEGACY SURVEY; KILOPARSEC-SCALE CLUMPS; LYMAN BREAK GALAXIES; MASSIVE GALAXIES; HUBBLE SEQUENCE; CAMERA 3; PHOTOMETRIC REDSHIFTS AB We use data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey to study how the spatial variation in the stellar populations of galaxies relates to the formation of galaxies at 1.5 < z < 3.5. We use the internal color dispersion (ICD), measured between the rest-frame UV and optical bands, which is sensitive to age (and dust attenuation) variations in stellar populations. The ICD shows a relation with the stellar masses and morphologies of the galaxies. Galaxies with the largest variation in their stellar populations as evidenced by high ICD have disk-dominated morphologies (with Sersic indexes < 2) and stellar masses between 10 < log (M/M-circle dot) < 11. There is a marked decrease in the ICD as the stellar mass and/or the Sersic index increases. By studying the relations between the ICD and other galaxy properties including size, total color, star formation rate, and dust attenuation, we conclude that the largest variations in stellar populations occur in galaxies where the light from newly, high star-forming clumps contrasts older stellar disk populations. This phase reaches a peak for galaxies only with a specific stellar mass range, 10 < log (M/M-circle dot) < 11, and prior to the formation of a substantial bulge/spheroid. In contrast, galaxies at higher or lower stellar masses and/or higher Sersic index (n > 2) show reduced ICD values, implying a greater homogeneity of their stellar populations. This indicates that if a galaxy is to have a quiescent bulge along with a star-forming disk, typical of Hubble sequence galaxies, this is most common for stellar masses 10 < log (M/M-circle dot) < 11 and when the bulge component remains relatively small (n < 2). C1 [Boada, Steven; Tilvi, V.; Papovich, C.; Quadri, R. F.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Boada, Steven; Tilvi, V.; Papovich, C.; Quadri, R. F.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Hilton, M.] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Hilton, M.; Conselice, C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Finkelstein, S.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Bond, N.] NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Ferguson, H.; Grogin, N. A.; Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Giavalisco, M.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Guo, Yicheng; Koo, D. C.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Guo, Yicheng; Koo, D. C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Kocevski, D. D.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Dekel, A.] Hebrew Univ Jerusalem, Racah Inst Phys, Ctr Astrophys & Planetary Sci, IL-91904 Jerusalem, Israel. RP Boada, S (reprint author), Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. EM boada@physics.tamu.edu OI Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS5-26555]; NSF [AST-0808133] FX The authors also wish to thank the anonymous referee whose comments and suggestions significantly improved both the quality and clarity of this work. This work is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. We also make use of partial support from NSF AST-0808133. We utilize the Rainbow Cosmological Surveys Database, which is operated by the Universidad Complutense de Madrid (UCM), partnered with the University of California Observatories at Santa Cruz (UCO/Lick, UCSC). Several open source resources are used to complete this study: Python (van Rossum & de Boer 1991), along with Matplotlib (Hunter 2007) and IPython (Perez & Granger 2007). NR 85 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 104 DI 10.1088/0004-637X/803/2/104 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500055 ER PT J AU Dennis, BR Phillips, KJH Schwartz, RA Tolbert, AK Starr, RD Nittler, LR AF Dennis, Brian R. Phillips, Kenneth J. H. Schwartz, Richard A. Tolbert, Anne K. Starr, Richard D. Nittler, Larry R. TI SOLAR FLARE ELEMENT ABUNDANCES FROM THE SOLAR ASSEMBLY FOR X-RAYS (SAX) ON MESSENGER SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: abundances; Sun: flares; Sun: X-rays, gamma-rays ID EMISSION MEASURE; ATOMIC DATABASE; SPECTRA; MERCURY; MISSION; SPACECRAFT; CALCIUM; CHIANTI; CORONA; LINES AB X-ray spectra in the range 1.5-8.5 keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury MESSENGER spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of the emitting plasma were determined from the spectrum of the continuum. In addition, with the SAX energy resolution of 0.6 keV (FWHM) at 6 keV, the intensities of the clearly resolved Feline complex at 6.7 keV and the Ca-line complex at 3.9 keV were determined, along with those of unresolved line complexes from S, Si, and Ar at lower energies. Comparisons of these line intensities with theoretical spectra allow the abundances of these elements relative to hydrogen to be derived, with uncertainties due to instrument calibration and the unknown temperature distribution of the emitting plasma. While significant deviations are found for the abundances of Fe and Ca from flare to flare, the abundances averaged over all flares are found to be enhanced over photospheric values by factors of 1.66 +/- 0.34 (Fe), 3.89 +/- 0.76 (Ca), 1.23 +/- 0.45 (S), 1.64 +/- 0.66 (Si), and 2.48 +/- 0.90 (Ar). These factors differ from previous reported values for Fe and Si at least. They suggest a more complex relation of abundance enhancement with the first ionization potential (FIP) of the element than previously considered, with the possibility that fractionation occurs in flares for elements with an FIP of less than similar to 7 eV rather than similar to 10 eV. C1 [Dennis, Brian R.; Schwartz, Richard A.; Tolbert, Anne K.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab Code 671, Greenbelt, MD 20771 USA. [Phillips, Kenneth J. H.] Nat Hist Museum, Dept Earth Sci, London SW7 5BD, England. [Schwartz, Richard A.; Tolbert, Anne K.; Starr, Richard D.] Catholic Univ Amer, Washington, DC 20064 USA. [Starr, Richard D.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Astrochem Lab Code 691, Greenbelt, MD 20771 USA. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Dennis, BR (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab Code 671, Greenbelt, MD 20771 USA. EM brian.r.dennis@nasa.gov NR 32 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 67 DI 10.1088/0004-637X/803/2/67 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500019 ER PT J AU Lindner, RR Aguirre, P Baker, AJ Bond, JR Crichton, D Devlin, MJ Essinger-Hileman, T Gallardo, P Gralla, MB Hilton, M Hincks, AD Huffenberger, KM Hughes, JP Infante, L Lima, M Marriage, TA Menanteau, F Niemack, MD Page, LA Schmitt, BL Sehgal, N Sievers, JL Sifon, C Staggs, ST Swetz, D Weiss, A Wollack, EJ AF Lindner, Robert R. Aguirre, Paula Baker, Andrew J. Bond, J. Richard Crichton, Devin Devlin, Mark J. Essinger-Hileman, Thomas Gallardo, Patricio Gralla, Megan B. Hilton, Matt Hincks, Adam D. Huffenberger, Kevin M. Hughes, John P. Infante, Leopoldo Lima, Marcos Marriage, Tobias A. Menanteau, Felipe Niemack, Michael D. Page, Lyman A. Schmitt, Benjamin L. Sehgal, Neelima Sievers, J. L. Sifon, Cristobal Staggs, Suzanne T. Swetz, Daniel Weiss, Axel Wollack, Edward J. TI THE ATACAMA COSMOLOGY TELESCOPE: THE LABOCA/ACT SURVEY OF CLUSTERS AT ALL REDSHIFTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; cosmology: observations; submillimeter: galaxies; submillimeter: general ID DEEP FIELD-SOUTH; MASSIVE GALAXY CLUSTERS; X-RAY; SUBMILLIMETER GALAXIES; 1E 0657-56; EL GORDO; PHYSICAL-PROPERTIES; PECULIAR VELOCITY; SCALING RELATIONS; MERGING CLUSTER AB We present a multi-wavelength analysis of 11 Sunyaev-Zel'dovich effect (SZE)-selected galaxy clusters (10 with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345 GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1 GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and 500 mu m; SPIRE) on the Herschel Space Observatory. (24)Spatially resolved 345 GHz SZE increments with integrated signal-to-noise ratio (S/N) > 5 are found in six clusters. We compute 2.1 GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii theta < theta(2500c). By extrapolating in frequency, we predict that the combined signals from 2.1 GHz-selected radio sources and 345 GHz-selected submillimeter galaxies (SMGs) contaminate the 148 GHz SZE decrement signal by similar to 5% and the 345 GHz SZE increment by similar to 18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is < v(p)> = 153 +/- 383 km s(-1). C1 [Lindner, Robert R.; Baker, Andrew J.; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Lindner, Robert R.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Aguirre, Paula] Pontificia Univ Catolica Chile, Sch Engn, Santiago, Chile. [Bond, J. Richard] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Crichton, Devin; Essinger-Hileman, Thomas; Gralla, Megan B.; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Devlin, Mark J.; Schmitt, Benjamin L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gallardo, Patricio; Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Gallardo, Patricio] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Gralla, Megan B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hilton, Matt; Infante, Leopoldo; Sievers, J. L.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Huffenberger, Kevin M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Lima, Marcos] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-01498 Sao Paulo, SP, Brazil. [Menanteau, Felipe] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Menanteau, Felipe] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Sehgal, Neelima] Dept Phys & Astron, Stony Brook, NY 11794 USA. [Sievers, J. L.] Univ KwaZulu Natal, Natl Inst Theoret Phys NITheP, ZA-4000 Durban, South Africa. [Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Swetz, Daniel] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Weiss, Axel] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lindner, RR (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. EM rlindner@astro.wisc.edu RI Lima, Marcos/E-8378-2010; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sifon, Cristobal/0000-0002-8149-1352 FU U.S. National Science Foundation [AST-0955810, AST-0408698, AST-0965625, PHY-0855887, PHY-1214379, AST-0707731, PIRE-0507768, OISE-0530095]; National Aeronautics and Space Administration (NASA) [GO1-12008X, GO2-13156X]; NASA [NAS8-03060]; Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); CFI under the Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; FONDAP Center for Astrophysics [15010003]; BASAL CATA Center for Astrophysics and Associated Technologies; National Aeronautics and Space Administration (NASA) through JPL/Caltech; Herschel FX R.R.L. and A.J.B. acknowledge significant support for this work from the U.S. National Science Foundation through grant AST-0955810. J.P.H. acknowledges support from the National Aeronautics and Space Administration (NASA) through Chandra Awards numbered GO1-12008X and GO2-13156X issued to Rutgers University by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060, and through an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, and PHY-0855887, PHY-1214379, AST-0707731, and PIRE-0507768 (award No. OISE-0530095). Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. Computations were performed on the GPC super-computer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and the University of Toronto. We acknowledge support from the FONDAP Center for Astrophysics 15010003, BASAL CATA Center for Astrophysics and Associated Technologies. The authors thank the APEX staff for their help in carrying out the observations presented here, as well as Phil Edwards, Robin Wark, and Shane O'Sullivan for their assistance with the ATCA observations. We thank the anonymous referee for helpful feedback that has improved this manuscript. APEX is operated by the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. NR 89 TC 2 Z9 2 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 79 DI 10.1088/0004-637X/803/2/79 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500031 ER PT J AU Quinn, SN White, TR Latham, DW Chaplin, WJ Handberg, R Huber, D Kipping, DM Payne, MJ Jiang, C Aguirre, VS Stello, D Sliski, DH Ciardi, DR Buchhave, LA Bedding, TR Davies, GR Hekker, S Kjeldsen, H Kuszlewicz, JS Everett, ME Howell, SB Basu, S Campante, TL Christensen-Dalsgaard, J Elsworth, YP Karoff, C Kawaler, SD Lund, MN Lundkvist, M Esquerdo, GA Calkins, ML Berlind, P AF Quinn, Samuel N. White, Timothy. R. Latham, David W. Chaplin, William J. Handberg, Rasmus Huber, Daniel Kipping, David M. Payne, Matthew J. Jiang, Chen Aguirre, Victor Silva Stello, Dennis Sliski, David H. Ciardi, David R. Buchhave, Lars A. Bedding, Timothy R. Davies, Guy R. Hekker, Saskia Kjeldsen, Hans Kuszlewicz, James S. Everett, Mark E. Howell, Steve B. Basu, Sarbani Campante, Tiago L. Christensen-Dalsgaard, Jorgen Elsworth, Yvonne P. Karoff, Christoffer Kawaler, Steven D. Lund, Mikkel N. Lundkvist, Mia Esquerdo, Gilbert A. Calkins, Michael L. Berlind, Perry TI KEPLER-432: A RED GIANT INTERACTING WITH ONE OF ITS TWO LONG-PERIOD GIANT PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE asteroseismology; planets and satellites: dynamical evolution and stability; planets and satellites: formation; planets and satellites: gaseous planets; planet-star interactions; stars: individual (Kepler-432) ID STELLAR EVOLUTION CODE; SOLAR-TYPE STARS; SPIN-ORBIT MISALIGNMENT; SUN-LIKE STAR; A-TYPE STARS; HOT-JUPITER; ECCENTRIC ORBIT; TRANSITING PLANETS; ASTEROSEISMIC ANALYSIS; BLEND SCENARIOS AB We report the discovery of Kepler-432b, a giant planet ( M-b = 5.41(-0.18)(+0.32) M-Jup R-b = 1.145(-0.039)(+0.036),R-Jup) transiting an evolved star (M-* = 1.32(-0.07)(+0.10) M-circle dot R-* 4.06(-0.08)(+0.12) R-circle dot) with an orbital period of Pb = 52.501129(-0.000053)(+0.000067) days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e = 0.5134(-0.0089)(+0.0098) , which we also measure independently with asterodensity profiling (AP; e = 0.507(-0.114)(+0.039)), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; = M-c sin i(c) = 2.43(-0.24)(+0.22) M-Jup, P-c = 406.2(-2.5)(+3.9) days), and adaptive optics imaging revealed a nearby (0.'' 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU. C1 [Quinn, Samuel N.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [White, Timothy. R.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Latham, David W.; Kipping, David M.; Payne, Matthew J.; Sliski, David H.; Buchhave, Lars A.; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chaplin, William J.; Handberg, Rasmus; Davies, Guy R.; Kuszlewicz, James S.; Campante, Tiago L.; Elsworth, Yvonne P.; Lund, Mikkel N.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Jiang, Chen; Aguirre, Victor Silva; Stello, Dennis; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Campante, Tiago L.; Christensen-Dalsgaard, Jorgen; Elsworth, Yvonne P.; Karoff, Christoffer; Lund, Mikkel N.; Lundkvist, Mia] Aarhus Univ, Stellar Astrophys Ctr, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Huber, Daniel; Stello, Dennis; Bedding, Timothy R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA. [Sliski, David H.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasdena, CA 91125 USA. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Hekker, Saskia] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Basu, Sarbani] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Karoff, Christoffer] Aarhus Univ, Dept Geosci, DK-8000 Aarhus C, Denmark. [Kawaler, Steven D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kipping, David M.] NASA, Washington, DC USA. [Quinn, Samuel N.] NSF, Arlington, VA USA. RP Quinn, SN (reprint author), Georgia State Univ, Dept Phys & Astron, 25 Pk Pl Suite 605, Atlanta, GA 30303 USA. OI Davies, Guy/0000-0002-4290-7351; Lundkvist, Mia Sloth/0000-0002-8661-2571; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Handberg, Rasmus/0000-0001-8725-4502; Lund, Mikkel Norup/0000-0001-9214-5642 FU NSF Graduate Research Fellowship [DGE-1051030]; NASA's Kepler mission [NNX11AB99A]; Smithsonian Astrophysical Observatory; Australian Research Council [DEI40101364]; NASA [NNX14AB92G]; NASA Origins of Solar Systems Program [NNX13A124G]; Danish National Research Foundation [DNRF106]; ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) - European Research Council [267864]; European Research Council under the European Community's Seventh Framework Programme [338251]; Robert Martin Ayers Sciences Fund; National Aeronautics and Space Administration; National Science Foundation; University of Massachusetts; Infrared Processing and Analysis Center/California Institute of Technology FX We thank Russel White and an anonymous referee for valuable discussion and feedback. S.N.Q. is supported by the NSF Graduate Research Fellowship, Grant DGE-1051030. D.W.L. acknowledges partial support from NASA's Kepler mission under Cooperative Agreement NNX11AB99A with the Smithsonian Astrophysical Observatory. D.H. acknowledges support by the Australian Research Council's Discovery Projects funding scheme (project number DEI40101364) and support by NASA under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. M.J.P. gratefully acknowledges the NASA Origins of Solar Systems Program grant NNX13A124G. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). The research leading to the presented results has also received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 338251 (StellarAges). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the APASS database, located at the AAVSO Web site. Funding for APASS has been provided by the Robert Martin Ayers Sciences Fund. NR 139 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 49 DI 10.1088/0004-637X/803/2/49 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500001 ER PT J AU Reiter, J Rhodes, EJ Kosovichev, AG Schou, J Scherrer, PH Larson, TP AF Reiter, J. Rhodes, E. J., Jr. Kosovichev, A. G. Schou, J. Scherrer, P. H. Larson, T. P. TI A METHOD FOR THE ESTIMATION OF p-MODE PARAMETERS FROM AVERAGED SOLAR OSCILLATION POWER SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: numerical; Sun: helioseismology; Sun: oscillations ID MICHELSON DOPPLER IMAGER; INTENSITY HELIOSEISMIC SPECTRA; TIME-DISTANCE HELIOSEISMOLOGY; HIGH-DEGREE FREQUENCIES; DIFFERENTIAL ROTATION; MERIDIONAL CIRCULATION; LOCAL HELIOSEISMOLOGY; 5-MINUTE OSCILLATION; INVERSION METHODS; EXTENDED MINIMUM AB A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged-spectrum" or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account. observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010. C1 [Reiter, J.] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany. [Rhodes, E. J., Jr.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Rhodes, E. J., Jr.] CALTECH, Jet Prop Lab, Astrophys & Space Sci Sect, Pasadena, CA 91109 USA. [Kosovichev, A. G.] New Jersey Inst Technol, Newark, NJ 07102 USA. [Schou, J.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. RP Reiter, J (reprint author), Tech Univ Munich, Zentrum Math, M17, D-85748 Garching, Germany. EM jreiter@lrz.tum.de; erhodes@solar.stanford.edu; sasha@bbso.njit.edu; schou@mps.mpg.de; pscherrer@solar.stanford.edu; tplarson@sun.stanford.edu FU NASA [NAG5-10483, NNX08A24G, NAG5-13510, NAG5-11582, NAG5-11001, NAG5-8545, NAG5-8021, NAG5-6104, NAGW-13]; Stanford University [14405890-126967, 1503169-33789-A, 29056-C, 6914]; USC's Office of Undergraduate Programs FX In this work we utilized data from the Solar Oscillations Investigation/Michelson Doppler Imager (SOI/MDI) on board the Solar and Heliospheric Observatory (SOHO), and we have made use of NASAs Astrophysics Data System. SOHO is a project of international cooperation between ESA and NASA. The SOI/MDI project is supported by NASA grant NAG5-10483 to Stanford University. The portion of the research that was conducted at the University of Southern California was supported in part by NASA Grants NNX08A24G, NAG5-13510, NAG5-11582, NAG5-11001, NAG5-8545, NAG5-8021, NAG5-6104, and NAGW-13, by Stanford University Sub-Awards 14405890-126967, 1503169-33789-A, and 29056-C, by Stanford University Sub-Contract Number 6914, and by USC's Office of Undergraduate Programs. Part of this work is the result of research performed at the Jet Propulsion Laboratory of the California Institute of Technology under a contract with the National Aeronautics and Space Administration. We thank the anonymous referee for his valuable contributions to improve the presentation of this work. J.R. is grateful to R. Bulirsch, P. Rentrop, and B. Vexler of the Technische Universitat Munchen for their generous support and hospitality, and to K. Schittkowski of the University of Bayreuth for providing the source code of his NLPQL optimization technique. NR 97 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 92 DI 10.1088/0004-637X/803/2/92 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500044 ER PT J AU Shu, YP Bolton, AS Brownstein, JR Montero-Dorta, AD Koopmans, LVE Treu, T Gavazzi, R Auger, MW Czoske, O Marshall, PJ Moustakas, LA AF Shu, Yiping Bolton, Adam S. Brownstein, Joel R. Montero-Dorta, Antonio D. Koopmans, Leon V. E. Treu, Tommaso Gavazzi, Raphael Auger, Matthew W. Czoske, Oliver Marshall, Philip J. Moustakas, Leonidas A. TI THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: evolution; gravitational lensing: strong; methods: statistical; techniques: image processing ID EARLY-TYPE GALAXIES; DIGITAL SKY SURVEY; DARK-MATTER HALOS; SPECTROSCOPICALLY SELECTED SAMPLE; LUMINOUS RED GALAXIES; TO-LIGHT RATIOS; GRAVITATIONAL LENSES; DENSITY PROFILES; SWELLS SURVEY; SDSS-III AB We present observational results from a new Hubble Space Telescope (HST) Snapshot program to extend the methods of the Sloan Lens ACS (SLACS) Survey to lower lens-galaxy masses. We discover 40 new galaxy-scale strong lenses, which we supplement with 58 previously discovered SLACS lenses. In addition, we determine the posterior PDFs of the Einstein radius for 33 galaxies (18 new and 15 from legacy SLACS data) based on single lensed images. We find a less-than-unity slope of 0.64 +/- 0.06 for the log(10 sigma*)-log(10 sigma SIE) relation, which corresponds to a 6 sigma evidence that the total mass-density profile of early-type galaxies varies systematically in the sense of being shallower at higher lens-galaxy velocity dispersions. The trend is only significant when single-image systems are considered, highlighting the importance of including both "lenses" and "nonlenses" for an unbiased treatment of the lens population when extending to lower mass ranges. By scaling simple stellar-population models to the HST I-band data, we identify a strong trend of increasing dark-matter fraction at higher velocity dispersions, which can be alternatively interpreted as a trend in the stellar initial mass function (IMF) normalization. Consistent with previous findings and the suggestion of a nonuniversal IMF, we find that a Salpeter IMF is ruled out for galaxies with velocity dispersion less than 180 km s(-1). Considered together, our mass-profile and dark-matter fraction trends with increasing galaxy mass could both be explained by an increasing relative contribution on kiloparsec scales from a dark-matter halo with a spatial profile more extended than that of the stellar component. C1 [Shu, Yiping; Bolton, Adam S.; Brownstein, Joel R.; Montero-Dorta, Antonio D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Koopmans, Leon V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Treu, Tommaso] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Treu, Tommaso] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Gavazzi, Raphael] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Auger, Matthew W.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Czoske, Oliver] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Marshall, Philip J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shu, YP (reprint author), Univ Utah, Dept Phys & Astron, 115 South 1400 East, Salt Lake City, UT 84112 USA. EM yiping.shu@utah.edu; bolton@astro.utah.edu OI Moustakas, Leonidas/0000-0003-3030-2360 FU Center for High Performance Computing at the University of Utah; Packard Foundation through a Packard Research Fellowship; Centre National des Etudes Spatiales; NASA through a grant from the Space Telescope Science Institute [12210]; NASA [NAS 5-26555] FX The authors thank the anonymous referee for insightful comments and suggestions that substantially improved this paper. The support and resources from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. T.T. acknowledges support from the Packard Foundation through a Packard Research Fellowship. R.G. acknowledges support for the Centre National des Etudes Spatiales. The work of L.A.M. was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for Program 12210 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. NR 126 TC 12 Z9 12 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 71 DI 10.1088/0004-637X/803/2/71 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500023 ER PT J AU Cenko, SB Urban, AL Perley, DA Horesh, A Corsi, A Fox, DB Cao, Y Kasliwal, MM Lien, A Arcavi, I Bloom, JS Butler, NR Cucchiara, A de Diego, JA Filippenko, AV Gal-Yam, A Gehrels, N Georgiev, L Gonzalez, J Graham, JF Greiner, J Kann, DA Klein, CR Knust, F Kulkarni, SR Kutyrev, A Laher, R Lee, WH Nugent, PE Prochaska, JX Ramirez-Ruiz, E Richer, MG Rubin, A Urata, Y Varela, K Watson, AM Wozniak, PR AF Cenko, S. Bradley Urban, Alex L. Perley, Daniel A. Horesh, Assaf Corsi, Alessandra Fox, Derek B. Cao, Yi Kasliwal, Mansi M. Lien, Amy Arcavi, Iair Bloom, Joshua S. Butler, Nat R. Cucchiara, Antonino de Diego, Jose A. Filippenko, Alexei V. Gal-Yam, Avishay Gehrels, Neil Georgiev, Leonid Gonzalez, Jesus Graham, John F. Greiner, Jochen Kann, D. Alexander Klein, Christopher R. Knust, Fabian Kulkarni, S. R. Kutyrev, Alexander Laher, Russ Lee, William H. Nugent, Peter E. Prochaska, J. Xavier Ramirez-Ruiz, Enrico Richer, Michael G. Rubin, Adam Urata, Yuji Varela, Karla Watson, Alan M. Wozniak, Przemek R. TI iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; stars: flare; supernovae: general ID ORPHAN AFTERGLOWS; SEARCH; SUPERNOVA; EMISSION; SAMPLE; LIGHT; RATES AB We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (M-r approximate to -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of R-rel = 610 yr(-1) (68% confidence interval of 110-2000 yr(-1)). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets. C1 [Cenko, S. Bradley; Lien, Amy; Cucchiara, Antonino; Gehrels, Neil; Kutyrev, Alexander] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Urban, Alex L.] Univ Wisconsin, Leonard E Parker Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53211 USA. [Perley, Daniel A.; Cao, Yi; Kulkarni, S. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Horesh, Assaf] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Corsi, Alessandra] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Kasliwal, Mansi M.] Observ Carnegie Inst Sci, Pasadena, CA USA. [Lien, Amy] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Arcavi, Iair] Las Cumbres Observ Global Telescope, Goleta, CA 93111 USA. [Arcavi, Iair] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Filippenko, Alexei V.; Klein, Christopher R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Butler, Nat R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Bloom, Joshua S.; Butler, Nat R.; Georgiev, Leonid; Gonzalez, Jesus; Lee, William H.; Watson, Alan M.] Arizona State Univ, Cosmol Initiat, Tempe, AZ 85287 USA. [de Diego, Jose A.; Nugent, Peter E.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Graham, John F.; Greiner, Jochen; Knust, Fabian] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kann, D. Alexander] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Laher, Russ] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Nugent, Peter E.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, UCO, Lick Observ, Santa Cruz, CA 95064 USA. [Urata, Yuji] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Wozniak, Przemek R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cenko, SB (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. EM brad.cenko@nasa.gov RI Horesh, Assaf/O-9873-2016; Gonzalez, Jose/L-6687-2014; OI Horesh, Assaf/0000-0002-5936-1156; Gonzalez, Jose/0000-0002-3724-1583; Wozniak, Przemyslaw/0000-0002-9919-3310; Arcavi, Iair/0000-0001-7090-4898; Fox, Derek/0000-0002-3714-672X FU NSF at the UWM Research Growth Initiative [PHY-0970074, PHY-1307429, AST-1211916]; Alexander von Humboldt Foundation Germany; TLS Tautenburg; TABASGO Foundation; Gary and Cynthia Bengier, and the Christopher R. Redlich Fund; NASA [NNX13AP036, NNX14AI95G, NNX09AH71G, NNX09AT02G, NNX10AI27G, NNX12AE66G]; US Department of Energy, Laboratory of Directed Research and Development program; DFG [HA 1850/28-1]; W.M. Keck Foundation; Teledyne Scientific and Imaging; CONACyT [INFR-2009-01-122785, CB-2008-101958]; UNAM PAPIIT [IN113810]; UC MEXUS-CONACyT [CN 09-283] FX We thank David Jewitt for executing our Keck/LRIS ToO observations, and Eran Ofek, Leo Singer, and Eric Bellm for comments on this manuscript. A.L.U. was supported by NSF grants PHY-0970074 and PHY-1307429 at the UWM Research Growth Initiative. J.F.G. acknowledges the Sofja Kovalevskaja award to P. Schady from the Alexander von Humboldt Foundation Germany. D.A.K. thanks TLS Tautenburg for financial support. The work of A.V.F. was made possible by NSF grant AST-1211916, the TABASGO Foundation, Gary and Cynthia Bengier, and the Christopher R. Redlich Fund. J.X.P. received funding from NASA grants NNX13AP036 and NNX14AI95G.; This paper is based in part on observations obtained with the P48 Oschin telescope as part of the Intermediate Palomar Transient Factory project, a scientific collaboration among the Caltech, LANL, UW-Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli IPMU. LANL participation in iPTF is supported by the US Department of Energy as part of the Laboratory of Directed Research and Development program. The National Energy Research Scientific Computing Center provided staff, computational resources, and data storage for this project. Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W.M. Keck Foundation.; We thank the RATIR project team and the staff of the Observatorio Astronomico Nacional on Sierra San Pedro Martir. RATIR is a collaboration between the University of California, the Universidad Nacional Autonoma de Mexico, NASA Goddard Space Flight Center, and Arizona State University, benefiting from the loan of an H2RG detector and hardware and software support from Teledyne Scientific and Imaging. RATIR, the automation of the Harold L. Johnson Telescope of the Observatorio Astronomico Nacional on Sierra San Pedro Martir, and the operation of both are funded through NASA grants NNX09AH71G, NNX09AT02G, NNX10AI27G, and NNX12AE66G, CONACyT grants INFR-2009-01-122785 and CB-2008-101958, UNAM PAPIIT grant IN113810, and UC MEXUS-CONACyT grant CN 09-283. NR 36 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2015 VL 803 IS 2 AR L24 DI 10.1088/2041-8205/803/2/L24 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH1XW UT WOS:000353818000010 ER PT J AU Friedline, A Zachariah, M Middaugh, A Heiser, M Khanna, N Vaishampayan, P Rice, CV AF Friedline, Anthony Zachariah, Malcolm Middaugh, Amy Heiser, Matt Khanna, Neeraj Vaishampayan, Parag Rice, Charles V. TI Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide SO AMB EXPRESS LA English DT Article DE Bacillus pumilus; Bacillus subtilis; Chlorine dioxide; Spore killing; Spores ID BACILLUS-SUBTILIS SPORULATION; SOLAR UV-RADIATION; DIPICOLINIC ACID; PUMILUS SPORES; SURVIVAL; PEPTIDOGLYCAN; PROTEINS; GERMINATION; ENDOSPORES; CEREUS AB Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus subtilis ATCC 6051. Viability was determined via CFU measurement after exposure. Chlorine dioxide demonstrated efficacy towards sterilization of spores of B. pumilus SAFR-032 equivalent or better than exposure to hydrogen peroxide. These results indicate efficacy of chlorine dioxide delivered through a stabilized chlorine dioxide product as a means of sterilization of peroxide-and UV-resistant spores. C1 [Friedline, Anthony; Zachariah, Malcolm; Middaugh, Amy; Rice, Charles V.] Univ Oklahoma, Dept Chem & Biochem, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA. [Heiser, Matt; Khanna, Neeraj] Biocide Int Inc, Norman, OK USA. [Khanna, Neeraj] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91125 USA. RP Rice, CV (reprint author), Univ Oklahoma, Dept Chem & Biochem, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA. EM rice@ou.edu FU National Institutes of Health [1R01GM090064-01]; NASA EPSCoR Research Infrastructure Development (RID) grant [NN07AL49A]; University of Oklahoma FX This work is supported by the National Institutes of Health (1R01GM090064-01), a NASA EPSCoR Research Infrastructure Development (RID) grant NN07AL49A, and the University of Oklahoma. We also wish to express our gratitude to Dr. Kasthuri Venkateswaran, NASA JPL Biotechnology and Planetary Protection Group for sharing the B. pumilus SAFR-032 strain. NR 52 TC 2 Z9 2 U1 2 U2 14 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2191-0855 J9 AMB EXPRESS JI AMB Express PD APR 17 PY 2015 VL 5 AR 24 DI 10.1186/s13568-015-0109-4 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CN0BK UT WOS:000358076600001 PM 25897406 ER PT J AU Bottke, WF Vokrouhlicky, D Marchi, S Swindle, T Scott, ERD Weirich, JR Levison, H AF Bottke, W. F. Vokrouhlicky, D. Marchi, S. Swindle, T. Scott, E. R. D. Weirich, J. R. Levison, H. TI Dating the Moon-forming impact event with asteroidal meteorites SO SCIENCE LA English DT Article ID TERRESTRIAL PLANET FORMATION; CHONDRITE PARENT BODIES; GIANT IMPACT; HEMISPHERIC DICHOTOMY; HEAVY BOMBARDMENT; DISTRIBUTIONS; EARTH; CHRONOLOGY; COLLISIONS; BELT AB The inner solar system's biggest and most recent known collision was the Moon-forming giant impact between a large protoplanet and proto-Earth. Not only did it create a disk near Earth that formed the Moon, it also ejected several percent of an Earth mass out of the Earth-Moon system. Here, we argue that numerous kilometer-sized ejecta fragments from that event struck main-belt asteroids at velocities exceeding 10 kilometers per second, enough to heat and degas target rock. Such impacts produce similar to 1000 times more highly heated material by volume than do typical main belt collisions at similar to 5 kilometers per second. By modeling their temporal evolution, and fitting the results to ancient impact heating signatures in stony meteorites, we infer that the Moon formed similar to 4.47 billion years ago, which is in agreement with previous estimates. C1 [Bottke, W. F.; Marchi, S.; Levison, H.] SW Res Inst, Boulder, CO 80302 USA. [Bottke, W. F.; Marchi, S.; Levison, H.] NASA, SSERVI, ISET, Boulder, CO USA. [Vokrouhlicky, D.] Charles Univ Prague, Inst Astron, CZ-18000 Prague 8, Czech Republic. [Swindle, T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Swindle, T.] SSERVI Ctr Lunar Sci Explorat, Houston, TX USA. [Scott, E. R. D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Weirich, J. R.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. RP Bottke, WF (reprint author), SW Res Inst, Boulder, CO 80302 USA. EM bottke@boulder.swri.edu FU NASA's SSERVI program [NNA14AB03A, NNA14AB07A]; Czech Grant Agency [P209-13-01308S] FX We thank R. Canup, B. Cohen, A. Jackson, A. Parker, P. Renne, and J. Salmon for many useful discussions and our referees for their numerous constructive comments. W.F.B, S.M., and T.S.'s participation was supported by NASA's SSERVI program through institute grant numbers NNA14AB03A and NNA14AB07A. The work of D.V. was partially supported by research grant P209-13-01308S of the Czech Grant Agency. Resources supporting this work were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at Ames Research Center. Data are available in the main text, supplementary materials, or upon request. NR 28 TC 13 Z9 14 U1 3 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 17 PY 2015 VL 348 IS 6232 BP 321 EP 323 DI 10.1126/science.aaa0602 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG0YC UT WOS:000352999000040 PM 25883354 ER PT J AU Li, LM Jiang, X Trammell, HJ Pan, YF Hernandez, J Conrath, BJ Gierasch, PJ Achterberg, RK Nixon, CA Flasar, FM Perez-Hoyos, S West, RA Baines, KH Knowles, B AF Li, Liming Jiang, Xun Trammell, Harold J. Pan, Yefeng Hernandez, Joseph Conrath, Barney J. Gierasch, Peter J. Achterberg, Richard K. Nixon, Conor A. Flasar, F. Michael Perez-Hoyos, Santiago West, Robert A. Baines, Kevin H. Knowles, Benjamin TI Saturn's giant storm and global radiant energy SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Saturn; giant storm; radiant energy budget ID CASSINI ISS; JUPITER; EVOLUTION; DYNAMICS AB We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20-55 degrees N) with a maximum change of 9.20.1% around 45 degrees N from 2010 to 2011. Such a regional change caused the global-average emitted power to increase by similar to 2.00.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric-average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.50.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux. C1 [Li, Liming; Jiang, Xun; Trammell, Harold J.; Pan, Yefeng; Hernandez, Joseph] Univ Houston, Houston, TX 77004 USA. [Conrath, Barney J.; Gierasch, Peter J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Achterberg, Richard K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nixon, Conor A.; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Perez-Hoyos, Santiago] ETS Ingn UPV EHU, Dept Fis Aplicada 1, Bilbao, Spain. [West, Robert A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Baines, Kevin H.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI USA. [Knowles, Benjamin] CICLOPS Space Sci Inst, Boulder, CO USA. RP Li, LM (reprint author), Univ Houston, Houston, TX 77004 USA. EM lli7@central.uh.edu RI Flasar, F Michael/C-8509-2012; Nixon, Conor/A-8531-2009; Perez-Hoyos, Santiago/L-7543-2014 OI Nixon, Conor/0000-0001-9540-9121; Perez-Hoyos, Santiago/0000-0002-2587-4682 FU NASA; fondos FEDER, Grupos Gobierno Vasco [AYA2012-36666, IT-765-13]; [UPV/EHU-UFI11/55] FX We gratefully acknowledge the Cassini CIRS and ISS teams for recording the raw data sets. The data sets used in this paper are available at the Planetary Data System (PDS) of the National Aeronautics and Space Administration (NASA) (http://pds.nasa.gov/). We also acknowledge the support from the NASA ROSES Outer Planets Research and Cassini Data Analysis Programs. Santiago Perez-Hoyos was supported by AYA2012-36666 with fondos FEDER, Grupos Gobierno Vasco IT-765-13, and by UPV/EHU-UFI11/55. Finally, two anonymous reviewers provided very constructive suggestions to improve the manuscript. NR 23 TC 1 Z9 1 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 16 PY 2015 VL 42 IS 7 BP 2144 EP 2148 DI 10.1002/2015GL063763 PG 5 WC Geosciences, Multidisciplinary SC Geology GA CH4FL UT WOS:000353988700010 ER PT J AU Minami, T Toh, H Tyler, RH AF Minami, Takuto Toh, Hiroaki Tyler, Robert H. TI Properties of electromagnetic fields generated by tsunami first arrivals: Classification based on the ocean depth SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE tsunami; electromagnetic induction; ocean depth; seafloor observation AB Tsunami flow coupled with the geomagnetic field generates electric currents and associated magnetic fields. Although electromagnetic (EM) tsunami signals can be used for analysis and even forecasting tsunami propagation, the dynamically self-consistent effect of shoaling water depth on the fluid + electrodynamics has not been adequately clarified. In this study, we classify tsunami EM phenomena into three cases based on the ocean depth and find that the deeper ocean results in stronger self-induction due to the increase in both tsunami phase velocity and ocean conductance. In this deep-ocean case, the phase lead of the vertical magnetic variation relative to the sea surface elevation is smaller, while an initial rise in the horizontal magnetic component becomes observable prior to tsunami arrival. Furthermore, we confirm that the enhancement of tsunami height in shallower oceans shifts the ocean depth supplying maximum amplitudes of tsunami magnetic fields from approximately 2.0km to 1.5km. C1 [Minami, Takuto] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Minami, Takuto; Tyler, Robert H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toh, Hiroaki] Kyoto Univ, Data Anal Ctr Geomagnetism & Space Magnetism, Kyoto, Japan. RP Minami, T (reprint author), Kyoto Univ, Grad Sch Sci, Kyoto, Japan. EM minami@kugi.kyoto-u.ac.jp FU MEXT, Japan [13J01475, 26282101] FX This work is supported by Grants in Aid for Scientific Research of MEXT, Japan (13J01475 and 26282101). T.M. expresses his sincere thanks to Weijia Kuang and other colleagues in the NASA Goddard Space Flight Center (GSFC) for their warm support to T.M.'s study in GSFC. NR 8 TC 1 Z9 1 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 16 PY 2015 VL 42 IS 7 BP 2171 EP 2178 DI 10.1002/2015GL063055 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CH4FL UT WOS:000353988700014 ER PT J AU Li, C Joiner, J Krotkov, NA Dunlap, L AF Li, Can Joiner, Joanna Krotkov, Nickolay A. Dunlap, Laura TI A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE HCHO; OMPS; retrieval algorithm ID MONITORING INSTRUMENT; SATELLITE-OBSERVATIONS; FORMALDEHYDE COLUMNS; ISOPRENE EMISSIONS; OMI OBSERVATIONS; NORTH-AMERICA; OMPS; TROPOSPHERE; SENSORS; GOME-2 AB We introduce a new method for retrieving formaldehyde (HCHO) based on principal component analysis (PCA) of satellite-measured radiances. Applying the technique to the Suomi National Polar-orbiting Partnership/Ozone Mapping and Profiler Suite (S-NPP/OMPS) radiances between 328.5 and 356.5nm, we extract principal components (PCs) associated with various physical processes (e.g., ozone absorption and rotational Raman scattering) and measurement details (e.g., wavelength shift). These PCs, along with precomputed HCHO Jacobians, are utilized in spectral fitting to estimate HCHO loading and reduce interferences. Comparisons with model simulations and independent Ozone Monitoring Instrument (OMI) retrievals indicate that our algorithm can detect enhanced HCHO signals over source regions such as the southeast U.S., producing HCHO total columns with similar spatial distributions and seasonal patterns. While our OMPS retrievals are similar to 15-20% lower than OMI retrievals from a different algorithm, the differences may be attributed to several instrumental and algorithmic factors. This study demonstrates the potential of PCA algorithms and of OMPS for continuing the long-term satellite HCHO data record. C1 [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Joiner, Joanna; Krotkov, Nickolay A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dunlap, Laura] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Li, C (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM can.li@nasa.gov RI Krotkov, Nickolay/E-1541-2012 OI Krotkov, Nickolay/0000-0001-6170-6750 FU NASA [NNX14AI02G] FX We thank the NASA GSFC GMI group for GMI HCHO model results and two anonymous reviewers for comments that helped improve the manuscript. BIRA OMI HCHO data were downloaded from http://h2co.aeronomy.be.SAO OMI HCHO data were obtained from http://disc.sci.gsfc.nasa.gov. GFED data were downloaded from http://www.globalfiredata.org. OMPS L1B and L2 O3 and cloud research products are available at https://ozoneaq.gsfc.nasa.gov. L.D. acknowledges graduate research assistantship partially supported by the NASA Earth Science New Investigator Program (grant NNX14AI02G). OMPS HCHO retrieval results are available upon request from the corresponding author. NR 28 TC 6 Z9 6 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 16 PY 2015 VL 42 IS 7 BP 2515 EP 2522 DI 10.1002/2015GL063204 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CH4FL UT WOS:000353988700056 ER PT J AU Prigent, C Liang, P Tian, Y Aires, F Moncet, JL Boukabara, SA AF Prigent, C. Liang, P. Tian, Y. Aires, F. Moncet, J. -L. Boukabara, S. A. TI Evaluation of modeled microwave land surface emissivities with satellite-based estimates SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE microwave emissivity ID NUMERICAL WEATHER PREDICTION; SYSTEM; VALIDATION AB An accurate estimate of the microwave surface emissivity is necessary for the retrieval of atmospheric quantities from microwave imagers or sounders. The objective of this study is to evaluate the microwave land surface emissivity modeling of the Community Radiative Transfer Model (CRTM), providing quantitative statistic information for further model improvements. First, the model-simulated emissivity is compared to emissivity estimates derived from satellite observations (TELSEM, Tool to Estimate Land Surface Emissivities at Microwaves). The model simulations agree reasonably well with TELSEM over snow-free vegetated areas, especially at vertical polarization up to 40GHz. For snow-free surfaces, the mean difference between CRTM and TELSEM emissivities at vertical polarization is lower than 0.01 below 40GHz and increases to 0.02 at 89GHz. At horizontal polarization, it increases with frequency, from 0.01 at 10.6GHz to 0.04 at 89GHz. Over deserts and snow, larger differences are observed, which can be due to the lack of quality inputs to the model in these complex environments. A further evaluation is provided by comparing brightness temperature (Tbs) simulations with AMSR-E observations, where CRTM emissivity and TELSEM emissivity are coupled into a comprehensive radiative transfer model to simulate the brightness temperatures, respectively. The comparison shows smaller RMS errors with the satellite-derived estimates than with the model, despite some significant bias at midday with the satellite-derived emissivities at high frequencies. This study confirms and extends to the global scale previous evaluations of land surface microwave emissivity model. It emphasizes the needs for better physical modeling in arid regions and over snow-covered surfaces. Key Points C1 [Prigent, C.] Observ Paris, Lab Etudes Rayonnement & Matiere Astrophys, CNRS, F-75014 Paris, France. [Prigent, C.] Estellus, Paris, France. [Liang, P.; Moncet, J. -L.] Atmospher & Environm Res Inc, Lexington, MA USA. [Tian, Y.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Tian, Y.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Aires, F.] Estellus, Lab Etude Rayonnement & Matiere Astrophy, Paris, France. [Aires, F.] Observ Paris, CNRS, F-75014 Paris, France. [Boukabara, S. A.] NOAA, Joint Ctr Satellite Data Assimilat, NESDIS STAR, College Pk, MD USA. RP Prigent, C (reprint author), Observ Paris, Lab Etudes Rayonnement & Matiere Astrophys, CNRS, F-75014 Paris, France. EM catherine.prigent@obspm.fr RI Boukabara, Sid Ahmed/F-5577-2010; Measurement, Global/C-4698-2015 OI Boukabara, Sid Ahmed/0000-0002-1857-3806; FU NASA/NOAA [NNH12CD07C] FX This study has been supported by a NASA/NOAA contract NNH12CD07C "Development of a common, consistent infrared and microwave emissivity database for use as a priori in the JCSDA." We are very grateful to Fuzong Weng for interesting discussions and suggestions. We thank three anonymous reviewers for their careful reading of the paper and their constructive comments. The modeled emissivity data set is available at http://lis.gsfc.nasa.gov/PMM/le/ and the satellite-derived emissivity (TELSEM) at http://www.estellus.fr/index.php?static12/microwave-emissivity. NR 29 TC 5 Z9 6 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2706 EP 2718 DI 10.1002/2014JD021817 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800008 ER PT J AU Kaspari, S Skiles, SM Delaney, I Dixon, D Painter, TH AF Kaspari, Susan Skiles, S. McKenzie Delaney, Ian Dixon, Daniel Painter, Thomas H. TI Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE black carbon; dust; glacier; melt; fire; ice core ID BLUE GLACIER; RADIATIVE-TRANSFER; FOREST WILDFIRE; SPECTRAL ALBEDO; UNITED-STATES; SURFACE DUST; ANNUAL MASS; AEROSOL; ICE; ACCUMULATION AB Assessing the potential for black carbon (BC) and dust deposition to reduce albedo and accelerate glacier melt is of interest in Washington because snow and glacier melt are an important source of water resources, and glaciers are retreating. In August 2012 on Snow Dome, Mount Olympus, Washington, we measured snow surface spectral albedo and collected surface snow samples and a 7 m ice core. The snow and ice samples were analyzed for iron (Fe, used as a dust proxy) via inductively coupled plasma sector field mass spectrometry, total impurity content gravimetrically, BC using a single-particle soot photometer (SP2), and charcoal through microscopy. In the 2012 summer surface snow, BC (5450 mu g/L), Fe (367236 mu g/L) and gravimetric impurity (3518mg/L) concentrations were spatially variable, and measured broadband albedo varied between 0.67-0.74. BC and dust concentrations in the ice core 2011 summer horizon were a magnitude higher (BC=3120 mu g/L, Fe=22000 mu g/L, and gravimetric impurity=1870mg/L), corresponding to a modeled broadband albedo of 0.45 based on the measured BC and gravimetric impurity concentrations. The Big Hump forest fire is the likely source for the higher concentrations. Modeling constrained by measurements indicates that the all-sky 12h daily mean radiative forcings in summer 2012 and 2011 range between 37-53Wm(-2) and 112-149Wm(-2), respectively, with the greater forcings in 2011 corresponding to a 29-38mm/d enhancement in snowmelt. The timing of the forest fire impurity deposition is coincident with an increase in observed discharge in the Hoh River, highlighting the potential for BC and dust deposition on glaciers from forest fires to accelerate melt. Key Points C1 [Kaspari, Susan; Delaney, Ian] Cent Washington Univ, Dept Geol Sci, Ellensburg, WA 98926 USA. [Skiles, S. McKenzie] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Dixon, Daniel] Univ Maine, Climate Change Inst, Orono, ME USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kaspari, S (reprint author), Cent Washington Univ, Dept Geol Sci, Ellensburg, WA 98926 USA. EM kaspari@geology.cwu.edu RI Painter, Thomas/B-7806-2016 FU United States Geological Survey/State of Washington Water Research Center [2012WA344B]; Office of the Dean, College of the Sciences, Central Washington University, Ellensburg, Washington; NASA [NNX10A097G]; NASA FX This research was supported by the United States Geological Survey/State of Washington Water Research Center (2012WA344B) and the Office of the Dean, College of the Sciences, Central Washington University, Ellensburg, Washington. S.M. Skiles and T.H. Painter were covered under NASA project NNX10A097G. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We thank Bill Baccus at Olympic National Park for help planning field logistics and providing local climate data; Mike Tetreau for assistance in the field; Megan Weyand for ice core processing; Megan Walsch for charcoal analysis; Paul Mayewski and Mike Handley for ICP-SFMS data analysis; Levi Windingstad for conducting the particle size distribution measurement; Joel Barker for epifluorescence analysis; Larry Oolman for access to sounding data; Bryon Free for assistance with mapping; and Twit Conway, Al Rasmussen, and Jon Riedel for valuable conversations about snow accumulation on Washington glaciers. Rasmussen conducted the 2011 and 2012 snowfall calculations presented in section 3.2. The full data set from this study is available by emailing kaspari@geology.cwu.edu. NR 53 TC 6 Z9 8 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2793 EP 2807 DI 10.1002/2014JD022676 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800013 ER PT J AU Chen, YC Christensen, MW Diner, DJ Garay, MJ AF Chen, Yi-Chun Christensen, Matthew W. Diner, David J. Garay, Michael J. TI Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE aerosol and clouds ID IMAGING SPECTRORADIOMETER MISR; MARINE STRATOCUMULUS; BOUNDARY-LAYERS; GLOBAL ANALYSIS; RETRIEVAL; ALBEDO; HEIGHT; PARAMETERIZATION; MICROPHYSICS; POLLUTION AB Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds for different cloud types and environmental conditions. By taking advantage of the high spatial resolution multiangle observations available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of the cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were utilized. Under open cell cloud structure the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+38%), cloud top height (+13%), and cloud albedo (+49%) for open cell clouds, whereas for closed cell clouds, little change in cloud properties was observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed was used to derive cloud top divergence. Statistically averaging the results from the identified plume segments to reduce random noise, we found evidence of cloud top divergence in the ship-polluted clouds, whereas the nearby unpolluted clouds showed cloud top convergence, providing observational evidence of a change in local mesoscale circulation associated with enhanced aerosols. Furthermore, open cell polluted clouds revealed stronger cloud top divergence as compared to closed cell clouds, consistent with different dynamical mechanisms driving their responses. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling studies to reduce uncertainties in calculations of aerosol indirect forcing. Key Points C1 [Chen, Yi-Chun; Diner, David J.; Garay, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Christensen, Matthew W.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Chen, YC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Jean.Chen@jpl.nasa.gov RI Christensen, Matthew/C-5733-2013 FU National Aeronautics and Space Administration (NASA); MISR Project; NASA FX This work was supported by the National Aeronautics and Space Administration (NASA) Postdoctoral Program (NPP) and the MISR Project and was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. MISR data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center (https://www-misr.jpl.nasa.gov/getData/accessData/), and MODIS data were acquired as part of the NASA's Earth-Sun System Division and archived and distributed by the MODIS Adaptive Processing System (MODAPS) (http://ladsweb.nascom.nasa.gov). Y.-C. Chen thanks David Nelson for his help with the MISR Interactive eXplorer (MINX) tool. We also thank three anonymous reviewers for their insightful comments that improved the quality of the manuscript. NR 43 TC 7 Z9 7 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2819 EP 2833 DI 10.1002/2014JD022736 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800015 ER PT J AU Sheyko, BA Sullivan, SC Morales, R Capps, SL Barahona, D Shi, X Liu, X Nenes, A AF Sheyko, B. A. Sullivan, S. C. Morales, R. Capps, S. L. Barahona, D. Shi, X. Liu, X. Nenes, A. TI Quantifying sensitivities of ice crystal number and sources of ice crystal number variability in CAM 5.1 using the adjoint of a physically based cirrus formation parameterization SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cirrus; heterogeneous nucleation; homogeneous nucleation; adjoint; climate model; ice ID COMMUNITY ATMOSPHERE MODEL; CLOUD DROPLET NUMBER; PART I; TROPICAL TROPOPAUSE; AEROSOL; NUCLEATION; NUCLEI; CLIMATE; CCN; MICROPHYSICS AB We present the adjoint of a cirrus formation parameterization that computes the sensitivity of ice crystal number concentration to updraft velocity, aerosol, and ice deposition coefficient. The adjoint is driven by simulations from the National Center for Atmospheric Research Community Atmosphere Model version 5.1 CAM 5.1 to understand the sensitivity of formed ice crystal number concentration to 13 variables and quantify which contribute to its variability. Sensitivities of formed ice crystal number concentration to updraft velocity, sulfate number, and is sufficient but sulfate number concentration is low, indicating a sulfate-limited regime. Outside of the tropics, competition between homogeneous and heterogeneous nucleation may shift annually averaged sensitivities to higher magnitudes, when infrequent strong updrafts shift crystal production away from purely heterogeneous nucleation. Outside the tropics, updraft velocity is responsible for approximately 52.70% of the ice crystal number variability. In the tropics, sulfate number concentration and updraft jointly control variability in formed crystal number concentration. Insoluble aerosol species play a secondary, but still important, role in influencing the variability in crystal concentrations, with coarse-mode dust being the largest contributor at nearly 50% in certain regions. On a global scale, more than 95% of the temporal variability in crystal number concentration can be described by temperature, updraft velocity, sulfate number, and coarse-mode dust number concentration. Key Points C1 [Sheyko, B. A.; Sullivan, S. C.; Capps, S. L.; Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Morales, R.; Nenes, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Morales, R.] Univ Los Andes, Dept Civil & Environm Engn, Bogota, Colombia. [Capps, S. L.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Barahona, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Shi, X.; Liu, X.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Nenes, A (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM athanasios.nenes@gatech.edu RI Liu, Xiaohong/E-9304-2011; Morales Betancourt, Ricardo/A-3827-2016; Capps, Shannon/E-5602-2017 OI Liu, Xiaohong/0000-0002-3994-5955; Morales Betancourt, Ricardo/0000-0002-5475-8605; Capps, Shannon/0000-0002-6872-6604 FU DOE EaSM; National Aeronautics and Space Administration FX This work was made possible through support from DOE EaSM. S.S. and S.L.C. gratefully acknowledge support from National Aeronautics and Space Administration Earth and Space Science Fellowships. The data and results included in this manuscript are available upon contact from the corresponding author as per AGU Data Policy. NR 59 TC 2 Z9 2 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2834 EP 2854 DI 10.1002/2014JD022457 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800016 ER PT J AU Hong, G Minnis, P AF Hong, Gang Minnis, Patrick TI Effects of spherical inclusions on scattering properties of small ice cloud particles SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE scattering; small ice cloud particle; polarization ID DISCRETE-DIPOLE APPROXIMATION; T-MATRIX METHOD; LIGHT-SCATTERING; OPTICAL-PROPERTIES; CIRRUS CLOUDS; RADIATIVE PROPERTIES; CLIMATE MODELS; BLACK CARBON; ACCURATE PARAMETERIZATION; NONSPHERICAL PARTICLES AB The single-scattering properties of small ice crystals containing four types of spherical inclusions, ammonium sulfate (NH4)(2)SO4, ammonium nitrate NH3NO3, air bubbles, and soot, are investigated at 0.65 and 2.13 mu m. Small, randomly oriented hexagonal ice columns with spherical inclusions that are randomly distributed with standard gamma size distributions in the columns are considered in the present study. Ice crystals with inclusions of (NH4)(2)SO4 and NH3NO3 essentially have the same features due to their similar refractive indices. Nonzero scattering matrix elements are sensitive to inclusion type and amount, and show differences between 0.65 and 2.13 mu m. The extinction efficiency Q(e) of small ice crystals at 0.65 mu m is near 2.0 and essentially unaffected by variations in inclusion volume, in contrast to strong influences of inclusion amount on Q(e) at 2.13 mu m. The single-scattering albedo (0) of ice crystals, nearly equal to 1.0, is not affected by inclusions of (NH4)(2)SO4, NH3NO3, and air bubbles. Soot inclusions strongly affect (0), which decreases to about 0.5 with increasing soot amounts. The asymmetry factor g is substantially affected by (NH4)(2)SO4, NH3NO3, and soot and the variations in their amounts. Full Stokes parameters of cirrus clouds consisting of uniform hexagonal ice columns with inclusions are computed using a polarized radiative transfer model. Sensitivities of light intensity and polarization of cirrus clouds to types and amounts of inclusions and cirrus cloud optical thicknesses are found to depend on wavelength. The present results suggest that different types of inclusions for small ice crystals should be considered when developing realistic ice crystal optical properties, and that light intensity and polarization of cirrus clouds and their angular distribution features, in the absence of other effects such as cavities and surface roughness, imply the potential for identifying pure ice crystals from those with aerosol inclusions. Key Points C1 [Hong, Gang] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hong, G (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM gang.hong@nasa.gov FU NASA through the CERES program; Aviation Climate Change Research Initiative (ACCRI); Federal Aviation Administration [DTRT57-10-X-70020] FX The authors thank M.A. Yurkin and J.F. de Haan for use of their well-documented ADDA model and adding-doubling code, respectively. G.H. also thanks Shouben Zhou and Yonghui Weng for help on parallel computing of the ADDA. This research was supported by NASA through the CERES program and by the Aviation Climate Change Research Initiative (ACCRI) sponsored by the Federal Aviation Administration under contract, DTRT57-10-X-70020. Users can access the data from this paper via the authors (gang.hong@nasa.gov). NR 70 TC 2 Z9 2 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2951 EP 2969 DI 10.1002/2014JD022494 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800022 ER PT J AU Bonne, JL Steen-Larsen, HC Risi, C Werner, M Sodemann, H Lacour, JL Fettweis, X Cesana, G Delmotte, M Cattani, O Vallelonga, P Kjaer, HA Clerbaux, C Sveinbjornsdottir, AE Masson-Delmotte, V AF Bonne, Jean-Louis Steen-Larsen, Hans Christian Risi, Camille Werner, Martin Sodemann, Harald Lacour, Jean-Lionel Fettweis, Xavier Cesana, Gregory Delmotte, Marc Cattani, Olivier Vallelonga, Paul Kjaer, Helle Astrid Clerbaux, Cathy Sveinbjornsdottir, Arny Erla Masson-Delmotte, Valerie TI The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE water isotopes; Greenland; atmospheric river ID GENERAL-CIRCULATION MODEL; REGIONAL CLIMATE MODEL; DEUTERIUM EXCESS; ICE-SHEET; RELATIVE-HUMIDITY; DELTA-D; SURFACE; PRECIPITATION; ANTARCTICA; CLOUD AB During 7-12 July 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapor isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut), and northwest Greenland ice sheet (NEEM), as well as remote sensing observations (Infrared Atmospheric Sounding Interferometer (IASI) instrument on board MetOp-A), depicting propagation of similar surface and midtropospheric humidity and D signals. Simulations using Lagrangian moisture source diagnostic and water tagging in a regional model showed that Greenland was affected by an atmospheric river transporting moisture from the western subtropical North Atlantic Ocean, which is coherent with observations of snow pit impurities deposited at NEEM. At Ivittuut, surface air temperature, humidity, and D increases are observed. At NEEM, similar temperature increase is associated with a large and long-lasting approximate to 100D enrichment and approximate to 15 deuterium excess decrease, thereby reaching Ivittuut level. We assess the simulation of this event in two isotope-enabled atmospheric general circulation models (LMDz-iso and ECHAM5-wiso). LMDz-iso correctly captures the timing of propagation for this event identified in IASI data but depict too gradual variations when compared to surface data. Both models reproduce the surface meteorological and isotopic values during the event but underestimate the background deuterium excess at NEEM. Cloud liquid water content parametrization in LMDz-iso poorly impacts the vapor isotopic composition. Our data demonstrate that during this atmospheric river event the deuterium excess signal is conserved from the moisture source to northwest Greenland. Key Points C1 [Bonne, Jean-Louis; Steen-Larsen, Hans Christian; Delmotte, Marc; Cattani, Olivier; Masson-Delmotte, Valerie] LSCE Lab Sci Climat & Environm, Gif Sur Yvette, France. [Risi, Camille] LMD, Paris, France. [Werner, Martin] Helmholtz Ctr Polar & Marine Res Bremerhaven, Alfred Wegener Inst, Bremerhaven, Germany. [Sodemann, Harald] ETH, Zurich, Switzerland. [Sodemann, Harald] Univ Bergen, Inst Geophys, Bergen, Norway. [Lacour, Jean-Lionel; Clerbaux, Cathy] Univ Libre Bruxelles, Spectroscopie Atmosphere Chim Quant & Photophys, Brussels, Belgium. [Fettweis, Xavier] Univ Liege, Dept Geog, Liege, Belgium. [Cesana, Gregory] NASA, Jet Prop Lab, Pasadena, CA USA. [Vallelonga, Paul; Kjaer, Helle Astrid] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark. [Clerbaux, Cathy] Univ Paris 06, Sorbonne Univ, Paris, France. [Clerbaux, Cathy] Univ Versailles St Quentin, Paris, France. [Clerbaux, Cathy] CNRS INSU, LATMOS IPSL, Paris, France. [Sveinbjornsdottir, Arny Erla] Univ Iceland, Inst Earth Sci, Reykjavik, Iceland. RP Bonne, JL (reprint author), LSCE Lab Sci Climat & Environm, Gif Sur Yvette, France. EM jean-louis.bonne@lsce.ipsl.fr RI Steen-Larsen, Hans Christian/F-9927-2013; Bonne, Jean-Louis/C-1577-2015; Werner, Martin/C-8067-2014; Masson-Delmotte, Valerie/G-1995-2011; Vallelonga, Paul/I-9650-2016; clerbaux, cathy/I-5478-2013; OI Steen-Larsen, Hans Christian/0000-0002-7202-5907; Bonne, Jean-Louis/0000-0001-7090-2147; Werner, Martin/0000-0002-6473-0243; Masson-Delmotte, Valerie/0000-0001-8296-381X; Vallelonga, Paul/0000-0003-1055-7235; Fettweis, Xavier/0000-0002-4140-3813; Lacour, Jean-Lionel/0000-0003-3642-7439 FU IPEV; ICOS; CARBOOCEAN project; ANR CEPS Green Greenland project [ANR-10-CEPL-0008]; FNRS-CFB in Belgium; FWO in Belgium; GSC in Canada; CAS in China; FIST in Denmark; IPEV in France; INSU/CNRS in France; ANR VMC NEEM in France; AWI in Germany; RannIs in Iceland; NIPR in Japan; KOPRI in Korea; NWO/ALW in Netherlands; VR in Sweden; SNF in Switzerland; NERC in UK; US NSF, Office of Polar Programs in USA; Danish Council for Independent Research (Natural Sciences) [10-092850]; Carlsberg Foundation; Icelandic Centre for Research [1202340031]; CIRES; AXA FX To access the data used in this publication, please refer to Jean-Louis Bonne (jean-louis.bonne@lsce.ipsl.fr). Ivittuut station is funded by IPEV, ICOS, CARBOOCEAN project, and ANR CEPS Green Greenland project (grant ANR-10-CEPL-0008) and operated by LSCE, France. We greatly thank the people involved in the observations at Ivittuut: Grnland Kommando GLK, Sermersooq Kummuneqarfik. NEEM is directed and organized by the Centre for Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (GSC), China (CAS), Denmark (FIST), France (IPEV, INSU/CNRS and ANR VMC NEEM), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), the Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), the UK (NERC), and the USA (US NSF, Office of Polar Programs). Bermuda observatory is supported by the Danish Council for Independent Research (Natural Sciences grant 10-092850); the Carlsberg Foundation; the Icelandic Centre for Research (Equipment Fund grant 1202340031); CIRES Visiting Fellowship program: and the AXA Research Fund. LMDZ simulations were performed on the NEC supercomputer of the IDRIS computing center. IASI is a joint mission of EUMETSAT and the Centre National d'Etudes Spatiales (CNES, France). We thank the ULB/LATMOS teams for the IASI data processing. NR 55 TC 16 Z9 17 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2970 EP 2989 DI 10.1002/2014JD022602 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800023 ER PT J AU Liao, J Froyd, KD Murphy, DM Keutsch, FN Yu, G Wennberg, PO St Clair, JM Crounse, JD Wisthaler, A Mikoviny, T Jimenez, JL Campuzano-Jost, P Day, DA Hu, WW Ryerson, TB Pollack, IB Peischl, J Anderson, BE Ziemba, LD Blake, DR Meinardi, S Diskin, G AF Liao, Jin Froyd, Karl D. Murphy, Daniel M. Keutsch, Frank N. Yu, Ge Wennberg, Paul O. St. Clair, Jason M. Crounse, John D. Wisthaler, Armin Mikoviny, Tomas Jimenez, Jose L. Campuzano-Jost, Pedro Day, Douglas A. Hu, Weiwei Ryerson, Thomas B. Pollack, Ilana B. Peischl, Jeff Anderson, Bruce E. Ziemba, Luke D. Blake, Donald R. Meinardi, Simone Diskin, Glenn TI Airborne measurements of organosulfates over the continental US SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE organosulfate; IEPOX sulfate; glycolic acid sulfate; free troposphere aerosols; aerosol acidity; relative humidity ID SECONDARY ORGANIC AEROSOL; ISOPRENE-DERIVED ORGANOSULFATES; MASS-SPECTROMETRY; AMBIENT AEROSOL; AQUEOUS PHOTOOXIDATION; ATMOSPHERIC AEROSOLS; REACTIVE UPTAKE; GLYCOLALDEHYDE; PRODUCTS; ACIDS AB Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2-0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. Key Points C1 [Liao, Jin; Froyd, Karl D.; Murphy, Daniel M.; Ryerson, Thomas B.; Pollack, Ilana B.; Peischl, Jeff] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Liao, Jin; Froyd, Karl D.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Pollack, Ilana B.; Peischl, Jeff] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Keutsch, Frank N.; Yu, Ge] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Wennberg, Paul O.; St. Clair, Jason M.; Crounse, John D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Wisthaler, Armin; Mikoviny, Tomas] Leopold Franzens Univ Innsbruck, Inst Ionenphys & Angew Phys, Innsbruck, Austria. [Jimenez, Jose L.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Anderson, Bruce E.; Ziemba, Luke D.; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Blake, Donald R.; Meinardi, Simone] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. RP Liao, J (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. EM jin.liao@noaa.gov RI Peischl, Jeff/E-7454-2010; Ryerson, Tom/C-9611-2009; Jimenez, Jose/A-5294-2008; Pollack, Ilana/F-9875-2012; Hu, Weiwei/C-7892-2014; Murphy, Daniel/J-4357-2012; Manager, CSD Publications/B-2789-2015; Crounse, John/C-3700-2014 OI Peischl, Jeff/0000-0002-9320-7101; Jimenez, Jose/0000-0001-6203-1847; Murphy, Daniel/0000-0002-8091-7235; Crounse, John/0000-0001-5443-729X FU NASA [NNH12AT29I, NNH12AT30I]; NOAA; National Science Foundation [CHE-1213723] FX The majority of the study is supported by the NASA grant NNH12AT29I from the Upper Atmosphere Research Program, Radiation Sciences Program, and Tropospheric Chemistry Program and by NOAA base funding. The GA sulfate standard is based upon work supported by the National Science Foundation under grant CHE-1213723. IEPOX and ISOPOOH measurements were supported by NASA NNX12AC06G. PTR-MS measurements were supported by BMVIT/FFG-ALR (Austrian Space Applications Programme, ASAP), the NASA Postdoctoral Program (NPP), and the National Institute of Aerospace (NIA). NO and O3 measurements were supported by NASA grant NNH12AT30I. AMS measurements were supported by NASA NNX12AC03G, NSF AGS-1243354, and NOAA NA13OAR4310063. We thank Barbara Ervens at NOAA and University of Colorado, Boulder for helpful discussion. We also would like to thank all the NASA DC8 crew for their assistance to integrate, maintain, and deintegrate the instrument on the airplane. The data are publicly available at NASA data achieve https://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs and http://www-air.larc.nasa.gov/missions/seac4rs/index.html. The analysis results are available upon requested from jin.liao@noaa.gov and karl.froyd@noaa.gov. NR 77 TC 21 Z9 22 U1 10 U2 74 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2990 EP 3005 DI 10.1002/2014JD022378 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800024 ER PT J AU Radhakrishnan, S Bellan, J AF Radhakrishnan, Senthilkumaran Bellan, Josette TI Explicitly-filtered LES for the grid-spacing-independent and discretization-order-independent prediction of a conserved scalar SO COMPUTERS & FLUIDS LA English DT Article DE Large Eddy Simulation predictability; Passive scalar; Mixing layer ID LARGE-EDDY SIMULATION; BOUNDARY-CONDITIONS; FLOWS; MODELS; ERRORS AB The previously proposed methodology of Explicitly Filtered Large Eddy Simulation (EFLES) predicts velocity fields that are grid-spacing and discretization-order independent for single-phase, and for two-phase compressible flows. In the current study, EFLES is tested for determining the predictability of a passive scalar evolution in turbulent flows, and the EFLES results are also compared to equivalent ones obtained with conventional Large Eddy Simulation (LES). A single Direct Numerical Simulation (DNS) realization of a temporal mixing layer is conducted with an initial Reynolds number of 1800. After an initial transient, the mixing-layer momentum thickness grows linearly with time. The DNS is continued during the linear growth period and until the momentum thickness Reynolds number reaches 6405. The filtered and coarsened DNS (FDNS) database is considered the template to be reached by LES or EFLES. Both LES and EFLES are conducted using the dynamic Smagorinsky model. Three grids - coarse, medium and fine - and three discretization orders - fourth, sixth and eighth - are used for each LES and EFLES. In contrast to conventional LES where the grid spacing and the filter width are proportionally related, in EFLES the filter width is set beforehand and independent of the grid spacing. The criteria for comparing LES and EFLES results to the FDNS encompass both averages and second-order quantities that characterize the passive scalar behavior. Homogeneous plane averages combined with time averaging past the time when the mixing layer becomes turbulent, enabled the computation of smooth statistics for comparison between FDNS and LES or EFLES. It is found that the conventional LES results are not predictive in that refining the grid or increasing the discretization order, or both, does not lead to coincidence of the results. In contrast, refining the grid past the medium spacing for the sixth- and eighth-order discretizations leads to the EFLES results collapsing on a single curve. Thus, the medium grid spacing and sixth discretization order is the most computationally economic predictive simulation. Based on these findings, EFLES computations, the predictions of which are unaffected by numerical errors, are recommended for model validation with experimental data. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Radhakrishnan, Senthilkumaran; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM josette.bellan@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); NASA Exploration Systems Mission Directorate/Advanced Capabilities Division FX This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology and sponsored by the National Aeronautics and Space Administration (NASA) under the Fundamental Aeronautics Program, Subsonic Wing Program with Drs. Dan Bulzan, Nan-Suey Liu and Jeff Moder serving as program monitors and by the NASA Exploration Systems Mission Directorate/Advanced Capabilities Division under the LASER program. The computational resources were provided by the NASA AMES Super-computing Center. NR 27 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD APR 16 PY 2015 VL 111 BP 137 EP 149 DI 10.1016/j.compfluid.2015.01.003 PG 13 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA CE7VW UT WOS:000352051000012 ER PT J AU Chilvery, AK Guggilla, P Batra, AK Gaikwad, DD Curried, JR AF Chilvery, Ashwith Kumar Guggilla, Padmaja Batra, Ashok K. Gaikwad, Dyaneshwar D. Curried, James R. TI Efficient planar perovskite solar cell by spray and brush solution-processing methods SO JOURNAL OF PHOTONICS FOR ENERGY LA English DT Article DE perovskite; solution-processed; spray; brush ID LEAD IODIDE PEROVSKITE; ORGANOMETAL HALIDE PEROVSKITES; CHARGE-TRANSPORT; RECOMBINATION; HYSTERESIS; CH3NH3PBI3; MECHANISM; LAYER; FILMS AB Perovskite compounds have the potential to transform photovoltaics technology, as they are easy to fabricate, have better stability, and possess superior power conversion efficiency. In this research, a versatile solution-processing method called "spray+brush" (SB) has been adopted to achieve a power-conversion efficiency of 3.52% for pure organometal halide perovskite devices. It has been observed that this method is more efficient and cost effective than the perovskite devices fabricated by spray (1.95%) and brush (1.17%) methods alone. The SB method of solution processing can be promising for various other organic coatings. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Chilvery, Ashwith Kumar] Talladega Coll, Dept Phys, Talladega, AL 35610 USA. [Chilvery, Ashwith Kumar; Guggilla, Padmaja; Batra, Ashok K.] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA. [Gaikwad, Dyaneshwar D.] Ahmednagar Coll, Dept Chem, Pune 414001, Maharashtra, India. [Curried, James R.] NASA, Marshall Space Flight Ctr, Div Mat Sci, Huntsville, AL 35811 USA. RP Chilvery, AK (reprint author), Talladega Coll, Dept Phys, 627 West Battle St, Talladega, AL 35610 USA. EM akchilvery@talladega.edu NR 39 TC 1 Z9 1 U1 8 U2 40 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1947-7988 J9 J PHOTON ENERGY JI J. Photonics Energy PD APR 15 PY 2015 VL 5 AR 053093 DI 10.1117/1.JPE.5.053093 PG 9 WC Materials Science, Multidisciplinary; Optics; Physics, Applied SC Materials Science; Optics; Physics GA CK5FH UT WOS:000356247500001 ER PT J AU Bilitza, D Reinisch, B AF Bilitza, Dieter Reinisch, Bodo TI Preface: International Reference Ionosphere and Global Navigation Satellite Systems SO ADVANCES IN SPACE RESEARCH LA English DT Editorial Material C1 [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Sci Lab, Code 672, Greenbelt, MD 20771 USA. [Reinisch, Bodo] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA. [Reinisch, Bodo] Lowell Digisonde Int LLC, Lowell, MA 01854 USA. RP Bilitza, D (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA. EM dieter.bilitza-l@nasa.gov; bodo.reinisch@digisonde.com NR 0 TC 1 Z9 1 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 1913 EP 1913 DI 10.1016/j.asr.2015.02.021 PG 1 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100001 ER PT J AU Bilitza, D AF Bilitza, Dieter TI The International Reference Ionosphere - Status 2013 SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; IRI; Forecast; Space Weather; Real-Time ID SOLAR-CYCLE VARIATIONS; ELECTRON-TEMPERATURE; EMPIRICAL-MODEL; ION COMPOSITION; PROFILE PARAMETERS; IRI MODEL; COORDINATE SYSTEM; OUTER IONOSPHERE; B1 PARAMETERS; GLOBAL-MODEL AB This paper describes the latest version of the International Reference Ionosphere (IRI) model. IRI-2012 includes new models for the electron density and ion densities in the region below the F-peak, a storm-time model for the auroral E-region, an improved electron temperature model that includes variations with solar activity, and for the first time a description of auroral boundaries. In addition, the thermosphere model required for baseline neutral densities and temperatures was upgraded from MSIS-86 to the newer NRLMSIS-00 model and Corrected Geomagnetic coordinates (CGM) were included in IRI as an additional coordinate system for a better representation of auroral and polar latitudes. Ongoing IRI activities towards the inclusion of an improved model for the F2 peak height hmF2 are discussed as are efforts to develop a "Real-Time IRI". The paper is based on an IRI status report presented at the 2013 IRI Workshop in Olsztyn, Poland. The IRI homepage is at IRImodel.org. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. RP Bilitza, D (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, 4400 Univ Dr, Fairfax, VA 22030 USA. EM dbilitza@gmu.edu NR 88 TC 9 Z9 10 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 1914 EP 1927 DI 10.1016/j.asr.2014.07.032 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100002 ER PT J AU Liang, WJ Limberger, M Schmidt, M Dettmering, D Hugentobler, U Bilitza, D Jakowski, N Hoque, MM Wilken, V Gerzen, T AF Liang, Wenjing Limberger, Marco Schmidt, Michael Dettmering, Denise Hugentobler, Urs Bilitza, Dieter Jakowski, Norbert Hoque, M. Mainul Wilken, Volker Gerzen, Tatjana TI Regional modeling of ionospheric peak parameters using GNSS data-An update for IRI SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; F2 peak; IRI; GNSS; B-splines ID ELECTRON-DENSITY PROFILES; SATELLITE DATA; PREDICTIONS; IRI-2001; HMF2; IGS AB The F2 layer of the ionosphere plays an essential role in radio communication and positioning applications as well as in space weather research. In particular, the characteristics of the F2 layer are defined by the F2 peak density NmF2, the F2 peak height hmF2 as well as the scale height HF2. The International Reference Ionosphere (IRI) is the internationally recognized and recommended standard for predicting these critical parameters. However, IRI provides median monthly values of these parameters based on the International Radio Consultative Committee (CCIR) or the International Union of Radio Science (URSI) models, which were developed from data of the worldwide network of ionosondes during the years 1954 to 1958. These models provide monthly averages, and therefore, they are required to be updated with up-to-date measurements to get more accurate predictions. In this contribution, we provide a procedure to improve the parameters NmF2, hmF2 and HF2 from modern space geodetic measurements, which can serve to update IRI. Specifically, we model these key parameters spatio-temporally by tensor product of B-spline expansions, and estimate the model coefficients using two types of GNSS data, namely, ground-based two-frequency GPS observations of total electron content and electron density profiles retrieved from ionospheric GPS radio occultation measurements acquired by the FORMOSAT-3/COSMIC mission. In this manner, the solution of the model parameters benefits from different sensitivities as well as from different spatio-temporal resolutions of the two observation techniques. The model is applied exemplarily over a South American region on three selected days under high solar activity (1 July 2012), moderate solar activity (16 July 2011) and low solar activity (16 July 2008), respectively. A comparison of our results with ionosonde data, a comparison of vertical total electron content (VTEC) values and a cross validation show the strengths of our approach and the potential to update the IRI model. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Liang, Wenjing; Limberger, Marco; Schmidt, Michael] Deutsch Geodat Forschungsinst DGFI, D-80539 Munich, Germany. [Hugentobler, Urs] Tech Univ Munich, IAPG, D-80333 Munich, Germany. [Bilitza, Dieter] George Mason Univ, Space Weather Lab, Fairfax, VA 22030 USA. [Bilitza, Dieter] NASA, Heliospher Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jakowski, Norbert; Hoque, M. Mainul; Wilken, Volker; Gerzen, Tatjana] German Aerosp Ctr, Inst Commun & Nav, D-17235 Neustrelitz, Germany. RP Liang, WJ (reprint author), Deutsch Geodat Forschungsinst DGFI, Alfons Goppel Str 11, D-80539 Munich, Germany. EM liang@dgfi.badw.de; marco.limberger@dgfi.badw.de; schmidt@dgfi.badw.de; dettmering@dgfi.badw.de; urs.hugentobler@bv.tu-muenchen.de; dbilitza@gmu.edu; Norbert.Jakows-ki@dlr.de; Mainul.Hoque@dlr.de; Volker.Wilken@dlr.de; Tatjana.Gerzen@dlr.de RI Dettmering, Denise/C-6337-2012; Hugentobler, Urs/H-5605-2011 OI Dettmering, Denise/0000-0002-8940-4639; NR 48 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 1981 EP 1993 DI 10.1016/j.asr.2014.12.006 PG 13 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100008 ER PT J AU Brunini, C Azpilicueta, F Janches, D AF Brunini, Claudio Azpilicueta, Francisco Janches, Diego TI An attempt to establish a statistical model of the day-to-day variability of the N(m)F2 and h(m)F2 parameters computed from IRI SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; IRI; N(m)F2 and h(m)F2 variability ID INTERNATIONAL REFERENCE IONOSPHERE; ELECTRON-DENSITY PROFILES; OCCULTATION AB In this work we explore the possibility of using COSMIC/FORMOSAT-3 radio occultation profiles (ROP) to establish a statistical model of the deviations that can be expected between the monthly median values of N(m)F2 and h(m)F2 computed with the International Reference Ionosphere (IRI) and the actual values of these parameters. The actual values are retrieved from the ROP after an interactively re-weighted Least Square fit that, complemented with a statistical test, allows filtering of unreliable data and estimating the errors of the retrieved values. The differences between the retrieved values and the monthly median values computed from IRI are interpreted as the superposition of a systematic bias (attributed to both, IRI and ROP), random errors in ROP, and the day-to-day variability, which is unaccounted for by IRI. This variability is described with a five-dimensional function that depends on: the month, the solar activity, the geomagnetic conditions, the modip latitude, and the local time. Empirical values of this function are estimated in the form of regular grids. Since this research is restricted to low solar activity and quiet geomagnetic conditions, the grid is reduced from five to three dimensions: month, local time, and modip (modified dip latitude). We found that the standard deviation of the day-to-day variability varies according to (in percent of the monthly median value computed with IRI): (i) N(m)F2 at noontime: +/-10% to +/-30% with maxima over the northern and southern peaks of the Equatorial Anomaly; (ii) N(m)F2 at midnight: +/-20% to +/-45%, with the greatest values in the equatorial region during the months of May and September; (iii) h(m)F2 at noontime: +/-2% to +/-10% with minima over the modip equator; and (iv) h(m)F2 at midnight: +/-3% to +/-11% with the greatest values in the equatorial region from January to May and from September to January. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Brunini, Claudio; Azpilicueta, Francisco] Univ Nacl La Plata, CONICET, GESA, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Buenos Aires, Argentina. [Janches, Diego] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brunini, C (reprint author), Univ Nacl La Plata, CONICET, GESA, Fac Ciencias Astron & Geofis, Paseo Bosque S-N, RA-1900 La Plata, Buenos Aires, Argentina. EM claudiobrunini@yahoo.com RI Janches, Diego/D-4674-2012 OI Janches, Diego/0000-0001-8615-5166 NR 22 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 2033 EP 2040 DI 10.1016/j.asr.2014.07.023 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100013 ER PT J AU Truhlik, V Bilitza, D Triskova, L AF Truhlik, V. Bilitza, D. Triskova, L. TI Towards better description of solar activity variation in the International Reference Ionosphere topside ion composition model SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ion composition; Topside ionosphere; Solar activity; Empirical model; International Reference Ionosphere ID EUV AB We present a revision of the ion composition model that is included in the International Reference Ionosphere (IRI) as the TTS-03 option. We employed a better description of the solar activity variation based on the assumption that the dependence of the logarithm of absolute densities of the individual ion species (H+, O+, He+ and N+) on the F10.7 index is linear. Unlike the TTS-03 model using the relative ion densities, the revised model employs absolute ion densities measured by the Atmosphere Explorer C&E and Intercosmos-24 satellites. Results of the revised ion composition model are presented, with special emphasis on the upper transition height (H-T) during low solar activity. Equatorial H-T produced by the model for a very low solar activity is similar to 800 km at daytime (14 h LT) and similar to 520 km at nighttime (2 h LT). These values are closer to H-T observed by the Coupled Ion-Neutral Dynamics Investigations (CINDI) on the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the years 2008 and 2009 (minimum solar activity of the 23rd solar cycle) than the IRI-2007 and IRI-2012 options for the ion composition. A comparison of the options for the ion composition with the Sheffield University Plasmasphere-Ionosphere Model (SUPIM) is also shown. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Truhlik, V.; Triskova, L.] Acad Sci Czech Republic, Inst Atmospher Phys, Prague 14131, Czech Republic. [Bilitza, D.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Bilitza, D.] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. RP Truhlik, V (reprint author), Acad Sci Czech Republic, Inst Atmospher Phys, Bocni II, Prague 14131, Czech Republic. EM vtr@ufa.cas.cz; dbilitza@gmu.edu; ltr@ufa.cas.cz RI Truhlik, Vladimir/H-6971-2014; Triskova, Ludmila/H-6503-2014 OI Truhlik, Vladimir/0000-0002-6624-4388; FU NASA [NAS5-01068]; MSMT of the Czech Republic [LH11123] FX We are grateful to NASA's Space Physics Data Facility (SPDF) and to the experiment PIs J. H. Hoffmann and H. C. Brinton for providing the AE-C, and AE-E ion mass spectrometer data and J. Smilauer for providing IK-24 Bennett ion mass spectrometer data. CINDI data are provided through the support of the CINDI team at the University of Texas at Dallas supported by NASA grant NAS5-01068. This work was supported by grant LH11123 of MSMT of the Czech Republic. NR 19 TC 1 Z9 2 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 2099 EP 2105 DI 10.1016/j.asr.2014.07.033 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100020 ER PT J AU Meromy, L Molotch, NP Williams, MW Musselman, KN Kueppers, LM AF Meromy, Leah Molotch, Noah P. Williams, Mark W. Musselman, Keith N. Kueppers, Lara M. TI Snowpack-climate manipulation using infrared heaters in subalpine forests of the Southern Rocky Mountains, USA SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Snow; Subalpine; Modeling; Climate change; Climate manipulation experiment; IR heaters ID WESTERN UNITED-STATES; ECOSYSTEM WARMING METHODS; NORTHERN HARDWOOD FOREST; SOIL-MOISTURE; WARMER WORLD; NIWOT RIDGE; MODEL; SNOWMELT; TEMPERATURE; ACCUMULATION AB Effects of infrared heaters on snow accumulation, snowmelt, and snow-atmosphere energy exchange were examined at Niwot Ridge, Colorado (CO) and compared to a naturally warmer, but otherwise similar subalpine site in the Valles Caldera National Preserve, New Mexico (NM). Observed snow accumulation was 30% lower on average and snow melted out 16 days earlier in the heated plots compared to the controls. Soil temperature during snowmelt was 3 degrees C greater on average and soil moisture was 4% lower on average in heated plots compared to controls. In NM, snow accumulation was 23% lower, snow melted 23 days earlier, soil temperature was 0.6 degrees C greater, and soil moisture was 13% lower on average relative to CO controls. In order to estimate differences in energy and mass balance fluxes at the snow-atmosphere interface in control versus warmer plots, the 1-D, physically based snowmelt model, SNOWPACK, was used. Model results indicated that heaters alter radiative, turbulent and mass fluxes by amounts comparable to the differences between CO and NM fluxes. The proportion of the energy flux associated with latent heat exchange during snowmelt was 9-27% of the total energy flux in heated models and 19-22% of NM models compared to 3-7% in control models. Thus, sublimation loss to the atmosphere was greater in both experimentally and naturally warmer cases relative to the control case. We conclude that IR heaters can provide alterations to the timing and magnitude of snow accumulation and snowmelt consistent with conditions observed at a warmer analog site and with climate and hydrology model projections. Impacts of IR heating on energy partitioning and sublimation should be considered when designing manipulations of the snowpack, as reductions in snowmelt water may alter biological or ecological processes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Meromy, Leah; Molotch, Noah P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Molotch, Noah P.; Williams, Mark W.] Univ Colorado, Inst Arctic & Alpine Res, Dept Geog, Boulder, CO 80309 USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Musselman, Keith N.] Univ Saskatchewan, Saskatoon, SK S7N 0W0, Canada. [Kueppers, Lara M.] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA. RP Molotch, NP (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Campus Box 450 UCB, Boulder, CO 80309 USA. EM leah.meromy@colorado.edu; noah.molotch@colorado.edu; markw@snobear.colorado.edu; keith.musselman@usask.ca; lkueppers@ucmerced.edu RI Kueppers, Lara/M-8323-2013; Molotch, Noah/C-8576-2009 OI Kueppers, Lara/0000-0002-8134-3579; FU NASA [NNX08AH18G, NNX11AK35A]; NSF [EAR 1032295, EAR 1141764]; USDA [2012-67003-19802]; NOAA RISA Western Water Assessment, U.S. Department of Energy, Office of Science (BER); NSF Niwot Ridge Long Term Ecological Research program FX This research was supported by NASA grants NNX08AH18G, NNX11AK35A, NSF grants EAR 1032295, EAR 1141764, USDA grant 2012-67003-19802, the NOAA RISA Western Water Assessment, U.S. Department of Energy, Office of Science (BER), and the NSF Niwot Ridge Long Term Ecological Research program. Darin Desilets Marcy Litvak, Jen Petrzelka, Michi Lehning, Danielle Perrot, Dominik Schneider, Scott Ferrenberg, and Ethan Brown are acknowledged for providing data sets and field and technical support. NR 93 TC 1 Z9 1 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD APR 15 PY 2015 VL 203 BP 142 EP 157 DI 10.1016/j.agrformet.2014.12.015 PG 16 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CD2UM UT WOS:000350934500014 ER PT J AU Daly, AM Carey, SJ Pejlovas, AM Li, KX Kang, L Kukolich, SG AF Daly, Adam M. Carey, Spencer J. Pejlovas, Aaron M. Li, Kexin Kang, Lu Kukolich, Stephen G. TI Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FLUOROBENZOIC ACID; MICROWAVE-SPECTRA; CARBOXYLIC-ACIDS; PROTON-TRANSFER; MOLECULAR-STRUCTURES; ACRYLIC-ACID; SPECTROSCOPY; BIMOLECULES AB The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0(+)) = 1151.8(5), B(0(+)) = 100.3(5), C(0(+)) = 87.64(3) MHz and A(0(-)) = 1152.2(5), B(0(-)) = 100.7(5), C(0(-)) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (.E) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy. (C) 2015 AIP Publishing LLC. C1 [Daly, Adam M.] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Kang, Lu] Kennesaw State Univ, Dept Chem & Biochem, Kennesaw, GA 30144 USA. RP Daly, AM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. EM Kukolich@u.arizona.edu OI Kang, Lu/0000-0002-9059-4812; Carey, Spencer/0000-0002-3010-8181 FU National Science Foundation [CHE-1057796] FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-1057796 at the University of Arizona. We thank Dr. Laszlo Sarkozy for writing LabVIEW programs for data analysis and finding weak lines. NR 26 TC 3 Z9 3 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2015 VL 142 IS 14 AR 144303 DI 10.1063/1.4917031 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CG0PW UT WOS:000352969600021 PM 25877574 ER PT J AU Schwenke, DW AF Schwenke, David W. TI A unified derivation of Hamiltonian and optical transition matrix elements for open shell diatomic and polyatomic molecules using transformation tools of modern quantum mechanics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRIATOMIC-MOLECULES; ENERGY-LEVELS AB In this work, we systematically derive the matrix elements of the nuclear rotation operators for open shell diatomic and polyatomic molecules in a parity adapted Hund's case (a) basis. Our expressions are valid for an arbitrary number of electrons and arbitrary electronic configurations. The common ad hoc sign changes of angular momentum operators are shown to be equivalent to a change in phase of basis functions. We show how to relate this basis to that required for scattering calculations. We also give the expressions for Einstein A coefficients for electric dipole, electric quadrupole, and magnetic dipole transitions. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Schwenke, DW (reprint author), NASA, Ames Res Ctr, Mail Stop 258-2,POB 1, Moffett Field, CA 94035 USA. EM david.w.schwenke@nasa.gov NR 24 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2015 VL 142 IS 14 AR 144107 DI 10.1063/1.4916952 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CG0PW UT WOS:000352969600009 PM 25877562 ER PT J AU Madhavacheril, M Sehgal, N Allison, R Battaglia, N Bond, JR Calabrese, E Caliguiri, J Coughlin, K Crichton, D Datta, R Devlin, MJ Dunkley, J Dunner, R Fogarty, K Grace, E Hajian, A Hasselfield, M Hill, JC Hilton, M Hincks, AD Hlozek, R Hughes, JP Kosowsky, A Louis, T Lungu, M McMahon, J Moodley, K Munson, C Naess, S Nati, F Newburgh, L Niemack, MD Page, LA Partridge, B Schmitt, B Sherwin, BD Sievers, J Spergel, DN Staggs, ST Thornton, R Van Engelen, A Ward, JT Wollack, EJ AF Madhavacheril, Mathew Sehgal, Neelima Allison, Rupert Battaglia, Nick Bond, J. Richard Calabrese, Erminia Caliguiri, Jerod Coughlin, Kevin Crichton, Devin Datta, Rahul Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Fogarty, Kevin Grace, Emily Hajian, Amir Hasselfield, Matthew Hill, J. Colin Hilton, Matt Hincks, Adam D. Hlozek, Renee Hughes, John P. Kosowsky, Arthur Louis, Thibaut Lungu, Marius McMahon, Jeff Moodley, Kavilan Munson, Charles Naess, Sigurd Nati, Federico Newburgh, Laura Niemack, Michael D. Page, Lyman A. Partridge, Bruce Schmitt, Benjamin Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Thornton, Robert Van Engelen, Alexander Ward, Jonathan T. Wollack, Edward J. CA Atacama Cosmology Telescope Collab TI Evidence of Lensing of the Cosmic Microwave Background by Dark Matter Halos SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; ATACAMA COSMOLOGY TELESCOPE; LARGE-SCALE STRUCTURE; SOUTH-POLE TELESCOPE; SDSS-III; GALAXY CLUSTERS; POWER SPECTRUM; DATA RELEASE; CMB AB We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2 sigma significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos. C1 [Madhavacheril, Mathew; Sehgal, Neelima] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Allison, Rupert; Calabrese, Erminia; Dunkley, Joanna; Louis, Thibaut; Naess, Sigurd] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Battaglia, Nick] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Dept Phys, Pittsburgh, PA 15213 USA. [Bond, J. Richard; Hajian, Amir] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Caliguiri, Jerod; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Datta, Rahul; McMahon, Jeff; Munson, Charles] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Crichton, Devin; Fogarty, Kevin] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Devlin, Mark J.; Lungu, Marius; Schmitt, Benjamin; Thornton, Robert; Ward, Jonathan T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, Rolando] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Grace, Emily; Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Hasselfield, Matthew; Hlozek, Renee; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hill, J. Colin] Princeton Univ, Dept Astron, Princeton, NJ 08544 USA. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6Z 1Z4, Canada. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Nati, Federico] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Newburgh, Laura] Univ Toronto, Dunlap Inst, Toronto, ON M5S 3H4, Canada. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA USA. [Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA USA. [Sievers, Jon] Univ KwaZulu Natal, Sch Chem & Phys, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Sievers, Jon] Univ KwaZulu Natal, Natl Inst Theoret Phys, ZA-4000 Durban, South Africa. [Thornton, Robert] West Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Madhavacheril, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016; OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088; Sievers, Jonathan/0000-0001-6903-5074 FU SBU-BNL Research Initiatives Seed [37298, 1111593]; U.S. National Science Foundation for the ACT project [AST-0408698, AST-0965625]; Princeton University; University of Pennsylvania; Cornell University; Canada Foundation for Innovation (CFI); CFI under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX13AE56G, NNX14AB58G]; ERC [259505]; CONICYT [QUIMAL-120001, FONDECYT-1141113]; Misrahi and Wilkinson research funds; [PHY-0855887]; [PHY-1214379] FX The authors would like to thank Hironao Miyatake, Surhud More, and Anze Slosar for useful discussions regarding CMASS and BOSS galaxies. MM acknowledges support from an SBU-BNL Research Initiatives Seed Grant: Grant No. 37298, Project No. 1111593. This work was supported by the U.S. National Science Foundation through Grants No. AST-0408698 and No. AST-0965625 for the ACT project, as well as Grants No. PHY-0855887 and No. PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, Cornell University, and a Canada Foundation for Innovation (CFI) Grant to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence; and the University of Toronto. The development of multichroic detectors and lenses was supported by NASA Grants No. NNX13AE56G and No. NNX14AB58G. Funding from ERC Grant No. 259505 supports SN, JD, and TL. RD was supported by CONICYT Grants No. QUIMAL-120001 and No. FONDECYT-1141113. We gratefully acknowledge support from the Misrahi and Wilkinson research funds. NR 60 TC 12 Z9 12 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 13 PY 2015 VL 114 IS 15 AR 151302 DI 10.1103/PhysRevLett.114.151302 PG 8 WC Physics, Multidisciplinary SC Physics GA CF6TG UT WOS:000352688500004 PM 25933304 ER PT J AU Evans, PA Osborne, JP Kennea, JA Smith, M Palmer, DM Gehrels, N Gelbord, JM Homeier, A Voge, M Strotjohann, NL Cowen, DF Boser, S Kowalski, M Stasik, A AF Evans, P. A. Osborne, J. P. Kennea, J. A. Smith, M. Palmer, D. M. Gehrels, N. Gelbord, J. M. Homeier, A. Voge, M. Strotjohann, N. L. Cowen, D. F. Boeser, S. Kowalski, M. Stasik, A. TI Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational waves; neutrinos; methods: observational; gamma-ray burst: general; X-rays: general ID GAMMA-RAY BURSTS; NEWTON SLEW SURVEY; SOURCE CATALOG; NEUTRINO BURST; SUPERNOVA SN1987A; TELESCOPE; CURVES; ASTROMETRY; POSITIONS; EVENTS AB Between 2011 March and 2014 August Swift responded to 20 triggers from the IceCube neutrino observatory, observing the IceCube 50 per cent confidence error circle in X-rays, typically within 5 h of the trigger. No confirmed counterpart has been detected. We describe the Swift follow-up strategy and data analysis and present the results of the campaign. We discuss the challenges of distinguishing the X-ray counterpart to a neutrino trigger from serendipitous uncatalogued X-ray sources in the error circle, and consider the implications of our results for future strategies for multimessenger astronomy, with particular reference to the follow-up of gravitational wave triggers from the advanced-era detectors. C1 [Evans, P. A.; Osborne, J. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kennea, J. A.; Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Smith, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gelbord, J. M.] Spectral Sci Inc, Burlington, MA 01803 USA. [Gelbord, J. M.] Eureka Sci Inc, Oakland, CA 94602 USA. [Homeier, A.; Voge, M.; Strotjohann, N. L.; Kowalski, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Strotjohann, N. L.; Kowalski, M.; Stasik, A.] DESY, D-15735 Zeuthen, Germany. [Boeser, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM pae9@leicester.ac.uk OI Strotjohann, Nora Linn/0000-0002-4667-6730 FU UK Space Agency; NASA [NNH13CH61C] FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. PAE and JPO acknowledge UK Space Agency support. JMG gratefully acknowledges the support from NASA under award NNH13CH61C. We thank the anonymous referee for their helpful and constructive feedback on the manuscript. NR 49 TC 3 Z9 4 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2015 VL 448 IS 3 BP 2210 EP 2223 DI 10.1093/mnras/stv136 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0PQ UT WOS:000351507000017 ER PT J AU Delis, N Efthymiopoulos, C Kalapotharakos, C AF Delis, N. Efthymiopoulos, C. Kalapotharakos, C. TI Effective power-law dependence of Lyapunov exponents on the central mass in galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE chaos; galaxies: kinematics and dynamics; galaxies: structure ID SUPERMASSIVE BLACK-HOLES; TRIAXIAL STELLAR-SYSTEM; SELF-CONSISTENT MODELS; BARRED GALAXIES; ELLIPTIC GALAXIES; SECULAR EVOLUTION; DYNAMICAL EVOLUTION; GALACTIC MODELS; CHAOTIC ORBITS; CENTERS AB Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L. mp between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximate to 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximate to 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed. C1 [Delis, N.] Univ Athens, Dept Phys, Athens 11521, Greece. [Delis, N.; Efthymiopoulos, C.] Acad Athens, Astron & Appl Math Res Ctr, Athens 11527, Greece. [Kalapotharakos, C.] Univ Maryland, Coll Pk UMDCP, CRESST, College Pk, MD 20742 USA. [Kalapotharakos, C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Delis, N (reprint author), Univ Athens, Dept Phys, Athens 11521, Greece. EM cefthim@academyofathens.gr FU Research Committee of the Academy of Athens [200/815]; State Scholarship Foundation of Greece FX This research is supported by the Research Committee of the Academy of Athens (grant 200/815). ND was supported by the State Scholarship Foundation of Greece (IKY). NR 62 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2015 VL 448 IS 3 BP 2448 EP 2468 DI 10.1093/mnras/stv064 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0PQ UT WOS:000351507000036 ER PT J AU Mislis, D Mancini, L Tregloan-Reed, J Ciceri, S Southworth, J D'Ago, G Bruni, I Basturk, O Alsubai, KA Bachelet, E Bramich, DM Henning, T Hinse, TC Iannella, AL Parley, N Schroeder, T AF Mislis, D. Mancini, L. Tregloan-Reed, J. Ciceri, S. Southworth, J. D'Ago, G. Bruni, I. Basturk, O. Alsubai, K. A. Bachelet, E. Bramich, D. M. Henning, Th. Hinse, T. C. Iannella, A. L. Parley, N. Schroeder, T. TI High-precision multiband time series photometry of exoplanets Qatar-1b and TrES-5b SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; planets and satellites: detection; planets and satellites: fundamental parameters; planetary systems ID TRANSITING EXTRASOLAR PLANETS; STELLAR EVOLUTION DATABASE; SPIN-ORBIT ALIGNMENT; PHYSICAL-PROPERTIES; SYSTEM; MODELS; STAR; ISOCHRONES; STARSPOTS; I. AB We present an analysis of the Qatar-1 and TrES-5 transiting exoplanetary systems, which contain Jupiter-like planets on short-period orbits around K-dwarf stars. Our data comprise a total of 20 transit light curves obtained using five medium-class telescopes, operated using the defocusing technique. The average precision we reach in all our data is RMSQ = 1.1 mmag for Qatar-1 (V = 12.8) and RMST = 1.0 mmag for TrES-5 (V = 13.7). We use these data to refine the orbital ephemeris, photometric parameters, and measured physical properties of the two systems. One transit event for each object was observed simultaneously in three passbands (gri) using the BUSCA imager. The QES survey light curve of Qatar-1 has a clear sinusoidal variation on a period of P-star = 23.697 +/- 0.123 d, implying significant star-spot activity. We searched for star-spot crossing events in our light curves, but did not find clear evidence in any of the new data sets. The planet in the Qatar-1 system did not transit the active latitudes on the surfaces of its host star. Under the assumption that P-star corresponds to the rotation period of Qatar-1A, the rotational velocity of this star is very close to the vsin i(star) value found from observations of the Rossiter-McLaughlin effect. The low projected orbital obliquity found in this system thus implies a low absolute orbital obliquity, which is also a necessary condition for the transit chord of the planet to avoid active latitudes on the stellar surface. C1 [Mislis, D.; Alsubai, K. A.; Bachelet, E.; Bramich, D. M.; Parley, N.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Mancini, L.; Ciceri, S.; Henning, Th.; Schroeder, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Tregloan-Reed, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [D'Ago, G.; Iannella, A. L.] Univ Salerno, Dept Phys, I-84084 Fisciano, SA, Italy. [Bruni, I.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Basturk, O.] Ankara Univ, Fac Sci, Dept Astron & Space Sci, TR-06100 Ankara, Turkey. [Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. RP Mislis, D (reprint author), Qatar Fdn, Qatar Environm & Energy Res Inst, Tornado Tower,Floor 19,POB 5825, Doha, Qatar. EM dmislis@qf.org.qa RI D'Ago, Giuseppe/N-8318-2016 OI D'Ago, Giuseppe/0000-0001-9697-7331 FU NPRP from the Qatar National Research Fund (a member of Qatar Foundation) [X-019-1-006]; TUBITAK [12CT100-378]; Ankara University (BAP) [13B4240006] FX This publication is supported by NPRP grant no. X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.; We thank to TUBITAK for the partial support in using T100 telescope with project number 12CT100-378. OB acknowledges the support by the research fund of Ankara University (BAP) through the project 13B4240006. NR 26 TC 3 Z9 3 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2015 VL 448 IS 3 BP 2617 EP 2623 DI 10.1093/mnras/stv197 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0PQ UT WOS:000351507000049 ER PT J AU Hennessy, J Jewell, AD Hoenk, ME Nikzad, S AF Hennessy, John Jewell, April D. Hoenk, Michael E. Nikzad, Shouleh TI Metal-dielectric filters for solar-blind silicon ultraviolet detectors SO APPLIED OPTICS LA English DT Article ID INTERFERENCE FILTERS; QUANTUM EFFICIENCY; BANDPASS-FILTERS; DESIGN; TRANSMISSION; TRANSPARENT; TELESCOPE; RANGE; FILMS AB We report on the fabrication of metal-dielectric thin film stacks deposited directly onto silicon substrates for use as ultraviolet bandpass filters. Integration of these filters onto silicon improves the admittance matching of the structure when compared to similar designs fabricated on transparent substrates, leading to higher peak transmission or improved out-of-band rejection if used with a Si-based sensor platform. Test structures fabricated with metallic Al and atomic layer deposited Al2O3 were characterized with spectroscopic ellipsometry and agree well with optical models. These models predict transmission as high as 90% the spectral range of 200-300 nm for simple three-layer coatings. C1 [Hennessy, John; Jewell, April D.; Hoenk, Michael E.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hennessy, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM john.j.hennessy@jpl.nasa.gov FU NASA FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract from NASA. NR 23 TC 4 Z9 4 U1 4 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 10 PY 2015 VL 54 IS 11 BP 3507 EP 3512 DI 10.1364/AO.54.003507 PG 6 WC Optics SC Optics GA CG4FP UT WOS:000353240200054 PM 25967344 ER PT J AU Cannizzo, JK Nelemans, G AF Cannizzo, John K. Nelemans, Gijs TI CONSTRAINING THE PHYSICS OF AM CANUM VENATICORUM SYSTEMS WITH THE ACCRETION DISK INSTABILITY MODEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: close; novae, cataclysmic variables; stars: individual (AM Canum Venaticorum) ID LIMIT-CYCLE MECHANISM; X-RAY BINARIES; DWARF NOVAE; WHITE-DWARFS; CVN STARS; HZ 29; PERIOD; OUTBURSTS; STABILITY; EVOLUTION AB Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate similar to 5 x 10(-9)M(circle dot) yr(-1)(P-orb/1000 s)(-5.2). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations. C1 [Cannizzo, John K.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. [Cannizzo, John K.] NASA, GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Cannizzo, John K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Nelemans, Gijs] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Nelemans, Gijs] Katholieke Univ Leuven, Inst Astron, B-3001 Louvain, Belgium. RP Cannizzo, JK (reprint author), NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. EM John.K.Cannizzo@nasa.gov RI Nelemans, Gijs/D-3177-2012 OI Nelemans, Gijs/0000-0002-0752-2974 NR 40 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 19 DI 10.1088/0004-637X/803/1/19 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400019 ER PT J AU Cohen, MH Meier, DL Arshakian, TG Clausen-Brown, E Homan, DC Hovatta, T Kovalev, YY Lister, ML Pushkarev, AB Richards, JL Savolainen, T AF Cohen, M. H. Meier, D. L. Arshakian, T. G. Clausen-Brown, E. Homan, D. C. Hovatta, T. Kovalev, Y. Y. Lister, M. L. Pushkarev, A. B. Richards, J. L. Savolainen, T. TI STUDIES OF THE JET IN BL LACERTAE. II. SUPERLUMINAL ALFVEN WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (BL Lac); galaxies: jets; magnetohydrodynamics (MHD); waves ID ACTIVE GALACTIC NUCLEI; SHOCKED RELATIVISTIC JETS; SYNCHROTRON EMISSION; VLBA EXPERIMENTS; BURST EMISSION; BAND QUIESCENT; RADIO-SOURCES; SCALE JETS; MOJAVE; POLARIZATION AB We study the kinematics of ridge lines on the parsec-scale jet of the active galactic nucleus BL Lacertae. We show that the ridge lines display transverse patterns that move superluminally downstream, and that the moving patterns are analogous to waves on a whip. Their apparent speeds beta(app) (units of c) range from 3.9 to 13.5, corresponding to beta(gal)(wave) = 0.981-0.998 in the galaxy frame. We show that the magnetic field in the jet is well ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are Alfven waves propagating downstream on the longitudinal component of the magnetic field. The wave-induced transverse speed of the jet is non-relativistic (beta(gal)(tr) less than or similar to 0.09 ). In 2010 the wave activity subsided and the jet then displayed a mild wiggle that had a complex oscillatory behavior. The Alfven waves appear to be excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking the handle. A simple model of the system with plasma sound speed beta(s) = 0.3 and apparent speed of a slow MHD wave beta(app,) (S) = 4 yields Lorentz factor of the beam Gamma(beam) similar to 4.5, pitch angle of the helix (in the beam frame) alpha similar to 67 degrees, Alfven speed beta(A) similar to 0.64, and magnetosonic Mach number M-ms similar to 4.7. This describes a plasma in which the magnetic field is dominant and in a rather tight helix, and Alfven waves are responsible for the moving transverse patterns. C1 [Cohen, M. H.; Meier, D. L.; Hovatta, T.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Meier, D. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Arshakian, T. G.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Arshakian, T. G.] Byurakan Astrophys Observ, Byurakan 378433, Armenia. [Arshakian, T. G.] Isaac Newton Inst Chile, Armenian Branch, Santiago, Chile. [Clausen-Brown, E.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Homan, D. C.] Denison Univ, Dept Phys, Granville, OH 43023 USA. [Hovatta, T.; Savolainen, T.] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Kovalev, Y. Y.] Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Lister, M. L.] Pulkovo Observ, W Lafayette, IN 47907 USA. [Pushkarev, A. B.] Crimean Astrophys Observ, Crimea 98409, Russia. RP Cohen, MH (reprint author), CALTECH, Dept Astron, Pasadena, CA 91125 USA. EM mhc@astro.caltech.edu RI Kovalev, Yuri/J-5671-2013; Pushkarev, Alexander/M-9997-2015; OI Kovalev, Yuri/0000-0001-9303-3263; Savolainen, Tuomas/0000-0001-6214-1085 FU DFG [Os 177/2-1]; Jenny and Antti Wihuri foundation; Academy of Finland [267324, 274477]; Russian Foundation for Basic Research [13-02-12103]; Division of Physics, Russian Academy of Sciences [OFN-17]; Dynasty Foundation; "Non-stationary processes in the universe" Program of the Presidium of the Russian Academy of Sciences; NASA-Fermi grant [NNX12A087G]; NASA through the Fermi Guest Investigator Program FX We thank the referee for comments that have improved the manuscript, M. Perucho for reading the manuscript and offering helpful suggestions, and the MOJAVE team for comments on the manuscript and for years of work in producing the database that makes this work possible. T.G.A. acknowledges support by DFG project number Os 177/2-1. T.H. was partly supported by the Jenny and Antti Wihuri foundation and by the Academy of Finland project number 267324; T.S. was partly supported by the Academy of Finland project 274477. Y.Y.K is partly supported by the Russian Foundation for Basic Research (project 13-02-12103), Research Program OFN-17 of the Division of Physics, Russian Academy of Sciences, and the Dynasty Foundation. A.B.P. was supported by the "Non-stationary processes in the universe" Program of the Presidium of the Russian Academy of Sciences. The VLBA is a facility of the National Radio Astronomy Observatory, a facility of the National Science Foundation that is operated under cooperative agreement with Associated Universities, Inc. The MOJAVE program is supported under NASA-Fermi grant NNX12A087G. This study makes use of 43 GHz VLBA data from the VLBA-BU Blazar Monitoring Program (VLBA-BU-BLAZAR; http://bu.edu/blazars/VLBAproject.html), funded by NASA through the Fermi Guest Investigator Program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 48 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 3 DI 10.1088/0004-637X/803/1/3 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400003 ER PT J AU Martin, CL Dijkstra, M Henry, A Soto, KT Danforth, CW Wong, J AF Martin, Crystal L. Dijkstra, Mark Henry, Alaina Soto, Kurt T. Danforth, Charles W. Wong, Joseph TI THE Ly alpha LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; hydrodynamics; instabilities; line: profiles; radiative transfer ID STAR-FORMING GALAXIES; SCALE GASEOUS OUTFLOWS; SINS/ZC-SINF SURVEY; FE-II-EMISSION; GALACTIC WINDS; AGN FEEDBACK; FAR-ULTRAVIOLET; X-RAY; COLLAPSING PROTOGALAXIES; INTERSTELLAR-MEDIUM AB We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly alpha emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly alpha profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km s(-1) in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly alpha line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly alpha attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly alpha photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly alpha and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly alpha emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs. C1 [Martin, Crystal L.; Wong, Joseph] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Dijkstra, Mark] Univ Oslo, Inst Theoret Astrophys, N-0858 Oslo, Norway. [Henry, Alaina] Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Soto, Kurt T.] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [Danforth, Charles W.] Univ Colorado, CASA, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. RP Martin, CL (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM cmartin@physics.ucsb.edu FU National Science Foundation [AST-1109288, NSF PHYS-1066293]; Kavli Institute for Theoretical Physics under support from the National Science Foundation [NSF PHY11-25915] FX This research was supported by the National Science Foundation under AST-1109288 (C.L.M.) and was partially carried out at the Aspen Center for Physics which is supported by the National Science Foundation under grant No. NSF PHYS-1066293 and the Kavli Institute for Theoretical Physics under support from the National Science Foundation under grant No. NSF PHY11-25915. We thank Tim Heckman, Norman Murray, and Todd Thompson for stimulating discussions about this work. We also wish to recognize and acknowledge the highly significant cultural role that the summit of Mauna Kea has always had within the indigenous Hawaiian community. It is a privilege to be given the opportunity to conduct observations from this mountain. NR 92 TC 15 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 6 DI 10.1088/0004-637X/803/1/6 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400006 ER PT J AU Pueyo, L Soummer, R Hoffmann, J Oppenheimer, R Graham, JR Zimmerman, N Zhai, C Wallace, JK Vescelus, F Veicht, A Vasisht, G Truong, T Sivaramakrishnan, A Shao, M Roberts, LC Roberts, JE Rice, E Parry, IR Nilsson, R Lockhart, T Ligon, ER King, D Hinkley, S Hillenbrand, L Hale, D Dekany, R Crepp, JR Cady, E Burruss, R Brenner, D Beichman, C Baranec, C AF Pueyo, L. Soummer, R. Hoffmann, J. Oppenheimer, R. Graham, J. R. Zimmerman, N. Zhai, C. Wallace, J. K. Vescelus, F. Veicht, A. Vasisht, G. Truong, T. Sivaramakrishnan, A. Shao, M. Roberts, L. C., Jr. Roberts, J. E. Rice, E. Parry, I. R. Nilsson, R. Lockhart, T. Ligon, E. R. King, D. Hinkley, S. Hillenbrand, L. Hale, D. Dekany, R. Crepp, J. R. Cady, E. Burruss, R. Brenner, D. Beichman, C. Baranec, C. TI RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. II. ASTROMETRY AND ORBITAL MOTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; instrumentation: adaptive optics; instrumentation: spectrographs; methods: data analysis; planetary systems; stars: individual (HR 8799) ID INTEGRAL FIELD SPECTROGRAPH; NEAR-INFRARED SPECTROSCOPY; PUPIL LYOT CORONAGRAPHS; BETA-PICTORIS B; PLANETARY SYSTEM; GIANT PLANET; MU-M; SPECKLE SUPPRESSION; EXTRASOLAR PLANETS; BROWN DWARFS AB We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000), a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR 8799de have dynamical masses below 13 M-Jup, using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system. C1 [Pueyo, L.; Soummer, R.; Sivaramakrishnan, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hoffmann, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Oppenheimer, R.; Veicht, A.; Rice, E.; Nilsson, R.; Brenner, D.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Graham, J. R.] Univ Calif Berkeley, Berkeley Astron Dept, Berkeley, CA 94720 USA. [Zimmerman, N.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Zhai, C.; Wallace, J. K.; Vescelus, F.; Vasisht, G.; Truong, T.; Shao, M.; Roberts, L. C., Jr.; Roberts, J. E.; Lockhart, T.; Ligon, E. R.; Cady, E.; Burruss, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rice, E.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Parry, I. R.; King, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hinkley, S.] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England. [Hillenbrand, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Hale, D.; Dekany, R.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Crepp, J. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Beichman, C.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Baranec, C.] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. RP Pueyo, L (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM pueyo@stsci.edu OI Oppenheimer, Rebecca/0000-0001-7130-7681; Zimmerman, Neil/0000-0001-5484-1516 NR 90 TC 30 Z9 30 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 31 DI 10.1088/0004-637X/803/1/31 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400031 ER PT J AU Slavin, JD Dwek, E Jones, AP AF Slavin, Jonathan D. Dwek, Eli Jones, Anthony P. TI DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: supernova remnants; ISM: abundances; shock waves ID MILKY-WAY; HOT GAS; SOLAR NEIGHBORHOOD; GRAIN DESTRUCTION; SIZE DISTRIBUTION; FILLING FACTOR; EVOLUTION; EMISSION; MODELS; EXTINCTION AB Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities greater than or similar to 200 km s(-1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of similar to 2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of similar to 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of similar to 2-3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM. C1 [Slavin, Jonathan D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Jones, Anthony P.] Univ Paris 11, CNRS, IAS, UMR 8617, F-91405 Orsay, France. RP Slavin, JD (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jslavin@cfa.harvard.edu OI Slavin, Jonathan/0000-0002-7597-6935; Jones, Anthony/0000-0003-0577-6425 FU NASA Astrophysics Theory Program grant [NNX12AF84G]; NASA Astrophysical Data Analysis Program [ADAP13-0094] FX This research was supported by NASA Astrophysics Theory Program grant NNX12AF84G. ED acknowledges support by NASA Astrophysical Data Analysis Program ADAP13-0094. We thank John Raymond for providing the steady shock model calculations and our collaborator Xander Tielens for helpful discussions. We also wish to thank the developers of matplotlib, a python plotting library, which we used to produce all of the plots in this paper. NR 55 TC 16 Z9 16 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 7 DI 10.1088/0004-637X/803/1/7 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400007 ER PT J AU Troja, E Piro, L Vasileiou, V Omodei, N Burgess, JM Cutini, S Connaughton, V McEnery, JE AF Troja, E. Piro, L. Vasileiou, V. Omodei, N. Burgess, J. M. Cutini, S. Connaughton, V. McEnery, J. E. TI SWIFT AND FERMI OBSERVATIONS OF X-RAY FLARES: THE CASE OF LATE INTERNAL SHOCK SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; BURST AFTERGLOWS; FLARING ACTIVITY; LIGHT CURVES; COMPTON EMISSION; ENGINE ACTIVITY; GRB AFTERGLOWS; 1ST SURVEY; SYNCHROTRON; CALIBRATION AB Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (Gamma > 50) outflow at radii R similar to 10(13)-10(14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine. C1 [Troja, E.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Piro, L.] INAF IAPS, I-00133 Rome, Italy. [Vasileiou, V.] Univ Montpellier 2, Lab Univ & Particules Montpellier, Montpellier, France. [Vasileiou, V.] CNRS, IN2P3, Montpellier, France. [Omodei, N.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Omodei, N.] Stanford Univ, SLAC, Natl Accelerator Lab, Stanford, CA 94305 USA. [Burgess, J. M.; Connaughton, V.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Cutini, S.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [McEnery, J. E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Troja, E (reprint author), NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. EM eleonora.troja@nasa.gov; luigi.piro@iaps.inaf.it; Vlasios.Vasileiou@lupm.in2p3.fr OI Burgess, James/0000-0003-3345-9515 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 69 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 10 DI 10.1088/0004-637X/803/1/10 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400010 ER PT J AU Villanueva, GL Mumma, MJ Novak, RE Kaufl, HU Hartogh, P Encrenaz, T Tokunaga, A Khayat, A Smith, MD AF Villanueva, G. L. Mumma, M. J. Novak, R. E. Kaeufl, H. U. Hartogh, P. Encrenaz, T. Tokunaga, A. Khayat, A. Smith, M. D. TI Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs SO SCIENCE LA English DT Article ID ORBITER LASER ALTIMETER; HYDROGEN ISOTOPES; ANNUAL CYCLE; MARS; DEUTERIUM; EVOLUTION; VAPOR; METEORITES; DEPOSITS; SURFACE AB We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. C1 [Villanueva, G. L.; Mumma, M. J.; Smith, M. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villanueva, G. L.] Catholic Univ Amer, Washington, DC 20064 USA. [Novak, R. E.] Iona Coll, New Rochelle, NY 10801 USA. [Kaeufl, H. U.] European So Observ, Munich, Germany. [Hartogh, P.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Encrenaz, T.] Observ Paris, F-92195 Meudon, France. [Tokunaga, A.; Khayat, A.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. RP Villanueva, GL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM geronimo.villanueva@nasa.gov FU NASA's Planetary Astronomy Program [08 PAST08 0034, RTOP 344 32 07]; NASA's Planetary Atmospheres Program [08 PATM08 0031]; NASA's Astrobiology Program [RTOP 344 53 51]; NSF Research in Undergraduate Institutions [AST 0805540]; NASA Keck PI Data Award FX We thank the staff of the Very Large Telescope (runs 83.C-0538 and 92.C-0436), the NASA InfraRed Telescope Facility, and the W. M. Keck Observatory for their exceptional support throughout our long Mars observing Programs. G.L.V. acknowledges support from NASA's Planetary Astronomy Program (08 PAST08 0034) and NASA's Planetary Atmospheres Program (08 PATM08 0031). NASA's Planetary Astronomy Program (RTOP 344 32 07) and NASA's Astrobiology Program (RTOP 344 53 51) supported M.J.M. and G.L.V. NSF Research in Undergraduate Institutions supported R.E.N. through grant AST 0805540. This work was also supported by a NASA Keck PI Data Award. The authors recognize and acknowledge the very important cultural role and reverence that the summit of MaunaKea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 42 TC 33 Z9 35 U1 3 U2 46 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 10 PY 2015 VL 348 IS 6231 BP 218 EP 221 DI 10.1126/science.aaa3630 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5RD UT WOS:000352613700041 PM 25745065 ER PT J AU Clark, DB Hurtado, J Saatchi, SS AF Clark, David B. Hurtado, Johanna Saatchi, Sassan S. TI Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica SO PLOS ONE LA English DT Article ID ALTITUDINAL GRADIENTS; MOUNT-KINABALU; RANGE SHIFTS; CLIMATE; BIOMASS; VEGETATION; MORTALITY; ECOLOGY; BORNEO AB Rapid biological changes are expected to occur on tropical elevational gradients as species migrate upslope or go extinct in the face of global warming. We established a series of 9 1-ha plots in old-growth tropical rainforest in Costa Rica along a 2700 m relief elevational gradient to carry out long-term monitoring of tropical rain forest structure, dynamics and tree growth. Within each plot we mapped, identified, and annually measured diameter for all woody individuals with stem diameters >10 cm for periods of 3-10 years. Wood species diversity peaked at 400-600 m and decreased substantially at higher elevations. Basal area and stem number varied by less than two-fold, with the exception of the 2800 m cloud forest summit, where basal area and stem number were approximately double that of lower sites. Canopy gaps extending to the forest floor accounted for <3% of microsites at all elevations. Height of highest crowns and the coefficient of variation of crown height both decreased with increasing elevation. Rates of turnover of individuals and of stand basal area decreased with elevation, but rates of diameter growth and stand basal area showed no simple relation to elevation. We discuss issues encountered in the design and implementation of this network of plots, including biased sampling, missing key meteorological and biomass data, and strategies for improving species-level research. Taking full advantage of the major research potential of tropical forest elevational transects will require sustaining and extending ground based studies, incorporation of new remotely-sensed data and data-acquisition platforms, and new funding models to support decadal research on these rapidly-changing systems. C1 [Clark, David B.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA. [Hurtado, Johanna] Org Trop Studies, La Selva Biol Stn, Puerto Viejo de Sarapiqui, Heredia, Costa Rica. [Saatchi, Sassan S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Clark, DB (reprint author), Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA. EM dbclark50@yahoo.com FU Tropical Ecology Assessment and Monitoring program (TEAM) of Conservational International; NASA Terrestrial Ecology grant [11-TE11-0100] FX JH and DBC received funding from the Tropical Ecology Assessment and Monitoring program (TEAM) of Conservational International (http://www.teamnetwork.org/). DBC and SSS were funded by NASA Terrestrial Ecology grant 11-TE11-0100 (http://cce.nasa.gov/cce/terrestrial.htm). The funders had no role in study design, data collection NR 43 TC 1 Z9 1 U1 8 U2 40 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 9 PY 2015 VL 10 IS 4 AR e0122905 DI 10.1371/journal.pone.0122905 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5HQ UT WOS:000352588500064 PM 25856163 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, T Abernathy, MR Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, V Affeldt, C Aggarwal, N Aguiar, OD Ain, A Ajith, P Alemic, A Allen, B Amariutei, D Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, C Areeda, JS Ashton, G Ast, S Aston, SM Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, PT Ballmer, SW Barayoga, JC Barbet, M Barclay, S Barish, BC Barker, D Barr, B Barsotti, L Bartlett, J Barton, MA Bartos, I Bassiri, R Batch, JC Baune, C Behnke, B Bell, AS Bell, C Benacquista, M Bergman, J Bergmann, G Berry, CPL Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Biscans, S Biwer, C Blackburn, JK Blackburn, L Blair, CD Blair, D Bock, O Bodiya, TP Bojtos, P Bond, C Bork, R Born, M Bose, S Brady, PR Braginsky, VB Brau, JE Bridges, DO Brinkmann, M Brooks, AF Brown, DA Brown, DD Brown, NM Buchman, S Buikema, A Buonanno, A Cadonati, L Bustillo, JC Camp, JB Cannon, KC Cao, J Capano, CD Caride, S Caudill, S Cavaglia, M Cepeda, C Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chen, Y Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chung, S Ciani, G Clara, F Clark, JA Collette, C Cominsky, L Constancio, M Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Countryman, S Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, TD Cripe, J Crowder, SG Cumming, A Cunningham, L Cutler, C Dahl, K Dal Canton, T Damjanic, M Danilishin, SL Danzmann, K Dartez, L Dave, I Daveloza, H Davies, GS Daw, EJ Debra, D Del Pozzo, W Denker, T Dent, T Dergachev, V DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, M Di Palma, I Dojcinoski, G Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Driggers, JC Du, Z Dwyer, S Eberle, T Edo, T Edwards, M Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Essick, R Etzel, T Evans, M Evans, T Factourovich, M Fairhurst, S Fan, X Fang, Q Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferreira, EC Fisher, RP Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fuentes-Tapia, S Fulda, P Fyffe, M Gair, JR Gaonkar, S Gehrels, N Gergely, LA Giaime, JA Giardina, KD Gleason, J Goetz, E Goetz, R Gondan, L Gonzalez, G Gordon, N Gorodetsky, ML Gossan, S Gossler, S Graf, C Graff, PB Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Grote, H Grunewald, S Guido, CJ Guo, X Gushwa, K Gustafson, EK Gustafson, R Hacker, J Hall, ED Hammond, G Hanke, M Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harry, GM Harry, IW Hart, M Hartman, MT Haster, CJ Haughian, K Hee, S Heintze, M Heinzel, G Hendry, M Heng, IS Heptonstall, AW Heurs, M Hewitson, M Hild, S Hoak, D Hodge, KA Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, E Howell, EJ Hu, YM Huerta, E Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, M Jang, H Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Katsavounidis, E Katzman, W Kaufer, H Kaufer, S Kaur, T Kawabe, K Kawazoe, F Keiser, GM Keitel, D Kelley, DB Kells, W Keppel, DG Key, JS Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, J Koehlenbeck, S Kokeyama, K Kondrashov, V Korobko, M Korth, WZ Kozak, DB Kringel, V Krishnan, B Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Landry, M Lantz, B Larson, S Lasky, PD Lazzarini, A Lazzaro, C Le, J Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Leong, JR Levin, Y Levine, B Lewis, J Li, TGF Libbrecht, K Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Logue, J Lombardi, AL Lormand, M Lough, J Lubinski, MJ Luck, H Lundgren, AP Lynch, R Ma, Y Macarthur, J MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, R Mageswaran, M Maglione, C Mailand, K Mandel, I Mandic, V Mangano, V Mansell, GL Marka, S Marka, Z Markosyan, A Maros, E Martin, IW Martin, RM Martynov, D Marx, JN Mason, K Massinger, TJ Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J Mclin, K McWilliams, S Meadors, GD Meinders, M Melatos, A Mendell, G Mercer, RA Meshkov, S Messenger, C Meyers, PM Miao, H Middleton, H Mikhailov, EE Miller, A Miller, J Millhouse, M Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohanty, SD Mohapatra, SRP Moore, B Moraru, D Moreno, G Morriss, SR Mossavi, K Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Nayak, RK Necula, V Nedkova, K Newton, G Nguyen, T Nielsen, AB Nissanke, S Nitz, AH Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oppermann, P Oram, R O'Reilly, B Ortega, W O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, C Pai, A Pai, S Palashov, O Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Papa, MA Paris, H Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Pierro, V Pinto, IM Pitkin, M Poeld, J Post, A Poteomkin, A Powell, J Prasad, J Predoi, V Premachandra, S Prestegard, T Price, LR Principe, M Privitera, S Prix, R Prokhorov, L Puncken, O Purrer, M Qin, J Quetschke, V Quintero, E Quiroga, G Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajalakshmi, G Rakhmanov, M Ramirez, K Raymond, V Reed, CM Reid, S Reitze, DH Reula, O Riles, K Robertson, NA Robie, R Rollins, JG Roma, V Romano, JD Romanov, G Romie, JH Rowan, S Rudiger, A Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sandberg, V Sanders, JR Sannibale, V Santiago-Prieto, I Sathyaprakash, BS Saulson, PR Savage, R Sawadsky, A Scheuer, J Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sergeev, A Serna, G Sevigny, A Shaddock, DA Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, L Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Son, EJ Sorazu, B Souradeep, T Staley, A Stebbins, J Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, S Stone, R Strain, KA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sutton, PJ Szczepanczyk, M Szeifert, G Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Tellez, G Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, V Tomlinson, C Torres, CV Torrie, CI Traylor, G Tse, M Tshilumba, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Veggel, AA Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, PJ Venkateswara, K Vincent-Finley, R Vitale, S Vo, T Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, L Wade, M Walker, M Wallace, L Walsh, S Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Williams, L Williams, R Williamson, AR Willis, JL Willke, B Wimmer, M Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Xie, S Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yang, Q Zanolin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, S Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. Abernathy, M. R. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. Affeldt, C. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Alemic, A. Allen, B. Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. Areeda, J. S. Ashton, G. Ast, S. Aston, S. M. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. T. Ballmer, S. W. Barayoga, J. C. Barbet, M. Barclay, S. Barish, B. C. Barker, D. Barr, B. Barsotti, L. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Batch, J. C. Baune, C. Behnke, B. Bell, A. S. Bell, C. Benacquista, M. Bergman, J. Bergmann, G. Berry, C. P. L. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Biscans, S. Biwer, C. Blackburn, J. K. Blackburn, L. Blair, C. D. Blair, D. Bock, O. Bodiya, T. P. Bojtos, P. Bond, C. Bork, R. Born, M. Bose, Sukanta Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brinkmann, M. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchman, S. Buikema, A. Buonanno, A. Cadonati, L. Bustillo, J. Calderon Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Caride, S. Caudill, S. Cavaglia, M. Cepeda, C. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chen, Y. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chung, S. Ciani, G. Clara, F. Clark, J. A. Collette, C. Cominsky, L. Constancio, M., Jr. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Countryman, S. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. D. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cutler, C. Dahl, K. Dal Canton, T. Damjanic, M. Danilishin, S. L. Danzmann, K. Dartez, L. Dave, I. Daveloza, H. Davies, G. S. Daw, E. J. Debra, D. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. Di Palma, I. Dojcinoski, G. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Driggers, J. C. Du, Z. Dwyer, S. Eberle, T. Edo, T. Edwards, M. Edwards, M. Effler, A. Eggenstein, H. -B Ehrens, P. Eichholz, J. Eikenberry, S. S. Essick, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fairhurst, S. Fan, X. Fang, Q. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferreira, E. C. Fisher, R. P. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fuentes-Tapia, S. Fulda, P. Fyffe, M. Gair, J. R. Gaonkar, S. Gehrels, N. Gergely, L. A. Giaime, J. A. Giardina, K. D. Gleason, J. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gordon, N. Gorodetsky, M. L. Gossan, S. Gossler, S. Graef, C. Graff, P. B. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Grote, H. Grunewald, S. Guido, C. J. Guo, X. Gushwa, K. Gustafson, E. K. Gustafson, R. Hacker, J. Hall, E. D. Hammond, G. Hanke, M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harry, G. M. Harry, I. W. Hart, M. Hartman, M. T. Haster, C-J Haughian, K. Hee, S. Heintze, M. Heinzel, G. Hendry, M. Heng, I. S. Heptonstall, A. W. Heurs, M. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. Howell, E. J. Hu, Y. M. Huerta, E. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. Jang, H. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Katsavounidis, E. Katzman, W. Kaufer, H. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Keiser, G. M. Keitel, D. Kelley, D. B. Kells, W. Keppel, D. G. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. Koehlenbeck, S. Kokeyama, K. Kondrashov, V. Korobko, M. Korth, W. Z. Kozak, D. B. Kringel, V. Krishnan, B. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Landry, M. Lantz, B. Larson, S. Lasky, P. D. Lazzarini, A. Lazzaro, C. Le, J. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Levin, Y. Levine, B. Lewis, J. Li, T. G. F. Libbrecht, K. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Logue, J. Lombardi, A. L. Lormand, M. Lough, J. Lubinski, M. J. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Macarthur, J. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. Mageswaran, M. Maglione, C. Mailand, K. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Marka, S. Marka, Z. Markosyan, A. Maros, E. Martin, I. W. Martin, R. M. Martynov, D. Marx, J. N. Mason, K. Massinger, T. J. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. Mclin, K. McWilliams, S. Meadors, G. D. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyers, P. M. Miao, H. Middleton, H. Mikhailov, E. E. Miller, A. Miller, J. Millhouse, M. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohanty, S. D. Mohapatra, S. R. P. Moore, B. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Nayak, R. K. Necula, V. Nedkova, K. Newton, G. Nguyen, T. Nielsen, A. B. Nissanke, S. Nitz, A. H. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. Pai, A. Pai, S. Palashov, O. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Papa, M. A. Paris, H. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Pierro, V. Pinto, I. M. Pitkin, M. Poeld, J. Post, A. Poteomkin, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. Prestegard, T. Price, L. R. Principe, M. Privitera, S. Prix, R. Prokhorov, L. Puncken, O. Puerrer, M. Qin, J. Quetschke, V. Quintero, E. Quiroga, G. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajalakshmi, G. Rakhmanov, M. Ramirez, K. Raymond, V. Reed, C. M. Reid, S. Reitze, D. H. Reula, O. Riles, K. Robertson, N. A. Robie, R. Rollins, J. G. Roma, V. Romano, J. D. Romanov, G. Romie, J. H. Rowan, S. Ruediger, A. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sandberg, V. Sanders, J. R. Sannibale, V. Santiago-Prieto, I. Sathyaprakash, B. S. Saulson, P. R. Savage, R. Sawadsky, A. Scheuer, J. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Son, E. J. Sorazu, B. Souradeep, T. Staley, A. Stebbins, J. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. Stone, R. Strain, K. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sutton, P. J. Szczepanczyk, M. Szeifert, G. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Tellez, G. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, V. Tomlinson, C. Torres, C. V. Torrie, C. I. Traylor, G. Tse, M. Tshilumba, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Veggel, A. A. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. J. Venkateswara, K. Vincent-Finley, R. Vitale, S. Vo, T. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Williams, L. Williams, R. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Xie, S. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yang, Q. Zanolin, M. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. Zweizig, J. CA LIGO Sci Collaboration TI Advanced LIGO SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE gravitational waves; interferometers; seismic isolation; optics ID GRAVITATIONAL-WAVE DETECTORS; MECHANICAL LOSS; FREQUENCY; RADIATION; ALIGNMENT; COATINGS; CAVITIES; READOUT; VIRGO AB The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Mageswaran, M.; Mailand, K.; Maros, E.; Martynov, D.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Osthelder, C.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Quintero, E.; Raymond, V.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sannibale, V.; Schmidt, P.; Shao, Z.; Singer, A.; Singer, L.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Taylor, R.; Thirugnanasambandam, M. P.; Thrane, E.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Ackley, K.; Amariutei, D.; Barbet, M.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Hartman, M. T.; Heintze, M.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M. J.; Doravari, S.; Evans, T.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO, Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Sathyaprakash, B. S.; Schmidt, P.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; Buikema, A.; Denker, T.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio, I-82100 Benevento, Italy. [Addesso, P.; Buikema, A.; Denker, T.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] INFN, Sez Napoli, I-80100 Naples, Italy. [Adya, V.; Affeldt, C.; Baune, C.; Bergmann, G.; Born, M.; Brinkmann, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Dooley, K. L.; Eberle, T.; Fricke, T. T.; Gossler, S.; Grote, H.; Hanke, M.; Heinzel, G.; Heurs, M.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Koehlenbeck, S.; Korobko, M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lueck, H.; Mossavi, K.; Mow-Lowry, C. M.; Oppermann, P.; Pal-Singh, A.; Poeld, J.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schuette, D.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Was, M.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Wimmer, M.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Expt Grp, D-30167 Hannover, Germany. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Donovan, F.; Essick, R.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Wipf, C. C.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S.; Mitra, S.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Mishra, C.] Tata Inst Fundamental, Int Ctr Theoret Sci, Res, Bangalore 560012, Karnataka, India. [Alemic, A.; Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Kumar, P.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A. H.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Allen, B.; Aulbert, C.; Bock, O.; Dal Canton, T.; Dent, T.; Eggenstein, H. -B; Fehrmann, H.; Goetz, E.; Indik, N.; Keitel, D.; Keppel, D. G.; Krishnan, B.; Lough, J.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Nielsen, A. B.; Post, A.; Prix, R.; Salemi, F.; Shaltev, M.; Wette, K.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Data Anal Grp, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Brady, P. R.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Huynh, M.; Kline, J.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, L.; Wade, M.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Arceneaux, C.; Cavaglia, M.; Kandhasamy, S.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J.; Islas, G.; Lockett, V.; Padilla, C.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, S.; Aufmuth, P.; Danzmann, K.; Kaufer, H.; Kaufer, S.; Krueger, C.; Lueck, H.; Meinders, M.; Sawadsky, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Aylott, B. E.; Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Haster, C-J; Mandel, I.; Miao, H.; Middleton, H.; Sidery, T. L.; Stevenson, S.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Babak, S.; Behnke, B.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Ain, A.; Alemic, A.; Barclay, S.; Barr, B.; Bell, A. S.; Bell, C.; Craig, K.; Cunningham, L.; Davies, G. S.; Douglas, R.; Fan, X.; Gordon, N.; Graef, C.; Grant, A.; Hammond, G.; Hart, M.; Haughian, K.; Hendry, M.; Heng, I. S.; Hild, S.; Hough, J.; Houston, E.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Ain, A.; Alemic, A.; Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Buikema, A.; Buonanno, A.; Clara, F.; Cook, D.; Corsi, A.; Cumming, A.; Dwyer, S.; Effler, A.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Pele, A.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vo, T.; Vorvick, C.; Warner, J.; Weaver, B.; Wilkinson, C.; Worden, J.] LIGO, Hanford Observ, Richland, WA 99352 USA. [Ain, A.; Bartos, I.; McClelland, D. E.; Murphy, D.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Ain, A.; Bassiri, R.; Buchman, S.; Debra, D.; Fejer, M. M.; Keiser, G. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Markosyan, A.; Paris, H.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA. [Ain, A.; Alemic, A.; Benacquista, M.; Buikema, A.; Creighton, T. D.; Dartez, L.; Daveloza, H.; Diaz, M.; Fuentes-Tapia, S.; Key, J. S.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Ramirez, K.; Romano, J. D.; Stone, R.; Tellez, G.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Bhandare, R.; Dave, I.; Pai, S.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Ain, A.; Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Blackburn, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ain, A.; Blair, C. D.; Blair, D.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.; Szeifert, G.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bose, Sukanta; Magee, R.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Brau, J. E.; Frey, R.; Hardwick, T.; Quitzow-James, R.; Roma, V.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Buonanno, A.; Capano, C. D.; Cho, M.; Shawhan, P.; Taracchini, A.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Hoak, D.; Lazzaro, C.; Lombardi, A. L.; McIver, J.; Nedkova, K.; Zuraw, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma De Mallorca, Spain. [Cannon, K. C.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.; Yang, Q.; Zhang, Fan] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chao, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Cutler, C.; Gossan, S.; Nissanke, S.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; Nguyen, T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M.] Carleton Coll, Northfield, MN 55057 USA. [Collette, C.; Tshilumba, D.; Xie, S.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.; Mclin, K.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Daw, E. J.; Edo, T.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dojcinoski, G.; Favata, M.; Moore, B.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Maglione, C.; Ortega, W.; Quiroga, G.; Reula, O.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Farr, B.; Kalogera, V.; Larson, S.; Le, J.; Littenberg, T. B.; Scheuer, J.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Gair, J. R.; Hee, S.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tapai, M.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Hughey, B.; Szczepanczyk, M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hanna, C.; Idrisy, A.; Inta, R.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E.; McWilliams, S.] W Virginia Univ, Morgantown, WV 26506 USA. [Iyer, B. R.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Jawahar, S.; Lockerbie, N. A.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Mazumder, N.; Pai, A.; Saleem, M.] IISER, TVM, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Poteomkin, A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.; Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kumar, A.] Inst Plasma Res, Gandhinagar, India. [Lasky, P. D.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Levin, Y.; Premachandra, S.] Monash Univ, Clayton, Vic 3800, Australia. [McGuire, S. C.; Vincent-Finley, R.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Vincent-Finley, R.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Miller, A.; Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer, Inst Fundamental Res, Inst Fis Tor, BR-01140070 Sao Paulo, SP, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [Ogin, G. H.] Whitman Coll, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Taejon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Colleges, Geneva, NY 14456 USA. [Rajalakshmi, G.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Schnabel, R.] Univ Hamburg, D-22761 Hamburg, Germany. [Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM pf@ligo.mit.edu RI Pinto, Innocenzo/L-3520-2016; Bartos, Imre/A-2592-2017; Costa, Cesar/G-7588-2012; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Steinlechner, Sebastian/D-5781-2013; Shaddock, Daniel/A-7534-2011; Gehring, Tobias/A-8596-2016; Strain, Kenneth/D-5236-2011; Miao, Haixing/O-1300-2013; Howell, Eric/H-5072-2014; Gorodetsky, Michael/C-5938-2008; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Ott, Christian/G-2651-2011; Zhu, Xingjiang/E-1501-2016; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Bell, Angus/E-7312-2011; Ottaway, David/J-5908-2015; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; M, Manjunath/N-4000-2014; Vecchio, Alberto/F-8310-2015; Iyer, Bala R./E-2894-2012; Mow-Lowry, Conor/F-8843-2015; Strigin, Sergey/I-8337-2012; Danilishin, Stefan/K-7262-2012; Sigg, Daniel/I-4308-2015; Graef, Christian/J-3167-2015; Aggarwal, Nancy/M-7203-2015; OI Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Aulbert, Carsten/0000-0002-1481-8319; Denker, Timo/0000-0003-1259-5315; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; O'Shaughnessy, Richard/0000-0001-5832-8517; Steinlechner, Sebastian/0000-0003-4710-8548; Shaddock, Daniel/0000-0002-6885-3494; Gehring, Tobias/0000-0002-4311-2593; Strain, Kenneth/0000-0002-2066-5355; Miao, Haixing/0000-0003-4101-9958; Howell, Eric/0000-0001-7891-2817; Gorodetsky, Michael/0000-0002-5159-2742; Ott, Christian/0000-0003-4993-2055; Zhu, Xingjiang/0000-0001-7049-6468; Lazzaro, Claudia/0000-0001-5993-3372; Bell, Angus/0000-0003-1523-0821; McClelland, David/0000-0001-6210-5842; M, Manjunath/0000-0001-8710-0730; Vecchio, Alberto/0000-0002-6254-1617; Iyer, Bala R./0000-0002-4141-5179; Danilishin, Stefan/0000-0001-7758-7493; Sigg, Daniel/0000-0003-4606-6526; Graef, Christian/0000-0002-4535-2603; Kanner, Jonah/0000-0001-8115-0577; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Whiting, Bernard F/0000-0002-8501-8669; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Talukder, Dipongkar/0000-0002-9178-8870; Allen, Bruce/0000-0003-4285-6256; Heurs, Michele/0000-0002-5577-2273; Berry, Christopher/0000-0003-3870-7215; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Papa, M.Alessandra/0000-0002-1007-5298; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Collette, Christophe/0000-0002-4430-3703; Pierro, Vincenzo/0000-0002-6020-5521; Addesso, Paolo/0000-0003-0895-184X FU Australian Research Council; International Science Linkages programme of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia, Hisenda i Innovacio of the Govern de les Illes Balears; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; OTKA of Hungary; National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages programme of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia, Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, OTKA of Hungary, the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This article has LIGO document number LIGO-P1400177. NR 61 TC 212 Z9 213 U1 30 U2 123 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 9 PY 2015 VL 32 IS 7 AR 074001 DI 10.1088/0264-9381/32/7/074001 PG 41 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE2ZF UT WOS:000351691300001 ER PT J AU Liu, Y Panesi, M Sahai, A Vinokur, M AF Liu, Yen Panesi, Marco Sahai, Amal Vinokur, Marcel TI General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VIBRATIONAL RELAXATION; HARMONIC OSCILLATORS; DISSOCIATION; SYSTEM AB This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations. (C) 2015 AIP Publishing LLC. C1 [Liu, Yen; Vinokur, Marcel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Panesi, Marco; Sahai, Amal] Univ Illinois, Urbana, IL 61801 USA. RP Liu, Y (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM yen.liu@nasa.gov OI Liu, Yen/0000-0001-8516-4968 FU NASA Entry System Modeling Project in the Space Technology Mission Directory FX This work was funded and managed by the NASA Entry System Modeling Project in the Space Technology Mission Directory. The authors would like to acknowledge members of the NASA HyperRad Modeling and Software Development Team, especially Dr. W. M. Huo and Dr. Alan A. Wray, for many helpful discussions during the course of this work. NR 42 TC 3 Z9 3 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 7 PY 2015 VL 142 IS 13 AR 134109 DI 10.1063/1.4915926 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CF6DG UT WOS:000352646300013 PM 25854230 ER PT J AU Monk, JD Haskins, JB Bauschlicher, CW Lawson, JW AF Monk, Joshua D. Haskins, Justin B. Bauschlicher, Charles W., Jr. Lawson, John W. TI Molecular dynamics simulations of phenolic resin: Construction of atomistic models SO POLYMER LA English DT Article DE Thermosetting polymer; Phenolic resins; Molecular dynamics ID CROSS-LINKED EPOXY; X-RAY-SCATTERING; MECHANICAL-PROPERTIES; FORCE-FIELD; TRANSPORT-COEFFICIENTS; INHOMOGENEOUS SYSTEMS; COMPUTER-SIMULATION; MATRIX COMPOSITES; ELASTIC MODULI; AB-INITIO AB Algorithms to generate atomistic models of cross-linked phenolic resins suitable for molecular dynamics simulations were investigated. The influence of five parameters (initial volume of uncross-linked material, cross-linking approach, relaxation time, equilibration temperature) on generating cross-linked structures was studied quantitatively using a full factorial sensitivity analysis. The parameters were found to be dependent on the degree of cross linking (D). For low cross-linking, only the equilibration temperature has a significant impact on the final energetics and densities. However, for higher cross-linking (D > 70%), the equilibration temperature, initial volume and cross-linking approach were shown to influence the phenolic structures. Iterative, rather than single step, methods were shown to produce better structures. The initial volume of the uncross-linked material was identified as having the most influence on the final volume of fully cross-linked systems. By optimizing all five parameters, highly cross-linked samples with low energetics and consistent densities could be generated. To validate the models, thermo-mechanical properties of cross-linked phenolic samples were characterized as a function of density and degree of cross-linking. Good agreement with experimental values was obtained for properties such as the glass transition temperature, coefficient of thermal expansion (CTE), elastic moduli, and thermal conductivity. Published by Elsevier Ltd. C1 [Monk, Joshua D.; Haskins, Justin B.; Bauschlicher, Charles W., Jr.; Lawson, John W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lawson, JW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM John.W.Lawson@nasa.gov FU ESM project of the NASA Space Technology Mission Directorate FX This work was funded by the ESM project of the NASA Space Technology Mission Directorate. We benefited from useful discussions with Eric Bucholz. NR 73 TC 10 Z9 10 U1 3 U2 51 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD APR 7 PY 2015 VL 62 BP 39 EP 49 DI 10.1016/j.polymer.2015.02.003 PG 11 WC Polymer Science SC Polymer Science GA CG2BL UT WOS:000353079800006 ER PT J AU Stern, JC Sutter, B Freissinet, C Navarro-Gonzalez, R McKay, CP Archer, PD Buch, A Brunner, AE Coll, P Eigenbrode, JL Fairen, AG Franz, HB Glavin, DP Kashyap, S McAdam, AC Ming, DW Steele, A Szopa, C Wray, JJ Martin-Torres, FJ Zorzano, MP Conrad, PG Mahaffy, PR AF Stern, Jennifer C. Sutter, Brad Freissinet, Caroline Navarro-Gonzalez, Rafael McKay, Christopher P. Archer, P. Douglas, Jr. Buch, Arnaud Brunner, Anna E. Coll, Patrice Eigenbrode, Jennifer L. Fairen, Alberto G. Franz, Heather B. Glavin, Daniel P. Kashyap, Srishti McAdam, Amy C. Ming, Douglas W. Steele, Andrew Szopa, Cyril Wray, James J. Martin-Torres, F. Javier Zorzano, Maria-Paz Conrad, Pamela G. Mahaffy, Paul R. CA MSL Sci Team TI Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Mars; nitrogen; astrobiology; nitrates; Curiosity ID EARLY EARTH; THERMAL-DECOMPOSITION; MASS-SPECTROMETER; NITRATE DEPOSITS; FIXATION; ATMOSPHERE; SURFACE; SEARCH; METEORITES; EVOLUTION AB The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N-2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. C1 [Stern, Jennifer C.; Brunner, Anna E.; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Conrad, Pamela G.; Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Sutter, Brad; Archer, P. Douglas, Jr.] NASA, Johnson Space Ctr, Jacobs Technol Inc, Greenbelt, MD 20771 USA. [Freissinet, Caroline] NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Greenbelt, MD 20771 USA. [Navarro-Gonzalez, Rafael] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Buch, Arnaud] Ecole Cent Paris, Lab Genie Proc & Mat, F-92295 Chatenay Malabry, France. [Brunner, Anna E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Coll, Patrice] Univ Paris Diderot, Univ Paris Est Creteil, Lab Interuniv Syst Atmospher, F-94000 Creteil, France. [Coll, Patrice] CNRS, F-94000 Creteil, France. [Fairen, Alberto G.; Zorzano, Maria-Paz] Ctr Astrobiol, Madrid 28850, Spain. [Fairen, Alberto G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Franz, Heather B.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, College Pk, MD 20742 USA. [Kashyap, Srishti] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. [Steele, Andrew] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Szopa, Cyril] Univ Versailles St Quentin, Univ Paris 06, Lab Atmospheres Milieux & Observat Spatiales, F-75005 Paris, France. [Szopa, Cyril] CNRS, F-75005 Paris, France. [Wray, James J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Martin-Torres, F. Javier] Univ Granada, CSIC, Inst Andaluz Ciencias Tierra, Granada 18100, Spain. [Martin-Torres, F. Javier] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, S-98128 Kiruna, Sweden. [MSL Sci Team] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stern, JC (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM jennifer.c.stern@nasa.gov RI Ramos, Miguel/K-2230-2014; Lemmon, Mark/E-9983-2010; szopa, cyril/C-6865-2015; Wray, James/B-8457-2008; Gonzalez, Rafael/D-1748-2009; Martin-Torres, Francisco Javier/G-6329-2015; Rodriguez-Manfredi, Jose/L-8001-2014; Zorzano, Maria-Paz/C-5784-2015; Glavin, Daniel/D-6194-2012; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012; OI Ramos, Miguel/0000-0003-3648-6818; Lemmon, Mark/0000-0002-4504-5136; szopa, cyril/0000-0002-0090-4056; Wray, James/0000-0001-5559-2179; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Zorzano, Maria-Paz/0000-0002-4492-9650; Glavin, Daniel/0000-0001-7779-7765; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin, Jason/0000-0002-3961-8997; Stern, Jennifer/0000-0002-0162-8807; Kashyap, Srishti/0000-0003-4950-9636 FU French Space Agency (Centre National d'Etudes Spatiales); National Aeronautics and Space Administration Mars Exploration Program; Goddard Space Flight Center FX We are grateful for support from the entire Sample Analysis at Mars and Mars Science Laboratory operations, engineering, and scientific teams. The National Aeronautics and Space Administration Mars Exploration Program and Goddard Space Flight Center provided support for the development and operation of SAM. SAM-GC was supported by funds from the French Space Agency (Centre National d'Etudes Spatiales). Data from these SAM experiments are archived in the Planetary Data System (pds.nasa.gov). NR 42 TC 12 Z9 12 U1 8 U2 59 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 7 PY 2015 VL 112 IS 14 BP 4245 EP 4250 DI 10.1073/pnas.1420932112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF1EZ UT WOS:000352287800034 PM 25831544 ER PT J AU Kundan, A Plawsky, JL Wayner, PC Chao, DF Sicker, RJ Motil, BJ Lorik, T Chestney, L Eustace, J Zoldak, J AF Kundan, Akshay Plawsky, Joel L. Wayner, Peter C., Jr. Chao, David F. Sicker, Ronald J. Motil, Brian J. Lorik, Tibor Chestney, Louis Eustace, John Zoldak, John TI Thermocapillary Phenomena and Performance Limitations of a Wickless Heat Pipe in Microgravity SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPREADING FILMS; DRIVEN; THICKNESS; BUBBLES; GROOVES; DRYOUT; FLOWS; MODEL AB A counterintuitive, thermocapillary-induced limit to heat-pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface. C1 [Kundan, Akshay; Plawsky, Joel L.; Wayner, Peter C., Jr.] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. [Chao, David F.; Sicker, Ronald J.; Motil, Brian J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John] Zin Technol, Cleveland, OH 44130 USA. RP Plawsky, JL (reprint author), Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. EM plawsky@rpi.edu FU National Aeronautics and Space Administration [NNX09AL98G, NNX13AQ78G] FX This material is based on the work supported by the National Aeronautics and Space Administration under Grants No. NNX09AL98G and No. NNX13AQ78G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NASA. NR 33 TC 7 Z9 7 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 7 PY 2015 VL 114 IS 14 AR 146105 DI 10.1103/PhysRevLett.114.146105 PG 5 WC Physics, Multidisciplinary SC Physics GA CF0UR UT WOS:000352260300010 PM 25910141 ER PT J AU Scott, JM Haykowsky, MJ AF Scott, Jessica M. Haykowsky, Mark J. TI Cardiovascular Function and Exercise Capacity in Patients With Colorectal Cancer Does Anticancer Therapy Matter? SO JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY LA English DT Letter ID CARDIOTOXICITY C1 [Scott, Jessica M.] NASA, Exercise Physiol & Countermeasures, Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA. RP Scott, JM (reprint author), NASA, Exercise Physiol & Countermeasures, Johnson Space Ctr, Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jessica.m.scott@nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0735-1097 EI 1558-3597 J9 J AM COLL CARDIOL JI J. Am. Coll. Cardiol. PD APR 7 PY 2015 VL 65 IS 13 BP 1380 EP 1381 DI 10.1016/j.jacc.2014.10.081 PG 3 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA CE4ZO UT WOS:000351839500019 PM 25835454 ER PT J AU Wu, TJ Schriml, LM Chen, QR Colbert, M Crichton, DJ Finney, R Hu, Y Kibbe, WA Kincaid, H Meerzaman, D Mitraka, E Pan, Y Smith, KM Srivastava, S Ward, S Yan, C Mazumder, R AF Wu, Tsung-Jung Schriml, Lynn M. Chen, Qing-Rong Colbert, Maureen Crichton, Daniel J. Finney, Richard Hu, Ying Kibbe, Warren A. Kincaid, Heather Meerzaman, Daoud Mitraka, Elvira Pan, Yang Smith, Krista M. Srivastava, Sudhir Ward, Sari Yan, Cheng Mazumder, Raja TI Generating a focused view of disease ontology cancer terms for pan-cancer data integration and analysis SO DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION LA English DT Article ID PROGRAMMED CELL-DEATH; MOLECULAR CLASSIFICATION; GENE ONTOLOGY; APOPTOSIS; NOMENCLATURE; MUTATIONS; NECROSIS; BIOLOGY AB Bio-ontologies provide terminologies for the scientific community to describe biomedical entities in a standardized manner. There are multiple initiatives that are developing biomedical terminologies for the purpose of providing better annotation, data integration and mining capabilities. Terminology resources devised for multiple purposes inherently diverge in content and structure. A major issue of biomedical data integration is the development of overlapping terms, ambiguous classifications and inconsistencies represented across databases and publications. The disease ontology (DO) was developed over the past decade to address data integration, standardization and annotation issues for human disease data. We have established a DO cancer project to be a focused view of cancer terms within the DO. The DO cancer project mapped 386 cancer terms from the Catalogue of Somatic Mutations in Cancer (COSMIC), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, Therapeutically Applicable Research to Generate Effective Treatments, Integrative Oncogenomics and the Early Detection Research Network into a cohesive set of 187 DO terms represented by 63 top-level DO cancer terms. For example, the COSMIC term 'kidney, NS, carcinoma, clear_cell_renal_cell_carcinoma' and TCGA term 'Kidney renal clear cell carcinoma' were both grouped to the term 'Disease Ontology Identification (DOID): 4467 / renal clear cell carcinoma' which was mapped to the TopNodes_DOcancerslim term 'DOID: 263 / kidney cancer'. Mapping of diverse cancer terms to DO and the use of top level terms (DO slims) will enable pan-cancer analysis across datasets generated from any of the cancer term sources where pan-cancer means including or relating to all or multiple types of cancer. The terms can be browsed from the DO web site (http://www.disease-ontology.org) and downloaded from the DO's Apache Subversion or GitHub repositories. C1 [Wu, Tsung-Jung; Pan, Yang; Smith, Krista M.; Yan, Cheng; Mazumder, Raja] George Washington Univ, Dept Biochem & Mol Med, Washington, DC 20037 USA. [Schriml, Lynn M.; Mitraka, Elvira] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Chen, Qing-Rong; Finney, Richard; Hu, Ying; Kibbe, Warren A.; Meerzaman, Daoud] NCI, Ctr Bioinformat & Informat Technol, Rockville, MD 20892 USA. [Colbert, Maureen; Crichton, Daniel J.; Kincaid, Heather] NASA, Jet Prop Lab, Pasadena, CA USA. [Srivastava, Sudhir] NCI, Canc Prevent Div, Rockville, MD 20892 USA. [Ward, Sari] Wellcome Trust Sanger Inst, Cambridge, England. [Mazumder, Raja] George Washington Univ, McCormick Genom & Prote Ctr, Washington, DC 20037 USA. RP Mazumder, R (reprint author), George Washington Univ, Dept Biochem & Mol Med, Washington, DC 20037 USA. EM mazumder@gwu.edu OI Mitraka, Elvira/0000-0003-0719-3485; Schriml, Lynn/0000-0001-8910-9851; Pan, Yang/0000-0003-3487-7233 FU National Cancer Institute EDRN (NCI) [156620] FX This project was partially funded by National Cancer Institute EDRN (NCI) Associate Member, agreement (156620) to R.M. Funding for open access charge: EDRN (NCI) Associate Member, agreement #156620 to R.M. NR 47 TC 1 Z9 1 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1758-0463 J9 DATABASE-OXFORD JI Database PD APR 4 PY 2015 AR bav032 DI 10.1093/database/bav032 PG 10 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA CR0XX UT WOS:000361048100002 ER PT J AU Knipp, DJ Kilcommons, LM Gjerloev, J Redmon, RJ Slavin, J Le, G AF Knipp, D. J. Kilcommons, L. M. Gjerloev, J. Redmon, R. J. Slavin, J. Le, G. TI A large-scale view of Space Technology 5 magnetometer response to solar wind drivers SO EARTH AND SPACE SCIENCE LA English DT Article ID FIELD; ELECTRODYNAMICS; MAGNETOSPHERE; IONOSPHERE; EVENTS; SYSTEM; DMSP AB In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data. C1 [Knipp, D. J.; Kilcommons, L. M.] Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. [Knipp, D. J.] NCAR, High Altitude Observ, Boulder, CO USA. [Gjerloev, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Gjerloev, J.] Univ Bergen, Birkeland Ctr Excellence, Bergen, Norway. [Redmon, R. J.] NOAA, Natl Geophys Data Ctr, Boulder, CO 80303 USA. [Slavin, J.] Univ Michigan, Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Le, G.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Knipp, DJ (reprint author), Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. EM delores.knipp@colorado.edu RI Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X NR 38 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 Earth Space Sci JI Earth Space Sci. PD APR PY 2015 VL 2 IS 4 BP 115 EP 124 DI 10.1002/2014EA000057 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DE6NC UT WOS:000370749600004 PM 27981071 ER PT J AU Greenwood, E Schmitz, FH Sickenberger, RD AF Greenwood, Eric Schmitz, Fredric H. Sickenberger, Richard D. TI A Semiempirical Noise Modeling Method for Helicopter Maneuvering Flight Operations SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article ID ROTOR AB A new model for blade-vortex interaction (BVI) noise generation during maneuvering flight is developed. Acoustic and performance data from both flight and wind tunnel tests are used to derive a nondimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasi-steady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient BVI noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission planning tool. C1 [Greenwood, Eric] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Schmitz, Fredric H.; Sickenberger, Richard D.] Univ Maryland, College Pk, MD 20742 USA. RP Greenwood, E (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM eric.greenwood@nasa.gov RI Greenwood, Eric/Q-7642-2016 OI Greenwood, Eric/0000-0002-0427-539X NR 29 TC 0 Z9 0 U1 0 U2 1 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD APR PY 2015 VL 60 IS 2 AR 022007 DI 10.4050/JAHS.60.022007 PG 13 WC Engineering, Aerospace SC Engineering GA DE1LD UT WOS:000370387600007 ER PT J AU Putnam, JB Untaroiu, CD Littell, J Annett, M AF Putnam, Jacob B. Untaroiu, Costin D. Littell, Justin Annett, Martin TI Finite Element Model of the THOR-NT Dummy under Vertical Impact Loading for Aerospace Injury Prediction: Model Evaluation and Sensitivity Analysis SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article AB Anthropometric test devices, commonly referred to as crash test dummies, are effective tools used to conduct aerospace safety evaluations. In this study, the latest finite element (FE) model of the Test Device for Human Occupant Restraint (THOR) dummy was simulated under vertical impact conditions based on data recorded in a series of drop tests conducted at the NASA Langley Research Center. The purpose of this study was threefold. The first was to improve and then evaluate this FE model for use in a vertical loading environment through kinematic and kinetic response comparisons. The second was to evaluate dummy injury criteria under variable impact conditions. The last was to determine the response sensitivity of the FE model with respect to its preimpact postural position. Results demonstrate that the updated FE model performs well under vertical loading and predicts injury criteria values close to those recorded in testing. In the postural sensitivity study, the head injury criteria response and peak lumbar load show to be primarily sensitive to the preimpact head angle and thorax angle, respectively. The promising results shown by the dummy model recommends its use in impact simulations with vertical deceleration pulses close to those used in this study. In addition, it is believed that assigning accurate viscoelastic material properties to the deformable parts of the model may further increase the model fidelity for a larger range of impacts. C1 [Putnam, Jacob B.; Untaroiu, Costin D.] Virginia Tech, Blacksburg, VA USA. [Littell, Justin; Annett, Martin] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Untaroiu, CD (reprint author), Virginia Tech, Blacksburg, VA USA. EM costin@vt.edu RI Untaroiu, Costin/D-4106-2009 OI Untaroiu, Costin/0000-0002-1813-669X NR 31 TC 1 Z9 1 U1 1 U2 1 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD APR PY 2015 VL 60 IS 2 AR 022004 DI 10.4050/JAHS.60.022004 PG 10 WC Engineering, Aerospace SC Engineering GA DE1LD UT WOS:000370387600004 ER PT J AU Bryant, LW AF Bryant, Larry W. TI Situational Awareness: a Cornerstone of Operational Excellence in Space SO JOURNAL OF AEROSPACE TECHNOLOGY AND MANAGEMENT LA English DT Editorial Material C1 [Bryant, Larry W.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Bryant, LW (reprint author), CALTECH, Jet Prop Lab, NASA, Off Safety & Mission Success, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM larry.w.bryant@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU INST AERONAUTICA & ESPACO-IAE PI SAO PAULO PA PRACA MAL EDUARDO GOMES 50, VILA ACACIAS, SAO JOSE DOS CAMPOS, SAO PAULO, 122228-901, BRAZIL SN 1984-9648 EI 2175-9146 J9 J AEROSP TECHNOL MAN JI J. Aerosp. Technol. Manag. PD APR-JUN PY 2015 VL 7 IS 2 BP 141 EP 142 DI 10.5028/jatm.v7i2.479 PG 2 WC Engineering, Aerospace SC Engineering GA CY5XN UT WOS:000366481000001 ER PT J AU Gould, A Komatsu, T DeVore, E Harman, P Koch, D AF Gould, Alan Komatsu, Toshi DeVore, Edna Harman, Pamela Koch, David TI Kepler's Third Law and NASA's Kepler Mission SO PHYSICS TEACHER LA English DT Editorial Material ID PLANETS C1 [Gould, Alan; Komatsu, Toshi] Univ Calif Berkeley, Lawrence Hall Sci, Berkeley, CA 94720 USA. [DeVore, Edna; Harman, Pamela] SETI Inst, Mountain View, CA 94043 USA. [Koch, David] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP DeVore, E (reprint author), SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. EM edevore@seti.org NR 7 TC 0 Z9 0 U1 1 U2 2 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0031-921X J9 PHYS TEACH JI Phys. Teach. PD APR PY 2015 VL 53 IS 4 BP 201 EP 204 DI 10.1119/1.4914556 PG 4 WC Physics, Multidisciplinary SC Physics GA CX5ZB UT WOS:000365779900006 ER PT J AU Xu, HF Shen, ZZ Konishi, H AF Xu, Huifang Shen, Zhizhang Konishi, Hiromi TI Natural occurrence of monoclinic Fe3S4 nano-precipitates in pyrrhotite from the Sudbury ore deposit: a Z-contrast imaging and density functional theory study SO MINERALOGICAL MAGAZINE LA English DT Article DE iron sulfide; greigite; pyrrhotite; monoclinic Fe3S4; Sudbury; Z-contrast imaging; density functional theory; vacancy ordering; aberration-corrected scanning transmission electron microscopy; magnetic mineral ID CRYSTAL-STRUCTURES; AB-INITIO AB A monoclinic form of Fe3S4, a polymorph of cubic greigite, occurs as precipitates in a sample of pyrrhotite collected from the Sudbury ore deposit. The nano-crystal precipitates are in a topotaxial relationship with the host pyrrhotite-4C (Fe7S8). The precipitate and the host pyrrhotite have a coherent (001) interface. Half of the octahedral layers in the crystal structure are fully occupied by Fe, while the other half of the octahedral layers are occupied by Fe atoms and vacancies in an ordered manner along the a axis. The crystal structure of the Fe3S4 nano-precipitates has monoclinic symmetry with a space group of I2/m. Its c dimension is 6% smaller than that of the host pyrrhotite due to the large number of vacancies in the structure. Fractional coordinates for S and Fe atoms within the unit cell are determined from Z-contrast images and density functional theory (DFT). The calculated results match the measured values very well. It is proposed that the monoclinic Fe3S4 nano-precipitates formed through ordering of vacancies in pyrrhotite with a low Fe/S ratio (i.e. <0.875) at low temperature. C1 [Xu, Huifang; Shen, Zhizhang; Konishi, Hiromi] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Xu, HF (reprint author), Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, 1215 W Dayton St, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu FU NSF [EAR-095800, EAR-0810150, DMR-0619368]; NASA Astrobiology Institute [N07-5489] FX This work is supported by NSF (EAR-095800, EAR-0810150 and DMR-0619368, MRI) and NASA Astrobiology Institute (N07-5489). The authors thank Prof. Izabela Szlufarska for advice on DFT modelling and Dr Alex Kivit for optimizing instrument conditions. They also thank the Major Research Instrumentation (MRI) program of NSF for funding the aberration-corrected STEM at the Univeristy of Wisconsin-Madison. Nick Levitt, Peter Williams and an anonymous reviewer are thanked for helpful comments and suggestions. NR 24 TC 0 Z9 0 U1 4 U2 15 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0026-461X EI 1471-8022 J9 MINERAL MAG JI Mineral. Mag. PD APR PY 2015 VL 79 IS 2 BP 377 EP 385 DI 10.1180/minmag.2015.079.2.15 PG 9 WC Mineralogy SC Mineralogy GA CV3VM UT WOS:000364194500014 ER PT J AU Brann, M Marcu, O AF Brann, Michelle Marcu, Oana TI The Role of Copper in the Oxidative Stress Response of Chlamydomonas reinhardtii to heat shock SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY MAR 28-APR 01, 2015 CL Boston, MA SP Amer Assoc Anatomists, Amer Physiol Soc, Amer Soc Biochem & Mol Biol, ASIP, ASN, ASPET C1 [Brann, Michelle] Wellesley Coll, Chem, Wellesley, MA 02181 USA. [Marcu, Oana] NASA, Ames Res Ctr, Space Sci Exobiol, Moffett Field, CA 94035 USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD APR PY 2015 VL 29 SU 1 MA 887.27 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA CS0BT UT WOS:000361722705058 ER PT J AU Zwart, S Heer, M Shackelford, L Smith, S AF Zwart, Sara Heer, Martina Shackelford, Linda Smith, Scott TI Dietary and Urinary Sulfur Can Predict Changes in Bone Metabolism During Space Flight SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY MAR 28-APR 01, 2015 CL Boston, MA SP Amer Assoc Anatomists, Amer Physiol Soc, Amer Soc Biochem & Mol Biol, ASIP, ASN, ASPET C1 [Zwart, Sara] USRA, Biomed Res Environm Sci, Washington, DC USA. [Heer, Martina] Univ Bonn, Nutr, Bonn, Germany. [Shackelford, Linda; Smith, Scott] NASA, Biomed Res Environm Sci, JSC, New York, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD APR PY 2015 VL 29 SU 1 MA 738.14 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA CS0BT UT WOS:000361722702099 ER PT J AU Smith, S Gregory, J Zeisel, S Ueland, P Gibson, C Mader, T Kinchen, J Ploutz-Snyder, R Zwart, S AF Smith, Scott Gregory, Jesse Zeisel, Steven Ueland, Per Gibson, C. Mader, Thomas Kinchen, Jason Ploutz-Snyder, Robert Zwart, Sara TI Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms SO FASEB JOURNAL LA English DT Meeting Abstract C1 [Smith, Scott] NASA, Biomed Res Environ Sci Div, Houston, TX USA. [Gregory, Jesse] UF, Gainesville, FL USA. [Zeisel, Steven] UNC, Chapel Hill, NC USA. [Ueland, Per] Univ Bergen, N-5020 Bergen, Norway. [Mader, Thomas] US Army, Washington, DC USA. [Kinchen, Jason] Metabolon, Durham, NC USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD APR PY 2015 VL 29 SU 1 MA 134.1 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA CR6PV UT WOS:000361470501477 ER PT J AU Lu, P Cerimele, CJ Tigges, MA Matz, DA AF Lu, Ping Cerimele, Christopher J. Tigges, Michael A. Matz, Daniel A. TI Optimal Aerocapture Guidance SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID PREDICTOR-CORRECTOR; FLIGHT EXPERIMENT; ENTRY GUIDANCE; ALGORITHM AB Aerocapture is the maneuver by an interplanetary spacecraft to fly through the atmosphere of a planet with the aim of attaining a specified orbit around the planet. By appropriately controlling the aerodynamic lift and/or drag force vectors, the spacecraft can exit the atmosphere and enter the target orbit without the need for large propellant consumption in post-atmospheric orbital correction burns. The focus of this paper is to develop an algorithm to guide the spacecraft accurately and reliably during the aerocapture maneuver with lift vector control while ensuring the least possible post-atmospheric propellant expenditure for inserting into the target orbit. The analysis of optimal aerocapture flight in this work shows that the optimal aerocapture trajectory in general has a bang-bang control structure in which the spacecraft first flies with the largest possible vertical lift up, then the largest possible vertical lift down. Based on this understanding, a two-phase numerical predictor-corrector guidance algorithm is developed. It is demonstrated that this algorithm not only exhibits the strengths of adaptivity and high accuracy of predictor-corrector guidance algorithms, but also produces an optimal performance in terms of propellant consumption that is significantly better than existing aerocapture numerical predictor-corrector guidance algorithms. C1 [Lu, Ping] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA. [Cerimele, Christopher J.] NASA, Lyndon B Johnson Space Ctr, Flight Mech & Trajectory Design Branch, Houston, TX 77058 USA. [Tigges, Michael A.; Matz, Daniel A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Lu, P (reprint author), Iowa State Univ, Dept Aerosp Engn, 2271 Howe Hall, Ames, IA 50011 USA. EM plu@iastate.edu FU NASA [NNX13AL88A] FX The support to this research by NASA Cooperative Agreement NNX13AL88A is gratefully acknowledged. NR 18 TC 4 Z9 4 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD APR PY 2015 VL 38 IS 4 BP 553 EP 565 DI 10.2514/1.G000713 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CQ0BZ UT WOS:000360261400001 ER PT J AU Havelund, K AF Havelund, Klaus TI Rule-based runtime verification revisited SO INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER LA English DT Article DE Runtime verification; Rule-based systems; Rete algorithm; Internal DSL; Scala ID SYSTEMS; EAGLE AB Runtime verification (RV) consists in part of checking execution traces against user-provided formalized specifications. Throughout the last decade many new systems have emerged, most of which support specification notations based on state machines, regular expressions, temporal logic, or grammars. The field of artificial intelligence (AI) has for an even longer period of time studied rule-based production systems, which at a closer look appear to be relevant for RV, although seemingly focused on slightly different application domains, such as, for example, business processes and expert systems. The core algorithm in many of these systems is the Rete algorithm. We have implemented a rule-based system, named LOGFIRE, for runtime verification, founded on the Rete algorithm, as an internal DSL in the Scala programming language (in essence a library). Using Scala's support for defining DSLs allows to write rules elegantly as part of Scala programs. This combination appears attractive from a practical point of view. Our contribution is part conceptual in arguing that such rule-based frameworks originating from AI are suited for RV. Our contribution is technical by implementing an internal rule DSL in Scala; by illustrating how specification patterns can easily be encoded that generate rules, and by adapting and optimizing the Rete algorithm for RV purposes. An experimental evaluation is performed comparing to six other trace analysis systems. LogFire is currently being used to process telemetry from the Mars Curiosity rover at NASA's Jet Propulsion Laboratory. C1 CALTECH, Jet Prop Lab, Lab Reliable Software, Pasadena, CA 91125 USA. RP Havelund, K (reprint author), CALTECH, Jet Prop Lab, Lab Reliable Software, Pasadena, CA 91125 USA. EM klaus.havelund@jpl.nasa.gov NR 50 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1433-2779 EI 1433-2787 J9 INT J SOFTW TOOLS TE JI Int. J. Softw. Tools Technol. Transf. PD APR PY 2015 VL 17 IS 2 BP 143 EP 170 DI 10.1007/s10009-014-0309-2 PG 28 WC Computer Science, Software Engineering SC Computer Science GA CJ7NI UT WOS:000355682200003 ER PT J AU Mielikainen, J Huang, B Huang, HLA Lee, T AF Mielikainen, Jarno Huang, Bormin Huang, Hung-Lung Allen Lee, Tsengdar TI Performance and Scalability of the JCSDA Community Radiative Transfer Model (CRTM) on NVIDIA GPUs SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE CUDA; graphics processing unit (GPU); parallel computing; radiative transfer ID ATMOSPHERIC SOUNDING INTERFEROMETER; ABSORBING GAS; TRANSMITTANCE; IMPROVEMENTS; ACCELERATION AB An atmospheric radiative transfer model calculates radiative transfer of electromagnetic radiation through earth's atmosphere. The community radiative transfer model (CRTM) is a fast radiative transfer model for calculating the satellite infrared (IR) and microwave (MW) radiances of a given state of the Earth's atmosphere and its surface. The CRTM takes into account the radiance emission and absorption of various atmospheric gasses as well as the emission and the reflection of various surface types. Two different transmittance algorithms are currently available in the CRTM OPTRAN: optical depth in absorber space (ODAS) and optical depth in pressure space (ODPS). ODAS in the current CRTM allows two variable absorbers (water vapor and ozone). In this paper, we examine the feasibility of using graphics processing units (GPUs) to accelerate the CRTM with the ODAS transmittance model. Using commodity GPUs for accelerating CRTM means that the hardware costs of adding high-performance accelerators to computation hardware configuration are significantly reduced. Our results show that GPUs can provide significant speedup over conventional processors for the 8461-channel IASI sounder. In particular, a GPU on the dual-GPU NVIDIA GTX 590 card can provide a speedup 375x for the single-precision version of the CRTM ODAS compared to its single-threaded Fortran counterpart running on Intel i7 920 CPU, whereas the speedup for 1 CPU socket with respect to 1 CPU core is only 6.3x. Furthermore, two NVIDIA GTX 590s provided speedups of 201x and 1367x for double precision and single precision versions of ODAS compared to single threaded Fortran code. C1 [Mielikainen, Jarno; Huang, Bormin; Huang, Hung-Lung Allen] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA. [Lee, Tsengdar] NASA Headquarters, Washington, DC 20546 USA. RP Mielikainen, J (reprint author), Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA. EM bormin@ssec.wisc.edu FU National Aeronautics and Space Administration (NASA) [NNX11AL83G] FX This work was supported by the National Aeronautics and Space Administration (NASA) under Grant NNX11AL83G. NR 25 TC 0 Z9 0 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD APR PY 2015 VL 8 IS 4 BP 1519 EP 1527 DI 10.1109/JSTARS.2015.2398849 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA CN6UD UT WOS:000358568900013 ER PT J AU Jung, HS Yun, SH Jo, MJ AF Jung, Hyung-Sup Yun, Sang-Ho Jo, Min-Jeong TI An Improvement of Multiple-Aperture SAR Interferometry Performance in the Presence of Complex and Large Line-of-Sight Deformation SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Along-track deformation measurement; filtering boundary artifacts; large deformation; line-of-sight (LOS); multiple-aperture SAR interferometry (MAI); SAR interferometry (InSAR); synthetic aperture radar (SAR) ID SURFACE DEFORMATION; AFAR AB Synthetic Aperture Radar Interferometry (InSAR) provides one-dimensional measurements on ground displacement in the radar line-of-sight (LOS) direction. Multiple-Aperture Interferometry (MAI) technique has been successfully used to measure along-track ground displacement. However, the technique occasionally shows filtering boundary artifacts along the boundary of incoherent areas and a loss of MAI coherence in the presence of large and complex LOS deformation. In this study, we propose an efficient MAI processing method to mitigate them and improve computational efficiencies as well. We validated the performance of the proposed MAI method using ALOS PALSAR interferometric pair acquired from the ascending orbits on June 12, 2007 and August 2, 2009. The test pair includes large and complex LOS deformation signals accumulated from several dike intrusions and fissure eruptions. Through the proposed MAI processing method, we have generated the InSAR and MAI interferograms with the pixel spacing of about 45 and 40 m in ground range and azimuth directions, respectively. Close to surface rupture, we found that our proposed method improved the MAI coherence from 0.33 to 0.96 and reduced the filtering boundary artifacts from 0.068 to 0.040 rad. The results demonstrate the potential of the proposed method to measure along-track ground displacement in regions of decorrelation. C1 [Jung, Hyung-Sup] Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea. [Yun, Sang-Ho] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jo, Min-Jeong] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. RP Jung, HS (reprint author), Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea. EM hsjung@uos.ac.kr; Sang-Ho.Yun@jpl.nasa.gov; owen009@yonsei.ac.kr OI Jung, Hyung-Sup/0000-0003-2335-8438 FU University of Seoul under Space Core Technology Development Program through National Research Foundation of Korea - Ministry of Education, Science and Technology [2012M1A3A3A02033465]; Jet Propulsion Laboratory, California Institute of Technology under NASA's Earth Surface and Interior Program [NNN13D775T] FX This work was supported in part by the University of Seoul under financial support from Space Core Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant 2012M1A3A3A02033465) and in part by the Jet Propulsion Laboratory, California Institute of Technology under the support from NASA's Earth Surface and Interior Program (Grant NNN13D775T). NR 24 TC 4 Z9 4 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD APR PY 2015 VL 8 IS 4 BP 1743 EP 1752 DI 10.1109/JSTARS.2015.2399249 PG 10 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA CN6UD UT WOS:000358568900033 ER PT J AU Ade, PAR Aghanim, N Alina, D Alves, MIR Aniano, G Annitage-Caplan, C Arnaud, M Arzoumanian, D Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPE Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Fanciullo, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Huffenberger, KM Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Larnarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Pelkonen, VM Perdereau, O Perotto, L Perrotta, F Piacentini, E Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Scott, D Soler, JD Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, EA Wandelt, BD Zonca, A AF Ade, P. A. R. Aghanim, N. Alina, D. Alves, M. I. R. Aniano, G. Annitage-Caplan, C. Arnaud, M. Arzoumanian, D. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. E. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fanciullo, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Larnarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Pelkonen, V. -M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, E. A. Wandelt, B. D. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; dust, extinction; ISM: magnetic fields; ISM: clouds; infrared: ISM; submillimeter: ISM ID RADIATIVE TORQUE ALIGNMENT; ADAPTIVE MESH REFINEMENT; MAGNETIC-FIELDS; INTERSTELLAR POLARIZATION; GRAIN ALIGNMENT; SUBMILLIMETER EMISSION; MOLECULAR CLOUDS; EFFICIENCY; TAURUS; ASSOCIATIONS AB Polarized emission observed by Planck HFI at 353GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles psi. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction p(max) decreases with column density N-H in the more opaque fields with N-H > 10(21) cm(-2); and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction p(max) in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function S. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, APC,AstroParticule & Cosmol,Sorbonne Paris Cite, CNRS,IN2P3,CEA Irfu, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Pelkonen, V. -M.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Fanciullo, E.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A; Pajot, F.; Puget, J-L; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Colombo, L. P. E.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, E. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Annitage-Caplan, C.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Catalano, A.; Coulais, A.; Falgarone, E.; Larnarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. RP Levrier, F (reprint author), Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. EM francois.levrier@ens.fr RI Pelkonen, Veli-Matti/R-4646-2016; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Remazeilles, Mathieu/N-1793-2015; OI Pelkonen, Veli-Matti/0000-0002-8898-1047; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Masi, Silvia/0000-0001-5105-1439; Galeotta, Samuele/0000-0002-3748-5115; Matarrese, Sabino/0000-0002-2573-1243; Lopez-Caniego, Marcos/0000-0003-1016-9283; de Bernardis, Paolo/0000-0001-6547-6446; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); European Research Council under European Union / ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. Some of the results in this paper have been derived using the HEALPix package. The authors would like to thank Charles Beichman for his careful reading of the manuscript and useful comments. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 267934. NR 55 TC 15 Z9 15 U1 3 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A105 DI 10.1051/0004-6361/201424086 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600040 ER PT J AU Ade, PAR Alves, MIR Aniano, G Armitage-Caplan, C Arnaud, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Leahy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Magalhaes, AM Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Piacentini, F Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rubino-Martin, JA Rusholme, B Salerno, E Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wandelt, BD Zacchei, A Zonca, A AF Ade, P. A. R. Alves, M. I. R. Aniano, G. Armitage-Caplan, C. Arnaud, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leahy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Magalhaes, A. M. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Salerno, E. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wandelt, B. D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; ISM: general; Galaxy: general; radiation mechanisms: general; submillimeter: ISM; infrared: ISM ID MICROWAVE-ANISOTROPY-PROBE; H-ALPHA EMISSION; DMR SKY MAPS; SPINNING DUST; WMAP OBSERVATIONS; INTERSTELLAR DUST; SUBMILLIMETER POLARIZATION; MAGNETIC NANOPARTICLES; COMPONENT SEPARATION; FOREGROUND EMISSION AB Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10 degrees radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 +/- 0.02 for polarization and 1.51 +/- 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6 sigma). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at v < 60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 +/- 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize the separation between Galactic and cosmological polarization. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, APC,AstroParticule & Cosmol,Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00133 Rome, Italy. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, Toronto, ON M55 3H8, Canada. [Salerno, E.] CNR ISTI, Area Ric, Pisa, Italy. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bock, J. J.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS, UMR 5274,INSU, F-38041 Grenoble, France. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Alves, M. I. R.; Aniano, G.; Aumont, J.; Boulanger, F.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Magalhaes, A. M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, SP, Brazil. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, Paris, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Armitage-Caplan, C.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM tuhin.ghosh@ias.u-psud.fr RI Remazeilles, Mathieu/N-1793-2015; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; Salerno, Emanuele/A-2137-2010; Toffolatti, Luigi/K-5070-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016 OI Savini, Giorgio/0000-0003-4449-9416; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; De Zotti, Gianfranco/0000-0003-2868-2595; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Frailis, Marco/0000-0002-7400-2135; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Salerno, Emanuele/0000-0002-3433-3634; Toffolatti, Luigi/0000-0003-2645-7386; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); J.A. (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); European Research Council under the European Union [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and J.A. (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A detailed description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. Some of the results in this paper have been derived using the HEALPix package. NR 104 TC 25 Z9 25 U1 2 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A107 DI 10.1051/0004-6361/201424088 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600042 ER PT J AU Ade, PAR Aghanim, N Alina, D Aniano, G Armitage-Caplan, C Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Beichman, C Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Fanciullo, L Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Gana, K Ghosh, T Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Huffenberger, KM Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Magalhaes, AM Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Piacentini, F Piot, M Pietrobon, D Plaszczynski, S Poidevin, F Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Zonca, A AF Ade, P. A. R. Aghanim, N. Alina, D. Aniano, G. Armitage-Caplan, C. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Beichman, C. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fanciullo, L. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Magalhaes, A. M. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piot, M. Pietrobon, D. Plaszczynski, S. Poidevin, F. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; dust, extinction; ISM: clouds; ISM: magnetic fields; submillimeter: ISM ID PROBE WMAP OBSERVATIONS; LINEAR-POLARIZATION; SUBMILLIMETER POLARIZATION; WAVELENGTH DEPENDENCE; INFRARED POLARIZATION; MOLECULAR CLOUD; MU-M; EXTINCTION; STARS; SPECTRUM AB The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust. In addition to the information on the direction of the Galactic magnetic field, this also brings new constraints on the properties of dust. The dust grains that emit the radiation seen by Planck in the submillimetre also extinguish and polarize starlight in the visible. Comparison of the polarization of the emission and of the interstellar polarization on selected lines of sight probed by stars provides unique new diagnostics of the emission and light scattering properties of dust, and therefore of the important dust model parameters, composition, size, and shape. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, p(V), and the optical depth in the V band to the star, tau(V). Toward these stars we measure the submillimetre polarized intensity, P-S, and total intensity, I-S,I- in the Planck 353 GHz channel. We compare the column density measure in the visible, E(B - V), with that inferred from the Planck product map of the submillimetre dust optical depth and compare the polarization direction (position angle) in the visible with that in the submillimetre. For those lines of sight through the di ff use interstellar medium with comparable values of the estimated column density and polarization directions close to orthogonal, we correlate properties in the submillimetre and visible to find two ratios, R-S/V = (P-S/I-S) = (p(V)/tau(V)) and R-P/p = P-S/p(V), the latter focusing directly on the polarization properties of the aligned grain population alone. We find R-S/V = 4.2, with statistical and systematic uncertainties 0.2 and 0.3, respectively, and R-P/p = 5.4 MJy sr(-1), with uncertainties 0.2 and 0.3 MJy sr(-1), respectively. Our estimate of R-S/V is compatible with predictions based on a range of polarizing dust models that have been developed for the di ff use interstellar medium. This estimate provides new empirical validation of many of the common underlying assumptions of the models, but is not yet very discriminating among them. However, our estimate of R-P/p is not compatible with predictions, which are too low by a factor of about 2.5. This more discriminating diagnostic, R-P/p, indicates that changes to the optical properties in the models of the aligned grain population are required. These new diagnostics, together with the spectral dependence in the submillimetre from Planck, will be important for constraining and understanding the full complexity of the grain models, and for interpreting the Planck thermal dust polarization and refinement of the separation of this contamination of the cosmic microwave background. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piot, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, CEA,Irfu,Sorbonne Paris Cite, APC,AstroParticule & Cosmol,CNRS,IN2P3, F-75205 Paris, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M55 3H8, Canada. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Beichman, C.; Bock, J. J.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Poidevin, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Poidevin, F.; Rebolo, R.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Poidevin, F.; Rebolo, R.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aniano, G.; Aumont, J.; Boulanger, F.; Chamballu, A.; Douspis, M.; Fanciullo, L.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Pratt, G. W.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Poidevin, F.; Rebolo, R.] Inst Astrofis Canarias, Tenerife, Spain. [Magalhaes, A. M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Sao Paulo, Brazil. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Kisner, T. S.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Armitage-Caplan, C.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.; Benoit-Levy, A.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Guillet, V (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM vincent.guillet@ias.u-psud.fr RI Remazeilles, Mathieu/N-1793-2015; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Nati, Federico/I-4469-2016; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; OI Sandri, Maura/0000-0003-4806-5375; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Polenta, Gianluca/0000-0003-4067-9196; Morgante, Gianluca/0000-0001-9234-7412; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Finelli, Fabio/0000-0002-6694-3269; De Zotti, Gianfranco/0000-0003-2868-2595; Savini, Giorgio/0000-0003-4449-9416; Reach, William/0000-0001-8362-4094; Juvela, Mika/0000-0002-5809-4834; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); European Research Council under the European Union [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php ? project=planck&page=Planck_Collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013) / ERC grant agreement No. 267934. This research has made use of the SIMBAD database and the VizieR catalogue access tool, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System Service. NR 68 TC 10 Z9 10 U1 3 U2 15 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A106 DI 10.1051/0004-6361/201424087 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600041 ER PT J AU Ade, PAR Aghanim, N Alina, D Alves, MIR Armitage-Caplan, C Amaue, M Arzoumanian, D Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banda, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Butler, RC Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, E Coulais, A Crill, BP Curto, A Cuttaia, E Danese, L Davies, RD Davis, RJ de Bernardis, P Dal Pino, EMD De Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Ferflere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuse, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Huffenberger, KM Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leaiy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, IF Maffei, B Magalhaes, AM Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, N Migliaccio, M Mivile-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, E Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, E Paadini, R Paoletti, D Pasian, E Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Poidevin, F Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rubino-Martin, A Rusholme, B Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alina, D. Alves, M. I. R. Armitage-Caplan, C. Amaue, M. Arzoumanian, D. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banda, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Butler, R. C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, E. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gouveia Dal Pino, E. M. De Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferflere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuse, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leaiy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, I. F. Maffei, B. Magalhaes, A. M. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, N. Migliaccio, M. Mivile-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, E. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paadini, R. Paoletti, D. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Poidevin, F. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rubino-Martin, A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; dust, extinction; ISM: magnetic fields; ISM: clouds; submillimeter: ISM ID PROBE WMAP OBSERVATIONS; RADIATIVE TORQUE ALIGNMENT; FORMING MOLECULAR CLOUDS; MAGNETIC-FIELD GEOMETRY; GRAIN ALIGNMENT; INTERSTELLAR TURBULENCE; ROTATION MEASURES; SOUTHERN SKY; EXTRAGALACTIC SOURCES; 1.4 GHZ AB This paper presents an overview of the polarized sky as seen by Planck HFI at 353GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1 degrees resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (p(max) = 19.8%), in particular in some regions of moderate hydrogen column density (N-H < 2 x 10(21) cm(-2)). The polarization fraction displays a large scatter at NH below a few 10(21) cm(-2). There is a general decrease in the dust polarization fraction with increasing column density above N-H similar or equal to 1 x 10(21) cm(-2) and in particular a sharp drop above N-H similar or equal to 1.5 x 10(22) cm(-2). We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1 degrees, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, AstroParticule & Cosmol,Sorbonne Paris Cite, APC,CNRS IN2P3,CEA Irfu, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago 0355, Chile. [Bond, J. R.; Martin, P. G.; Mivile-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Alina, D.; Banda, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferflere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bock, J. J.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAAP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 121, Canada. [Scott, D.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Poidevin, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, E.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, N.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Poidevin, F.; Rebolo, R.; Rubino-Martin, A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, E.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuse, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, N.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Paadini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Mivile-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Poidevin, F.; Rebolo, R.; Rubino-Martin, A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [de Gouveia Dal Pino, E. M.; Magalhaes, A. M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leaiy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, LAL, F-91400 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Amaue, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, I. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep, Zelenchukskiy R, Russia. [Armitage-Caplan, C.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Alina, D.; Banda, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferflere, K.; Forni, O.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.; Giard, M.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Bernard, JP (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM Jean-Philippe.Bernard@irap.omp.eu RI Butler, Reginald/N-4647-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Pearson, Timothy/N-2376-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; de Gouveia Dal Pino, Elisabete/H-9560-2013; Gruppuso, Alessandro/N-5592-2015; Remazeilles, Mathieu/N-1793-2015 OI Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Lopez-Caniego, Marcos/0000-0003-1016-9283; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X; Pearson, Timothy/0000-0001-5213-6231; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Gregorio, Anna/0000-0003-4028-8785; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Toffolatti, Luigi/0000-0003-2645-7386; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; de Gouveia Dal Pino, Elisabete/0000-0001-8058-4752; Gruppuso, Alessandro/0000-0001-9272-5292; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; De Zotti, Gianfranco/0000-0003-2868-2595; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Cuttaia, Francesco/0000-0001-6608-5017; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN, J.A. (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/M CTES (Portugal); PRACE (EU); European Research Council under the European Union/ERC [267934]; University of Sao Paulo, Brazil [USP 2007.1.433.14.2, COFECUB Uc Te 114/08]; COFECUB, France [USP 2007.1.433.14.2, COFECUB Uc Te 114/08] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/M CTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 267934 and from a joint agreement between University of Sao Paulo, Brazil, and COFECUB, France (grant nos. USP 2007.1.433.14.2 and COFECUB Uc Te 114/08). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. Some of the results in this paper have been derived using the HEALPix package. NR 119 TC 44 Z9 44 U1 2 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A104 DI 10.1051/0004-6361/201424082 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600039 ER PT J AU Adrian-Martinez, S Albert, A Andre, M Anton, G Ardid, M Aubert, JJ Baret, B Barrios, J Basa, S Bertin, V Biagi, S Bogazzi, C Bormuth, R Bou-Cabo, M Bouwhuis, MC Brujin, R Brunner, J Busto, J Capone, A Caramete, L Cane, J Chiarusim, T Circella, M Coniglione, R Costantini, H Coyle, P Creusot, A De Rosa, G Dekeyser, I Deschamps, A De Bonis, G Distefano, C Donzaud, C Dornic, D Dorosti, Q Drouhin, D Dumas, A Eberl, T Enzenhofer, A Escoffier, S Fehn, K Felis, I Fermani, P Folger, F Fusco, LA Galata, S Gay, P Geisselsoder, S Geyer, K Giordano, V Gleixner, A Gomez-Gonzalez, JP Gracia-Ruiz, R Graf, K van Haren, H Heijboer, AJ Hello, Y Hernandez-Rey, JJ Herrero, A Hossl, J Hofestadt, J Hugon, C James, CW de Jong, M Kalekin, O Katz, U Kiessling, D Kooijman, P Kouchner, A Kulikovskiy, V Lahmann, R Lattuada, D Lefevre, D Leonora, E Loehner, H Loucatos, S Mangano, S Marcelin, M Margiotta, A Martinez-Mora, JA Martini, S Mathieu, A Michael, T Migliozzi, P Neff, M Nezri, E Palioselitis, D Pavalas, GE Perrina, C Piattelli, P Popa, V Pradier, T Racca, C Riccobene, G Richter, R Roensch, K Rostovtsev, A Saldana, M Samtleben, DFE Sanchez-Losa, A Sanguineti, M Sapienza, P Schmid, J Schnabel, J Schulte, S Schussler, F Seitz, T Sieger, C Spies, A Spurio, M Steijger, JJM Stolarczyk, T Taiuti, M Tamburini, C Tayalati, Y Trovato, A Tselengidou, M Tonnis, C Vallage, B Vallee, C Van Elewyck, V Visser, E Vivolo, D Wagner, S de Wolf, E Yepes, H Zornoza, JD Zuniga, J Krauss, F Kadler, M Mannheim, K Schulz, R Trustedt, J Wilms, J Ojha, R Ros, E Baumgartner, W Beuchert, T Blanchard, J Burke, C Carpenter, B Edwards, PG Glawion, DE Elsasser, D Fritsch, U Gehrels, N Grafe, C Grossberger, C Hase, H Horiuchi, S Kappes, A Kreikenbohm, A Kreykenbohm, I Langejahn, M Leiter, K Litzinger, E Lovell, JEJ Muller, C Phillips, C Plotz, C Quick, J Steinbring, T Stevens, J Thompson, DJ Tzioumis, AK AF Adrian-Martinez, S. Albert, A. Andre, M. Anton, G. Ardid, M. Aubert, J. -J. Baret, B. Barrios, J. Basa, S. Bertin, V. Biagi, S. Bogazzi, C. Bormuth, R. Bou-Cabo, M. Bouwhuis, M. C. Brujin, R. Brunner, J. Busto, J. Capone, A. Caramete, L. Cane, J. Chiarusim, T. Circella, M. Coniglione, R. Costantini, H. Coyle, P. Creusot, A. De Rosa, G. Dekeyser, I. Deschamps, A. De Bonis, G. Distefano, C. Donzaud, C. Dornic, D. Dorosti, Q. Drouhin, D. Dumas, A. Eberl, T. Enzenhoefer, A. Escoffier, S. Fehn, K. Felis, I. Fermani, P. Folger, F. Fusco, L. A. Galata, S. Gay, P. Geisselsoeder, S. Geyer, K. Giordano, V. Gleixner, A. Gomez-Gonzalez, J. P. Gracia-Ruiz, R. Graf, K. van Haren, H. Heijboer, A. J. Hello, Y. Hernandez-Rey, J. J. Herrero, A. Hoessl, J. Hofestaedt, J. Hugon, C. James, C. W. de Jong, M. Kalekin, O. Katz, U. Kiessling, D. Kooijman, P. Kouchner, A. Kulikovskiy, V. Lahmann, R. Lattuada, D. Lefevre, D. Leonora, E. Loehner, H. Loucatos, S. Mangano, S. Marcelin, M. Margiotta, A. Martinez-Mora, J. A. Martini, S. Mathieu, A. Michael, T. Migliozzi, P. Neff, M. Nezri, E. Palioselitis, D. Pavalas, G. E. Perrina, C. Piattelli, P. Popa, V. Pradier, T. Racca, C. Riccobene, G. Richter, R. Roensch, K. Rostovtsev, A. Saldana, M. Samtleben, D. F. E. Sanchez-Losa, A. Sanguineti, M. Sapienza, P. Schmid, J. Schnabel, J. Schulte, S. Schuessler, F. Seitz, T. Sieger, C. Spies, A. Spurio, M. Steijger, J. J. M. Stolarczyk, Th. Taiuti, M. Tamburini, C. Tayalati, Y. Trovato, A. Tselengidou, M. Toennis, C. Vallage, B. Vallee, C. Van Elewyck, V. Visser, E. Vivolo, D. Wagner, S. de Wolf, E. Yepes, H. Zornoza, J. D. Zuniga, J. Krauss, F. Kadler, M. Mannheim, K. Schulz, R. Truestedt, J. Wilms, J. Ojha, R. Ros, E. Baumgartner, W. Beuchert, T. Blanchard, J. Buerke, C. Carpenter, B. Edwards, P. G. Glawion, D. Eisenacher Elsaesser, D. Fritsch, U. Gehrels, N. Graefe, C. Grossberger, C. Hase, H. Horiuchi, S. Kappes, A. Kreikenbohm, A. Kreykenbohm, I. Langejahn, M. Leiter, K. Litzinger, E. Lovell, J. E. J. Mueller, C. Phillips, C. Ploetz, C. Quick, J. Steinbring, T. Stevens, J. Thompson, D. J. Tzioumis, A. K. CA ANTARES Collaboration TANAMI Collaboration TI ANTARES constrains a blazar origin of two IceCube PeV neutrino events SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE neutrinos; galaxies: active; quasars: general ID HIGH-ENERGY NEUTRINOS; COSMIC-RAYS; TELESCOPE; QUASARS; CATALOG; NUCLEI AB Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results. Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653-329 and 1714-336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than -2.4. C1 [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain. [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, F-68008 Colmar, France. [Andre, M.] Tech Univ Catalonia, Lab Appl Bioacoust, Barcelona 08800, Spain. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hoessl, J.; Hofestaedt, J.; James, C. W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Spies, A.; Tselengidou, M.; Wagner, S.; Fritsch, U.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Cane, J.; Costantini, H.; Coyle, P.; Dornic, D.; Escoffier, S.; Mathieu, A.; Vallee, C.] Aix Marseille Univ, CNRS IN2P3, CPPM, F-13009 Marseille, France. [Baret, B.; Creusot, A.; Donzaud, C.; Galata, S.; Gracia-Ruiz, R.; Kouchner, A.; Van Elewyck, V.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,CNRS IN2P3,CEA IRFU, F-75205 Paris, France. [Barrios, J.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Sanchez-Losa, A.; Toennis, C.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Valencia 46071, Spain. [Basa, S.; Marcelin, M.; Nezri, E.] Pole Etoile Site Chateau Gombert, LAM, F-13388 Marseille 13, France. [Chiarusim, T.; Fusco, L. A.; Margiotta, A.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Fusco, L. A.; Margiotta, A.; Spurio, M.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy. [Bogazzi, C.; Bormuth, R.; Bouwhuis, M. C.; Brujin, R.; Heijboer, A. J.; de Jong, M.; Kooijman, P.; Michael, T.; Palioselitis, D.; Samtleben, D. F. E.; Schulte, S.; Steijger, J. J. M.; Visser, E.; de Wolf, E.] Nikhef, NL-1098 XG Amsterdam, Netherlands. [Bormuth, R.; de Jong, M.; Samtleben, D. F. E.] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Brujin, R.; Kooijman, P.; de Wolf, E.] Univ Amsterdam, Inst Hoge Energie Fys, NL-1098 XG Amsterdam, Netherlands. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Caramete, L.; Pavalas, G. E.; Popa, V.] Inst Space Sci, Bucharest 077125, Magurele, Romania. [Circella, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Rosa, G.; Migliozzi, P.; Vivolo, D.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Rosa, G.; Vivolo, D.] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy. [Dekeyser, I.; Lefevre, D.; Martini, S.; Tamburini, C.] Aix Marseille Univ, MIO, F-13288 Marseille 9, France. [Dekeyser, I.; Lefevre, D.; Martini, S.; Tamburini, C.] Univ Sud Toulon Var, CNRS INSU IRD UM 110, F-83957 La Garde, France. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Lattuada, D.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Univ Nice Sophia Antipolis, CNRS INSU, Observ Cote Azur, Geoazur,IRD, Sophia Antipolis, France. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Lattuada, D.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Ist Nazl Fis Nucl, LNS, I-95123 Catania, Italy. [Donzaud, C.] Univ Paris 11, F-91405 Orsay, France. [Dorosti, Q.; Loehner, H.] Univ Groningen, KVI, NL-9747 AA Groningen, Netherlands. [Dumas, A.; Gay, P.] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, Laboratoire Phys Corpusculaire, F-63000 Clermont Ferrand, France. [Giordano, V.; Leonora, E.] Ist Nazl Fis Nucl, Sez Catania, I-95125 Catania, Italy. [van Haren, H.] Royal Netherlands Inst Sea Res NIOZ, NL-1797 SZ T Horntje, Texel, Netherlands. [Kooijman, P.] Univ Utrecht, Fac Betawetenschappen, NL-3584 CC Utrecht, Netherlands. [Krauss, F.; Schulz, R.; Truestedt, J.; Wilms, J.; Beuchert, T.; Buerke, C.; Graefe, C.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Mueller, C.; Steinbring, T.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, D-96049 Bamberg, Germany. [Krauss, F.; Schulz, R.; Truestedt, J.; Wilms, J.; Beuchert, T.; Buerke, C.; Graefe, C.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Mueller, C.; Steinbring, T.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. [Leonora, E.] Univ Catania, Dipartimento Fis & Astron, I-95125 Catania, Italy. [Loucatos, S.; Schuessler, F.; Stolarczyk, Th.; Vallage, B.] CEA Saclay, Direct Sci Mat, Inst Rech Lois Fondament Univers, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Pradier, T.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France. [Pradier, T.] CNRS, IN2P3, F-67037 Strasbourg 2, France. [Rostovtsev, A.] ITEP, Moscow 117218, Russia. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Tayalati, Y.] Univ Mohammed 1, Lab Phys Matter & Radiat, Oujda 6000, Morocco. [Krauss, F.; Kadler, M.; Mannheim, K.; Schulz, R.; Truestedt, J.; Beuchert, T.; Buerke, C.; Glawion, D. Eisenacher; Elsaesser, D.; Graefe, C.; Kappes, A.; Kreikenbohm, A.; Langejahn, M.; Leiter, K.; Litzinger, E.; Mueller, C.; Steinbring, T.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Ojha, R.; Baumgartner, W.; Gehrels, N.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ojha, R.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Ojha, R.; Carpenter, B.] Catholic Univ Amer, Washington, DC 20064 USA. [Ros, E.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Ros, E.] Univ Valencia, Observ Astron, Valencia 46980, Spain. [Blanchard, J.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Edwards, P. G.; Phillips, C.; Stevens, J.; Tzioumis, A. K.] CSIRO Astron & Space Sci, ATNF, Epping, NSW 1710, Australia. [Grossberger, C.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Ploetz, C.] Bundesamt Kartog & Geodasie, D-93444 Bad Kotzting, Germany. [Horiuchi, S.] CSIRO Astron & Space Sci, Tuggeranong, ACT 2901, Australia. [Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Quick, J.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. RP James, CW (reprint author), Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. EM clancy.james@physik.uni-erlangen.de; kadler@physik.uni-wuerzburg.edu RI Piattelli, Paolo/J-2958-2012; Caramete, Laurentiu/C-2328-2011; Katz, Uli/E-1925-2013; James, Clancy/G-9178-2015; Ardid, Miguel/H-9544-2015; Migliozzi, Pasquale/I-6427-2015; Zuniga, Juan/P-4385-2014; Schussler, Fabian/G-5313-2013; Wilms, Joern/C-8116-2013; De Rosa, Gianfranca/E-8737-2012; cabo, bou/N-2076-2014; Anton, Gisela/C-4840-2013; Trovato, Agata/F-4160-2016; Biagi, Simone/G-4557-2016; Distefano, Carla/G-5213-2016; Riccobene, Giorgio Maria/A-4502-2010; Zornoza, Juan de Dios/L-1604-2014; Eberl, Thomas/J-4826-2016; Hernandez-Rey, Juan Jose/N-5955-2014; Capone, Antonio/F-1098-2010 OI Ros, Eduardo/0000-0001-9503-4892; Piattelli, Paolo/0000-0003-4748-6485; Sanguineti, Matteo/0000-0002-7206-2097; Krauss, Felicia/0000-0001-6191-1244; Sanchez Losa, Agustin/0000-0001-9596-7078; Fusco, Luigi Antonio/0000-0001-8254-3372; Kadler, Matthias/0000-0001-5606-6154; Katz, Uli/0000-0002-7063-4418; James, Clancy/0000-0002-6437-6176; Ardid, Miguel/0000-0002-3199-594X; Migliozzi, Pasquale/0000-0001-5497-3594; Zuniga, Juan/0000-0002-1041-6451; vivolo, daniele/0000-0002-4773-2116; Escoffier, Stephanie/0000-0002-2847-7498; Spurio, Maurizio/0000-0002-8698-3655; Schussler, Fabian/0000-0003-1500-6571; Wilms, Joern/0000-0003-2065-5410; De Rosa, Gianfranca/0000-0002-2197-511X; Anton, Gisela/0000-0003-2039-4724; Trovato, Agata/0000-0002-9714-1904; Biagi, Simone/0000-0001-8598-0017; Distefano, Carla/0000-0001-8632-1136; Riccobene, Giorgio Maria/0000-0002-0600-2774; Zornoza, Juan de Dios/0000-0002-1834-0690; Eberl, Thomas/0000-0002-5301-9106; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; FU Centre National de la Recherche Scientifique (CNRS); Commissariat a l'enegie atomique et aux energies alternatives (CEA); Commission Europeenne (FEDER fund); Commission Europeenne (Marie Curie Program); Region Alsace (contrat CPER); Region Provence-Alpes-Cote d'Azur; Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO); Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Deutsche Forschungsgemeinschaft [WI 1860-10/1, GRK 1147]; Deutsches Zentrum fur Luft- und Raumfahrt [50 OR1311/50 OR1303/50 OR1401]; Spanish MINECO project [AYA2012-38491-C02-01]; Generalitat Valenciana project [PROMETEOII/2014/057]; COST action "Black Holes in a Violent Universe" [MP0905]; Helmholtz Alliance for Astroparticle Physics (HAP) FX The authors would like to thank A. Kappes for helpful discussions regarding the IceCube analysis. The ANTARES authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'enegie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The TANAMI authors acknowledge support and partial funding by the Deutsche Forschungsgemeinschaft grant WI 1860-10/1 (TANAMI) and GRK 1147, Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR1311/50 OR1303/50 OR1401, the Spanish MINECO project AYA2012-38491-C02-01, the Generalitat Valenciana project PROMETEOII/2014/057, the COST MP0905 action "Black Holes in a Violent Universe" and the Helmholtz Alliance for Astroparticle Physics (HAP). NR 30 TC 4 Z9 4 U1 4 U2 32 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR L8 DI 10.1051/0004-6361/201525670 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600079 ER PT J AU Aleksic, J Ansokli, S Antonelli, LA Antoranz, P Babic, A Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Berger, K Bernardini, E Bilandli, A Bianch, O Bock, RK Bonnefoy, S Bonnoli, G Borracci, F Bretzi, T Carmona, E Carosi, A Fidalgo, DC Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Caneva, G De Lotto, B Mendez, CD Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Eisenacher, D Elsaesser, D Farina, E Ferenc, D Fonseca, MV Font, L Frantzen, K Fruck, C Lopez, RJG Garczarczyki, M Terrats, DG Gaug, M Giavitto, G Godinovic, N Munoz, AG Gozzini, SR Hadamek, A Hadasch, D Herrero, A Hildebrand, D Hose, J Hrupec, D Idec, W Kadenius, V Kellermann, H Knoetig, ML Krause, J Kushida, J La Barbera, A Lelas, D Lewandowska, N Lindfors, E Longo, F Lombardi, S Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Lozano, I Makariev, M Mallot, K Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Meucci, M Miranda, JM Mirzoyan, R Moralejo, A Munar-Adrover, P Nakajima, D Niedzwiecki, A Nilsson, K Nowak, N Orito, R Overkemping, A Paiano, S Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Partini, S Persic, M Prada, F Moroni, PGP Prandini, E Preziuso, S Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Rugamer, S Saggion, A Saito, K Salvati, M Satalecka, K Scalzotto, V Scapin, V Schuliz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Spanier, F Stamatescu, V Stamerra, A Steinbring, T Storz, J Sun, S Suric, T Takalo, L Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Tibolla, O Torres, DF Toyama, T Treves, A Uellenbeck, M Vogler, P Wagner, RM Zandanel, F Zanin, R Archambault, S Behera, B Beilicke, M Benbow, W Bird, R Buckley, JH Bugaev, V Cerruti, M Chen, X Ciupik, L Collins-Hughes, E Cui, W Dumm, J Eisch, JD Falcone, A Federici, S Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Griffin, S Griffiths, ST Grube, J Gyuk, G Hanna, D Holder, J Hughes, G Humensky, TB Johnson, CA Kaaret, P Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Kumar, S Lang, MJ Maier, G McArthur, S Meagher, K Moriarty, P Mukherjee, R Ong, RA Otte, AN Park, N Pichel, A Pohl, M Popkow, A Prokoph, H Quinn, MJ Ragan, K Rajotte, J Reynolds, PT Richards, GT Roache, E Rovero, AC Sembroski, GH Shahinyan, K Staszak, D Telezhinsky, I Theiling, M Tucci, JV Tyler, J Varlotta, A Wakely, SP Weekes, TC Weinstein, A Welsing, R Wilhelm, A Williams, DA Zitzer, B Villata, M Raiteri, C Aller, HD Aller, MF Chen, WP Jordan, B Koptelova, E Kurtanidze, OM Lahteenmak, A McBreen, B Larionov, VM Lin, CS Nikolashvili, MG Angelakis, E Capalbi, M Carraminana, A Carrasco, L Cassaro, P Cesarini, A Fuhrmann, L Giroletti, M Hovatta, T Krichbaum, TP Krimm, HA Max-Moerbeck, W Moody, JW Maccaferri, G Mori, Y Nestoras, I Orlati, A Pace, C Pearson, R Perri, M Readhead, ACS Richards, JL Sadun, AC Sakamoto, T Tammi, J Tornikoski, M Yatsu, Y Zook, A AF Aleksic, J. Ansokli, S. Antonelli, L. A. Antoranz, P. Babic, A. Bangale, P. de Almeida, U. Barres Barrio, J. A. Gonzalez, J. Becerra Bednarek, W. Berger, K. Bernardini, E. Bilandli, A. Bianch, O. Bock, R. K. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Fidalgo, D. Carreto Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Caneva, G. De Lotto, B. Delgado Mendez, C. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Eisenacher, D. Elsaesser, D. Farina, E. Ferenc, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Garcia Lopez, R. J. Garczarczyki, M. Garrido Terrats, D. Gaug, M. Giavitto, G. Godinovic, N. Gonzalez Munoz, A. Gozzini, S. R. Hadamek, A. Hadasch, D. Herrero, A. Hildebrand, D. Hose, J. Hrupec, D. Idec, W. Kadenius, V. Kellermann, H. Knoetig, M. L. Krause, J. Kushida, J. La Barbera, A. Lelas, D. Lewandowska, N. Lindfors, E. Longo, F. Lombardi, S. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Lozano, I. Makariev, M. Mallot, K. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Meucci, M. Miranda, J. M. Mirzoyan, R. Moralejo, A. Munar-Adrover, P. Nakajima, D. Niedzwiecki, A. Nilsson, K. Nowak, N. Orito, R. Overkemping, A. Paiano, S. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Partini, S. Persic, M. Prada, F. Moroni, P. G. Prada Prandini, E. Preziuso, S. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Ruegamer, S. Saggion, A. Saito, K. Salvati, M. Satalecka, K. Scalzotto, V. Scapin, V. Schuliz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Spanier, F. Stamatescu, V. Stamerra, A. Steinbring, T. Storz, J. Sun, S. Suric, T. Takalo, L. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Tibolla, O. Torres, D. F. Toyama, T. Treves, A. Uellenbeck, M. Vogler, P. Wagner, R. M. Zandanel, F. Zanin, R. Archambault, S. Behera, B. Beilicke, M. Benbow, W. Bird, R. Buckley, J. H. Bugaev, V. Cerruti, M. Chen, X. Ciupik, L. Collins-Hughes, E. Cui, W. Dumm, J. Eisch, J. D. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Hanna, D. Holder, J. Hughes, G. Humensky, T. B. Johnson, C. A. Kaaret, P. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Kumar, S. Lang, M. J. Maier, G. McArthur, S. Meagher, K. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Park, N. Pichel, A. Pohl, M. Popkow, A. Prokoph, H. Quinn, M. J. Ragan, K. Rajotte, J. Reynolds, P. T. Richards, G. T. Roache, E. Rovero, A. C. Sembroski, G. H. Shahinyan, K. Staszak, D. Telezhinsky, I. Theiling, M. Tucci, J. V. Tyler, J. Varlotta, A. Wakely, S. P. Weekes, T. C. Weinstein, A. Welsing, R. Wilhelm, A. Williams, D. A. Zitzer, B. Villata, M. Raiteri, C. Aller, H. D. Aller, M. F. Chen, W. P. Jordan, B. Koptelova, E. Kurtanidze, O. M. Lahteenmak, A. McBreen, B. Larionov, V. M. Lin, C. S. Nikolashvili, M. G. Angelakis, E. Capalbi, M. Carraminana, A. Carrasco, L. Cassaro, P. Cesarini, A. Fuhrmann, L. Giroletti, M. Hovatta, T. Krichbaum, T. P. Krimm, H. A. Max-Moerbeck, W. Moody, J. W. Maccaferri, G. Mori, Y. Nestoras, I. Orlati, A. Pace, C. Pearson, R. Perri, M. Readhead, A. C. S. Richards, J. L. Sadun, A. C. Sakamoto, T. Tammi, J. Tornikoski, M. Yatsu, Y. Zook, A. CA MAGIC Collaboration VERITAS Collaboration MAGIC Collaboration TI The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE BL Lacertae objects: individual: Mrk 421 ID ACTIVE GALACTIC NUCLEI; X-RAY VARIABILITY; LIGHT CURVES; OPTICAL VARIABILITY; POWER SPECTRA; TEV PHOTONS; EMISSION; BLAZARS; MARKARIAN-421; TELESCOPE AB Aims. We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. Methods. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E > 100 GeV) gamma-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. Results. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical /UV and X-rays extending over the duration of the campaign. Conclusions. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multiwavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk 421 during non-flaring activity. Such a temporally extended X-ray /VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies. C1 [Aleksic, J.; Bianch, O.; Cortina, J.; Giavitto, G.; Gonzalez Munoz, A.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Rico, J.; Sitarek, J.; Stamatescu, V.] IFAE, Bellaterra 08193, Spain. [Ansokli, S.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Longo, F.; Mankuzhiyil, N.; Palatiello, M.; Persic, M.] Univ Udine, I-33100 Udine, Italy. [Ansokli, S.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Longo, F.; Mankuzhiyil, N.; Palatiello, M.; Persic, M.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Salvati, M.; Stamerra, A.; Tavecchio, F.; Perri, M.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Preziuso, S.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Preziuso, S.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Ferenc, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAG Consortium, Zagreb 10000, Croatia. [Bangale, P.; de Almeida, U. Barres; Bock, R. K.; Borracci, F.; Colin, P.; Fruck, C.; Hose, J.; Kellermann, H.; Krause, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Nowak, N.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Sun, S.; Teshima, M.; Toyama, T.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fonseca, M. V.; Lopez, M.; Lozano, I.; Satalecka, K.; Scapin, V.] Univ Complutense, E-28040 Madrid, Spain. [Gonzalez, J. Becerra; Berger, K.; Colombo, E.; Garcia Lopez, R. J.; Herrero, A.; Tescaro, D.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; De Caneva, G.; Garczarczyki, M.; Gozzini, S. R.; Mallot, K.; Behera, B.; Fleischhack, H.; Hughes, G.; Maier, G.; Prokoph, H.; Welsing, R.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Bilandli, A.; Hildebrand, D.; Knoetig, M. L.; Vogler, P.] ETH, CH-8093 Zurich, Switzerland. [Bretz, T.; Fidalgo, D. Carreto; Dorner, D.; Eisenacher, D.; Elsaesser, D.; Lewandowska, N.; Mannheim, K.; Ruegamer, S.; Spanier, F.; Steinbring, T.; Storz, J.; Tibolla, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [Doert, M.; Einecke, S.; Frantzen, K.; Hadamek, A.; Overkemping, A.; Rhode, W.; Thaele, J.; Uellenbeck, M.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Dominguez, A.; Prada, F.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, Granada 18080, Spain. [Doro, M.; Mariotti, M.; Paiano, S.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schuliz, C.] Univ Padua, I-35131 Padua, Italy. [Doro, M.; Mariotti, M.; Paiano, S.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schuliz, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Farina, E.; Treves, A.] Univ Insubria, I-22100 Como, Como, Italy. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Bellaterra 08193, Spain. [Kadenius, V.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Tuorla Observ, Finnish MAG Consortium, Oulu 900147, Finland. [Kadenius, V.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, Oulu 900147, Finland. [Kushida, J.; Nakajima, D.; Orito, R.; Saito, K.] Kyoto Univ, Div Phys & Astron, Japanese MAG Consortium, Kyoto 6068501, Japan. [Makariev, M.; Maneva, G.; Temnikov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Marcote, B.; Munar-Adrover, P.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona ICC IEEC, Barcelona 08028, Spain. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Rajotte, J.; Staszak, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Chen, X.; Federici, S.; Telezhinsky, I.; Wilhelm, A.] DESY, D-15738 Zeuthen, Germany. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.; Tyler, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Roache, E.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Collins-Hughes, E.; Khassen, Y.; Quinn, M. J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Chen, X.; Federici, S.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Tucci, J. V.; Varlotta, A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Pichel, A.; Rovero, A. C.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Fortin, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Villata, M.; Raiteri, C.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Chen, W. P.; Koptelova, E.; Lin, C. S.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Koptelova, E.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Kurtanidze, O. M.; Nikolashvili, M. G.] Abastumani Observ, GE-0301 Mt Kanobili, Abastumani, Rep of Georgia. [Kurtanidze, O. M.] Heidelberg Univ, Zentrum Astron, Landessternwarte, D-69117 Heidelberg, Germany. [Lahteenmak, A.; Hovatta, T.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Lahteenmak, A.; Tammi, J.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [McBreen, B.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg 196140, Russia. [Larionov, V. M.] Pulkovo Observ, St Petersburg 196140, Russia. [Larionov, V. M.] St Petersburg State Univ, Astron Inst, St Petersburg 198504, Russia. [Angelakis, E.; Fuhrmann, L.; Krichbaum, T. P.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Carraminana, A.; Carrasco, L.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Cassaro, P.] INAF Ist Radioastron, Sez Noto, I-96017 Noto, SR, Italy. [Cesarini, A.] Univ Trento, Dept Phys, I-38050 Povo, Trento, Italy. [Hovatta, T.; Max-Moerbeck, W.; Readhead, A. C. S.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Krimm, H. A.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pace, C.] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA. [Moody, J. W.; Pearson, R.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Maccaferri, G.; Orlati, A.] INAF Ist Radioastron, Stn Radioastron Med, I-40059 Bologna, Italy. [Mori, Y.; Yatsu, Y.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Capalbi, M.; Perri, M.] ASI Sci Data Ctr, I-00133 Rome, Italy. [Richards, J. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80220 USA. [Sakamoto, T.] Aoyama Gakuin Univ, Coll Sci & Engn 952, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Zook, A.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Prada, F.] UAM, CSIC, Inst Fis Teor, Madrid, Spain. RP Nowak, N (reprint author), Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. EM nina.nowak@astro.su.se; dpaneque@mppmu.mpg.de RI Fonseca Gonzalez, Maria Victoria/I-2004-2015; Barrio, Juan/L-3227-2014; Martinez Rodriguez, Manel/C-2539-2017; Cortina, Juan/C-2783-2017; Khassen, Yerbol/I-3806-2015; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Torres, Diego/O-9422-2016; Delgado, Carlos/K-7587-2014; Larionov, Valeri/H-1349-2013; GAug, Markus/L-2340-2014; Miranda, Jose Miguel/F-2913-2013; Stamatescu, Victor/C-9945-2016; Tammi, Joni/G-2959-2012; Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014 OI Becerra Gonzalez, Josefa/0000-0002-6729-9022; Covino, Stefano/0000-0001-9078-5507; Bonnoli, Giacomo/0000-0003-2464-9077; Antonelli, Lucio Angelo/0000-0002-5037-9034; Stamerra, Antonio/0000-0002-9430-5264; Prandini, Elisa/0000-0003-4502-9053; Cesarini, Andrea/0000-0002-8611-8610; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; De Lotto, Barbara/0000-0003-3624-4480; Perri, Matteo/0000-0003-3613-4409; Raiteri, Claudia Maria/0000-0003-1784-2784; Otte, Adam Nepomuk/0000-0002-5955-6383; Giroletti, Marcello/0000-0002-8657-8852; Bird, Ralph/0000-0002-4596-8563; Angelakis, Emmanouil/0000-0001-7327-5441; Doro, Michele/0000-0001-9104-3214; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; Orlati, Andrea/0000-0001-8737-255X; Dominguez, Alberto/0000-0002-3433-4610; Farina, Emanuele Paolo/0000-0002-6822-2254; Villata, Massimo/0000-0003-1743-6946; Cassaro, Pietro/0000-0001-5139-9662; Prada Moroni, Pier Giorgio/0000-0001-9712-9916; LA BARBERA, ANTONINO/0000-0002-5880-8913; Cui, Wei/0000-0002-6324-5772; Khassen, Yerbol/0000-0002-7296-3100; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384; Torres, Diego/0000-0002-1522-9065; Delgado, Carlos/0000-0002-7014-4101; Larionov, Valeri/0000-0002-4640-4356; GAug, Markus/0000-0001-8442-7877; Miranda, Jose Miguel/0000-0002-1472-9690; Stamatescu, Victor/0000-0001-9030-7513; Tammi, Joni/0000-0002-9164-2695; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394 FU German BMBF and MPG; Italian INFN and INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO; Japanese JSPS; MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; CPAN [CSD2007-00042]; Spanish Consolider-Ingenio [CSD2009-00064]; Academy of Finland [268740, 212656, 210338, 121148]; Croatian Science Foundation [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0]; US Department of Energy; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STCF in the UK; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; Shota Rustaveli National Science Foundation [FR/577/6-320/13]; Russian RFBR foundation [09-02-00092] FX We would like to thank the referee for the useful comments that helped to improve the manuscript. We also thank Patricia Arevalo for helpful contributions and suggestions. The MAGIC collaboration would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO, and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The VERITAS collaboration acknowledges support from the US Department of Energy, the US National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STCF in the UK. We acknowledge the excellent work of the technical support at the FLWO and the collaboration institutions in the construction and operation of the instrument. The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. We acknowledge the use of public data from the Swift and RXTE data archives. The OVRO 40 m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others). The Abastumani Observatory team acknowledges financial support by the Shota Rustaveli National Science Foundation through project FR/577/6-320/13. The St. Petersburg University team acknowledges support from the Russian RFBR foundation via grant 09-02-00092. AZT-24 observations are made within an agreement between Pulkovo, Rome and Teramo observatories. This research is partly based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut fuer Radioastronomie) at Effelsberg, as well as with the Medicina and Noto telescopes operated by INAF Istituto di Radioastronomia. M. Villata organized the optical-to-radio observations by GASP-WEBT as the president of the collaboration. NR 45 TC 9 Z9 9 U1 3 U2 27 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A126 DI 10.1051/0004-6361/201424216 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600061 ER PT J AU Grinberg, V Leutenegger, MA Hell, N Pottschmidt, K Bock, M Garcia, JA Hanke, M Nowak, MA Sundqvist, JO Townsend, RHD Wilms, J AF Grinberg, V. Leutenegger, M. A. Hell, N. Pottschmidt, K. Boeck, M. Garcia, J. A. Hanke, M. Nowak, M. A. Sundqvist, J. O. Townsend, R. H. D. Wilms, J. TI Long term variability of Cygnus X-1 VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: Cyg X-1; X-rays: binaries; binaries : close; stars: winds, outflows ID RAY-TIMING-EXPLORER; HOT-STAR WINDS; PROPORTIONAL COUNTER ARRAY; LINE-DRIVEN INSTABILITY; LUMINOUS OB STARS; X-RAY; MASS-LOSS; STELLAR WIND; BLACK-HOLE; SUPERORBITAL VARIABILITY AB Binary systems with an accreting compact object off er a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. C1 [Grinberg, V.; Nowak, M. A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Leutenegger, M. A.; Pottschmidt, K.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Leutenegger, M. A.; Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Hell, N.; Boeck, M.; Hanke, M.; Wilms, J.] FAU Erlangen Nrnberg, Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Hell, N.; Boeck, M.; Hanke, M.; Wilms, J.] FAU Erlangen Nrnberg, ECAP, D-96049 Bamberg, Germany. [Hell, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boeck, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Garcia, J. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sundqvist, J. O.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Sundqvist, J. O.] Univ Munich, Inst Astron & Astrophys, D-81679 Munich, Germany. [Townsend, R. H. D.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. RP Grinberg, V (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM grinberg@space.mit.edu RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060, NNX12AE37G, NNX12AC72G]; LLNL [DE-AC52-07NA27344]; NASA/GSFC; Bundesministerium fur Wirtschaft und Technologie through Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1113] FX Support for this work was provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. It was partially completed by LLNL under Contract DE-AC52-07NA27344, and is supported by NASA grants to LLNL and NASA/GSFC. We thank the Bundesministerium fur Wirtschaft und Technologie for funding through Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR 1113. M.A.N. acknowledges support from NASA Grant NNX12AE37G. R.H.D.T. acknowledges support from NASA award NNX12AC72G. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We thank John E. Davis for the development of the slxfig module used to prepare all figures in this work and Fritz-Walter Schwarm, Thomas Dauser, and Ingo Kreykenbohm for their work on the Remeis computing cluster. This research has made use of ISIS functions (isisscripts) provided by ECAP/Remeis observatory and MIT3. Without the hard work by Evan Smith and Divya Pereira to schedule the observations of Cyg X-1 so uniformly for more than a decade, this whole series of papers would not have been possible. NR 87 TC 5 Z9 5 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A117 DI 10.1051/0004-6361/201425418 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600052 ER PT J AU Maire, AL Skemer, AJ Hinz, PM Desidera, S Esposito, S Gratton, R Marzari, F Skrutskie, MF Biller, BA Defrere, D Bailey, VP Leisenring, JM Apai, D Bonnefoy, M Brandner, W Buenzli, E Claudi, RU Close, LM Crepp, JR De Rosa, RJ Eisner, JA Fortney, JJ Henning, T Hofmann, KH Kopytova, TG Males, JR Mesa, D Morzinski, KM Oza, A Patience, J Pinna, E Rajan, A Schertl, D Schlieder, JE Su, KYL Vaz, A Ward-Duong, K Weigelt, G Woodward, CE AF Maire, A. -L. Skemer, A. J. Hinz, P. M. Desidera, S. Esposito, S. Gratton, R. Marzari, F. Skrutskie, M. F. Biller, B. A. Defrere, D. Bailey, V. P. Leisenring, J. M. Apai, D. Bonnefoy, M. Brandner, W. Buenzli, E. Claudi, R. U. Close, L. M. Crepp, J. R. De Rosa, R. J. Eisner, J. A. Fortney, J. J. Henning, T. Hofmann, K. -H. Kopytova, T. G. Males, J. R. Mesa, D. Morzinski, K. M. Oza, A. Patience, J. Pinna, E. Rajan, A. Schertl, D. Schlieder, J. E. Su, K. Y. L. Vaz, A. Ward-Duong, K. Weigelt, G. Woodward, C. E. TI The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: HR 8799; planetary systems; instrumentation: adaptive optics; methods: data analysis; techniques: high angular resolution; planets and satellites: dynamical evolution and stability ID EXTRASOLAR GIANT PLANETS; BETA-PICTORIS B; LOW-MASS STARS; BROWN DWARFS; ORBITAL MOTION; DEBRIS DISK; EVOLUTIONARY MODELS; COMPUTER-PROGRAM; FOMALHAUT B; 1ST LIGHT AB Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L' band (3.8 mu m), including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods. We use observations of HR 8799 and the Theta(1) Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 +/- 0.012 mas /pix and -0.430 +/- 0.076 degrees, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1 '' of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3 sigma with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (similar to 9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (similar to 7.5 AU). C1 [Maire, A. -L.; Desidera, S.; Gratton, R.; Claudi, R. U.; Mesa, D.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Skemer, A. J.; Hinz, P. M.; Defrere, D.; Bailey, V. P.; Leisenring, J. M.; Apai, D.; Close, L. M.; Eisner, J. A.; Males, J. R.; Morzinski, K. M.; Su, K. Y. L.; Vaz, A.] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA. [Esposito, S.; Pinna, E.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Marzari, F.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Skrutskie, M. F.; Oza, A.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Biller, B. A.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Biller, B. A.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Henning, T.; Kopytova, T. G.; Schlieder, J. E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Bonnefoy, M.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, M.] CNRS, IPAG, F-38000 Grenoble, France. [Crepp, J. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [De Rosa, R. J.; Patience, J.; Rajan, A.; Ward-Duong, K.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [De Rosa, R. J.] Univ Exeter, Sch Phys, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Fortney, J. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Hofmann, K. -H.; Schertl, D.; Weigelt, G.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kopytova, T. G.] Int Max Planck Res Sch Astron & Space Phys, D-69117 Heidelberg, Germany. [Schlieder, J. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Woodward, C. E.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. RP Maire, AL (reprint author), INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. EM annelise.maire@oapd.inaf.it OI Buenzli, Esther/0000-0003-3306-1486; Skemer, Andrew/0000-0001-6098-3924; Desidera, Silvano/0000-0001-8613-2589; Esposito, Simone/0000-0002-3114-677X; Su, Kate/0000-0002-3532-5580; Pinna, Enrico/0000-0002-6243-5697; Gratton, Raffaele/0000-0003-2195-6805; Morzinski, Katie/0000-0002-1384-0063; Bailey, Vanessa/0000-0002-5407-2806 FU "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research; National Aeronautics and Space Administration through Hubble Fellowship - Space Telescope Science Institute [HST-HF2-51349]; NASA [NAS 5-26555]; Swiss National Science Foundation (SNSF); NASA Postdoctoral Program at NASA Ames Research Center; NASA; NASA Origins of Solar Systems Program [NNX13AJ17G]; NASA as part of its Exoplanet Exploration program; National Science Foundation [NSF AST-0705296] FX We thank the referee for a detailed and constructive report that helped to improve the manuscript. We thank Thayne Currie and Gabriel-Dominique Marleau for useful comments. A.-L.M. thanks Arthur Vigan for helping on distortion correction and Dimitri Mawet for discussions on contrast estimation at small separations. A.-L.M., S.D., R.G., R.U.C., and D.M. acknowledge support from the "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research. Support for A.J.S. provided by the National Aeronautics and Space Administration through Hubble Fellowship grant HST-HF2-51349 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. E.B. was supported by the Swiss National Science Foundation (SNSF). The research of J.E.S. was supported in part by an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. LEECH is funded by the NASA Origins of Solar Systems Program, grant NNX13AJ17G. The Large Binocular Telescope Interferometer is funded by NASA as part of its Exoplanet Exploration program. LMIRCam is funded by the National Science Foundation through grant NSF AST-0705296. NR 87 TC 17 Z9 17 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A133 DI 10.1051/0004-6361/201425185 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600068 ER PT J AU Perrin, G Cotton, WD Millan-Gabet, R Mennesson, B AF Perrin, G. Cotton, W. D. Millan-Gabet, R. Mennesson, B. TI High-resolution IR and radio observations of AGB stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: atmospheres; stars: AGB and post-AGB; stars: mass-loss; masers; techniques: interferometric; infrared: stars ID MIRA VARIABLE-STARS; SPECTRAL IRRADIANCE CALIBRATION; SIO MASER EMISSION; KECK INTERFEROMETER; VLBA OBSERVATIONS; MOLECULAR LAYER; ALPHA-ORIONIS; S-ORIONIS; STELLAR; GIANTS AB Aims. We present the results of observations with interferometers of a sample of pulsating asymptotic giant branch (AGB) stars in the infrared and at radio wavelengths. The goal of these observations is to explore the extended stellar atmospheres and to establish links between the spatial scales of molecular envelopes and of the dust shell. This is the key to better understand the process of dust formation and therefore of mass loss. Methods. We used the ESO VLTI/MIDI interferometer in the N band, the Keck Interferometer in the K band, and NRAO VLBA observations of SiO masers at 7 mm wavelength of a sample of AGB stars: U Ari, W Cnc, RX Tau, RT Tau, RT Aql, S Ser, and V Mon. The various instruments probe different altitudes of the atmosphere of the AGB stars. They are sensitive to regions below the silicate dust condensation distance and provide the opportunity of finding hints about how dust and its precursors form in the extended atmosphere of an AGB star. The K-band observations are sensitive to water and carbon-monoxyde vapors. Unfortunately, we were only able to observe S Ser in this wavelength range. Results. We find a ratio of 2.2 between the molecular envelope radius and the photospheric size, which is consistent with previous results. The N-band observations are mostly sensitive to vapors of SiO and water and to dust (alumina and silicate). The silicate dust shell is fully resolved, and no precise parameters can be deduced from the N-band observations other than a spatial extension of at least 12-16 R-star for our sample. The sizes found for the SiO region are consistent with the radii of the SiO maser rings provided by the VLBA observations. The sizes of the alumina and water vapor regions are systematically found to be larger. There is clear evidence that SiO is absent from regions farther from the star where silicate dust condenses. Conclusions. These observations support a possible scenario in which SiO is adsorbed by species such as corundum. An alternative explanation could be that SiO has chemically disappeared at this range of distances. C1 [Perrin, G.] Paris Sci & Lettres Res Univ, Univ Paris Diderot, UPMC, LESIA,Observ Paris,CNRS, F-92195 Meudon, France. [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Millan-Gabet, R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Mennesson, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Perrin, G (reprint author), Paris Sci & Lettres Res Univ, Univ Paris Diderot, UPMC, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France. EM guy.perrin@obspm.fr NR 36 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A70 DI 10.1051/0004-6361/201425110 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600005 ER PT J AU Yildiz, UA Kristensen, LE van Dishoeck, EF Hogerheijde, MR Karska, A Belloche, A Endo, A Frieswijk, W Gusten, R van Kempen, TA Leurini, S Nagy, Z Perez-Beaupuits, JP Risacher, C van der Marel, N van Weeren, RJ Wyrowski, F AF Yildiz, U. A. Kristensen, L. E. van Dishoeck, E. F. Hogerheijde, M. R. Karska, A. Belloche, A. Endo, A. Frieswijk, W. Guesten, R. van Kempen, T. A. Leurini, S. Nagy, Z. Perez-Beaupuits, J. P. Risacher, C. van der Marel, N. van Weeren, R. J. Wyrowski, F. TI APEX-CHAMP(+) high-J CO observations of low-mass young stellar objects IV. Mechanical and radiative feedback SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation; stars: protostars; ISM: molecules; techniques: spectroscopic ID STAR-FORMING REGIONS; MOLECULAR OUTFLOWS; HERSCHEL-PACS; NGC 1333; PROTOSTELLAR ENVELOPES; SPITZER C2D; GOULD BELT; EMBEDDED PROTOSTARS; BIPOLAR OUTFLOWS; LINE FORMATION AB Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims. Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods. Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP(+) instrument on the Atacama Pathfinder EXperiment ((CO)-C-12 and (CO)-C-13 6-5; E-up similar to 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope ((CO)-C-12 and (CO)-C-13 3-2; E-up similar to 30 K). The maps have high spatial resolution, particularly the CO 6 5 maps taken with a 9 '' beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from (CO)-C-13 6-5 observations. Results. All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, F-CO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner similar to 3000 AU and is therefore at least as important on small scales. C1 [Yildiz, U. A.; van Dishoeck, E. F.; Hogerheijde, M. R.; van Kempen, T. A.; van der Marel, N.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Yildiz, U. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kristensen, L. E.; van Weeren, R. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [van Dishoeck, E. F.; Karska, A.] Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. [Belloche, A.; Guesten, R.; Leurini, S.; Perez-Beaupuits, J. P.; Risacher, C.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Endo, A.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Frieswijk, W.; Risacher, C.] Univ Groningen, Kapteyn Inst, NL-9747 AD Groningen, Netherlands. [Frieswijk, W.] ASTRON, NL-7991 PD Dwingeloo, Netherlands. [Nagy, Z.] Univ Cologne, Phys Inst 1, D-50937 Cologne, Germany. RP Yildiz, UA (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM Umut.Yildiz@jpl.nasa.gov RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Karska, Agata/O-5311-2016 OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Karska, Agata/0000-0001-8913-925X FU Netherlands Research School for Astronomy (NOVA); Spinoza grant; Netherlands Organisation for Scientific Research (NWO) [614.001.008, 600.063.310.10]; European Community [238258] FX The authors would like to thank the anonymous referee for suggestions and comments, which improved this paper. We are grateful to the APEX and JCMT staff for support with these observations. Astrochemistry in Leiden is supported by the Netherlands Research School for Astronomy (NOVA), by a Spinoza grant and grant 614.001.008 from the Netherlands Organisation for Scientific Research (NWO), and by the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement 238258 (LASSIE). This work was carried out in part at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under contract with NASA. Construction of CHAMP+ is a collaboration between the Max-Planck-Institut fur Radioastronomie Bonn, Germany; SRON Netherlands Institute for Space Research, Groningen, the Netherlands; the Netherlands Research School for Astronomy (NOVA); and the Kavli Institute of Nanoscience at Delft University of Technology, The Netherlands; with support from The Netherlands Organization for Scientific Research (NWO) grant 600.063.310.10. The APEX data was obtained via Max Planck Institute observing time. NR 86 TC 12 Z9 12 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A109 DI 10.1051/0004-6361/201424538 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600044 ER PT J AU Camporeale, E Hogan, EA MacDonald, EA AF Camporeale, E. Hogan, E. A. MacDonald, E. A. TI Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article DE self-similar solutions; plasma contactor; spacecraft charging ID NEAR-FIELD PLUME; PARTICLE-IN-CELL; HALL THRUSTER; SIMULATION; VACUUM; SPACE AB We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics, Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf. (Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity. C1 [Camporeale, E.] Ctr Math & Comp Sci CWI, Amsterdam, Netherlands. [Hogan, E. A.] Univ Colorado, Boulder, CO 80309 USA. [MacDonald, E. A.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Camporeale, E (reprint author), Ctr Math & Comp Sci CWI, Amsterdam, Netherlands. EM e.camporeale@cwi.nl FU Laboratory Directed Research and Development program (LDRD), under the National Nuclear Security Administration of the US Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank G L Delzanno, J E Borovsky and M F Thomsen for useful discussions. This work was partially funded by the Laboratory Directed Research and Development program (LDRD), under the auspices of the National Nuclear Security Administration of the US Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under contract DE-AC52-06NA25396. NR 26 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD APR PY 2015 VL 24 IS 2 AR 025014 DI 10.1088/0963-0252/24/2/025014 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CL2ZB UT WOS:000356816200018 ER PT J AU Anderson, JD Schubert, G Trimble, V Feldman, MR AF Anderson, J. D. Schubert, G. Trimble, V. Feldman, M. R. TI Measurements of Newton's gravitational constant and the length of day SO EPL LA English DT Article ID SOLAR-ACTIVITY; ROTATION AB About a dozen measurements of Newton's gravitational constant, G, since 1962 have yielded values that differ by far more than their reported random plus systematic errors. We find that these values for G are oscillatory in nature, with a period of P = 5.899 +/- 0.062 yr, an amplitude of (1.619 +/- 0.103) x 10(-14) m(3) kg(-1) s(-2), and mean-value crossings in 1994 and 1997. However, we do not suggest that G is actually varying by this much, this quickly, but instead that something in the measurement process varies. Of other recently reported results, to the best of our knowledge, the only measurement with the same period and phase is the Length of Day (LOD-defined as a frequency measurement such that a positive increase in LOD values means slower Earth rotation rates and therefore longer days). The aforementioned period is also about half of a solar activity cycle, but the correlation is far less convincing. The 5.9 year periodic signal in LOD has previously been interpreted as due to fluid core motions and inner-core coupling. We report the G/LOD correlation, whose statistical significance is 0.99764 assuming no difference in phase, without claiming to have any satisfactory explanation for it. Least unlikely, perhaps, are currents in the Earth's fluid core that change both its moment of inertia (affecting LOD) and the circumstances in which the Earth-based experiments measure G. In this case, there might be correlations with terrestrial-magnetic-field measurements. Copyright (C) EPLA, 2015 C1 [Anderson, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schubert, G.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Trimble, V.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. OI Feldman, Michael/0000-0003-1567-9725 NR 18 TC 8 Z9 8 U1 0 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD APR PY 2015 VL 110 IS 1 AR 10002 DI 10.1209/0295-5075/110/10002 PG 5 WC Physics, Multidisciplinary SC Physics GA CJ6ET UT WOS:000355587200002 ER PT J AU Tourville, N Stephens, G DeMaria, M Vane, D AF Tourville, Natalie Stephens, Graeme DeMaria, Mark Vane, Deborah TI Remote Sensing of Tropical Cyclones: Observations from CloudSat and A-Train Profilers SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID VERTICAL WIND SHEAR; HURRICANE RAINBAND; INTENSITY CHANGE; MOTION; PREDICTION; EVOLUTION; MODEL AB CloudSat (CS) heralded a new era of profiling the planet's cloud systems and storms with its launch in 2006. This satellite flies the first 94-GHz spaceborne Cloud Profiling Radar, and the data collected have provided a unique perspective on Earth's cloudiness and processes that affect clouds. CS flies in formation with the afternoon satellite constellation, a collection of active and passive satellite sensors offering near-simultaneous observations of the same cloud phenomena. While passes of the nadir-pointing Cloud Profiling Radar (CPR) antenna occur infrequently over tropical cyclones, they happen enough to provide a detailed compilation of the inner structure of clouds and precipitation of these complex storm systems. Nearly 8,000 vertical profiles of TCs have been collected during the period June 2006-December 2013 and observations continue as CS flies in daylight-only mode. These observations have been assembled into a one-of-a-kind dataset of three-dimensional features revealing precipitation areas, moats, and multilayered clouds. Each unique overpass profiled by CS has been compiled with corresponding A-Train sensors, model data, and storm-specific best-track information. The multisensor components of the CS and A-Train TC dataset together with these other data are summarized and cataloged as a function of radial distance from storm center. Example imagery is provided along with stratified reflectivity profiles detailing changes in storm structures across varying environmental shear conditions. The data reported on in this paper offer an unprecedented view of these major storm types and their inner structure. C1 [Tourville, Natalie] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Stephens, Graeme; Vane, Deborah] CALTECH, Jet Prop Lab, Pasadena, CA USA. [DeMaria, Mark] Natl Hurricane Ctr, Technol & Sci Branch, Miami, FL USA. RP Tourville, N (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, 1375 Campus Delivery, Ft Collins, CO 80523 USA. EM natalie.tourville@colostate.edu FU NASA JPL [1439268] FX We would like to acknowledge the Satellite Meteorological Applications Section at the Naval Research Laboratory for its assistance in creating the TC composites and the CS DPC for supplying the data used throughout this study. Special thanks to Cristian Mistrescu, Kim Richardson, and Steve Miller for their assistance on this project. Special thanks to John Knaff and two anonymous reviewers for their thoughtful and helpful feedback. This project is funded under NASA JPL Contract 1439268. NR 41 TC 3 Z9 3 U1 2 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD APR PY 2015 VL 96 IS 4 BP 609 EP 622 DI 10.1175/BAMS-D-13-00282.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ3VS UT WOS:000355412900001 ER PT J AU Siu-Tapia, A Blanco-Cano, X Kajdic, P Aguilar-Rodriguez, E Russell, CT Jian, LK Luhmann, JG AF Siu-Tapia, A. Blanco-Cano, X. Kajdic, P. Aguilar-Rodriguez, E. Russell, C. T. Jian, L. K. Luhmann, J. G. TI Low-frequency waves within isolated magnetic clouds and complex structures: STEREO observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE MCs; kinetic instabilities; LFWs ID CORONAL MASS EJECTION; ION-CYCLOTRON WAVES; EARTHS BOW SHOCK; SOLAR-WIND; ANISOTROPY INSTABILITIES; MIRROR-MODE; 1 AU; VELOCITY DISTRIBUTIONS; INTERPLANETARY SPACE; HYDROMAGNETIC-WAVES AB Complex Structures (CSs) formed by the interaction of magnetic cloud (MC)-like structures with other transients (e.g., another MC, a stream interaction region, or a fast stream of solar wind) were frequently observed in the interplanetary space by STEREO spacecraft during the solar minimum 23 and the rising phase of the solar cycle 24. Here we report the presence of low-frequency waves (LFWs) inside some isolated MCs (IMCs) and inside the CSs observed by STEREO during such period (2007-2011). It is important to study in detail the properties of waves in space plasmas since particle distribution functions can be modified by wave-particle interactions. We compare wave characteristics within IMCs with those waves observed inside CSs. Both left-handed (LH) and right-handed (RH), near-circularly polarized, transverse and almost parallel-propagating LFWs (around the proton cyclotron frequency) were sporadically observed inside both IMCs and CSs. In contrast, compressive mirror-mode waves (MMs) were observed only within CSs. We studied local plasma conditions inside the IMCs and CSs to gain insight about wave origin: most of the MMs within CSs were observed in regions with enhanced plasma beta (>1); the majority of the LH waves were found in low beta plasmas (<1), and the RH waves were predominantly observed at moderate betas (0.4<2). These observations are in agreement with linear kinetic theory predictions for the growth of the mirror, the LH ion cyclotron, and the RH ion firehose instability, respectively. It is possible that the waves were generated locally inside the IMCs and CSs via temperature anisotropies. The plasma beta enhancements that were frequently observed inside the CSs may be the result of compressions and heating taking place inside the interacting structures. C1 [Siu-Tapia, A.; Blanco-Cano, X.; Kajdic, P.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Siu-Tapia, A.] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. [Aguilar-Rodriguez, E.] Univ Nacl Autonoma Mexico, Inst Geofis, Unidad Michoacan, Morelia, Michoacan, Mexico. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Jian, L. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jian, L. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Siu-Tapia, A (reprint author), Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. EM siu@mps.mpg.de RI Jian, Lan/B-4053-2010; OI Jian, Lan/0000-0002-6849-5527; Russell, Christopher/0000-0003-1639-8298 FU CONACYT BECAS NACIONALES [280413-345389]; DGAPA-PAPIIT project [IN105014, IN109112, IN103615]; ESTEC/ESA; NASA [NNX13AI65G]; STEREO mission; NSF [AGS-1259549] FX A.S.T. thanks CONACYT BECAS NACIONALES 2011-2012 grant 280413-345389. X.B.C. is supported by DGAPA-PAPIIT project (grant IN105014). P.K. acknowledges the research fellowship at ESTEC/ESA. E.A.R. thanks DGAPA-PAPIIT project (grants IN109112 and IN103615). L.K.J. is supported by NASA grant NNX13AI65G and STEREO mission and by NSF grant AGS-1259549. We are grateful to the IMPACT team for the magnetic field data and to the PLASTIC team for the solar wind data. NR 69 TC 0 Z9 0 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2363 EP 2381 DI 10.1002/2014JA020568 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800001 ER PT J AU Navarro, RE Munoz, V Araneda, J F-Vinas, A Moya, PS Valdivia, JA AF Navarro, Roberto E. Munoz, Victor Araneda, Jaime F-Vinas, Adolfo Moya, Pablo S. Valdivia, Juan A. TI Magnetic Alfven-cyclotron fluctuations of anisotropic nonthermal plasmas SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE kappa distributions; spontaneous fluctuations; solar wind; instability thresholds; fluctuation-dissipation theorem; magnetic fluctuations ID PROTON TEMPERATURE ANISOTROPY; ION VELOCITY DISTRIBUTIONS; SOLAR-WIND; DISPERSION FUNCTION; INVERSE CORRELATION; COULOMB COLLISIONS; SPACE PLASMAS; THERMAL NOISE; 1 AU; INSTABILITY AB Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently present deviations from thermal equilibrium. Ion anisotropies seem to be constrained by instability thresholds which are in agreement with linear kinetic theory. For plasma states below these instability thresholds, the quasi-stable solar wind plasma sustains a small but detectable level of magnetic fluctuation power. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness and thermal motion of charged particles. Here we study magnetic Alfven-cyclotron fluctuations propagating along a background magnetic field in a plasma composed of thermal and suprathermal protons and electrons via the fluctuation-dissipation theorem. The total fluctuating magnetic power is estimated in a proton temperature anisotropy-beta diagram for three different families of proton distribution functions, which can be compared to a number of recent measurements in the solar wind. C1 [Navarro, Roberto E.; Munoz, Victor; Moya, Pablo S.; Valdivia, Juan A.] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. [Navarro, Roberto E.; Araneda, Jaime] Univ Concepcion, Dept Fis, Concepcion, Chile. [F-Vinas, Adolfo; Moya, Pablo S.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Moya, Pablo S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Navarro, RE (reprint author), Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. EM roberto.navarro@ug.uchile.cl RI Moya, Pablo/C-3163-2011; Valdivia, Juan/A-3631-2008; Navarro, Roberto/F-7045-2014; Araneda, Jaime/J-9245-2015; Munoz, Victor/A-2255-2008 OI Moya, Pablo/0000-0002-9161-0888; Valdivia, Juan/0000-0003-3381-9904; Navarro, Roberto/0000-0003-0782-1904; FU FONDECyT [1110135, 1110729, 1130273, 1121144, 1110880, 3150262]; CONICYT-Becas Chile; CONICyT [21100691]; CEDENNA; NASA's Wind/SWE program FX This project has been financially supported by FONDECyT under contracts 1110135 (J.A.V.), 1110729 (J.A.V.), 1130273 (J.A.V.), 1121144 (V.M.), 1110880 (J.A), and 3150262 (R.E.N.). P.S.M. thanks a postdoctoral Fellowship from CONICYT-Becas Chile. R.N. thanks a doctoral fellowship from CONICyT 21100691. J.A.V. also thanks CEDENNA, and A.F.V. thanks NASA's Wind/SWE program for their support. Our results do not require any spacecraft data analysis. However, numerical data to reproduce all the figures will be made available on request. NR 72 TC 11 Z9 11 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2382 EP 2396 DI 10.1002/2014JA020550 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800002 ER PT J AU Halford, AJ McGregor, SL Murphy, KR Millan, RM Hudson, MK Woodger, LA Cattel, CA Breneman, AW Mann, IR Kurth, WS Hospodarsky, GB Gkioulidou, M Fennell, JF AF Halford, A. J. McGregor, S. L. Murphy, K. R. Millan, R. M. Hudson, M. K. Woodger, L. A. Cattel, C. A. Breneman, A. W. Mann, I. R. Kurth, W. S. Hospodarsky, G. B. Gkioulidou, M. Fennell, J. F. TI BARREL observations of an ICME-shock impact with the magnetosphere and the resultant radiation belt electron loss SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ICME-shock; chorus waves; electric field impulse; radiation belts; electron precipitation; multipoint observations ID DIFFUSION-COEFFICIENTS; INNER MAGNETOSPHERE; EMIC WAVES; PLASMA; FIELD; PRECIPITATION; ACCELERATION; SIMULATION; STORMS AB The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign, the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014, the shock generated by the coronal mass ejection (CME) originating from the active region hits the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) satellite observed the impact of the interplanetary CME (ICME) shock near the magnetopause, and the Geostationary Operational Environmental Satellites (GOES) were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explain the absence of loss at this location. ULF waves were found to be correlated with the structure of the precipitation. We demonstrate how BARREL can monitor precipitation following an ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation. C1 [Halford, A. J.; McGregor, S. L.; Millan, R. M.; Hudson, M. K.; Woodger, L. A.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Murphy, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cattel, C. A.; Breneman, A. W.] Univ Minnesota, Minneapolis, MN USA. [Mann, I. R.] Univ Alberta, Edmonton, AB, Canada. [Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Iowa City, IA USA. [Gkioulidou, M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Fennell, J. F.] Aerosp Corp, Los Angeles, CA 90009 USA. RP Halford, AJ (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM Alexa.J.Halford@Dartmouth.edu RI Gkioulidou, Matina/G-9009-2015; OI Gkioulidou, Matina/0000-0001-9979-2164; Hospodarsky, George/0000-0001-9200-9878; Kurth, William/0000-0002-5471-6202; Halford, Alexa/0000-0002-5383-4602 FU NASA [NNX08AM58G, NAS5-01072, NAS5-02099]; BARREL team for use of BARREL data; National Environmental Research Council (NERC)/British Antarctic Survey; South African National Antarctic Program (SANAP) of the BARREL campaign; NASAs [NAS5-01072]; ECT [967399]; UNH; EFW [922613]; UMN; JHU/APL [967399, 921647, 937836]; Van Allen Probe-ECT; NASA Prime [NAS5-01072]; BARREL team FX The authors acknowledge NASA grant NNX08AM58G and the BARREL team for use of BARREL data. The BARREL team would also like to acknowledge the National Environmental Research Council (NERC)/British Antarctic Survey and the South African National Antarctic Program (SANAP) for their support of the BARREL campaign. We acknowledge the NASA Van Allen Probes, Harlan E. Spence, and John Wygant for use of data ECT and EFW data and support for M. Hudson through JHU/APL under NASAs prime contract NAS5-01072, with work at Dartmouth supported under ECT (967399) subcontract from UNH and EFW (922613) subcontract from UMN. The research at the University of Iowa was supported by JHU/APL contract 921647 under NASA Prime contract NAS5-01072. The authors would like to thank Jeremy Faden and all of the developers of Autoplot. MagEIS efforts were supported by Van Allen Probe-ECT funding provided by JHU/APL contract 967399. The RBSPICE instrument was supported by JHU/APL subcontract 937836 to the New Jersey Institute of Technology under NASA Prime contract NAS5-01072. The authors would like to thank NOAA for the use of GOES data http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html. We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission. Specifically, we thank D. Larson and R. P. Lin for use of SST data, J. W. Bonnell and F. S. Mozer for use of EFI data, and C. W. Carlson and J. P. McFadden for use of ESA data. We acknowledge the WIND Mission for the use of their data, specifically the SWE and MFI instrument teams. A. Halford would like to thank the Van Allen Probe teams for their continued support and collaborations with the BARREL team. S. McGregor and A. Halford would like to make a special thanks to CISM for encouraging us to look at the larger "Sun to Mud" view and enabling us to form collaborations which led to this paper. All data used in this paper can be found on CDAweb. NR 31 TC 7 Z9 7 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2557 EP 2570 DI 10.1002/2014JA020873 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800015 ER PT J AU Liu, GP England, SL Immel, TJ Frey, HU Mannucci, AJ Mitchell, NJ AF Liu, Guiping England, Scott L. Immel, Thomas J. Frey, Harald U. Mannucci, Anthony J. Mitchell, Nicholas J. TI A comprehensive survey of atmospheric quasi 3day planetary-scale waves and their impacts on the day-to-day variations of the equatorial ionosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ultra fast Kelvin wave; planetary wave; equatorial ionosphere; TEC perturbation; atmosphere-ionosphere coupling; day to day variation ID FAST KELVIN WAVE; LOWER THERMOSPHERE; MESOSPHERE; STRATOSPHERE; EXCITATION; RADAR AB This study reports a comprehensive survey of quasi 3day (2.5-4.5day period) planetary-scale waves in the low-latitude mesosphere and lower thermosphere using the temperature observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry throughout 2002-2012. Occurrences and properties of the waves, including the eastward propagating zonal wave numbers of 1-3 (E1-E3) and vertical wavelengths, are determined for each case. The impacts of these waves on the equatorial ionosphere are investigated by searching for the corresponding variations with the same periods and wave numbers in total electron content (TEC) from the concurrent observations of the ground-based GPS network. For a threshold amplitude of 4K in temperature, a total of 300 waves are identified, of which there are 186 E1, 63 E2, and 51 E3 events. The mean amplitudes and vertical wavelengths of these waves are calculated to be about 7.9K and 34km for the E1, 5.7K and 29km for the E2, and 5.1K and 27km for the E3, having the standard deviations of 1.5K and 6.5km, 0.6K and 5.6km, and 0.5K and 6.7km. Occurrences of the E1 cases are not observed to depend on season, but the large-amplitude (>8K) cases occur more often during solstices than at equinoxes. Similarly, the E2 and E3 cases are observed to occur most often in January-February and May-August. Among these waves, 199 cases (66%) are found to have the corresponding variations in the equatorial ionosphere with amplitudes 4.2% relative to the mean TEC values (corresponding to 90th percentile). Most of these waves have long vertical wavelengths and large amplitudes (approximate to 3 times more than short vertical wavelength and small-amplitude waves). Because no seasonal or solar cycle dependence on the frequency at which these waves have corresponding variations in the ionosphere at this TEC perturbation threshold is observed, we conclude that there is no seasonal and solar cycle dependence on the propagation of such waves from the mesopause region to higher altitudes. We also identify that only 28 cases (19%) of the E1 TEC variations do not correspond to any E1 waves, which is consistent with the hypothesis that E1 waves are the primary cause of E1 TEC variations. Conditions that are favorable for 3day waves to create ionospheric variations are present approximately two thirds of the time. This study quantifies the importance and frequency of atmospheric quasi 3day planetary-scale waves on the day-to-day variations of the equatorial ionosphere using a statistical rather than case study approach. C1 [Liu, Guiping; England, Scott L.; Immel, Thomas J.; Frey, Harald U.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mannucci, Anthony J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mitchell, Nicholas J.] Univ Bath, Dept Elect & Elect Engn, Ctr Space Atmospher & Ocean Sci, Bath BA2 7AY, Avon, England. RP Liu, GP (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM guiping@ssl.berkeley.edu OI Frey, Harald/0000-0001-8955-3282 FU National Aeronautics and Space Administration (NASA) Heliophysics Research program [NNX12AD48G]; NASA FX This research work was supported by the National Aeronautics and Space Administration (NASA) Heliophysics Research program through Award NNX12AD48G. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The SABER data were obtained from GATS Incorporated at http://saber.gats-inc.com, and the TEC maps were obtained from NASA's Space Physics Data Facility at http://cdaweb.gsfc.nasa.gov. The TIDI data were obtained from http://tidi.engin.umich.edu. NR 29 TC 2 Z9 2 U1 11 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2979 EP 2992 DI 10.1002/2014JA020805 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800044 ER PT J AU Kitching, TD Rhodes, J Heymans, C Massey, R Liu, Q Cobzarenco, M Cragin, BL Hassaine, A Kirkby, D Lok, EJ Margala, D Moser, J O'Leary, M Pires, AM Yurgenson, S AF Kitching, T. D. Rhodes, J. Heymans, C. Massey, R. Liu, Q. Cobzarenco, M. Cragin, B. L. Hassaine, A. Kirkby, D. Lok, E. Jin Margala, D. Moser, J. O'Leary, M. Pires, A. M. Yurgenson, S. TI Image analysis for cosmology: Shape measurement challenge review & results from the Mapping Dark Matter challenge SO ASTRONOMY AND COMPUTING LA English DT Article DE Cosmology; Image analysis; Gravitational lensing; Dark energy; Dark matter ID WEAK LENSING SURVEYS; ANALYSIS COMPETITION; GREAT08 CHALLENGE AB In this paper we present results from the Mapping Dark Matter competition that expressed the weak lensing shape measurement task in its simplest form and as a result attracted over 700 submissions in 2 months and a factor of 3 improvement in shape measurement accuracy on high signal to noise galaxies, over previously published results, and a factor 10 improvement over methods tested on constant shear blind simulations. We also review weak lensing shape measurement challenges, including the Shear TEsting Programmes (STEP1 and STEP2) and the GRavitational lEnsing Accuracy Testing competitions (GREAT08 and GREAT10). (C) 2014 Elsevier B.V. All rights reserved. C1 [Kitching, T. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Kitching, T. D.; Heymans, C.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 1RZ, Midlothian, Scotland. [Rhodes, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, J.] CALTECH, Pasadena, CA 91106 USA. [Massey, R.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Liu, Q.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Cobzarenco, M.] UCL, Dept Comp Sci, London WC1E 6BT, England. [Cragin, B. L.] Keene State Coll, Dept Phys, Keene, NH 03435 USA. [Hassaine, A.] Qatar Univ, Coll Engn, Dept Comp Sci & Engn, Doha, Qatar. [Kirkby, D.; Margala, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Lok, E. Jin] Deloitte Analyt, Melbourne, Vic 3000, Australia. [Moser, J.] Kaggle, San Francisco, CA 94107 USA. [O'Leary, M.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [O'Leary, M.] Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England. [Pires, A. M.] Univ Tecn Lisboa, IST, Dept Math, P-1049001 Lisbon, Portugal. [Pires, A. M.] Univ Tecn Lisboa, IST, CEMAT, P-1049001 Lisbon, Portugal. [Yurgenson, S.] Harvard Univ, Sch Med, Boston, MA 02115 USA. RP Kitching, TD (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM t.kitching@ucl.ac.uk OI Pires, Ana Maria/0000-0002-2833-6759 NR 34 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2015 VL 10 BP 9 EP 21 DI 10.1016/j.ascom.2014.12.004 PG 13 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VU UT WOS:000354902700002 ER PT J AU Elliott, J de Souza, RS Krone-Martins, A Cameron, E Ishida, EEO Hilbe, J AF Elliott, J. de Souza, R. S. Krone-Martins, A. Cameron, E. Ishida, E. E. O. Hilbe, J. CA COIN Collaboration TI The overlooked potential of Generalized Linear Models in astronomy-II: Gamma regression and photometric redshifts SO ASTRONOMY AND COMPUTING LA English DT Article DE Techniques: photometric; Methods: statistical; Methods: analytical; Galaxies: distances and redshifts ID DIGITAL SKY SURVEY; ARTIFICIAL NEURAL-NETWORKS; MACHINE; CLASSIFICATION; GALAXIES; PCA AB Machine learning techniques offer a precious tool box for use within astronomy to solve problems involving so-called big data. They provide a means to make accurate predictions about a particular system without prior knowledge of the underlying physical processes of the data. In this article, and the companion papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method for tackling general astronomical problems, including the ones related to the machine learning paradigm. To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength photometry. Using the gamma family with a log link function we predict redshifts from the PHoto-z Accuracy Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain fits that result in catastrophic outlier rates as low as similar to 1% for simulated and similar to 2% for real data. Moreover, we can easily obtain such levels of precision within a matter of seconds on a normal desktop computer and with training sets that contain merely thousands of galaxies. Our software is made publicly available as a user-friendly package developed in Python, R and via an interactive web application. This software allows users to apply a set of GLMs to their own photometric catalogues and generates publication quality plots with minimum effort. By facilitating their ease of use to the astronomical community, this paper series aims to make GLMs widely known and to encourage their implementation in future large-scale projects, such as the Large Synoptic Survey Telescope. (C) 2015 Elsevier B.V. All rights reserved. C1 [Elliott, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [de Souza, R. S.] MTA Eotvos Univ, EIRSA Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Krone-Martins, A.] Univ Lisbon, Fac Ciencias, SIM, P-1749016 Lisbon, Portugal. [Cameron, E.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England. [Ishida, E. E. O.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Hilbe, J.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Elliott, J (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM jonnyelliott@mpe.mpg.de; rafael.2706@gmail.com; algol@sim.ul.pt; dr.ewan.cameron@gmail.com; emille@mpa-garching.mpg.de; j.m.hilbe@gmail.com RI de Souza, Rafael/C-8615-2013; OI Ishida, Emille/0000-0002-0406-076X; de Souza, Rafael/0000-0001-7207-4584; Krone-Martins, Alberto/0000-0002-2308-6623 FU ESA VA4D project [AO 1-6740/11/F/MOS]; Portuguese agency Fundacao pare Ciencia e Tecnologia-FCT [SFRH/BPD/74697/2010]; Brazilian agency CAPES [9229-13-2] FX We thank V. Busti, E.D. Feigelson, M. Killedar, J. Buchner, and A. Trindade for interesting suggestions and comments. JE, RSS and EEOI thank the SIM Laboratory of the Universidade de Lisboa for hospitality during the development of this work. Cosmostatistics Initiative (COIN)11 is a non-profit organisation whose aim is to nourish the synergy between astrophysics, cosmology, statistics and machine learning communities. This work was partially supported by the ESA VA4D project (AO 1-6740/11/F/MOS). AKM thanks the Portuguese agency Fundacao pare Ciencia e Tecnologia-FCT, for financial support (SFRH/BPD/74697/2010). EEOI is partially supported by the Brazilian agency CAPES (grant number 9229-13-2). Work on this paper has substantially benefited from using the collaborative website AWOB12 developed and maintained by the Max-Planck Institute for Astrophysics and the Max-Planck Digital Library. This work was written on the collaborative WriteLatex platform,13 and made use of the GitHub14 a web-based hosting service and git version control software. This work made use of the cloud based hosting platform ShinyApps.io.15 This work used the following public scientific Python packages scikit-learn v0. 1516 (Pedregosa et al., 2011), seaborn v0 . 3 . 1,17 and st at smodels v0 . 6 . 0.18 Funding for SDSS-III19 has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. NR 51 TC 6 Z9 6 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2015 VL 10 BP 61 EP 72 DI 10.1016/j.ascom.2015.01.002 PG 12 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VU UT WOS:000354902700007 ER PT J AU Rowe, BTP Jarvis, M Mandelbaum, R Bernstein, GM Bosch, J Simet, M Meyers, JE Kacprzak, T Nakajima, R Zuntz, J Miyatake, H Dietrich, JP Armstrong, R Melchior, P Gill, MSS AF Rowe, B. T. P. Jarvis, M. Mandelbaum, R. Bernstein, G. M. Bosch, J. Simet, M. Meyers, J. E. Kacprzak, T. Nakajima, R. Zuntz, J. Miyatake, H. Dietrich, J. P. Armstrong, R. Melchior, P. Gill, M. S. S. TI GALSIM: The modular galaxy image simulation toolkit SO ASTRONOMY AND COMPUTING LA English DT Article DE Methods: data analysis; Techniques: image processing; Gravitational lensing; Cosmology: observations ID DIGITAL SKY SURVEY; CHARGE-TRANSFER INEFFICIENCY; LENSING SHEAR MEASUREMENT; TELESCOPE ADVANCED CAMERA; COSMIC SHEAR; DARK-MATTER; SHAPE MEASUREMENTS; NOISE BIAS; ANALYSIS COMPETITION; GREAT08 CHALLENGE AB GALSIM is a collaborative, open-source project aimed at providing an image simulation tool of enduring benefit to the astronomical community. It provides a software library for generating images of astronomical objects such as stars and galaxies in a variety of ways, efficiently handling image transformations and operations such as convolution and rendering at high precision. We describe the GALSIM software and its capabilities, including necessary theoretical background. We demonstrate that the performance of GALSIM meets the stringent requirements of high precision image analysis applications such as weak gravitational lensing, for current datasets and for the Stage IV dark energy surveys of the Large Synoptic Survey Telescope, ESA's Euclid mission, and NASA's WFIRST-AFTA mission. The GALSIM project repository is public and includes the full code history, all open and closed issues, installation instructions, documentation, and wiki pages (including a Frequently Asked Questions section). The GALSIM repository can be found at https://github.com/GalSim-developers/GalSim. (C) 2015 Elsevier B.V. All rights reserved. C1 [Rowe, B. T. P.; Kacprzak, T.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Rowe, B. T. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rowe, B. T. P.] CALTECH, Pasadena, CA 91106 USA. [Jarvis, M.; Bernstein, G. M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Mandelbaum, R.; Simet, M.] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Bosch, J.; Miyatake, H.; Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Meyers, J. E.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Kacprzak, T.; Zuntz, J.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Nakajima, R.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Miyatake, H.] Univ Tokyo, Kavli IPMU, WPI, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778582, Japan. [Dietrich, J. P.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [Dietrich, J. P.] Excellence Cluster Universe, D-85748 Garching, Germany. [Melchior, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Melchior, P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Gill, M. S. S.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Rowe, BTP (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM browe@star.ucl.ac.uk; michael@jarvis.net; rmandelb@andrew.cmu.edu RI Mandelbaum, Rachel/N-8955-2014; Simet, Melanie/A-3415-2016; OI Mandelbaum, Rachel/0000-0003-2271-1527; Simet, Melanie/0000-0001-8823-8926; Rowe, Barnaby/0000-0002-7042-9174; Dietrich, Jorg/0000-0002-8134-9591 FU NASA via the Strategic University Research Partnership (SURP) Program of the Jet Propulsion Laboratory, California Institute of Technology; European Research Council Starting Grant [240672]; NSF [AST-1138729]; NASA through Space Telescope Science Institute [HST-AR-12857.01-A]; NASA [NAS5-26555]; Sloan Fellowship; Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad; JSPS Research Fellowships for Young Scientists; U.S. Department of Energy [DE- FG02-91ER40690]; National Science Foundation [PHYS-1066293] FX We wish to thank the two anonymous referees whose insightful comments significantly improved the paper. This project was supported in part by NASA via the Strategic University Research Partnership (SURP) Program of the Jet Propulsion Laboratory, California Institute of Technology. Part of BR's work was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. BR, JZ and TK acknowledge support from a European Research Council Starting Grant with number 240672. MJ acknowledges support from NSF award AST-1138729. RM was supported in part by program HST-AR-12857.01-A, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555; and in part by a Sloan Fellowship. HM acknowledges support from Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad and JSPS Research Fellowships for Young Scientists. PM is supported by the U.S. Department of Energy under Contract No. DE- FG02-91ER40690. The authors acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL), and associated support services, in the completion of this work This work was supported in part by the National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. NR 106 TC 25 Z9 25 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2015 VL 10 BP 121 EP 150 DI 10.1016/j.ascom.2015.02.002 PG 30 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VU UT WOS:000354902700013 ER PT J AU Fairen, AG Losa-Adams, E Gil-Lozano, C Gago-Duport, L Uceda, ER Squyres, SW Rodriguez, JAP Davila, AF McKay, CP AF Fairen, Alberto G. Losa-Adams, Elisabeth Gil-Lozano, Carolina Gago-Duport, Luis Uceda, Esther R. Squyres, Steven W. Rodriguez, J. Alexis P. Davila, Alfonso F. McKay, Christopher P. TI Tracking the weathering of basalts on Mars using lithium isotope fractionation models SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Mars; lithium; isotopic fractionation; basalt weathering ID LIGHT LITHOPHILE ELEMENTS; UPPER OCEANIC-CRUST; MINERAL FORMATION; CATION MIGRATION; MARTIAN SURFACE; MAGMATIC WATER; GALE CRATER; LI; GEOCHEMISTRY; DIFFUSION AB Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium(7)Li and (6)Lihave a large relative mass difference (approximate to 15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary mineralsthe source of Liand on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. C1 [Fairen, Alberto G.] Ctr Astrobiol, Madrid, Spain. [Fairen, Alberto G.; Squyres, Steven W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Losa-Adams, Elisabeth; Gil-Lozano, Carolina; Gago-Duport, Luis] Univ Vigo, Dept Geociencias Marinas, Vigo 36310, Spain. [Uceda, Esther R.] Univ Autonoma Madrid, Dept Biol Mol, Madrid, Spain. [Rodriguez, J. Alexis P.; McKay, Christopher P.] NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA USA. [Davila, Alfonso F.] SETI Inst, Mountain View, CA USA. RP Fairen, AG (reprint author), Ctr Astrobiol, Madrid, Spain. EM agfairen@cab.inta-csic.es RI Gil Lozano, Carolina/L-5687-2015 OI Gil Lozano, Carolina/0000-0003-3500-2850 FU European Research Council [307496]; European FEDER program; Spanish Ministry of Science (MICINN) [CGL2011-30079] FX Data supporting our models and calculations are available as supporting information. The research leading to these results is a contribution from the Project "icyMARS", funded by the European Research Council, Starting Grant no 307496. This work was also partially supported by the European FEDER program and the Spanish Ministry of Science (MICINN) through the project CGL2011-30079. Comments by R. James and four anonymous reviewers helped us to clarify and strengthen our work. NR 99 TC 3 Z9 3 U1 2 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD APR PY 2015 VL 16 IS 4 BP 1172 EP 1197 DI 10.1002/2015GC005748 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI4TO UT WOS:000354746900012 ER PT J AU Peslier, AH Bizimis, M AF Peslier, Anne H. Bizimis, Michael TI Water in Hawaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE oceanic mantle; water; peridotite; Hawaii; lithosphere; plume; pyroxene ID MID-ATLANTIC RIDGE; EARTHS UPPER-MANTLE; HONOLULU VOLCANIC SERIES; MAGMA ASCENT RATES; SALT-LAKE CRATER; ABYSSAL PERIDOTITES; BASALTIC GLASSES; MIDOCEAN RIDGE; HOT-SPOT; ELECTRICAL-CONDUCTIVITY AB The distribution of water concentrations in the oceanic upper mantle has drastic influence on its melting, rheology, and electrical and thermal conductivities and yet is primarily known indirectly from analyses of OIB and MORB. Here, actual mantle samples, eight peridotite xenoliths from Salt Lake Crater (SLC) and one from Pali in Oahu in Hawaii were analyzed by FTIR. Water contents of orthopyroxene, clinopyroxene, and the highest measured in olivine are 116-222, 246-442, and 10-26 ppm weight H2O, respectively. Although pyroxene water contents correlate with indices of partial melting, they are too high to be explained by simple melting modeling. Mantle-melt interaction modeling reproduces best the SLC data. These peridotites represent depleted oceanic mantle older than the Pacific lithosphere that has been refertilized by nephelinite melts containing <5 weight % H2O. Metasomatism in the Hawaiian peridotites resulted in an apparent decoupling of water and LREE that can be reconciled via assimilation and fractional crystallization. Calculated bulk-rock water contents for SLC (50-96 ppm H2O) are on the low side of that of the MORB source (50-200 ppm H2O). Preceding metasomatism, the SLC peridotites must have been even drier, with a water content similar to that of the Pali peridotite (45 ppm H2O), a relatively unmetasomatized fragment of the Pacific lithosphere. Moreover, our data show that the oceanic mantle lithosphere above plumes is not necessarily enriched in water. Calculated viscosities using olivine water contents allow to estimate the depth of the lithosphere-asthenosphere boundary beneath Hawaii at approximate to 90 km. C1 [Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bizimis, Michael] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. RP Peslier, AH (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov FU NSF [OCE-1129072, OCE-1129280, EAR-1347890] FX This work was supported by NSF grants OCE-1129072 to A.H.P. and OCE-1129280, EAR-1347890 to M.B. We are grateful for the comments by Henrik Skogby and an anonymous reviewer and editing by C.T. Lee. All data are available in Table 1 or in the supporting information files. FTIR spectra are available upon request from anne.h.peslier@nasa.gov and will ultimately be stored in the nominally anhydrous FTIR spectral database PULI: http://puli.mfgi.hu/. NR 183 TC 10 Z9 12 U1 3 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD APR PY 2015 VL 16 IS 4 BP 1211 EP 1232 DI 10.1002/2015GC005780 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI4TO UT WOS:000354746900014 ER PT J AU Joshi, NP Mitchard, ETA Schumacher, J Johannsen, VK Saatchi, S Fensholt, R AF Joshi, Neha P. Mitchard, Edward T. A. Schumacher, Johannes Johannsen, Vivian K. Saatchi, Sassan Fensholt, Rasmus TI L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark SO REMOTE SENSING LA English DT Article ID LASER SCANNER DATA; RADAR BACKSCATTER; BOREAL FOREST; ALOS PALSAR; BIOPHYSICAL PARAMETERS; CARBON-DENSITY; AIRBORNE LIDAR; BASIC DENSITY; INVENTORY; STAND AB Mapping forest aboveground biomass (AGB) using satellite data is an important task, particularly for reporting of carbon stocks and changes under climate change legislation. It is known that AGB can be mapped using synthetic aperture radar (SAR), but relationships between AGB and radar backscatter may be confounded by variations in biophysical forest structure (density, height or cover fraction) and differences in the resolution of satellite and ground data. Here, we attempt to quantify the effect of these factors by relating L-band ALOS PALSAR HV backscatter and unique country-wide LiDAR-derived maps of vegetation penetrability, height and AGB over Denmark at different spatial scales (50 m to 500 m). Trends in the relations indicate that, first, AGB retrieval accuracy from SAR improves most in mapping at 100-m scale instead of 50 m, and improvements are negligible beyond 250 m. Relative errors (bias and root mean squared error) decrease particularly for high AGB values (>110 Mg ha(-1)) at coarse scales, and hence, coarse-scale mapping (>= 150 m) may be most suited for areas with high AGB. Second, SAR backscatter and a LiDAR-derived measure of fractional forest cover were found to have a strong linear relation (R-2 = 0.79 at 250-m scale). In areas of high fractional forest cover, there is a slight decline in backscatter as AGB increases, indicating signal attenuation. The two results demonstrate that accounting for spatial scale and variations in forest structure, such as cover fraction, will greatly benefit establishing adequate plot-sizes for SAR calibration and the accuracy of derived AGB maps. C1 [Joshi, Neha P.; Schumacher, Johannes; Johannsen, Vivian K.; Fensholt, Rasmus] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1350 Copenhagen, Denmark. [Mitchard, Edward T. A.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Joshi, NP (reprint author), Univ Copenhagen, Dept Geosci & Nat Resource Management, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. EM npjo@ign.ku.dk; edward.mitchard@ed.ac.uk; sfw370@alumni.ku.dk; vkj@ign.ku.dk; sasan.s.saatchi@jpl.nasa.gov; rf@ign.ku.dk RI Joshi, Neha/B-6128-2015; OI Joshi, Neha/0000-0002-1178-6809; Mitchard, Edward/0000-0002-5690-4055; Johannsen, Vivian Kvist/0000-0002-1268-9787; Fensholt, Rasmus/0000-0003-3067-4527 FU Danish Nature Agency; University of Copenhagen; Natural Environment Research Council [NE/I021217/1] FX This study was funded by the Danish Nature Agency and University of Copenhagen. E.T.A Mitchard is funded by a Research Fellowship from the Natural Environment Research Council (Grant Ref NE/I021217/1). LiDAR data were provided by COWI to the University of Copenhagen, and ALOS PALSAR datasets were obtained through an ESA Category 1 Proposal from JAXA. Field data were collected as a part of the Danish National Forest Inventory. The high-resolution land use and digital terrain map were provided by the Danish Ministry of Environment (Geodatastyrelsen). The authors thank Thomas Nord-Larsen (University of Copenhagen) and Hector Nieto (University of Copenhagen) for their contributions to the study. NR 74 TC 5 Z9 5 U1 4 U2 15 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD APR PY 2015 VL 7 IS 4 BP 4442 EP 4472 DI 10.3390/rs70404442 PG 31 WC Remote Sensing SC Remote Sensing GA CI5IQ UT WOS:000354789300047 ER PT J AU Singh, RS Reager, JT Miller, NL Famiglietti, JS AF Singh, R. S. Reager, J. T. Miller, N. L. Famiglietti, J. S. TI Toward hyper-resolution land-surface modeling: The effects of fine-scale topography and soil texture on CLM4.0 simulations over the Southwestern US SO WATER RESOURCES RESEARCH LA English DT Article DE hyper-resolution modeling; CLM4; 0 ID DIGITAL ELEVATION MODEL; REGIONAL-CLIMATE MODEL; SPATIAL VARIABILITY; HYDROLOGIC-RESPONSE; RICHARDS EQUATION; DATA ASSIMILATION; WATER-TABLE; GRID SIZE; MOISTURE; SENSITIVITY AB Increasing computational efficiency and the need for improved accuracy are currently driving the development of hyper-resolution land-surface models that can be implemented at continental scales with resolutions of 1 km or finer. Here we report research incorporating fine-scale grid resolutions into the NCAR Community Land Model (CLM v4.0) for simulations at 1, 25, and 100 km resolution using 1 km soil and topographic information. Multiyear model runs were performed over the Southwestern U.S., including the entire state of California and the Colorado River basin. The results show changes in the total amount of CLM-modeled water storage, and changes in the spatial and temporal distributions of water in snow and soil reservoirs, as well as changes in surface fluxes and the energy balance. To inform future model progress and continued development needs and weaknesses, we compare simulation outputs to station and gridded observations of model fields. Although the higher grid-resolution model is not driven by high-resolution forcing, grid resolution changes alone yield significant improvement (reduction in error) between model outputs and observations, where the RMSE decreases by more than 35%, 36%, 34%, and 12% for soil moisture, terrestrial water storage anomaly, sensible heat, and snow water equivalent, respectively. As an additional exercise, we performed a 100 m resolution simulation over a spatial subdomain. Those results indicate that parameters such as drainage, runoff, and infiltration are significantly impacted when hillslope scales of approximate to 100 m or finer are considered, and we show the ways in which limitations of the current model physics, including no lateral flow between grid cells, may affect model simulation accuracy. C1 [Singh, R. S.; Miller, N. L.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Singh, R. S.; Reager, J. T.; Miller, N. L.; Famiglietti, J. S.] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA USA. [Reager, J. T.; Famiglietti, J. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Famiglietti, J. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. RP Singh, RS (reprint author), Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. EM rajshekharsingh@berkeley.edu FU NSF [DEB-1115069]; University of California Office of the President, Multi-Campus Research Programs and Initiatives UCCHM FX Partial support for this project was provided by NSF grant DEB-1115069 for R.S. and N.L.M. and the University of California Office of the President, Multi-Campus Research Programs and Initiatives UCCHM for R.S., N.L.M., J.T.R., and J.S.F. A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. GRACE data are available at grace. jpl.nasa.gov; FLUXNET data from fluxnet.ornl.gov; SNODAS data from nsidc.org; well observations from water.ca.gov. C.L.M. land surface data sets are available at www.cesm.ucar.edu. NR 66 TC 7 Z9 7 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR PY 2015 VL 51 IS 4 BP 2648 EP 2667 DI 10.1002/2014WR015686 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CI4PH UT WOS:000354733500043 ER PT J AU Narkawicz, A Munoz, C Dutle, A AF Narkawicz, Anthony Munoz, Cesar Dutle, Aaron TI Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm's and Tarski's Theorems SO JOURNAL OF AUTOMATED REASONING LA English DT Article DE Non-linear arithmetic; Decision procedure; Prototype Verification System (PVS); polynomial inequalities; Sturm's theorem; Tarski's theorem; Automated theorem proving; Interactive Theorem Proving ID REAL; PROOF AB Sturm's theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, not counting multiplicity. A generalization of Sturm's theorem is known as Tarski's theorem, which provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. The linear system that results from this relationship is in fact invertible and can be used to explicitly count the number of roots of a univariate polynomial on a set defined by a system of polynomial relations. This paper presents a formalization of these results in the PVS theorem prover, including formal proofs of Sturm's and Tarski's theorems. These theorems are at the basis of two decision procedures, which are implemented as computable functions in PVS. The first, based on Sturm's theorem, determines satisfiability of a single polynomial relation over an interval. The second, based on Tarski's theorem, determines the satisfiability of a system of polynomial relations over the real line. The soundness and completeness properties of these decision procedures are formally verified in PVS. The procedures and their correctness properties enable the implementation of PVS strategies for automatically proving existential and universal statements on polynomial systems. Since the decision procedures are formally verified in PVS, the soundness of the strategies depends solely on the internal logic of PVS rather than on an external oracle. C1 [Narkawicz, Anthony; Munoz, Cesar; Dutle, Aaron] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Munoz, C (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM Anthony.Narkawicz@nasa.gov; Cesar.A.Munoz@nasa.gov; Aaron.M.Dutle@nasa.gov NR 42 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-7433 EI 1573-0670 J9 J AUTOM REASONING JI J. Autom. Reasoning PD APR PY 2015 VL 54 IS 4 BP 285 EP 326 DI 10.1007/s10817-015-9320-x PG 42 WC Computer Science, Artificial Intelligence SC Computer Science GA CI1BC UT WOS:000354474100001 ER PT J AU Susanto, RD Song, YT AF Susanto, R. Dwi Song, Y. Tony TI Indonesian throughflow proxy from satellite altimeters and gravimeters SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE Indonesian throughflow; sea level; ocean bottom pressure; throughflow proxy; Makassar transport ID MAKASSAR STRAIT; INDIAN-OCEAN; KELVIN WAVE; SEA-LEVEL; VARIABILITY; PACIFIC; TRANSPORT; REGION AB The Indonesian throughflow (ITF) from the Pacific to the Indian Ocean plays an important role in global ocean circulation and climate. Yet, continuous ITF measurement is difficult and expensive. The longest time series of in situ measurements of the ITF to date were taken in the Makassar Strait, the main pathway of the ITF. Here we have demonstrated a plausible approach to derive the ITF transport proxy using satellite altimetry sea surface height (SSH), gravimetry ocean bottom pressure (OBP) data, in situ measurements from the Makassar Strait from 1996 to 1998 and 2004 to 2011, and a theoretical formulation. We first identified the optimal locations of the correlation between the observed ITF transport through the Makassar Strait and the pressure gradients, represented by the SSH and OBP differences between the Pacific and Indian Oceans at a 1 degrees x 1 degrees horizontal resolution. The optimal locations were found centered at 162 degrees E and 11 degrees N in the Pacific Ocean and 80 degrees E and 0 degrees in the Indian Ocean, then were used in the theoretical formulation to estimate the throughflow. The proxy time series follow the observation time series quite well, with the 1993-2011 mean proxy transport of 11.63.2 Sv southward, varying from 5.6 Sv during the strong 1997 El Nino to 16.9 Sv during the 2007 La Nina period, which are consistent with previous estimates. The observed Makassar mean transport is 13.03.8 Sv southward over 2004-2011, while the SSH proxy (for the same period) gives an ITF mean transport of 13.94.1 Sv and the SSH+OBP proxy (for 2004-2010) is 15.83.2 Sv. C1 [Susanto, R. Dwi] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Susanto, R. Dwi] Surya Univ, Ctr Oceanog & Marine Technol, Tangerang, Indonesia. [Song, Y. Tony] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Susanto, RD (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM dwi@atmos.umd.edu OI SUSANTO, Raden Dwi/0000-0003-1495-5951 FU National Aeronautics and Space Administration (NASA) [JPLCIT-1362354]; NASA FX The SSH and OBP data are freely available at NASA web-site (http://podaac.jpl.nasa.gov) and the altimeter products are distributed by Aviso (http://www.aviso.oceanobs.com/duacs/), while the observation data are available at Lamont Doherty Earth Observatory of Columbia University (http://www.ldeo.columbia.edu/res/div/ocp/projects). R.D. Susanto was sponsored by the National Aeronautics and Space Administration (NASA), under contract JPLCIT-1362354. Y. T. Song carried out research at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We are grateful to our colleagues I. Soesilo, S. Wirasantosa, B. Sulistyo, and R. Adi at the Research and Development Center for Marine and Fisheries (BalitbangKP), Indonesia for their support of the field measurement programs. We appreciate the valuable comments from three anonymous reviewers. NR 48 TC 5 Z9 6 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD APR PY 2015 VL 120 IS 4 BP 2844 EP 2855 DI 10.1002/2014JC010382 PG 12 WC Oceanography SC Oceanography GA CI0HH UT WOS:000354417200027 ER PT J AU Williams, JG Boggs, DH AF Williams, James G. Boggs, Dale. H. TI Tides on the Moon: Theory and determination of dissipation SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Moon; tides; tidal dissipation; absorption band model; lunar laser ranging (LLR) ID TIDAL DISSIPATION; LUNAR INTERIOR; VISCOELASTIC RELAXATION; MANTLE ANELASTICITY; SATELLITE TRACKING; FREE LIBRATIONS; MODEL; CONSTRAINTS; RHEOLOGY; EARTHS AB Solid body tides on the Moon vary by about 0.1m each month. In addition to changes in shape, the Moon's gravity field and orientation in space are affected by tides. The tidal expressions for an elastic sphere are compact, but dissipation introduces modifications that depend on the forcing period. Consequently, a Fourier representation of the tide-raising potential is needed. A mathematical model for the distortion-caused tidal potential may be used for the analysis of precise spacecraft tracking data. Since tides affect gravitational torques on the Moon from the Earth's attraction, the lunar orientation is also affected. Expressions for five periodic perturbations of orientation are presented. The rheological properties of lunar materials determine how the Moon responds to different tidal periods. New lunar laser ranging solutions for the tidal orientation terms are presented. The quality factor Q is 384 at 1month, 419 at 1year, 74 at 3years, and 58 at 6years. The ranging results can be matched with absorption band models that peak at similar to 120days and single relaxation time models that peak at similar to 100days. Combined models are possibilities. Dissipation can modify laser ranging solutions; previously reported core flattening is too uncertain to be useful. Strong lunar tidal dissipation, modeled to arise in the deep hot mantle, appears to be from a region with radius 535 km. Classical Maxwell-type dissipation is too weak to detect at 3 and 6year periods. C1 [Williams, James G.; Boggs, Dale. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Williams, JG (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM James.G.Williams@jpl.nasa.gov NR 100 TC 15 Z9 15 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR PY 2015 VL 120 IS 4 BP 689 EP 724 DI 10.1002/2014JE004755 PG 36 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI1WV UT WOS:000354536700004 ER PT J AU Watkins, MM Wiese, DN Yuan, DN Boening, C Landerer, FW AF Watkins, Michael M. Wiese, David N. Yuan, Dah-Ning Boening, Carmen Landerer, Felix W. TI Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE GRACE; time variable gravity; mascons; mass concentrations ID GLACIAL-ISOSTATIC-ADJUSTMENT; NEAREST CORRELATION MATRIX; SEA-LEVEL RISE; GRAVITY-FIELD; ICE-SHEET; GREENLAND; ANTARCTICA; BALANCE; SURFACE; DEPLETION AB We discuss several classes of improvements to gravity solutions from the Gravity Recovery and Climate Experiment (GRACE) mission. These include both improvements in background geophysical models and orbital parameterization leading to the unconstrained spherical harmonic solution JPL RL05, and an alternate JPL RL05M mass concentration (mascon) solution benefitting from those same improvements but derived in surface spherical cap mascons. The mascon basis functions allow for convenient application of a priori information derived from near-global geophysical models to prevent striping in the solutions. The resulting mass flux solutions are shown to suffer less from leakage errors than harmonic solutions, and do not necessitate empirical filters to remove north-south stripes, lowering the dependence on using scale factors (the global mean scale factor decreases by 0.17) to gain accurate mass estimates. Ocean bottom pressure (OBP) time series derived from the mascon solutions are shown to have greater correlation with in situ data than do spherical harmonic solutions (increase in correlation coefficient of 0.08 globally), particularly in low-latitude regions with small signal power (increase in correlation coefficient of 0.35 regionally), in addition to reducing the error RMS with respect to the in situ data (reduction of 0.37 cm globally, and as much as 1 cm regionally). Greenland and Antarctica mass balance estimates derived from the mascon solutions agree within formal uncertainties with previously published results. Computing basin averages for hydrology applications shows general agreement between harmonic and mascon solutions for large basins; however, mascon solutions typically have greater resolution for smaller spatial regions, in particular when studying secular signals. C1 [Watkins, Michael M.; Wiese, David N.; Yuan, Dah-Ning; Boening, Carmen; Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Wiese, DN (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM david.n.wiese@jpl.nasa.gov OI Landerer, Felix/0000-0003-2678-095X NR 75 TC 40 Z9 40 U1 6 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR PY 2015 VL 120 IS 4 BP 2648 EP 2671 DI 10.1002/2014JB011547 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI2GI UT WOS:000354563200033 ER PT J AU Agram, PS Simons, M AF Agram, P. S. Simons, M. TI A noise model for InSAR time series SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE InSAR; radar; inteferometry; noise budget; time series ID SYNTHETIC-APERTURE RADAR; SMALL BASE-LINE; SAR INTERFEROMETRY; DISPLACEMENT FIELD; LANDERS EARTHQUAKE; PHASE STATISTICS; DEFORMATION; INTERFEROGRAMS; ALGORITHMS; SELECTION AB Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly applicable to joint analysis of networks of interferograms have been limited in scope. In this work, we build on existing decorrelation and atmospheric phase screen models and develop a covariance model for interferometric phase noise over space and time. We present arguments to show that the exploitation of the full 3-D covariance structure within conventional time series inversion techniques is computationally challenging. However, the presented covariance model can aid in designing new inversion techniques that can at least mitigate the impact of spatial correlated nature of InSAR observations. C1 [Agram, P. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Agram, P. S.; Simons, M.] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. RP Agram, PS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM piyush@gps.caltech.edu OI Simons, Mark/0000-0003-1412-6395 FU Keck Institute of Space Studies Postdoctoral fellowship FX This work was supported by the Keck Institute of Space Studies Postdoctoral fellowship. We would also like to thank Scott Hensley from the Jet Propulsion Laboratory and Howard Zebker from Stanford University for helpful discussions. We thank ESA and WIn-SAR for providing the ERS-1 and ERS-2 SAR data. We also thank JAXA and ASF AADN archive for providing ALOS PALSAR data. NR 65 TC 7 Z9 7 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR PY 2015 VL 120 IS 4 BP 2752 EP 2771 DI 10.1002/2014JB011271 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI2GI UT WOS:000354563200038 ER PT J AU Tobiska, WK Atwell, W Beck, P Benton, E Copeland, K Dyer, C Gersey, B Getley, I Hands, A Holland, M Hong, S Hwang, J Jones, B Malone, K Meier, MM Mertens, C Phillips, T Ryden, K Schwadron, N Wender, SA Wilkins, R Xapsos, MA AF Tobiska, W. Kent Atwell, William Beck, Peter Benton, Eric Copeland, Kyle Dyer, Clive Gersey, Brad Getley, Ian Hands, Alex Holland, Michael Hong, Sunhak Hwang, Junga Jones, Bryn Malone, Kathleen Meier, Matthias M. Mertens, Chris Phillips, Tony Ryden, Keith Schwadron, Nathan Wender, Stephen A. Wilkins, Richard Xapsos, Michael A. TI Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SINGLE EVENT UPSET; AVIATION ALTITUDES; ENERGETIC PARTICLES; AIRCRAFT ALTITUDES; DOSE-EQUIVALENT; SOLAR STORM; COSMIC-RAYS; EXPOSURE; NEUTRONS; ENVIRONMENT AB Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public. C1 [Tobiska, W. Kent] Space Environm Technol, Pacific Palisades, CA 90272 USA. [Atwell, William] Space Environm Technol, Houston, TX USA. [Beck, Peter] Radiat Hardness Assurance & Space Weather Radiat, Seibersdorf, Austria. [Benton, Eric] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Copeland, Kyle] FAA, Civil Aerosp Med Inst, Oklahoma City, OK USA. [Dyer, Clive; Hands, Alex] Univ Surrey, Surrey Space Ctr, Guildford GU2 5XH, Surrey, England. [Gersey, Brad] Prairie View A&M Univ, Dept Elect & Comp Engn, Radiat Dosimetry, Prairie View, TX USA. [Getley, Ian] Univ New S Wales, Dept Aviat, Sydney, NSW, Australia. [Holland, Michael; Malone, Kathleen] Allied Pilots Assoc, Aeromed Comm, Washington, DC USA. [Hong, Sunhak] Natl Radio Res Agcy, Korean Space Weather Ctr, Jeju, South Korea. [Hwang, Junga] Korea Univ Sci & Technol, Korea Astron & Space Sci Inst, Taejon, South Korea. [Hwang, Junga] Korea Univ Sci & Technol, Dept Astron & Space Sci, Taejon, South Korea. [Jones, Bryn] SolarMetrics, Guildford, Surrey, England. [Meier, Matthias M.] Deutsch Zentrum Luft & Raumfahrt eV, DLR, Cologne, Germany. [Mertens, Chris] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Phillips, Tony] Spaceweather Com, Aspendell, CA USA. [Ryden, Keith] Univ Surrey, Surrey Space Ctr, Space Engn Space Environm & Effects, Guildford GU2 5XH, Surrey, England. [Schwadron, Nathan] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Wender, Stephen A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Wilkins, Richard] Prairie View A&M Univ, Dept Elect & Comp Engn, Prairie View, TX USA. [Xapsos, Michael A.] NASA, Goddard Space Flight Ctr, Radiat Effects & Anal Grp, Greenbelt, MD 20771 USA. RP Tobiska, WK (reprint author), Space Environm Technol, Pacific Palisades, CA 90272 USA. EM ktobis-ka@spacenvironment.net OI Meier, Matthias/0000-0003-0918-6473; Wender, Stephen/0000-0002-2446-5115 FU AGU FX Our authors and co-authors support the data access policy of the AGU and regularly provide data for furthering scientific research related to the aviation radiation environment. References cited herein may contain data links that are of interest to the reader. NR 63 TC 8 Z9 8 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD APR PY 2015 VL 13 IS 4 BP 202 EP 210 DI 10.1002/2015SW001169 PG 9 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CI0YD UT WOS:000354465000002 ER PT J AU Orr, JW Wildes, S Kai, Y Raring, N Nakabo, T Katugin, O Guyon, J AF Orr, James W. Wildes, Sharon Kai, Yoshiaki Raring, Nate Nakabo, T. Katugin, Oleg Guyon, Jeff TI Systematics of North Pacific sand lances of the genus Ammodytes based on molecular and morphological evidence, with the description of a new species from Japan SO FISHERY BULLETIN LA English DT Article ID PERCIFORMES AMMODYTIDAE; MITOCHONDRIAL-DNA; CONTROL REGION; MARINE FISHES; POPULATIONS; ATLANTIC; WESTERN; CANADA AB The systematic status of North Pacific sand lances (genus Ammodytes) was assessed from mitochondrial DNA (cytochrome oxidase c subunit 1) sequence data and morphological data to identify the number of species in the North Pacific Ocean and its fringing seas. Although only 2 species, Ammodytes hexapterus and A. personatus, have been considered valid in the region, haplotype networks and trees constructed with maximum parsimony and genetic distance (neighbor-joining) methods revealed 4 highly divergent monophyletic clades that clearly represent 4 species of Ammodytes in the North Pacific region. On the basis of our material and comparisons with sequence data reported in online databases, A. personatus is found throughout the eastern North Pacific Ocean, Gulf of Alaska, Aleutian Islands, and the eastern Bering Sea where it co-occurs with a northwestern Arctic species, A. hexapterus, that is found throughout the North American Arctic from Hudson Bay, Canada, in the east, through the Beaufort and Chukchi seas, into the northern and western Bering Sea, and to the southern Sea of Okhotsk in the Soya Strait off Hokkaido, Japan. Two other species reside in waters around Japan: A. japonicus throughout the Sea of Japan and the Seto Inland Sea and a new species in the Sea of Japan and the North Pacific Ocean off northern Honshu. We designate neotypes for A. hexapterus and A. personatus because of the absence of type material and the close similarity of these 2 species. Ammodytes ale utensis is a junior synonym of A. japonicus, and A. alascanus is a junior synonym of A. personatus. C1 [Orr, James W.; Raring, Nate] NOAA, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Wildes, Sharon; Guyon, Jeff] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Kai, Yoshiaki] Kyoto Univ, Maizuru Fisheries Res Stn, Field Sci Educ & Res Ctr, Maizuru, Kyoto 6250086, Japan. [Nakabo, T.] Kyoto Univ, Kyoto Univ Museum, Sakyo Ku, Kyoto 6068501, Japan. [Katugin, Oleg] TINRO Ctr, Pacific Res Inst Fisheries & Oceanog, Vladivostok 690950, Primorsky Kray, Russia. RP Orr, JW (reprint author), NOAA, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM james.orr@noaa.gov NR 72 TC 5 Z9 6 U1 0 U2 5 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2015 VL 113 IS 2 BP 129 EP 156 DI 10.7755/FB.113.2.3 PG 28 WC Fisheries SC Fisheries GA CH2HE UT WOS:000353845500003 ER PT J AU Weitkamp, LA Hinton, SA Bentley, PJ AF Weitkamp, Laurie A. Hinton, Susan A. Bentley, Paul J. TI Seasonal abundance, size, and host selection of western river (Lampetra ayresii) and Pacific (Entosphenus tridentatus) lampreys in the Columbia River estuary SO FISHERY BULLETIN LA English DT Article ID FRASER-RIVER; JUVENILE SALMONIDS; PARASITIC LAMPREYS; BRITISH-COLUMBIA; NORTH-AMERICA; CONSERVATION; MIGRATION; OREGON; PETROMYZONTIDAE; ENVIRONMENT AB Little is known about the basic biology and ecology of most native lampreys, including the use of estuaries by anadromous lampreys. To address this deficiency, we provide the first analysis of anadromous western river (Lampetra ayresii) and Pacific (Entosphenus tridentatus) lampreys in the Columbia River estuary, using data from 2 fish assemblage studies that span 3 decades (1980-1981 and 2001-2012). Pacific lamprey juveniles and adults in the estuary clearly were separated by size, whereas western river lamprey formed one continuous size distribution. Pacific lamprey juveniles and adults were present in the estuary in winter and spring, and western river lamprey were present from spring through early fall. Depth in the water column also differed by lamprey species and age class. During 2008-2012, we documented wounds from lampreys on 8 fish species caught in the estuary. The most frequently wounded fishes were non-native American shad (Alosa sapidissima), subyearling Chinook salmon (Oncorhynchus tshawytscha), shiner perch (Cymatogaster aggregata), and Pacific herring (Clupea pallasii). This basic information on western river and Pacific lampreys in the Columbia River estuary adds to the growing body of regional research that should aid conservation efforts for these ancient species. C1 [Weitkamp, Laurie A.] NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. [Hinton, Susan A.; Bentley, Paul J.] NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Hammond, OR 97121 USA. RP Weitkamp, LA (reprint author), NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2032 Marine Sci Dr, Newport, OR 97365 USA. EM laurie.weitkamp@noaa.gov FU Northwest Fisheries Science Center; Bonneville Power Administration FX This study benefited from an exceptional field crew, which included M. Litz, A. Claiborne, S. Sebring, and A. Claxton, and from boat operators B. Kelly and R. Nelson. M. Moser provided encouragement for the project and guidance on the identification of lamprey wounds. This study was funded by the Northwest Fisheries Science Center and Bonneville Power Administration. The manuscript was greatly improved by constructive comments provided by R. Emmett, M. Moser, and 3 anonymous reviewers. NR 42 TC 0 Z9 0 U1 5 U2 10 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2015 VL 113 IS 2 BP 213 EP 226 DI 10.7755/FB.113.2.9 PG 14 WC Fisheries SC Fisheries GA CH2HE UT WOS:000353845500009 ER PT J AU Higgins, N Hintermann, B Brown, ME AF Higgins, Nathaniel Hintermann, Beat Brown, Molly E. TI A model of West African millet prices in rural markets SO FOOD POLICY LA English DT Article DE Millet; Cereal; West Africa; Price forecasting; Remote sensing; NDVI; Regional panel data ID ESTIMATING CROP YIELDS; NDVI TIME-SERIES; UNIT-ROOT TESTS; PANEL-DATA; AVHRR; VEGETATION; INFORMATION; SAHEL AB In this article we specify a model of millet prices in the three West African countries of Burkina Faso, Mali, and Niger. Using data obtained from USAID's Famine Early Warning Systems Network (FEWS NET) we present a unique regional millet price forecasting model that takes advantage of the panel nature of our data and accounts for the distance of rural markets from capital cities. Another novel aspect of our analysis is our use of the Normalized Difference Vegetation Index (NDVI) to detect and control for variation in conditions for productivity. We find that including NDVI information significantly improves price forecasts. Published by Elsevier Ltd. C1 [Higgins, Nathaniel] ERS, USDA, Washington, DC 20024 USA. [Hintermann, Beat] Univ Basel, Fac Business & Econ, CH-4003 Basel, Switzerland. [Brown, Molly E.] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA. RP Higgins, N (reprint author), ERS, USDA, 355 E St SW, Washington, DC 20024 USA. EM nhiggins@ers.usda.gov; b.hintermann@unibas.ch; molly.brown@nasa.gov RI Brown, Molly/E-2724-2010 OI Brown, Molly/0000-0001-7384-3314 NR 56 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-9192 EI 1873-5657 J9 FOOD POLICY JI Food Policy PD APR PY 2015 VL 52 BP 33 EP 43 DI 10.1016/j.foodpol.2014.09.011 PG 11 WC Agricultural Economics & Policy; Economics; Food Science & Technology; Nutrition & Dietetics SC Agriculture; Business & Economics; Food Science & Technology; Nutrition & Dietetics GA CH0UG UT WOS:000353737300004 ER PT J AU Kim, JH Chan, WN Sridhar, B Sharman, RD AF Kim, Jung-Hoon Chan, William N. Sridhar, Banavar Sharman, Robert D. TI Combined Winds and Turbulence Prediction System for Automated Air-Traffic Management Applications SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID MESOSCALE CONVECTIVE SYSTEM; UPPER-LEVEL OUTFLOW; AVIATION TURBULENCE; DEEP CONVECTION; MODEL; SIMULATIONS; ENCOUNTERS; GENERATION; FORECASTS; GUIDANCE AB A time-lagged ensemble of energy dissipation rate (EDR)-scale turbulence metrics is evaluated against in situ EDR observations from commercial aircraft over the contiguous United States and applied to air-traffic management (ATM) route planning. This method uses the Graphic Turbulence Guidance forecast methodology with three modifications. First, it uses the convection-permitting-scale (Delta x = 3 km) Advanced Research version of the Weather Research and Forecasting Model (ARW) to capture cloud-resolving-scale weather phenomena. Second, turbulence metrics are computed for multiple ARW forecasts that are combined at the same forecast valid time, resulting in a time-lagged ensemble of multiple turbulence metrics. Third, probabilistic turbulence forecasts are provided on the basis of the ensemble results, which are applied to the ATM route planning. Results show that the ARW forecasts match well with observed weather patterns and the overall performance skill of the ensemble turbulence forecast when compared with the observed data is superior to any single turbulence metric. An example wind-optimal route (WOR) is computed using areas experiencing >= 10% probability of encountering severe-or-greater turbulence. Using these turbulence data, lateral turbulence avoidance routes starting from three different waypoints along the WOR from Los Angeles International Airport to John F. Kennedy International Airport are calculated. The examples illustrate the trade-off between flight time/fuel used and turbulence avoidance maneuvers. C1 [Kim, Jung-Hoon; Chan, William N.; Sridhar, Banavar] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kim, Jung-Hoon] Oak Ridge Associated Univ, Moffett Field, CA USA. [Sharman, Robert D.] Natl Ctr Atmosphere Res, Boulder, CO USA. RP Kim, JH (reprint author), NASA, Ames Res Ctr, Aviat Syst Div, Postdoctoral Program Fellow, Mail Code 210-10, Moffett Field, CA 94035 USA. EM jung-hoon.kim@nasa.gov FU NASA FX This work was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administrated by the Oak Ridge Associated Universities (ORAU) through a contract with NASA. We specially thank Matthias Steiner at NCAR and Ng Hok Kwan, Todd Farley, and Dallas Denery at NASA Ames Research Center for their invaluable peer reviews. We also thank the editor (Todd D. Sikora) and three anonymous reviewers for their invaluable comments that helped to improve the manuscript. NR 49 TC 6 Z9 6 U1 3 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD APR PY 2015 VL 54 IS 4 BP 766 EP 784 DI 10.1175/JAMC-D-14-0216.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG8QW UT WOS:000353576200005 ER PT J AU Seo, EK Hristova-Veleva, S Liu, GS Ou, ML Ryu, GH AF Seo, Eun-Kyoung Hristova-Veleva, Svetla Liu, Guosheng Ou, Mi-Lim Ryu, Geun-Hyeok TI Long-Term Comparison of Collocated Instantaneous Rain Retrievals from the TRMM Microwave Imager and Precipitation Radar over the Ocean SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID MEASURING MISSION TRMM; TROPICAL RAINFALL; PART I; SATELLITE; ALGORITHM; VALIDATION; SYSTEMS; SCALES AB Version-7 (V7) rain rates retrieved by the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) are spatially and temporally collocated over the ocean and compared at TMI footprint scale for the summer months of 16 years, within the TRMM coverage belt from 38 degrees S to 38 degrees N latitude. This study puts special emphasis on examining how the estimates from the two instruments compare with each other for different rain types and for different geographical locations. It is found that, although the two rain-rate estimates agree with each other extremely well (only 2.6% difference) when averaged globally and over all rain types, large discrepancies (similar to 60%) are observed if comparisons are conducted for rain pixels of only convective type or for regions where convective rain types dominate. For the stratiform rain type, the TMI and PR retrievals compare well with a difference of similar to 13% globally. In particular, the partial beam filling seems to be less important to the underestimation of TMI rain against PR rain than the spatial variability of rain. These findings point to the existing need for better understanding of the remote-sensing physics of convective rain. Such an improved understanding is critically important to decreasing the uncertainty in oceanic rainfall estimation from space in the coming GPM era of global long-term observations that will lead to the creation of a climate record of trends in precipitation. C1 [Seo, Eun-Kyoung] Kongju Natl Univ, Kong Ju 314701, Chungnam, South Korea. [Hristova-Veleva, Svetla] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Hristova-Veleva, Svetla] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Liu, Guosheng] Florida State Univ, Tallahassee, FL 32306 USA. [Ou, Mi-Lim; Ryu, Geun-Hyeok] Korea Meteorol Adm, Natl Inst Meteorol Res, Seoul, South Korea. RP Seo, EK (reprint author), Kongju Natl Univ, Dept Earth Sci Educ, 56 GongjuDaehak Ro, Kong Ju 314701, Chungnam, South Korea. EM ekseo@kongju.ac.kr RI Liu, Guosheng/D-3479-2011; Measurement, Global/C-4698-2015 OI Liu, Guosheng/0000-0001-7899-6125; FU Korea Meteorological Administration Research and Development Program [CATER 2012-2062]; Kongju National University FX We acknowledge anonymous reviewers for their constructive comments. This research has been supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-2062 and the research grant of the Kongju National University in 2014. NR 29 TC 2 Z9 3 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD APR PY 2015 VL 54 IS 4 BP 867 EP 879 DI 10.1175/JAMC-D-14-0235.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG8QW UT WOS:000353576200011 ER PT J AU Wood, NB L'Ecuyer, TS Heymsfield, AJ Stephens, GL AF Wood, Norman B. L'Ecuyer, Tristan S. Heymsfield, Andrew J. Stephens, Graeme L. TI Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID DISCRETE-DIPOLE APPROXIMATION; TERMINAL VELOCITIES; VIDEO DISDROMETER; ICE PARTICLES; FALL SPEEDS; PRECIPITATION; CLOUDS; BACKSCATTERING; CRYSTALS; MASSES AB A Bayesian optimal estimation retrieval is used to determine probability density functions of snow microphysical parameters from ground-based observations taken during four snowfall events in southern Ontario, Canada. The retrieved variables include the parameters of power laws describing particle mass and horizontally projected area. The results reveal nontrivial correlations between mass and area parameters that were not apparent in prior studies. The observations provide information mainly about the mass coefficient a, somewhat less information about the mass exponent beta and the projected area coefficient gamma, and minimal information about the projected area exponent sigma. The expected values for retrieved mass power-law parameters alpha = 0.003 28 and beta = 2.25 are consistent with those from several prior studies that looked at the mass of aggregate-like particles and precipitating ice aloft as functions of maximum particle dimension. Differences from other studies appear related to differences in the dimensions used to define particle size. The retrieval allows the analysis of relatively large volumes of continuous observations, greatly enhancing sampling relative to single-particle analyses. The retrieved properties are used to constrain 94-GHz (W band) radar scattering properties for a variety of snow particle shapes. Synthetic reflectivities calculated using these scattering properties and observed particle size distributions show that a branched, spatial aggregate-like particle produces good agreement with coincident observed W-band reflectivities. Uncertainties in the synthetic reflectivities, estimated by applying a simple error-propagation model, are substantial and are dominated by the uncertainties in alpha and beta. C1 [Wood, Norman B.] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI 53706 USA. [L'Ecuyer, Tristan S.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Heymsfield, Andrew J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Stephens, Graeme L.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. RP Wood, NB (reprint author), Univ Wisconsin, Inst Meteorol Satellite Studies, 1225 W Dayton St, Madison, WI 53706 USA. EM norman.wood@ssec.wisc.edu RI L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU National Aeronautics and Space Administration; JPL CloudSat Office; NASA Global Precipitation Measurement program [NN-X13AH73G] FX Parts of this research by NBW and TSL were performed at the University of Wisconsin-Madison and at Colorado State University for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration. AJH acknowledges support from the JPL CloudSat Office and NASA Global Precipitation Measurement program Contract NN-X13AH73G. Computing resources for discrete dipole modeling were provided by the Community Computing Facility of the National Center for Atmospheric Research. Thanks are given to G.-J. Huang of Colorado State University, F. Fabry of McGill University, and L. Bliven of NASA Goddard Space Flight Center for making their C3VP datasets available and sharing their expertise. We appreciate the efforts of three anonymous reviewers who provided helpful feedback on the paper. NR 46 TC 6 Z9 6 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD APR PY 2015 VL 54 IS 4 BP 909 EP 931 DI 10.1175/JAMC-D-14-0137.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG8QW UT WOS:000353576200014 ER PT J AU Williams, CR Bringi, VN Carey, LD Chandrasekar, V Gatlin, PN Haddad, ZS Meneghini, R Munchak, SJ Nesbitt, SW Petersen, WA Tanelli, S Tokay, A Wilson, A Wolff, DB AF Williams, Christopher R. Bringi, V. N. Carey, Lawrence D. Chandrasekar, V. Gatlin, Patrick N. Haddad, Ziad S. Meneghini, Robert Munchak, S. Joseph Nesbitt, Stephen W. Petersen, Walter A. Tanelli, Simone Tokay, Ali Wilson, Anna Wolff, David B. TI Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters (vol 53, pg 1282, 2014) SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Correction C1 [Williams, Christopher R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Williams, Christopher R.] NOAA, ESRL Phys Sci Div, Boulder, CO USA. [Bringi, V. N.; Chandrasekar, V.] Colorado State Univ, Ft Collins, CO 80523 USA. [Carey, Lawrence D.] Univ Alabama, Huntsville, AL 35899 USA. [Gatlin, Patrick N.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Haddad, Ziad S.; Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Meneghini, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Munchak, S. Joseph] Univ Maryland, College Pk, MD 20742 USA. [Nesbitt, Stephen W.] Univ Illinois, Urbana, IL 61801 USA. [Petersen, Walter A.; Wolff, David B.] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Greenbelt, MD USA. [Wilson, Anna] Duke Univ, Durham, NC USA. RP Williams, CR (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, 216 UCB, Boulder, CO 80309 USA. EM christopher.williams@colorado.edu RI Williams, Christopher/A-2723-2015; Measurement, Global/C-4698-2015 OI Williams, Christopher/0000-0001-9394-8850; NR 1 TC 0 Z9 0 U1 3 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD APR PY 2015 VL 54 IS 4 BP 932 EP 932 DI 10.1175/JAMC-D-15-0055.1 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG8QW UT WOS:000353576200015 ER PT J AU Piao, SL Tan, JG Chen, AP Fu, YH Ciais, P Liu, Q Janssens, IA Vicca, S Zeng, ZZ Jeong, SJ Li, Y Myneni, RB Peng, SS Shen, MG Pennuelas, J AF Piao, Shilong Tan, Jianguang Chen, Anping Fu, Yongshuo H. Ciais, Philippe Liu, Qiang Janssens, Ivan A. Vicca, Sara Zeng, Zhenzhong Jeong, Su-Jong Li, Yue Myneni, Ranga B. Peng, Shushi Shen, Miaogen Penuelas, Josep TI Leaf onset in the northern hemisphere triggered by daytime temperature SO NATURE COMMUNICATIONS LA English DT Article ID CLIMATE-CHANGE; SPRING PHENOLOGY; GLOBAL CHANGE; ANNUAL CYCLE; VEGETATION; MODEL; CO2; LATITUDES; TREES AB Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (T-mean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982-2011 are triggered by daytime (T-max) more than by nighttime temperature (T-min). Furthermore, an increase of 1 degrees C in T-max would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from T-mean. The triggering role of T-max, rather than the T-min or T-mean variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (>30 degrees N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models. C1 [Piao, Shilong; Shen, Miaogen] Chinese Acad Sci, Inst Tibetan Plateau Res, Ctr Excellence Tibetan Earth Sci, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China. [Piao, Shilong] Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100085, Peoples R China. [Piao, Shilong; Tan, Jianguang; Fu, Yongshuo H.; Liu, Qiang; Zeng, Zhenzhong; Li, Yue; Peng, Shushi] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. [Chen, Anping] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. [Fu, Yongshuo H.; Janssens, Ivan A.; Vicca, Sara] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium. [Ciais, Philippe; Peng, Shushi] UMR CEA CNRS, LSCE, F-91191 Gif Sur Yvette, France. [Jeong, Su-Jong] CALTECH, Jet Prop Lab, Pasadena, CA 91011 USA. [Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Penuelas, Josep] CREAF, Barcelona 08193, Spain. [Penuelas, Josep] CREAF CSIC UAB, Global Ecol Unit, Barcelona 08193, Spain. RP Piao, SL (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Ctr Excellence Tibetan Earth Sci, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China. EM slpiao@pku.edu.cn RI Shen, Miaogen/A-8374-2011; Chen, Anping/H-9960-2014; Jeong, Su-Jong/J-4110-2014; Myneni, Ranga/F-5129-2012; Peng, Shushi/J-4779-2014; Penuelas, Josep/D-9704-2011; Vicca, Sara/I-3637-2012; Janssens, Ivan/P-1331-2014 OI Shen, Miaogen/0000-0001-5742-8807; Peng, Shushi/0000-0001-5098-726X; Penuelas, Josep/0000-0002-7215-0150; Vicca, Sara/0000-0001-9812-5837; Janssens, Ivan/0000-0002-5705-1787 FU Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB03030404]; National Basic Research Program of China [2013CB956303]; National Natural Science Foundation of China [41125004]; 111 Project [B14001]; European Research Council Synergy grant [ERC-2013-SyG-610028] FX This study was supported by a Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant no. XDB03030404), the National Basic Research Program of China (grant no. 2013CB956303), the National Natural Science Foundation of China (41125004) and the 111 Project (B14001). P.C., I.J. and J.P. were supported by the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P.S.V. is a postdoctoral research associate of the Fund for Scientific Research-Flanders. NR 32 TC 20 Z9 21 U1 15 U2 93 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2015 VL 6 AR 6911 DI 10.1038/ncomms7911 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0IW UT WOS:000353704100019 PM 25903224 ER PT J AU Wyper, PF Hesse, M AF Wyper, P. F. Hesse, M. TI Quantifying three dimensional reconnection in fragmented current layers SO PHYSICS OF PLASMAS LA English DT Article ID GENERAL MAGNETIC RECONNECTION; PARALLEL ELECTRIC-FIELDS; BRAIDED CORONAL LOOPS; FLUX; MECHANISM; PLASMAS; FLARES AB There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. It is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E-parallel to through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify. (C) 2015 AIP Publishing LLC. C1 [Wyper, P. F.; Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wyper, PF (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM peter.f.wyper@nasa.gov; michael.hesse-1@nasa.gov RI Wyper, Peter/H-9166-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA's Magnetospheric Multiscale mission; NASA Postdoctoral Program at Goddard Space Flight Center; NASA FX We thank the anonymous referee for constructive comments that helped to clarify aspects of this paper. This research was supported by NASA's Magnetospheric Multiscale mission. P.W. acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Figs. 9 and 12 were made using the Vapor visualization package (www.vapor.ucar.edu). NR 32 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2015 VL 22 IS 4 AR 042117 DI 10.1063/1.4918335 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CH2DZ UT WOS:000353837200023 ER PT J AU Brighenti, F Mathews, WG Temi, P AF Brighenti, Fabrizio Mathews, William G. Temi, Pasquale TI HOT GASEOUS ATMOSPHERES IN GALAXY GROUPS AND CLUSTERS ARE BOTH HEATED AND COOLED BY X-RAY CAVITIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; X-rays: galaxies; X-rays: galaxies: clusters ID H-ALPHA FILAMENTS; COOLING FLOWS; ELLIPTIC GALAXIES; BUOYANT BUBBLES; THERMAL-INSTABILITY; MOLECULAR GAS; NGC 5044; MAGNETOHYDRODYNAMIC SIMULATIONS; SPITZER OBSERVATIONS; INTRACLUSTER MEDIUM AB Expanding X-ray cavities observed in hot gas atmospheres of many galaxy groups and clusters generate shock waves and turbulence that are primary heating mechanisms required to avoid uninhibited radiatively cooling flows which are not observed. However, we show here that the evolution of buoyant cavities also stimulates radiative cooling of observable masses of low-temperature gas. During their early evolution, radiative cooling occurs in the wakes of buoyant cavities in two locations: in thin radial filaments parallel to the buoyant velocity and more broadly in gas compressed beneath rising cavities. Radiation from these sustained compressions removes entropy from the hot gas. Gas experiencing the largest entropy loss cools first, followed by gas with progressively less entropy loss. Most cooling occurs at late times, similar to 10(8)-10(9) yr, long after the X-ray cavities have disrupted and are impossible to detect. During these late times, slightly denser low entropy gas sinks slowly toward the centers of the hot atmospheres where it cools intermittently, forming clouds near the cluster center. Single cavities of energy 10(57)-10(58) ergs in the atmosphere of the NGC 5044 group create 10(8)-10(9)M(circle dot) of cooled gas, exceeding the mass of extended molecular gas currently observed in that group. The cooled gas clouds we compute share many attributes with molecular clouds recently observed in NGC 5044 with ALMA: self-gravitationally unbound, dust-free, quasi-randomly distributed within a few kiloparsecs around the group center. C1 [Brighenti, Fabrizio; Mathews, William G.] Univ Calif Santa Cruz, Univ Calif Observ, Dept Astron & Astrophys, Lick Observ, Santa Cruz, CA 95064 USA. [Brighenti, Fabrizio] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Temi, Pasquale] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. RP Brighenti, F (reprint author), Univ Calif Santa Cruz, Univ Calif Observ, Dept Astron & Astrophys, Lick Observ, Santa Cruz, CA 95064 USA. EM fabrizio.brighenti@unibo.it; mathews@ucolick.org; pasquale.temi@nasa.gov FU NSF; NASA; Prin MIUR grant [2010LY5N2T] FX Studies of the evolution of hot gas in elliptical galaxies at UC Santa Cruz were supported during the earlier phases of this work by the NSF and are currently supported by a NASA-funded Chandra Theory Grant for which we are very grateful. F.B. is supported in part by the Prin MIUR grant 2010LY5N2T "The Chemical and Dynamical Evolution of the Milky Way and Local Group Galaxies." NR 56 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2015 VL 802 IS 2 AR 118 DI 10.1088/0004-637X/802/2/118 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1DZ UT WOS:000353014500046 ER PT J AU Kazanas, D Racusin, JL Sultana, J Mastichiadis, A AF Kazanas, D. Racusin, J. L. Sultana, J. Mastichiadis, A. TI THE STATISTICS OF BAT-TO-XRT FLUX RATIO IN GRBs: EVIDENCE FOR A CHARACTERISTIC VALUE AND ITS IMPLICATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID GAMMA-RAY BURSTS; LIGHT CURVES; FERMI OBSERVATIONS; LUMINOSITY CORRELATIONS; AFTERGLOW EMISSION; MODEL; COMPONENT; PROMPT; EVOLUTION; PLATEAU AB We present the statistics of the ratio, R, between the prompt and afterglow "plateau" fluxes of gamma-ray bursts (GRBs). We define this as the ratio of the mean prompt energy flux in Swift BAT and the Swift XRT one, immediately following the steep transition between these two states and the beginning of the afterglow stage referred to as the "plateau". Like the distribution of many other GRB observables, the histogram of. is log-normal with maximum at a value R-m similar or equal to 2000, FWHM of about two decades, and with the entire distribution spanning about five decades in the value of R. We note that the peak of the distribution is close to the proton-to-electron mass ratio (R-m similar or equal to m(p)/m(e) = 1836), as proposed to be the case in an earlier publication, on the basis of a specific model of the GRB dissipation process. It therefore appears that, in addition to the values of the energy of peak luminosity E-pk similar to m(e)c(2), GRBs present us with one more quantity with an apparent characteristic value. The fact that the values of both these quantities (E-pk and R) are consistent with the same specific model invoked to account for the efficient conversion of their relativistic proton energies to electrons argues favorably for its underlying assumptions. C1 [Kazanas, D.; Racusin, J. L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Sultana, J.] Univ Malta, Dept Math, Fac Sci, Msida, Malta. [Mastichiadis, A.] Univ Athens, Dept Phys, GR-15783 Zografos, Greece. RP Kazanas, D (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM Demos.Kazanas@nasa.gov; joseph.sultana@um.edu.mt FU University of Malta; Swift grant; Fermi GO grant; Swift project; Fermi project FX J.S. gratefully acknowledges financial support from the University of Malta during his visit at NASA-GSFC and the hospitality of the Astrophysics Science Division of GSFC. D.K. acknowledges support by Swift and Fermi GO grants. J.R. acknowledges support by the Swift and Fermi projects. NR 44 TC 1 Z9 1 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2015 VL 802 IS 2 AR 83 DI 10.1088/0004-637X/802/2/83 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1DZ UT WOS:000353014500011 ER PT J AU Neff, SG Eilek, JA Owen, FN AF Neff, Susan G. Eilek, Jean A. Owen, Frazer N. TI THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 5128, Centaurus A); galaxies: jets; galaxies: starburst; galaxies: winds; radio continuum: galaxies ID NGC 5128 CENTAURUS; DIFFUSIVE SHOCK ACCELERATION; ENERGY PARTICLE-ACCELERATION; INDUCED STAR-FORMATION; X-RAY OBSERVATIONS; RADIO-GALAXY; OPTICAL FILAMENTS; STARBURST GALAXIES; GLOBULAR-CLUSTERS; NONTHERMAL RADIO AB We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking "weather ribbon" of far-UV (FUV) and H alpha emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy's central dust lane. Combining this with previous radio and far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at similar to 2M(circle dot) yr(-1), and has been doing so for 50-100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind's encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128. C1 [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Greenbelt, MD 20771 USA. [Eilek, Jean A.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Eilek, Jean A.; Owen, Frazer N.] Natl Radio Astron Observ, Socorro, NM 87801 USA. RP Neff, SG (reprint author), NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Mail Code 665, Greenbelt, MD 20771 USA. EM susan.g.neff@nasa.gov FU NASA [NAS5-98034] FX S. G. N. is very grateful to Chris Martin and the GALEX team. This work is based on observations made with the NASA Galaxy Evolution Explorer (GALEX), which was operated for NASA by the California Institute of Technology under NASA contract NAS5-98034. In this work we have made extensive use of both NASA's Astrophysics Data System (ADS; hosted by the High Energy Astrophysics Division at the Harvard Smithsonian Center for Astrophysics), and the NASA/IPAC Extragalactic Database (NED; operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA). NR 106 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2015 VL 802 IS 2 AR 88 DI 10.1088/0004-637X/802/2/88 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1DZ UT WOS:000353014500016 ER PT J AU Neff, SG Eilek, JA Owen, FN AF Neff, Susan G. Eilek, Jean A. Owen, Frazer N. TI THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: RADIO STRUCTURE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 5128, Cen A); galaxies: jets; radio continuum: galaxies ID ENERGY PARTICLE-ACCELERATION; NGC 5128 CENTAURUS; X-RAY-EMISSION; STAR-FORMATION; OPTICAL FILAMENTS; COSMIC-RAYS; JET; NGC-5128; GALAXIES; LOBES AB We present deep radio images of the inner similar to 50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array at 90 cm. We focus on the Transition Regions between the inner galaxy-including the active nucleus, inner radio lobes, and star-forming disk-and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region (NTR), known as the North Middle Lobe, is significantly overpressured relative to the surrounding interstellar medium. We see no evidence for a collimated flow from the active galactic nucleus through this region. Our images show that the structure identified by Morganti et al. as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the NTR, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regions at the present epoch. We suggest that the energy flow is in the form of a galactic wind. C1 [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Greenbelt, MD 20771 USA. [Eilek, Jean A.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Eilek, Jean A.; Owen, Frazer N.] Natl Radio Astron Observ, Socorro, NM 87801 USA. RP Neff, SG (reprint author), NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Mail Code 665, Greenbelt, MD 20771 USA. EM susan.g.neff@nasa.gov NR 53 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2015 VL 802 IS 2 AR 87 DI 10.1088/0004-637X/802/2/87 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1DZ UT WOS:000353014500015 ER PT J AU Shankar, F Buchan, S Rettura, A Bouillot, VR Moreno, J Licitra, R Bernardi, M Huertas-Company, M Mei, S Ascaso, B Sheth, R Delaye, L Raichoor, A AF Shankar, Francesco Buchan, Stewart Rettura, Alessandro Bouillot, Vincent R. Moreno, Jorge Licitra, Rossella Bernardi, Mariangela Huertas-Company, Marc Mei, Simona Ascaso, Begona Sheth, Ravi Delaye, Lauriane Raichoor, Anand TI AVOIDING PROGENITOR BIAS: THE STRUCTURAL AND MASS EVOLUTION OF BRIGHTEST GROUP AND CLUSTER GALAXIES IN HIERARCHICAL MODELS SINCE z less than or similar to 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: statistics ID DARK-MATTER COSMOLOGY; STELLAR MASS; SIZE EVOLUTION; HIGH-REDSHIFT; HALO MASS; SCALING RELATIONS; SPECTROSCOPIC CONFIRMATION; VELOCITY DISPERSION; FUNDAMENTAL PLANE; LOCAL UNIVERSE AB The mass and structural evolution of massive galaxies is one of the hottest topics in galaxy formation. This is because it may reveal invaluable insights into the still debated evolutionary processes governing the growth and assembly of spheroids. However, direct comparison between models and observations is usually prevented by the so-called progenitor bias, i.e., new galaxies entering the observational selection at later epochs, thus eluding a precise study of how pre-existing galaxies actually evolve in size. To limit this effect, we here gather data on high-redshift brightest group and cluster galaxies, evolve their (mean) host halo masses down to z = 0 along their main progenitors, and assign as their "descendants" local Sloan Digital Sky Survey central galaxies matched in host halo mass. At face value, the comparison between high redshift and local data suggests a noticeable increase in stellar mass of a factor of greater than or similar to 2 since z similar to 1, and of greater than or similar to 2.5 in mean effective radius. We then compare the inferred stellar mass and size growth with those predicted by hierarchical models for central galaxies, selected at high redshifts to closely match the halo and stellar mass bins as in the data. Only hierarchical models characterized by very limited satellite stellar stripping and parabolic orbits are capable of broadly reproducing the stellar mass and size increase of a factor of similar to 2-4 observed in cluster galaxies since z similar to 1. The predicted, average (major) merger rate since z similar to 1 is in good agreement with the latest observational estimates. C1 [Shankar, Francesco; Buchan, Stewart] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Rettura, Alessandro] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rettura, Alessandro] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bouillot, Vincent R.] Univ Cape Town, Dept Math & Appl Math, Ctr Astrophys Cosmol & Gravitat, ZA-7701 Cape Town, South Africa. [Moreno, Jorge] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Moreno, Jorge] Calif State Polytech Univ Pomona, Dept Phys & Astron, Pomona, CA 91768 USA. [Licitra, Rossella; Huertas-Company, Marc; Mei, Simona; Ascaso, Begona; Delaye, Lauriane; Raichoor, Anand] Univ Paris Diderot, GEPI, Observ Paris, CNRS,Paris Sci & Lettres, F-75014 Paris, France. [Bernardi, Mariangela; Sheth, Ravi] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Huertas-Company, Marc; Mei, Simona] Univ Paris Sorbonne Cite, Univ Paris Denis Diderot, F-75205 Paris 13, France. [Mei, Simona] CALTECH, Pasadena, CA 91125 USA. [Sheth, Ravi] Abdus Salaam Int Ctr Theoret Phys, I-34151 Trieste, Italy. RP Shankar, F (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM F.Shankar@soton.ac.uk OI Buchan, Stewart/0000-0002-4187-7234 FU Marie Curie grant; Institut Universitaire de France (IUF); NASA [1439211]; National Research Foundation of South Africa FX F.S. acknowledges partial support from a Marie Curie grant. S.M. acknowledges financial support from the Institut Universitaire de France (IUF), of which she is senior member. F.S. thanks Bruno Henriquez and Chervin Laporte for interesting discussions. This work is based on data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with NASA. Support was provided by NASA through contract number 1439211 issued by JPL/Caltech. V.B. is supported financially by the National Research Foundation of South Africa. We thank the referee for useful comments and suggestions. NR 87 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2015 VL 802 IS 2 AR 73 DI 10.1088/0004-637X/802/2/73 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1DZ UT WOS:000353014500001 ER PT J AU Barth, AJ Bennert, VN Canalizo, G Filippenko, AV Gates, EL Greene, JE Li, WD Malkan, MA Pancoast, A Sand, DJ Stern, D Treu, T Woo, JH Assef, RJ Bae, HJ Brewer, BJ Cenko, SB Clubb, KI Cooper, MC Diamond-Stanic, AM Hiner, KD Honig, SF Hsiao, E Kandrashoff, MT Lazarova, MS Nierenberg, AM Rex, J Silverman, JM Tollerud, EJ Walsh, JL AF Barth, Aaron J. Bennert, Vardha N. Canalizo, Gabriela Filippenko, Alexei V. Gates, Elinor L. Greene, Jenny E. Li, Weidong Malkan, Matthew A. Pancoast, Anna Sand, David J. Stern, Daniel Treu, Tommaso Woo, Jong-Hak Assef, Roberto J. Bae, Hyun-Jin Brewer, Brendon J. Cenko, S. Bradley Clubb, Kelsey I. Cooper, Michael C. Diamond-Stanic, Aleksandar M. Hiner, Kyle D. Hoenig, Sebastian F. Hsiao, Eric Kandrashoff, Michael T. Lazarova, Mariana S. Nierenberg, A. M. Rex, Jacob Silverman, Jeffrey M. Tollerud, Erik J. Walsh, Jonelle L. TI THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: active; galaxies: nuclei; galaxies: Seyfert; techniques: spectroscopic ID ACTIVE GALACTIC NUCLEI; BLACK-HOLE MASSES; REVERBERATION MAPPING DATA; DIGITAL SKY SURVEY; FE II EMISSION; RADIUS-LUMINOSITY RELATIONSHIP; SEYFERT-1 GALAXY NGC-4593; VELOCITY-DELAY MAPS; LATE-TIME SPECTRA; BROAD EMISSION AB In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad H beta line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad Ha line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad Ha velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by similar to 250 km s(-1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise. C1 [Barth, Aaron J.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bennert, Vardha N.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Canalizo, Gabriela] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Filippenko, Alexei V.; Clubb, Kelsey I.; Kandrashoff, Michael T.; Rex, Jacob] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Gates, Elinor L.] Lick Observ, Mt Hamilton, CA 95140 USA. [Greene, Jenny E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Malkan, Matthew A.; Treu, Tommaso] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Sand, David J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Woo, Jong-Hak] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 151742, South Korea. [Assef, Roberto J.] Univ Diego Port, Nucl Astron Fac Ingn, Santiago, Chile. [Bae, Hyun-Jin] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Bae, Hyun-Jin] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Brewer, Brendon J.] Univ Auckland, Dept Stat, Auckland 1142, New Zealand. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Diamond-Stanic, Aleksandar M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Hiner, Kyle D.] Univ Concepcion, Dept Astron, FONDECYT Postdoctoral Fellow, Concepcion, Chile. [Hoenig, Sebastian F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hsiao, Eric] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Lazarova, Mariana S.] Univ Nebraska, Dept Phys & Phys Sci, Kearney, NE 68849 USA. [Nierenberg, A. M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Tollerud, Erik J.] Yale Univ, Dept Astron, New Haven, CT 06510 USA. [Walsh, Jonelle L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, Dept Phys & Astron, College Stn, TX 77843 USA. RP Barth, AJ (reprint author), Univ Calif Irvine, Dept Phys & Astron, 4129 Frederick Reines Hall, Irvine, CA 92697 USA. EM barth@uci.edu RI Bae, Hyun-Jin/J-8037-2015; OI Bae, Hyun-Jin/0000-0001-5134-5517; Tollerud, Erik/0000-0002-9599-310X; Hoenig, Sebastian/0000-0002-6353-1111; Barth, Aaron/0000-0002-3026-0562 FU National Science Foundation (NSF) [AST-1108835, 1412693, 1107865, 1107812, 1412315, 1108665]; NSF through the Graduate Research Fellowship Program; NSF grant [AST-1211916]; Gary & Cynthia Bengier; Richard & Rhoda Goldman Fund; TABASGO Foundation; Christopher R. Redlich Fund; Packard Research Fellowship; National Aeronautics and Space Administration (NASA); Gemini-CONICYT [32120009]; NSF [AST-1102845]; National Research Foundation of Korea (NRF) grant - Korea government (MEST) [2012-006087]; NSF Research at Undergraduate Institutions (RUI) grant [AST-1312296]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1302771]; Grainger Foundation; NASA; Alfred P. Sloan Foundation; NSF; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank the Lick Observatory staff for their tireless efforts during our observing run. We gratefully acknowledge contributions of observing time and data from Dawoo Park, Donghoon Son, Matthew Auger, Alessandro Sonnenfeld, Robert da Silva, Michele Fumagalli, Jessica Werk, Michael Gregg, Chelsea Harris, Jeffrey Lee, Liliana Lopez, Nao Suzuki, Jonathan Trump, Hassen Yesuf, Peter Nugent, David Tytler, Xavier Prochaska, Gabor Worseck, Melissa Graham, and Michael Childress. We thank Daeseong Park for many very helpful discussions about data-analysis methods, and the anonymous referee for many helpful suggestions that improved the presentation of this paper. This work has been supported by National Science Foundation (NSF) grants AST-1108835 and 1412693 (UC Irvine), 1107865 (UCSB), 1107812 and 1412315 (UCLA), and 1108665 (UC Berkeley). A.P. acknowledges support from the NSF through the Graduate Research Fellowship Program. A.V.F.'s group at UC Berkeley received additional funding through NSF grant AST-1211916, Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, the TABASGO Foundation, and the Christopher R. Redlich Fund. T.T. acknowledges a Packard Research Fellowship. The work of D.S. and R.J.A. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). R.J.A. was also supported by Gemini-CONICYT grant number 32120009. Research by J.L.W. was supported by NSF grant AST-1102845. J.H.W. acknowledges support by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; No. 2012-006087). V.N.B. acknowledges assistance from NSF Research at Undergraduate Institutions (RUI) grant AST-1312296. J.M.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. A.M.D. acknowledges support from The Grainger Foundation. Portions of the data analysis were completed during the Summer 2013 workshop "A Universe of Black Holes" at the Kavli Institute for Theoretical Physics, attended by A.J.B., T.T., and J.-H.W., and we are grateful for the hospitality of the KITP during this program. This research has made use of the NASA/ IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We thank Jelena Kovacevic and collaborators for making their new Fe II templates available to the community. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, the U.S. Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions.; The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 124 TC 23 Z9 23 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2015 VL 217 IS 2 AR 26 DI 10.1088/0067-0049/217/2/26 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8GK UT WOS:000353545100007 ER PT J AU Mullally, F Coughlin, JL Thompson, SE Rowe, J Burke, C Latham, DW Batalha, NM Bryson, ST Christiansen, J Henze, CE Ofir, A Quarles, B Shporer, A Van Eylen, V Van Laerhoven, C Shah, Y Wolfgang, A Chaplin, WJ Xie, JW Akeson, R Argabright, V Bachtell, E Barclay, T Borucki, WJ Caldwell, DA Campbell, JR Catanzarite, JH Cochran, WD Duren, RM Fleming, SW Fraquelli, D Girouard, FR Haas, MR Helminiak, KG Howell, SB Huber, D Larson, K Gautier, TN Jenkins, JM Li, J Lissauer, JJ McArthur, S Miller, C Morris, RL Patil-Sabale, A Plavchan, P Putnam, D Quintana, EV Ramirez, S Aguirre, VS Seader, S Smith, JC Steffen, JH Stewart, C Stober, J Still, M Tenenbaum, P Troeltzsch, J Twicken, JD Zamudio, KA AF Mullally, F. Coughlin, Jeffrey L. Thompson, Susan E. Rowe, Jason Burke, Christopher Latham, David W. Batalha, Natalie M. Bryson, Stephen T. Christiansen, Jessie Henze, Christopher E. Ofir, Aviv Quarles, Billy Shporer, Avi Van Eylen, Vincent Van Laerhoven, Christa Shah, Yash Wolfgang, Angie Chaplin, W. J. Xie, Ji-Wei Akeson, Rachel Argabright, Vic Bachtell, Eric Barclay, Thomas Borucki, William J. Caldwell, Douglas A. Campbell, Jennifer R. Catanzarite, Joseph H. Cochran, William D. Duren, Riley M. Fleming, Scott W. Fraquelli, Dorothy Girouard, Forrest R. Haas, Michael R. Helminiak, Krzysztof G. Howell, Steve B. Huber, Daniel Larson, Kipp Gautier, Thomas N., III Jenkins, Jon M. Li, Jie Lissauer, Jack J. McArthur, Scot Miller, Chris Morris, Robert L. Patil-Sabale, Anima Plavchan, Peter Putnam, Dustin Quintana, Elisa V. Ramirez, Solange Aguirre, V. Silva Seader, Shawn Smith, Jeffrey C. Steffen, Jason H. Stewart, Chris Stober, Jeremy Still, Martin Tenenbaum, Peter Troeltzsch, John Twicken, Joseph D. Zamudio, Khadeejah A. TI PLANETARY CANDIDATES OBSERVED BY KEPLER. VI. PLANET SAMPLE FROM Q1-Q16 (47 MONTHS) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; eclipses; planetary systems ID SYSTEMATIC-ERROR CORRECTION; POTENTIAL TRANSIT SIGNALS; MAIN-SEQUENCE STARS; EARTH-SIZED PLANET; SOLAR-TYPE STARS; 1ST 12 QUARTERS; ECLIPSING BINARIES; LIGHT-CURVE; HABITABLE ZONE; INPUT CATALOG AB We present the sixth catalog of Kepler candidate planets based on nearly four years of high precision photometry. This catalog builds on the legacy of previous catalogs released by the Kepler project and includes 1493 new Kepler Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these candidates have best-fit radii < 1.5 R-circle plus. This brings the total number of KOIs and planet candidates to 7348 and 4175 respectively. We suspect that many of these new candidates at the low signal-to-noise ratio limit may be false alarms created by instrumental noise, and discuss our efforts to identify such objects. We re-evaluate all previously published KOIs with orbital periods of >50 days to provide a consistently vetted sample that can be used to improve planet occurrence rate calculations. We discuss the performance of our planet detection algorithms, and the consistency of our vetting products. The full catalog is publicly available at the NASA Exoplanet Archive. C1 [Mullally, F.; Coughlin, Jeffrey L.; Thompson, Susan E.; Rowe, Jason; Burke, Christopher; Caldwell, Douglas A.; Catanzarite, Joseph H.; Huber, Daniel; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Quintana, Elisa V.; Seader, Shawn; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.] NASA, SETI, Ames Res Ctr, Moffett Field, CA 94035 USA. [Latham, David W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Batalha, Natalie M.; Bryson, Stephen T.; Henze, Christopher E.; Borucki, William J.; Haas, Michael R.; Howell, Steve B.; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Christiansen, Jessie; Akeson, Rachel; Ramirez, Solange] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Ofir, Aviv] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Ofir, Aviv] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Quarles, Billy] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Shporer, Avi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Eylen, Vincent; Chaplin, W. J.; Aguirre, V. Silva] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Van Laerhoven, Christa] Dept Planetary Sci, Tucson, AZ USA. [Shah, Yash] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Wolfgang, Angie] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Chaplin, W. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Xie, Ji-Wei] Nanjing Univ, Minist Educ, Astron & Astrophys, Nanjing 210093, Jiangsu, Peoples R China. [Argabright, Vic; Bachtell, Eric; Larson, Kipp; Miller, Chris; Putnam, Dustin; Stewart, Chris; Stober, Jeremy; Troeltzsch, John] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Barclay, Thomas; Still, Martin] NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. [Patil-Sabale, Anima; Zamudio, Khadeejah A.] NASA, Ames Res Ctr, Wyle Labs, Moffett Field, CA 94035 USA. [Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Cochran, William D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Duren, Riley M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fleming, Scott W.; Fraquelli, Dorothy] Space Telescope Sci Inst, Comp Sci Corp, Baltimore, MD 21218 USA. [Girouard, Forrest R.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Helminiak, Krzysztof G.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Huber, Daniel] Univ Sydney, Sch Phys, SIfA, Sydney, NSW 2006, Australia. [Plavchan, Peter] Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Steffen, Jason H.] Northwestern Univ, Ctr Interdisciplinary Res & Explorat Astron CIERA, Dept Phys & Astron, Evanston, IL 60208 USA. RP Mullally, F (reprint author), NASA, SETI, Ames Res Ctr, Moffett Field, CA 94035 USA. EM fergal.mullally@nasa.gov RI Helminiak, Krzysztof/N-6385-2015; OI Helminiak, Krzysztof/0000-0002-7650-3603; Fleming, Scott/0000-0003-0556-027X FU NASAs Science Mission Directorate; Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; NASA Office of Space Science [NNX13AC07G]; National Aeronautics and Space Administration under the Exoplanet Exploration Program; Danish National Research Foundation [DNRF106]; ASTERISK project (ASTER-oseismic Investigations with SONG and Kepler) - European Research Council [267864] FX Funding for this Discovery mission is provided by NASAs Science Mission Directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. We thank the Exoplanet Archive staff for their efforts in supporting the Kepler pipeline data products. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant agreement No. DNRF106). The research is supported by the ASTERISK project (ASTER-oseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement No. 267864). NR 97 TC 70 Z9 70 U1 6 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2015 VL 217 IS 2 AR 31 DI 10.1088/0067-0049/217/2/31 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8GK UT WOS:000353545100012 ER PT J AU Moore, RH Shook, M Beyersdorf, A Corr, C Herndon, S Knighton, WB Miake-Lye, R Thornhill, KL Winstead, EL Yu, ZH Ziemba, LD Anderson, BE AF Moore, Richard H. Shook, Michael Beyersdorf, Andreas Corr, Chelsea Herndon, Scott Knighton, W. Berk Miake-Lye, Richard Thornhill, K. Lee Winstead, Edward L. Yu, Zhenhong Ziemba, Luke D. Anderson, Bruce E. TI Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions SO ENERGY & FUELS LA English DT Article ID PARTICULATE-EMISSIONS; COMMERCIAL AIRCRAFT; PARTICLE EMISSIONS; TURBINE AB We statistically analyze the impact of jet fuel properties on aerosols emitted by the NASA Douglas DC-8 (Tail No. N817NA) CFM56-2-C1 engines burning 15 different aviation fuels. Data were collected for this single engine type during four different, comprehensive ground tests conducted over the past decade, which allow us to clearly link changes in aerosol emissions to fuel compositional changes. It is found that the fuel aromatic and sulfur content most affect the volatile aerosol fraction, which dominates the variability (but not necessarily the magnitude) of the number and volume emissions indices (EIs) over all engine powers. Meanwhile, the naphthalenic content of the fuel determines the magnitude of the nonvolatile number and volume EI as well as the black carbon mass EI. Linear regression coefficients are reported for each aerosol EI in terms of these properties, engine fuel flow rate, and ambient temperature and show that reducing both fuel sulfur content and naphthalenes to near-zero levels would result in roughly a 10-fold decrease in aerosol number emitted per kilogram of fuel burned. This work informs future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from biobased or Fischer-Tropsch production pathways. C1 [Moore, Richard H.; Shook, Michael; Beyersdorf, Andreas; Corr, Chelsea; Thornhill, K. Lee; Winstead, Edward L.; Ziemba, Luke D.; Anderson, Bruce E.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Shook, Michael; Thornhill, K. Lee; Winstead, Edward L.] SSAI, Hampton, VA 23666 USA. [Corr, Chelsea] Oak Ridge Associated Univ, NASA Postdoctoral Program, Oak Ridge, TN 37830 USA. [Herndon, Scott; Miake-Lye, Richard; Yu, Zhenhong] Aerodyne Res Inc, Billerica, MA 01821 USA. [Knighton, W. Berk] Montana State Univ, Bozeman, MT 59717 USA. RP Moore, RH (reprint author), NASA Langley Res Ctr, Hampton, VA 23681 USA. EM richard.h.moore@nasa.gov FU NASA Fundmental Aeronautics Fixed Wing Program; ORAU NASA Postdoctoral Program FX We thank Daniel Baniszewski and Sarah Maclean at the Defense Logistics Agency for the PQIS data. Funding support was provided by NASA Fundmental Aeronautics Fixed Wing Program and the ORAU NASA Postdoctoral Program. NR 31 TC 9 Z9 9 U1 9 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD APR PY 2015 VL 29 IS 4 BP 2591 EP 2600 DI 10.1021/ef502618w PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CG4JQ UT WOS:000353251800059 ER PT J AU Rossow, WB Ferrier, J AF Rossow, William B. Ferrier, Joseph TI Evaluation of Long-Term Calibrations of the AVHRR Visible Radiances SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID DEEP CONVECTIVE CLOUDS; NEAR-INFRARED CHANNELS; RADIOMETRIC CALIBRATION; ABSOLUTE CALIBRATION; DATA RECORD; REFLECTANCE; NOAA-7; SPACECRAFT; BEHAVIOR; SENSORS AB Two systematic calibrations have been compiled for the visible radiances measured by the series of AVHRR instruments flown on the NOAA operational polar weather satellites: one by the International Satellite Cloud Climatology Project (ISCCP), anchored on NASA ER-2 underflights in the 1980s and early 1990s and covering the period 1981-2009, and one by the PATMOS-x project, anchored on comparisons to the MODIS instruments on the Aqua and Terra satellites in the 2000s and covering the period 1979-2010 (this result also includes calibration for the near-IR channels). Both methods have had to extend their anchor calibrations over a long series of instruments using different vicarious approaches, so a comparison provides an opportunity to evaluate how well this extension works by cross-checking the results at the anchor points. The basic result of this comparison is that for the "afternoon" series of AVHRRs, the calibrations agree to within their mutual uncertainties. However, this retrospective evaluation also shows that the representation of the time variations can be simplified. The ISCCP procedure had much more difficulty extending the calibration to the "morning" series of AVHRRs with the calibrations for NOAA-15 and NOAA-17 exceeding the estimated uncertainties. Given the general agreement, a new calibration for all AVHRR visible radiances (except TIROS-N, NOAA-6, NOAA-19, and MetOp-A) is proposed that is based on the average of the best linear fits to the two time records. The estimated uncertainty of these calibrations is 63% absolute (scaled radiance units). C1 [Rossow, William B.] CUNY City Coll, NOAA, CREST, New York, NY 10031 USA. [Ferrier, Joseph] Trinnovim LLC, Arlington, VA USA. [Ferrier, Joseph] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Rossow, WB (reprint author), CUNY City Coll, CREST, T-107 Steinman Hall,140th St & Convent Ave, New York, NY 10031 USA. EM wbrossow@ccny.cuny.edu RI Rossow, William/F-3138-2015 FU NASA [NNX08AJ80G, NNX08AL79A] FX We thank Andrew Heidinger (NOAA CIMSS) for providing all of his data used to produce the PATMOS-x calibrations, which made possible this very detailed comparison. We also thank David Doelling (NASA Langley) for the discussions and for showing us his direct MODIS to geostationary calibration results. We thank Jack Xiong for helping us understand the MODIS calibration procedure, and Laura Hinkelman and Tom Stone for the useful discussions about these results. This work was supported by NASA Grant NNX08AJ80G (Laura Hinkelman, PI; L. Tsaoussi, PM) and by NASA Grant NNX08AL79A (MEASURES, M. Maiden, PM). This paper is dedicated to our colleague, Christopher L. (Brest) Bishop, whose sudden death in 2008 ended a long and successful analysis of the AVHRR visible calibration. The quality of his work is shown by the comparison and evaluation results presented here. NR 35 TC 2 Z9 2 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD APR PY 2015 VL 32 IS 4 BP 744 EP 766 DI 10.1175/JTECH-D-14-00134.1 PG 23 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA CG0OT UT WOS:000352966600008 ER PT J AU Estes, MG Al-Hamdan, MZ Ellis, JT Judd, C Woodruff, D Thom, RM Quattrochi, D Watson, B Rodriguez, H Johnson, H Herder, T AF Estes, Maurice G. Al-Hamdan, Mohammad Z. Ellis, Jean T. Judd, Chaeli Woodruff, Dana Thom, Ronald M. Quattrochi, Dale Watson, Brian Rodriguez, Hugo Johnson, Hoyt Herder, Tom TI A MODELING SYSTEM TO ASSESS LAND COVER LAND USE CHANGE EFFECTS ON SAV HABITAT IN THE MOBILE BAY ESTUARY SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE land use; hydrologic; aquatic; ecosystem; modeling; Mobile Bay; Gulf of Mexico ID SUBMERSED AQUATIC VEGETATION; SEAGRASS HALODULE-WRIGHTII; OF-MEXICO HYPOXIA; CHESAPEAKE BAY; WATER-QUALITY; LIGHT REQUIREMENTS; RIVER; SURVIVAL; WETLANDS; ECOLOGY AB Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity inthe shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services. C1 [Estes, Maurice G.] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35805 USA. [Al-Hamdan, Mohammad Z.] Univ Space Res Assoc, Dept Earth Sci, Huntsville, AL 35805 USA. [Ellis, Jean T.] Univ S Carolina, Dept Geog, Columbia, SC 29208 USA. [Ellis, Jean T.] Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USA. [Judd, Chaeli; Woodruff, Dana; Thom, Ronald M.] Pacific Northwest Natl Lab, Sequim, WA 98382 USA. [Quattrochi, Dale] NASA, Dept Earth Sci, MSFC, Huntsville, AL 35805 USA. [Watson, Brian] Tetra Tech, Water Resources, Atlanta, GA 30339 USA. [Rodriguez, Hugo] Tetra Tech, Atlanta, GA 30339 USA. [Johnson, Hoyt] Terra Syst Southwest, Tucson, AZ 86303 USA. [Herder, Tom] Mobile Bay Natl Estuary Program, Mobile, AL 36615 USA. RP Estes, MG (reprint author), Univ Alabama, Ctr Earth Syst Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM maury.estes@nsstc.uah.edu FU NASA through USRA [NNM08AA04A] FX Funding for this research was provided by the NASA Applied Science Program, John Haynes Program Manager, through USRA cooperative agreement NNM08AA04A. Dr. Valerie Cullinan (PNNL) assisted in statistical exploration of viable models and review of data and Jay Hodgson at the University of Alabama, Heather Brusnahan at Grand Valley State University, and Danielle Bolte at the University of Alabama in Huntsville assisted with watershed model data formatting and analysis of hydrologic model outputs. NR 74 TC 3 Z9 3 U1 4 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD APR PY 2015 VL 51 IS 2 BP 513 EP 536 DI 10.1111/jawr.12263 PG 24 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CF8EX UT WOS:000352789900015 ER PT J AU Kirstetter, PE Hong, Y Gourley, JJ Schwaller, M Petersen, W Cao, Q AF Kirstetter, Pierre-Emmanuel Hong, Y. Gourley, J. J. Schwaller, M. Petersen, W. Cao, Qing TI Impact of sub-pixel rainfall variability on spaceborne precipitation estimation: evaluating the TRMM 2A25 product SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE satellite-based rain estimation; radar; QPE; conditional bias; random error ID SURFACE REFERENCE TECHNIQUE; CONTINENTAL UNITED-STATES; PROFILING ALGORITHM; GAUGE DATA; RADAR; SATELLITE; VALIDATION; QPE; ATTENUATION; AFRICA AB Rain intensity spectra as seen by space sensors feed numerous applications at global scales ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. Rainfall variability at scales finer than what is resolved by current space sensors affects their detection capabilities, the characterization of rainfall types, as well as the quantification of rainfall rates. A high-resolution surface rainfall product is used to evaluate the impact of rainfall variability within the field of view (FOV) of the Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The primary contribution of this study is to assess the impact of rainfall variability in terms of occurrence, types and rate at PR's pixel resolution on PR precipitation detection, classification and quantification. Several aspects of PR errors are revealed and quantified including sensitivity to non-uniform beam filling. While the error structure of the PR is complicated because of the interaction of these factors, simple error models are developed to describe the PR performances. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors on board low Earth-orbiting satellites such as microwave imagers and dual-frequency radars such as with the Global Precipitation Measurement (GPM) mission. C1 [Kirstetter, Pierre-Emmanuel; Hong, Y.] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Kirstetter, Pierre-Emmanuel; Gourley, J. J.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Kirstetter, Pierre-Emmanuel; Hong, Y.; Cao, Qing] Natl Weather Ctr, Adv Radar Res Ctr, Norman, OK USA. [Schwaller, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Petersen, W.] NASA, Wallops Flight Facil, Wallops Isl, VA USA. RP Hong, Y (reprint author), Adv Radar Res Ctr 4610, Natl Weather Ctr, 120 David L Boren Blvd, Norman, OK 73072 USA. EM yanghong@ou.edu RI Kirstetter, Pierre/E-2305-2013; Gourley, Jonathan/C-7929-2016; Measurement, Global/C-4698-2015; Hong, Yang/D-5132-2009 OI Kirstetter, Pierre/0000-0002-7381-0229; Gourley, Jonathan/0000-0001-7363-3755; Hong, Yang/0000-0001-8720-242X FU NASA Global Precipitation Measurement mission Ground Validation Management FX We are very much indebted to the team responsible for the NMQ/Q2 products, especially Carrie Langston. We want to thank three anonymous reviewers, whose comments were very useful in improving the manuscript. The 2A23 and 2A12 products were obtained from the Goddard Earth Sciences Data and Information Services Center. This work was funded by a post-doctoral grant from the NASA Global Precipitation Measurement mission Ground Validation Management. NR 38 TC 8 Z9 8 U1 5 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD APR PY 2015 VL 141 IS 688 BP 953 EP 966 DI 10.1002/qj.2416 PN A PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LO UT WOS:000353412600024 ER PT J AU Gao, S Chamberlain, NF Guo, YJ AF Gao, Steven Chamberlain, Neil F. Guo, Y. Jay TI Guest Editorial Antennas for Satellite Communications SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Editorial Material C1 [Gao, Steven] Univ Kent, Sch Engn & Digital Arts, Canterbury CT2 7NT, Kent, England. [Chamberlain, Neil F.] CALTECH, Jet Prop Lab, Flight Commun Syst, Pasadena, CA 91109 USA. [Guo, Y. Jay] Univ Technol Sydney, Global Big Data Technol Ctr, Ultimo, NSW 2007, Australia. RP Gao, S (reprint author), Univ Kent, Sch Engn & Digital Arts, Canterbury CT2 7NT, Kent, England. RI Guo, Y/A-8873-2011 OI Guo, Y/0000-0001-6008-9682 NR 0 TC 0 Z9 0 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD APR PY 2015 VL 63 IS 4 SI SI BP 1186 EP 1190 DI 10.1109/TAP.2015.2415011 PN 1 PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA CF6YI UT WOS:000352702400001 ER PT J AU Huber, S Younis, M Krieger, G Moreira, A Wiesbeck, W AF Huber, Sigurd Younis, Marwan Krieger, Gerhard Moreira, Alberto Wiesbeck, Werner TI A Reflector Antenna Concept Robust Against Feed Failures for Satellite Communications SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Defocused; digital beamforming (DBF); multiple-input multiple-output (MIMO); reflector antennas; satellite communications ID DESIGN AB Since the first communications satellites have been launched to space with the beginning of the 1960s, these systems have undergone a rapid development. Amongst others, this development is driven by an increasing number of subscribers exchanging larger and larger data volumes. This need of data capacity cannot be satisfied alone by raising the sheer number of communications satellites, but requires powerful individual systems, which operate reliably and are cost effective at the same time. In this context two requirements on the communications antenna are the provision of high directional gain and robustness in terms of beam stability. Classically, large unfurlable mesh reflector antennas in conjunction with feed arrays are adopted to illuminate a certain region on ground with high gain. An inherent problem of such reflector-feed configurations is that these systems are prone to feed element failures. In the worst case, this could result in a 'blind' spot, where no communication is possible. This paper introduces a robust antenna concept, which combines the virtue of reflector antennas, namely the large aperture, with the advantage of direct radiating planar array antennas, which is the beam stability in the presence of element failures. In order to unfold its full potential this concept makes use of digital beamforming techniques, which allow to control the illumination in a flexible way. C1 [Huber, Sigurd; Younis, Marwan; Krieger, Gerhard; Moreira, Alberto] German Aerosp Ctr DLR, Microwaves & Radar Inst, Oberpfaffenhofen, Germany. [Wiesbeck, Werner] Karlsruhe Inst Technol, Inst High Frequency Tech & Elect IHE, D-76021 Karlsruhe, Germany. [Younis, Marwan] Univ Karlsruhe TH, Inst Hochstfrequenztech & Elekt, Karlsruhe, Germany. [Younis, Marwan] Jet Prop Lab, Pasadena, CA USA. [Younis, Marwan] Univ Karlsruhe TH, Karlsruhe, Germany. [Younis, Marwan] Carl Cranz Gesellschaft, Wessling, Germany. RP Huber, S (reprint author), German Aerosp Ctr DLR, Microwaves & Radar Inst, Oberpfaffenhofen, Germany. EM sigurd.huber@dlr.de RI Krieger, Gerhard/D-5164-2012; Moreira, Alberto/C-1147-2013 OI Krieger, Gerhard/0000-0002-4548-0285; Moreira, Alberto/0000-0002-3436-9653 NR 12 TC 1 Z9 1 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD APR PY 2015 VL 63 IS 4 SI SI BP 1218 EP 1224 DI 10.1109/TAP.2014.2386301 PN 1 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA CF6YI UT WOS:000352702400004 ER PT J AU Lohn, JD Linden, DS Blevins, B Greenling, T Allard, MR AF Lohn, Jason D. Linden, Derek S. Blevins, Bruce Greenling, Thomas Allard, Mark R. TI Automated Synthesis of a Lunar Satellite Antenna System SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Antenna optimization; antenna synthesis; flight antennas; satellite antennas AB In recent years, spacecraft requirements have trended toward smaller, lighter, and less expensive systems with more capabilities. At the same time, demands on the communication systems have increased, including faster data rates, lower power budgets, reduced system volume, and smaller link margins. The combination of these factors has posed numerous engineering challenges for antenna system designers, often forming complex tradeoffs among design parameters such as bandwidth, pattern control, beamwidth, and antenna size. In this paper, we show how a challenging set of antenna requirements were met for NASA's recent LADEE mission. We focus on the difficulties inherent in the requirements for both omnidirectional and medium gain antennas, both in S-band. We present techniques used to develop a requirements-compliant system based on our research in antenna synthesis methods. Compared to the conventional antennas considered by NASA for the mission, the antennas we developed yielded 65% increased downlink coverage and 44% cost savings for the mission. The deployed flight antennas were the only antennas on the mission and performed above expectations during the 8-month mission, which concluded in April 2014. C1 [Lohn, Jason D.] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15289 USA. [Linden, Derek S.] X5 Syst Inc, Mountain View, CA 94035 USA. [Blevins, Bruce; Greenling, Thomas] Antenna Dev Corp, Las Cruces, NM 88001 USA. [Allard, Mark R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lohn, JD (reprint author), Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15289 USA. EM jlohn@cmu.edu; dlinden@x5systems.com; bblevins@antdevco.com; tgreenling@antdevco.com; mark.r.allard@nasa.gov NR 14 TC 1 Z9 1 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD APR PY 2015 VL 63 IS 4 SI SI BP 1436 EP 1444 DI 10.1109/TAP.2015.2404332 PN 1 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA CF6YI UT WOS:000352702400027 ER PT J AU Smerdon, JE Cook, BI Cook, ER Seager, R AF Smerdon, Jason E. Cook, Benjamin I. Cook, Edward R. Seager, Richard TI Bridging Past and Future Climate across Paleoclimatic Reconstructions, Observations, and Models: A Hydroclimate Case Study SO JOURNAL OF CLIMATE LA English DT Article ID LAST MILLENNIUM; ELEVATED CO2; POTENTIAL EVAPOTRANSPIRATION; STATISTICAL FRAMEWORK; STOMATAL CONDUCTANCE; GLOBAL DROUGHT; NORTH-AMERICA; GREAT-PLAINS; PROXY DATA; WATER AB Potential biases in tree-ring reconstructed Palmer drought severity index (PDSI) are evaluated using Thornthwaite (TH), Penman-Monteith (PM), and self-calibrating Penman-Monteith (SC) PDSI in three diverse regions of the United States and tree-ring chronologies from the North American drought atlas (NADA). Minimal differences are found between the three PDSI reconstructions and all compare favorably to independently reconstructed Thornthwaite-based PDSI from the NADA. Reconstructions are bridged with model-derived PDSI_TH and PDSI_PM, which both closely track modeled soil moisture (near surface and full column) during the twentieth century. Differences between modeled moisture-balance metrics only emerge in twenty-first-century projections. These differences confirm the tendency of PDSI_TH to overestimate drying when temperatures exceed the range of the normalization interval; the more physical accounting of PDSI_PM compares well with modeled soil moisture in the projection interval. Remaining regional differences in the secular behavior of projected soil moisture and PDSI_PM are interpreted in terms of underlying physical processes and temporal sampling. Results demonstrate the continued utility of PDSI as a metric of surface moisture balance while additionally providing two recommendations for future work: 1) PDSI_PM (or similar moisture-balance metrics) compare well to modeled soil moisture and are an appropriate means of representing soil-moisture balance in model simulations and 2) although PDSI_PMis more physically appropriate than PDSI_TH, the latter metric does not bias tree-ring reconstructions of past hydroclimate variability and, as such, reconstructions targeting PDSI_TH can be used with confidence in data-model comparisons. These recommendations and the collective results of this study thus provide a framework for comparing hydroclimate variability within paleoclimatic, observational, and modeled data. C1 [Smerdon, Jason E.; Cook, Benjamin I.; Cook, Edward R.; Seager, Richard] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Smerdon, JE (reprint author), Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9W,POB 1000, Palisades, NY 10964 USA. EM jsmerdon@ldeo.columbia.edu RI Smerdon, Jason/F-9952-2011; Cook, Benjamin/H-2265-2012 FU NOAA Award Global Decadal Hydroclimate Variability and Change [NA10OAR4310137]; DOE [DE-SC0005107]; NSF [AGS-1243204]; NASA FX We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and leads development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Haibo Liu and Naomi Henderson provided computational and data processing support at LDEO. RS and JES were supported in part by the NOAA Award Global Decadal Hydroclimate Variability and Change (NA10OAR4310137). RS was also supported by DOE Award DE-SC0005107. Further support came from NSF Award AGS-1243204. BIC was supported by NASA. NR 79 TC 10 Z9 10 U1 1 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD APR PY 2015 VL 28 IS 8 BP 3212 EP 3231 DI 10.1175/JCLI-D-14-00417.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF3ZI UT WOS:000352487300017 ER PT J AU Farhadi, L Reichle, RH De Lannoy, GJM Kimball, JS AF Farhadi, Leila Reichle, Rolf H. De Lannoy, Gabrielle J. M. Kimball, John S. TI Assimilation of Freeze-Thaw Observations into the NASA Catchment Land Surface Model SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Data assimilation; Land surface model ID CARBON SEQUESTRATION; SCATTEROMETER NSCAT; HIGH-LATITUDES; ICE-SHEET; SOIL; SNOW; SEASONS; BOREAL; LANDSCAPE; FROZEN AB The land surface freeze-thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206 degrees and 0.061 degrees C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 degrees and 0.036 degrees C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 degrees C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission. C1 [Farhadi, Leila; Reichle, Rolf H.] NASA, Global Modeling & Assimilat Off, Goddard Flight Ctr, Greenbelt, MD USA. [De Lannoy, Gabrielle J. M.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. [De Lannoy, Gabrielle J. M.] NASA, Univ Space Res Assoc, Goddard Space Flight Ctr, Greenbelt, MD USA. [Kimball, John S.] Univ Montana, Flathead Lake Biol Stn, Div Biol Sci, Polson, MT 59860 USA. RP Farhadi, L (reprint author), George Washington Univ, Dept Civil & Environm Engn, 801 22nd St NW, Washington, DC 20052 USA. EM lfarhadi@gwu.edu RI Reichle, Rolf/E-1419-2012 FU SMAP Science Definition team; NASA program on the Science of Terra and Aqua; NASA High End Computing Program FX This study was funded through support from the SMAP Science Definition team and the NASA program on the Science of Terra and Aqua. Computing was supported by the NASA High End Computing Program. NR 52 TC 2 Z9 2 U1 2 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD APR PY 2015 VL 16 IS 2 BP 730 EP 743 DI 10.1175/JHM-D-14-0065.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF7KM UT WOS:000352735100017 ER PT J AU Roundy, JK Wood, EF AF Roundy, Joshua K. Wood, Eric F. TI The Attribution of Land-Atmosphere Interactions on the Seasonal Predictability of Drought SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Atmosphere-land interaction; Seasonal forecasting; Numerical weather prediction; forecasting ID COUPLING EXPERIMENT; SOIL-MOISTURE; PART I; PRECIPITATION; REANALYSIS; PREDICTION; FRAMEWORK; MODELS; GLACE; CFSV2 AB Drought has significant social and economic impacts that could be reduced by preparations made possible through seasonal prediction. During the convective season, when the potential of extreme drought is the highest, the soil moisture can provide a means of improved predictability through land-atmosphere interactions. In the past decade, there has been a significant amount of work aimed at better understanding the predictability of land-atmosphere interactions. One such approach classifies the interactions between the land and the atmosphere into coupling states. The coupling states have been shown to be persistent and were used to demonstrate the existence of strong biases in the coupling of the NCEP Climate Forecast System, version 2 (CFSv2). In this work, the attribution of the coupling state on the seasonal prediction of precipitation and temperature and the extent to which the bias in the coupling state hinders the prediction of drought is analyzed. This analysis combines the predictions from statistical models with the predictions from CFSv2 as a means to isolate and attribute the predictability. The results indicate that the intermountain region is a hotspot for seasonal prediction because of local persistence of initial conditions. In addition, the local persistence of initial conditions provides some level of drought prediction; however, accounting for the spatial interactions provides a more complete prediction. Furthermore, the statistical models provide more skillful predictions of precipitation during drought than the CFSv2; however, the CFSv2 predictions are more skillful for daily maximum temperature during drought. The implication, limitations, and extensions of this work are also discussed. C1 [Roundy, Joshua K.; Wood, Eric F.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. RP Roundy, JK (reprint author), NASA, Goddard Space Flight Ctr, Bldg 33,Room G209, Greenbelt, MD 20771 USA. EM joshua.roundy@nasa.gov RI Roundy, Joshua/H-9377-2016 OI Roundy, Joshua/0000-0003-0328-3248 FU NOAA Climate Program Office [NA10OAR4310246, NA12OAR4310090] FX This research was supported by the NOAA Climate Program Office through Grants NA10OAR4310246 and NA12OAR4310090. This support is gratefully acknowledged. We would also like to thank the three reviewers who provided helpful and constructive insights. NR 26 TC 1 Z9 1 U1 1 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD APR PY 2015 VL 16 IS 2 BP 793 EP 810 DI 10.1175/JHM-D-14-0121.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF7KM UT WOS:000352735100021 ER PT J AU Li, HY Leung, LR Getirana, A Huang, MY Wu, H Xu, YB Guo, JL Voisin, N AF Li, Hong-Yi Leung, L. Ruby Getirana, Augusto Huang, Maoyi Wu, Huan Xu, Yubin Guo, Jiali Voisin, Nathalie TI Evaluating Global Streamflow Simulations by a Physically Based Routing Model Coupled with the Community Land Model SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Water budget; Coupled models; Hydrologic models; Land surface model; Annual variations; Seasonal variability ID EARTH SYSTEM MODELS; AMAZON BASIN; WATER-BALANCE; SURFACE; RUNOFF; DISCHARGE; PRECIPITATION; DYNAMICS; RIVERS AB Accurately simulating hydrological processes such as streamflow is important in land surface modeling because they can influence other land surface processes, such as carbon cycle dynamics, through various interaction pathways. This study aims to evaluate the global application of a recently developed Model for Scale Adaptive River Transport (MOSART) coupled with the Community Land Model, version 4 (CLM4). To support the global implementation of MOSART, a comprehensive global hydrography dataset has been derived at multiple resolutions from different sources. The simulated runoff fields are first evaluated against the composite runoff map from the Global Runoff Data Centre (GRDC). The simulated streamflow is then shown to reproduce reasonably well the observed daily and monthly streamflow at over 1600 of the world's major river stations in terms of annual, seasonal, and daily flow statistics. The impacts of model structure complexity are evaluated, and results show that the spatial and temporal variability of river velocity simulated by MOSART is necessary for capturing streamflow seasonality and annual maximum flood. Other sources of the simulation bias include uncertainties in the atmospheric forcing, as revealed by simulations driven by four different climate datasets, and human influences, based on a classification framework that quantifies the impact levels of large dams on the streamflow worldwide. C1 [Li, Hong-Yi; Leung, L. Ruby; Huang, Maoyi; Xu, Yubin; Guo, Jiali; Voisin, Nathalie] Pacific NW Natl Lab, Richland, WA 99352 USA. [Getirana, Augusto; Wu, Huan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Getirana, Augusto; Wu, Huan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Li, HY (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-33, Richland, WA 99352 USA. EM hongyi.li@pnnl.gov RI Getirana, Augusto/G-4630-2011; Wu, Huan/K-1003-2013; Huang, Maoyi/I-8599-2012; Li, Hong-Yi/C-9143-2014; OI Wu, Huan/0000-0003-2920-8860; Huang, Maoyi/0000-0001-9154-9485; Li, Hong-Yi/0000-0001-5690-3610; Voisin, Nathalie/0000-0002-6848-449X FU Office of Science of the U.S. Department of Energy; PNNL Platform for Regional Integrated Modeling and Analysis (PRIMA) initiative; U.S. Department of Energy [DE-AC05-76RLO1830]; NASA Postdoctoral Program (NPP); NASA's Applied Science Program FX This study was supported by the Office of Science of the U.S. Department of Energy as part of the Earth System Modeling (ESM) and Integrated Assessment Modeling (IAM) programs. Development of the datasets used in this study is partly supported by the PNNL Platform for Regional Integrated Modeling and Analysis (PRIMA) initiative. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RLO1830. A. Getirana is funded by the NASA Postdoctoral Program (NPP) managed by Oak Ridge Associated Universities (ORAU). H. Wu is supported by NASA's Applied Science Program. The first author also wants to thank C. Nilsson and C. A. Reidy for providing the data of river system classification. NR 48 TC 5 Z9 5 U1 2 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD APR PY 2015 VL 16 IS 2 BP 948 EP 971 DI 10.1175/JHM-D-14-0079.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF7KM UT WOS:000352735100031 ER PT J AU Youngs, MK Thompson, AF Flexas, MM Heywood, KJ AF Youngs, Madeleine K. Thompson, Andrew F. Flexas, M. Mar Heywood, Karen J. TI Weddell Sea Export Pathways from Surface Drifters SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID TROPICAL PACIFIC-OCEAN; ANTARCTIC SLOPE FRONT; SOUTHERN ANNULAR MODE; SCOTIA CONFLUENCE; EDDY-DIFFUSIVITY; KRILL TRANSPORT; BOTTOM WATER; VARIABILITY; CIRCULATION; ICE AB The complex export pathways that connect the surface waters of the Weddell Sea with the Antarctic Circumpolar Current influence water mass modification, nutrient fluxes, and ecosystem dynamics. To study this exchange, 40 surface drifters, equipped with temperature sensors, were released into the northwestern Weddell Sea's continental shelf and slope frontal systemin late January 2012. Comparison of the drifter trajectories with a similar deployment in early February 2007 provides insight into the interannual variability of the surface circulation in this region. Observed differences in the 2007 and 2012 drifter trajectories are related to a variable surface circulation responding to changes in wind stress curl over the Weddell Gyre. Differences between northwestern Weddell Sea properties in 2007 and 2012 include 1) an enhanced cyclonic wind stress forcing over the Weddell Gyre in 2012; 2) an acceleration of the Antarctic Slope Current (ASC) and an offshore shift of the primary drifter export pathway in 2012; and 3) a strengthening of the Coastal Current (CC) over the continental shelf in 2007. The relationship between wind stress forcing and surface circulation is reproduced over a longer time period in virtual drifter deployments advected by a remotely sensed surface velocity product. The mean offshore position and speed of the drifter trajectories are correlated with the wind stress curl over the Weddell Gyre, although with different temporal lags. The drifter observations are consistent with recent modeling studies suggesting that Weddell Sea boundary current variability can significantly impact the rate and source of exported surface waters to the Scotia Sea, a process that determines regional chlorophyll distributions. C1 [Youngs, Madeleine K.; Thompson, Andrew F.] CALTECH, Environm Sci & Engn, Pasadena, CA 91125 USA. [Flexas, M. Mar] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Heywood, Karen J.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. RP Youngs, MK (reprint author), CALTECH, Environm Sci & Engn, Pasadena, CA 91125 USA. EM myoungs@caltech.edu OI Heywood, Karen/0000-0001-9859-0026 FU NOAA Global Drifter Program (GDP); U.K. Natural Environment Research Council (NERC) through the Antarctic Funding Initiative [NE/C50633X/1, NE/H01439X/1]; Summer Undergraduate Research Fellowships (SURFs); George W. Housner Fund; James Morgan Fellowship; NSF [NSF OPP-1246460]; NASA Postdoctoral Program at the Jet Propulsion Laboratory/California Institute of Technology FX We thank everyone who made the GENTOO cruise successful, especially the officers and crew of the RRS James Clark Ross. We are grateful for the financial support of the NOAA Global Drifter Program (GDP) as well as the assistance of Mayra Pazos with the drifter data. Conversations with Alberto Naveira Garabato and Angelika Renner improved this manuscript. The ADELIE and GENTOO cruises were supported by the U.K. Natural Environment Research Council (NERC) through the Antarctic Funding Initiative (NE/C50633X/1 and NE/H01439X/1, respectively). Support for the drifters came from the GDP and the Davidow Discovery Fund. MKY's participation was funded by the J. Weldon Green and Samuel P. and Frances Krown Summer Undergraduate Research Fellowships (SURFs), the George W. Housner Fund, and the James Morgan Fellowship. AFT was supported by NSF Grant NSF OPP-1246460. MMFs participation was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory/California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. NR 60 TC 3 Z9 3 U1 3 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD APR PY 2015 VL 45 IS 4 BP 1068 EP 1085 DI 10.1175/JPO-D-14-0103.1 PG 18 WC Oceanography SC Oceanography GA CF4SV UT WOS:000352542800008 ER PT J AU Brandis, AM Johnston, CO Cruden, BA Prabhu, D Bose, D AF Brandis, A. M. Johnston, C. O. Cruden, B. A. Prabhu, D. Bose, D. TI Uncertainty Analysis and Validation of Radiation Measurements for Earth Reentry SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 42nd AIAA Thermophysics Conference CY JUN 27-30, 2011 CL Honolulu, HI SP AIAA, NASA Ames Res Ctr, NASA Strateg Capabilities Assests Program ID LUNAR-RETURN CONDITIONS; SHOCK-LAYER RADIATION AB This paper presents an overview of the analysis and measurements of equilibrium radiation obtained in the NASA Ames Research Center's Electric Arc Shock Tube facility as part of testing for the multipurpose crew vehicle. These experiments were aimed at measuring the level of radiation encountered during conditions relevant to lunar return into Earth's atmosphere. Subsequently, the targeted testing conditions ranged from 8 to 12 km/s and 0.1 to 1.0 torr (13.3 to 133 Pa). A comprehensive comparison between the spectrally resolved absolute radiance measured in the Electric Arc Shock Tube facility and the predictive tools (NEQAIR and HARA), is presented. To provide a more accurate representation of the uncertainty, the current predictive capability has been calculated as a function of velocity. The results of the analysis have shown that both models underpredict the experimental data at lower shock speeds (less than 10 km/s), with the agreement improving with increasing shock speed. At shocks speeds greater than similar to 10 km/s, the agreement between the codes and the experiment is within one standard deviation in the scatter of the experimental result. Discrepancies at lower speeds have been attributed to a higher than equilibrium level of electron number density in the Electric Arc Shock Tube flow. Furthermore, power law coefficients characterizing the radiance versus the velocity relationship measured in the Electric Arc Shock Tube are presented for ease of conducting future experimental and computational comparisons. C1 [Brandis, A. M.] Univ Affiliated Res Ctr, Aerothermodynam Branch, Moffett Field, CA 94035 USA. [Johnston, C. O.] NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23669 USA. [Cruden, B. A.; Prabhu, D.] ERC Inc, Aerothermodynam Branch, Moffett Field, CA 94035 USA. [Bose, D.] NASA, Ames Res Ctr, Aerothermodynam Branch, Moffett Field, CA 94035 USA. [Prabhu, D.; Bose, D.] NASA, Ames Res Ctr, Associate AIAA, Moffett Field, CA 94035 USA. RP Brandis, AM (reprint author), Univ Affiliated Res Ctr, Aerothermodynam Branch, Moffett Field, CA 94035 USA. EM aaron.m.brandis@nasa.gov NR 25 TC 1 Z9 1 U1 0 U2 9 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR PY 2015 VL 29 IS 2 BP 209 EP 221 DI 10.2514/1.T4000 PG 13 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CF5GG UT WOS:000352584700001 ER PT J AU Martin, A Cozmuta, I Wright, MJ Boyd, ID AF Martin, Alexandre Cozmuta, Ioana Wright, Michael J. Boyd, Iain D. TI Kinetic Rates for Gas-Phase Chemistry of Phenolic-Based Carbon Ablator in Atmospheric Air SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 48th AIAA Aerospace Sciences Meeting and Exhibit Including the New Horizons Forum and Aerospace Exposition CY JAN 04-08, 2010 CL Orlando, FL SP AIAA, Vinnova, Maritime Competence Ctr Lighthouse, Swedish Armed Forces, Swedish Def Mat Agcy, NASA Langley Res Ctr, NASA Dryden Flight Res Ctr ID POTENTIAL-ENERGY SURFACES; THERMAL RATE CONSTANTS; SHOCK-TUBE; HYPERSONIC FLOWFIELDS; ENTRY AEROSHELLS; PYROLYSIS-GAS; C ATOMS; COMBUSTION; SYSTEM; NO AB A comparison between three chemistry models used for the aerothermodynamic modeling of carbon-based phenolic ablative heat shields in atmospheric air is presented. The differences between the models, as well as the results they produced for the boundary-layer composition and prediction of convective and radiative heat fluxes, are put forward. A new model, built by optimizing and reducing a baseline model constructed using kinetic rates from a combustion database, is presented. Some of the important reactions, such as the CN/CO exchange, are highlighted, and their effects on surface heating are discussed. The resulting model comprises an extensive set of reactions that are relevant to carbon-phenolic ablators in high-enthalpy re-entry environments. The analysis presented in this paper shows that this model preserves the important features of the three existing chemistry models while correcting their deficiencies for a more accurate description pertinent to re-entry conditions. C1 [Martin, Alexandre] Univ Kentucky, Associate Fac, Ctr Computat Sci, Dept Mech Engn, Lexington, KY 40506 USA. [Martin, Alexandre] Univ Kentucky, Associate AIAA, Lexington, KY 40506 USA. [Cozmuta, Ioana] NASA, Ames Res Ctr, Sci & Technol Corp, Moffett Field, CA 94035 USA. [Wright, Michael J.] NASA, Ames Res Ctr, Entry Syst & Technol Div Associate, Entry Syst Modeling Project, Moffett Field, CA 94035 USA. [Wright, Michael J.] NASA, Ames Res Ctr, Associate AIAA, Moffett Field, CA 94035 USA. [Boyd, Iain D.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Boyd, Iain D.] Univ Michigan, AIAA, Ann Arbor, MI 48109 USA. RP Martin, A (reprint author), Univ Kentucky, Associate Fac, Ctr Computat Sci, Dept Mech Engn, 261 Ralph G Anderson Bldg, Lexington, KY 40506 USA. RI Martin, Alexandre/L-9520-2014 OI Martin, Alexandre/0000-0003-2216-2468 NR 85 TC 3 Z9 3 U1 1 U2 7 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR PY 2015 VL 29 IS 2 BP 222 EP 240 DI 10.2514/1.T4184 PG 19 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CF5GG UT WOS:000352584700002 ER PT J AU Hartwig, JW McQuillen, JB Chato, DJ AF Hartwig, Jason W. McQuillen, John B. Chato, David J. TI Warm Pressurant Effects on the Bubble Point for Cryogenic Liquid Acquisition Devices SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit CY JUL 14-19, 2013 CL San Jose, CA SP AIAA, ASME, SAE, ASEE ID HYDROGEN; SCREENS AB This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine-mesh screen samples (325 x 2300, 450 x 2750, and 510 x 3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm noncondensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0-90 K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity because the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and liquid acquisition device system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results. C1 [Hartwig, Jason W.; McQuillen, John B.; Chato, David J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Hartwig, JW (reprint author), Propellants & Prop Branch, 21000 Brookpark Rd,MS 301-3, Edwards AFB, CA 93524 USA. RI Chato, David/B-2698-2013 OI Chato, David/0000-0003-2990-0646 NR 31 TC 3 Z9 3 U1 0 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR PY 2015 VL 29 IS 2 BP 297 EP 305 DI 10.2514/1.T4259 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CF5GG UT WOS:000352584700009 ER PT J AU Hartwig, J McQuillen, J Jurns, J AF Hartwig, Jason McQuillen, John Jurns, John TI Screen Channel Liquid-Acquisition-Device Bubble Point Tests in Liquid Oxygen SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 42nd AIAA Thermophysics Conference CY JUN 27-30, 2011 CL Honolulu, HI SP AIAA, NASA Ames Res Ctr, NASA Strateg Capabilities Assests Program ID HYDROGEN; PRESSURE AB This paper examines the key parameters that affect the bubble point pressure for screen channel liquid acquisition devices in cryogenic liquid oxygen at elevated pressures and temperatures typical of a high-pressure propellant tank. An in-depth analysis of the effect of varying liquid temperature, pressure, and pressurization gas type on the bubble point is presented. Testing of a 200 x 1400 and 325 x 2300 Dutch twill screen sample was conducted at the NASA John H. Glenn Research Center at Lewis Field in Cleveland, Ohio. Test conditions ranged from 92 to 130 K and 0.138 to 1.79 MPa. The bubble point is shown to be a strong function of temperature with a secondary dependence on the amount of liquid subcooling. The subcooling dependence is believed to be a function of the amount of evaporation and condensation occurring at the liquid-gas interface at the screen. Good agreement exists between the data and theory for normally saturated liquid, but the model generally underpredicts the bubble point in subcooled liquid. Using the liquid temperature at the screen as opposed to the bulk liquid temperature to determine the surface tension of the fluid results in better correlation with the data. C1 [Hartwig, Jason] NASA, John H Glenn Res Ctr Lewis Field, Propellants & Prop Branch, Cleveland, OH 44135 USA. [McQuillen, John] NASA, John H Glenn Res Ctr Lewis Field, Fluid Phys & Transport Branch, Cleveland, OH 44135 USA. [Jurns, John] European Spallat Source, S-22100 Lund, Sweden. RP Hartwig, J (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Propellants & Prop Branch, 21000 Brookpk Rd,MS 500-1, Cleveland, OH 44135 USA. NR 19 TC 7 Z9 7 U1 0 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR PY 2015 VL 29 IS 2 BP 353 EP 363 DI 10.2514/1.T3990 PG 11 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CF5GG UT WOS:000352584700015 ER PT J AU Hartwig, J McQuillen, J AF Hartwig, Jason McQuillen, John TI Screen Channel Liquid-Acquisition-Device Bubble Point Tests in Liquid Methane SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT 50th AIAA Aerospace Sciences Meeting and Exhibit Including the New Horizons Forum and Aerospace Exposition CY JAN 06-13, 2012 CL Nashville, TN SP AIAA, US AF Off Sci Res ID MIXTURES; PRESSURE; HYDROGEN AB This paper examines the effect of varying the thermodynamic state and type of pressurant gas on the bubble point pressure for screen channel liquid acquisition devices in cryogenic liquid methane across a wide range of pressures and temperatures. Testing of a 325 x 2300 Dutch twill screen sample was conducted at the NASA John H. Glenn Research Center at Lewis Field in Cleveland, Ohio. Test conditions ranged from 106 to 160 K and 0.0618 to 1.78 MPa, using helium, methane, and nitrogen as pressurant gases. The bubble point is shown to be a strong function of temperature and a weak function of liquid subcooling. Pressurizing the propellant above the saturation pressure increase the overall margin in the total allowable pressure drop across a liquid acquisition device when using helium or nitrogen pressurant above the current predicted value. The model predicts well for saturated liquid and autogenous pressurization but underpredicts for a subcooled liquid using a noncondensible gas for pressurization. C1 [Hartwig, Jason] NASA, John H Glenn Res Ctr Lewis Field, Propellants & Prop Branch, Cleveland, OH 44135 USA. [McQuillen, John] NASA, John H Glenn Res Ctr Lewis Field, Fluid Phys & Transport Branch, Cleveland, OH 44135 USA. RP Hartwig, J (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Propellants & Prop Branch, 21000 Brookpk Rd,MS 500-1, Cleveland, OH 44135 USA. NR 36 TC 5 Z9 5 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR PY 2015 VL 29 IS 2 BP 364 EP 375 DI 10.2514/1.T4078 PG 12 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CF5GG UT WOS:000352584700016 ER PT J AU Jones, J Righter, K Chabot, N Jacobsen, S AF Jones, John Righter, Kevin Chabot, Nancy Jacobsen, Stein TI Remembering Mike Drake SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EUCRITE PARENT BODY; INNER SOLAR-SYSTEM; TRACE-ELEMENT FRACTIONATION; MAGMATIC IRON-METEORITES; RARE-EARTH ELEMENTS; CORE FORMATION; SILICATE MELT; SIDEROPHILE ELEMENTS; GEOCHEMICAL CONSTRAINTS; HIGH-TEMPERATURE C1 [Jones, John; Righter, Kevin] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Chabot, Nancy] Johns Hopkins Appl Phys Lab, Laurel, MD USA. [Jacobsen, Stein] Harvard Univ, Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Righter, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov RI Chabot, Nancy/F-5384-2015 OI Chabot, Nancy/0000-0001-8628-3176 NR 112 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 523 EP 529 DI 10.1111/maps.12437 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200001 ER PT J AU Righter, K Danielson, LR Pando, KM Williams, J Humayun, M Hervig, RL Sharp, TG AF Righter, K. Danielson, L. R. Pando, K. M. Williams, J. Humayun, M. Hervig, R. L. Sharp, T. G. TI Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PLATINUM-GROUP ELEMENTS; SHERGOTTITE PARENT BODY; DEEP SULFUR CYCLE; SILICATE MELT; MARTIAN MANTLE; OXYGEN FUGACITY; SULFIDE LIQUID; BASALT MELT; EXPERIMENTAL CONSTRAINTS; IRON-METEORITES AB Highly siderophile elements (HSEs) can be used to understand accretion and core formation in differentiated bodies, due to their strong affinity for FeNi metal and sulfides. Coupling experimental studies of metal-silicate partitioning with analyses of HSE contents of Martian meteorites can thus offer important constraints on the early history of Mars. Here, we report new metal-silicate partitioning data for the PGEs and Au and Re across a wide range of pressure and temperature space, with three series designed to complement existing experimental data sets for HSE. The first series examines temperature effects for D(HSE) in two metallic liquid compositionsC-bearing and C-free. The second series examines temperature effects for D(Re) in FeO-bearing silicate melts and FeNi-rich alloys. The third series presents the first systematic study of high pressure and temperature effects for D(Au). We then combine our data with previously published partitioning data to derive predictive expressions for metal-silicate partitioning of the HSE, which are subsequently used to calculate HSE concentrations of the Martian mantle during continuous accretion of Mars. Our results show that at midmantle depths in an early magma ocean (equivalent to approximately 14GPa, 2100 degrees C), the HSE contents of the silicate fraction are similar to those observed in the Martian meteorite suite. This is in concert with previous studies on moderately siderophile elements. We then consider model calculations that examine the role of melting, fractional crystallization, and sulfide saturation/undersaturation in establishing the range of HSE contents in Martian meteorites derived from melting of the postcore formation mantle. The core formation modeling indicates that the HSE contents can be established by metal-silicate equilibrium early in the history of Mars, thus obviating the need for a late veneer for HSE, and by extension volatile siderophile elements, or volatiles in general. C1 [Righter, K.] NASA, Lyndon B Johnson Space Ctr, Mailcode KT, Houston, TX 77058 USA. [Danielson, L. R.; Pando, K. M.] NASA, Lyndon B Johnson Space Ctr, Jacobs Technol, JETS, Houston, TX 77058 USA. [Williams, J.; Humayun, M.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Williams, J.; Humayun, M.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32310 USA. [Hervig, R. L.; Sharp, T. G.] ASU Sch Earth & Space Explorat, Tempe, AZ USA. RP Righter, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Mailcode KT, 2101 NASA Pkwy, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov OI Humayun, Munir/0000-0001-8516-9435 FU NASA RTOPs; NASA FX We would like to dedicate this paper to Mike Drake who, along with Chris Capobianco, recognized the need for HSE partitioning data to help interpret terrestrial and planetary HSE data; a challenging endeavor at the relatively flexible conditions of the one bar gas mixing furnace, but an even thornier one at the inflexible high pressure conditions available in the solid media apparatus. This research is supported by NASA RTOPs to KR from the NASA Mars Fundamental Research and Cosmochemistry programs. Research performed at FSU was supported by grants from the NASA Cosmochemistry program to MH. The ASU SIMS facility is supported by NSF EAR 0960334. Discussions with and comments of J. Jones, A. Brandon, T. Lapen, and M. Righter are appreciated. Reviews of a very early version of this paper by J.-P. Lorand, and journal reviews by S. Huang and an anonymous reviewer, are also very much appreciated. NR 166 TC 11 Z9 11 U1 7 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 604 EP 631 DI 10.1111/maps.12393 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200008 ER PT J AU Jones, JH AF Jones, J. H. TI Various aspects of the petrogenesis of the Martian shergottite meteorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ND ISOTOPIC SYSTEMATICS; RB-SR; SM-ND; SNC METEORITES; DIFFERENTIATION HISTORY; PHASE-EQUILIBRIA; PB SYSTEMATICS; U-PB; AGE; CONSTRAINTS AB Several controversies are associated with the age and origin of the shergottite meteorites, a suite of basaltic samples from Mars. Here, it will be argued that (1) the shergottites have a young igneous age, 600Myr, (2) their parent magmas were relatively dry, (3) the range of initial isotopic compositions in shergottites is most likely due to assimilation of crustal materials by mantle-derived basaltic magmas, and (4) the intercumulus liquid compositions of shergottites such as Shergotty and Zagami are relatively well constrained. C1 NASA JSC, KR, Houston, TX 77058 USA. RP Jones, JH (reprint author), NASA JSC, KR, Houston, TX 77058 USA. EM john.h.jones@nasa.gov NR 88 TC 7 Z9 7 U1 1 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 674 EP 690 DI 10.1111/maps.12421 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200011 ER PT J AU Yang, SY Humayun, M Righter, K Jefferson, G Fields, D Irving, AJ AF Yang, Shuying Humayun, Munir Righter, Kevin Jefferson, Gwendolyn Fields, Dana Irving, Anthony J. TI Siderophile and chalcophile element abundances in shergottites: Implications for Martian core formation SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID SILICATE MELT COMPOSITION; MANTLE-DERIVED ROCKS; TRACE-ELEMENTS; PARTITION-COEFFICIENT; CHEMICAL-COMPOSITION; EARTH EVOLUTION; PLANETARY CORES; IRON-METEORITES; OXYGEN FUGACITY; SNC METEORITES AB Elemental abundances for volatile siderophile and chalcophile elements for Mars inform us about processes of accretion and core formation. Such data are few for Martian meteorites, and are often lacking in the growing number of desert finds. In this study, we employed laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) to analyze polished slabs of 15 Martian meteorites for the abundances of about 70 elements. This technique has high sensitivity, excellent precision, and is generally accurate as determined by comparisons of elements for which literature abundances are known. However, in some meteorites, the analyzed surface is not representative of the bulk composition due to the over- or underrepresentation of a key host mineral, e.g., phosphate for rare earth elements (REE). For other meteorites, the range of variation in bulk rastered analyses of REE is within the range of variation reported among bulk REE analyses in the literature. An unexpected benefit has been the determination of the abundances of Ir and Os with a precision and accuracy comparable to the isotope dilution technique. Overall, the speed and small sample consumption afforded by this technique makes it an important tool widely applicable to small or rare meteorites for which a polished sample was prepared. The new volatile siderophile and chalcophile element abundances have been employed to determine Ge and Sb abundances, and revise Zn, As, and Bi abundances for the Martian mantle. The new estimates of Martian mantle composition support core formation at intermediate pressures (14 +/- 3GPa) in a magma ocean on Mars. C1 [Yang, Shuying; Humayun, Munir; Jefferson, Gwendolyn; Fields, Dana] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Yang, Shuying; Humayun, Munir] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32310 USA. [Righter, Kevin] NASA, Lyndon B Johnson Space Ctr, Mailcode KT, Houston, TX 77058 USA. [Jefferson, Gwendolyn] Carter High Sch, Rialto, CA 92376 USA. [Fields, Dana] Rickards High Sch, Tallahassee, FL 32306 USA. [Irving, Anthony J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. RP Humayun, M (reprint author), Florida State Univ, Natl High Magnet Field Lab, 1800 E Paul Dirac Dr, Tallahassee, FL 32310 USA. EM humayun@magnet.fsu.edu OI Humayun, Munir/0000-0001-8516-9435 FU NASA [NNX10AI37G, NNX13AI06G]; RTOP from the Mars Fundamental Research Program; Center for Integrating Research and Learning (CIRL) at the National High Magnetic Field Laboratory via the summer Research Experiences for Teachers (RET) program - NSF [0553769] FX We thank Tim McCoy and Linda Welzenbach (USNM) for providing Shergotty, Los Angeles, and Zagami; the National Institute of Polar Research, Japan, for providing sections of Yamato meteorites; the US Antarctic Meteorite collection for providing EETA79001A; and Eric Twelker for Tissint (TSS-260) and Zagami (ZGN-289). Funding for this research was provided by the NASA Cosmochemistry Program to MH (NNX10AI37G, NNX13AI06G), and an RTOP from the Mars Fundamental Research Program to KR. We thank the Center for Integrating Research and Learning (CIRL) at the National High Magnetic Field Laboratory for support for GJ and DF via the summer Research Experiences for Teachers (RET) program funded by NSF Award Number 0553769. We thank Shichun Huang and an anonymous reviewer for their reviews of the manuscript, and Associate Editor Stein B. Jacobsen for editorial handling. NR 104 TC 10 Z9 10 U1 3 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 691 EP 714 DI 10.1111/maps.12384 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200012 ER PT J AU Sharp, M Righter, K Walker, RJ AF Sharp, Miriam Righter, Kevin Walker, Richard J. TI Estimation of trace element concentrations in the lunar magma ocean using mineral- and metal-silicate melt partition coefficients SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID HIGHLY SIDEROPHILE ELEMENTS; CORE FORMATION; HIGH-PRESSURE; PLAGIOCLASE FELDSPAR; HIGH-TEMPERATURES; OXYGEN FUGACITY; LATE ACCRETION; GIANT IMPACT; FRACTIONAL CRYSTALLIZATION; EARLY DIFFERENTIATION AB This study uses experimentally determined plagioclase-melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal-silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal-silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase-melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates. C1 [Sharp, Miriam; Walker, Richard J.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Righter, Kevin] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Sharp, M (reprint author), Univ Maryland, Dept Geol, College Pk, MD 20742 USA. EM msharp@umd.edu RI Walker, Richard/K-6869-2016 OI Walker, Richard/0000-0003-0348-2407 FU NASA NLSI [NNA09DB33A]; RTOPs from the NASA LASER program; RTOPs from the NASA NLSI program; NASA [NNX10AU20A] FX We gratefully acknowledge the experimental support provided by Lisa Danielson and Kellye Pando. We also thank Philip Piccoli for assistance with EPMA data collection at the Nanoscale Imaging, Spectroscopy, and Properties Laboratory and Richard Ash for assistance with collection of laser ablation data. This research was partially supported by NASA NLSI grant NNA09DB33A (to R. J. Walker), and RTOPs from the NASA LASER and NLSI programs (to K. Righter). M. Sharp was supported by the NASA Harriett G. Jenkins Pre-doctoral Fellowship NNX10AU20A. We also acknowledge the great feedback from our reviewers (James Brenan and one anonymous reviewer) and associate editor Nancy Chabot. NR 119 TC 4 Z9 4 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 733 EP 758 DI 10.1111/maps.12396 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200014 ER PT J AU Usui, T Jones, JH Mittlefehldt, DW AF Usui, Tomohiro Jones, John H. Mittlefehldt, David W. TI A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID HIGHLY-SIDEROPHILE-ELEMENT; EARLY SOLAR-SYSTEM; DEGREES-C; EXPERIMENTAL PETROLOGY; POLYMICT UREILITE; OSMIUM ISOTOPE; LOOP TECHNIQUE; CORE FORMATION; SILICATE MELT; PARENT BODY AB Melting experiments of a synthesized, alkali-bearing, H-chondrite composition were conducted at ambient pressure with three distinct oxygen fugacity conditions (IW-1, IW, and IW+2). Oxygen fugacity conditions significantly influence the compositions of partial melts. Partial melts at IW-1 are distinctly enriched in SiO2 relative to those of IW and IW+2 melts. The silica-enriched, reduced (IW-1) melts are characterized by high alkali contents and have silica-oversaturated compositions. In contrast, the silica-depleted, oxidized (IW) melts, which are also enriched in alkali contents, have distinctly silica-undersaturated compositions. These experimental results suggest that alkali-rich, felsic, asteroidal crusts as represented by paired achondrites Graves Nunataks 06128 and 06129 should originate from a low-degree, relatively reduced partial melt from a parent body having near-chondritic compositions. Based on recent chronological constraints and numerical considerations as well as our experimental results, we propose that such felsic magmatism should have occurred in a parent body that is smaller in size and commenced accreting later than those highly differentiated asteroids having basaltic crusts and metallic cores. C1 [Usui, Tomohiro; Jones, John H.; Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Mail Code KR, Houston, TX 77058 USA. RP Usui, T (reprint author), Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. EM tomohirousui@geo.titech.ac.jp FU NASA FX We thank L. Le for technical assistance in the JSC Experimental Petrology Lab; A. H. Peslier, G. A. Robinson, and D. K. Ross for assistance with electron microprobe analyses; and T. Kuritani and M. Ushioda for insightful discussions during the revision. We also acknowledge A. Treiman for soliciting our participation in his consortium for GRA 06128/9. We are grateful to A. Jurewicz and two anonymous reviewers for constructive reviews, and N. Chabot for editorial handling. Finally, discussions with John Longhi, throughout this project, have been illuminating. This research was supported in part by NASA Postdoctoral Program (administrated by ORAU) to TU, NASA Cosmochemistry Program grants to JHJ and to DWM. NR 68 TC 5 Z9 5 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 759 EP 781 DI 10.1111/maps.12392 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200015 ER PT J AU Lauretta, DS Bartels, AE Barucci, MA Bierhaus, EB Binzel, RP Bottke, WF Campins, H Chesley, SR Clark, BC Clark, BE Cloutis, EA Connolly, HC Crombie, MK Delbo, M Dworkin, JP Emery, JP Glavin, DP Hamilton, VE Hergenrother, CW Johnson, CL Keller, LP Michel, P Nolan, MC Sandford, SA Scheeres, DJ Simon, AA Sutter, BM Vokrouhlicky, D Walsh, KJ AF Lauretta, D. S. Bartels, A. E. Barucci, M. A. Bierhaus, E. B. Binzel, R. P. Bottke, W. F. Campins, H. Chesley, S. R. Clark, B. C. Clark, B. E. Cloutis, E. A. Connolly, H. C. Crombie, M. K. Delbo, M. Dworkin, J. P. Emery, J. P. Glavin, D. P. Hamilton, V. E. Hergenrother, C. W. Johnson, C. L. Keller, L. P. Michel, P. Nolan, M. C. Sandford, S. A. Scheeres, D. J. Simon, A. A. Sutter, B. M. Vokrouhlicky, D. Walsh, K. J. TI The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID NEAR-EARTH ASTEROIDS; 1999 RQ(36); RADAR; SURFACE; YARKOVSKY; ITOKAWA; BELT; LIGHTCURVE; MAGNITUDE; FAMILIES AB We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5Gyr of solar system history. Its chemistry and mineralogy were established within the first 10Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7-2Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100-km), carbonaceous asteroid. It was delivered to near-Earth space via a combination of Yarkovsky-induced drift and interaction with giant-planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1-in-2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS-REx will return samples from the surface of this intriguing asteroid in September 2023. C1 [Lauretta, D. S.; Hergenrother, C. W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85705 USA. [Bartels, A. E.; Dworkin, J. P.; Glavin, D. P.; Simon, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Barucci, M. A.] Observ Paris, F-75014 Paris, France. [Bierhaus, E. B.; Sutter, B. M.] Lockheed Martin Space Syst, Littleton, CO 80127 USA. [Binzel, R. P.] MIT, Cambridge, MA 02139 USA. [Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.] SW Res Inst, Boulder, CO 80302 USA. [Campins, H.] Univ Cent Florida, Orlando, FL 32816 USA. [Chesley, S. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clark, B. C.] Space Sci Inst, Boulder, CO 80301 USA. [Clark, B. E.] Ithaca Coll, Ithaca, NY 14850 USA. [Cloutis, E. A.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. [Connolly, H. C.] CUNY, Kingsborough Community Coll, Brooklyn, NY 11235 USA. [Connolly, H. C.] CUNY, Grad Ctr, New York, NY 10016 USA. [Connolly, H. C.] Amer Museum Nat Hist, New York, NY 10024 USA. [Crombie, M. K.] Indigo Informat Serv, Tucson, AZ 85745 USA. [Delbo, M.; Michel, P.] Univ Nice Sophia Antipolis, CNRS, Lagrange Lab, Observ Cote Azur, F-06300 Nice, France. [Emery, J. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Johnson, C. L.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Johnson, C. L.] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. [Keller, L. P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Nolan, M. C.] Arecibo Observ, Arecibo, PR 00612 USA. [Sandford, S. A.] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Scheeres, D. J.] Univ Colorado, Boulder, CO 80309 USA. [Vokrouhlicky, D.] Charles Univ Prague, Inst Astron, CR-11636 Prague 1, Czech Republic. RP Lauretta, DS (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85705 USA. EM lauretta@lpl.arizona.edu RI Simon, Amy/C-8020-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012; OI Simon, Amy/0000-0003-4641-6186; Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997; Nolan, Michael/0000-0001-8316-0680 FU NASA [NNM10AA11C] FX The astrometry and photometry data reported in the paper are archived in the Minor Planet Center. The shape model is archived in the Small Bodies Node of the NASA Planetary Data System. All other data are configuration controlled in the OSIRIS-REx Design Reference Asteroid document. This work was supported by NASA contract NNM10AA11C (D. S. Lauretta, PI). NR 47 TC 23 Z9 23 U1 7 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2015 VL 50 IS 4 BP 834 EP 849 DI 10.1111/maps.12353 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF5VL UT WOS:000352625200018 ER PT J AU McKinney, GJ Hale, MC Goetz, G Gribskov, M Thrower, FP Nichols, KM AF McKinney, Garrett J. Hale, Matthew C. Goetz, Giles Gribskov, Michael Thrower, Frank P. Nichols, Krista M. TI Ontogenetic changes in embryonic and brain gene expression in progeny produced from migratory and resident Oncorhynchus mykiss SO MOLECULAR ECOLOGY LA English DT Review DE migration; RNAseq; transcriptome ID SALMON SALMO-SALAR; PARR-SMOLT TRANSFORMATION; RNA-SEQ DATA; ATLANTIC SALMON; CHINOOK SALMON; RAINBOW-TROUT; CANDIDATE GENES; STEELHEAD TROUT; GROWTH-HORMONE; THYROID-HORMONES AB Little information has been gathered regarding the ontogenetic changes that contribute to differentiation between resident and migrant individuals, particularly before the onset of gross morphological and physiological changes in migratory individuals. The aim of this study was to evaluate gene expression during early development in Oncorhynchus mykiss populations with different life histories, in a tissue known to integrate environmental cues to regulate complex developmental processes and behaviours. We sampled offspring produced from migrant and resident parents, collecting whole embryos prior to the beginning of first feeding, and brain tissue at three additional time points over the first year of development. RNA sequencing for 32 individuals generated a reference transcriptome of 30177 genes that passed count thresholds. Differential gene expression between migrant and resident offspring was observed for 1982 genes. The greatest number of differentially expressed genes occurred at 8months of age, in the spring a full year before the obvious physiological transformation from stream-dwelling parr to sea water-adaptable smolts begins for migrant individuals. Sex and age exhibited considerable effects on differential gene expression between migrants and resident offspring. Differential gene expression was observed in genes previously associated with migration, but also in genes previously unassociated with early life history divergence. Pathway analysis revealed coordinated differential expression in genes related to phototransduction, which could modulate photoperiod responsiveness and variation in circadian rhythms. The role for early differentiation in light sensitivity and biological rhythms is particularly intriguing in understanding early brain processes involved in differentiation of migratory and resident life history types. C1 [McKinney, Garrett J.; Hale, Matthew C.; Gribskov, Michael; Nichols, Krista M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [McKinney, Garrett J.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Goetz, Giles; Nichols, Krista M.] NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. [Thrower, Frank P.] Natl Ocean & Atmospher Adm, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Nichols, KM (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. EM gjmckinn@u.washington.edu; krista.nichols@noaa.gov FU National Science Foundation Career Award [NSF-DEB-0845265] FX We thank the permanent and seasonal staff at the National Marine Fisheries Service Little Port Walter Marine Station for their assistance in this study, without whom this work would not have been possible. Philip San Miguel, Paul Parker, Allison Sorg, Jyothi Thimmapuram and Rick Westerman in the Purdue Genomics and Bioinformatics Centers were instrumental in preparing libraries and in early assistance with bioinformatics. We thank Penny Swanson, Larissa Rohrbach, Jeff Hard, Linda Park, Morten Limborg and Wes Larson for providing comments on early drafts of this manuscript. Review of this manuscript was initially conducted by Axios Review. We thank the anonymous reviewers, Axios handling editor Nadia Aubin-Horth, and Molecular Ecology editor Sean Rogers for their insightful comments, which have improved the manuscript. This work was supported by a National Science Foundation Career Award to KMN (NSF-DEB-0845265). NR 131 TC 7 Z9 7 U1 11 U2 51 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD APR PY 2015 VL 24 IS 8 BP 1792 EP 1809 DI 10.1111/mec.13143 PG 18 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA CF6AX UT WOS:000352639900012 PM 25735875 ER PT J AU Tadesse, T Wiegelmann, T MacNeice, PJ AF Tadesse, Tilaye Wiegelmann, T. MacNeice, P. J. TI Effect of the Size of the Computational Domain on Spherical Nonlinear Force-Free Modeling of a Coronal Magnetic Field Using SDO/HMI Data SO SOLAR PHYSICS LA English DT Article DE Active regions, magnetic fields; Active regions, models; Magnetic fields, corona; Magnetic fields, models; Magnetic fields, photosphere ID SOLAR ACTIVE-REGION; RECONSTRUCTION; OPTIMIZATION; EXTRAPOLATION; GEOMETRY; ENERGY; CODE AB The solar coronal magnetic field produces solar activity, including extremely energetic solar flares and coronal mass ejections (CMEs). Knowledge of the structure and evolution of the magnetic field of the solar corona is important for investigating and understanding the origins of space weather. Although the coronal field remains difficult to measure directly, there is considerable interest in accurate modeling of magnetic fields in and around sunspot regions on the Sun using photospheric vector magnetograms as boundary data. In this work, we investigate effects of the size of the domain chosen for coronal magnetic field modeling on resulting model solutions. We applied a spherical nonlinear force-free optimization procedure to vector magnetogram data of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We selected a particular observation in which there were four active regions observed on 9 March 2012 at 20:55 UT. The results imply that quantities such as magnetic flux density, electric current density, and free magnetic energy density of active regions of interest are significantly different from the corresponding quantities obtained in the same region with a larger computational domain. The difference is even more pronounced in the regions that are connected to the outside of the domain. C1 [Tadesse, Tilaye; MacNeice, P. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wiegelmann, T.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. RP Tadesse, T (reprint author), NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. EM tilaye.tadesse.asfaw@nasa.gov; wiegelmann@mps.mpg.de; peter.j.macneice@nasa.gov FU NASA Postdoctoral Program at the Goddard Space Flight Center (GSFC) FX The authors thank the anonymous referee for helpful and detailed comments. Data are courtesy of NASA/SDO and the AIA and HMI science teams. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center (GSFC), administered by Oak Ridge Associated Universities through a contract with NASA. NR 31 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD APR PY 2015 VL 290 IS 4 BP 1159 EP 1171 DI 10.1007/s11207-015-0664-5 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF6YU UT WOS:000352703700007 ER PT J AU Bristow, TF Bish, DL Vaniman, DT Morris, RV Blake, DF Grotzinger, JP Rampe, EB Crisp, JA Achilles, CN Ming, DW Ehlmann, BL King, PL Bridges, JC Eigenbrode, JL Sumner, DY Chipera, SJ Moorokian, JM Treiman, AH Morrison, SM Downs, RT Farmer, JD Des Marais, D Sarrazin, P Floyd, MM Mischna, MA McAdam, AC AF Bristow, Thomas F. Bish, David L. Vaniman, David T. Morris, Richard V. Blake, David F. Grotzinger, John P. Rampe, Elizabeth B. Crisp, Joy A. Achilles, Cherie N. Ming, Doug W. Ehlmann, Bethany L. King, Penelope L. Bridges, John C. Eigenbrode, Jennifer L. Sumner, Dawn Y. Chipera, Steve J. Moorokian, John Michael Treiman, Allan H. Morrison, Shaunna M. Downs, Robert T. Farmer, Jack D. Des Marais, David Sarrazin, Philippe Floyd, Melissa M. Mischna, Michael A. McAdam, Amy C. TI The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars SO AMERICAN MINERALOGIST LA English DT Article DE Mars; Yellowknife Bay; clay minerals; CheMin; XRD; habitability ID IRON-OXIDIZING BACTERIA; AQUEOUS ALTERATION; HYDROTHERMAL ALTERATION; HYDROGEN GENERATION; OLDUVAI GORGE; SALINE LAKE; CHEMISTRY; OLIVINE; WATER; INSTRUMENT AB The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to similar to 20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 angstrom, but largely remain open in the Cumberland sample with a basal spacing of similar to 13.2 angstrom. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in Situ via aqueous: alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed Mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of thousands of years. Mineralogical evidence of the persistence of benign aqueous conditions at YKB for extended periods indicates a potentially habitable environment where life could establish itself. Mediated oxidation of Fe2+ in olivine to Fe3+ in magnetite, and perhaps in smectites provided a potential energy source for organisms. C1 [Bristow, Thomas F.; Blake, David F.; Des Marais, David] NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bish, David L.; Achilles, Cherie N.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Vaniman, David T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Morris, Richard V.; Rampe, Elizabeth B.; Ming, Doug W.] NASA, ARES Div, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Grotzinger, John P.; Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Crisp, Joy A.; Ehlmann, Bethany L.; Moorokian, John Michael; Mischna, Michael A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [King, Penelope L.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. [King, Penelope L.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Bridges, John C.] Univ Leicester, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Eigenbrode, Jennifer L.; Floyd, Melissa M.; McAdam, Amy C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sumner, Dawn Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Chipera, Steve J.] Chesapeake Energy Corp, Oklahoma City, OK 73118 USA. [Treiman, Allan H.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Morrison, Shaunna M.; Downs, Robert T.] Univ Arizona, Dept Geol, Tucson, AZ 85721 USA. [Farmer, Jack D.] Arizona State Univ, Dept Geol Sci, Tempe, AZ 85281 USA. [Sarrazin, Philippe] SETI Inst, Mountain View, CA 94043 USA. RP Bristow, TF (reprint author), NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. EM thomas.f.bristow@nasa.gov RI King, Penelope/A-1791-2011; Crisp, Joy/H-8287-2016 OI King, Penelope/0000-0002-8364-9168; Crisp, Joy/0000-0002-3202-4416 FU National Aeronautics and Space Administration FX We are grateful to R. Kleeburg for help with modeling XRD patterns and to D. Deocampo and J. Cuadros for thoughtful reviews. Support from the engineers and staff of NASA Mars Science Laboratory Mission are gratefully acknowledged. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 102 TC 19 Z9 19 U1 11 U2 76 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD APR PY 2015 VL 100 IS 4 BP 824 EP 836 DI 10.2138/am-2015-5077CCBYNCND PG 13 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CE9PK UT WOS:000352175700016 ER PT J AU Eker, Z Soydugan, F Soydugan, E Bilir, S Gokce, EY Steer, I Tuysuz, M Senyuz, T Demircan, O AF Eker, Z. Soydugan, F. Soydugan, E. Bilir, S. Gokce, E. Yaz Steer, I. Tuysuz, M. Senyuz, T. Demircan, O. TI MAIN-SEQUENCE EFFECTIVE TEMPERATURES FROM A REVISED MASS-LUMINOSITY RELATION BASED ON ACCURATE PROPERTIES SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; binaries: spectroscopic; catalogs; stars: fundamental parameters ID GALACTIC MODEL PARAMETERS; AUTOMATED SURVEY CATALOG; ECLIPSING BINARY STARS; TO-LIGHT RATIOS; M-CIRCLE-DOT; PHYSICAL PARAMETERS; RADIUS RELATIONS; STELLAR MASSES; PERIOD CHANGES; SYSTEMS AB The mass-luminosity (M-L), mass-radius (M-R), and mass-effective temperature (M-T-eff) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to <= 3% and luminosities accurate to <= 30% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7 M-circle dot within the studied mass range of 0.38-32 M-circle dot. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (L proportional to M-alpha), are shown to be preferable to a single linear, quadratic, or cubic equation representing an alternative MLR. Stellar radius evolution within the main sequence for stars with M > 1 M-circle dot is clearly evident on the M-R diagram, but it is not clear on the M-T-eff diagram based on published temperatures. Effective temperatures can be calculated directly using the well known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main sequence for stars with M>1 M-circle dot is clearly visible on the M-T-eff diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of similar to 6%, as long as its observed radius error is adequately small (<1%) and its observed mass error is reasonably small (<6%). C1 [Eker, Z.] Akdeniz Univ, Dept Space Sci & Technol, Fac Sci, TR-07058 Antalya, Turkey. [Soydugan, F.; Soydugan, E.; Tuysuz, M.; Senyuz, T.] Canakkale Onsekiz Mart Univ, Fac Arts & Sci, Dept Phys, TR-17020 Canakkale, Turkey. [Soydugan, F.; Soydugan, E.; Tuysuz, M.; Senyuz, T.; Demircan, O.] Canakkale Onsekiz Mart Univ, Astrophys Res Ctr, TR-17020 Canakkale, Turkey. [Soydugan, F.; Soydugan, E.; Tuysuz, M.; Senyuz, T.; Demircan, O.] Canakkale Onsekiz Mart Univ, Ulupinar Observ, TR-17020 Canakkale, Turkey. [Bilir, S.; Gokce, E. Yaz] Istanbul Univ, Fac Sci, Dept Astron & Space Sci, TR-34119 Istanbul, Turkey. [Steer, I.] NASA IPAC Extragalact Database, Pasadena, CA USA. [Demircan, O.] Canakkale Onsekiz Mart Univ, Fac Arts & Sci, Dept Space Sci & Technol, TR-17020 Canakkale, Turkey. RP Eker, Z (reprint author), Akdeniz Univ, Dept Space Sci & Technol, Fac Sci, TR-07058 Antalya, Turkey. EM eker@akdeniz.edu.tr RI eker, Zeki/C-8795-2016; bilir, selcuk/I-8827-2014 FU Scientific and Technological Research Council (TUBITAK) [106T688, 111T224] FX The authors are grateful to the anonymous referee whose comments were very useful in improving the manuscript. This work has been supported in part by the Scientific and Technological Research Council (TUBITAK) grant numbers 106T688 and 111T224. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France and NASA's Astrophysics Data System Bibliographic Services. NR 77 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD APR PY 2015 VL 149 IS 4 AR 131 DI 10.1088/0004-6256/149/4/131 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1VU UT WOS:000352336800015 ER PT J AU Reipurth, B Mikkola, S AF Reipurth, Bo Mikkola, Seppo TI BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; methods: numerical; stars: formation; stars: protostars ID LOW-MASS STARS; ORBITAL DECAY; WIDE BINARIES; DYNAMICAL INTERACTIONS; SOLAR NEIGHBORHOOD; DISC ENCOUNTERS; STELLAR-SYSTEMS; MULTIPLE STARS; CLOSE BINARIES; NEARBY STARS AB Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the "triple diagnostic diagram," which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous free floating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to 15,894 at 100 Myr (similar to 8%). The total binary fraction among free floating BDs is 0.43, higher than indicated by current observations, which, however, are still incomplete. Also, the gradual breakup of higher-order multiples leads to many more singles, thus lowering the binary fraction. The main threat to newly born triple systems is internal instabilities, not external perturbations. At 1 Myr there are 1325 BD binaries still bound to a star, corresponding to 0.66% of the simulations, but only 253 (0.13%) are stable on timescales > 100 Myr. These simulations indicate that dynamical interactions in newborn triple systems of stellar embryos embedded in and accreting from a cloud core naturally form a population of freefloating BD binaries, and this mechanism may constitute a significant pathway for the formation of BD binaries. C1 [Reipurth, Bo] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Reipurth, Bo] Univ Hawaii, NASA, Astrobiol Inst, Hilo, HI 96720 USA. [Mikkola, Seppo] Univ Turku, Tuorla Observ, Piikkio, Finland. RP Reipurth, B (reprint author), Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA. EM reipurth@ifa.hawaii.edu; Seppo.Mikkola@utu.fi OI Reipurth, Bo/0000-0001-8174-1932 FU National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA09DA77A] FX We are grateful to an anonymous referee, to Matthew Bate, and to Hsin-Fang Chiang for very helpful comments on the manuscript. B.R. thanks Andrei Tokovinin and Mark Chun for advice on IDL routines, Hsin-Fang Chiang and Colin Aspin for providing additional computer power to complete these simulations, and Tuorla Observatory for hospitality during several visits. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System Bibliographic Services. NR 102 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD APR PY 2015 VL 149 IS 4 AR 145 DI 10.1088/0004-6256/149/4/145 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1VU UT WOS:000352336800029 ER PT J AU Roberts, LC Mason, BD Neyman, CR Wu, YQ Riddle, RL Shelton, JC Angione, J Baranec, C Bouchez, A Bui, K Burruss, R Burse, M Chordia, P Croner, E Das, H Dekany, RG Guiwits, S Hale, D Henning, J Kulkarni, S Law, N McKenna, D Milburn, J Palmer, D Punnadi, S Ramaprakash, AN Roberts, JE Tendulkar, SP Trinh, T Troy, M Truong, T Zolkower, J AF Roberts, Lewis C., Jr. Mason, Brian D. Neyman, Christopher R. Wu, Yanqin Riddle, Reed L. Shelton, J. Christopher Angione, John Baranec, Christoph Bouchez, Antonin Bui, Khanh Burruss, Rick Burse, Mahesh Chordia, Pravin Croner, Ernest Das, Hillol Dekany, Richard G. Guiwits, Stephen Hale, David Henning, John Kulkarni, Shrinivas Law, Nicholas McKenna, Dan Milburn, Jennifer Palmer, Dean Punnadi, Sujit Ramaprakash, A. N. Roberts, Jennifer E. Tendulkar, Shriharsh P. Thang Trinh Troy, Mitchell Truong, Tuan Zolkower, Jeff TI KNOW THE STAR, KNOW THE PLANET. II. A STELLAR COMPANION TO THE HOST STAR OF THE ECCENTRIC EXOPLANET HD 8673B SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; stars: individual (HD 8673); stars: late-type ID ADAPTIVE OPTICS SYSTEM; GENEVA-COPENHAGEN SURVEY; SOLAR-TYPE STARS; SPECKLE INTERFEROMETRY; BINARY STARS; SECULAR CHAOS; HOT JUPITERS; F-DWARF; PHOTOMETRY; SEARCH AB HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e = 0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m Advanced Electro-Optical System telescope, and the 1.5 m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M-circle dot. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semimajor axis of 35-60 AU, an eccentricity <= 0.5, and an inclination of 75 degrees-85 degrees. The stellar companion has likely strongly influenced the orbit of the exoplanet and quite possibly explains its high eccentricity. C1 [Roberts, Lewis C., Jr.; Shelton, J. Christopher; Angione, John; Burruss, Rick; Palmer, Dean; Roberts, Jennifer E.; Thang Trinh; Troy, Mitchell; Truong, Tuan] CALTECH, Jet Prop Lab, Div Phys Math & Astron, Pasadena, CA 91109 USA. [Mason, Brian D.] US Naval Observ, Washington, DC 20392 USA. [Neyman, Christopher R.] Calif Assoc Res Astron, WM Keck Observ, Kamuela, HI 96743 USA. [Wu, Yanqin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Riddle, Reed L.; Bui, Khanh; Croner, Ernest; Dekany, Richard G.; Hale, David; Henning, John; Kulkarni, Shrinivas; McKenna, Dan; Milburn, Jennifer; Tendulkar, Shriharsh P.; Zolkower, Jeff] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Baranec, Christoph] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. [Bouchez, Antonin] GMTO Corp, Pasadena, CA 91101 USA. [Bouchez, Antonin] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit; Ramaprakash, A. N.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Guiwits, Stephen] CALTECH, Seismol Lab, Pasadena, CA 91101 USA. [Law, Nicholas] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, Div Phys Math & Astron, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lewis.c.roberts@jpl.nasa.gov FU W.M. Keck Foundation; California Institute of Technology; Inter-University Centre for Astronomy and Astrophysics; National Science Foundation [AST-0906060, AST-0960343, AST-1207891]; Mt. Cuba Astronomical Foundation; Alfred P. Sloan Foundation; National Aeronautics and Space Administration; National Science Foundation FX The research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This paper is based on observations from a number of observatories, including the Maui Space Surveillance System, operated by the US Air Force Research Laboratory's Directed Energy Directorate. Additional observations were made at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, NOAO, Oxford University, Stony Brook University, and the National Astronomical Observatories of China. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The W.M. Keck Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The Robo-AO system is supported by collaborating partner institutions, the California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics, by the National Science Foundation under grant Nos. AST-0906060, AST-0960343, and AST-1207891, by a grant from the Mt. Cuba Astronomical Foundation and by a gift from Samuel Oschin. C.B. acknowledges support from the Alfred P. Sloan Foundation. This research made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the SIMBAD database, operated by the CDS in Strasbourg, France, NASA's Astrophysics Data System and data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 39 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD APR PY 2015 VL 149 IS 4 AR 144 DI 10.1088/0004-6256/149/4/144 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1VU UT WOS:000352336800028 ER PT J AU Roberts, LC Tokovinin, A Mason, BD Riddle, RL Hartkopf, WI Law, NM Baranec, C AF Roberts, Lewis C., Jr. Tokovinin, Andrei Mason, Brian D. Riddle, Reed L. Hartkopf, William I. Law, Nicholas M. Baranec, Christoph TI KNOW THE STAR, KNOW THE PLANET. III. DISCOVERY OF LATE-TYPE COMPANIONS TO TWO EXOPLANET HOST STARS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; stars: individual (HD 2638, 30 Ari B); stars: solar-type ID ADAPTIVE OPTICS SYSTEM; TRANSITING CIRCUMBINARY PLANET; BINARY STARS; SPECTROSCOPIC BINARIES; HOT JUPITERS; SPECKLE INTERFEROMETRY; EXTRASOLAR PLANETS; STELLAR COMPANIONS; MULTIPLE SYSTEMS; G DWARFS AB We discuss two multiple star systems that host known exoplanets: HD 2638 and 30 Ari B. Adaptive optics imagery revealed an additional stellar companion to both stars. We collected multi-epoch images of the systems with Robo-AO and the PALM-3000 adaptive optics systems at Palomar Observatory and provide relative photometry and astrometry. The astrometry indicates that the companions share common proper motion with their respective primaries. Both of the new companions have projected separations less than 30 AU from the exoplanet host star. Using the projected separations to compute orbital periods of the new stellar companions, HD 2638 has a period of 130 yr and 30 Ari B has a period of 80 yr. Previous studies have shown that the true period is most likely within a factor of three of these estimated values. The additional component to 30 Ari makes it the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the connection between hot Jupiters and binary stars. We place the systems on a color-magnitude diagram and derive masses for the companions which turn out to be roughly 0.5 solar mass stars. C1 [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tokovinin, Andrei] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Mason, Brian D.; Hartkopf, William I.] US Naval Observ, Washington, DC 20392 USA. [Riddle, Reed L.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Law, Nicholas M.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Baranec, Christoph] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lewis.c.roberts@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); California Institute of Technology; Inter-University Centre for Astronomy and Astrophysics; National Science Foundation [AST-0906060, AST-0960343, AST-1207891]; Mt. Cuba Astronomical Foundation; Alfred P. Sloan Foundation FX We thank the staff of the Palomar Observatory for their invaluable assistance in collecting these data. This paper was based in part on observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA/JPL, Oxford University, Yale University, and the National Astronomical Observatories of China. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). The Robo-AO system is supported by collaborating partner institutions, the California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics, by the National Science Foundation under Grant Nos. AST-0906060, AST-0960343, and AST-1207891, by a grant from the Mt. Cuba Astronomical Foundation and by a gift from Samuel Oschin. C.B. acknowledges support from the Alfred P. Sloan Foundation. This research made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the SIMBAD database, operated by the CDS in Strasbourg, France, and NASA's Astrophysics Data System. NR 56 TC 9 Z9 9 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD APR PY 2015 VL 149 IS 4 AR 118 DI 10.1088/0004-6256/149/4/118 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1VU UT WOS:000352336800002 ER PT J AU Stauffer, J Cody, AM McGinnis, P Rebull, L Hillenbrand, LA Turner, NJ Carpenter, J Plavchan, P Carey, S Terebey, S Morales-Calderon, M Alencar, SHP Bouvier, J Venuti, L Hartmann, L Calvet, N Micela, G Flaccomio, E Song, I Gutermuth, R Barrado, D Vrba, FJ Covey, K Padgett, D Herbst, W Gillen, E Lyra, W Guimaraes, MM Bouy, H Favata, F AF Stauffer, John Cody, Ann Marie McGinnis, Pauline Rebull, Luisa Hillenbrand, Lynne A. Turner, Neal J. Carpenter, John Plavchan, Peter Carey, Sean Terebey, Susan Morales-Calderon, Maria Alencar, Silvia H. P. Bouvier, Jerome Venuti, Laura Hartmann, Lee Calvet, Nuria Micela, Giusi Flaccomio, Ettore Song, Inseok Gutermuth, Rob Barrado, David Vrba, Frederick J. Covey, Kevin Padgett, Debbie Herbst, William Gillen, Edward Lyra, Wladimir Guimaraes, Marcelo Medeiros Bouy, Herve Favata, Fabio TI CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; open clusters and associations: individual (NGC 2264); stars: pre-main sequence; stars: variables: T Tauri, Herbig Ae/Be ID T-TAURI STARS; SPITZER-SPACE-TELESCOPE; MAIN-SEQUENCE STARS; ARRAY CAMERA IRAC; INFRARED VARIABILITY; DISK ACCRETION; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS; TRANSITIONAL DISKS; STELLAR OBJECTS AB We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard "disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall. C1 [Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Hillenbrand, Lynne A.; Carpenter, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Turner, Neal J.; Lyra, Wladimir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Terebey, Susan] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Morales-Calderon, Maria; Barrado, David; Bouy, Herve] INTA CSIC, Dept Astrofis, Ctr Astrobiol, Madrid, Spain. [McGinnis, Pauline; Alencar, Silvia H. P.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Bouvier, Jerome; Venuti, Laura] Univ Grenoble, IPAG, F-38000 Grenoble, France. [Bouvier, Jerome; Venuti, Laura] CNRS, IPAG, F-38000 Grenoble, France. [Hartmann, Lee; Calvet, Nuria] Univ Michigan, Dept Astron, Ann Arbor, MI 48105 USA. [Micela, Giusi; Flaccomio, Ettore] INAF, Osservatorio Astron Palermo, I-90134 Palermo, Italy. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Gutermuth, Rob] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Vrba, Frederick J.] US Naval Observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Covey, Kevin] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Padgett, Debbie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Herbst, William] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Gillen, Edward] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Favata, Fabio] European Space Agcy, F-75738 Paris 15, France. [Guimaraes, Marcelo Medeiros] UFSJ Rodovia, Dept Fis Matemat, BR-36420000 Ouro Branco, MG, Brazil. [Cody, Ann Marie] NASA, Ames Res Ctr, Kepler Sci Off, Mountain View, CA 94035 USA. RP Stauffer, J (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. EM stauffer@ipac.caltech.edu RI McGinnis, Pauline/F-6490-2015; Bouy, Herve/H-2913-2012; Guimaraes, Marcelo/H-5897-2012; Barrado Navascues, David/C-1439-2017; Morales-Calderon, Maria/C-8384-2017 OI McGinnis, Pauline/0000-0001-7476-7253; Micela, Giuseppina/0000-0002-9900-4751; Flaccomio, Ettore/0000-0002-3638-5788; Rebull, Luisa/0000-0001-6381-515X; Covey, Kevin/0000-0001-6914-7797; Bouy, Herve/0000-0002-7084-487X; Guimaraes, Marcelo/0000-0002-0517-4507; Barrado Navascues, David/0000-0002-5971-9242; Morales-Calderon, Maria/0000-0001-9526-9499 FU NASA; NASA by JPL/Caltech; National Aeronautics and Space Administration; NASA Origins of Solar Systems program [11-OSS11-0074]; NASA ADAP [NNX11AD14G, NNX13AF08G]; Caltech/JPL [1373081, 1424329, 1440160]; CNPq; CAPES; Fapemig FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and with the support of the NASA Origins of Solar Systems program via grant 11-OSS11-0074. R.G. gratefully acknowledges funding support from NASA ADAP grants NNX11AD14G and NNX13AF08G and Caltech/JPL awards 1373081, 1424329, and 1440160 in support of Spitzer Space Telescope observing programs. SHPA and PTM acknowledge support from CNPq, CAPES and Fapemig. NR 77 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD APR PY 2015 VL 149 IS 4 AR 130 DI 10.1088/0004-6256/149/4/130 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1VU UT WOS:000352336800014 ER PT J AU Akiyama, E Muto, T Kusakabe, N Kataoka, A Hashimoto, J Tsukagoshi, T Kwon, J Kudo, T Kandori, R Grady, CA Takami, M Janson, M Kuzuhara, M Henning, T Sitko, ML Carson, JC Mayama, S Currie, T Thalmann, C Wisniewski, J Momose, M Ohashi, N Abe, L Brandner, W Brandt, TD Egner, S Feldt, M Goto, M Guyon, O Hayano, Y Hayashi, M Hayashi, S Hodapp, KW Ishi, M Iye, M Knapp, GR Matsuo, T Mcelwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, G Suenaga, T Suto, H Suzuki, R Takahashi, YH Takato, N Terada, H Tomono, D Turner, EL Watanabe, M Yamada, T Takami, H Usuda, T Tamura, M AF Akiyama, E. Muto, T. Kusakabe, N. Kataoka, A. Hashimoto, J. Tsukagoshi, T. Kwon, J. Kudo, T. Kandori, R. Grady, C. A. Takami, M. Janson, M. Kuzuhara, M. Henning, T. Sitko, M. L. Carson, J. C. Mayama, S. Currie, T. Thalmann, C. Wisniewski, J. Momose, M. Ohashi, N. Abe, L. Brandner, W. Brandt, T. D. Egner, S. Feldt, M. Goto, M. Guyon, O. Hayano, Y. Hayashi, M. Hayashi, S. Hodapp, K. W. Ishi, M. Iye, M. Knapp, G. R. Matsuo, T. Mcelwain, M. W. Miyama, S. Morino, J. -I. Moro-Martin, A. Nishimura, T. Pyo, T. -S. Serabyn, G. Suenaga, T. Suto, H. Suzuki, R. Takahashi, Y. H. Takato, N. Terada, H. Tomono, D. Turner, E. L. Watanabe, M. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; protoplanetary disks; stars: individual (TW Hydrae); stars: pre-main sequence; techniques: polarimetric ID SPECTRAL ENERGY-DISTRIBUTIONS; PROTOPLANETARY DISKS; TAURI STARS; SUBMILLIMETER ARRAY; CIRCUMSTELLAR DISKS; TRANSITION DISKS; SCATTERED-LIGHT; HYA; SIGNATURES; PLANETS AB We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0 ''.2 to 1 ''.5 (11-81 AU) and the PI image shows a clear axisymmetric depression in PI at similar to 0 ''.4 (similar to 20 AU) from the central star, similar to the similar to 80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0 ''.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structure may exist at similar to 20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely. C1 [Akiyama, E.; Kusakabe, N.; Kandori, R.; Hayashi, M.; Ishi, M.; Iye, M.; Morino, J. -I.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Takami, H.; Usuda, T.; Tamura, M.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Muto, T.] Kogakuin Univ, Div Liberal Arts, Shinjuku Ku, Tokyo 1638677, Japan. [Kataoka, A.; Kuzuhara, M.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Hashimoto, J.; Wisniewski, J.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Tsukagoshi, T.; Momose, M.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kwon, J.; Takahashi, Y. H.; Tamura, M.] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Kudo, T.; Currie, T.; Ohashi, N.; Egner, S.; Guyon, O.; Hayano, Y.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Grady, C. A.] Eureka Sci, Oakland, CA 96002 USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Janson, M.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Henning, T.; Carson, J. C.; Brandner, W.; Feldt, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Sitko, M. L.] Space Sci Inst, Boulder, CO 80301 USA. [Sitko, M. L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Carson, J. C.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Mayama, S.] Grad Univ Adv Studies, Ctr Promot Integrated Sci, Shonan Int Village, Miura, Kanagawa 2400115, Japan. [Thalmann, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Abe, L.] Univ Nice Sophia Antipolis, Lab Hippolyte Fizeau, UMR6525, F-06108 Nice, France. [Brandt, T. D.; Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Goto, M.] Univ Munich, Univ Sternwarte Munchen 12, D-81679 Munich, Germany. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Matsuo, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Mcelwain, M. W.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Miyama, S.] Hiroshima Univ, Hiroshima 7398511, Japan. [Moro-Martin, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Moro-Martin, A.] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Serabyn, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Suenaga, T.] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. [Turner, E. L.] Univ Tokyo, Kavli Inst Phys & Math Univ, Kashiwa, Chiba 2278568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Akiyama, E (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM eiji.akiyama@nao.ac.jp RI MIYAMA, Shoken/A-3598-2015; Watanabe, Makoto/E-3667-2016; OI Watanabe, Makoto/0000-0002-3656-4081; Feldt, Markus/0000-0002-4188-5242 FU KAKENHI [22000005, 23103004, 23740151]; NSF AST [1008440, 1009314]; NASA [NNX09AC73G, NNG13PB64P]; JSPS [23103004, 26800106, 26400224]; U.S. National Science Foundation [1009203]; Ministry of Science and Technology (MoST) of Taiwan [103-2112-M-001-029]; [26.04023] FX This work is partially supported by KAKENHI 22000005 (M.T.), KAKENHI 23103004, 23740151 (M.F.), NSF AST 1008440 (C.A.G.), NSF AST 1009314 (J.P.W.), and NASA NNX09AC73G (C.A.G. and M.L.S.). C.A.G. was also supported by NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. J.K. is supported by Grant-in-Aid for JSPS Fellows (26.04023). T.M. is supported by JSPS KAKENHI grant Numbers 26800106, 23103004, and 26400224. J.C. is supported by a grant from the U.S. National Science Foundation under Award No. 1009203. M.T. is supported by Ministry of Science and Technology (MoST) of Taiwan (grant No. 103-2112-M-001-029). NR 46 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2015 VL 802 IS 2 AR L17 DI 10.1088/2041-8205/802/2/L17 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE9BL UT WOS:000352138300004 ER PT J AU Indriolo, N Neufeld, DA DeWitt, CN Richter, MJ Boogert, ACA Harper, GM Jaffe, DT Kulas, KR McKelvey, ME Ryde, N Vacca, W AF Indriolo, Nick Neufeld, D. A. DeWitt, C. N. Richter, M. J. Boogert, A. C. A. Harper, G. M. Jaffe, D. T. Kulas, K. R. McKelvey, M. E. Ryde, N. Vacca, W. TI SOFIA/EXES OBSERVATIONS OF WATER ABSORPTION IN THE PROTOSTAR AFGL 2591 AT HIGH SPECTRAL RESOLUTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: protostars ID STAR-FORMING REGIONS; PROTOPLANETARY DISKS; HYDROGEN-FLUORIDE; HERSCHEL; GAS; H2O; ASTRONOMY; SPECTROGRAPH; INSTRUMENT; SCIENCE AB We present high spectral resolution (similar to 3 km s(-1)) observations of the nu(2) ro-vibrational band of H2O in the 6.086-6.135 mu m range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu(2) band of H2O, two by transitions in the first vibrationally excited nu(2) band of H2O, and one by a transition in the nu(2) band of (H2O)-O-18. Among the detected transitions is the nu(2) 1(1,1)-0(0,0) line that probes the lowest-lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas or that the absorption arises within the 6 mu m emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed absorption lines are N(H2O) = (1.3 +/- 0.3) x 10(19) cm(-2) and T = 640 +/- 80 K. C1 [Indriolo, Nick; Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [DeWitt, C. N.; Richter, M. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Boogert, A. C. A.; Vacca, W.] NASA, Ames Res Ctr, SOFIA, USRA, Moffett Field, CA 94035 USA. [Harper, G. M.] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Jaffe, D. T.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Kulas, K. R.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [McKelvey, M. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ryde, N.] Lund Univ, Dept Astron & Theoret Phys, Lund, Sweden. RP Indriolo, N (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. OI Indriolo, Nick/0000-0001-8533-6440; Ryde, Nils/0000-0001-6294-3790; Harper, Graham/0000-0002-7042-4541 FU UCD [NNX13AI85A]; NASA Ames [NNX13AI85A] FX M. J. R. and C. N. D. acknowledge Collaborative Agreement NNX13AI85A between UCD and NASA Ames for its support and support of EXES development. Many thanks to the anonymous referee. NR 37 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2015 VL 802 IS 2 AR L14 DI 10.1088/2041-8205/802/2/L14 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE9BL UT WOS:000352138300001 ER PT J AU Tong, DQ Lamsal, L Pan, L Ding, C Kim, H Lee, P Chai, TF Pickering, KE Stajner, I AF Tong, Daniel Q. Lamsal, Lok Pan, Li Ding, Charles Kim, Hyuncheol Lee, Pius Chai, Tianfeng Pickering, Kenneth E. Stajner, Ivanka TI Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE NOx; Emission; Trend; Air quality forecast; Recession; OMI NO2; Ozone; AQS; NAQFC ID TROPOSPHERIC NITROGEN-DIOXIDE; OZONE MONITORING INSTRUMENT; CMAQ MODELING SYSTEM; SPATIAL VARIABILITY; AIR-POLLUTION; SPACE; OMI; CAPABILITY; EXPOSURE; COLUMNS AB National emission inventories (NEIs) take years to assemble, but they can become outdated quickly, especially for time-sensitive applications such as air quality forecasting. This study compares multi-year NOx trends derived from satellite and ground observations and uses these data to evaluate the updates of NOx emission data by the US National Air Quality Forecast Capability (NAQFC) for next-day ozone prediction during the 2008 Global Economic Recession. Over the eight large US cities examined here, both the Ozone Monitoring Instrument (OMI) and the Air Quality System (AQS) detect substantial downward trends from 2005 to 2012, with a seven-year total of -35% according to OMI and -38% according to AQS. The NOx emission projection adopted by NAQFC tends to be in the right direction, but at a slower reduction rate (-25% from 2005 to 2012), due likely to the unaccounted effects of the 2008 economic recession. Both OMI and AQS datasets display distinct emission reduction rates before, during, and after the 2008 global recession in some cities, but the detailed changing rates are not consistent across the OMI and AQS data. Our findings demonstrate the feasibility of using space and ground observations to evaluate major updates of emission inventories objectively. The combination of satellite, ground observations, and in-situ measurements (such as emission monitoring in power plants) is likely to provide more reliable estimates of NOx emission and its trend, which is an issue of increasing importance as many urban areas in the US are transitioning to NOx-sensitive chemical regimes by continuous emission reductions. (C). 2015 The Authors. Published by Elsevier Ltd. C1 [Tong, Daniel Q.; Pan, Li; Ding, Charles; Kim, Hyuncheol; Lee, Pius; Chai, Tianfeng] NOAA, ARL, Ctr Weather & Climate Predict, College Pk, MD 20740 USA. [Tong, Daniel Q.; Pan, Li; Kim, Hyuncheol; Chai, Tianfeng] Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20740 USA. [Tong, Daniel Q.] George Mason Univ, CSISS, Fairfax, VA 22030 USA. [Lamsal, Lok] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD USA. [Lamsal, Lok; Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ding, Charles] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Stajner, Ivanka] NOAA, Natl Weather Serv, Silver Spring, MD 20910 USA. RP Tong, DQ (reprint author), NOAA, ARL, Ctr Weather & Climate Predict, 5830 Univ Res Court, College Pk, MD 20740 USA. EM Daniel.Tong@noaa.gov RI Chai, Tianfeng/E-5577-2010; Tong, Daniel/A-8255-2008; Stajner, Ivanka/B-5228-2009; Kim, Hyun/G-1315-2012; Pan, Li/G-1327-2012; Lee, Pius/D-5201-2016; Pickering, Kenneth/E-6274-2012 OI Chai, Tianfeng/0000-0003-3520-2641; Tong, Daniel/0000-0002-4255-4568; Stajner, Ivanka/0000-0001-6103-3939; Kim, Hyun/0000-0003-3968-6145; FU NOAA JPSS Proving Ground and Risk Reduction Program [NA12NES4400007]; NASA Earth Science Program through National Climate Indicator [NNX13A045G]; Air Quality Applied Science Team initiatives FX This work has been supported by the NOAA JPSS Proving Ground and Risk Reduction Program (NA12NES4400007) and the NASA Earth Science Program through the National Climate Indicator (NNX13A045G) and Air Quality Applied Science Team initiatives. The authors are grateful to Dr. Bryan Duncan at NASA and two anonymous reviewers for their constructive comments. NR 65 TC 22 Z9 23 U1 2 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2015 VL 107 BP 70 EP 84 DI 10.1016/j.atmosenv.2015.01.035 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CE6UY UT WOS:000351974900009 ER PT J AU Mantas, VM Liu, Z Pereira, AJSC AF Mantas, V. M. Liu, Z. Pereira, A. J. S. C. TI A web service and android application for the distribution of rainfall estimates and Earth observation data SO COMPUTERS & GEOSCIENCES LA English DT Article DE Satellite Rainfall Estimates; TRMM; Python; Android ID PRECIPITATION ANALYSIS TMPA; SATELLITE RAINFALL; PRODUCTS; VISUALIZATION; INFORMATION; PERFORMANCE; VALIDATION; GIOVANNI; CLIMATE; SYSTEM AB The full potential of Satellite Rainfall Estimates (SRE) can only be realized if timely access to the datasets is possible. Existing data distribution web portals are often focused on global products and offer limited customization options, especially for the purpose of routine regional monitoring. Furthermore, most online systems are designed to meet the needs of desktop users, limiting the compatibility with mobile devices. In response to the growing demand for SRE and to address the current limitations of available web portals a project was devised to create a set of freely available applications and services, available at a common portal that can: (1) simplify cross-platform access to Tropical Rainfall Measuring Mission Online Visualization and Analysis System (TOVAS) data (including from Android mobile devices), (2) provide customized and continuous monitoring of SRE in response to user demands and (3) combine data from different online data distribution services, including rainfall estimates, river gauge measurements or imagery from Earth Observation missions at a single portal, known as the Tropical Rainfall Measuring Mission (TRMM) Explorer. The TRMM Explorer project suite includes a Python-based web service and Android applications capable of providing SRE and ancillary data in different intuitive formats with the focus on regional and continuous analysis. The outputs include dynamic plots, tables and data files that can also be used to feed downstream applications and services. A case study in Southern Angola is used to describe the potential of the TRMM Explorer for SRE distribution and analysis in the context of ungauged watersheds. The development of a collection of data distribution instances helped to validate the concept and identify the limitations of the program, in a real context and based on user feedback. The TRMM Explorer can successfully supplement existing web portals distributing SRE and provide a cost-efficient resource to small and medium-sized organizations with specific SRE monitoring needs, namely in developing and transition countries. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Mantas, V. M.; Pereira, A. J. S. C.] Univ Coimbra, Inst Marine Res, P-3000 Coimbra, Portugal. [Liu, Z.] George Mason Univ, CSISS, Fairfax, VA 22030 USA. [Liu, Z.] NASA, GES DISC, Fairfax, VA 22030 USA. RP Mantas, VM (reprint author), Univ Coimbra, Dept Earth Sci, IMAR CMA, P-3000272 Coimbra, Portugal. EM vasco.mantas@dct.uc.pt OI Pereira, Alcides/0000-0002-7392-2255 FU Portuguese Science and Technology Foundation, FCT, Portugal [SFRH/BD/89972/2012] FX This work was financially supported by the Portuguese Science and Technology Foundation, FCT, Portugal (Grant SFRH/BD/89972/2012). NR 50 TC 1 Z9 1 U1 3 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD APR PY 2015 VL 77 BP 66 EP 76 DI 10.1016/j.cageo.2015.01.011 PG 11 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA CF7OA UT WOS:000352745000007 ER PT J AU Jun, T Munasinghe, L Rind, DH AF Jun, Tackseung Munasinghe, Lalith Rind, David H. TI A New Metric for Indian Monsoon Rainfall Extremes SO JOURNAL OF CLIMATE LA English DT Article ID ASIAN SUMMER MONSOON; EURASIAN SNOW COVER; WARMING ENVIRONMENT; SOUTH CHINA; CLIMATE; VARIABILITY; ENSO; EVENTS; OCEAN; OSCILLATION AB Extreme monsoon rainfall in India has disastrous consequences, including significant socioeconomic impacts. However, little is known about the overall trends and climate factors associated with extreme rainfall because rainfall greatly varies across India and because few appropriate methods are available to measure extreme rainfall in the context of such heterogeneity. To provide a comprehensive assessment of extreme monsoon rainfall, the authors developed a metric using record rainfall data to measure the changes in the likelihood of extreme high and extreme low rainfall over time; this metric is independent of the characteristics of the underlying rainfall distributions. Hence, the metric is ideally suited to aggregate extreme rainfall information across heterogeneous regions covering India. The authors found that from 1930 to 2013, the likelihood of extreme high and extreme low rainfall increases 2-fold and 4-fold, respectively. These overall trend increases are driven by anomalous increases, particularly in the early 2000s; the likelihood of extreme high and extreme low rainfall increases 5-fold and 18-fold in 2005 and 2002, respectively. These findings imply a broadening of the underlying monsoon rainfall distribution over the past century. The authors also show that the time patterns of the likelihood of extreme rainfall in recent decades are correlated with El Nino-Southern Oscillation, especially when it is in the same phase with the Pacific decadal oscillation and Indian Ocean dipole. C1 [Jun, Tackseung; Munasinghe, Lalith] Columbia Univ Barnard Coll, New York, NY 10027 USA. [Rind, David H.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Jun, T (reprint author), Columbia Univ Barnard Coll, Dept Econ, 3009 Broadway, New York, NY 10027 USA. EM tj32gm@gmail.com FU Melon Climate Research Fund from the Barnard College, Columbia University FX We gratefully acknowledge financial support from the Melon Climate Research Fund 2013 from the Barnard College, Columbia University. The first author would like to thank Barnard College, Columbia University for providing invaluable support to conduct research on climate change while he visited the institution for the summers of 2012 and 2013. We also thank Mark Cane of the Lamont-Doherty Earth Observatory, Columbia University for encouragement and generous feedback on earlier versions of the paper. NR 49 TC 0 Z9 0 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD APR PY 2015 VL 28 IS 7 BP 2842 EP 2855 DI 10.1175/JCLI-D-13-00764.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE6IO UT WOS:000351940300020 ER PT J AU Park, CE Jeong, SJ Ho, CH Kim, J AF Park, Chang-Eui Jeong, Su-Jong Ho, Chang-Hoi Kim, Jinwon TI Regional Variations in Potential Plant Habitat Changes in Response to Multiple Global Warming Scenarios SO JOURNAL OF CLIMATE LA English DT Article ID 2 DEGREES-C; CLIMATE-CHANGE; VEGETATION MODELS; ECONOMIC COSTS; LAND-USE; IMPACTS; BIODIVERSITY; CONSERVATION; FUTURE; UNCERTAINTY AB This study examines the impacts of global warming on the timing of plant habitat changes in the twenty-first century using climate scenarios from multiple global climate models (GCMs). The plant habitat changes are predicted by driving the bioclimate rule in a dynamic global vegetation model using the climate projections from 16 coupled GCMs. The timing of plant habitat changes is estimated by the first occurrence of specified fractional changes (10%, 20%, and 30%). All future projections are categorized into three groups by the magnitude of the projected global-mean land surface temperature changes: low (<2.5 K), medium (2.5-3.5 K), and high (>3.5 K) warming. During the course of the twenty-first century, dominant plant habitat changes are projected in ecologically transitional (i.e., from tropical to temperate and temperate to boreal) regions. The timing of plant habitat changes varies substantially according to regions. In the low-warming group, habitat changes of 10% in southern Africa occur in 2028, earlier than in the Americas by more than 70 yr. Differences in the timing between regions increase with the increase in warming and fractional threshold. In the subtropics, fast plant habitat changes are projected for the Asia and Africa regions, where countries of relatively small gross domestic product (GDP) per capita are concentrated. Ecosystems in these regions will be more vulnerable to global warming, because countries of low economic power lack the capability to deal with the warming-induced habitat changes. Thus, it is important to establish international collaboration via which developed countries provide assistance to mitigate the impacts of global warming. C1 [Park, Chang-Eui; Ho, Chang-Hoi] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea. [Jeong, Su-Jong] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kim, Jinwon] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA. RP Jeong, SJ (reprint author), CALTECH, Jet Prop Lab, M-S 233-305D,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Su-Jong.Jeong@jpl.nasa.gov RI Jeong, Su-Jong/J-4110-2014; Ho, Chang-Hoi/H-8354-2015 FU Korea Meteorological Administration Research and Development Program under the Center for Atmospheric Sciences and Earthquake Research (CATER) [2012-2040]; Korea Ministry of Environment's "Climate Change Correspondence RD Program" FX This research was funded by the Korea Meteorological Administration Research and Development Program under the Center for Atmospheric Sciences and Earthquake Research (CATER) Grant 2012-2040 and was also supported by the Korea Ministry of Environment's "Climate Change Correspondence R&D Program." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 59 TC 0 Z9 0 U1 6 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD APR PY 2015 VL 28 IS 7 BP 2884 EP 2899 DI 10.1175/JCLI-D-13-00753.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE6IO UT WOS:000351940300023 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Ingenious Mr. Pyke: Inventor, Fugitive, Spy SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD APR 1 PY 2015 VL 140 IS 6 BP 99 EP 99 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CE9TO UT WOS:000352186500187 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Man Who Stalked Einstein: How Nazi Scientist Philipp Lenard Changed the Course of History SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD APR 1 PY 2015 VL 140 IS 6 BP 114 EP 114 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CE9TO UT WOS:000352186500255 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Physicist and the Philosopher: Einstein, Bergson, and the Debate That Changed Our Understanding of Time SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD APR 1 PY 2015 VL 140 IS 6 BP 114 EP 114 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CE9TO UT WOS:000352186500253 ER PT J AU Singh, UN Walsh, BM Yu, JR Petros, M Kavaya, MJ Refaat, TF Barnes, NP AF Singh, Upendra N. Walsh, Brian M. Yu, Jirong Petros, Mulugeta Kavaya, Michael J. Refaat, Tamer F. Barnes, Norman P. TI Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing SO OPTICAL MATERIALS EXPRESS LA English DT Article ID LIDAR; SPECTROSCOPY; TRANSMITTER; AIRBORNE; SYSTEM; CO2 AB NASA Langley Research Center (LaRC) has a long history of developing pulsed 2-mu m lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful progress spanning around two decades. This article covers the 2-mu m laser development from early research to current state-of-the-art instrumentation and projected future space missions. This applies to both global wind and carbon dioxide active remote sensing. A brief historical perspective of Tm:Ho work by early researchers is also given. (C) 2015 Optical Society of America C1 [Singh, Upendra N.; Walsh, Brian M.; Yu, Jirong; Petros, Mulugeta; Kavaya, Michael J.; Refaat, Tamer F.; Barnes, Norman P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Singh, UN (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM upendra.n.singh@nasa.gov FU NASA Earth Science Technology Office (ESTO); Science Mission Directorate, Earth Science Division, at NASA headquarters FX The authors will like to acknowledge the funding and support from NASA Earth Science Technology Office (ESTO) and Science Mission Directorate, Earth Science Division, at NASA headquarters. Special appreciation goes to Mr. George Komar and Dr. Ramesh Kakar of NASA. Acknowledgments are also due to NPOESS Integrated Program Office, and NASA Langley Research Center. Authors would also like to acknowledge numerous technical contributors from university, industry (in particular Fibertek, Inc.), and the government during last 20 years. NR 36 TC 18 Z9 18 U1 0 U2 31 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD APR 1 PY 2015 VL 5 IS 4 BP 827 EP 837 DI 10.1364/OME.5.000827 PG 11 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA CF1GS UT WOS:000352293100018 ER PT J AU Xie, GD Ren, YX Huang, H Lavery, MPJ Ahmed, N Yan, Y Bao, CJ Li, L Zhao, Z Cao, YW Willner, M Tur, M Dolinar, SJ Boyd, RW Shapiro, JH Willner, AE AF Xie, Guodong Ren, Yongxiong Huang, Hao Lavery, Martin P. J. Ahmed, Nisar Yan, Yan Bao, Changjing Li, Long Zhao, Zhe Cao, Yinwen Willner, Moshe Tur, Moshe Dolinar, Samuel J. Boyd, Robert W. Shapiro, Jeffrey H. Willner, Alan E. TI Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm SO OPTICS LETTERS LA English DT Article ID SPACE OPTICAL LINK; WAVE-FRONT SENSOR; ATMOSPHERIC-TURBULENCE; ADAPTIVE-OPTICS; QUANTUM STATES; LIGHT; PROPAGATION; COMMUNICATION; COMPENSATION; MODES AB A stochastic-parallel-gradient-descent algorithm (SPGD) based on Zernike polynomials is proposed to generate the phase correction pattern for a distorted orbital angular momentum (OAM) beam. The Zernike-polynomial coefficients for the correction pattern are obtained by monitoring the intensity profile of the distorted OAM beam through an iteration-based feedback loop. We implement this scheme and experimentally show that the proposed approach improves the quality of the turbulence-distorted OAM beam. Moreover, we apply phase correction patterns derived from a probe OAM beam through emulated turbulence to correct other OAM beams transmitted through the same turbulence. Our experimental results show that the patterns derived this way simultaneously correct multiple OAM beams propagating through the same turbulence, and the crosstalk among these modes is reduced by more than 5 dB. (C) 2015 Optical Society of America C1 [Xie, Guodong; Ren, Yongxiong; Huang, Hao; Ahmed, Nisar; Yan, Yan; Bao, Changjing; Li, Long; Zhao, Zhe; Cao, Yinwen; Willner, Moshe; Willner, Alan E.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Lavery, Martin P. J.; Boyd, Robert W.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Tur, Moshe] Tel Aviv Univ, Sch Elect Engn, IL-69978 Ramat Aviv, Israel. [Dolinar, Samuel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boyd, Robert W.] Univ Rochester, Inst Opt, Dept Phys & Astron, Rochester, NY 14627 USA. [Boyd, Robert W.] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada. [Shapiro, Jeffrey H.] MIT, Res Lab Elect, Cambridge, MA 02139 USA. RP Xie, GD (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. EM guodongx@usc.edu RI Lavery, Martin/H-2265-2015; OI Cao, Yinwen/0000-0002-8225-3364 FU DARPA; Intel Labs University Research Office FX We thank Jerome Ballesta, Baris Erkman, Prem Kumar, and Tommy Willis for the fruitful discussions. We acknowledge the support of DARPA under the InPho program and Intel Labs University Research Office. NR 25 TC 11 Z9 12 U1 0 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD APR 1 PY 2015 VL 40 IS 7 BP 1197 EP 1200 DI 10.1364/OL.40.001197 PG 4 WC Optics SC Optics GA CE9HK UT WOS:000352154600016 PM 25831291 ER PT J AU Tesch, J Truong, T Burruss, R Gibson, S AF Tesch, Jonathan Truong, Tuan Burruss, Rick Gibson, Steve TI On-sky demonstration of optimal control for adaptive optics at Palomar Observatory SO OPTICS LETTERS LA English DT Article AB High-order adaptive optics systems often suffer from significant computational latency, which ultimately limits the temporal error rejection bandwidth when classical controllers are employed. This Letter presents results from an on-sky, real-time implementation of an optimal controller on the PALM-3000 adaptive optics system at Palomar Observatory. The optimal controller is computed directly from open-loop wavefront measurements using a multichannel subspace system identification algorithm, and mitigates latency by explicitly predicting incident turbulence. Experimental results show a significant reduction in the residual wavefront error over the controlled spatial modes, illustrating the superior performance of the optimal control approach versus the nominal integral control architecture. (C) 2015 Optical Society of America C1 [Tesch, Jonathan; Truong, Tuan; Burruss, Rick] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gibson, Steve] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. RP Tesch, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jtesch@jpl.nasa.gov FU National Aeronautics and Space Administration; internal Research and Technology Development program FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. NR 9 TC 4 Z9 4 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD APR 1 PY 2015 VL 40 IS 7 BP 1575 EP 1578 DI 10.1364/OL.40.001575 PG 4 WC Optics SC Optics GA CE9HK UT WOS:000352154600113 PM 25831388 ER PT J AU Gronoff, G Norman, RB Mertens, CJ AF Gronoff, Guillaume Norman, Ryan B. Mertens, Christopher J. TI Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Cosmic rays; Mars; Dosimetry ID MARTIAN DUST DEVILS; IONIZING-RADIATION; OXIDANT ENHANCEMENT; EARTHS ATMOSPHERE; SURFACE; SOLAR; TRANSPORT; MODELS; STORMS; EVENT AB The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Gronoff, Guillaume] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Gronoff, G (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM Guillaume.P.Gronoff@nasa.gov; Ryan.B.Norman@nasa.gov; Christopher.J.Mertens@nasa.gov RI Norman, Ryan/D-5095-2017; OI Norman, Ryan/0000-0002-9103-7225; Gronoff, Guillaume/0000-0002-0331-7076 FU Human Research Program under the Human Exploration and Operations Mission Directorate of NASA FX This work was supported by the Human Research Program under the Human Exploration and Operations Mission Directorate of NASA. NR 47 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 1 PY 2015 VL 55 IS 7 BP 1799 EP 1805 DI 10.1016/j.asr.2015.01.028 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6VR UT WOS:000351976800008 ER PT J AU Afram, N Berdyugina, SV AF Afram, N. Berdyugina, S. V. TI Molecules as magnetic probes of starspots SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE molecular processes; stars: magnetic field; polarization; radiative transfer; line: formation ID SPECTRAL-SYNTHESIS; BAND STRENGTHS; ACTIVE STARS; COOL STARS; II-PEGASI; M-DWARFS; FIELDS; STELLAR; LINES; SYSTEM AB Context. Stellar dynamo processes can be explored by measuring the magnetic field. This is usually obtained using the atomic and molecular Zeeman effect in spectral lines. While the atomic Zeeman effect can only access warmer regions, the use of molecular lines is of advantage for studying cool objects. The molecules MgH, TiO, CaH, and FeH are suited to probe stellar magnetic fields, each one for a different range of spectral types, by considering the signal that is obtained from modeling various spectral types. Aims. We have analyzed the usefulness of different molecules (MgH, TiO, CaH, and FeH) as diagnostic tools for studying stellar magnetism on active G-K-M dwarfs. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and present synthetic Stokes profiles for the modeled spectral type. Methods. We modeled a star with a spot size of 10% of the stellar disk and a spot comprising either only longitudinal or only transverse magnetic fields and estimated the strengths of the polarization Stokes V and Q signals for the molecules MgH, TiO, CaH, and FeH. We combined various photosphere and spot models according to realistic scenarios. Results. In G dwarfs, the molecules MgH and FeH show overall the strongest Stokes V and Q signals from the starspot, whereas FeH has a stronger Stokes V signal in all G dwarfs with a spot temperature of 3800 K. In K dwarfs, CaH signals are generally stronger, and the TiO signature is most prominent in M dwarfs. Conclusions. Modeling synthetic polarization signals from starspots for a range of G-K-M dwarfs leads to differences in the prominence of various molecular signatures in different wavelength regions, which helps to efficiently select targets and exposure times for observations. C1 [Afram, N.; Berdyugina, S. V.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Berdyugina, S. V.] Univ Hawaii, Inst Astron, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Afram, N (reprint author), Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. EM nafram@hotmail.com FU European Research Council (ERC) Advanced Grant HotMol [ERC-2011-AdG 291659] FX This work is supported by the European Research Council (ERC) Advanced Grant HotMol (ERC-2011-AdG 291659). NR 42 TC 5 Z9 5 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A34 DI 10.1051/0004-6361/201425314 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE5LT UT WOS:000351877600034 ER PT J AU Duan, C Carvajal, M Yu, S Pearson, JC Drouin, BJ Kleiner, I AF Duan, C. Carvajal, M. Yu, S. Pearson, J. C. Drouin, B. J. Kleiner, I. TI THz extended spectrum of the monodeuterated methyl formate (DCOOCH3) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE molecular data; methods: laboratory: molecular; methods: data analysis; ISM: molecules; submillimeter: ISM ID SUBMILLIMETER-WAVE SPECTRUM; EXCITED TORSIONAL STATES; 1ST ISM DETECTION; MILLIMETER-WAVE; ORION-KL; C-13(1)-METHYL FORMATE; ASTROPHYSICAL INTEREST; C-13-METHYL FORMATE; MICROWAVE-SPECTRUM; INTERNAL ROTATION AB Context. Laboratory spectral recordings and an accurate molecular spectral analysis of any potential interstellar molecule are essential for generating a complete spectroscopic line list. This permits predicting the frequencies and intensities of any transition so that subsequently, it can be identified in the interstellar medium. Aims. Our analysis of DCOOCH3 aims to provide a comprehensive spectral catalog that encompasses as much as possible the frequency coverage of the new-generation far-IR and submillimeter wave observation facilities. Methods. We newly measured the rotational spectrum of DCOOCH3 in the laboratory of the Jet Propulsion Laboratory in the frequency range of 0.85 to 1.5 THz. We jointly analyzed the new data with literature data using the rho axis method, which is a tool developed for the spectral analysis of molecules with large-amplitude internal CH3 rotors. Results. We fit 27 spectroscopic constants of DCOOCH3 to 3763 transitions with highest values of J = 69 and K-a = 36 of the ground torsional state with a standard (unitless) deviation of 0.97. With respect to previous work, this is a significantly better result that was obtained with 2060 more transitions, and we also achieved a better accuracy for the new parameter values. C1 [Duan, C.] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China. [Carvajal, M.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Unidad Asociada CSIC, Huelva 21071, Spain. [Yu, S.; Pearson, J. C.; Drouin, B. J.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [Kleiner, I.] Univ Paris Est Creteil, UMR CNRS 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Kleiner, I.] Univ Paris Diderot, F-94010 Creteil, France. RP Duan, C (reprint author), Cent China Normal Univ, Coll Phys Sci & Technol, Luoyu Rd 152, Wuhan 430079, Peoples R China. EM miguel.carvajal@dfa.uhu.es RI Carvajal, Miguel/L-2756-2014; Yu, Shanshan/D-8733-2016 OI Carvajal, Miguel/0000-0001-8743-129X; FU MINECO, Spain [FIS2011-28738-C02-02]; French PCMI (Programme National de Physique Chimie du Milieu Interstellaire); National Natural Science Foundation of China [11174098] FX This research was supported by the FIS2011-28738-C02-02 project (MINECO, Spain), the French PCMI (Programme National de Physique Chimie du Milieu Interstellaire), and the National Natural Science Foundation of China (Grant No. 11174098). M.C. acknowledges the research stay at the Universite Paris Diderot under the Guest Faculty programme in May 2014. Portions of this paper present research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged. NR 47 TC 2 Z9 2 U1 0 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A39 DI 10.1051/0004-6361/201425328 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE5LT UT WOS:000351877600039 ER PT J AU Langer, WD Goldsmith, PF Pineda, JL Velusamy, T Requena-Torres, MA Wiesemeyer, H AF Langer, W. D. Goldsmith, P. F. Pineda, J. L. Velusamy, T. Requena-Torres, M. A. Wiesemeyer, H. TI Ionized gas at the edge of the central molecular zone SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; HII regions; Galaxy: center ID DIELECTRONIC RECOMBINATION DATA; PHOTOIONIZATION CROSS-SECTIONS; EFFECTIVE COLLISION STRENGTHS; GALACTIC-CENTER EVIDENCE; FINITE-DENSITY PLASMAS; C-II; INTERSTELLAR-MEDIUM; HETERODYNE INSTRUMENT; CHARGE-TRANSFER; CENTER REGION AB Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims. We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods. We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [CII] 158 mu m and [NII] 205 mu m fine structure lines at six positions with the GREAT instrument on SOFIA and in [CII] using Herschel HIFI on-the-fly strip maps. We use the [NII] spectra along with a radiative transfer model to calculate the electron density of the gas and the [CII] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H-2. Results. We detect two [CII] and [NII] velocity components, one along the line of sight to a CO molecular cloud at -207 km s(-1) associated with Sgr E and the other at -174 km s(-1) outside the edge of another CO cloud. From the [NII] emission we find that the average electron density is in the range of similar to 5 to 21 cm(-3) for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse HII nebula. The column density of the CO-dark H-2 layer in the -207 km s(-1) cloud is similar to 1-2x10(21) cm(-2) in agreement with theoretical models. The CMZ extends further out in Galactic radius by similar to 7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions. The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 10(6) to 10(7) photons cm(-2) s(-1), and/or efficient proton charge exchange with nitrogen, at temperatures of order 10(4) K, and/or a large flux of X-rays. Sgr E is a region of massive star formation as indicated by the presence of numerous compact HII regions. The massive stars are potential sources of the EUV radiation that ionizes and heat the gas. In addition, X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen. C1 [Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Requena-Torres, M. A.; Wiesemeyer, H.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. RP Langer, WD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM William.Langer@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Universities Space Research Association, Inc., under NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901] FX This work is based in part on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. We would like to thank Drs. R. Gusten and G. Sandell for their support of the observations and for keeping in close contact with us during the flights to adjust the observing plan as needed. In addition we owe a special thanks to Dr. David Teyssier for clarifications regarding the hebCorrection tool. We also thank an anonymous referee for comments and suggestions that improved the discussion in our paper. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 65 TC 6 Z9 6 U1 1 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A1 DI 10.1051/0004-6361/201425360 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE5LT UT WOS:000351877600001 ER PT J AU Samuels, T Noack, L Verseux, C Serrano, P AF Samuels, Toby Noack, Lena Verseux, Cyprien Serrano, Paloma TI A new network for astrobiology in Europe SO ASTRONOMY & GEOPHYSICS LA English DT Article ID BIOFILM C1 [Samuels, Toby] Univ Edinburgh, UK Ctr Astrobiol, Edinburgh EH8 9YL, Midlothian, Scotland. [Noack, Lena] Royal Observ Belgium, Brussels, Belgium. [Verseux, Cyprien] Univ Roma Tor Vergata, Rome, Italy. [Verseux, Cyprien] NASA Ames Res Ctr, Mountain View, CA USA. [Serrano, Paloma] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany. RP Samuels, T (reprint author), Univ Edinburgh, UK Ctr Astrobiol, Edinburgh EH8 9YL, Midlothian, Scotland. FU UK Space Agency; European Cooperation in Science and Technology; UK Centre for Astrobiology; Scottish University Physics Alliance; Royal Society of Edinburgh; Exobiologie Jeunes Chercheurs group; Royal Astronomical Society FX A key component that enabled the symposium to thrive was the financial support provided by numerous people and organizations. On behalf of all attendees, we thank the UK Space Agency, the European Cooperation in Science and Technology, the UK Centre for Astrobiology, the Scottish University Physics Alliance, the Royal Society of Edinburgh, the Exobiologie Jeunes Chercheurs 2013 group and the Royal Astronomical Society for their support, which together came to more than 12900 pound. This allowed us to provide free accommodation to all attendees and provide travel grants (300 pound for international attendees, 200 pound for UK attendees) to 19people. This was advantageous for many of the attendees who also attended EANA the following week. Thanks also go to the European Space Agency and to the NASA Astrobiology Institute for providing pens, booklets, astrobiology comics etc for the conference bags. In addition, we are grateful to Charles Cockell and Frances Westall for their advice, encouragement and support. We finally thank the invited speakers for their fascinating talks. NR 7 TC 1 Z9 1 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1366-8781 EI 1468-4004 J9 ASTRON GEOPHYS JI Astron. Geophys. PD APR PY 2015 VL 56 IS 2 BP 15 EP 17 PG 3 WC Astronomy & Astrophysics; Geochemistry & Geophysics SC Astronomy & Astrophysics; Geochemistry & Geophysics GA CE6DQ UT WOS:000351927200027 ER PT J AU Luo, M Shephard, MW Cady-Pereira, KE Henze, DK Zhu, LY Bash, JO Pinder, RW Capps, SL Walker, JT Jones, MR AF Luo, Ming Shephard, Mark W. Cady-Pereira, Karen E. Henze, Daven K. Zhu, Liye Bash, Jesse O. Pinder, Robert W. Capps, Shannon L. Walker, John T. Jones, Matthew R. TI Satellite observations of tropospheric ammonia and carbon monoxide: Global distributions, regional correlations and comparisons to model simulations SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Satellite observations of carbon monoxide and ammonia; GEOS-Chem model simulations ID ATMOSPHERIC POLLUTANTS; EMISSION SPECTROMETER; HIGH-RESOLUTION; INTEX-B; TES; IASI; INVENTORY; MISSION; VARIABILITY; RETRIEVALS AB Ammonia (NH3) and carbon monoxide (CO) are primary pollutants emitted to the Earth's atmosphere from common as well as distinct sources associated with anthropogenic and natural activities. The seasonal and global distributions and correlations of NH3 and CO from the Tropospheric Emission Spectrometer (TES) satellite observations and GEOS-Chem model simulations for 2007 are investigated to evaluate how well the global and seasonal pollutant sources are prescribed in the model. Although the GEOS-Chem simulations of NH3 and CO atmospheric mixing ratio values are lower than the TES satellite observations, the global distribution patterns from the model reasonably agree with the observations, indicating that the model represents the general location of the source regions and the seasonal enhancements of NH3 and CO globally over large regional scales. In regions and seasons where biomass burning is the dominant source of both NH3 and CO emissions into the atmosphere, there are strong NH3:CO correlations, which is consistent with the relationship demonstrated by surface measurements over fires. In regions where the enhanced NH3 and CO are known to be produced by different sources, the NH3:CO correlations from TES observations and model simulations are weak or non-existent. For biomass burning regions the NH3:CO ratios are 0.015 (TES) and 0.013 (GEOS-Chem). In regions of high-population density, known heavy traffic, and limited biomass burning sources, such as the rapidly developing areas of South Asia and northern China, which include mixtures of megacities, industrial, and agricultural areas, the two species show weaker but still positive correlations and NH3:CO ratios of 0.051 (TES) and 0.036 (GEOS-Chem). These enhancement ratios of NH3 relative to CO are useful in constraining NH3 emission inventories when CO emission inventories are better known for some events or regions (i.e. biomass burning). (C) 2015 Elsevier Ltd. All rights reserved. C1 [Luo, Ming] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Shephard, Mark W.] Environm Canada, Toronto, ON, Canada. [Cady-Pereira, Karen E.] Atmospher & Environm Res Inc, Lexington, MA USA. [Henze, Daven K.; Zhu, Liye] Univ Colorado, Boulder, CO 80309 USA. [Bash, Jesse O.; Pinder, Robert W.; Capps, Shannon L.; Walker, John T.; Jones, Matthew R.] US EPA, Res Triangle Pk, NC 27711 USA. [Jones, Matthew R.] Ctr Ecol & Hydrol, Edinburgh, Midlothian, Scotland. RP Luo, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ming.Luo@jpl.nasa.gov RI Chem, GEOS/C-5595-2014; Capps, Shannon/E-5602-2017; OI Capps, Shannon/0000-0002-6872-6604; Capps, Shannon/0000-0003-4274-887X; Bash, Jesse/0000-0001-8736-0102 FU Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration (NASA); NASA ACMAP [NNX10AG63G]; EPA-STAR [RD83455901]; Research Participation Program at the U.S. EPA FX Research was partially supported by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration (NASA). We also recognize support from NASA ACMAP NNX10AG63G and EPA-STAR RD83455901. SC was supported by an appointment to the Research Participation Program at the U.S. EPA, administered by the Oak Ridge Institute for Science and Education. Although this paper has been reviewed by EPA and approved for publication, it does not necessarily reflect official EPA agency views or policies. NR 61 TC 8 Z9 8 U1 4 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2015 VL 106 BP 262 EP 277 DI 10.1016/j.atmosenv.2015.02.007 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CE6RR UT WOS:000351966200026 ER PT J AU Fereres, S Fernandez-Pello, C Urban, DL Ruff, GA AF Fereres, Sonia Fernandez-Pello, Carlos Urban, David L. Ruff, Gary A. TI Identifying the roles of reduced gravity and pressure on the piloted ignition of solid combustibles SO COMBUSTION AND FLAME LA English DT Article DE Reduced gravity; Low pressure; Piloted ignition; Modeling ID FLAME SPREAD; FUEL; MICROGRAVITY; TRANSITION; SIMULATION; FLOW AB The influence of environmental conditions on solid fuel ignition is of particular interest in spacecraft fire safety because of the large difference in environments between a spacecraft and earth (low gravity, low gas flow velocities, low pressure, elevated oxygen concentration). Considering that fire safety is essential when dealing with spacecraft vehicles, where space is confined and egress is difficult or almost impossible, low gravity fire initiation has a prominent importance. In addition to microgravity, low cabin pressure may further decrease the convective heat losses from the solid, leading to a faster heating of the materials and therefore raising the fire hazard on board. A numerical model developed with the CFD code Fire Dynamics Simulator (FDS) was used to analyze the effect of reduced gravity and ambient pressure on the transport processes taking place in the piloted ignition of an externally irradiated solid fuel. The model simultaneously solves the gas phase and solid phase conservation equations, using a one-step second order Arrhenius reaction rate for the gas phase kinetics and a one-step global Arrhenius reaction rate for the solid phase decomposition. The transition from an incipient premixed reaction at the pilot to the establishment of a self-sustained diffusion flame anchored on the solid fuel surface is analyzed and described in detail and compared for several cases of reduced pressure and gravity. The influence of these parameters on the ignition delay time and the mass flux at ignition is also calculated and compared to experiments at 1 g for a range of sub-atmospheric pressures. The results show that reduced pressure and reduced gravity have similar effects on the piloted ignition of a solid fuel in low velocity flows, indicating that heating and pyrolysis of the solid are the primary mechanisms in the process. The results of this work may guide in the selection of materials in future space exploration vehicles and indicate when microgravity testing may be substituted by reduced ambient pressure conditions to analyze their ignition properties. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Fereres, Sonia] Abengoa Res, Seville 41014, Spain. [Fernandez-Pello, Carlos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Urban, David L.; Ruff, Gary A.] NASA, John H Glenn Res Ctr, Cleveland, OH 44256 USA. RP Fereres, S (reprint author), Abengoa Res, C Energia Solar 1, Seville 41014, Spain. EM sonia.fereres@research.abengoa.com FU NASA [NNX08BA77A, NNX10AE01G] FX The authors would like to thank Dr. Chris Lautenberger for his help with the modeling and Dr. David Rich for his comments and discussions. This work was supported by NASA Grants NNX08BA77A and NNX10AE01G. NR 33 TC 1 Z9 2 U1 2 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD APR PY 2015 VL 162 IS 4 BP 1136 EP 1143 DI 10.1016/j.combustflame.2014.10.004 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA CE4IK UT WOS:000351794100020 ER PT J AU Kasprak, AH Sepulveda, J Price-Waldman, R Williford, KH Schoepfer, SD Haggart, JW Ward, PD Summons, RE Whiteside, JH AF Kasprak, Alex H. Sepulveda, Julio Price-Waldman, Rosalyn Williford, Kenneth H. Schoepfer, Shane D. Haggart, James W. Ward, Peter D. Summons, Roger E. Whiteside, Jessica H. TI Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction SO GEOLOGY LA English DT Article ID ATLANTIC MAGMATIC PROVINCE; QUEEN-CHARLOTTE-ISLANDS; JURASSIC BOUNDARY; MASS EXTINCTION; BRITISH-COLUMBIA; ANOXIC EVENTS; WATER COLUMN; PERTURBATION; PRODUCTIVITY; VOLCANISM AB Severe changes in ocean redox, nutrient cycling, and marine productivity accompanied most Phanerozoic mass extinctions. However, evidence for marine photic zone euxinia (PZE) as a globally important extinction mechanism for the end-Triassic extinction (ETE) is currently lacking. Fossil molecular (biomarker) and nitrogen isotopic records from a sedimentary sequence in western Canada provide the first conclusive evidence of PZE and disrupted biogeochemistry in neritic waters of the Panthalassic Ocean during the end Triassic. Increasing water-column stratification and deoxygenation across the ETE led to PZE in the Early Jurassic, paralleled by a perturbed nitrogen cycle and ecological turnovers among noncalcifying groups, including eukaryotic algae and prokaryotic plankton. If such conditions developed widely in the Panthalassic Ocean, PZE might have been a potent mechanism for the ETE. C1 [Kasprak, Alex H.; Price-Waldman, Rosalyn] Brown Univ, Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Sepulveda, Julio; Summons, Roger E.] MIT, Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Williford, Kenneth H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schoepfer, Shane D.] Univ Washington, Earth & Space Sci, Seattle, WA 98195 USA. [Haggart, James W.] Geol Survey Canada, Vancouver, BC V6B 5J3, Canada. [Ward, Peter D.] Univ Adelaide, Geol & Geophys, Adelaide, SA 5005, Australia. [Whiteside, Jessica H.] Univ Southampton, Natl Oceanog Ctr Southampton, Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England. RP Kasprak, AH (reprint author), Univ Colorado, Geol Sci & Inst Arctic & Alpine Res, Boulder, CO 80309 USA. EM J.Whiteside@soton.ac.uk FU National Science Foundation [EAR-1147402]; NASA [NNX-09AM88G, NNA08CN84A]; Mary Hill and Bevan French Fund; American Association of Petroleum Geologists FX We thank K. French, C. Colonero, and S. Newman (Massachusetts Institute of Technology) and J. Orchardo, B. Konecky, H. O'Neil, and J. Russell (Brown University) for laboratory assistance; A. Schauer and K. Samek (University of Washington) for help with isotope analyses; and Y. Huang (Brown University) for discussions. Funding was provided by the National Science Foundation (grant EAR-1147402), the NASA Exobiology and Astrobiology programs (grants NNX-09AM88G and NNA08CN84A), the Mary Hill and Bevan French Fund, and an American Association of Petroleum Geologists Grant-In-Aid. Williford acknowledges NASA support for work performed at the Jet Propulsion Laboratory. NR 33 TC 9 Z9 9 U1 2 U2 19 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD APR PY 2015 VL 43 IS 4 BP 307 EP 310 DI 10.1130/G36371.1 PG 4 WC Geology SC Geology GA CE8MX UT WOS:000352097900014 ER PT J AU Livneh, B Deems, JS Buma, B Barsugli, JJ Schneider, D Molotch, NP Wolter, K Wessman, CA AF Livneh, Ben Deems, Jeffrey S. Buma, Brian Barsugli, Joseph J. Schneider, Dominik Molotch, Noah P. Wolter, K. Wessman, Carol A. TI Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains SO JOURNAL OF HYDROLOGY LA English DT Article DE Forest disturbance; Catchment hydrology; Bark beetle; Dust on snow; Hydrologic modeling ID RESOLUTION SATELLITE IMAGERY; PINE-BEETLE; WATER YIELD; VEGETATION MODEL; BRITISH-COLUMBIA; COMPLEX TERRAIN; UNITED-STATES; FOREST; HYDROLOGY; INFESTATION AB Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p <= 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust-on-snow produced little compounding effects, due to the relatively exclusive nature of their impacts. Potential changes in water yield and peak streamflow timing have important implications for regional water management decisions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Livneh, Ben; Deems, Jeffrey S.; Barsugli, Joseph J.; Wessman, Carol A.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Livneh, Ben; Deems, Jeffrey S.; Barsugli, Joseph J.; Wessman, Carol A.] Univ Colorado, WWA, Boulder, CO 80309 USA. [Deems, Jeffrey S.] Univ Colorado, NSIDC, Boulder, CO 80309 USA. [Buma, Brian] Univ Alaska Southeast, Dept Nat Sci, Juneau, AK 99801 USA. [Barsugli, Joseph J.; Wolter, K.] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO 80309 USA. [Schneider, Dominik; Molotch, Noah P.] Univ Colorado, Inst Arctic & Alpine Res INSTAAR, Dept Geog, Boulder, CO 80309 USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Livneh, B (reprint author), Univ Colorado, CIRES, 216 UCB, Boulder, CO 80309 USA. EM ben.livneh@colorado.edu RI Livneh, Ben/I-2939-2015; Barsugli, Joseph/K-3541-2015; Molotch, Noah/C-8576-2009; Schneider, Dominik/O-7396-2016; Deems, Jeffrey/E-6484-2016; OI Barsugli, Joseph/0000-0002-3078-6396; Schneider, Dominik/0000-0002-5846-5033; Deems, Jeffrey/0000-0002-3265-8670; LIVNEH, BEN/0000-0001-5445-2473 FU NOAA Climate Program Office through the Western Water Assessment RISA at CIRES, University of Colorado-Boulder FX We would like to acknowledge Leanne Lestak for her GIS assistance. This research was funded by the NOAA Climate Program Office through the Western Water Assessment RISA at CIRES, University of Colorado-Boulder. The data used in this analysis can be obtained by contacting the corresponding author directly. NR 78 TC 11 Z9 11 U1 3 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD APR PY 2015 VL 523 BP 196 EP 210 DI 10.1016/j.jhydrol.2015.01.039 PG 15 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CE6TS UT WOS:000351971700019 ER PT J AU Billah, MM Goodall, JL Narayan, U Reager, JT Lakshmi, V Famiglietti, JS AF Billah, Mirza M. Goodall, Jonathan L. Narayan, Ujjwal Reager, J. T. Lakshmi, Venkat Famiglietti, James S. TI A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE SO JOURNAL OF HYDROLOGY LA English DT Article DE Evapotranspiration; Terrestrial water storage (TWS); GRACE ID GENERAL-CIRCULATION MODELS; CLIMATE EXPERIMENT GRACE; GRAVITY RECOVERY; SOUTH-CAROLINA; VARIABILITY; STORAGE; RIVER; BALANCE; PARAMETERIZATION; EVAPORATION AB Accurate quantification of evapotranspiration (ET) at the watershed-scale remains an important research challenge. ET products from model simulations and remote sensing, even after incorporating in situ ET observations from flux towers in calibration or assimilation procedures, often produce different watershed areal-averaged ET estimates. These differences in ET estimates are magnified when they are integrated over time as part of water balance calculations. To address this challenge, we present a methodology for comparing watershed-average ET within a water balance framework that makes use of Gravity Recovery and Climate Experiment (GRACE)-observed terrestrial water storage change (TWSC). The methodology is demonstrated for South Carolina for a five-year period (2003-2007) using four different ET products: ET generated using a locally calibrated VIC model, a MODIS-derived ET product, and ET generated from two models (NOAH and VIC) as part of the North American Land Data Assimilation Systems 2 (NLDAS-2) project. The results of the example application suggest that the NLDAS-NOAH ET product is most consistent with GRACE-observed TWSC for the overall study region and time period. However, for periods of decreasing TWS, when ET becomes a more significant term in the water balance, the locally calibrated VIC model showed the most agreement with GRACE-observed TWSC. Application of the methodology for other regions and time periods can provide insight into different ET products when used for watershed-scale water resources management. (C) 2015 Elsevier B.V. All rights reserved. C1 [Billah, Mirza M.] SC Dept Hlth & Environm Control, Bur Water, Columbia, SC USA. [Goodall, Jonathan L.] Univ Virginia, Dept Civil & Environm Engn, Charlottesville, VA USA. [Goodall, Jonathan L.] Univ S Carolina, Dept Civil & Environm Engn, Columbia, SC 29208 USA. [Narayan, Ujjwal] Con Edison Co, New York, NY USA. [Reager, J. T.; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Lakshmi, Venkat] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. RP Goodall, JL (reprint author), POB 400742, Charlottesville, VA 22904 USA. EM goodall@virginia.edu RI Goodall, Jonathan/B-3663-2009; Lakshmi, Venkat/I-3078-2016 OI Goodall, Jonathan/0000-0002-1112-4522; Lakshmi, Venkat/0000-0001-7431-9004 FU US National Science Foundation [ACI:0940841] FX This work was supported in part by the US National Science Foundation under the award number ACI:0940841. NR 45 TC 11 Z9 12 U1 7 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD APR PY 2015 VL 523 BP 574 EP 586 DI 10.1016/j.jhydrol.2015.01.066 PG 13 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CE6TS UT WOS:000351971700049 ER PT J AU Kim, B Sanders, BF Famiglietti, JS Guinot, V AF Kim, Byunghyun Sanders, Brett F. Famiglietti, James S. Guinot, Vincent TI Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity SO JOURNAL OF HYDROLOGY LA English DT Article DE Porous shallow water equations; Finite volume model; Anisotropic porosity; Dam-break flood; Urban flood ID INUNDATION MODELS; DIFFUSION AB Porous shallow-water models (porosity models) simulate urban flood flows orders of magnitude faster than classical shallow-water models due to a relatively coarse grid and large time step, enabling flood hazard mapping over far greater spatial extents than is possible with classical shallow-water models. Here the errors of both isotropic and anisotropic porosity models are examined in the presence of anisotropic porosity, i.e., unevenly spaced obstacles in the cross-flow and along-flow directions, which is common in practical applications. We show that porosity models are affected by three types of errors: (a) structural model error associated with limitations of the shallow-water equations, (b) scale errors associated with use of a relatively coarse grid, and (c) porosity model errors associated with the formulation of the porosity equations to account for sub-grid scale obstructions. Results from a unique laboratory test case with strong anisotropy indicate that porosity model errors are smaller than structural model errors, and that porosity model errors in both depth and velocity are substantially smaller for anisotropic versus isotropic porosity models. Test case results also show that the anisotropic porosity model is equally accurate as classical shallow-water models when compared directly to gage measurements, while the isotropic model is less accurate. Further, results show the anisotropic porosity model resolves flow variability at smaller spatial scales than the isotropic model because the latter is restricted by the assumption of a Representative Elemental Volume (REV) which is considerably larger than the size of obstructions. These results point to anisotropic porosity models as being well-suited to whole-city urban flood prediction, but also reveal that point-scale flow attributes relevant to flood risk such as localized wakes and wave reflections from flow obstructions may not be resolved. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kim, Byunghyun; Sanders, Brett F.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Famiglietti, James S.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [Guinot, Vincent] Univ Montpellier 2, HydroSci Montpellier, CC MSE, F-34095 Montpellier 5, France. RP Sanders, BF (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. EM bsanders@uci.edu RI Sanders, Brett/K-7153-2012 FU MRPI program of the University of California Office of the President; Infrastructure Management and Extreme Events program of the National Science Foundation [CMMI-1129730]; Hazards-SEES program of the National Science Foundation [DMS-1331611] FX This work was supported by the MRPI program of the University of California Office of the President, the Infrastructure Management and Extreme Events program of the National Science Foundation (CMMI-1129730), and the Hazards-SEES program of the National Science Foundation (DMS-1331611). The authors wish to thank K. Yoon and his research team for their efforts to conduct the laboratory experiments presented here. NR 22 TC 6 Z9 6 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD APR PY 2015 VL 523 BP 680 EP 692 DI 10.1016/j.jhydrol.2015.01.059 PG 13 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CE6TS UT WOS:000351971700057 ER PT J AU Guan, KY Pan, M Li, HB Wolf, A Wu, J Medvigy, D Caylor, KK Sheffield, J Wood, EF Malhi, Y Liang, ML Kimball, JS Saleska, SR Berry, J Joiner, J Lyapustin, AI AF Guan, Kaiyu Pan, Ming Li, Haibin Wolf, Adam Wu, Jin Medvigy, Divid Caylor, Kelly K. Sheffield, Justin Wood, Eric F. Malhi, Yadvinder Liang, Miaoling Kimball, John S. Saleska, Scott R. Berry, Joe Joiner, Joanna Lyapustin, Alexei I. TI Photosynthetic seasonality of global tropical forests constrained by hydroclimate SO NATURE GEOSCIENCE LA English DT Article ID CHLOROPHYLL FLUORESCENCE; AMAZON FORESTS; CLIMATE-CHANGE; RAIN-FORESTS; DROUGHT; CARBON; SENSITIVITY; DISTURBANCE; GREENNESS; DYNAMICS AB The response of tropical forests to droughts is highly uncertain(1). During the dry season, canopy photosynthesis of some tropical forests can decline, whereas in others it can be maintained at the same or a higher level than during the wet season(2). However, it remains uncertain to what extent water availability is responsible for productivity declines of tropical forests during the dry season(2,3). Here we use global satellite observations of two independent measures of vegetation photosynthetic properties (enhanced vegetation index from 2002 to 2012 and solar-induced chlorophyll fluorescence from 2007 to 2012) to investigate links between hydroclimate and tropical forest productivity. We find that above an annual rainfall threshold of approximately 2,000mmyr(-1), the evergreen state is sustained during the dry season in tropical rainforests worldwide, whereas below that threshold, this is not the case. Through awater-budget analysis of precipitation, potential evapotranspiration and satellite measurements of water storage change, we demonstrate that this threshold determines whether the supply of seasonally redistributed subsurface water storage from the wet season can satisfy plant water demands in the subsequent dry season. We conclude that water availability exerts a first-order control on vegetation seasonality in tropical forests globally. Our framework can also help identify where tropical forests may be vulnerable or resilient to future hydroclimatic changes. C1 [Guan, Kaiyu; Pan, Ming; Caylor, Kelly K.; Sheffield, Justin; Wood, Eric F.; Liang, Miaoling] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Guan, Kaiyu] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Li, Haibin] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08854 USA. [Wolf, Adam] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. [Wu, Jin; Saleska, Scott R.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Medvigy, Divid] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Malhi, Yadvinder] Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England. [Kimball, John S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Kimball, John S.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Berry, Joe] Carnegie Inst Sci, Dept Global Energy, Stanford, CA 94305 USA. [Joiner, Joanna; Lyapustin, Alexei I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guan, KY (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. EM kaiyug@stanford.edu RI Guan, Kaiyu/N-5772-2015; Pan, Ming/B-6841-2011 OI Guan, Kaiyu/0000-0002-3499-6382; Pan, Ming/0000-0003-3350-8719 FU NASA Earth and Space Science Fellowship (NESSF); NASA Terra-Aqua Science program [NNX11AD46G, NNX11AH24G]; DOE Terrestrial Ecosystem Science [DE-SC0008383] FX K.G. and E.F.W. acknowledge financial support from the NASA Earth and Space Science Fellowship (NESSF). J.S.K.'s contribution is supported under the NASA Terra-Aqua Science program (NNX11AD46G). S.R.S. and J.W. acknowledge support by NASA Terra-Aqua Science program (NNX11AH24G) and by DOE Terrestrial Ecosystem Science (DE-SC0008383). We also acknowledge all the data providers for sharing the scientific data. NR 29 TC 35 Z9 35 U1 13 U2 67 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD APR PY 2015 VL 8 IS 4 BP 284 EP 289 DI 10.1038/NGEO2382 PG 6 WC Geosciences, Multidisciplinary SC Geology GA CE8HK UT WOS:000352082300018 ER PT J AU Greenbaum, JS Blankenship, DD Young, DA Richter, TG Roberts, JL Aitken, ARA Legresy, B Schroeder, DM Warner, RC van Ommen, TD Siegert, MJ AF Greenbaum, J. S. Blankenship, D. D. Young, D. A. Richter, T. G. Roberts, J. L. Aitken, A. R. A. Legresy, B. Schroeder, D. M. Warner, R. C. van Ommen, T. D. Siegert, M. J. TI Ocean access to a cavity beneath Totten Glacier in East Antarctica SO NATURE GEOSCIENCE LA English DT Article ID PINE ISLAND GLACIER; ICE-SHEET; WEST ANTARCTICA; SHELVES; VARIABILITY; ALTIMETRY; MARGINS; RETREAT; SURFACE; DRIVEN AB Totten Glacier, the primary outlet of the Aurora Subglacial Basin, has the largest thinning rate in East Antarctica(1,2). Thinning may be driven by enhanced basal melting due to ocean processes(3), modulated by polynya activity(4,5). Warm modified Circumpolar Deep Water, which has been linked to glacier retreat in West Antarctica(6), has been observed in summer and winter on the nearby continental shelf beneath 400 to 500 m of cool Antarctic Surface Water(7,8). Here we derive the bathymetry of the sea floor in the region from gravity(9) and magnetics(10) data as well as ice-thickness measurements(11). We identify entrances to the ice-shelf cavity below depths of 400 to 500 m that could allow intrusions of warm water if the vertical structure of inflow is similar to nearby observations. Radar sounding reveals a previously unknown inland trough that connects the main ice-shelf cavity to the ocean. If thinning trends continue, a larger water body over the trough could potentially allow more warm water into the cavity, which may, eventually, lead to destabilization of the low-lying region between Totten Glacier and the similarly deep glacier flowing into the Reynolds Trough. We estimate that at least 3.5 m of eustatic sea level potential drains through Totten Glacier, so coastal processes in this area could have global consequences. C1 [Greenbaum, J. S.; Blankenship, D. D.; Young, D. A.; Richter, T. G.] Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA. [Roberts, J. L.; Legresy, B.; Warner, R. C.; van Ommen, T. D.] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia. [Roberts, J. L.; Warner, R. C.; van Ommen, T. D.] Australian Antarctic Div, Kingston, Tas 7050, Australia. [Aitken, A. R. A.] Univ Western Australia, Sch Earth & Environm, Perth, WA, Australia. [Legresy, B.] CSIRO, CSIRO Oceans & Atmosphere Flagship, Hobart, Tas 7000, Australia. [Legresy, B.] CNRS LEGOS, F-31400 Toulouse, France. [Schroeder, D. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Siegert, M. J.] Univ London Imperial Coll Sci Technol & Med, Grantham Inst, London SW7 2AZ, England. [Siegert, M. J.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. RP Greenbaum, JS (reprint author), Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA. EM jamin@utexas.edu RI Young, Duncan/G-6256-2010; Siegert, Martin/A-3826-2008 OI Young, Duncan/0000-0002-6866-8176; Roberts, Jason/0000-0002-3477-4069; van Ommen, Tas/0000-0002-2463-1718; Siegert, Martin/0000-0002-0090-4806 FU NSF [PLR-0733025, PLR-1143843, CDI-0941678]; NASA [NNG10HPO6C, NNX11AD33G]; Australian Antarctic Division projects [3013, 4077]; NERC [NE/D003733/1]; G. Unger Vetlesen Foundation; Jackson School of Geosciences; Antarctic Climate and Ecosystems Cooperative Research Centre FX This project is the result of the ongoing ICECAP collaboration between the USA, UK and Australia with support from NSF grants PLR-0733025 and PLR-1143843, and CDI-0941678, NASA grants NNG10HPO6C and NNX11AD33G (Operation Ice Bridge and the American Recovery and Reinvestment Act), Australian Antarctic Division projects 3013 and 4077, NERC grant NE/D003733/1, the G. Unger Vetlesen Foundation, the Jackson School of Geosciences, and the Antarctic Climate and Ecosystems Cooperative Research Centre. We thank the captains and crews of Kenn Borek Airlines Ltd, ICECAP project participants, CMG Operations Pty Ltd, and the Geosoft Education Program. We also thank S. Kempf for assistance with radar data processing, as well as A. Leventer, A. Wahlin, D. Gwyther, K. Soderlund, C. Grima, F. Habbal and S. Zedler for comments on the manuscript. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This is UTIG contribution 2831. NR 30 TC 19 Z9 19 U1 6 U2 25 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD APR PY 2015 VL 8 IS 4 BP 294 EP 298 DI 10.1038/NGEO2388 PG 5 WC Geosciences, Multidisciplinary SC Geology GA CE8HK UT WOS:000352082300020 ER PT J AU Watson, WR Carpenter, MH Jones, MG AF Watson, Willie R. Carpenter, Mark H. Jones, Michael G. TI Performance of Kumaresan and Tufts Algorithm in Liner Impedance Eduction with Flow SO AIAA JOURNAL LA English DT Article ID GRAZING FLOW; DUCT; VALIDATION AB Implementation of the Kumaresan and Tufts algorithm to liner impedance eduction in a duct with shear flow is described. The approach is based on a noncausal model of sound propagation coupled with singular value decomposition to identify the acoustic pressure modes. The performance of the algorithm is evaluated by comparing the educed impedance spectra to that educed by a benchmark method. Results are presented using both simulated and measured data over a range of test frequencies, three mean flow Mach numbers, and six test liner structures. When simulated data are used, the impedance spectra educed is in perfect agreement with the exact impedance spectra. When measured data are used, it is found that 1)the reduced rank approximation to the prediction matrix increases the accuracy of the educed impedance, 2)the algorithm performs well except at the antiresonant and resonant frequencies of the liner, and 3)at high enough Mach number, the effects of the gradients in the mean flow boundary layer need to be included in the impedance eduction model. C1 [Watson, Willie R.; Carpenter, Mark H.] NASA, Langley Res Ctr, Res Directorate, Computat AeroSci Branch,Liner Phys Grp, Hampton, VA 23681 USA. [Jones, Michael G.] NASA, Langley Res Ctr, Res Directorate, Struct Acoust Branch,Liner Phys Grp, Hampton, VA 23681 USA. RP Watson, WR (reprint author), NASA, Langley Res Ctr, Res Directorate, Computat AeroSci Branch,Liner Phys Grp, Hampton, VA 23681 USA. FU NASA Fixed Wing Project of the Fundamental Aeronautics Program FX The authors would like to graciously thank Dr. Yves Auregan for providing the impedance spectra for the sixth test liner in this report. This work was funded by the NASA Fixed Wing Project of the Fundamental Aeronautics Program. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD APR PY 2015 VL 53 IS 4 BP 1091 EP 1102 DI 10.2514/1.J053705 PG 12 WC Engineering, Aerospace SC Engineering GA CE0BF UT WOS:000351466300022 ER PT J AU Dolinar, EK Dong, XQ Xi, BK Jiang, JH Su, H AF Dolinar, Erica K. Dong, Xiquan Xi, Baike Jiang, Jonathan H. Su, Hui TI Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations SO CLIMATE DYNAMICS LA English DT Article DE Cloud fraction; TOA radiation budget; Error analysis; CMIP5; Sensitivity; CERES-MODIS ID ENERGY SYSTEM CERES; PART II; CLIMATE; MODEL; ISCCP; SURFACE; PARAMETERIZATION; FEEDBACKS; FRACTION; FACILITY AB A large degree of uncertainty in global climate models (GCMs) can be attributed to the representation of clouds and how they interact with incoming solar and outgoing longwave radiation. In this study, the simulated total cloud fraction (CF), cloud water path (CWP), top of the atmosphere (TOA) radiation budgets and cloud radiative forcings (CRFs) from 28 CMIP5 AMIP models are evaluated and compared with multiple satellite observations from CERES, MODIS, ISCCP, CloudSat, and CALIPSO. The multimodel ensemble mean CF (57.6 %) is, on average, underestimated by nearly 8 % (between 65 degrees N/S) when compared to CERES-MODIS (CM) and ISCCP results while an even larger negative bias (17.1 %) exists compared to the CloudSat/CALIPSO results. CWP bias is similar in comparison to the CF results, with a negative bias of 16.1 gm(-2) compared to CM. The model simulated and CERES EBAF observed TOA reflected SW and OLR fluxes on average differ by 1.8 and -0.9 Wm(-2), respectively. The averaged SW, LW, and net CRFs from CERES EBAF are -50.1, 27.6, and -22.5 Wm(-2), respectively, indicating a net cooling effect of clouds on the TOA radiation budget. The differences in SW and LW CRFs between observations and the multimodel ensemble means are only -1.3 and -1.6 Wm(-2), respectively, resulting in a larger net cooling effect of 2.9 Wm(-2) in the model simulations. A further investigation of cloud properties and CRFs reveals that the GCM biases in atmospheric upwelling (15 degrees S-15 degrees N) regimes are much less than in their downwelling (15 degrees-45 degrees N/S) counterparts over the oceans. Sensitivity studies have shown that the magnitude of SW cloud radiative cooling increases significantly with increasing CF at similar rates (similar to-1.25 Wm(-2) %(-1)) in both regimes. The LW cloud radiative warming increases with increasing CF but is regime dependent, suggested by the different slopes over the upwelling and downwelling regimes (0.81 and 0.22 Wm(-2) %(-1), respectively). Through a comprehensive error analysis, we found that CF is a primary modulator of warming (or cooling) in the atmosphere. The comparisons and statistical results from this study may provide helpful insight for improving GCM simulations of clouds and TOA radiation budgets in future versions of CMIP. C1 [Dolinar, Erica K.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58203 USA. [Dong, Xiquan] Beijing Normal Univ, GCESS, Beijing 100875, Peoples R China. [Jiang, Jonathan H.; Su, Hui] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. RP Dong, XQ (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave Stop 9006, Grand Forks, ND 58203 USA. EM dong@aero.und.edu FU NASA EPSCoR CAN [NNX11AM15A]; NASA CERES at the University of North Dakota [NNX10AI05G]; National Basic Research Program of China (973 Program) at Beijing Normal University [2013CB955803] FX This work was supported by NASA EPSCoR CAN under Grant NNX11AM15A and NASA CERES project under Grant NNX10AI05G at the University of North Dakota. Dr. Xiquan Dong was also partially supported by the National Basic Research Program of China (973 Program, 2013CB955803) at Beijing Normal University. The models results used in this study are available through the CMIP5 ESGF PCMDI database at http://pcmdi9.llnl.gov/esgf-web-fe/. CERES cloud and radiation products used in this study are produced by the NASA CERES Team, available at http://ceres.larc.nasa.gov. Drs. Jonathan H. Jiang (JHJ) and Hui Su's time for this study, as well as Erica Dolinar's summer internship at the Jet propulsion Laboratory, California Institute of Technology, are supported by the NASA COUND project. NR 55 TC 20 Z9 20 U1 3 U2 40 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD APR PY 2015 VL 44 IS 7-8 BP 2229 EP 2247 DI 10.1007/s00382-014-2158-9 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD9YS UT WOS:000351458300030 ER PT J AU Batchelor, DA AF Batchelor, David Allen TI Future Tense The Wealth of Planets SO COMMUNICATIONS OF THE ACM LA English DT Editorial Material C1 NASA, Goddard Space Flight Ctr, Earth Sci Data & Informat Syst ESDIS Project, Data Syst, Greenbelt, MD 20771 USA. RP Batchelor, DA (reprint author), NASA, Goddard Space Flight Ctr, Earth Sci Data & Informat Syst ESDIS Project, Data Syst, Greenbelt, MD 20771 USA. EM batchelor@alum.mit.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 EI 1557-7317 J9 COMMUN ACM JI Commun. ACM PD APR PY 2015 VL 58 IS 4 BP 96 EP 95 DI 10.1145/2737915 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CE3NW UT WOS:000351734500025 ER PT J AU Rose, RA Byler, D Eastman, JR Fleishman, E Geller, G Goetz, S Guild, L Hamilton, H Hansen, M Headley, R Hewson, J Horning, N Kaplin, BA Laporte, N Leidner, A Leinagruber, P Morisette, J Musinsky, J Pintea, L Prados, A Radeloff, VC Rowen, M Saatchi, S Schil, S Tabor, K Turner, W Vodacek, A Vogelnaann, J Wegmann, M Wilkie, D AF Rose, Robert A. Byler, Dirck Eastman, J. Ron Fleishman, Erica Geller, Gary Goetz, Scott Guild, Liane Hamilton, Healy Hansen, Matt Headley, Rachel Hewson, Jennifer Horning, Ned Kaplin, Beth A. Laporte, Nadine Leidner, Allison Leinagruber, Peter Morisette, Jeffrey Musinsky, John Pintea, Lilian Prados, Ana Radeloff, Volker C. Rowen, Mary Saatchi, Sassan Schil, Steve Tabor, Karyn Turner, Woody Vodacek, Anthony Vogelnaann, James Wegmann, Martin Wilkie, David TI Ten ways remote sensing can contribute to conservation SO CONSERVATION BIOLOGY LA English DT Article DE applied research; biodiversity; priority setting; remote sensing ID PROTECTED AREAS; GOLDEN EAGLES; MIGRATION; HABITAT; QUESTIONS; DIVERSITY; PAYMENTS; SERVICES; IMPACTS; SCIENCE AB In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? C1 [Rose, Robert A.; Wilkie, David] Wildlife Conservat Soc, Conservat Support, Bronx, NY 10460 USA. [Byler, Dirck] US Fish & Wildlife Serv, Int Affairs, Arlington, VA 22203 USA. [Eastman, J. Ron] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. [Fleishman, Erica] Univ Calif Davis, John Muir Inst Environm, Davis, CA 95616 USA. [Geller, Gary] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. [Goetz, Scott; Laporte, Nadine] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Guild, Liane] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hamilton, Healy] NatureServe, Arlington, VA 22203 USA. [Hansen, Matt] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Headley, Rachel] US Geol Survey, Sci Support Landsat Project, Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA. [Hewson, Jennifer; Tabor, Karyn] Conservat Int, Arlington, VA 22202 USA. [Horning, Ned] Amer Museum Nat Hist, New York, NY 10024 USA. [Kaplin, Beth A.] Antioch Univ New England, Dept Environm Studies, Keene, NH 03431 USA. [Leidner, Allison] Univ Space Res Assoc, NASA Earth Sci Div, Washington, DC 20546 USA. [Leinagruber, Peter] Conservat Ecol Ctr, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA. [Morisette, Jeffrey] US Geol Survey, North Cent Climate Sci Ctr, Ft Collins, CO 80526 USA. [Musinsky, John] Natl Ecol Observ Network, Boulder, CO 80301 USA. [Pintea, Lilian] Jane Goodall Inst, Vienna, VA 22182 USA. [Prados, Ana] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol JCET, Baltimore, MD 21228 USA. [Radeloff, Volker C.] Univ Wisconsin, SILVIS Lab, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA. [Rowen, Mary] US Agcy Int Dev, Washington, DC 20541 USA. [Saatchi, Sassan] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Schil, Steve] Nature Conservancy, Arlington, VA 22203 USA. [Turner, Woody] NASA, Div Earth Sci, Washington, DC 20546 USA. [Vodacek, Anthony] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA. [Vogelnaann, James] US Geol Survey, Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA. [Wegmann, Martin] Univ Wurzburg, Dept Remote Sensing, D-97074 Wurzburg, Germany. NOAA, Div Environm Res, NMFS, SWFSC, Pacific Grove, CA 93950 USA. RP Rose, RA (reprint author), Wildlife Conservat Soc, Conservat Support, 2300 Southern Blvd, Bronx, NY 10460 USA. EM rrose@wcs.org RI Radeloff, Volker/B-6124-2016; Leimgruber, Peter/O-1304-2015; Vodacek, Anthony/F-1585-2011; Goetz, Scott/A-3393-2015; OI Radeloff, Volker/0000-0001-9004-221X; Leimgruber, Peter/0000-0002-3682-0153; Vodacek, Anthony/0000-0001-9196-0928; Goetz, Scott/0000-0002-6326-4308; Wegmann, Martin/0000-0003-0335-9601; Geller, Gary/0000-0002-4490-6002; Vogelmann, James/0000-0002-0804-5823 FU NASA Earth Sciences Division [NNX12AP70G]; NASA FX We thank L. Choo from WCS for the logistical assistance provided and NASA Earth Sciences Division for their support through grant NNX12AP70G. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The research described in this article was in part carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA. Government sponsorship acknowledged. NR 46 TC 15 Z9 16 U1 16 U2 126 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0888-8892 EI 1523-1739 J9 CONSERV BIOL JI Conserv. Biol. PD APR PY 2015 VL 29 IS 2 BP 350 EP 359 DI 10.1111/cobi.12397 PG 10 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CD8NY UT WOS:000351353400006 PM 25319024 ER PT J AU Gutt, J Bertler, N Bracegirdle, TJ Buschmann, A Comiso, J Hosie, G Isla, E Schloss, IR Smith, CR Tournadre, J Xavier, JC AF Gutt, Julian Bertler, Nancy Bracegirdle, Thomas J. Buschmann, Alexander Comiso, Josefino Hosie, Graham Isla, Enrique Schloss, Irene R. Smith, Craig R. Tournadre, Jean Xavier, Jose C. TI The Southern Ocean ecosystem under multiple climate change stresses - an integrated circumpolar assessment SO GLOBAL CHANGE BIOLOGY LA English DT Article DE acidification; habitats; icebergs; ice-shelves; ozone depletion; sea-ice; warming ID WEST ANTARCTIC PENINSULA; ICE-SHELF COLLAPSE; UV-B RADIATION; ULTRAVIOLET-RADIATION; ROSS SEA; PHYTOPLANKTON BLOOM; IRON FERTILIZATION; MARINE ECOSYSTEMS; MCMURDO SOUND; WEDDELL SEA AB A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for four and five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem. C1 [Gutt, Julian; Buschmann, Alexander] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27568 Bremerhaven, Germany. [Bertler, Nancy] Victoria Univ Wellington, Joint Antarctic Res Inst, Wellington, New Zealand. [Bertler, Nancy] GNS Sci, Wellington, New Zealand. [Bracegirdle, Thomas J.; Xavier, Jose C.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. [Comiso, Josefino] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Hosie, Graham] Scott Polar Res Inst, SCAR Life Sci, Cambridge CB2 1ER, England. [Isla, Enrique] CSIC, Inst Ciencies Mar, E-08003 Barcelona, Spain. [Schloss, Irene R.] Inst Antartico Argentino, Buenos Aires, DF, Argentina. [Schloss, Irene R.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Schloss, Irene R.] Argentina, Rimouski, PQ G5L 3A1, Canada. [Schloss, Irene R.] Inst Sci Rimouski, Rimouski, PQ G5L 3A1, Canada. [Smith, Craig R.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Tournadre, Jean] IFREMER, Lab Oceanog Spatiale, F-29280 Plouzane, France. [Xavier, Jose C.] Univ Coimbra, Dept Life Sci, Inst Marine Res, P-3001401 Coimbra, Portugal. RP Gutt, J (reprint author), Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Alten Hafen 26, D-27568 Bremerhaven, Germany. EM julian.gutt@awi.de RI tournadre, jean/F-8402-2010; OI tournadre, jean/0000-0003-1159-4388; /0000-0002-9621-6660 NR 203 TC 19 Z9 19 U1 10 U2 99 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD APR PY 2015 VL 21 IS 4 BP 1434 EP 1453 DI 10.1111/gcb.12794 PG 20 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CD6QM UT WOS:000351214100008 PM 25369312 ER PT J AU Vajda, V Ocampo, A Ferrow, E Koch, CB AF Vajda, Vivi Ocampo, Adriana Ferrow, Embaie Koch, Christian Bender TI Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact - evidence from ejecta deposits in Belize and Mexico SO GONDWANA RESEARCH LA English DT Article DE Mass extinction; Cretaceous; Impact-winter; Belize ID CRETACEOUS-TERTIARY BOUNDARY; ALBION ISLAND; NEW-ZEALAND; PALEOGENE BOUNDARY; METEORITE IMPACT; MULTIPLE IMPACTS; MASS EXTINCTION; K/T BOUNDARY; CRATER; GLASS AB Life on Earth was sharply disrupted 66 Ma ago as an asteroid hit the sea-floor in what is today Yucatan Peninsula, Mexico. Approximately 600 km(3) of sedimentary rock were vapourized, ejected into the atmosphere and subsequently deposited globally as an ejecta apron and fallout layer. Proximal ejecta deposits occur in Belize and southern Mexico where the so called Albion island spheroid bed is superimposed on the target rock (the Barton Creek Formation). We analysed the spheroid bed via Mossbauer spectroscopy, petrology. XRD, and palynology at several sites similar to 350-500 km distance from the crater centre. Our results show that the relative concentrations of Fe in nano-phase goethite (alpha-FeOOH) are very high in the spheroid bed samples from Albion Island (Belize) and from Ramonal South (Mexico), but are low to absent in the spheroid bed at Ramonal North, and in the Cretaceous target rock. Moreover, our study shows that goethite and haematite are the dominant Fe-oxide nano-phases and the XRD results show that the target rock consists of both calcite and dolomite. We suggest that the heterogeneous composition of the spheroid bed between the various sites reflects the different types of target rocks that were dispersed within the rapidly expanding vapour plume and the complex sorting processes involved in the formation of the ejecta blanket. The distribution of the vapourized target rock strongly influenced life on Earth at the close of the Mesozoic. However, the comparatively thin K-Pg boundary clay in high-latitude Gondwanan successions combined with evidence of catastrophic changes to the biota in this region implies that the long-term sunlight suppression in the Southern Hemisphere was mainly governed by the large quantities of hydrous aerosols nucleated around sulphuric acid droplets or nano-sized particles, such as the nano-phase Fe-oxides. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of International Association for Gondwana Research. C1 [Vajda, Vivi; Ferrow, Embaie] Lund Univ, Dept Geol, SE-22362 Lund, Sweden. [Ocampo, Adriana] NASA HQ, Sci Mission Directorate, Washington, DC 20546 USA. [Koch, Christian Bender] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen O, Denmark. RP Vajda, V (reprint author), Lund Univ, Dept Geol, Solvegatan 12, SE-22362 Lund, Sweden. RI Koch, Christian /C-7070-2013; OI Koch, Christian /0000-0002-7496-297X; Vajda, Vivi/0000-0003-2987-5559 FU Royal Swedish Academy of Sciences through the Knut and Alice Wallenbergs foundation; LUCCI (Lund University Centre for Studies of Carbon Cycle and Climate Interactions); Linnaeus centre - Swedish Research Council; National Aeronautics and Space Administration Exobiology Program, California Institute of Technology, Jet Propulsion Laboratory; European Space Agency FX This work was supported by the Royal Swedish Academy of Sciences through the Knut and Alice Wallenbergs foundation. VV acknowledges support from LUCCI (Lund University Centre for Studies of Carbon Cycle and Climate Interactions), a Linnaeus centre funded by the Swedish Research Council. AO acknowledges the support from the National Aeronautics and Space Administration Exobiology Program, California Institute of Technology, Jet Propulsion Laboratory and the European Space Agency. We further thank the two anonymous referees for providing constructive critisism and comments improving this paper. NR 52 TC 1 Z9 1 U1 5 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1342-937X EI 1878-0571 J9 GONDWANA RES JI Gondwana Res. PD APR PY 2015 VL 27 IS 3 SI SI BP 1079 EP 1088 DI 10.1016/j.gr.2014.05.009 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CD2OL UT WOS:000350918800013 ER PT J AU Prsa, A Robin, A Barclay, T AF Prsa, Andrej Robin, Annie Barclay, Thomas TI Stellar statistics along the ecliptic and the impact on the K2 mission concept SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE extrasolar planets; Kepler; stellar populations ID SOLAR-TYPE STARS; ASTEROSEISMOLOGY; EXTINCTION; SCIENCE; GALAXY; COROT; MILKY; GAIA AB K2 is the mission concept for a repurposed Kepler mission that uses two reaction wheels to maintain the satellite attitude and provide similar to 81 days of coverage for ten 105deg(2) fields along the ecliptic in the first 2.5 years of operation. We examine stellar populations based on the updated Besancon model of the Galaxy, comment on the general properties for the entire ecliptic plane, and provide stellar occurrence rates in the first six tentative K2 campaigns grouped by spectral type and luminosity class. For each campaign we distinguish between main the sequence stars and giants, and provide their density profile as a function of galactic latitude. We introduce the crowding metric that serves for optimized target selection across the campaigns. For all main sequence stars we compute the expected planetary occurrence rates for three planet sizes: 2-4, 4-8 and 8-32R(circle plus) with orbital periods up to 50 days. In conjunction with Gaia and the upcoming Transiting Exoplanet Survey Satellite and Plato missions, K2 will become a gold mine for stellar and planetary astrophysics. C1 [Prsa, Andrej] Villanova Univ, Dept Astrophys & Planetary Sci, Villanova, PA 19085 USA. [Prsa, Andrej] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Robin, Annie] Univ Franche Comte, Inst Utinam, OSU THETA Franche Comte Bourgogne, CNRS,UMR6213, F-25030 Besancon, France. [Barclay, Thomas] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, Thomas] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. RP Prsa, A (reprint author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 E Lancaster Ave, Villanova, PA 19085 USA. EM aprsa@villanova.edu FU NASA [NNX12AD20G]; Region de Franche-Comte; Institut des Sciences de l'Univers (INSU) FX The authors acknowledge support through NASA Kepler PSP grant NNX12AD20G, and thank Kyle Conroy, Joshua Pepper, Tabetha Boyajian, Keivan Stassun, Pieter Degroote, Kelly Hambleton, Mike Haas and William Borucki for useful discussions and suggestions. BGM simulations were executed on computers from the Utinam Institute of the Universite de Franche-Comte, supported by the Region de Franche-Comte and Institut des Sciences de l'Univers (INSU). NR 37 TC 2 Z9 2 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 EI 1475-3006 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD APR PY 2015 VL 14 IS 2 SI SI BP 165 EP 172 DI 10.1017/S1473550414000329 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA CD8MS UT WOS:000351349900004 ER PT J AU Barnes, R AF Barnes, Rory TI A method to identify the boundary between rocky and gaseous exoplanets from tidal theory and transit durations SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article DE Exoplanets; Tidal Theory; Transits ID M-CIRCLE-PLUS; EXTRASOLAR PLANETS; GIANT PLANETS; ORBITAL ECCENTRICITY; LIGHT CURVES; EVOLUTION; MASS; SYSTEM; DISSIPATION; JUPITER AB The determination of an exoplanet as rocky is critical for the assessment of planetary habitability. Observationally, the number of small-radius, transiting planets with accompanying mass measurements is insufficient for a robust determination of the transitional mass or radius. Theoretically, models predict that rocky planets can grow large enough to become gas giants when they reach similar to 10 M-Earth, but the transitional mass remains unknown. Here I show how transit data, interpreted in the context of tidal theory, can reveal the critical radius that separates rocky and gaseous exoplanets. Standard tidal models predict that rocky exoplanets' orbits are tidally circularized much more rapidly than gaseous bodies', suggesting the former will tend to be found on circular orbits at larger semi-major axes than the latter. Well-sampled transits can provide a minimum eccentricity of the orbit, allowing a measurement of this differential circularization. I show that this effect should be present in the data from the Kepler spacecraft, but is not apparent. Instead, it appears that there is no evidence of tidal circularization at any planetary radius, probably because the publicly-available data, particularly the impact parameters, are not accurate enough. I also review the bias in the transit duration towards values that are smaller than that of planets on circular orbits, stressing that the azimuthal velocity of the planet determines the transit duration. The ensemble of Kepler planet candidates may be able to determine the critical radius between rocky and gaseous exoplanets, tidal dissipation as a function of planetary radius, and discriminate between tidal models. C1 [Barnes, Rory] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Barnes, Rory] NASA, Astrobiol Inst, Virtual Planetary Lab Lead Team, Washington, DC USA. RP Barnes, R (reprint author), Univ Washington, Dept Astron, Box 951580, Seattle, WA 98195 USA. EM rory@astro.washington.edu FU NSF [AST-110882]; NAI's Virtual Planetary Laboratory lead team FX I thank Andrew Becker, Eric Agol, Leslie Hebb, Jason Barnes, Brian Jackson and Rene Heller for helpful discussions. This work was supported by NSF grant AST-110882 and the NAI's Virtual Planetary Laboratory lead team. I also thank an anonymous referee and Nader Haghighipour for reviews that greatly improved the clarity and accuracy of this manuscript. NR 82 TC 2 Z9 2 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 EI 1475-3006 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD APR PY 2015 VL 14 IS 2 SI SI BP 321 EP 333 DI 10.1017/S1473550413000499 PG 13 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA CD8MS UT WOS:000351349900016 ER PT J AU Rozas, LP Minello, TJ AF Rozas, Lawrence P. Minello, Thomas J. TI Variation in penaeid shrimp growth rates along an estuarine salinity gradient: Implications for managing river diversions (vol 397, pg 196, 2011) SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Correction C1 [Rozas, Lawrence P.] NOAA, Natl Marine Fisheries Serv, SEFSC, Estuarine Habitats & Coastal Fisheries Ctr, Lafayette, LA 70506 USA. [Minello, Thomas J.] NOAA, Natl Marine Fisheries Serv, SEFSC, Galveston Lab, Galveston, TX 77551 USA. RP Rozas, LP (reprint author), NOAA, Natl Marine Fisheries Serv, SEFSC, Estuarine Habitats & Coastal Fisheries Ctr, 646 Cajundome Blvd, Lafayette, LA 70506 USA. EM lawrence.rozas@noaa.gov NR 1 TC 1 Z9 1 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 EI 1879-1697 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD APR PY 2015 VL 465 BP 153 EP 154 DI 10.1016/j.jembe.2015.02.001 PG 2 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA CD7DI UT WOS:000351250600018 ER PT J AU Abbondanza, C Altamimi, Z Chin, TM Gross, RS Heflin, MB Parker, JW Wu, X AF Abbondanza, C. Altamimi, Z. Chin, T. M. Gross, R. S. Heflin, M. B. Parker, J. W. Wu, X. TI Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis SO JOURNAL OF GEODESY LA English DT Article DE Three-Corner Hat; GPS; VLBI; SLR; DORIS; International Terrestrial Reference Frame; Space-geodetic co-locations; Time-correlated noise ID SURFACE MONUMENTS; COLORED NOISE; MOTION; DISPLACEMENT; ITRF2008; ERRORS; DORIS; VLBI AB We discuss the application of the Three-Corner Hat (TCH) to time series of space-geodetic station position residuals with the purpose of characterizing the uncertainties of GPS, VLBI, SLR, DORIS for the International Terrestrial Reference Frame (ITRF) determination. Adopting simulations, we show that, in the absence of time-correlated errors, TCH is able to fully recover the nominal uncertainties of groups of observations whose intrinsic precisions are remarkably dissimilar to one another, as is the case for the space-geodetic techniques. When time-correlated errors are predominant, as it happens with GPS, TCH is affected by the increased variance of the observations and its estimates are positively biased. TCH applied to 16 ITRF co-located sites confirms that GPS, albeit affected by time-correlated errors, is the most precise of the space-geodetic techniques. GPS median uncertainties are 1.1, 1.2 and 2.8 mm, for the north, east and height component, respectively. VLBI performs particularly well in the horizontal component, the median uncertainties being mm. The height component is times larger than the GPS one. SLR and DORIS median uncertainties exceed by far the 7 mm level on all of the three components. Comparing TCH results with station position repeatabilities, we find that the two metrics are in striking agreement for VLBI and DORIS, but not for SLR and GPS. The inconsistencies between TCH and station repeatabilities for co-located GPS and SLR point to the presence of either specific station-dependent biases or low-quality co-locations. Scaling factors derived adopting the ratio between TCH and median formal errors on the positions suggest the station position covariances have to be up-scaled for VLBI, SLR, DORIS and down-scaled for GPS. C1 [Abbondanza, C.; Chin, T. M.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Altamimi, Z.] Univ Paris Diderot, Inst Natl Informat Geog & Forestiere, Lab Rech Geodesie, Paris, France. RP Abbondanza, C (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM claudio.abbondanza@jpl.nasa.gov NR 37 TC 3 Z9 3 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD APR PY 2015 VL 89 IS 4 BP 313 EP 329 DI 10.1007/s00190-014-0777-x PG 17 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA CD7AW UT WOS:000351243600002 ER PT J AU Owusu-Danquah, JS Saleeb, AF Dhakal, B Padula, SA AF Owusu-Danquah, J. S. Saleeb, A. F. Dhakal, B. Padula, S. A., II TI A Comparative Study of Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 Tube Actuators SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE asymmetry in tension-compression-shear; Ni49.9Ti50.1; Ni50.3Ti29.7Hf20; thermomechanical cycles; tube actuators ID SHAPE-MEMORY ALLOY; CONSTITUTIVE MODEL; MARTENSITIC-TRANSFORMATION; SMAS; NITI AB A shape memory alloy (SMA) actuator typically has to operate for a large number of thermomechanical cycles due to its application requirements. Therefore, it is necessary to understand the cyclic behavioral response of the SMA actuation material and the devices into which they are incorporated under extended cycling conditions. The present work is focused on the nature of the cyclic, evolutionary behavior of two widely used SMA actuator material systems: (1) a commercially available Ni49.9Ti50.1, and (2) a developmental high-temperature Ni50.3Ti29.7Hf20 alloy. Using a recently developed general SMA modeling framework that utilizes multiple inelastic mechanisms, differences and similarities between the two classes of materials are studied, accounting for extended number of thermal cycles under a constant applied tensile/compressive force and under constant applied torque loading. From the detailed results of the simulations, there were significant qualitative differences in the evolution of deformation responses for the two different materials. In particular, the Ni49.9Ti50.1 tube showed significant evolution of the deformation response, whereas the Ni50.3Ti29.7Hf20 tube stabilized quickly. Moreover, there were significant differences in the tension-compression-shear asymmetry properties in the two materials. More specifically, the Ni50.3Ti29.7Hf20 tube exhibited much higher asymmetry effects, especially at low stress levels, compared to the Ni49.9Ti50.1. For both SMA tubes, the evolution of the deformation response under thermal cycling typically exhibited regions of initial transients, and subsequent evolution. C1 [Owusu-Danquah, J. S.; Saleeb, A. F.; Dhakal, B.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. [Padula, S. A., II] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Owusu-Danquah, JS (reprint author), Univ Akron, Dept Civil Engn, 302 Buchtel Common, Akron, OH 44325 USA. EM saleeb@uakron.edu FU NASA GRC; Fundamental Aeronautics Program, Subsonic, Fixed-Wing [NNH10ZEA001N-SFW1, NNX11AI57A] FX This work was supported by NASA GRC, the Fundamental Aeronautics Program, Subsonic, Fixed-Wing, Project No. NNH10ZEA001N-SFW1, Grant No: NNX11AI57A to the University of Akron. The authors would like to acknowledge Drs. S. M. Arnold and Ronald Noebe for their technical guidance and programmatic support during the different phases of the project. NR 33 TC 2 Z9 2 U1 2 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD APR PY 2015 VL 24 IS 4 BP 1726 EP 1740 DI 10.1007/s11665-015-1425-1 PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA CD7SH UT WOS:000351291200037 ER PT J AU Whitefield, J Winsor, P McClelland, J Menemenlis, D AF Whitefield, Jonathan Winsor, Peter McClelland, James Menemenlis, Dimitris TI A new river discharge and river temperature climatology data set for the pan-Arctic region SO OCEAN MODELLING LA English DT Article DE Arctic Ocean; Climatology; Heat content; Modelling; River discharge; Sea ice ID FRESH-WATER; OCEAN; ICE; ESTUARY; MODEL; CIRCULATION; PACIFIC; FLUXES; RUNOFF; DELTA AB Most regional ocean models that use discharge as part of the forcing use relatively coarse river discharge data sets (1 degrees, or similar to 110 km) compared to the model resolution (typically 1/4 degrees or less), and do not account for seasonal changes in river water temperature. We introduce a new climatological data set of river discharge and river water temperature with 1/6 degrees grid spacing over the Arctic region (Arctic River Discharge and Temperature; ARDAT), incorporating observations from 30 Arctic rivers. The annual mean discharge for all rivers in ARDAT is 2817 +/- 330 km(3) yr(-1). River water temperatures range between 0 degrees C in winter to 14.0-17.6 degrees C in July, leading to a long-term mean monthly heat flux from all rivers of 3.2 +/- 0.6 TW, of which 31% is supplied by Alaskan rivers and 69% is supplied by Eurasian rivers. This riverine heat flux is equivalent to 44% of the estimated ocean heat flux associated with the Bering Strait throughflow, but during the spring freshet can be similar to 10 times as large, suggesting that heat flux associated with Arctic rivers is an important component of the Arctic heat budget on seasonal time scales. We apply the ARDAT data set to a high-resolution regional ocean-ice model, and compare results to a model integration using a 1 degrees resolution discharge data set. Integrated freshwater content on the Arctic shelves (<200 m) increases by similar to 3600 km(3) in the ARDAT forced model run compared to the coarser forcing, suggesting that river discharge is contained on the Arctic shelves when forced with the ARDAT data set. Modelled summer heat fluxes over the shelves increase by 8 TW when river water temperature is included, which subsequently reduces basin-wide September sea ice extent by similar to 10%. Regional differences are larger, where e.g., sea ice extent on the Beaufort shelf is reduced by similar to 36%. Using a non-linear free surface parameterization along with the ARDAT data set, we find an increase in the sea surface height gradient around river mouths. Geostrophic velocities increase to form quasi-continuous, fast-moving near-shore boundary currents not reproduced using the 1 degrees resolution data set. Omitting river water temperature, or using a lower resolution data set, can therefore lead to incorrect model estimates of coastal transport, sea ice formation/melt rates, and other regional and basin scale processes. Using a high-resolution discharge data set, and accounting for the considerable heat carried by the Arctic rivers is recommended for future modelling efforts. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Whitefield, Jonathan; Winsor, Peter] Univ Alaska, Sch Fisheries & Ocean Sci, Inst Marine Sci, Fairbanks, AK 99775 USA. [McClelland, James] Univ Texas Dallas, Inst Marine Sci, Port Aransas, TX 78373 USA. [Menemenlis, Dimitris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Whitefield, J (reprint author), Univ Alaska, Sch Fisheries & Ocean Sci, Inst Marine Sci, 245 ONeill Bldg, Fairbanks, AK 99775 USA. EM jwhitefield@alaska.edu; pwinsor@alaska.edu; jimm@utexas.edu; dimitris.menemenlis@jpl.nasa.gov RI McClelland, James/C-5396-2008 OI McClelland, James/0000-0001-9619-8194 FU NPRB Graduate Student Research Award; UAF Center for Global Change Student Research Grant; Cooperative Institute for Alaska Research; Arctic Region Supercomputing Center at the University of Alaska Fairbanks; NASA Modeling, Analysis, and Prediction (MAP); Cryosphere Programs; BOEM FX JW was supported by an NPRB Graduate Student Research Award and a UAF Center for Global Change Student Research Grant with funds from the Cooperative Institute for Alaska Research. Model integrations were supported in part by a grant of HPC resources from the Arctic Region Supercomputing Center at the University of Alaska Fairbanks. DM acknowledges support from the NASA Modeling, Analysis, and Prediction (MAP) and Cryosphere Programs. Additional funding was provided by BOEM. We thank Eddy Carmack (DFO Canada) for insightful discussions about the riverine coastal domain, Alexander Shiklomanov for comments about low flow periods in Russian rivers, all those who provided feedback on various drafts and at presentations, and Balazs Fekete and two additional anonymous reviewers for their valuable comments and constructive criticisms. This is NPRB publication number 510. NR 50 TC 10 Z9 11 U1 4 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD APR PY 2015 VL 88 BP 1 EP 15 DI 10.1016/j.ocemod.2014.12.012 PG 15 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA CE4BY UT WOS:000351777000001 ER PT J AU Schimel, D Keller, M AF Schimel, David Keller, Michael TI Big questions, big science: meeting the challenges of global ecology SO OECOLOGIA LA English DT Article DE Project management; Systems engineering; National Ecological Observatory Network (NEON) ID INCREASING CO2; DIVERSITY; BIOSPHERE; CLIMATE AB Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects. C1 [Schimel, David] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. [Keller, Michael] US Forest Serv, USDA, Int Inst Trop Forestry, San Juan, PR 00926 USA. [Keller, Michael] EMBRAPA Satellite Monitoring, Sao Paulo, Brazil. RP Schimel, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. EM dschimel@jpl.nasa.gov; mkeller.co2@gmail.com RI Keller, Michael/A-8976-2012 OI Keller, Michael/0000-0002-0253-3359 FU National Aeronautics and Space Administration FX We offer these insights to our Israeli colleagues as they contemplate a national network, the occasion for this special issue and to the broader community. We dedicate this to the dedicated community of NEON staff members, advisory group members and alumni. The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was under a contract with the National Aeronautics and Space Administration. Copyright 2014 California Institute of Technology. We thank all the colleagues, too many to mention, through whose efforts over many years, many projects have been not only spectacular scientifically but personally rewarding for us. NR 25 TC 9 Z9 9 U1 6 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 EI 1432-1939 J9 OECOLOGIA JI Oecologia PD APR PY 2015 VL 177 IS 4 BP 925 EP 934 DI 10.1007/s00442-015-3236-3 PG 10 WC Ecology SC Environmental Sciences & Ecology GA CE0CD UT WOS:000351470100002 PM 25680334 ER PT J AU Mouw, CB Greb, S Aurin, D DiGiacomo, PM Lee, Z Twardowski, M Binding, C Hu, CM Ma, RH Moore, T Moses, W Craig, SE AF Mouw, Colleen B. Greb, Steven Aurin, Dirk DiGiacomo, Paul M. Lee, Zhongping Twardowski, Michael Binding, Caren Hu, Chuanmin Ma, Ronghua Moore, Timothy Moses, Wesley Craig, Susanne E. TI Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions SO REMOTE SENSING OF ENVIRONMENT LA English DT Review DE Remote sensing; Optics; Coastal oceanography; Limnology; Water quality ID INHERENT OPTICAL-PROPERTIES; DISSOLVED ORGANIC-MATTER; INDUCED CHLOROPHYLL FLUORESCENCE; TURBID PRODUCTIVE WATERS; AIR-POLLUTION EVENTS; OCEAN COLOR; CYANOBACTERIAL BLOOMS; LEAVING RADIANCE; ATMOSPHERIC CORRECTION; SEMIANALYTICAL MODEL AB Aquatic color radiometry remote sensing of coastal and inland water bodies is of great interest to a wide variety of research, management, and commercial entities as well as the general public. However, most current satellite radiometers were primarily designed for observing the global ocean and not necessarily for observing coastal and inland waters. Therefore, deriving coastal and inland aquatic applications from existing sensors is challenging. We describe the current and desired state of the science and highlight unresolved issues in four fundamental elements of aquatic satellite remote sensing namely, mission capability, in situ observations, algorithm development, and operational capacity. We discuss solutions, future plans, and recommendations that directly affect the science and societal impact of future missions with capability for observing coastal and inland aquatic systems. (C) 2015 Elsevier Inc. All rights reserved. C1 [Mouw, Colleen B.] Michigan Technol Univ, Houghton, MI 49931 USA. [Greb, Steven] Wisconsin Dept Nat Resources, Madison, WI 53716 USA. [Aurin, Dirk] NASA Goddard Space Flight Ctr, Sci Syst & Applicat, Greenbelt, MD 20771 USA. [DiGiacomo, Paul M.] NOAA NESDIS Ctr Satellite Applicat & Res, College Pk, MD 20740 USA. [Lee, Zhongping] Univ Massachusetts, Boston, MA 02125 USA. [Twardowski, Michael] WETLabs Inc, Narragansett, RI 02882 USA. [Binding, Caren] Environm Canada, Burlington, ON L7R 4A6, Canada. [Hu, Chuanmin] Univ S Florida, Coll Marine Sci, St Petersburg, FL USA. [Ma, Ronghua] Chinese Acad Sci, Nanjing Inst Geog & Limnol, Nanjing 210008, Jiangsu, Peoples R China. [Moses, Wesley] Naval Res Lab, Durham, NH 03824 USA. [Craig, Susanne E.] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. RP Mouw, CB (reprint author), Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. EM cbmouw@mtu.edu; Steven.Greb@Wisconsin.gov; dirka.aurin@nasa.gov; paul.digiacomo@noaa.gov; zhongping.lee@umb.edu; mtwardo@wetlabs.com; Caren.Binding@ec.gc.ca; huc@usf.edu; rhma@niglas.ac.cn; timothy.moore@unh.edu; wesley.moses@nrl.navy.mil; susanne.craig@dal.ca RI DiGiacomo, Paul/F-5584-2010; Mouw, Colleen/M-4431-2015; OI DiGiacomo, Paul/0000-0003-4550-1899; Mouw, Colleen/0000-0003-2516-1882; Moses, Wesley/0000-0003-3551-6093 FU National Aeronautics and Space Administration [NNX12AJ07G, NNX14AB80G] FX Financial support for this effort was provided by the National Aeronautics and Space Administration (NNX12AJ07G and NNX14AB80G). The ideas, views and recommendations presented in this article were developed from the contributions of all participants of the "Workshop for Remote Sensing of Coastal and Inland Waters" held on June 20-22, 2012 in Madison, Wisconsin (Mouw & Greb, 2012). The comments from Marvin Bauer and four anonymous reviewers greatly improved the manuscript. The contents of this article are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of the National Oceanic and Atmospheric Administration (NOAA) or the U.S. Government. This is contribution number 6 of Great Lakes Research Center at Michigan Technological University. NR 199 TC 23 Z9 25 U1 18 U2 84 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD APR PY 2015 VL 160 BP 15 EP 30 DI 10.1016/j.rse.2015.02.001 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CE2KO UT WOS:000351644700002 ER PT J AU Abercromby, AFJ Conkin, J Gernhardt, ML AF Abercromby, Andrew F. J. Conkin, Johnny Gernhardt, Michael L. TI Modeling a 15-min extravehicular activity prebreathe protocol using NASA's exploration atmosphere (56.5 kPa/34% O-2) SO ACTA ASTRONAUTICA LA English DT Article DE Prebreathe; Decompression sickness; EVA; Denitrogenation; Atmosphere ID DECOMPRESSION-SICKNESS AB NASA's plans for future human exploration missions utilize a new atmosphere of 56.5 kPa (8.2 psia), 34% O-2, 66% N-2 to enable rapid extravehicular activity (EVA) capability with minimal gas losses; however, existing EVA prebreathe protocols to mitigate risk of decompression sickness (DCS) are not applicable to the new exploration atmosphere. We provide preliminary analysis of a 15-min prebreathe protocol and examine the potential benefits of intermittent recompression (IR) and an abbreviated N-2 purge on crew time and gas consumables usage. A probabilistic model of decompression stress based on an established biophysical model of DCS risk was developed, providing significant (p <0.0001) prediction and goodness-of-fit with 84 cases of DCS in 668 human altitude exposures including a variety of pressure profiles. DCS risk for a 15-min prebreathe protocol was then estimated under different exploration EVA scenarios. Estimated DCS risk for all EVA scenarios modeled using the 15-min prebreathe protocol ranged between 6.1% and 12.1%. Supersaturation in neurological tissues (5-and 10-min half-time compartments) is prevented and tissue tensions in faster half-time compartments (<= 40 min), where the majority of whole-body N-2 is located, are reduced to about the levels (30.0 vs. 27.6 kPa) achieved during a standard Shuttle prebreathe protocol. IR reduced estimated DCS risk from 9.7% to 7.9% (1.8% reduction) and from 8.4% to 6.1% (23% reduction) for the scenarios modeled; the penalty of N-2 reuptake during IR may be outweighed by the benefit of decreased bubble size. Savings of 75% of purge gas and time (0.22 kg gas and 6 min of crew time per person per EVA) are achievable by abbreviating the EVA suit purge to 20% N-2 vs. 5% N-2 at the expense of an increase in estimated DCS risk from 9.7% to 12.1% (2.4% increase). A 15-min prebreathe protocol appears feasible using the new exploration atmosphere. IR between EVAs may enable reductions in suit purge and prebreathe requirements, decompression stress, and/or suit operating pressures. Ground trial validation is required before operational implementation. (C) 2014 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Abercromby, Andrew F. J.] Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA. [Conkin, Johnny] Univ Space Res Assoc, Houston, TX 77058 USA. [Gernhardt, Michael L.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Abercromby, AFJ (reprint author), Wyle Sci Technol & Engn Grp, 2101 NASA Pkwy,Mail Code Wyle HAC-37C, Houston, TX 77058 USA. EM andrew.abercromby-1@nasa.gov NR 24 TC 1 Z9 1 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2015 VL 109 BP 76 EP 87 DI 10.1016/j.actaastro.2014.11.039 PG 12 WC Engineering, Aerospace SC Engineering GA CD2SO UT WOS:000350929500008 ER PT J AU Jomaas, G Torero, JL Eigenbrod, C Niehaus, J Olson, SL Ferkul, PV Legros, G Fernandez-Pello, AC Cowlard, AJ Rouvreau, S Smirnov, N Fujita, O T'ien, JS Ruff, GA Urban, DL AF Jomaas, Grunde Torero, Jose L. Eigenbrod, Christian Niehaus, Justin Olson, Sandra L. Ferkul, Paul V. Legros, Guillaume Fernandez-Pello, A. Carlos Cowlard, Adam J. Rouvreau, Sebastien Smirnov, Nickolay Fujita, Osamu T'ien, James S. Ruff, Gary A. Urban, David L. TI Fire safety in space - beyond flammability testing of small samples SO ACTA ASTRONAUTICA LA English DT Article DE Flame propagation; Microgravity; Fire safety; Experiments; Flammability AB An international research team has been assembled to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing material samples in a series of flight experiments (Saffire 1, 2, and -3) to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the International Space Station (ISS). The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle re-enters the atmosphere. The unmanned, pressurized environment in the Saffire experiments allows for the largest sample sizes ever to be tested for material flammability in microgravity, which will be based on the characteristics of flame spread over the surface of the combustible material. Furthermore, the experiments will have a duration that is unmatched in scale compared to earth based microgravity research facilities such as drop towers (about 5 s) and parabolic flights (about 20 s). In contrast to sounding rockets, the experiments offer a much larger volume, and the reduction in the oxygen concentration during the Saffire experiments will be minimal. The selection of the experimental settings for the first three Saffire experiments has been based on existing knowledge of scenarios that are relevant, yet challenging, for a spacecraft environment. Given that there is always airflow in the space station, all the experiments are conducted with flame spread in either concurrent or opposed flow, though with the flow being stopped in some tests, to simulate the alarm mode environment in the ISS and thereby also to study extinguishment The materials have been selected based on their known performance in NASA STD-6001Test-1, and with different materials being classified as charring, thermally thin, and thermally thick. Furthermore, materials with non-uniform surfaces will be investigated. (C) 2014 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Jomaas, Grunde] Tech Univ Denmark, Dept Civil Engn, DK-2800 Lyngby, Denmark. [Torero, Jose L.] Univ Queensland, Brisbane, Qld, Australia. [Eigenbrod, Christian] Univ Bremen ZARM, Bremen, Germany. [Niehaus, Justin; Olson, Sandra L.; Ruff, Gary A.; Urban, David L.] NASA, Glenn Res Ctr, Cleveland, OH USA. [Ferkul, Paul V.] Univ Space Res Assoc, Cleveland, OH USA. [Legros, Guillaume] Univ Paris 06, Paris, France. [Fernandez-Pello, A. Carlos] Univ Calif Berkeley, Berkeley, CA USA. [Cowlard, Adam J.] Univ Edinburgh, Edinburgh, Midlothian, Scotland. [Rouvreau, Sebastien] Belisama R&D, Toulouse, France. [Smirnov, Nickolay] Moscow MV Lomonosov State Univ, Moscow, Russia. [Fujita, Osamu] Hokkaido Univ, Sapporo, Hokkaido, Japan. [T'ien, James S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Jomaas, G (reprint author), Tech Univ Denmark, Dept Civil Engn, DK-2800 Lyngby, Denmark. EM grujo@byg.dtu.dk OI Jomaas, Grunde/0000-0003-4067-1610 FU ESTEC [4000103397]; JAXA; ESA; RSA; CNES; DLR; Russian Academy of Sciences; NASA Advanced Exploration Systems Program FX The topical team on fire safety in space was established under ESTEC Contract number 4000103397 with Dr. Olivier Minster as the coordinator. Project scientist at ESA, Dr. Balks Toth, has been of great support during the experimental development. The authors acknowledge the support of the various space and research agencies that have supported this work including but not limited to JAXA, ESA, RSA, CNES, DLR, the Russian Academy of Sciences and the NASA Advanced Exploration Systems Program. NR 32 TC 5 Z9 5 U1 2 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2015 VL 109 BP 208 EP 216 DI 10.1016/j.actaastro.2014.11.025 PG 9 WC Engineering, Aerospace SC Engineering GA CD2SO UT WOS:000350929500023 ER PT J AU Saghaian, SM Karaca, HE Tobe, H Souri, M Noebe, R Chumlyakov, YI AF Saghaian, S. M. Karaca, H. E. Tobe, H. Souri, M. Noebe, R. Chumlyakov, Y. I. TI Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals SO ACTA MATERIALIA LA English DT Article DE NiTiHf; High-temperature shape memory alloys; Orientation dependence; Aging; Mechanical testing ID COMPRESSIVE RESPONSE; MARTENSITIC-TRANSFORMATION; ALLOYS; MICROSTRUCTURE; PHASE; ORIENTATION; HYSTERESIS; DEPENDENCE; STRENGTH AB The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [0 0 1], [0 1 1] and [1 1 1] orientations in compression. The effects of crystal orientation and aging temperature on the transformation strain, thermal hysteresis and Clausius-Clapeyron (CC) relation were determined. Aging at 550 degrees C for 3 h introduced coherent 10-20 nm precipitates in the matrix, which substantially improved the shape memory and mechanical properties of the Ni50.3Ti29.7Hf20 crystals. [0 0 1]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of <2%. Thermal treatments can be used to tailor the transformation temperatures over a wide range with the martensite start temperature varying from -25 degrees C in the solutionized case to 123 degrees C by aging at 650 degrees C for 3 h. Compared to the solutionized condition, thermal hysteresis was reduced after aging at 550 degrees C/3 h, but increased with aging at 650 degrees C. Perfect superelasticity with recoverable strain of >4% was observed for solutionized and 550 degrees C/3 h aged single crystals along the [0 1 1] and [1 1 1] orientations, and general superelastic behavior was observed over a wide temperature range. In contrast, aged [0 0 1]-oriented single crystals have a very high CC slope, in the range of 30-40 MPa degrees C-1, which results in a lack of superelasticity. Theoretical transformation strains were calculated by using the energy minimization method and lattice deformation theory. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (0 0 1) compound twins. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Souri, M.] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. [Noebe, R.] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH USA. [Chumlyakov, Y. I.] Tomsk State Univ, Siberian Phys Tech Inst, Tomsk, Russia. RP Karaca, HE (reprint author), Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA. EM karacahaluk@uky.edu RI Chumlyakov, Yuriy/R-6496-2016 FU NASA Fundamental Aeronautics Program, Aeronautical Sciences and the Transformational Tools and Technologies Projects; RFBR project [10-03-0154-a]; RSF program [14-29-00012]; NASA EPSCOR program [NNX11AQ31A] FX This work was supported in part by the NASA Fundamental Aeronautics Program, Aeronautical Sciences and the Transformational Tools and Technologies Projects, the NASA EPSCOR program under grant no. NNX11AQ31A, RFBR project with grant no. 10-03-0154-a and RSF program under grant no. 14-29-00012. NR 41 TC 8 Z9 10 U1 8 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD APR 1 PY 2015 VL 87 BP 128 EP 141 DI 10.1016/j.actamat.2014.12.040 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CC6ZO UT WOS:000350517700014 ER PT J AU De Carvalho, NV Chen, BY Pinho, ST Ratcliffe, JG Baiz, PM Tay, TE AF De Carvalho, N. V. Chen, B. Y. Pinho, S. T. Ratcliffe, J. G. Baiz, P. M. Tay, T. E. TI Modeling delamination migration in cross-ply tape laminates SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Delamination; Fracture; Transverse cracking; Finite element analysis ID LOW-VELOCITY IMPACT; FINITE-ELEMENT-METHOD; SUBSEQUENT MIGRATION; MATRIX CRACKING; COMPOSITE; FAILURE; KINKING; MECHANISMS; INTERFACE; GROWTH AB A novel modeling approach is proposed that combines the Floating Node Method (FNM) with the Virtual Crack Closure Technique (VCCT) to capture delamination migration in cross-ply tape laminates. Delamination migration is the damage process by which a delamination propagating at an interface relocates to a different interface via one or multiple matrix cracks. In the approach proposed, delamination, matrix cracking, and their interaction, are represented in a single element. The kinematics of both delamination and matrix cracks are represented explicitly. Migration onset location, and subsequent path, are determined as part of the solution, in a mesh-independent fashion. Delamination growth, matrix cracking, and migration onset, are all modeled using fracture mechanics based failure and migration criteria. The proposed approach is applied to the modeling of the Delamination Migration (DM) test, showing good qualitative and quantitative agreement with experiments. (C) 2015 Elsevier Ltd. All rights reserved. C1 [De Carvalho, N. V.] NASA, Langley Res Ctr, Damage Tolerance & Reliabil Branch, Natl Inst Aerosp, Hampton, VA 23681 USA. [Chen, B. Y.; Pinho, S. T.; Baiz, P. M.] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England. [Chen, B. Y.; Tay, T. E.] Natl Univ Singapore, Dept Mech Engn, Singapore 119077, Singapore. [Ratcliffe, J. G.] NASA, Langley Res Ctr, Damage Tolerance & Reliabil Branch, Hampton, VA 23681 USA. RP De Carvalho, NV (reprint author), NASA, Langley Res Ctr, Damage Tolerance & Reliabil Branch, Natl Inst Aerosp, Hampton, VA 23681 USA. EM nelson.carvalho@nasa.gov RI Chen, Boyang/J-1271-2016; OI Chen, Boyang/0000-0001-7393-4363; Tay, Tong-Earn/0000-0002-2846-1947 NR 46 TC 11 Z9 11 U1 4 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X EI 1878-5840 J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD APR PY 2015 VL 71 BP 192 EP 203 DI 10.1016/j.compositesa.2015.01.021 PG 12 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA CD1MU UT WOS:000350839800019 ER PT J AU Hultquista, G Graham, MJ Smialek, JL Jonsson, B AF Hultquista, G. Graham, M. J. Smialek, J. L. Jonsson, B. TI Hydrogen in metals studied by Thermal Desorption Spectroscopy (TDS) SO CORROSION SCIENCE LA English DT Article DE Copper; Hydrogen absorption; Oxidation ID CORROSION AB This short communication presents Thermal Desorption Spectroscopy (TDS) of hydrogen desorption from various metals and alloys [Au, Pd, Cu, Ni, Zr, Y, stainless steel and ODS (oxide dispersion strengthened) alloy] after long-term exposure (up to 20 years) to ambient humid air at room-temperature. Of the metals studied only gold does not contain a measurable level of hydrogen. For polycrystalline metals there is a strong correlation between the amount of hydrogen in the metal and the tendency for oxidation of the metal. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Hultquista, G.] Royal Inst Technol, Surface & Corros Sci, SE-10044 Stockholm, Sweden. [Graham, M. J.] CNR, Aerosp, Ottawa, ON K1A 0R6, Canada. [Smialek, J. L.] NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. [Jonsson, B.] Sandvik Heating Technol AB, Strateg Business Dev, SE-73427 Hallstahammar, Sweden. RP Hultquista, G (reprint author), Royal Inst Technol, Surface & Corros Sci, SE-10044 Stockholm, Sweden. EM gunnarh@kth.se FU Swedish Radiation Safety Authority (SSM) FX The Swedish Radiation Safety Authority (SSM) is acknowledged for partial financial support. NR 8 TC 4 Z9 4 U1 4 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD APR PY 2015 VL 93 BP 324 EP 326 DI 10.1016/j.corsci.2015.01.003 PG 3 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CC9RA UT WOS:000350707100034 ER PT J AU Fu, Q Socki, RA Niles, PB AF Fu, Qi Socki, Richard A. Niles, Paul B. TI Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FISCHER-TROPSCH SYNTHESIS; MARTIAN METEORITE ALH84001; LITHOAUTOTROPHIC MICROBIAL ECOSYSTEMS; MOLAL THERMODYNAMIC PROPERTIES; EARLY SOLAR SYSTEM; SUPERCRITICAL WATER; MONOCARBOXYLIC ACIDS; MURCHISON METEORITE; DEGREES-C; GASEOUS HYDROCARBONS AB Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 degrees C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher delta C-13 than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of delta C-13 values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at similar to 31 parts per thousand, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of delta C-13 values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous C-13 isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in C-12 were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H-2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic compounds is critical for understanding deep subsurface ecosystems and the origin of organic compounds on Mars and other planets. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Fu, Qi; Niles, Paul B.] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci, KR, Houston, TX 77058 USA. [Socki, Richard A.] NASA, Johnson Space Ctr, JETS UTAS, Astromat Res & Explorat Sci, Houston, TX 77058 USA. RP Fu, Q (reprint author), Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. EM qfu5@central.uh.edu FU NASA Astrobiology: Exobiology and Evolutionary Biology program [NNX10AR18G, NNX13AH75G]; "New Faculty Research Program" at University of Houston FX We would like to thank Kevin Righter (NASA JSC) for assistance of experimental setup. Funding from NASA Astrobiology: Exobiology and Evolutionary Biology program under award NNX10AR18G and NNX13AH75G to QF, and "New Faculty Research Program" at University of Houston are acknowledged. Helpful comments by Associate Editor Chris Herd and two anonymous reviewers are appreciated. NR 159 TC 1 Z9 1 U1 6 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 1 PY 2015 VL 154 BP 1 EP 17 DI 10.1016/j.gca.2015.01.027 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CC7PP UT WOS:000350560800001 ER PT J AU Peslier, AH Bizimis, M Matney, M AF Peslier, Anne H. Bizimis, Michael Matney, Mark TI Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, H diffusion and magma ascent rates SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID THEORETICAL INFRARED-SPECTRUM; NOMINALLY ANHYDROUS MINERALS; EIFEL VOLCANIC FIELD; UPPER-MANTLE; ELECTRICAL-CONDUCTIVITY; PLASTIC-DEFORMATION; HYDROGEN INCORPORATION; EARTHS MANTLE; HIGH-PRESSURE; CONTINENTAL LITHOSPHERE AB Constraining the distribution and mobility of H in olivine, the main mineral of the upper mantle, is crucial to our understanding of Earth's geodynamics because this trace element influences melting, rheology, and electrical and thermal conductivities of peridotite. For this purpose, the olivines from fresh and well-characterized peridotite xenoliths from Salt Lake Crater and Pali (Oahu, Hawaii), representing samples of the oceanic mantle lithosphere, were analyzed by FTIR. Water concentrations decrease from core to edge and near fractures of olivine grains, and are best interpreted as H loss during xenolith ascent to the surface in its host magma. Diffusion modeling of these profiles allowed the calculation of diffusion times, which were in turn used to estimate the average ascent rates of the xenolith host nephelinite at 0.2-25.3 m s(-1). These rates are similar to those of continental basaltic magmas. Diffusion modeling further shows that the water contents at the core of olivines are preserved mantle values and are heterogeneous within each xenolith. In addition, the discrepant behavior of the 3225 cm(-1) OH band (due to H in a Mg vacancy) relative to the other OH bands (in particular the Ti-H defect) along profiles evidences that H is heterogeneously distributed amongst olivine defects. These defect profiles are modeled to calculate that the diffusion rate of the Mg-H defect is about 1.3-6.8 times faster than that of the Ti-H defect. The heterogeneous distribution of H in the mantle between olivine cores in single xenoliths and within olivine grains testifies of a state of disequilibrium for water in these samples. The Salt Lake Crater peridotite olivines record two processes; recent metasomatism by a melt bringing water followed by water loss during ascent in the host magma, neither having lasted long enough for water to reach equilibrium. The observed decoupling between the heterogeneous distribution of H and the homogeneous distribution of lithophile elements suggests that the process of water addition to the peridotite via incipient melt metasomatism was likely interrupted by the host nephelinite removing the samples from the mantle and bringing them to the surface. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Peslier, Anne H.] NASA, Johnson Space Ctr, Jacobs, Houston, TX 77058 USA. [Bizimis, Michael] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. [Matney, Mark] NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Peslier, AH (reprint author), NASA, Johnson Space Ctr, Jacobs, Mail Code XI3, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov OI Bizimis, Michael/0000-0002-4611-6928 FU NSF [OCE-1129072, OCE-1129280] FX This work was supported by NSF grants OCE-1129072 to A.H.P. and OCE-1129280 to M.B. We are very grateful to A.S. Lloyd and two anonymous reviewers for constructive thorough reviews that greatly improved the manuscript. Thank you to E. Ripley for editing this paper. Thank you to A.J. Jones for discussions on mechanisms of electrical conductivity. NR 144 TC 17 Z9 20 U1 7 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 1 PY 2015 VL 154 BP 98 EP 117 DI 10.1016/j.gca.2015.01.030 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CC7PP UT WOS:000350560800007 ER PT J AU Islam, T Srivastava, PK Rico-Ramirez, MA Dai, Q Gupta, M Singh, SK AF Islam, Tanvir Srivastava, Prashant K. Rico-Ramirez, Miguel A. Dai, Qiang Gupta, Manika Singh, Sudhir K. TI Tracking a tropical cyclone through WRF-ARW simulation and sensitivity of model physics SO NATURAL HAZARDS LA English DT Article DE Hurricane; Track and intensity forecast; Physics parameterizations; Numerical weather prediction (NWP); Weather mesoscale model; Tropical storm; Extreme events; ECMWF and GFS ID BULK MICROPHYSICS PARAMETERIZATION; ATMOSPHERIC BOUNDARY-LAYER; ENSEMBLE DATA ASSIMILATION; PART I; WEATHER RESEARCH; EXPLICIT FORECASTS; CLIMATE-CHANGE; PREDICTION; SYSTEM; IMPACT AB The Weather Research and Forecasting (WRF) model's Advanced Research WRF (ARW) dynamic solver is one of the most popular regional numerical weather prediction models being used by operational and research personnel. In this study, we simulate a tropical cyclone to reproduce the track direction and strength of the storm that formed at low latitudes in the West Pacific Ocean. The cyclone is known as "Haiyan" and assessed as category-5 equivalent super typhoon status due to its strong sustained winds and gusts, making it the strongest tropical cyclone in the region. We study the sensitivity of three different model physics options: the microphysics schemes, the planetary boundary layer schemes, and the impact of cumulus parameterization schemes. The realism of the cyclone simulation for different physics options is assessed through the comparison between the model outputs and the best track data, which are taken from the Japan Meteorological Agency. The experimental model simulations are carried out with two different global datasets: the ERA-Interim analysis from the European Centre for Medium Range Weather Forecasts and NCEP GFS forecast data, as initialization and boundary conditions. In addition, wind-pressure relationships are developed for different physics combination runs. Verification results associated with the model physics and boundary condition are discussed in this article. Overall, irrespective of the physics sensitivity, while the WRF simulation performs well in predicting the track propagation of the typhoon, substantial underestimation is seen in the intensity prediction. C1 [Islam, Tanvir] NOAA, NESDIS, STAR, Ctr Weather & Climate Predict, College Pk, MD 20740 USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Gupta, Manika] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi, India. [Singh, Sudhir K.] Univ Allahabad, Ctr Atmospher & Ocean Studies, Allahabad 211002, Uttar Pradesh, India. RP Islam, T (reprint author), NOAA, NESDIS, STAR, Ctr Weather & Climate Predict, 5830 Univ Res Ct, College Pk, MD 20740 USA. EM tanvir.islam@noaa.gov RI Rico-Ramirez, Miguel/H-3248-2014; OI Rico-Ramirez, Miguel/0000-0002-8885-4582; Islam, Tanvir/0000-0003-2429-3074 NR 63 TC 3 Z9 3 U1 3 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X EI 1573-0840 J9 NAT HAZARDS JI Nat. Hazards PD APR PY 2015 VL 76 IS 3 BP 1473 EP 1495 DI 10.1007/s11069-014-1494-8 PG 23 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA CC9BS UT WOS:000350663100003 ER PT J AU Smialek, JL AF Smialek, J. L. TI Kinetic Aspects of Ti2AlC MAX Phase Oxidation SO OXIDATION OF METALS LA English DT Article DE Ti2AlC; MAX phase compounds; Transient oxidation; Cubic rate law; Grain boundary diffusivity; Alumina scales ID HIGH-TEMPERATURE; ALUMINA SCALES; RATE CONSTANTS; BEHAVIOR; AIR; MICROSTRUCTURE; ALLOYS; OXYGEN; VAPOR AB The oxidation kinetics of a commercial Ti2AlC MAX phase compound were measured in 100 h isothermal thermogravimetric tests at 1,100, 1,200, and 1,300 A degrees C. A significant amount of transient oxidation took place during the initial 5 min of heating due to the rapid growth of non-protective TiO2 scales. After correcting for this amount, shown as a knee in log-log plots, the mass gain was similar to that for alumina-forming FeCrAl alloys. Nearly t(1/3) cubic kinetics were obeyed, as reported in the literature. An activation energy of similar to 340 kJ/mol was found, similar to similar to 380 kJ/mol previously demonstrated for grain boundary oxygen diffusivity. Power law fitting accounts for grain coarsening effects on an otherwise fundamentally parabolic scaling process. In summation, cubic steady-state Ti2AlC oxidation kinetics are consistent with grain boundary diffusion mechanisms for alumina scales. C1 NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Smialek, JL (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM james.l.smialek@nasa.gov NR 20 TC 6 Z9 6 U1 4 U2 27 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X EI 1573-4889 J9 OXID MET JI Oxid. Met. PD APR PY 2015 VL 83 IS 3-4 BP 351 EP 366 DI 10.1007/s11085-015-9526-7 PG 16 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA CC9CA UT WOS:000350663900010 ER PT J AU Bansal, NP Choi, SR AF Bansal, Narottam P. Choi, Sung R. TI Properties of CMAS glass from desert sand SO CERAMICS INTERNATIONAL LA English DT Article DE CMAS; Mechanical properties; Thermal properties; Crystallization; Viscosity ID CALCIUM-MAGNESIUM-ALUMINOSILICATE; THERMAL BARRIER COATINGS; CRYSTAL-GROWTH KINETICS; FRACTURE-TOUGHNESS; SEAL GLASS; CRYSTALLIZATION KINETICS; TEMPERATURE; COMPOSITES; MECHANISMS; CERAMICS AB X-ray diffraction analysis of as-received desert sand from a Middle East country showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H(2)O), NaAlSi3O8, Mg-2(Al3.9Si5.1O18) and Mg3Al2(SiO4)(3) phases. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at similar to 1500 degrees C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al(2)O(3)-61.6SiO(2)-0.6Fe(2)O(3)-1K(2)O (mole %). Various physical, thermal, and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cm(3), Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (;) 706 degrees C, softening point (T-d) 764 degrees C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m(1/2), and coefficient of thermal expansion (CTE) 9.8 x 10(-6)/degrees C in the temperature range 25 to 700 degrees C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-FulcherTamman (VFT) equation as well as from the glass composition. The glass remained amorphous after heat treating at 850 degrees C for 10 h but crystallized into CaSiO3 and Ca2Mg0.5AlSi1.5O7 phases at 900 degrees C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Published by Elsevier Ltd and Techna Group S.r.l. C1 [Bansal, Narottam P.] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. [Choi, Sung R.] Naval Air Syst Command, Patuxent River, MD 20670 USA. RP Bansal, NP (reprint author), NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. EM narottam.p.bansal@nasa.gov FU NASA's Aeronautical Sciences Project; NAVAIR [SAA3-1260] FX Desert sand was supplied by NAVAIR Thanks are due to Dr. Paul Angel, Dr. Richard Rogers, Dr. Valerie Wiesner, Doug Doza, Ralph Pawlik, Derek Johnson, Bob Angus, and Ray Babuder for technical assistance during this work. This research was supported by NASA's Aeronautical Sciences Project as well as by NAVAIR through a space act agreement (SAA3-1260). NR 27 TC 5 Z9 6 U1 6 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD APR PY 2015 VL 41 IS 3 BP 3901 EP 3909 DI 10.1016/j.ceramint.2014.11.072 PN A PG 9 WC Materials Science, Ceramics SC Materials Science GA CC2QE UT WOS:000350188900074 ER PT J AU Hoang, T Lazarian, A Andersson, BG AF Hoang, Thiem Lazarian, A. Andersson, B. -G. TI Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE magnetic fields; polarization; dust, extinction ID INTERSTELLAR GRAINS; MOLECULAR-HYDROGEN; DUST GRAINS; CHEMICAL-STRUCTURE; MAGNETIC-FIELDS; ROTATING GRAINS; SPINNING DUST; PARAMAGNETIC ALIGNMENT; SUPRATHERMAL ROTATION; H-2 FORMATION AB Reflection nebulae - dense cores - illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modelling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby gamma Cas star and the diffuse interstellar radiation field. We calculate linear polarization p(lambda) of background stars by radiatively aligned grains and explore the variation of fractional polarization (p(lambda)/A(V)) with visual extinction A(V) across the cloud. Our results show that the variation of p(V)/A(V) versus A(V) from the dayside of IC 63 to its centre can be represented by a power law (p(V)/A(V) proportional to A(V)(eta)) with different slopes depending on A(V). We find a shallow slope eta similar to -0.1 for A(V) < 3 and a very steep slope eta similar to -2 for A(V) > 4. We then consider the effects of additional torques due to H-2 formation and model grain alignment by joint action of RATs and H-2 torques. We find that p(V)/A(V) tends to increase with an increasing magnitude of H-2 torques. In particular, the theoretical predictions obtained for p(V)/A(V) and peak wavelength lambda(max) in this case show an improved agreement with the observational data. Our results reinforce the predictive power of the RAT alignment mechanism in a broad range of environmental conditions and show the effect of pinwheel torques in environments with efficient H-2 formation. Physical parameters involved in H-2 formation may be constrained using detailed modelling of grain alignment combined with observational data. In addition, we discuss implications of our modelling for interpreting latest observational data by Planck and other ground-based instruments. C1 [Hoang, Thiem] Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany. [Hoang, Thiem] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Lazarian, A.] Univ Wisconsin, Dept Astron, Madison, WI 53705 USA. [Andersson, B. -G.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. RP Hoang, T (reprint author), Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany. EM hoang@cita.utoronto.ca OI Andersson, B-G/0000-0001-6717-0686 FU NSF [AST-1109295, AST-1109469]; Humboldt Fellowship at Ruhr-Universitat Bochum FX We thank the referee for her/his insightful and valuable comments that improved our paper. AL acknowledges the financial support of the NSF grant AST-1109295, Vilas Award and the Center for Magnetic Self-Organization. B-GA acknowledges financial support from the NSF through grant AST-1109469. TH was supported by Humboldt Fellowship at Ruhr-Universitat Bochum. NR 70 TC 8 Z9 8 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2015 VL 448 IS 2 BP 1178 EP 1198 DI 10.1093/mnras/stu2758 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3UB UT WOS:000350274500011 ER PT J AU Rumble, D Hatchell, J Gutermuth, RA Kirk, H Buckle, J Beaulieu, SF Berry, DS Broekhoven-Fiene, H Currie, MJ Fich, M Jenness, T Johnstone, D Mottram, JC Nutter, D Pattle, K Pineda, JE Quinn, C Salji, C Tisi, S Walker-Smith, S Di Francesco, J Hogerheijde, MR Ward-Thompson, D Allen, LE Cieza, LA Dunham, MM Harvey, PM Stapelfeldt, KR Bastien, P Butner, H Chen, M Chrysostomou, A Coude, S Davis, CJ Drabek-Maunder, E Duarte-Cabral, A Fiege, J Friberg, P Friesen, R Fuller, GA Graves, S Greaves, J Gregson, J Holland, W Joncas, G Kirk, JM Knee, LBG Mairs, S Marsh, K Matthews, BC Moriarty-Schieven, G Rawlings, J Richer, J Robertson, D Rosolowsky, E Sadavoy, S Thomas, H Tothill, N Viti, S White, GJ Wilson, CD Wouterloot, J Yates, J Zhu, M AF Rumble, D. Hatchell, J. Gutermuth, R. A. Kirk, H. Buckle, J. Beaulieu, S. F. Berry, D. S. Broekhoven-Fiene, H. Currie, M. J. Fich, M. Jenness, T. Johnstone, D. Mottram, J. C. Nutter, D. Pattle, K. Pineda, J. E. Quinn, C. Salji, C. Tisi, S. Walker-Smith, S. Di Francesco, J. Hogerheijde, M. R. Ward-Thompson, D. Allen, L. E. Cieza, L. A. Dunham, M. M. Harvey, P. M. Stapelfeldt, K. R. Bastien, P. Butner, H. Chen, M. Chrysostomou, A. Coude, S. Davis, C. J. Drabek-Maunder, E. Duarte-Cabral, A. Fiege, J. Friberg, P. Friesen, R. Fuller, G. A. Graves, S. Greaves, J. Gregson, J. Holland, W. Joncas, G. Kirk, J. M. Knee, L. B. G. Mairs, S. Marsh, K. Matthews, B. C. Moriarty-Schieven, G. Rawlings, J. Richer, J. Robertson, D. Rosolowsky, E. Sadavoy, S. Thomas, H. Tothill, N. Viti, S. White, G. J. Wilson, C. D. Wouterloot, J. Yates, J. Zhu, M. TI The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiative transfer; catalogues; stars: formation; stars: protostars; H II regions; submillimetre: general ID YOUNG STELLAR OBJECTS; PERSEUS MOLECULAR CLOUD; HERBIG-AE/BE STARS; MAIN-SEQUENCE STAR; SUBMILLIMETER CONTINUUM OBSERVATIONS; CLERK MAXWELL TELESCOPE; SPITZER C2D SURVEY; CLASS-I PROTOSTARS; INTERSTELLAR CLOUDS; AQUILA RIFT AB We present SCUBA-2 450 and 850 mu m observations of the Serpens MWC 297 region, part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two-component model of the JCMT beam for a fixed dust opacity spectral index of beta = 1.8. Within 40 arcsec of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03 +/- 0.02, consistent with an ultracompact H II region and polar winds/jets. Contamination accounts for 73 +/- 5 per cent and 82 +/- 4 per cent of peak flux at 450 mu m and 850 mu m, respectively. The residual thermal disc of the star is almost undetectable at these wavelengths. Young stellar objects (YSOs) are confirmed where SCUBA-2 850 mu m clumps identified by the FELLWALKER algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use T-bol to classify nine YSOs with masses 0.09 to 5.1 M-circle dot. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15 +/- 2 K for the nine YSOs and 32 +/- 4 K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46 +/- 2 K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse. C1 [Rumble, D.; Hatchell, J.; Duarte-Cabral, A.] Univ Exeter, Phys & Astron, Exeter EX4 4QL, Devon, England. [Gutermuth, R. A.] Univ Massachusetts, Dept Astron, Amherst, MA 01002 USA. [Kirk, H.; Johnstone, D.; Di Francesco, J.; Knee, L. B. G.; Matthews, B. C.; Moriarty-Schieven, G.] Natl Res Council Canada, Victoria, BC V9E 2E7, Canada. [Buckle, J.; Salji, C.; Walker-Smith, S.; Graves, S.; Richer, J.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Buckle, J.; Salji, C.; Walker-Smith, S.; Graves, S.; Richer, J.] Univ Cambridge, Inst Astron, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Beaulieu, S. F.; Fich, M.; Tisi, S.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Berry, D. S.; Currie, M. J.; Jenness, T.; Johnstone, D.; Friberg, P.; Thomas, H.; Wouterloot, J.] Joint Astron Ctr, Hilo, HI 96720 USA. [Broekhoven-Fiene, H.; Johnstone, D.; Di Francesco, J.; Chen, M.; Mairs, S.; Matthews, B. C.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Jenness, T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Mottram, J. C.; Hogerheijde, M. R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Nutter, D.; Quinn, C.; Marsh, K.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Pattle, K.; Ward-Thompson, D.; Kirk, J. M.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Pineda, J. E.] European So Observ, D-85748 Garching, Germany. [Pineda, J. E.; Fuller, G. A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Allen, L. E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Cieza, L. A.] Univ Diego Portales, Fac Ingn, Santiago, Chile. [Dunham, M. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Harvey, P. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Stapelfeldt, K. R.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Bastien, P.; Coude, S.] Univ Montreal, Ctr Rech Astrophys Quebec, Montreal, PQ H3C 3J7, Canada. [Bastien, P.; Coude, S.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Butner, H.] James Madison Univ, Harrisonburg, VA 22807 USA. [Chrysostomou, A.] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield AL10 9AB, Herts, England. [Davis, C. J.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Drabek-Maunder, E.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BB, England. [Fiege, J.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Friesen, R.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Greaves, J.] Univ St Andrews, Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Gregson, J.; White, G. J.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Gregson, J.; White, G. J.] Rutherford Appleton Lab, Didcot OX11 0NL, Oxon, England. [Holland, W.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Holland, W.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Joncas, G.] Univ Laval, Ctr Rech Astrophys Quebec, Quebec City, PQ G1V 0A6, Canada. [Joncas, G.] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1V 0A6, Canada. [Rawlings, J.; Yates, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Robertson, D.; Viti, S.; Wilson, C. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rosolowsky, E.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Sadavoy, S.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Tothill, N.] Univ Western Sydney, Penrith, NSW 2751, Australia. [Zhu, M.] Natl Astron Observ China, Beijing 100012, Peoples R China. RP Rumble, D (reprint author), Univ Exeter, Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England. EM damian@astro.ex.ac.uk RI Tothill, Nicholas/M-6379-2016; OI Tothill, Nicholas/0000-0002-9931-5162; Berry, David/0000-0001-6524-2447; Pattle, Kate/0000-0002-8557-3582; Butner, Harold/0000-0003-4899-2064; Jenness, Tim/0000-0001-5982-167X; Pineda, Jaime/0000-0002-3972-1978; Knee, Lewis/0000-0002-9342-9003 FU Canada Foundation for Innovation; STFC studentship (Rumble); Exeter STFC consolidated grant (Hatchell) FX The JCMT has historically been operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada and the Netherlands Organisation for Scientific Research. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. The identification number for the programme under which the SCUBA-2 data used in this paper is MJLSG33. This work was supported by a STFC studentship (Rumble) and the Exeter STFC consolidated grant (Hatchell). We would like to thank Goran Sandell for the contribution of VLA data and the referee for their helpful feedback throughout the publishing process. NR 122 TC 9 Z9 9 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2015 VL 448 IS 2 BP 1551 EP 1573 DI 10.1093/mnras/stu2695 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3UB UT WOS:000350274500039 ER PT J AU Schnepf, NR Lovelace, RVE Romanova, MM Airapetian, VS AF Schnepf, N. R. Lovelace, R. V. E. Romanova, M. M. Airapetian, V. S. TI Stellar wind erosion of protoplanetary discs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; magnetic fields; Sun: coronal mass ejections (CMEs); stars: pre-main-sequence; stars: winds, outflows ID T-TAURI STARS; CORONAL MASS EJECTIONS; PROPELLER-DRIVEN OUTFLOWS; MAIN-SEQUENCE STARS; MAGNETOROTATIONAL INSTABILITY; ANGULAR-MOMENTUM; MAGNETIC-FIELDS; ACCRETION DISKS; DUST DISKS; EVOLUTION AB An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be similar to 2 x 10(6) yr. The analytic model assumes a steady stellar wind with mass-loss rate. M-w similar to 10(-10) M-circle dot yr(-1) and velocity nu(w) similar to 10(3) km s(-1). A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs,. M-CME, and velocities, nu(CME), have values comparable to those for the steady wind. C1 [Schnepf, N. R.] MIT, Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Lovelace, R. V. E.; Romanova, M. M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Airapetian, V. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schnepf, NR (reprint author), MIT, Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM nschnepf@mit.edu RI Schnepf, Neesha/K-5922-2016 OI Schnepf, Neesha/0000-0003-1489-7958 FU NASA [NNX11AF33G, NNX12AI85G]; NSF [AST-1211318] FX We thank Professor J. P. Lloyd for helpful discussions and an anonymous referee for valuable criticism and suggestions on an earlier version of this work. This work was supported in part by NASA grants NNX11AF33G, NNX12AI85G, and NSF grant AST-1211318. NR 53 TC 1 Z9 1 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2015 VL 448 IS 2 BP 1628 EP 1633 DI 10.1093/mnras/stv056 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3UB UT WOS:000350274500043 ER PT J AU Rampino, MR AF Rampino, Michael R. TI Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE comets: general; Earth; Galaxy: disc ID FLOOD-BASALT VOLCANISM; CRATER FORMATION RATE; MARINE FOSSIL RECORD; TIME-SERIES ANALYSIS; TERRESTRIAL IMPACT; OORT CLOUD; PERIODICITY HYPOTHESIS; MAGNETIC REVERSALS; GALACTIC PLANE; EPISODES AB A cycle in the range of 26-30 Myr has been reported in mass extinctions, and terrestrial impact cratering may exhibit a similar cycle of 31 +/- 5 Myr. These cycles have been attributed to the Sun's vertical oscillations through the Galactic disc, estimated to take from similar to 30 to 42 Myr between Galactic plane crossings. Near the Galactic mid-plane, the Solar system's Oort Cloud comets could be perturbed by Galactic tidal forces, and possibly a thin dark matter (DM) disc, which might produce periodic comet showers and extinctions on the Earth. Passage of the Earth through especially dense clumps of DM, composed of Weakly Interacting Massive Particles (WIMPs) in the Galactic plane, could also lead to heating in the core of the planet through capture and subsequent annihilation of DM particles. This new source of periodic heating in the Earth's interior might explain a similar similar to 30 Myr periodicity observed in terrestrial geologic activity, which may also be involved in extinctions. These results suggest that cycles of geological and biological evolution on the Earth may be partly controlled by the rhythms of Galactic dynamics. C1 [Rampino, Michael R.] NYU, Dept Biol, New York, NY 10003 USA. [Rampino, Michael R.] NYU, Dept Environm Studies, New York, NY 10003 USA. [Rampino, Michael R.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Rampino, MR (reprint author), NYU, Dept Biol, New York, NY 10003 USA. EM mrr1@nyu.edu NR 82 TC 8 Z9 8 U1 3 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2015 VL 448 IS 2 BP 1816 EP 1820 DI 10.1093/mnras/stu2708 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3UB UT WOS:000350274500059 ER PT J AU Lee, N Pellegrino, S Wu, YH AF Lee, Nicolas Pellegrino, Sergio Wu, Yen-Hung TI Design algorithm for the placement of identical segments in a large spherical mirror SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE segmentation; space telescope; point spread function; Fourier optics ID LARGE TELESCOPE; PERFORMANCE; PROJECT; SYSTEM AB We present a design algorithm to compute the positions of identical, hexagonal mirror segments on a spherical surface, which is shown to provide a small variation in gap width. A one-dimensional analog to the segmentation problem is developed in order to motivate the desired configuration of the tiling patterns and to emphasize the desire for minimizing segment gap widths to improve optical performance. Our azimuthal equidistant centroid tiling algorithm is applied to three telescope architectures and produces mirror segment arrangements that compare favorably with existing and alternative designs. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Lee, Nicolas; Pellegrino, Sergio] CALTECH, Grad Aerosp Labs, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Wu, Yen-Hung] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lee, N (reprint author), CALTECH, Grad Aerosp Labs, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM nnlee@caltech.edu OI Lee, Nicolas/0000-0001-5500-1324 NR 27 TC 1 Z9 1 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD APR PY 2015 VL 1 IS 2 AR 024002 DI 10.1117/1.JATIS.1.2.024002 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DJ4OM UT WOS:000374185900003 ER PT J AU Tan, SP Kargel, JS Jennings, DE Mastrogiuseppe, M Adidharma, H Marion, GM AF Tan, Sugata P. Kargel, Jeffrey S. Jennings, Donald E. Mastrogiuseppe, Marco Adidharma, Hertanto Marion, Giles M. TI Titan's liquids: Exotic behavior and its implications on global fluid circulation SO ICARUS LA English DT Article DE Titan, atmosphere; Hydrology; Surface ID CASSINI RADIO OCCULTATIONS; SURFACE TEMPERATURES; HUYGENS PROBE; METHANE CYCLE; ATMOSPHERE; LAKES; RAIN; EQUATION; DESCENT; STATE AB Based on a validated model for cryogenic chemical systems, referred to as CRYOCHEM ("Cryogenic Chemistry Model"), surface liquids on Titan are shown to exhibit exotic behavior of density increase with temperature but decrease with pressure, unless the temperature falls below 89.8 K. It is also the case for the atmospheric liquid condensates below an altitude where the liquid density is minimum. The exotic behavior is of compositional origin, which does not have an analog in the atmosphere and liquid water on Earth. As the latitudinal and seasonal variations of surface temperature are known, it is possible to map out the global liquid and vapor density variations as well as the equilibrium phase compositions, which will be useful as inputs for atmospheric general circulation models (GCMs) and investigations of Titan's methane-equivalent of Earth's hydrological cycle, local subsurface alkanology (equivalent to hydrology on Earth), lake convection, and clastic and chemical sedimentation in the lakes. Further, the density variations can be used to derive a general idea about global fluid circulation in the upper crust based on averaged conditions on Titan. The surface liquid should tend to flow toward the hottest spot on Titan and a return flow occurs beneath the surface, thus providing analogies with thermohaline circulation in Earth's oceans. The vapor phase, on the other hand, has ordinary properties that make the global atmospheric circulation similar to the Hadley cell on Earth, but Titan's cycle reaches the polar regions. The calculated compositions of surface liquids are more methane-rich than other models indicated, thus qualitatively in the right direction to satisfy polar-lake compositions deduced from loss tangents. However, quantitatively there remains a need to find yet more accurate liquid compositions and an optimum equilibrium within constraints of the atmospheric measurements. (C) 2014 Elsevier Inc. All rights reserved. C1 [Tan, Sugata P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Kargel, Jeffrey S.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Jennings, Donald E.] NASA, Detector Syst Branch, Instrument Syst & Technol Div, Goddard Space Flight Ctr, Washington, DC USA. [Mastrogiuseppe, Marco] Univ Roma La Sapienza, DIET, Rome, Italy. [Adidharma, Hertanto] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Marion, Giles M.] Desert Res Inst, Div Earth & Ecosyst Sci, Reno, NV 89512 USA. RP Tan, SP (reprint author), 1700 E Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM stan@psi.edu FU NASA Outer Planets Research Program [NNX14AC64G]; NASA Cassini Mission; Italian Space Agency - Italy FX This work was funded by NASA Outer Planets Research Program: # NNX14AC64G (ST, JK, HA, and GM), the NASA Cassini Mission (DJ); and the Italian Space Agency - Italy (MM). NR 36 TC 11 Z9 12 U1 3 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 64 EP 75 DI 10.1016/j.icarus.2014.11.029 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200007 ER PT J AU Vinatier, S Bezard, B Lebonnois, S Teanby, NA Achterberg, RK Gorius, N Mamoutkine, A Guandique, E Jolly, A Jennings, DE Flasar, FM AF Vinatier, Sandrine Bezard, Bruno Lebonnois, Sebastien Teanby, Nick A. Achterberg, Richard K. Gorius, Nicolas Mamoutkine, Andrei Guandique, Ever Jolly, Antoine Jennings, Donalds E. Flasar, F. Michael TI Seasonal variations in Titan's middle atmosphere during the northern spring derived from Cassini/CIRS observations SO ICARUS LA English DT Article DE Titan, atmosphere; Infrared observations; Atmospheres, structure; Atmospheres, composition ID COMPOSITE INFRARED SPECTROMETER; CM(-1) SPECTRAL RANGE; CIRS DATA; STRATOSPHERE; TEMPERATURES; PROFILES; AEROSOLS; MODEL; HCN; SPECTROSCOPY AB We analyzed spectra acquired at the limb of Titan in the 2006-2013 period by the Cassini/Composite Infrared Spectrometer (CIRS) in order to monitor the seasonal evolution of the thermal, gas composition and aerosol spatial distributions. We are primarily interested here in the seasonal changes after the northern spring equinox and interpret our results in term of global circulation seasonal changes. Data cover the 600-1500 cm(-1) spectral range at a resolution of 0.5 or 15.5 cm(-1) and probe the 150-500 km vertical range with a vertical resolution of about 30 km. Retrievals of the limb spectra acquired at 15.5 cm(-1) resolution allowed us to derive eight global maps of temperature, aerosols and C2H2, C2H6 and HCN molecular mixing ratios between July 2009 and May 2013. In order to have a better understanding of the global changes taking place after the northern spring equinox, we analyzed 0.5 cm(-1) resolution limb spectra to infer the mixing ratio profiles of 10 molecules for some latitudes. These profiles are compared with CIRS observations performed during the northern winter. Our observations are compatible with the coexistence of two circulation cells upwelling at mid-latitudes and downwelling at both poles from at last January 2010 to at least June 2010. One year later, in June 2011, there are indications that the global circulation had reversed compared to the winter situation, with a single pole-to-pole cell upwelling at the north pole and downwelling at the south pole. Our observations show that in December 2011, this new pole-to-pole cell has settled with a downward velocity of 4.4 mm/s at 450 km above the south pole. Therefore, in about two years after the equinox, the global circulation observed during the northern winter has totally reversed, which is in agreement with the predictions of general circulation models. We observe a sudden unexpected temperature decrease above the south pole in February 2012, which is probably related to the strong enhancement of molecular gas in this region, acting as radiative coolers. In July and November 2012, we observe a detached haze layer located around 320-330 km, which is comparable to the altitude of the detached haze layer observed by the Cassini Imaging Science Subsystem (ISS) in the UV. (C) 2014 Elsevier Inc. All rights reserved. C1 [Vinatier, Sandrine; Bezard, Bruno] Univ Paris Diderot, CNRS, LESIA Observ Paris, UPMC, F-92195 Meudon, France. [Lebonnois, Sebastien] Univ Paris 06, Meteorol Dynam Lab, F-75252 Paris 05, France. [Teanby, Nick A.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. [Achterberg, Richard K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Achterberg, Richard K.; Gorius, Nicolas; Mamoutkine, Andrei; Guandique, Ever; Jennings, Donalds E.; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jolly, Antoine] Univ Paris Diderot, UMR CNRS 7583, Lab Interuniv Syst Atmospher, Creteil, France. [Jolly, Antoine] Univ Paris Est Creteil, Inst Pierre Simon Laplace, Creteil, France. RP Vinatier, S (reprint author), Univ Paris Diderot, CNRS, LESIA Observ Paris, UPMC, 5 Pl Jules Janssen, F-92195 Meudon, France. EM sandrine.vinatier@obspm.fr RI Flasar, F Michael/C-8509-2012; OI Teanby, Nicholas/0000-0003-3108-5775 FU Centre National d'Etudes Spatiales; Programme National de Planetologie (INSU); Agence Nationale de la Recherche (ANR) [SIMI 5-6 002-01]; Leverhulme Trust and Science and Technology Facilities Council; NASA Cassini poject FX This work was funded by the Centre National d'Etudes Spatiales, the Programme National de Planetologie (INSU), the Agence Nationale de la Recherche (ANR 2011 Blanc SIMI 5-6 002-01 "APOSTIC"), and The Leverhulme Trust and Science and Technology Facilities Council and the NASA Cassini poject. We thank Darrell Strobel and an anonymous reviewer for their suggestions to improve this paper. NR 43 TC 11 Z9 11 U1 4 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 95 EP 115 DI 10.1016/j.icarus.2014.11.019 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200010 ER PT J AU Campbell, BA Campbell, DB Morgan, GA Carter, LM Nolan, MC Chandler, JF AF Campbell, Bruce A. Campbell, Donald B. Morgan, Gareth A. Carter, Lynn M. Nolan, Michael C. Chandler, John F. TI Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images SO ICARUS LA English DT Article DE Venus, surface; Radar observations; Cratering ID ALPHA-REGIO; MAGELLAN OBSERVATIONS; SURFACE-PROPERTIES; IMPACT; DEPOSITS; ARECIBO; MOON; MORPHOLOGY; SCATTERING; ROUGHNESS AB We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact "parabolas" or "haloes", and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites. Published by Elsevier Inc. C1 [Campbell, Bruce A.; Morgan, Gareth A.] Smithsonian Inst, Washington, DC 20013 USA. [Campbell, Donald B.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Carter, Lynn M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nolan, Michael C.] Arecibo Observ, Arecibo, PR 00612 USA. [Chandler, John F.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. RP Campbell, BA (reprint author), Smithsonian Inst, MRC 315,POB 37012, Washington, DC 20013 USA. EM campbellb@si.edu RI Carter, Lynn/D-2937-2012; OI Nolan, Michael/0000-0001-8316-0680 FU NASA [NNX13AL17G, NNX10AP64G] FX Helpful manuscript reviews provided by M. Gilmore and an anonymous referee are most appreciated. The authors gratefully acknowledge support from the staff of the Arecibo Observatory and the Green Bank Telescope in collecting the Venus radar maps. This work was funded in part by NASA Planetary Mission Data Analysis Program (PMDAP) Grant NNX13AL17G, and by NASA Grant NNX10AP64G, "Arecibo Radar Observations of NEO's and Other Solar System Bodies". The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. As part of the PMDAP-supported work, backscatter images from the 1988 and 2012 Venus observations are being prepared for submission to the NASA Planetary Data System. NR 39 TC 5 Z9 5 U1 3 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 123 EP 130 DI 10.1016/j.icarus.2014.11.025 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200012 ER PT J AU Fletcher, LN Irwin, PGJ Sinclair, JA Orton, GS Giles, RS Hurley, J Gorius, N Achterberg, RK Hesman, BE Bjoraker, GL AF Fletcher, Leigh N. Irwin, P. G. J. Sinclair, J. A. Orton, G. S. Giles, R. S. Hurley, J. Gorius, N. Achterberg, R. K. Hesman, B. E. Bjoraker, G. L. TI Seasonal evolution of Saturn's polar temperatures and composition SO ICARUS LA English DT Article DE Saturn; Atmospheres, composition; Atmospheres, dynamics ID HUBBLE-SPACE-TELESCOPE; CASSINI-CIRS; MERIDIONAL DISTRIBUTION; RADIATIVE-TRANSFER; CIRS/CASSINI LIMB; CLOUD STRUCTURE; OUTER PLANETS; VOYAGER-IRIS; STRATOSPHERE; ATMOSPHERE AB The seasonal evolution of Saturn's polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 mu m thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60 degrees from northern winter/southern summer (2004, L-s = 293 degrees) through the equinox (2009, L-s = 0 degrees) to northern spring/southern autumn (2014, L-s = 56 degrees). The hot tropospheric polar cyclones that are entrained by prograde jets within 2-3 degrees of each pole, and the hexagonal shape of the north polar belt, are both persistent features throughout the decade of observations. The hexagon vertices rotated westward by approximate to 30 degrees longitude between March 2007 and April 2013, confirming that they are not stationary in the Voyager-defined System III longitude system as previously thought. Tropospheric temperature contrasts between the cool polar zones (near 80-85 degrees) and warm polar belts (near 75-80 degrees) have varied in both hemispheres, resulting in changes to the vertical windshear on the zonal jets in the upper troposphere and lower stratosphere. The extended region of south polar stratospheric emission has cooled dramatically poleward of the sharp temperature gradient near 75 degrees S (by approximately -5 K/yr), coinciding with a depletion in the abundances of acetylene (0.030 +/- 0.005 ppm/yr) and ethane (0.35 +/- 0.1 ppm/yr), and suggestive of stratospheric upwelling with vertical wind speeds of w approximate to +0.1 mm/s. The upwelling appears most intense within 5 degrees latitude of the south pole. This is mirrored by a general warming of the northern polar stratosphere (+5 K/yr) and an enhancement in acetylene (0.030 +/- 0.003 ppm/yr) and ethane (0.45 +/- 0.1 ppm/yr) abundances that appears to be most intense poleward of 75 degrees N, suggesting subsidence at w approximate to -0.15 mm/s. However, the sharp gradient in stratospheric emission expected to form near 75 degrees N by northern summer solstice (2017, L-s = 90 degrees) has not yet been observed, so we continue to await the development of a northern summer stratospheric vortex. The peak stratospheric warming in the north occurs at lower pressure levels (p < 1 mbar) than the peak stratospheric cooling in the south (p > 1 mbar). Vertical motions are derived from both the temperature field (using the measured rates of temperature change and the deviations from the expectations of radiative equilibrium models) and hydrocarbon distributions (solving the continuity equation). Vertical velocities tend towards zero in the upper troposphere where seasonal temperature contrasts are smaller, except within the tropospheric polar cyclones where w approximate to +/- 0.02 mm/s. North polar minima in tropospheric and stratospheric temperatures were detected in 2008-2010 (lagging one season, or 6-8 years, behind winter solstice); south polar maxima appear to have occurred before the start of the Cassini observations (1-2 years after summer solstice), consistent with the expectations of radiative climate models. The influence of dynamics implies that the coldest winter temperatures occur in the 75-80 degrees region in the stratosphere, and in the cool polar zones in the troposphere, rather than at the poles themselves. In addition to vertical motions, we propose that the UV-absorbent polar stratospheric aerosols entrained within Saturn's vortices contribute significantly to the radiative budget at the poles, adding to the localised enhancement in the south polar cooling and north polar warming poleward of +/- 75 degrees. (C) 2014 Elsevier Inc. All rights reserved. C1 [Fletcher, Leigh N.; Irwin, P. G. J.; Sinclair, J. A.; Giles, R. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Orton, G. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hurley, J.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gorius, N.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Achterberg, R. K.; Hesman, B. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bjoraker, G. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fletcher, LN (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; OI Giles, Rohini/0000-0002-7665-6562; Fletcher, Leigh/0000-0001-5834-9588; Irwin, Patrick/0000-0002-6772-384X FU Royal Society Research Fellowship at the University of Oxford; Science and Technology Facilities Council (STFC); NASA FX The analysis presented in this paper would not have been possible without the tireless efforts of the CIRS operations and calibration team, who were responsible for the design of the imaging sequences, instrument commands and other vital operational tasks. Fletcher was supported by a Royal Society Research Fellowship at the University of Oxford. We are indebted to S. Guerlet and T. Greathouse for their willingness to share the outputs of their radiative climate models for comparison with our thermal retrievals; J. Moses for sharing her 2D photochemical model output for comparison with the hydrocarbon distributions; and A. Antunano for sharing cloud-tracked wind velocities at high polar latitudes. The UK authors acknowledge the support of the Science and Technology Facilities Council (STFC). Orton was supported by grants from NASA to the Jet Propulsion Laboratory, California Institute of Technology. NR 51 TC 13 Z9 13 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 131 EP 153 DI 10.1016/j.icarus.2014.11.022 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200013 ER PT J AU Pilorget, C Fernando, J Ehlmann, BL Doute, S AF Pilorget, C. Fernando, J. Ehlmann, B. L. Doute, S. TI Photometry of particulate mixtures: What controls the phase curve? SO ICARUS LA English DT Article DE Photometry; Radiative transfer; Regoliths; Terrestrial planets ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; LIGHT-SCATTERING; SEMITRANSPARENT PARTICLES; QUANTITATIVE-ANALYSIS; OPTICS APPROXIMATION; SPECTRAL PROPERTIES; GALILEO PHOTOMETRY; GUSEV CRATER; MODEL; SHAPES AB The amplitude and angular distribution of the light scattered by planetary surfaces give essential information about their physical and compositional properties. In particular, the angular variation of the bidirectional reflectance, characterized through the phase curve, is directly related to the grain size, shape and internal structure. We use a new radiative transfer model that allows specifying the photometric parameters of each grain individually to study the evolution of the phase curve for various kinds of mixtures (spatial, intimate and layered), mimicking different situations encountered for natural surfaces. Results show that the phase curve evolution is driven by the most abundant/brightest/highly anisotropic scattering grains within the mixture. Both spatial and intimate mixtures show similar trends in the phase curves when varying the photometric parameters of the grains. Simple laws have been produced to quantify the evolution of these variations. Layered mixtures have also been investigated and are generally very sensitive to the photometric properties of the top monolayer. Implications for the interpretation of photometric data and their link with the phases identified by spectroscopy are examined. The photometric properties of a few planetary bodies are also discussed over a couple of examples. These different results constitute a new support for the interpretation of orbital/in situ photometric datasets. (C) 2014 Elsevier Inc. All rights reserved. C1 [Pilorget, C.; Ehlmann, B. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Fernando, J.] Univ Paris 11, GEOPS, F-91405 Orsay, France. [Fernando, J.] CNRS, F-91405 Orsay, France. [Ehlmann, B. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Doute, S.] Inst Planetol & Astrophys Grenoble, F-38041 Grenoble, France. RP Pilorget, C (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM cpilorge@caltech.edu; jennifer.femando@u-psud.fr; ehlmann@caltech.edu; sylvain.doute@obs.ujf-gre-noble.fr NR 51 TC 6 Z9 6 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 188 EP 203 DI 10.1016/j.icarus.2014.11.036 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200016 ER PT J AU Killen, RM Hahn, JM AF Killen, Rosemary M. Hahn, Joseph M. TI Impact vaporization as a possible source of Mercury's calcium exosphere SO ICARUS LA English DT Article DE Mercury, atmosphere; Interplanetary dust; Impact processes ID INTER-PLANETARY DUST; INNER SOLAR-SYSTEM; ATMOSPHERE; FLUX AB Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (v) 25 degrees +/- 5 degrees. This is close to but not coincident with Mercury's true anomaly (v = 45 degrees) when it crosses Comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/- 20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature >50,000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination. Published by Elsevier Inc. C1 [Killen, Rosemary M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hahn, Joseph M.] Univ Texas Austin, Space Sci Inst, Ctr Space Res, Austin, TX 78759 USA. RP Killen, RM (reprint author), NASA, Goddard Space Flight Ctr, Code 695, Greenbelt, MD 20771 USA. EM rosemary.killen@nasa.gov; jhahn@spacescience.org FU NASA Grant [NNX07AR78G-S01]; STROFIO, a NASA Mission of Opportunity on the Bepi-Colombo mission; National Science Foundation [AST-1313013] FX RMK was supported by NASA Grant NNX07AR78G-S01 as a Participating Scientist on the NASA MESSENGER mission to Mercury, and by STROFIO, a NASA Mission of Opportunity on the Bepi-Colombo mission. JMH's efforts here were supported by the National Science Foundation via Grant No. AST-1313013. JMH thanks Byron Tapley for graciously providing office space and the use of the facilities at the University of Texas Center for Space Research (CSR). We thank Dr. Apostolos Christou for many helpful conversations concerning cometary dust and Dr. Matthew Burger for discussions concerning the MASCS Ca data. NR 37 TC 15 Z9 15 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 230 EP 237 DI 10.1016/j.icarus.2014.11.035 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200020 ER PT J AU Stack, KM Milliken, RE AF Stack, K. M. Milliken, R. E. TI Modeling near-infrared reflectance spectra of clay and sulfate mixtures and implications for Mars SO ICARUS LA English DT Article DE Mars, surface; Spectroscopy; Infrared observations ID OMEGA/MARS EXPRESS DATA; HYPERSPECTRAL DATA; BAJA-CALIFORNIA; SALINA OMETEPEC; SPECTROSCOPY; MINERALS; WATER; MONTMORILLONITE; SURFACE; ENVIRONMENT AB High-resolution mapping by visible and near-infrared orbital spectrometers has revealed a diversity of hydrated mineral deposits on the surface of Mars. Quantitative analysis of mineral abundances within these deposits has the potential to distinguish depositional and diagenetic processes. Such analysis can also provide important constraints on the nature of putative global and local-scale mineralogical transitions on Mars. However, the ability of models to extract quantitative mineral abundances from spectra of mixtures relevant to sedimentary rocks remains largely untested. This is particularly true for clay and sulfate minerals, which often occur as fine-grained components of terrestrial sedimentary rocks and are known to occur in a number of sedimentary deposits on Mars. This study examines the spectral properties of a suite of mixtures containing the Mg-sulfate epsomite mixed with varying proportions of smectitic clay (saponite, nontronite, and montmorrilonite). The goal of this work is to test the ability of checkerboard (linear) and intimate (non-linear) mixing models to obtain accurate estimates of mineral abundances under ideal and controlled laboratory conditions. The results of this work suggest that: (1) spectra of clay-sulfate mixtures can be reproduced by checkerboard and intimate mixing models to within 2% absolute reflectance or single scattering albedo, (2) clay and epsomite abundance can be modeled to within 5 wt.% when particle diameter is optimized, and (3) the lower threshold for modeling clay in spectra of clay-epsomite mixtures is approximately 10 wt.%, below which the models often fail to recognize the presence of clay. (C) 2014 Elsevier Inc. All rights reserved. C1 [Stack, K. M.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Milliken, R. E.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. RP Stack, KM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Kathryn.M.Stack@jpl.nasa.gov FU NASA [JPL.1271814]; NASA Astrobiology Institute (MIT) [5710002515] FX George Rossman and Elizabeth Miura-Boyd are gratefully acknowledged for assisting with FTIR analysis and Thomas Bristow is thanked for his help in obtaining several of the clay mineral standards used in this study. This manuscript was greatly improved by comments from Christina Viviano-Beck and an anonymous reviewer. This work was funded by a NASA grant (Award # JPL.1271814) and a NASA Astrobiology Institute grant (MIT Sub-award # 5710002515) to J. Grotzinger. NR 54 TC 3 Z9 3 U1 2 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 332 EP 356 DI 10.1016/j.icarus.2014.12.009 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200029 ER PT J AU Ernst, CM Denevi, BW Barnouin, OS Klimczak, C Chabot, NL Head, JW Murchie, SL Neumann, GA Prockter, LM Robinson, MS Solomon, SC Watters, TR AF Ernst, Carolyn M. Denevi, Brett W. Barnouin, Olivier S. Klimczak, Christian Chabot, Nancy L. Head, James W. Murchie, Scott L. Neumann, Gregory A. Prockter, Louise M. Robinson, Mark S. Solomon, Sean C. Watters, Thomas R. TI Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt SO ICARUS LA English DT Article DE Mercury; Mercury, surface; Cratering; Volcanism; Geological processes ID POLE-AITKEN BASIN; TERRESTRIAL PLANETS; SMOOTH PLAINS; TECTONIC DEFORMATION; INTERCRATER PLAINS; CRATERING RECORD; OBLIQUE IMPACTS; MESSENGER; LUNAR; ORIENTALE AB Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust and upper mantle. (C) 2014 Elsevier Inc. All rights reserved. C1 [Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Chabot, Nancy L.; Murchie, Scott L.; Prockter, Louise M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Klimczak, Christian; Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Klimczak, Christian] Univ Georgia, Dept Geol, Athens, GA 30602 USA. [Head, James W.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Neumann, Gregory A.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Robinson, Mark S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Watters, Thomas R.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. RP Ernst, CM (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Neumann, Gregory/I-5591-2013; Ernst, Carolyn/I-4902-2012; Murchie, Scott/E-8030-2015; Chabot, Nancy/F-5384-2015; Denevi, Brett/I-6502-2012; Barnouin, Olivier/I-7475-2015 OI Neumann, Gregory/0000-0003-0644-9944; Murchie, Scott/0000-0002-1616-8751; Chabot, Nancy/0000-0001-8628-3176; Denevi, Brett/0000-0001-7837-6663; Barnouin, Olivier/0000-0002-3578-7750 FU NASA Discovery Program [NASW-00002, NAS5-97271] FX The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory. This research has made use of the Small Body Mapping Tool of The Johns Hopkins University Applied Physics Laboratory and the Integrated Software for Imagers and Spectrometers of the U.S. Geological Survey. We thank Norman Sleep and an anonymous reviewer for their constructive reviews of an earlier version of the manuscript. NR 86 TC 11 Z9 11 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 413 EP 429 DI 10.1016/j.icarus.2014.11.003 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200036 ER PT J AU Fieber-Beyer, SK Gaffey, MJ Bottke, WF Hardersen, PS AF Fieber-Beyer, Sherry K. Gaffey, Michael J. Bottke, William F. Hardersen, Paul S. TI Potentially hazardous Asteroid 2007 LE: Compositional link to the black chondrite Rose City and Asteroid (6) Hebe SO ICARUS LA English DT Article DE Asteroids; Near-Earth objects; Asteroids, composition; Infrared observations; Mineralogy ID NEAR-EARTH ASTEROIDS; SECULAR RESONANCE NU-6; 3/1 KIRKWOOD GAP; REFLECTANCE SPECTRA; INFRARED SPECTROSCOPY; COLLISIONAL HISTORY; ORBITAL EVOLUTION; DYNAMICAL EROSION; THERMAL HISTORY; PARENT BODIES AB The research is an integrated effort beginning with telescopic observations and extending through detailed mineralogical characterizations to provide constraints on the albedo, diameter, composition, and meteorite affinity of near-Earth object-potentially hazardous asteroid (NEO-PHA 2007 LE). Results of the analysis indicate a diameter of 0.56 kilometers (km) and an albedo of 0.08. 2007 LE exhibits a 1-pm absorption feature without a discernible Band II feature. Compositional analysis of 2007 LE reveal Fs17 and Fa19 values, which are consistent with the Fa and Fs values for the H-type ordinary chondrites (Fs(14.5_18) and Fa(16-20)) and of Asteroid (6) Hebe (Fs17 and Fa15). Spectroscopically, 2007 LE does not appear like the average H-chondrite spectra, exhibiting a reddened spectrum and subdued absorption feature. Further investigation of the meteorite classes yielded a black chondrite, Rose City, which is both similar in mineralogy and spectrally to PHA 2007 LE. Dynamical analysis could not directly link the fall of the Rose City meteorite to 2007 LE. As it stands, 2007 LE and Rose City have a compositional link, and both could come from the same parent body/possible family, one known source of the H chondrites is (6) Hebe. (C) 2015 Elsevier Inc. All rights reserved. C1 [Fieber-Beyer, Sherry K.; Gaffey, Michael J.; Hardersen, Paul S.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Bottke, William F.] NASA, Lunar Sci Inst, Southwest Res Inst, Boulder, CO 80302 USA. RP Fieber-Beyer, SK (reprint author), Univ N Dakota, Dept Space Studies, Univ Stop 9008, Grand Forks, ND 58202 USA. EM sherryfieb@hotmail.com FU NASA Near-Earth Objects Observations/Planetary Astronomy Program [NNX12AG12G]; NASA Planetary Geology and Geophysics Program [NNX11AN84G] FX The authors would like to thank David O'Brien and the anonymous reviewers whose insight and suggestions greatly improved the paper. Portions of this work were supported by the NASA Near-Earth Objects Observations/Planetary Astronomy Program grant NNX12AG12G and by the NASA Planetary Geology and Geophysics Program Grant NNX11AN84G. NR 106 TC 1 Z9 1 U1 2 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 430 EP 437 DI 10.1016/j.icarus.2014.12.021 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200037 ER PT J AU Irwin, PGJ Tice, DS Fletcher, LN Barstow, JK Teanby, NA Orton, GS Davis, GR AF Irwin, P. G. J. Tice, D. S. Fletcher, L. N. Barstow, J. K. Teanby, N. A. Orton, G. S. Davis, G. R. TI Reanalysis of Uranus' cloud scattering properties from IRTF/SpeX observations using a self-consistent scattering cloud retrieval scheme SO ICARUS LA English DT Article DE Uranus, atmosphere; Atmospheres, composition; Atmospheres, structure; Data reduction techniques ID INFRARED-ABSORPTION SPECTRA; OPTICAL-CONSTANTS; OCCULTATION MEASUREMENTS; OVERTONE BAND; METHANE; ATMOSPHERES; TEMPERATURES; PAIRS; H-2; STRATOSPHERE AB We have developed a new retrieval approach to modelling near-infrared spectra of Uranus that represents a significant improvement over previous modelling methods. We reanalysed IRTF/SpeX observations of Uranus observed in 2009 covering the wavelength range 0.8-1.8 pm and reported by Tice et al. (Tice, D.S., Irwin, P.G.J., Fletcher, L.N., Teanby, N.A., Hurley, J., Orton, G.S., Davis, G.R. [2013]. Icarus 223,684-698). By retrieving the imaginary refractive index spectra of cloud particles we are able to consistently define the real part of the refractive index spectra, through a Kramers-Kronig analysis, and thus determine self-consistent extinction cross-section, single-scattering and phase-function spectra for the clouds and hazes in Uranus' atmosphere. We tested two different cloud-modelling schemes used in conjunction with the temperature/methane profile of Baines et al. (Baines, K.H., Mickelson, M.E., Larson, LE., Ferguson, D.W. [1995]. Icarus 114,328-340), a reanalysis of the Voyager-2 radio-occultation observations performed by Sromovsky, Fry and Kim (Sromovsky, L.A., Fry, P.M., Kim, J.H. [2011]. Icarus 215,292-312), and a recent determination from Spitzer (Orton, G.S., Fletcher, LN., Moses, J.I., Mainzer, A.K., Hines, D., Hammel, H.B., Martin-Torres, RI, Burgdorf, M., Merlet, C., Line, M.R. [2014]. Icarus 243, 494-513). We find that both cloud-modelling schemes represent the observed centre-of-disc spectrum of Uranus well, and both require similar cloud scattering properties of the main cloud residing at similar to 2 bars. However, a modified version of the Sromovsky, Fry and Kim (2011) model, with revised spectral properties of the lowest cloud layer, fits slightly better at shorter wavelengths and is more consistent with the expected vertical position of Uranus' methane cloud. We find that the bulk of the reflected radiance from Uranus arises from a thick cloud at approximately the 2 bar level, composed of particles that are significantly more absorbing at wavelengths lambda > 1.0 gm than they are at shorter wavelengths lambda< 1.0 mu m. This spectral information provides a possible constraint on the identity of the main particle type, although we find that the scattering properties required are not consistent with any of the available laboratory data for pure NH3, NH4SH, or CH4 ice (all suspected of condensing in the upper troposphere). It is possible that the observed clouds are mixtures of tropospheric condensate mixed with photochemical products diffusing down from above, which masks their pure scattering features. Because there is no available laboratory data for pure H2S or PH3 ice (both of which might be present as well), they cannot be excluded as the cloud-forming species. We note, however, that their absorptive properties would have to be two orders of magnitude greater than the other measured ices at wavelengths greater than 1 mu m to be consistent with our retrieval, which suggests that mixing with photochemical products may still be important. (C) 2014 Elsevier Inc. All rights reserved. C1 [Irwin, P. G. J.; Tice, D. S.; Fletcher, L. N.; Barstow, J. K.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Teanby, N. A.] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England. [Orton, G. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davis, G. R.] Joint Astron Ctr, Hilo, HI 96720 USA. RP Irwin, PGJ (reprint author), Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England. EM irwin@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; OI Fletcher, Leigh/0000-0001-5834-9588; Teanby, Nicholas/0000-0003-3108-5775; Irwin, Patrick/0000-0002-6772-384X FU United Kingdom Science and Technology Facilities Council; Royal Society Research Fellowship at the University of Oxford FX We are grateful to the United Kingdom Science and Technology Facilities Council for funding this research. Leigh Fletcher was supported by a Royal Society Research Fellowship at the University of Oxford. NR 38 TC 3 Z9 3 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 462 EP 476 DI 10.1016/j.icarus.2014.12.020 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200040 ER PT J AU McKay, AJ Cochran, AL DiSanti, MA Villanueva, G Dello Russo, N Vervack, RJ Morgenthaler, JP Harris, WM Chanover, NJ AF McKay, Adam J. Cochran, Anita L. DiSanti, Michael A. Villanueva, Geronimo Dello Russo, Neil Vervack, Ronald J., Jr. Morgenthaler, Jeffrey P. Harris, Walter M. Chanover, Nancy J. TI Evolution of H2O, CO, and CO2 production in Comet C/2009 P1 Garradd during the 2011-2012 apparition SO ICARUS LA English DT Article DE Comets; Comets, coma; Comets, composition ID FORBIDDEN OXYGEN LINES; HALE-BOPP; PRODUCTION-RATES; EMISSION-LINES; DEEP-IMPACT; WATER; ATMOSPHERES; HYAKUTAKE; OH; PHOTODISSOCIATION AB We present analysis of high spectral resolution NIR spectra of CO and H2O in Comet C/2009 P1 (Garradd) taken during its 2011-2012 apparition with the CSHELL instrument on NASA's Infrared Telescope Facility (IRTF). We also present analysis of observations of atomic oxygen in Comet Garradd obtained with the ARCES echelle spectrometer mounted on the ARC 3.5-m telescope at Apache Point Observatory and the Tull Coude spectrograph on the Harlan J. Smith 2.7-m telescope at McDonald Observatory. The observations of atomic oxygen serve as a proxy for H2O and CO2. We confirm the high CO abundance in Comet Garradd and the asymmetry in the CO/H2O ratio with respect to perihelion reported by previous studies. From the oxygen observations, we infer that the CO2/H2O ratio decreased as the comet moved towards the Sun, which is expected based on current sublimation models. We also infer that the CO2/H2O ratio was higher pre-perihelion than post-perihelion. We observe evidence for the icy grain source of H2O reported by several studies pre-perihelion, and argue that this source is significantly less abundant post-perihelion. Since H2O, CO2, and CO are the primary ices in comets, they drive the activity. We use our measurements of these important volatiles in an attempt to explain the evolution of Garradd's activity over the apparition. (C) 2014 Elsevier Inc. All rights reserved. C1 [McKay, Adam J.; Cochran, Anita L.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [DiSanti, Michael A.; Villanueva, Geronimo] NASA GSFC, NASA Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [DiSanti, Michael A.] Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Villanueva, Geronimo] Catholic Univ Amer, Dept Phys, Washington, DC 20061 USA. [Dello Russo, Neil; Vervack, Ronald J., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Morgenthaler, Jeffrey P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Harris, Walter M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chanover, Nancy J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88001 USA. RP McKay, AJ (reprint author), Univ Texas Austin, McDonald Observ, 2512 Speedway,Stop C1402, Austin, TX 78712 USA. EM amckay@astro.as.utexas.edu; anita@barolo.as.utexas.edu; Michael.A.Disanti@nasa.gov; Geronimo.Villanueva@nasa.gov; neil.dello.russo@jhuapl.edu; Ron.Vervack@jhuapl.edu; jpmorgen@psi.edu; wharris@lpl.arizona.edu; nchanove@nmsu.edu RI Dello Russo, Neil/G-2727-2015; Vervack, Ronald/C-2702-2016 OI Dello Russo, Neil/0000-0002-8379-7304; Vervack, Ronald/0000-0002-8227-9564 FU NASA GSRP Fellowship program [NNX11AO03H]; NASA Planetary Atmospheres Program [NNX08A052G] FX We thank the two anonymous reviewers whose comments improved the quality of this manuscript. This work was supported by the NASA GSRP Fellowship program through Grant No. NNX11AO03H and by the NASA Planetary Atmospheres Program through Grant No. NNX08A052G. We thank John Barentine, Jurek Krzesinski, Chris Churchill, Pey Lian Lim, Paul Strycker, and Doug Hoffman for developing and optimizing the ARCES IRAF reduction script used to reduce these data. We acknowledge the NASA-Infrared Telescope Facility for their support of our Garradd CSHELL observations and the APO observing specialists for their assistance with the Garradd ARCES observations. We would also like to acknowledge the JPL Horizons System, which was used to generate ephemerides for nonsidereal tracking of the comets during the observations, and the SIMBAD database, which was used for selection of reference stars. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 57 TC 7 Z9 7 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 504 EP 515 DI 10.1016/j.icarus.2014.12.023 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200044 ER PT J AU Soto, A Mischna, M Schneider, T Lee, C Richardson, M AF Soto, Alejandro Mischna, Michael Schneider, Tapio Lee, Christopher Richardson, Mark TI Martian atmospheric collapse: Idealized GCM studies SO ICARUS LA English DT Article DE Mars, climate; Mars, atmosphere; Mars, polar caps; Atmospheres, evolution; Atmospheres, dynamics ID CARBON-DIOXIDE CLOUDS; GENERAL-CIRCULATION MODEL; SOUTH POLAR-CAP; ASTRONOMICAL THEORY; DUST STORMS; MARS; CLIMATE; PRESSURE; CO2; EVOLUTION AB Global energy balance models of the martian atmosphere predict that, for a range of total CO2 inventories, the CO2 atmosphere may condense until a state with a permanent polar cap is reached. This process, which is commonly referred to as atmospheric collapse, may limit the time available for physical and chemical weathering. The global energy balance models that predict atmospheric collapse represent the climate using simplified parameterizations for atmospheric processes such as radiative transfer and atmospheric heat transport. However, a more detailed representation of these atmospheric processes is critical when the atmosphere is near a transition, such as the threshold for collapse. Therefore, we use the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) to investigate how the explicit representation of meridional heat transport and more detailed radiative transfer affects the onset of atmospheric collapse. Using MarsWRF, we find that previous energy balance modeling underestimates the range of CO2 inventories for which the atmosphere collapses and that the obliquity of Mars determines the range of CO2 inventories that can collapse. For a much larger range of CO2 inventories than expected, atmospheric heat transport is insufficient to prevent the atmospheric collapse. We show that the condensation of CO2 onto Olympus Mons and adjacent mountains generates a condensation flow. This condensation flow syphons energy that would otherwise be transported poleward, which helps explain the large range of CO2 inventories for which the atmosphere collapses. (C) 2014 Elsevier Inc. All rights reserved. C1 [Soto, Alejandro] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Soto, Alejandro] Southwest Res Inst, Boulder, CO 80302 USA. [Mischna, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schneider, Tapio] Swiss Fed Inst Technol, Dept Earth Sci, Zurich, Switzerland. [Schneider, Tapio] CALTECH, Pasadena, CA 91125 USA. [Lee, Christopher; Richardson, Mark] Ashima Res, Pasadena, CA 91106 USA. RP Soto, A (reprint author), Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM asoto@boulder.swri.edu RI Schneider, Tapio /A-7038-2014; OI Schneider, Tapio /0000-0001-5687-2287; Soto, Alejandro/0000-0002-2333-0307 FU NASA Mars Fundamental Research program [NNH07ZDA001N] FX We have benefited from numerous conversations with Andrew Ingersoll and Aaron Wolf, of Caltech, and Ray Halevy, of the Weizmann Institute of Science. Additionally, the comments from the two anonymous reviewers greatly improved this paper. The simulations were performed on Caltech's Division of Geological and Planetary Sciences Dell cluster as well as the Pleiades supercomputer at the NASA Advanced Supercomputing Division at NASA's Ames Research Center. The NASA Mars Fundamental Research program, under Grant NNH07ZDA001N, funded this research. NR 64 TC 4 Z9 4 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 553 EP 569 DI 10.1016/j.icarus.2014.11.028 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200048 ER PT J AU Ostrach, LR Robinson, MS Whitten, JL Fassett, CI Strom, RG Head, JW Solomon, SC AF Ostrach, Lillian R. Robinson, Mark S. Whitten, Jennifer L. Fassett, Caleb I. Strom, Robert G. Head, James W. Solomon, Sean C. TI Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations SO ICARUS LA English DT Article DE Mercury; Mercury, surface; Volcanism; Cratering ID INNER SOLAR-SYSTEM; IMPACT CRATERS; TECTONIC DEFORMATION; MARINER-10 PICTURES; ERUPTION CONDITIONS; INTERCRATER PLAINS; GLOBAL PERSPECTIVE; CALORIS BASIN; VOLCANISM; LUNAR AB MESSENGER orbital images show that the north polar region of Mercury contains smooth plains that occupy similar to 7% of the planetary surface area. Within the northern smooth plains (NSP) we identify two crater populations, those superposed on the NSP ("post-plains") and those partially or entirely embayed ("buried"). The existence of the second of these populations is clear evidence for volcanic resurfacing. The postplains crater population reveals that the NSP do not exhibit statistically distinguishable subunits on the basis of crater size-frequency distributions, nor do measures of the areal density of impact craters reveal volcanically resurfaced regions within the NSP. These results suggest that the most recent outpouring of volcanic material resurfaced the majority of the region, and that this volcanic flooding emplaced the NSP over a relatively short interval of geologic time, perhaps 100 My or less. Stratigraphic embayment relationships within the buried crater population, including partial crater flooding and the presence of smaller embayed craters within the filled interiors of larger craters and basins, indicate that a minimum of two episodes of volcanic resurfacing occurred. From the inferred rim heights of embayed craters, we estimate the NSP to be regionally 0.7-1.8 km thick, with a minimum volume of volcanic material of 4 x 10(6) to 107 km(3). Because of the uncertainty in the impact flux at Mercury, the absolute model age of the postplains volcanism could be either 3.7 or 2.5 Ga, depending on the chronology applied. (C) 2014 Elsevier Inc. All rights reserved. C1 [Ostrach, Lillian R.; Robinson, Mark S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Ostrach, Lillian R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Whitten, Jennifer L.; Head, James W.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Whitten, Jennifer L.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20004 USA. [Fassett, Caleb I.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Strom, Robert G.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Ostrach, LR (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 698, Greenbelt, MD 20771 USA. EM lillian.r.ostrach@nasa.gov FU NASA Discovery Program [NASW-00002, NAS5-97271]; NASA Postdoctoral Program at NASA Goddard Space Flight Center FX We thank the NASA MESSENGER project and science team. We thank Paul Byrne, Brett Denevi, Christian Klimczak, and Rhiannon Weaver for helpful discussions and suggestions regarding earlier versions of this manuscript. We are grateful for constructive reviews by Nadine Barlow and an anonymous reviewer. The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to The Johns Hopkins Applied Physics Laboratory. This work was supported in part by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This research made use of NASA's Astrophysics Data System. NR 100 TC 12 Z9 12 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2015 VL 250 BP 602 EP 622 DI 10.1016/j.icarus.2014.11.010 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8KJ UT WOS:000349878200052 ER PT J AU Miller, SAE AF Miller, Steven A. E. TI The prediction of noise due to jet turbulence convecting past flight vehicle trailing edges SO APPLIED ACOUSTICS LA English DT Article DE Jet; Turbulence; Noise; Trailing edge; Convection ID SOUND GENERATION; ACOUSTIC ANALOGY; HALF-PLANE; FLOW; AIRFOIL; PRESSURE AB High intensity acoustic radiation occult when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon. Published by Elsevier Ltd. C1 Natl Aeronaut & Space Adm, Langley Res Ctr, Aeroacoust Branch, Hampton, VA 23681 USA. RP Miller, SAE (reprint author), Natl Aeronaut & Space Adm, Langley Res Ctr, Aeroacoust Branch, 2 N Dryden St,MS 461, Hampton, VA 23681 USA. EM smiller@nasa.gov NR 32 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0003-682X EI 1872-910X J9 APPL ACOUST JI Appl. Acoust. PD APR 1 PY 2015 VL 90 BP 42 EP 53 DI 10.1016/j.apacoust.2014.10.017 PG 12 WC Acoustics SC Acoustics GA CB4HG UT WOS:000349588200005 ER PT J AU Colliander, A Jackson, T McNairn, H Chazanoff, S Dinardo, S Latham, B O'Dwyer, I Chun, W Yueh, S Njoku, E AF Colliander, Andreas Jackson, Thomas McNairn, Heather Chazanoff, Seth Dinardo, Steve Latham, Barron O'Dwyer, Ian Chun, William Yueh, Simon Njoku, Eni TI Comparison of Airborne Passive and Active L-Band System (PALS) Brightness Temperature Measurements to SMOS Observations During the SMAP Validation Experiment 2012 (SMAPVEX12) SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Passive Active L-band System (PALS); SMAP Validation Experiment 2012 (SMAPVEX12); Soil moisture; Soil Moisture Active Passive (SMAP); Soil Moisture and Ocean Salinity (SMOS) ID SOIL-MOISTURE; OCEAN SALINITY; SENSOR; RETRIEVAL; ALGORITHM AB In this letter, it is shown that spaceborne observations made by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite agreed closely with the Passive Active L-band System (PALS) brightness temperature acquisitions during the Soil Moisture Active Passive (SMAP) Validation Experiment 2012. The difference between the SMOS and PALS measurements was less than 5 K and 6 K for vertical and horizontal polarizations, respectively, over the relatively homogeneous agricultural areas. These values are less than the SMOS subpixel variability determined from the PALS measurement. This result demonstrated that the measurements obtained in the experiment are scalable to spaceborne brightness temperature observations, are representative of the expected SMAP observations, and will be of value in the development of soil moisture algorithms for spaceborne missions. C1 [Colliander, Andreas; Chazanoff, Seth; Dinardo, Steve; Latham, Barron; O'Dwyer, Ian; Chun, William; Yueh, Simon; Njoku, Eni] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jackson, Thomas] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [McNairn, Heather] Agr & Agri Food Canada, Sci & Technol Branch, Ottawa, ON K1A 0C6, Canada. RP Colliander, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 18 TC 7 Z9 7 U1 4 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD APR PY 2015 VL 12 IS 4 BP 801 EP 805 DI 10.1109/LGRS.2014.2362889 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CB5NM UT WOS:000349674400023 ER PT J AU Youngquist, RC Nurge, MA Fisher, BH Malocha, DC AF Youngquist, Robert C. Nurge, Mark A. Fisher, Brian H. Malocha, Donald C. TI A Resistivity Model for Ultrathin Films and Sensors SO IEEE SENSORS JOURNAL LA English DT Article DE Conductivity; gold thin films; modeling; palladium thin films; thin film modeling; thin films; thin film hydrogen sensors; thin film sensors; titanium thin films; ultra-thin films ID DISCONTINUOUS PALLADIUM FILMS; ELECTRICAL-CONDUCTION; METAL-FILMS; POLYCRYSTALLINE FILMS; HYDROGEN ABSORPTION; RESISTANCE AB Gas sensors have been demonstrated based on the conductivity changes in ultrathin films. These sensors operate in a regime where three different physical phenomena determine the total resistivity of the film; quantum mechanical coupling between metallic islands, bulk material conductivity of the islands, and network resistivity. We present a lumped parameter model that simulates thin-film growth and calculates the total film resistance during the growth process accounting for these three phenomena. The model contains four free parameters and yields a good agreement with experimental data presented for palladium, titanium, and gold. The primary benefit of this model is that it shows the relative contribution of each source of conductivity during the growth process providing insight into the operation of ultrathin films as gas sensors. We then model an ultrathin-film palladium-based hydrogen sensor and show that the sensing mechanism is primarily due to variations in quantum tunneling. C1 [Youngquist, Robert C.; Nurge, Mark A.] NASA, Kennedy Space Ctr, FL 32899 USA. [Fisher, Brian H.; Malocha, Donald C.] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA. RP Youngquist, RC (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA. EM robert.c.youngquist@nasa.gov; mark.a.nurge@nasa.gov; brian.fisher@knights.ucf.edu; donald.malocha@ucf.edu FU Office of the Chief Technologist through the National Aeronautics and Space Administration FX This work was supported by the Office of the Chief Technologist through the National Aeronautics and Space Administration. The associate editor coordinating the review of this paper and approving it for publication was Dr. Chang-Soo Kim. NR 21 TC 0 Z9 0 U1 3 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD APR PY 2015 VL 15 IS 4 BP 2412 EP 2418 DI 10.1109/JSEN.2014.2379012 PG 7 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA CB7BB UT WOS:000349780000010 ER PT J AU Islam, T Srivastava, PK Dai, Q Gupta, M Zhuo, L AF Islam, Tanvir Srivastava, Prashant K. Dai, Qiang Gupta, Manika Zhuo, Lu TI Rain Rate Retrieval Algorithm for Conical-Scanning Microwave Imagers Aided by Random Forest, RReliefF, and Multivariate Adaptive Regression Splines (RAMARS) SO IEEE SENSORS JOURNAL LA English DT Article DE Brightness temperature (TB); passive microwave (PMW); precipitation estimation; precipitation radar; global precipitation measurement (GPM); constellation; radiometer; hurricane ID PROFILING ALGORITHM; CHANNELS; RADAR; GPROF AB This paper proposes a rain rate retrieval algorithm for conical-scanning microwave imagers (RAMARS), as an alternative to the NASA Goddard profiling (GPROF) algorithm, that does not rely on any a priori information. The fundamental basis of the RAMARS follows the concept of the GPROF algorithm, which means, being consistent with the Tropical Rainfall Measuring Mission (TRMM) precipitation radar rain rate observations, but independent of any auxiliary information. The RAMARS is built upon the combination of state-of-the-art machine learning and regression techniques, comprising of random forest algorithm, RReliefF, and multivariate adaptive regression splines. The RAMARS is applicable to both over ocean and land as well as coast surface terrains. It has been demonstrated that, when comparing with the TRMM Precipitation Radar observations, the performance of the RAMARS algorithm is comparable with the 2A12 GPROF algorithm. Furthermore, the RAMARS has been applied to two cyclonic cases, hurricane Sandy in 2012, and cyclone Mahasen in 2013, showing a very good capability to reproduce the structure and intensity of the cyclone fields. The RAMARS is highly flexible, because of its four processing components, making it extremely suitable for use to other passive microwave imagers in the global precipitation measurement (GPM) constellation. C1 [Islam, Tanvir] NOAA, Ctr Satellite Applicat & Res, Natl Environm Satellite Data & Informat Serv, College Pk, MD 20740 USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Islam, Tanvir; Srivastava, Prashant K.; Dai, Qiang; Zhuo, Lu] Univ Bristol, Dept Civil Engn, Bristol BS8 1TH, Avon, England. [Srivastava, Prashant K.; Gupta, Manika] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Gupta, Manika] Univ Space Res Assoc, Columbia, MD 21046 USA. RP Islam, T (reprint author), NOAA, Ctr Satellite Applicat & Res, Natl Environm Satellite Data & Informat Serv, College Pk, MD 20740 USA. EM tanvir.islam@noaa.gov; prashant.k.srivastava@nasa.gov; q.dai@bristol.ac.uk; manikagup@gmail.com; lz7913@bristol.ac.uk OI Islam, Tanvir/0000-0003-2429-3074 NR 18 TC 4 Z9 4 U1 3 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD APR PY 2015 VL 15 IS 4 BP 2186 EP 2193 DI 10.1109/JSEN.2014.2372814 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA CB4UD UT WOS:000349622800004 ER PT J AU Yoonessi, M Gaier, JR Peck, JA Meador, MA AF Yoonessi, Mitra Gaier, James R. Peck, John A. Meador, Michael A. TI Controlled direction of electrical and mechanical properties in nickel tethered graphene polyimide nanocomposites using magnetic field SO CARBON LA English DT Article ID POLYMER NANOCOMPOSITES; SUPERCAPACITOR; NANOPARTICLES; CONDUCTIVITY; COMPOSITE; BARRIER; GAS AB Oriented hybrid nickel tethered graphene polyimide resin nanocomposites with different degrees of orientation were prepared by in-situ magnetic field solvent casting method. Magnetization of the hybrid Ni-graphene polyimide nanocomposites exhibited a maximum in the magnetic field direction and a minimum perpendicular to the magnetic field direction indicating the orientation of the superparamagnetic nickel nanoparticles. In-plane dc electrical conductivity of the 1.3 vol.% Ni-graphene was 2.5 times higher when cast in a high magnetic field compared to films cast without an applied magnetic field. The through-plane dc conductivity of the 1.3 vol.% oriented Ni-graphene polyimide nanocomposites decreased with increasing magnetic field strength and reached insulation (10(-12) S/cm) for the films cast in high magnetic field. The in-plane tensile modulus of the polyimide exhibited a 35% increase when 0.16 vol.% Ni-graphene was added to the polyimide and cast in a low-strength magnetic field. Further addition of Ni-graphene, up to 1.3 vol.%, to the polyimide resulted in nearly constant tensile moduli. Tensile strength of nickel graphene nanocomposites showed up to 2-fold increase compared to the neat polyimide. Scanning electron microscopy (SEM) revealed that the Ni-graphene nanosheets were oriented in the magnetic field direction. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yoonessi, Mitra] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Gaier, James R.; Meador, Michael A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Peck, John A.] Univ Akron, Dept Geosci, Akron, OH 44325 USA. RP Yoonessi, M (reprint author), Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA. EM mitra.yoonessi@gmail.com FU NASA [NNC07BA13B] FX Subsonics Fixed Wing Project, Fundamental Aeronautics Program is thanked for funding this research under NASA Contract NNC07BA13B. Daniel Scheiman, Dave Hull, and Terry McCue of NASA-GRC are thanked for thermal measurement, TEM and SEM support. NR 33 TC 7 Z9 7 U1 6 U2 92 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD APR PY 2015 VL 84 BP 375 EP 382 DI 10.1016/j.carbon.2014.12.033 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CA5NQ UT WOS:000348955500042 ER PT J AU Abdo, AA Abeysekara, AU Alfaro, R Allen, BT Alvarez, C Alvarez, JD Arceo, R Arteaga-Velazquez, JC Aune, T Solares, HAA Barber, AS Baughman, BM Bautista-Elivar, N Gonzalez, JB Belmont, E BenZvi, SY Berley, D Rosales, MB Braun, J Caballero-Lopez, RA Caballero-Mora, KS Carraminiana, A Castillo, M Christopher, GE Cotti, U Cotzomi, J De la Fuente, E De Leon, C DeYoung, T Hernandez, RD Diaz-Cruz, KL Diaz-Velezi, JC Dingus, BL DuVernoisi, MA Ellsworth, RW Fiorinoi, D Fraija, N Galindo, A Garfias, F Gonzalez, MM Goodman, JA Grabski, V Gussert, M Hampel-Arias, Z Harding, JP Hays, E Hoffman, CM Hui, CM Huintemeyer, P Imrani, A Iriarte, A Kam, P Kieda, D Kolterman, BE Kunde, G Lara, A Lauer, R Lee, WH Lennarz, D Vargas, HL Linares, EC Linnemann, JT Longo, M Luna-Garcla, R MacGibbon, JH Marinelli, A Marinelli, SS Martinez, H Martinez, O Martinez-Castro, J Matthews, JAJ McEnery, J Torres, EM Mincer, AI Miranda-Romagnoli, P Moreno, E Morgan, T Mostafa, M Nellen, L Nemethy, P Newbold, M Noriega-Papaqui, R Oceguera-Becerra, T Patricelli, B Pelayo, R Perez-Perez, EG Pretz, J Riviere, C Rosa-Gonzalez, D Ruiz-Velasco, E Ryan, J Salazar, H Salesa, F Sandoval, A Parkinson, PMS Schneider, M Silich, S Sinnis, G Smith, AJ Stump, D Woodle, KS Springer, RW Taboada, I Toale, PA Tollefson, K Torres, I Ukwatta, TN Vasileiou, V Villasenor, L Weisgarberi, T Westerhoff, S Williams, DA Wisher, IG Wood, J Yodh, GB Younk, PW Zaborov, D Zepeda, A Zhou, H AF Abdo, A. A. Abeysekara, A. U. Alfaro, R. Allen, B. T. Alvarez, C. Alvarez, J. D. Arceo, R. Arteaga-Velazquez, J. C. Aune, T. Solares, H. A. Ayala Barber, A. S. Baughman, B. M. Bautista-Elivar, N. Gonzalez, J. Becerra Belmont, E. BenZvi, S. Y. Berley, D. Rosales, M. Bonilla Braun, J. Caballero-Lopez, R. A. Caballero-Mora, K. S. Carraminiana, A. Castillo, M. Christopher, G. E. Cotti, U. Cotzomi, J. De la Fuente, E. De Leon, C. DeYoung, T. Hernandez, R. Diaz Diaz-Cruz, K. L. Diaz-Velezi, J. C. Dingus, B. L. DuVernoisi, M. A. Ellsworth, R. W. Fiorinoi, D. W. Fraija, N. Galindo, A. Garfias, F. Gonzalez, M. M. Goodman, J. A. Grabski, V. Gussert, M. Hampel-Arias, Z. Harding, J. P. Hays, E. Hoffman, C. M. Hui, C. M. Huintemeyer, P. Imrani, A. Iriarte, A. Kam, P. Kieda, D. Kolterman, B. E. Kunde, Gj. Lara, A. Lauer, Rj. Lee, W. H. Lennarz, D. Vargas, H. Leon Linares, E. C. Linnemann, J. T. Longo, M. Luna-Garcla, R. MacGibbon, J. H. Marinelli, A. Marinelli, S. S. Martinez, H. Martinez, . Martinez-Castro, J. Matthews, J. A. J. McEnery, J. Torres, E. Mendoza Mincer, A. I. Miranda-Romagnoli, P. Moreno, E. Morgan, T. Mostafa, M. Nellen, L. Nemethy, P. Newbold, M. Noriega-Papaqui, R. Oceguera-Becerra, T. Patricelli, B. Pelayo, R. Perez-Perez, E. G. Pretz, J. Riviere, C. Rosa-Gonzalez, D. Ruiz-Velasco, E. Ryan, J. Salazar, H. Salesa, F. Sandoval, A. Parkinson, P. M. Saz Schneider, M. Silich, S. Sinnis, G. Smith, A. J. Stump, D. Woodle, K. Sparks Springer, R. W. Taboada, I. Toale, P. A. Tollefson, K. Torres, I. Ukwatta, T. N. Vasileiou, V. Villasenor, L. Weisgarberi, T. Westerhoff, S. Williams, D. A. Wisher, I. G. Wood, J. Yodh, G. B. Younk, P. W. Zaborov, D. Zepeda, A. Zhou, H. TI Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes SO ASTROPARTICLE PHYSICS LA English DT Article DE Primordial Black Holes; HAWC; Milagro; Very High Energy Bursts ID GLUON-JET EMISSION; GAMMA-RAY BURSTS; COSMIC-RAYS; QUARK-JET AB Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of similar to 5.0 x 10(14) g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV-TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events. Published by Elsevier B.V. C1 [Abdo, A. A.; Abeysekara, A. U.; DeYoung, T.; Linnemann, J. T.; Marinelli, S. S.; Stump, D.; Tollefson, K.; Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alfaro, R.; Grabski, V.; Vargas, H. Leon; Marinelli, A.; Oceguera-Becerra, T.; Ruiz-Velasco, E.; Sandoval, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Alvarez, C.; Arceo, R.] Univ Autonoma Chiapas, CEFyMAP, Chiapas, Mexico. [Alvarez, J. D.; Arteaga-Velazquez, J. C.; Cotti, U.; De Leon, C.; Linares, E. C.; Villasenor, L.] Univ Michoacana San Nicoltis Hidalgo, Morelia, Michoacan, Mexico. [Solares, H. A. Ayala; Hui, C. M.; Huintemeyer, P.; Zhou, H.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Barber, A. S.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA. [Baughman, B. M.; Gonzalez, J. Becerra; Belmont, E.; Berley, D.; Braun, J.; Ellsworth, R. W.; Goodman, J. A.; Riviere, C.; Smith, A. J.; Vasileiou, V.; Wood, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bautista-Elivar, N.; Perez-Perez, E. G.] Univ Politecn Pachuca, Pachuca, Hgo, Mexico. [Gonzalez, J. Becerra; Hays, E.; Lara, A.; McEnery, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Diaz-Velezi, J. C.; DuVernoisi, M. A.; Fiorinoi, D. W.; Hampel-Arias, Z.; Imrani, A.; Kam, P.; Weisgarberi, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rosales, M. Bonilla; Carraminiana, A.; Hernandez, R. Diaz; Galindo, A.; Torres, E. Mendoza; Rosa-Gonzalez, D.; Silich, S.; Torres, I.] Inst Nacl Astres Opt & Elect, Puebla, Mexico. [Caballero-Lopez, R. A.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Caballero-Mora, K. S.; Martinez, H.; Zepeda, A.] IPN, Ctr Invest & Estudios Avanzados, Dept Phys, Mexico City 07738, DF, Mexico. [Castillo, M.; Cotzomi, J.; Diaz-Cruz, K. L.; Martinez, .; Moreno, E.; Salazar, H.] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico. [De la Fuente, E.; Oceguera-Becerra, T.] Univ Guadalajara, IAMDpto Fis,Dpto Elect CUCEI,ITPhd CUCEA,Phys Mat, Guadalajara, Jalisco, Mexico. [DeYoung, T.; Mostafa, M.; Pretz, J.; Salesa, F.; Woodle, K. Sparks; Zaborov, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Dingus, B. L.; Harding, J. P.; Hoffman, C. M.; Kunde, Gj.; Sinnis, G.; Ukwatta, T. N.; Younk, P. W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Ellsworth, R. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Fraija, N.; Garfias, F.; Gonzalez, M. M.; Iriarte, A.; Lee, W. H.; Patricelli, B.; Riviere, C.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Gussert, M.; Longo, M.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Lauer, Rj.; Matthews, J. A. J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lennarz, D.; Taboada, I.] Ctr Relativist Astrophys, Georgia Inst Technol, Atlanta, GA 30332 USA. [Lennarz, D.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Luna-Garcla, R.; Martinez-Castro, J.; Pelayo, R.] Ctr Invest Computac, Inst Politecn Nacl, Mexico City, DF, Mexico. [Miranda-Romagnoli, P.; Noriega-Papaqui, R.] Univ Autonoma Estado Hidalgo, Pachuca, Hgo, Mexico. [Nellen, L.] Univ Nacl Autenoma Mexico, Inst Ciencias Nucleares, Mexico City, DF, Mexico. [Ryan, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Aune, T.; Parkinson, P. M. Saz; Schneider, M.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Toale, P. A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Allen, B. T.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [MacGibbon, J. H.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA. [BenZvi, S. Y.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] New York Univ, Dept Phys, New York, NY 10003 USA. [Morgan, T.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. RP Ukwatta, TN (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM tilan.ukwatta@gmail.com OI Lara, Alejandro/0000-0001-6336-5291; Dingus, Brenda/0000-0001-8451-7450; Mincer, Allen/0000-0002-6307-1418; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU National Science Foundation; US Department of Energy Office of High-Energy Physics; LDRD program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia [55155, 103520, 105033, 105666, 122331, 132197]; Red de Fisica de Altas Energias; DGAPA-UNAM [IG100414-3, IN108713, IN121309, IN115409]; VIEP-BUAP [161-EXC-2011]; University of Wisconsin Alumni Research Foundation; Luc Binette Foundation UNAM Postdoctoral Fellowship program; Institute of Geophysics and Planetary Physics at Los Alamos National Lab FX We gratefully acknowledge Scott De Lay his dedicated efforts in the construction and maintenance of the HAWC experiment. This work has been supported by: the National Science Foundation, the US Department of Energy Office of High-Energy Physics, the LDRD program of Los Alamos National Laboratory, Consejo Nacional de Ciencia y Tecnologia (Grants 55155, 103520, 105033, 105666, 122331 and 132197), Red de Fisica de Altas Energias, DGAPA-UNAM (Grants IG100414-3, IN108713 and IN121309, IN115409), VIEP-BUAP (Grant 161-EXC-2011), the University of Wisconsin Alumni Research Foundation, the Luc Binette Foundation UNAM Postdoctoral Fellowship program and the Institute of Geophysics and Planetary Physics at Los Alamos National Lab. Many of us are grateful for inspiring discussions with the late Donald Coyne on the subject of Primordial Black Holes. Finally, we thank the anonymous referee for comments that significantly improved the paper. NR 28 TC 7 Z9 7 U1 3 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD APR PY 2015 VL 64 BP 4 EP 12 DI 10.1016/j.astropartphys.2014.10.007 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CA0SI UT WOS:000348626400002 ER PT J AU Truong-Loi, ML Saatchi, S Jaruwatanadilok, S AF Truong-Loi, My-Linh Saatchi, S. Jaruwatanadilok, Sermsak TI Soil Moisture Estimation Under Tropical Forests Using UHF Radar Polarimetry SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Biomass; P-band; polarimetry; roughness; soil moisture (SM); synthetic aperture radar (SAR) ID WATER-CONTENT; RAIN-FOREST; BIOMASS; MODELS AB In this paper, we report on the performance of a semiempirical algorithm for the retrieval of soil moisture (SM) under dense tropical forests using ultrahigh frequency (UHF) polarimetric synthetic aperture radar (SAR) data. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the distorted Born approximation (DBA). The simplified model reduces the number of parameters and preserves the three dominant scattering mechanisms of volume, volume-surface, and surface for three polarized backscattering coefficients, i.e., sigma(HH), sigma(HV), and sigma(VV), at UHF frequencies. The inversion process uses the Levenberg-Marquardt nonlinear least squaresmethod to estimate the three model parameters: vegetation aboveground biomass, integrated SM up to a certain depth, and surface roughness. The performance of the inversion process is examined by first using simulation data where the initial values of the inversion process vary randomly and then using airborne UHF SAR data acquired in Costa Rica over La Selva Biological Station. The results with simulated data show that the inversion process is not significantly sensitive to initial values considering they are in the range of +/- 50% of the true value. A root-mean-square error (RMSE) of less than 4% can be achieved in retrieving the SM. The use of an alternate inversion approach without initial conditions using a genetic algorithm is less efficient (> 120 times longer time) and produces larger error with simulated data (RMSE = 11%) than the Levenberg-Marquardt estimation method. The inversion model simultaneously produces a biomass and SM distribution at 100-m spatial resolution. The RMSE of biomass estimation is 38 Mg/ha (15% relative error) when compared with 28 field plots. Over the plots where SMground measurements are available, but not at the exact same day as the radar flight occurred, the total volumetric RMSE is 13.6%. However, only two ground measurements were very close to the flight day (three days apart), and for those, the SM estimate has about 3% absolute volumetric error. At the P-band, the SM sensing depth is inversely correlated with the SM allowing to map the spatial variations of SM close to the average root zone or hydrological active horizon of soils in tropical ecosystems. C1 [Truong-Loi, My-Linh; Saatchi, S.; Jaruwatanadilok, Sermsak] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Truong-Loi, ML (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU Jet Propulsion Laboratory, California Institute of Technology, through the National Aeronautics and Space Administration (NASA) AirMOSS Earth Venture project; U.S. National Science Foundation [EAR0421178, DEB-0841872]; U.S. Department of Energy; Andrew W. Mellon Foundation; Conservation Internationals TEAM Initiative; NASA FX This work was supported by the Jet Propulsion Laboratory, California Institute of Technology, through the National Aeronautics and Space Administration (NASA) AirMOSS Earth Venture project. Funding for the long-term CARBONO measurements was provided in part by the U.S. National Science Foundation (most recently EAR0421178 and DEB-0841872), by the U.S. Department of Energy, by the Andrew W. Mellon Foundation, Conservation Internationals TEAM Initiative, and by several NASA-funded research projects. NR 26 TC 5 Z9 5 U1 2 U2 67 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2015 VL 53 IS 4 BP 1718 EP 1727 DI 10.1109/TGRS.2014.2346656 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA AR9NQ UT WOS:000343902300005 ER PT J AU Ringerud, S Kummerow, CD Peters-Lidard, CD AF Ringerud, Sarah Kummerow, Christian D. Peters-Lidard, Christa D. TI A Semi-Empirical Model for Computing Land Surface Emissivity in the Microwave Region SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Emissivity; land surface; passive microwave remote sensing ID SOUTHERN GREAT-PLAINS; SOIL-MOISTURE; SYSTEM; VALIDATION; SIMULATION AB In an effort to better simulate land surface microwave emissivity, a semi-empirical technique is developed and tested over the U. S. Southern Great Plains (SGP) area. A physical model is used to calculate emissivity at the 10-GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. Adjustments are added for post-precipitation surface water effects on emissivity of the soil and water-coated vegetation emissivity. A five-year data set of retrieved emissivities from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) during clear-sky conditions is employed for calculation of a robust set of channel covariances. These covariances, combined with the modeled 10-GHz emissivities, provide emissivity values for each AMSR-E channel, which are then used to compute top of the atmosphere brightness temperatures Tbs. Results comparing these calculated Tbs to observed AMSR-E values show correlations of 0.85-0.93 and biases generally less than 1 K, with the largest bias appearing in the highest AMSR-E frequency. Such a modeling system could be easily implemented for the emissivity calculation required for atmospheric retrievals over similar land surfaces. C1 [Ringerud, Sarah; Kummerow, Christian D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. RP Ringerud, S (reprint author), Colorado State Univ, Ft Collins, CO 80523 USA. EM sarah@atmos.colostate.edu RI Peters-Lidard, Christa/E-1429-2012 OI Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA's Precipitation Measurement Missions Program through NASA Solicitation [NNH09ZDA001N] FX This work was supported by NASA's Precipitation Measurement Missions Program through NASA Solicitation NNH09ZDA001N, PI: C. D. Peters-Lidard. NR 25 TC 3 Z9 3 U1 1 U2 41 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2015 VL 53 IS 4 BP 1935 EP 1946 DI 10.1109/TGRS.2014.2351232 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA AR9NQ UT WOS:000343902300022 ER PT J AU Leigh, HW Magruder, LA Carabajal, CC Saba, JL McGarry, JF AF Leigh, Holly W. Magruder, Lori A. Carabajal, Claudia C. Saba, Jack L. McGarry, Jan F. TI Development of Onboard Digital Elevation and Relief Databases for ICESat-2 SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Altimetry; laser radar; flight software; ICESat-2; telemetry ID MISSION AB The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), the successor mission to ICESat, is planned to launch in 2017. The ICESat-2 spacecraft will carry the Advanced Topographic Laser Altimeter System (ATLAS). ATLAS will be the most precise space-based photon-counting laser altimeter to date, and its measurement strategy requires the development of sophisticated onboard receiver algorithms to ensure success in downlinking the science data in the telemetry and the subsequent development of science data products. A set of databases, the digital elevation model and digital relief map (DRM), has been developed for use in ATLAS onboard signal processing. A number of elevation data sets were combined to create the global elevation and relief databases, and a method for calculating along-track relief from raster elevation data sets was devised. A technique for deriving the accuracy of the DRM relative to the magnitude of relief was developed to inform the selection of DRM margin values. C1 [Leigh, Holly W.; Magruder, Lori A.] Univ Texas Austin, Appl Res Labs, Austin, TX 78758 USA. [Carabajal, Claudia C.] NASA, Goddard Space Flight Ctr, Sigma Space Corp, Greenbelt, MD 20771 USA. [Saba, Jack L.] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [McGarry, Jan F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Leigh, HW (reprint author), Univ Texas Austin, Appl Res Labs, Austin, TX 78758 USA. FU National Aeronautics and Space Administration [NNG12VI01C] FX This work was supported by the National Aeronautics and Space Administration through contract NNG12VI01C. NR 23 TC 0 Z9 0 U1 5 U2 42 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2015 VL 53 IS 4 BP 2011 EP 2020 DI 10.1109/TGRS.2014.2352277 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA AR9NQ UT WOS:000343902300028 ER PT J AU Oudrari, H McIntire, J Xiong, XX Butler, J Lee, S Lei, N Schwarting, T Sun, JQ AF Oudrari, Hassan McIntire, Jeff Xiong, Xiaoxiong Butler, Jim Lee, Shihyan Lei, Ning Schwarting, Tom Sun, Junqiang TI Prelaunch Radiometric Characterization and Calibration of the S-NPP VIIRS Sensor SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; optical sensors; radiometric; remote sensing; VIIRS ID MODIS AB The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key instrument onboard the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft that was launched on October 28, 2011. VIIRS is designed to provide top of the atmosphere radiometric measurements and imaging of the entire planet Earth twice daily. It is a wide-swath (3040 km) cross-track scanning radiometer with spatial resolutions of 375 and 750 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.4 and 12.5 mu m, including 15 reflective solar bands and 7 thermal emissive bands. VIIRS observations are used to generate 22 environmental data records used by various operational applications and for climate research. This paper describes the prelaunch radiometric calibration and characterization methodologies used by the NASA VIIRS Characterization Support Team, including performance assessments for the reflective and emissive band radiometric calibration, the signal-to-noise ratios, dual gain transition, and dynamic range. Other aspects of the sensor performance such as scattered light response, response versus scan angle, polarization sensitivity, relative spectral response, and crosstalk will also be briefly described. A comprehensive set of performance metrics generated during the prelaunch testing program will be compared to the sensor requirements, and a list of lessons learned will be presented to enhance testing and performance assessment for future Joint Polar-Orbiting Satellite System VIIRS sensors. C1 [Oudrari, Hassan; McIntire, Jeff; Lee, Shihyan; Lei, Ning; Schwarting, Tom] Sigma Space Corp, Lanham, MD 20706 USA. [Xiong, Xiaoxiong; Butler, Jim] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Sun, Junqiang] Sigma Space Corp, Aerosp Instruments, Lanham, MD 20706 USA. [Sun, Junqiang] Global Sci & Technol, Greenbelt, MD 20770 USA. RP Oudrari, H (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. EM hassan.oudrari-1@nasa.gov NR 20 TC 15 Z9 15 U1 5 U2 42 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2015 VL 53 IS 4 BP 2195 EP 2210 DI 10.1109/TGRS.2014.2357678 PG 16 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA AR9NQ UT WOS:000343902300043 ER PT J AU Silber, GK Adams, JD Asaro, MJ Cole, TVN Moore, KS Ward-Geiger, LI Zoodsma, BJ AF Silber, Gregory K. Adams, Jeffrey D. Asaro, Michael J. Cole, Timothy V. N. Moore, Katie S. Ward-Geiger, Leslie I. Zoodsma, Barbara J. TI The right whale mandatory ship reporting system: a retrospective SO PEERJ LA English DT Article DE Endangered whale; US energy imports; North Atlantic right whale; Ship collisions; International Maritime Organization; Shipping industry; Endangered whale; Underwater noise; Economic recession ID ATLANTIC RIGHT WHALES; STRESS; TRENDS AB In 1998, the United States sought and received International Maritime Organization-endorsement of two Mandatory Ship Reporting (MSR) systems designed to improve mariner awareness about averting ship collisions with the endangered North Atlantic right whale (Eubalaena glacialis). Vessel collisions are a serious threat to the right whale and the program was among the first formal attempts to reduce this threat. Under the provisions of the MSR, all ships >300 gross tons are required to report their location, speed, and destination to a shore-based station when entering two key right whale habitats: one in waters off New England and one off coastal Georgia and Florida. In return, reporting ships receive an automatically-generated message, delivered directly to the ship's bridge, that provides information about right whale vulnerability to vessel collisions and actions mariners can take to avoid collisions. The MSR has been in operation continuously from July 1999 to the present. Archived incoming reports provided a 15-plus year history of ship operations in these two locations. We analyzed a total of 26,772 incoming MSR messages logged between July 1999 and December 2013. Most ships that were required to report did so, and compliance rates were generally constant throughout the study period. Self-reported vessel speeds when entering the systems indicated that most ships travelled between 10 and 16 (range = 5-20+) knots. Ship speeds generally decreased in 2009 to 2013 following implementation of vessel speed restrictions. The number of reports into the southern system remained relatively constant following a steady increase through 2007, but numbers in the northern system decreased annually beginning in 2008. If reporting is indicative of long-term patterns in shipping operations, it reflects noteworthy changes in marine transportation. Observed declines in ship traffic are likely attributable to the 2008-2009 economic recession, the containerized shipping industry making increased use of larger ships that made fewer trips, and diminished oil/gas US imports as previously inaccessible domestic deposits were exploited. Recent declines in shipping activity likely resulted in lowered collision risks for right whales and reduced their exposure to underwater noise from ships. C1 [Silber, Gregory K.] NOAA, Off Protected Resources, Natl Marine Fisheries Serv, Silver Spring, MD 20910 USA. [Adams, Jeffrey D.] NOAA, Ocean Associates Inc, Contract Off Protected Resources, Natl Marine Fisheries Serv, Silver Spring, MD USA. [Asaro, Michael J.] NOAA, Natl Marine Fisheries Serv, Gloucester, MA USA. [Cole, Timothy V. N.] NOAA, Natl Marine Fisheries Serv, Woods Hole, MA USA. [Moore, Katie S.] US Coast Guard, Atlantic Area Command Maritime Secur, Portsmouth, VA USA. [Moore, Katie S.] Law Enforcement Sect, Portsmouth, VA USA. [Ward-Geiger, Leslie I.] Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, St Petersburg, FL USA. [Zoodsma, Barbara J.] NOAA, Natl Marine Fisheries Serv, Fernandina Beach, FL USA. RP Silber, GK (reprint author), NOAA, Off Protected Resources, Natl Marine Fisheries Serv, Silver Spring, MD 20910 USA. EM greg.silber@noaa.gov FU US Coast Guard; US National Marine Fisheries Service (NMFS) FX Funding to operate and administer the Mandatory Ship Reporting system-the program under study here-was provided completely, and shared equally, by the US Coast Guard and the US National Marine Fisheries Service (NMFS). Staff time (e.g., salaries) to conduct data analysis and prepare the manuscript was provided by NMFS's Office of Protected Resources. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 2 Z9 2 U1 4 U2 13 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD MAR 31 PY 2015 VL 3 AR e866 DI 10.7717/peerj.866 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF1IU UT WOS:000352299200003 PM 25861555 ER PT J AU Hegde, S Paulino-Lima, IG Kent, R Kaltenegger, L Rothschild, L AF Hegde, Siddharth Paulino-Lima, Ivan G. Kent, Ryan Kaltenegger, Lisa Rothschild, Lynn TI Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biosignatures; spectral library; reflectivity; extremophiles; pigments ID SPECTRAL REFLECTANCE; EVOLUTION; ENVIRONMENTS; PLANET; RANGE AB Exoplanet discovery has made remarkable progress, with the first rocky planets having been detected in the central star's liquid water habitable zone. The remote sensing techniques used to characterize such planets for potential habitability and life rely solely on our understanding of life on Earth. The vegetation red edge from terrestrial land plants is often used as a direct signature of life, but it occupies only a small niche in the environmental parameter space that binds life on present-day Earth and has been widespread for only about 460 My. To more fully exploit the diversity of the one example of life known, we measured the spectral characteristics of 137 microorganisms containing a range of pigments, including ones isolated from Earth's most extreme environments. Our database covers the visible and near-infrared to the short-wavelength infrared (0.35-2.5 mu m) portions of the electromagnetic spectrum and is made freely available from biosignatures. astro.cornell.edu. Our results show how the reflectance properties are dominated by the absorption of light by pigments in the visible portion and by strong absorptions by the cellular water of hydration in the infrared (up to 2.5 mu m) portion of the spectrum. Our spectral library provides a broader and more realistic guide based on Earth life for the search for surface features of extraterrestrial life. The library, when used as inputs for modeling disk-integrated spectra of exoplanets, in preparation for the next generation of space-and ground-based instruments, will increase the chances of detecting life. C1 [Hegde, Siddharth; Kaltenegger, Lisa] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Paulino-Lima, Ivan G.; Kent, Ryan; Rothschild, Lynn] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kent, Ryan] Univ Calif Santa Cruz, Affiliated Res Ctr, Santa Cruz, CA 95064 USA. [Kaltenegger, Lisa] Cornell Univ, Dept Astron, Inst Pale Blue Dots, Ithaca, NY 14853 USA. RP Hegde, S (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM shegde@astro.cornell.edu FU German Research Foundation [ENP Ka 3142/1-1]; Simons Foundation on the Origins of Life Grant [290357]; International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg; Coordination for the Improvement of Higher Education Personnel FX The authors thank Susan Ustin, Mike Whiting, and Maria Alsina-Marti at the Center for Spatial Technologies and Remote Sensing at the University of California, Davis for access to the spectrometer system and Vern Vanderbilt, Sherry Palacios, and Jeroen Bouwman for many valuable discussions. In addition, we are indebted to the UTEX culture collection of algae, Kendra Negrey (Kudela laboratory, University of California, Santa Cruz), Alison Conrad (Saltikov laboratory, University of California, Santa Cruz), and Rocco Mancinelli (Bay Area Environmental Research Institute at NASA Ames) for providing us with various cultures. We thank Tom Shannon for helping set up the spectral library on an external web page. The NASA Planetary Biology Internship Program organized by the Marine Biological Laboratory (Woods Hole, MA) provided support to S.H. while at NASA Ames with a Planetary Biology Internship Fellowship. S.H. and L.K. acknowledge support from German Research Foundation Grant ENP Ka 3142/1-1 and the Simons Foundation on the Origins of Life Grant 290357 (to L.K.). S.H. acknowledges support from the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, of which he is a Fellow. I.G.P.-L. acknowledges the NASA Post-doctoral Program, administered by Oak Ridge Associated Universities and the Coordination for the Improvement of Higher Education Personnel for providing his fellowship. NR 25 TC 3 Z9 3 U1 4 U2 35 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 31 PY 2015 VL 112 IS 13 BP 3886 EP 3891 DI 10.1073/pnas.1421237112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CE5ZH UT WOS:000351914500038 PM 25775594 ER PT J AU Matsui, T Tao, WK Munchak, SJ Grecu, M Huffman, GJ AF Matsui, Toshi Tao, Wei-Kuo Munchak, S. Joseph Grecu, Mircea Huffman, George J. TI Satellite view of quasi-equilibrium states in tropical convection and precipitation microphysics SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE precipitation; microphysics; quasi-equilibrium; convection ID PROFILING ALGORITHM; TRMM; ENVIRONMENT; RADAR; SIMULATIONS; ADJUSTMENT AB This study shows the time series of statistical composites of precipitation-microphysics signals derived from long-term Tropical Rainfall Measuring Mission (TRMM) satellite observations aggregated over the entire tropical domain (37 degrees N-37 degrees S). The result shows the nearly time-invariant monthly signal statistics throughout this time, confirming convection quasi-equilibrium (CQE) states. Merged precipitation data, with much better temporal and spatial coverage, provide evidence that the equilibrium state occurs on a daily scale. These results further indicate the presence of precipitation microphysics quasi-equilibrium (MQE) within the CQE environment. A simple analytic microphysics framework illustrates the equilibrium precipitation size distribution, as compared with the TRMM radar-based as well as preliminary Global Precipitation Measurement combined retrievals. The MQE readily explains the near-constant tropical precipitation rate, which is roughly balanced with atmospheric radiative cooling rate at the entire tropical scale. Further investigation is required through theoretical, observational, and numerical manners to support the MQE hypothesis. C1 [Matsui, Toshi; Tao, Wei-Kuo; Munchak, S. Joseph; Grecu, Mircea; Huffman, George J.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA. [Matsui, Toshi; Munchak, S. Joseph] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Grecu, Mircea] Morgan State Univ, GESTAR, Baltimore, MD 21239 USA. RP Matsui, T (reprint author), NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA. EM Toshihisa.Matsui-1@nasa.gov RI Huffman, George/F-4494-2014; Measurement, Global/C-4698-2015 OI Huffman, George/0000-0003-3858-8308; FU NASA Precipitation Measuring Mission (PMM) grant FX Authors are funded by the NASA Precipitation Measuring Mission (PMM) grant. This paper is dedicated to Joanne Simpson, who was the first TRMM Project Scientist, a pioneer in tropical convection, and who inspired future generations of atmospheric scientists. The TRMM data used in this manuscript are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (http://disc.sci.gsfc.nasa.gov/). GPM data release and update will be available through Precipitation Measurement Missions (PMM) website (http://pmm.nasa.gov/). NR 25 TC 3 Z9 3 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 28 PY 2015 VL 42 IS 6 BP 1959 EP 1968 DI 10.1002/2015GL063261 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CG3HJ UT WOS:000353170000044 ER PT J AU Fioletov, VE McLinden, CA Krotkov, N Li, C AF Fioletov, V. E. McLinden, C. A. Krotkov, N. Li, C. TI Lifetimes and emissions of SO2 from point sources estimated from OMI SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE sulfur dioxide; OMI; emissions ID OZONE MONITORING INSTRUMENT; SPACE; RETRIEVAL; ALGORITHM; MISSION; LAYER AB A new method to estimate sulfur dioxide (SO2) lifetimes and emissions from point sources using satellite measurements is described. The method is based on fitting satellite SO2 vertical column density to a three-dimensional parameterization as a function of the coordinates and wind speed. An effective lifetime (or, more accurately, decay time) and emission rate are then determined from the parameters of the fit. The method was applied to measurements from the Ozone Monitoring Instrument (OMI) processed with the new principal component analysis (PCA) algorithm in the vicinity of approximately 50 large U.S. near-point sources. The obtained results were then compared with available emission inventories. The correlation between estimated and reported emissions was about 0.91 with the estimated lifetimes between 4 and 12h. It is demonstrated that individual sources with annual SO2 emissions as low as 30ktyr(-1) can produce a statistically significant signal in OMI data. C1 [Fioletov, V. E.; McLinden, C. A.] Environm Canada, Toronto, ON, Canada. [Krotkov, N.; Li, C.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [Li, C.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Fioletov, VE (reprint author), Environm Canada, Toronto, ON, Canada. EM vitali.fioletov@outlook.com RI Krotkov, Nickolay/E-1541-2012; OI Krotkov, Nickolay/0000-0001-6170-6750; Fioletov, Vitali/0000-0002-2731-5956 FU NASA Earth Science Division FX We acknowledge the NASA Earth Science Division for funding the OMI SO2 product development and analysis. The Dutch-Finnish-built OMI instrument is part of the NASA EOS Aura satellite payload. The OMI project is managed by KNMI and The Netherlands Agency for Aerospace Programs (NIVR). The U.S. Environmental Protection Agency provided SO2 emission data. OMI PCA SO2 retrievals used in this study have been publicly released as part of the OMI SO2 product and can be obtained free of charge at the Goddard Earth Sciences Data and Information Services Center (http://daac.gsfc.nasa.gov/). NR 19 TC 15 Z9 15 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 28 PY 2015 VL 42 IS 6 BP 1969 EP 1976 DI 10.1002/2015GL063148 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CG3HJ UT WOS:000353170000045 ER PT J AU Yu, HB Chin, M Yuan, TL Bian, HS Remer, LA Prospero, JM Omar, A Winker, D Yang, YK Zhang, Y Zhang, ZB Zhao, C AF Yu, Hongbin Chin, Mian Yuan, Tianle Bian, Huisheng Remer, Lorraine A. Prospero, Joseph M. Omar, Ali Winker, David Yang, Yuekui Zhang, Yan Zhang, Zhibo Zhao, Chun TI The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE dust deposition; phosphorus; biogeochemical cycle; CALIPSO; satellite remote sensing; Amazon rainforest ID CLIMATE-CHANGE; SAHARAN DUST; TRANSPORT; BASIN; DEFORESTATION; PERSPECTIVE; AMERICA; CALIOP; MODEL; WET AB The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three-dimensional (3-D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7year average of dust deposition into the Amazon Basin is estimated to be 28 (8-48)Tga(-1) or 29 (8-50)kgha(-1)a(-1). The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multiyear mean estimate of dust deposition matches better with estimates from in situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3-D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022(0.006-0.037)TgP of phosphorus per year, equivalent to 23 (7-39)gPha(-1)a(-1) to fertilize the Amazon rainforest. This out-of-basin phosphorus input is comparable to the hydrological loss of phosphorus from the basin, suggesting an important role of African dust in preventing phosphorus depletion on timescales of decades to centuries. C1 [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Yang, Yuekui; Zhang, Yan] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Yuan, Tianle; Bian, Huisheng; Remer, Lorraine A.] Univ Maryland Baltimore Cty, Joint Ctr Earth Sci & Technol, Baltimore, MD 21228 USA. [Prospero, Joseph M.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Omar, Ali; Winker, David] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Yang, Yuekui; Zhang, Yan] Univ Space Res Assoc, Columbia, MD USA. [Zhang, Zhibo] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Zhao, Chun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Yu, HB (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM Hongbin.Yu@nasa.gov RI Yu, Hongbin/C-6485-2008; Zhang, Zhibo/D-1710-2010; Yuan, Tianle/D-3323-2011; Zhao, Chun/A-2581-2012; Yang, Yuekui/B-4326-2015; Chin, Mian/J-8354-2012; Omar, Ali/D-7102-2017; OI Yu, Hongbin/0000-0003-4706-1575; Zhang, Zhibo/0000-0001-9491-1654; Zhao, Chun/0000-0003-4693-7213; Omar, Ali/0000-0003-1871-9235; Prospero, Joseph/0000-0003-3608-6160 FU NASA CALIPSO/CloudSat project [NNX14AB21G]; Science of Terra and Aqua project [NNX11AH66G]; U.S. DOE as part of the Regional and Global Climate Modeling program; DOE [DE-AC05-76RL01830] FX The work was supported by NASA CALIPSO/CloudSat project (NNX14AB21G) managed by David Considine and the Science of Terra and Aqua project (NNX11AH66G) managed by Richard Eckman. Chun Zhao acknowledges the support by the U.S. DOE as part of the Regional and Global Climate Modeling program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. We thank Kelly Elkins of NASA GSFC Science Visualization Studio for helping in laying out Figure 1. We are grateful to Paulo Artaxo for helpful discussion and Francois-Xavier Collard for sharing the PM10 measurements at Cayenne with us. We thank two anonymous reviewers for their helpful suggestions. The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. The SPI data were downloaded from http://jisao.washington.edu/data/sahel/ (doi: 10.6059/H5MW2F2Q). The GPCP version 2.2 rainfall data were downloaded from the Giovanni online data system, developed and maintained by the NASA GES DISC. The processed CALIPSO aerosol profiles, GEOS-5 wind profiles, and GOCART and WRF-Chem dust simulations are archived in NASA GSFC clusters and personal computers, which will be made available to readers per request to the corresponding author H.Y. at Hongbin.Yu@nasa.gov. NR 40 TC 25 Z9 25 U1 7 U2 50 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 28 PY 2015 VL 42 IS 6 BP 1984 EP 1991 DI 10.1002/2015GL063040 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CG3HJ UT WOS:000353170000047 ER PT J AU Ramanathan, AK Mao, JP Abshire, JB Allan, GR AF Ramanathan, Anand K. Mao, Jianping Abshire, James B. Allan, Graham R. TI Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE CO2; carbon dioxide; cloud slicing; lidar; remote sensing ID DIFFERENTIAL ABSORPTION LIDAR; COLUMN; SATELLITE; SPECTROMETER; RETRIEVALS; MISSION; OZONE AB We have measured the CO2 volume mixing ratio (VMR) within the planetary boundary layer (PBL) using cloud slicing with an airborne pulsed integrated path differential absorption (IPDA) lidar from flight altitudes of up to 13km. During a flight over Iowa in summer 2011, simultaneous measurement of the optical range and CO2 absorption to clouds and the ground were made using time-resolved detection of pulse echoes from each scattering surface. We determined the CO2 absorption in the PBL by differencing the two lidar-measured absorption line shapes, one to a broken shallow cumulus cloud layer located at the top of the PBL and the other to the ground. Solving for the CO2 VMR in the PBL and that of the free troposphere, we measured a approximate to 15ppm (4%) drawdown in the PBL. Both CO2 VMRs were within approximate to 3ppm of in situ CO2 profile measurements. We have also demonstrated cloud slicing using scatter from thin, diffuse cirrus clouds and cumulus clouds, which allowed solving for the CO2 VMR for three vertical layers. The technique and retrieval algorithm are applicable to a space-based lidar instrument as well as to lidar IPDA measurements of other trace gases. Thus, lidar cloud slicing also offers promise toward space-based remote sensing of vertical trace gas profiles in the atmosphere using a variety of clouds. C1 [Ramanathan, Anand K.; Mao, Jianping] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Ramanathan, Anand K.; Abshire, James B.; Allan, Graham R.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Mao, Jianping] NASA, Goddard Space Flight Ctr, Earth Sci Div, Greenbelt, MD 20771 USA. [Allan, Graham R.] Sigma Space Corp, Lanham, MD USA. RP Ramanathan, AK (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM anand.ramanathan@nasa.gov OI Ramanathan, Anand/0000-0002-1865-0904 FU NASA ESTO IIP-10 program; NASA ASCENDS FX This work was funded by the NASA ESTO IIP-10 program and the NASA ASCENDS formulation activity. A.K.R. acknowledges initial support from the NASA Postdoctoral Program. We also thank the AVOCET team of NASA LaRC for providing the in situ CO2 VMR measurements, the NASA DAOF DC-8 team for help in conducting the flight campaign, and S. Randy Kawa for providing the MERRA data used for the analysis. We also thank the anonymous reviewers for their helpful comments and suggestions. Data available on request. NR 25 TC 3 Z9 3 U1 4 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 28 PY 2015 VL 42 IS 6 BP 2055 EP 2062 DI 10.1002/2014GL062749 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CG3HJ UT WOS:000353170000056 ER PT J AU Gong, J Yue, J Wu, DL AF Gong, Jie Yue, Jia Wu, Dong L. TI Global survey of concentric gravity waves in AIRS images and ECMWF analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE gravity wave; concentric ring; climatology; AIRS; pattern recognition ID GENERAL-CIRCULATION MODEL; EQUATORIAL SPREAD F; SATELLITE-OBSERVATIONS; SOUNDER OBSERVATIONS; MIDDLE-ATMOSPHERE; MOUNTAIN WAVE; CONVECTION; THUNDERSTORM; PARAMETERIZATION; STRATOSPHERE AB Concentric gravity waves (CGWs) are atmospheric phenomena with ring-shape perturbations originating in the troposphere. They can propagate up to the ionosphere and thermosphere and dynamically couple the lower and upper atmosphere. In this study we developed a novel ring detection algorithm to extract CGWs from the Atmosphere Infrared Sounder (AIRS) radiance data and the European Center for Medium-Range Weather Forecasting (ECMWF) analysis temperature in the stratosphere to produce the first global maps of such phenomena. The algorithm is capable of estimating wave amplitude, wavelength, propagation direction, and source location. Both AIRS and ECMWF data show a significant diurnal variation in wave propagation direction and generation, in addition to strong seasonal variations in wavelength and amplitude. Occurrence of these ring waves is associated not only with tropical deep convections but also with summertime midlatitude convection, wintertime extratropical jets, and topography such as islands. The high-resolution ECMWF analysis data capture most of the CGW features, but the wave amplitude is significantly weaker than AIRS observations, showing few convectively generated CGWs. C1 [Gong, Jie] Univ Space Res Assoc, Columbia, MD 21046 USA. [Gong, Jie; Wu, Dong L.] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA. [Yue, Jia] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. RP Gong, J (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA. EM Jie.Gong@nasa.gov RI Yue, Jia/D-8177-2011; Wu, Dong/D-5375-2012 FU NASA [NNH10ZDA001N-ESDRERR, NNX14AF20G, NNH13ZDA001N-HGI] FX This work is performed at the NASA Goddard Space Flight Center with support from the NASA NNH10ZDA001N-ESDRERR (Earth System Data Records Uncertainty Analysis) project. J. Y. is supported by NASA NNX14AF20G and NNH13ZDA001N-HGI. We are grateful to the AIRS team at Jet Propulsion Lab and NASA DISC in providing the AIRS brightness temperature and the ECMWF analysis data, to J. Alexander and L. Grasso for useful discussions, and to Megan Buzanowicz of Hampton University and Christina Bromley of George Washington Online High School for final proofreading. Comments and suggestions from J. Jiang and another anonymous reviewer are highly acknowledged. The data and algorithm codes are available upon request by sending an email to Jie.Gong@nasa.gov. NR 52 TC 6 Z9 6 U1 3 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2015 VL 120 IS 6 BP 2210 EP 2228 DI 10.1002/2014JD022527 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG1UZ UT WOS:000353061800003 ER PT J AU Li, JLF Lee, WL Lee, T Fetzer, E Yu, JY Kubar, TL Boening, C AF Li, J. -L. F. Lee, W. -L. Lee, Tong Fetzer, Eric Yu, Jia-Yuh Kubar, Terence L. Boening, Carmen TI The impacts of cloud snow radiative effects on Pacific Ocean surface heat fluxes, surface wind stress, and ocean temperatures in coupled GCM simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE coupled GCM; cloud; wind stress; SSTs; subsurface temperatures; radiation ID COMMUNITY ATMOSPHERE MODEL; DOUBLE-ITCZ; CLIMATE MODELS; CONVECTION PARAMETERIZATION; PART I; BIASES; CIRCULATION; CMIP5; FEEDBACK AB An accurate representation of the climatology of the coupled ocean-atmosphere system in global climate models has strong implications for the reliability of projected climate change inferred by these models. Our previous efforts have identified substantial biases of ocean surface wind stress that are fairly common in two generations of the Coupled Model Intercomparison Project (CMIP) models, relative to QuikSCAT climatology. One of the potential causes of the CMIP model biases is the missing representation of large frozen precipitating hydrometeors (i.e., cloud snow) in all CMIP3 and most CMIP5 models, which has not been investigated previously. We examine the impacts of cloud snow on the radiation and atmospheric circulation, air-sea fluxes, and explore the implications to common biases in CMIP models using the National Center for Atmospheric Research coupled Community Earth System Model (CESM) to perform sensitivity experiments with and without cloud snow radiative effects. This study focuses on the impacts of cloud snow in CESM on ocean surface wind stress and air-sea heat fluxes, as well as their relationship with sea surface temperature (SST) and subsurface ocean temperatures in the Pacific sector. It is found that inclusion of the cloud snow parameterization in CESM reduces the surface wind stress and upper ocean temperature (including SST) biases in the tropical and midlatitude Pacific. The differences in the upper ocean temperature with and without the cloud snow parameterization are consistent with the effect of different strength of vertical mixing due to ocean surface wind stress differences but cannot be explained by the differences in net air-sea heat fluxes. C1 [Li, J. -L. F.; Lee, Tong; Fetzer, Eric; Boening, Carmen] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Lee, W. -L.] Acad Sinica, Res Ctr Environm Change, Taipei 115, Taiwan. [Yu, Jia-Yuh] Chinese Culture Univ, Dept Atmospher Sci, Taipei, Taiwan. [Kubar, Terence L.] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA. RP Li, JLF (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Juilin.F.Li@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology [NNH12ZDA001N ROSES 2012]; NASA Making Earth System Data Records for Use in Research Environments programs; Ministry of Science and Technology of Taiwan [NSC100-2119-M-001-029-MY5, NSC102-2111-M-001-009] FX We thank Duane Waliser, Qing Yue, and Graeme Stephens for their useful comments. The contribution by J.L.L. to this study were carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under contract NNH12ZDA001N ROSES 2012, Earth Science Program, the Modeling, Analysis, and Prediction and ATMOS COMP 2013 (NNH12ZDA001N-CCST) and NDOA with the National Aeronautics and Space Administration (NASA). This work has been supported in part by the NASA Making Earth System Data Records for Use in Research Environments programs. W.L.L. was supported by the Ministry of Science and Technology of Taiwan under contracts NSC100-2119-M-001-029-MY5 and NSC102-2111-M-001-009. The observational reference data set for surface wind stress is from http://cioss.coas.oregonstate.edu/scow/. The SST data sets we analyzed include NOAA Optimum Interpolation SST (OISST), the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST: https://climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11), and Daily Sea Surface Analysis for Climate Monitoring and Predictions (COBE-SST: https://climatedataguide.ucar.edu/climate-data/sst-data-cobe-centennial- situ-observation-based-estimates), as well as the Extended Reconstructed Sea Surface Temperature (ERSST: http://www.ncdc.noaa.gov/ersst/). The subsurface ocean (potential) temperature from the World Ocean Atlas 2009 (WOA09) is used in this study http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html). NR 46 TC 4 Z9 4 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2015 VL 120 IS 6 BP 2242 EP 2260 DI 10.1002/2014JD022538 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG1UZ UT WOS:000353061800005 ER PT J AU Theys, N De Smedt, I van Gent, J Danckaert, T Wang, T Hendrick, F Stavrakou, T Bauduin, S Clarisse, L Li, C Krotkov, N Yu, H Brenot, H Van Roozendael, M AF Theys, N. De Smedt, I. van Gent, J. Danckaert, T. Wang, T. Hendrick, F. Stavrakou, T. Bauduin, S. Clarisse, L. Li, C. Krotkov, N. Yu, H. Brenot, H. Van Roozendael, M. TI Sulfur dioxide vertical column DOAS retrievals from the Ozone Monitoring Instrument: Global observations and comparison to ground-based and satellite data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE satellite; remote sensing; sulfur dioxide; volcano; pollution; validation ID ROTATIONAL RAMAN-SCATTERING; NM REGION; ABSORPTION-SPECTRA; 000 CM(-1); SO2; EMISSIONS; GOME-2; IASI; INVENTORY; ALGORITHM AB We present a new data set of sulfur dioxide (SO2) vertical columns from observations of the Ozone Monitoring Instrument (OMI)/AURA instrument between 2004 and 2013. The retrieval algorithm used is an advanced Differential Optical Absorption Spectroscopy (DOAS) scheme combined with radiative transfer calculation. It is developed in preparation for the operational processing of SO2 data product for the upcoming TROPOspheric Monitoring Instrument/Sentinel 5 Precursor mission. We evaluate the SO2 column results with those inferred from other satellite retrievals such as Infrared Atmospheric Sounding Interferometer and OMI (Linear Fit and Principal Component Analysis algorithms). A general good agreement between the different data sets is found for both volcanic and anthropogenic SO2 emission scenarios. We show that our algorithm produces SO2 columns with low noise and is able to provide accurate estimates of SO2. This conclusion is supported by important validation results over the heavily polluted site of Xianghe (China). Nearly 4years of OMI and ground-based multiaxis DOAS SO2 columns are compared, and an excellent match is found. We also highlight the improved performance of the algorithm in capturing weak SO2 sources by detecting shipping SO2 emissions in long-term averaged data, an unreported measurement from space. C1 [Theys, N.; De Smedt, I.; van Gent, J.; Danckaert, T.; Wang, T.; Hendrick, F.; Stavrakou, T.; Yu, H.; Brenot, H.; Van Roozendael, M.] Belgian Inst Space Aeron, Brussels, Belgium. [Wang, T.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Bauduin, S.; Clarisse, L.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Spect Atmosphere, Brussels, Belgium. [Li, C.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, C.; Krotkov, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Theys, N (reprint author), Belgian Inst Space Aeron, Brussels, Belgium. EM theys@aeronomie.be RI Krotkov, Nickolay/E-1541-2012 OI Krotkov, Nickolay/0000-0001-6170-6750 FU ESA S5P project; Belgium Prodex TRACE-S5P project; ESA SEARS project; ESA SACS2 project; Belgian Federal Science Policy Office, Brussels (AGACC-II project); EU 7th Framework Programme project NORS [284421]; F.R.S-FNRS; Belgian State Federal Office for Scientific, Technical, and Cultural Affairs; European Space Agency (ESA-Prodex arrangements) FX This work has been performed in the frame of the TROPOMI project. We acknowledge financial support from ESA S5P and Belgium Prodex TRACE-S5P projects. We also wish to thank support from ESA SEARS and SACS2 projects. MAX-DOAS measurements in Xianghe were funded by Belgian Federal Science Policy Office, Brussels (AGACC-II project), and the EU 7th Framework Programme project NORS (contract 284421). IASI has been developed and built under the responsibility of the Centre National d'Etudes Spatiales (CNES, France). It is flown on board the MetOp satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the EUMETCast near real-time data distribution service. The research in Belgium was funded by the F.R.S-FNRS, the Belgian State Federal Office for Scientific, Technical, and Cultural Affairs, and the European Space Agency (ESA-Prodex arrangements). S. Bauduin is a Research Fellow with F.R.S.-FNRS. N. Krotkov and Can Li acknowledge NASA Earth Science Directorate support of the Aura Science Team. We also thank Marten Sneep of KNMI for his support with OMI data. The OMI data generated for this paper and ground-based MAX-DOAS data are available at BIRA-IASB (http://uv-vis.aeronomie.be/) on request (contacts: theys@aeronomie.be and michelv@aeronomie.be). The OMI L1 and L2 operational data used for this paper are available from the NASA Goddard Earth Sciences (GES) Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/Aura/OMI/omso2.shtml). NR 79 TC 17 Z9 19 U1 2 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2015 VL 120 IS 6 BP 2470 EP 2491 DI 10.1002/2014JD022657 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG1UZ UT WOS:000353061800020 ER PT J AU Apel, EC Hornbrook, RS Hills, AJ Blake, NJ Barth, MC Weinheimer, A Cantrell, C Rutledge, SA Basarab, B Crawford, J Diskin, G Homeyer, CR Campos, T Flocke, F Fried, A Blake, DR Brune, W Pollack, I Peischl, J Ryerson, T Wennberg, PO Crounse, JD Wisthaler, A Mikoviny, T Huey, G Heikes, B O'Sullivan, D Riemer, DD AF Apel, E. C. Hornbrook, R. S. Hills, A. J. Blake, N. J. Barth, M. C. Weinheimer, A. Cantrell, C. Rutledge, S. A. Basarab, B. Crawford, J. Diskin, G. Homeyer, C. R. Campos, T. Flocke, F. Fried, A. Blake, D. R. Brune, W. Pollack, I. Peischl, J. Ryerson, T. Wennberg, P. O. Crounse, J. D. Wisthaler, A. Mikoviny, T. Huey, G. Heikes, B. O'Sullivan, D. Riemer, D. D. TI Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE storm convective outflow; biomass burning emission ratios; acrolein; hydrogen cyanide (HCN); acetonitrile (CH3CN); deep convective cloud and chemistry experiment (DC3) ID VOLATILE ORGANIC-COMPOUNDS; MEXICO-CITY; CHEMICAL EVOLUTION; DEEP CONVECTION; FIRE EMISSIONS; TRACE GASES; FOREST-FIRE; LOWER STRATOSPHERE; HIGH-SENSITIVITY; AIR-POLLUTANTS AB As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NOx (LNOx) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14ppbv of O-3, respectively, downwind of the storm over 2days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNOx. Normalized excess mixing ratios, X/CO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.00.5 and 2.30.5pptvppbv(-1), respectively, and 1.40.3pptvppbv(-1) for acrolein in the outflow only. C1 [Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Barth, M. C.; Weinheimer, A.; Homeyer, C. R.; Campos, T.; Flocke, F.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Blake, N. J.; Blake, D. R.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA USA. [Cantrell, C.; Fried, A.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Rutledge, S. A.; Basarab, B.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Crawford, J.; Diskin, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Brune, W.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Pollack, I.; Peischl, J.; Ryerson, T.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Wennberg, P. O.; Crounse, J. D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wisthaler, A.; Mikoviny, T.] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, A.; Mikoviny, T.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Huey, G.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Heikes, B.] Univ Rhode Isl, Grad Sch Oceanog, Kingston, RI 02881 USA. [O'Sullivan, D.] US Naval Acad, Dept Chem, Annapolis, MD 21402 USA. [Riemer, D. D.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Coral Gables, FL 33124 USA. RP Apel, EC (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. EM apel@ucar.edu RI Peischl, Jeff/E-7454-2010; Homeyer, Cameron/D-5034-2013; Ryerson, Tom/C-9611-2009; Pollack, Ilana/F-9875-2012; Manager, CSD Publications/B-2789-2015; Crounse, John/C-3700-2014; OI Peischl, Jeff/0000-0002-9320-7101; Homeyer, Cameron/0000-0002-4883-6670; Crounse, John/0000-0001-5443-729X; Hornbrook, Rebecca/0000-0002-6304-6554 FU National Science Foundation FX The data used in this paper are available from http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs and http://catalog.eol.ucar.edu/dc3_2012/index.html. The NCAR MM can be downloaded from the NCAR community data portal (http://cdp.ucar.edu/). The authors thank the crew and support team of the NSF/NCAR GV aircraft and Christine Wiedinmyer, Jeff Stith, and Shawn Honomichl for their helpful comments and discussion. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in the publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 88 TC 14 Z9 14 U1 3 U2 70 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2015 VL 120 IS 6 BP 2505 EP 2523 DI 10.1002/2014JD022121 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG1UZ UT WOS:000353061800022 ER PT J AU Labow, GJ Ziemke, JR McPeters, RD Haffner, DP Bhartia, PK AF Labow, Gordon J. Ziemke, Jerald R. McPeters, Richard D. Haffner, David P. Bhartia, Pawan K. TI A total ozone-dependent ozone profile climatology based on ozonesondes and Aura MLS data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE ozone climatology ID SATELLITE MEASUREMENTS; COLUMN OZONE; ERRORS AB Ozone profiles measured with the Aura Microwave Limb Sounder (MLS) and ozonesondes are used to create a new ozone climatology that can be used for satellite retrievals and radiative transfer studies. The climatology is binned according to total column ozone amount and latitude rather than with season. Because of high correlation between ozone profile shape and total ozone, the ozone profiles in this climatology capture ozone variations well, especially near the tropopause. This climatology has been constructed from nearly a million individual MLS ozone profile measurements taken between 2004 and 2013 as well as over 55,000 ozonesonde measurements from 1988 to 2011. The MLS profiles were sorted by total column ozone as measured by Ozone Monitoring Instrument in observations that were coincident with the MLS measurements. The data from the sondes were used in the troposphere and lower stratosphere and MLS in the middle and upper stratosphere. These two data sets were blended together between 13 and 17km (159-88hPa). This climatology consists of average ozone profiles as a function of total ozone for six 30 degrees latitude bands covering altitudes between 0 and 75km (in Z* pressure altitude coordinates) as well as the corresponding standard deviations for each layer. There is no seasonal component. This new climatology shows some remarkable and somewhat unexpected correlations between the total column ozone and the ozone amount at some layers, particularly in the lower and middle troposphere in some latitude bands. C1 [Labow, Gordon J.; Haffner, David P.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Ziemke, Jerald R.] Morgan State Univ, Baltimore, MD 21239 USA. [McPeters, Richard D.; Bhartia, Pawan K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Labow, GJ (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM gordon.j.labow@nasa.gov RI Bhartia, Pawan/A-4209-2016 OI Bhartia, Pawan/0000-0001-8307-9137 NR 21 TC 1 Z9 1 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2015 VL 120 IS 6 BP 2537 EP 2545 DI 10.1002/2014JD022634 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG1UZ UT WOS:000353061800024 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, T Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, V Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Alemic, A Allen, B Allocca, A Amariutei, D Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, C Areeda, JS Arnaud, N Ashton, G Ast, S Aston, SM Astone, P Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barbet, M Barclay, S Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Bauer, TS Baune, C Bavigadda, V Behnke, B Bejger, M Belczynski, C Bell, AS Bell, C Benacquista, M Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Biscans, S Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blackburn, L Blair, CD Blair, D Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bojtos, P Bond, C Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Brooks, AF Brown, DA Brown, DD Brown, NM Buchman, S Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Cadonati, L Cagnoli, G Bustillo, JC Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Capocasa, E Carbognani, F Caride, S Diaz, JC Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chassande-Mottin, E Chen, Y Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, C Colombini, M Cominsky, L Constancio, M Conte, A Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Coulon, JP Countryman, S Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, TD Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Cutler, C Dahl, K Dal Canton, T Damjanic, M Danilishin, SL D'Antonio, S Danzmann, K Dartez, L Dattilo, V Dave, I Daveloza, H Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, M Di Fiore, L Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Driggers, JC Du, Z Ducrot, M Dwyer, S Eberle, T Edo, T Edwards, M Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Essick, R Etzel, T Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fuentes-Tapia, S Fulda, P Fyffe, M Gair, JR Gammaitoni, L Gaonkar, S Garufi, F Gatto, A Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A Gergely, LA Germain, V Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gleason, J Goetz, E Goetz, R Gondan, L Gonzalez, G Gordon, N Gorodetsky, ML Gossan, S Gossler, S Gouaty, R Graf, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Groot, P Grote, H Grunewald, S Guidi, GM Guido, CJ Guo, X Gushwa, K Gustafson, EK Gustafson, R Hacker, J Hall, ED Hammond, G Hanke, M Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, M Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, M Heinzel, G Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Heptonstall, AW Heurs, M Hewitson, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, E Howell, EJ Hu, YM Huerta, E Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, M Jang, H Jaranowski, P Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasprzack, M Katsavounidis, E Katzman, W Kaufer, H Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Keiser, GM Keitel, D Kelley, DB Kells, W Keppel, DG Key, JS Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, J Koehlenbeck, S Kokeyama, K Kondrashov, V Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Kutynia, A Landry, M Lantz, B Larson, S Lasky, PD Lazzarini, A Lazzaro, C Lazzaro, C Le, J Leaci, P Leavey, S Lebigot, E Lebigot, EO Lee, CH Lee, HK Lee, HM Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, B Lewis, J Li, TGF Libbrecht, K Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Logue, J Lombardi, AL Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Lubinski, MJ Luck, H Lundgren, AP Lynch, R Ma, Y Macarthur, J MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, R Mageswaran, M Maglione, C Mailand, K Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mangano, V Mansell, GL Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, D Marx, JN Mason, K Masserot, A Massinger, TJ Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J Mclin, K McWilliams, S Meacher, D Meadors, GD Meidam, J Meinders, M Melatos, A Mendell, G Mercer, RA Meshkov, S Messenger, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, A Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Moggi, A Mohan, M Mohanty, SD Mohapatra, SRP Moore, B Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Munch, J Murphy, D Murray, PG Mytidis, A Nagy, MF Nardecchia, I Nash, T Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, I Neri, M Newton, G Nguyen, T Nielsen, AB Nissanke, S Nitz, AH Nocera, F Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oppermann, P Oram, R O'Reilly, B Ortega, W O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, C Pai, A Pai, S Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Papa, MA Paris, H Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, J Poggiani, R Post, A Poteomkin, A Powell, J Prasad, J Predoi, V Premachandra, S Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Purrer, M Qin, J Quetschke, V Quintero, E Quiroga, G Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Raja, S Rajalakshmi, G Rakhmanov, M Ramirez, K Rapagnani, P Raymond, V Razzano, M Re, V Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Reula, O Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, V Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sandberg, V Sanders, JR Sannibale, V Santiago-Prieto, I Sassolas, B Sathyaprakash, BS Saulson, PR Savage, R Sawadsky, A Scheuer, J Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, L Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Son, EJ Sorazu, B Souradeep, T Staley, A Stebbins, J Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, S Stone, R Strain, KA Straniero, N Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sutton, PJ Swinkels, B Szczepanczyk, M Szeifert, G Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Tellez, G Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, V Tomlinson, C Tonelli, M Torres, CV Torrie, CI Travasso, F Traylor, G Tse, M Tshilumba, D Turconi, M Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Vajente, G Valdes, G Vallisneri, M van Bakel, N van Beuzekom, M van den Brand, JFJ van den Broeck, C van der Sluys, MV van Heijningen, J van Veggel, AA Vass, S Vasth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vincent-Finley, R Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, P Wade, AR Wade, L Wade, M Walker, M Wallace, L Walsh, S Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Wilkinson, C Williams, L Williams, R Williamson, AR Willis, JL Willke, B Wimmer, M Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Xie, S Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yang, Q Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, S Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Alemic, A. Allen, B. Allocca, A. Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. Areeda, J. S. Arnaud, N. Ashton, G. Ast, S. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barbet, M. Barclay, S. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Bauer, Th. S. Baune, C. Bavigadda, V. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, C. Benacquista, M. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Biscans, S. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blackburn, L. Blair, C. D. Blair, D. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bojtos, P. Bond, C. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, Sukanta Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchman, S. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Cadonati, L. Cagnoli, G. Calderon Bustillo, J. Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Capocasa, E. Carbognani, F. Caride, S. Diaz, J. Casanueva Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. Colombini, M. Cominsky, L. Constancio, M., Jr. Conte, A. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Coulon, J. -P. Countryman, S. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. D. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Cutler, C. Dahl, K. Dal Canton, T. Damjanic, M. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dartez, L. Dattilo, V. Dave, I. Daveloza, H. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. Di Fiore, L. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. Eberle, T. Edo, T. Edwards, M. Edwards, M. Effler, A. Eggenstein, H. -B. Ehrens, P. Eichholz, J. Eikenberry, S. S. Essick, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fournier, J. -D. Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fuentes-Tapia, S. Fulda, P. Fyffe, M. Gair, J. R. Gammaitoni, L. Gaonkar, S. Garufi, F. Gatto, A. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. Gergely, L. A. Germain, V. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gleason, J. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gordon, N. Gorodetsky, M. L. Gossan, S. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. J. Guo, X. Gushwa, K. Gustafson, E. K. Gustafson, R. Hacker, J. Hall, E. D. Hammond, G. Hanke, M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. Hartman, M. T. Haster, C. -J. Haughian, K. Heidmann, A. Heintze, M. Heinzel, G. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Heptonstall, A. W. Heurs, M. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. Howell, E. J. Hu, Y. M. Huerta, E. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. Jang, H. Jaranowski, P. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, H. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Keiser, G. M. Keitel, D. Kelley, D. B. Kells, W. Keppel, D. G. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M. King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. Koehlenbeck, S. Kokeyama, K. Kondrashov, V. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Kutynia, A. Landry, M. Lantz, B. Larson, S. Lasky, P. D. Lazzarini, A. Lazzaro, C. Lazzaro, C. Le, J. Leaci, P. Leavey, S. Lebigot, E. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. Lewis, J. Li, T. G. F. Libbrecht, K. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Logue, J. Lombardi, A. L. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Lubinski, M. J. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Macarthur, J. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. Mageswaran, M. Maglione, C. Mailand, K. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mangano, V. Mansell, G. L. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. Mclin, K. McWilliams, S. Meacher, D. Meadors, G. D. Meidam, J. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Moggi, A. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moore, B. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nagy, M. F. Nardecchia, I. Nash, T. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, I. Neri, M. Newton, G. Nguyen, T. Nielsen, A. B. Nissanke, S. Nitz, A. H. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. Pai, A. Pai, S. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Papa, M. A. Paris, H. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. Poggiani, R. Post, A. Poteomkin, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qin, J. Quetschke, V. Quintero, E. Quiroga, G. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Raja, S. Rajalakshmi, G. Rakhmanov, M. Ramirez, K. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Reula, O. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sandberg, V. Sanders, J. R. Sannibale, V. Santiago-Prieto, I. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Savage, R. Sawadsky, A. Scheuer, J. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Son, E. J. Sorazu, B. Souradeep, T. Staley, A. Stebbins, J. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. Stone, R. Strain, K. A. Straniero, N. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sutton, P. J. Swinkels, B. Szczepanczyk, M. Szeifert, G. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Tellez, G. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Travasso, F. Traylor, G. Tse, M. Tshilumba, D. Turconi, M. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Vajente, G. Valdes, G. Vallisneri, M. van Bakel, N. van Beuzekom, M. van den Brand, J. F. J. van den Broeck, C. van der Sluys, M. V. van Heijningen, J. van Veggel, A. A. Vass, S. Vasth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vincent-Finley, R. Vinet, J. -Y. Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, P. Wade, A. R. Wade, L. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Was, M. Weaver, B. Wei, L. -W. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Wilkinson, C. Williams, L. Williams, R. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Xie, S. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yang, Q. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Directed search for gravitational waves from Scorpius X-1 with initial LIGO data SO PHYSICAL REVIEW D LA English DT Article ID MAGNETICALLY CONFINED MOUNTAIN; ACCRETING NEUTRON-STARS; MAXIMUM SPIN FREQUENCY; X-RAY BINARIES; RADIATION; PULSARS; EMISSION; CRUSTS; PERIOD; STATE AB We present results of a search for continuously emitted gravitational radiation, directed at the brightest low-mass x-ray binary, Scorpius X-1. Our semicoherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent F-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3 x 10(-24) and 8 x 10(-25) are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof-of-principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of similar to 1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Lazzarini, A.; Li, T. G. F.; Libbrecht, K.; Mageswaran, M.; Mailand, K.; Maros, E.; Martynov, D.; Marx, J. N.; Mclin, K.; Meshkov, S.; Nash, T.; Osthelder, C.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Quintero, E.; Raymond, V.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sannibale, V.; Schmidt, P.; Shao, Z.; Singer, A.; Singer, L.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Taylor, R.; Thirugnanasambandam, M. P.; Thrane, E.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D.; Barbet, M.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Hartman, M. T.; Heintze, M.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M. J.; Doravari, S.; Evans, T.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Romie, J. H.; Sellers, D.; Sturani, R.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Ohme, F.; Pannarale, F.; Predoi, V.; Sathyaprakash, B. S.; Schmidt, P.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, C.; Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Germain, V.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Was, M.; Yvert, M.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V.; Baune, C.; Bergmann, G.; Born, M.; Brinkmann, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Denker, T.; Dooley, K. L.; Eberle, T.; Fricke, T. T.; Gossler, S.; Grote, H.; Hanke, M.; Heinzel, G.; Heurs, M.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Koehlenbeck, S.; Korobko, M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lueck, H.; Mossavi, K.; Mow-Lowry, C. M.; Oppermann, P.; Pal-Singh, A.; Poeld, J.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schuette, D.; Steinke, M.; Tarabrin, S. P.; Theeg, T.; Was, M.; Wessels, P.; Willke, B.; Wimmer, M.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Expt Grp, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bauer, Th. S.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Meidam, J.; Nelemans, G.; Shah, S.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; Veitch, J.] Nikhef, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Donovan, F.; Essick, R.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Libson, A.; Lynch, R.; Macleod, D. M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, A.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Wipf, C. C.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S.; Mitra, S.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Mishra, C.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Alemic, A.; Ballardin, G.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A. H.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Allen, B.; Aulbert, C.; Bock, O.; Dal Canton, T.; Dent, T.; Eggenstein, H. -B.; Fehrmann, H.; Goetz, E.; Indik, N.; Keitel, D.; Keppel, D. G.; Krishnan, B.; Lough, J.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Nielsen, A. B.; Post, A.; Prix, R.; Salemi, F.; Shaltev, M.; Wette, K.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Data Anal Grp, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Brady, P. R.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Creighton, T. D.; Downes, T. P.; Huynh, M.; Kline, J.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, A. R.; Wade, L.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allocca, A.] Univ Siena, I-53100 Siena, Italy. [Allocca, A.; Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Bradaschia, C.; Cella, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Frasconi, F.; Gennai, A.; Giazotto, A.; Moggi, A.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Arceneaux, C.; Cavaglia, M.; Kandhasamy, S.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J.; Islas, G.; Lockett, V.; Padilla, C.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Arnaud, N.; Bizouard, M. A.; Brisson, V.; Diaz, J. Casanueva; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, S.; Aufmuth, P.; Danzmann, K.; Kaufer, H.; Kaufer, S.; Krueger, C.; Lueck, H.; Meinders, M.; Sawadsky, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Astone, P.; Colla, A.; Conte, A.; Franco, S.; Majorana, E.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Ain, A.; Aylott, B. E.; Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, B.; Freise, A.; Haster, C. -J.; Mandel, I.; Miao, H.; Middleton, H.; Sidery, T. L.; Stevenson, S.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Babak, S.; Behnke, B.; Di Palma, I.; Grunewald, S.; Leaci, P.; Ming, J.; Papa, M. A.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Neri, I.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Pisa, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Pisa, Italy. [Barclay, S.; Barr, B.; Bell, A. S.; Bell, C.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Fan, X.; Gordon, N.; Graff, P. B.; Grant, A.; Hammond, G.; Hart, M.; Haughian, K.; Hendry, M.; Heng, I. S.; Houston, E.; Jones, D. I.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Robinet, F.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Clara, F.; Cook, D.; Dwyer, S.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; King, P. J.; Kissel, J. S.; Landry, M.; Levin, Y.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Pele, A.; Raab, F. J.; Radkins, H.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vo, T.; Vorvick, C.; Warner, J.; Weaver, B.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barsuglia, M.; Buy, C.; Capocasa, E.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,AstroParticule & Cosmol,CNRS IN2P3,CEA Irfu, F-75205 Paris 13, France. [Bartos, I.; Countryman, S.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Buchman, S.; Debra, D.; Fejer, M. M.; Keiser, G. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Markosyan, A.; Paris, H.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA. [Basti, A.; Bonelli, L.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Benacquista, M.; Creighton, T. D.; Dartez, L.; Daveloza, H.; Diaz, M.; Fuentes-Tapia, S.; Key, J. S.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Ramirez, K.; Stone, R.; Tellez, G.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; Pai, S.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Blackburn, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, C. D.; Blair, D.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Nedlands, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Coulon, J. -P.; Dereli, H.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Man, N.; Martellini, L.; Meacher, D.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Univ Nice Sophia Antipolis, CNRS, ARTEMIS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Coulon, J. -P.; Fournier, J. -D.; Gendre, B.; Heitmann, H.; Man, N.; Martellini, L.; Meacher, D.; Pichot, M.; Regimbau, T.; Siellez, K.; Turconi, M.; Vinet, J. -Y.; Wei, L. -W.] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Szeifert, G.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bose, Sukanta; Magee, R.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Harms, J.; Losurdo, G.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Hardwick, T.; Quitzow-James, R.; Roma, V.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Capano, C. D.; Cho, M.; Shawhan, P.; Taracchini, A.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Hoak, D.; Lazzaro, C.; Lombardi, A. L.; Mclin, K.; Nedkova, K.; Zuraw, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, Lab Mat Avances, F-69622 Villeurbanne, France. [Calderon Bustillo, J.; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Univ Naples Federico II, I-80126 Naples, Italy. [Cannon, K. C.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Lebigot, E. O.; Wang, X.; Yang, Q.; Zhang, Fan] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Cutler, C.; Gossan, S.; Nissanke, S.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Lorenzini, M.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Frasca, S.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C.; Tshilumba, D.; Xie, S.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.; Mclin, K.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Daw, E. J.; Edo, T.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasth, M.] RMKI, Wigner RCP, H-1121 Budapest, Hungary. [Dojcinoski, G.; Favata, M.; Moore, B.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Maglione, C.; Ortega, W.; Quiroga, G.; Reula, O.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Drago, M.; Leonardi, M.; Prodi, G. A.] Univ Trento, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy. [Farr, B.; Kalogera, V.; Larson, S.; Le, J.; Littenberg, T. B.; Scheuer, J.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Gair, J. R.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tapai, M.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Hughey, B.; Szczepanczyk, M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hanna, C.; Idrisy, A.; Inta, R.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E.; McWilliams, S.] W Virginia Univ, Morgantown, WV 26506 USA. [Iyer, B. R.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Mazumder, N.; Pai, A.; Saleem, M.] IISER TVM, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Poteomkin, A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.; Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Kumar, A.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Lasky, P. D.; Melatos, A.; Sammut, L.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Lazzaro, C.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Levin, Y.; Premachandra, S.] Monash Univ, Clayton, Vic 3800, Australia. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.; Vincent-Finley, R.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Vincent-Finley, R.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Miller, A.; Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [Ogin, G. H.] Whitman Coll, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Taejon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rajalakshmi, G.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Schnabel, R.] Univ Hamburg, D-22761 Hamburg, Germany. [Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Strigin, Sergey/I-8337-2012; Leonardi, Matteo/G-9694-2015; Danilishin, Stefan/K-7262-2012; Sigg, Daniel/I-4308-2015; Puppo, Paola/J-4250-2012; Tacca, Matteo/J-1599-2015; M, Manjunath/N-4000-2014; Vecchio, Alberto/F-8310-2015; Gemme, Gianluca/C-7233-2008; Iyer, Bala R./E-2894-2012; Mow-Lowry, Conor/F-8843-2015; Graef, Christian/J-3167-2015; Bell, Angus/E-7312-2011; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Deleglise, Samuel/B-1599-2015; Neri, Igor/F-1482-2010; Aggarwal, Nancy/M-7203-2015; Steinlechner, Sebastian/D-5781-2013; Shaddock, Daniel/A-7534-2011; Vicere, Andrea/J-1742-2012; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Costa, Cesar/G-7588-2012; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Groot, Paul/K-4391-2016; Ferrante, Isidoro/F-1017-2012; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Strain, Kenneth/D-5236-2011; Miao, Haixing/O-1300-2013; Gammaitoni, Luca/B-5375-2009; Gorodetsky, Michael/C-5938-2008; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Nelemans, Gijs/D-3177-2012; Ott, Christian/G-2651-2011; Marchesoni, Fabio/A-1920-2008; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; OI prodi, giovanni/0000-0001-5256-915X; Danilishin, Stefan/0000-0001-7758-7493; Sigg, Daniel/0000-0003-4606-6526; Puppo, Paola/0000-0003-4677-5015; Tacca, Matteo/0000-0003-1353-0441; M, Manjunath/0000-0001-8710-0730; Vecchio, Alberto/0000-0002-6254-1617; Gemme, Gianluca/0000-0002-1127-7406; Iyer, Bala R./0000-0002-4141-5179; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Graef, Christian/0000-0002-4535-2603; Bell, Angus/0000-0003-1523-0821; Garufi, Fabio/0000-0003-1391-6168; Deleglise, Samuel/0000-0002-8680-5170; Neri, Igor/0000-0002-9047-9822; Steinlechner, Sebastian/0000-0003-4710-8548; Shaddock, Daniel/0000-0002-6885-3494; Vicere, Andrea/0000-0003-0624-6231; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Whelan, John/0000-0001-5710-6576; Aulbert, Carsten/0000-0002-1481-8319; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Prix, Reinhard/0000-0002-3789-6424; Swinkels, Bas/0000-0002-3066-3601; Lazzaro, Claudia/0000-0001-5993-3372; De Laurentis, Martina/0000-0002-3815-4078; Groot, Paul/0000-0002-4488-726X; Ferrante, Isidoro/0000-0002-0083-7228; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Strain, Kenneth/0000-0002-2066-5355; Miao, Haixing/0000-0003-4101-9958; Gammaitoni, Luca/0000-0002-4972-7062; Gorodetsky, Michael/0000-0002-5159-2742; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Nelemans, Gijs/0000-0002-0752-2974; Ott, Christian/0000-0003-4993-2055; Marchesoni, Fabio/0000-0001-9240-6793; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Addesso, Paolo/0000-0003-0895-184X; Naticchioni, Luca/0000-0003-2918-0730; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Bondu, Francois/0000-0001-6487-5197; Gatto, Alberto/0000-0001-9090-983X; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Collette, Christophe/0000-0002-4430-3703; Pierro, Vincenzo/0000-0002-6020-5521; Coccia, Eugenio/0000-0002-6669-5787; Vetrano, Flavio/0000-0002-7523-4296; Denker, Timo/0000-0003-1259-5315; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293 FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; EGO consortium; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French Centre National de la Recherche Scientifique (CNRS) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educacio, Cultura i Universitats of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. NR 47 TC 17 Z9 17 U1 7 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 26 PY 2015 VL 91 IS 6 AR UNSP 062008 DI 10.1103/PhysRevD.91.062008 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE7NA UT WOS:000352027200001 ER PT J AU Tombesi, F Melendez, M Veilleux, S Reeves, JN Gonzalez-Alfonso, E Reynolds, CS AF Tombesi, F. Melendez, M. Veilleux, S. Reeves, J. N. Gonzalez-Alfonso, E. Reynolds, C. S. TI Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy SO NATURE LA English DT Article ID ULTRALUMINOUS INFRARED GALAXIES; QUASAR FEEDBACK; X-RAY; GALACTIC NUCLEI; HERSCHEL-PACS; LOCAL ULIRGS; AGN; MERGERS; DRIVEN; ENERGY AB Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies(1,2). Recent observations of large-scale molecular outflows(3-8) in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoreticalmodels(9-12) suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete(3-8) because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk wind shave until now focused only on X-ray observations of local Seyfert galaxies(13,14) and a few higher-redshift quasars(15-19). Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow(6). The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity(6) of 1.5 x 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism(9-12) that is the basis of the quasar feedback(1) in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). C1 [Tombesi, F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.; Melendez, M.; Veilleux, S.; Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.; Melendez, M.; Veilleux, S.; Reynolds, C. S.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Veilleux, S.; Reynolds, C. S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Reeves, J. N.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Reeves, J. N.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Gonzalez-Alfonso, E.] Univ Alcala De Henares, Dept Fis & Matemat, E-28871 Madrid, Spain. RP Tombesi, F (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. EM ftombesi@astro.umd.edu FU NASA [NNX12AH40G, NHSC/JPL RSA 1427277, 1454738, NNX14AF86G]; STFC; Spanish Ministerio de Economia y Competitividad [AYA2010-21697-C05-0, FIS2012-39162-C06-01]; US National Science Foundation [AST1333514]; [NSF-AST1009583] FX F.T. would like to thank T. Kallman, J. Garcia, F. Tazaki, F. Paerels and M. Cappi for comments. F.T. acknowledges support from NASA (grant NNX12AH40G). M.M. and S.V. are supported in part by NASA grants NHSC/JPL RSA 1427277 and 1454738. S.V. also acknowledges partial support through grant NSF-AST1009583. J.N.R. acknowledges the financial support of the STFC. E.G.-A. is a Research Associate at the Harvard-Smithsonian Center for Astrophysics, and thanks the Spanish Ministerio de Economia y Competitividad for support under projects AYA2010-21697-C05-0 and FIS2012-39162-C06-01. C.S.R. thanks support from NASA (grant NNX14AF86G) and the US National Science Foundation (grant AST1333514). NR 35 TC 55 Z9 55 U1 1 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAR 26 PY 2015 VL 519 IS 7544 BP 436 EP + DI 10.1038/nature14261 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CE1WF UT WOS:000351602800048 PM 25810204 ER PT J AU Tan, J Jakob, C Rossow, WB Tselioudis, G AF Tan, Jackson Jakob, Christian Rossow, William B. Tselioudis, George TI Increases in tropical rainfall driven by changes in frequency of organized deep convection SO NATURE LA English DT Article ID PACIFIC CLOUD REGIMES; WESTERN PACIFIC; WEATHER STATES; GLOBAL PRECIPITATION; HYDROLOGICAL CYCLE; ISCCP; IDENTIFICATION; PATTERNS; RICHER AB Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle(1). This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter'(1-7) and 'warmer-gets-wetter'(5,8,9). These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models(10), our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate. C1 [Tan, Jackson; Jakob, Christian] Monash Univ, Sch Earth Atmosphere & Environm, ARC Ctr Excellence Climate Syst Sci, Clayton, Vic 3800, Australia. [Rossow, William B.] CUNY City Coll, CREST Inst, New York, NY 10031 USA. [Tselioudis, George] NASA, Goddard Inst Space Studies, New York, NY 10027 USA. RP Tan, J (reprint author), Monash Univ, Sch Earth Atmosphere & Environm, ARC Ctr Excellence Climate Syst Sci, Clayton, Vic 3800, Australia. EM jackson.tan@nasa.gov RI Rossow, William/F-3138-2015; Jakob, Christian/A-1082-2010; OI Jakob, Christian/0000-0002-5012-3207; Tan, Jackson/0000-0001-7085-3074 FU Australian Research Council Centre of Excellence for Climate System Science [CE110001028]; NASA [NNX13AO39G]; NASA; Monash University FX We thank S. Sherwood and B. Stevens for comments on the study. The GPCP combined precipitation data were developed and computed by the NASA/Goddard Space Flight Centre's Mesoscale Atmospheric Processes Laboratory as a contribution to the GEWEX Global Precipitation Climatology Project, and provided by National Oceanic and Atmospheric Administration (NOAA) Office of Oceanic and Atmospheric Research and Earth System Research Laboratory Physical Sciences Division (PSD) at http://www.esrl.noaa.gov/psd/. The TRMM 3B42 and 3A25 data were provided by the NASA/Goddard Space Flight Center's Mesoscale Atmospheric Processes Laboratory and Precipitation Processing System as a contribution to TRMM, and archived at the NASA Goddard Earth Sciences Data and Information Services Center. J.T. and C.J. are funded under the Australian Research Council Centre of Excellence for Climate System Science (CE110001028). W.B.R. is supported by NASA grant NNX13AO39G. G.T. acknowledges the support of the NASA Modeling Analysis and Prediction (MAP) programme managed by D. Considine. J.T. acknowledges support from the Monash University Postgraduate Publication Award. NR 30 TC 19 Z9 19 U1 0 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAR 26 PY 2015 VL 519 IS 7544 BP 451 EP + DI 10.1038/nature14339 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CE1WF UT WOS:000351602800052 PM 25810207 ER PT J AU Franz, BA Bailey, SW Kuring, N Werdell, PJ AF Franz, Bryan A. Bailey, Sean W. Kuring, Norman Werdell, P. Jeremy TI Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE ocean color; remote sensing; optical oceanography ID SUSPENDED SEDIMENT CONCENTRATIONS; INHERENT OPTICAL-PROPERTIES; ON-ORBIT; ATMOSPHERIC CORRECTION; RADIOMETRIC CHARACTERIZATION; VICARIOUS CALIBRATION; SEAWIFS; WATER; SATELLITE; REFLECTANCE AB The Operational Land Imager (OLI) is a multispectral radiometer hosted on the recently launched Landsat8 satellite. OLI includes a suite of relatively narrow spectral bands at 30 m spatial resolution in the visible to shortwave infrared, which makes it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of spaceborne multispectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote sensing reflectance (Rrs; sr(-1)). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents, such as the concentration of the phytoplankton pigment chlorophyll a. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Franz, Bryan A.; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bailey, Sean W.] Futuretech Corp, Greenbelt, MD 20770 USA. RP Franz, BA (reprint author), NASA, Goddard Space Flight Ctr, Code 616-2, Greenbelt, MD 20771 USA. EM bryan.a.franz@nasa.gov RI Bailey, Sean/D-3077-2017 OI Bailey, Sean/0000-0001-8339-9763 NR 49 TC 5 Z9 5 U1 4 U2 31 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD MAR 25 PY 2015 VL 9 AR 096070 DI 10.1117/1.JRS.9.096070 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CF8TU UT WOS:000352835600001 ER PT J AU Lau, WKM Kim, KM AF Lau, William K. M. Kim, Kyu-Myong TI Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Hadley Circulation; global dryness; global warming; drought ID CLIMATE SENSITIVITY; TROPICAL CIRCULATION; TRENDS; PRECIPITATION; SIMULATIONS; CONSISTENT; EXPANSION; RESPONSES; FUTURE; SHIFT AB In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness (suppressed rainfall and reduced tropospheric relative humidity) under CO2 warming from Coupled Model Intercomparison Project Phase 5 (CMIP5) model projections. We find a strengthening of the HC manifested in a "deep-tropics squeeze" (DTS), i.e., a deepening and narrowing of the convective zone, enhanced ascent, increased high clouds, suppressed low clouds, and a rise of the level of maximum meridional mass outflowin the upper troposphere (200-100 hPa) of the deep tropics. The DTS induces atmospheric moisture divergence and reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among various water-cycle parameters examined, global dryness is found to have the highest signal-to-noise ratio. Our results provide a physical basis for inferring that greenhouse warming is likely to contribute to the observed prolonged droughts worldwide in recent decades. C1 [Lau, William K. M.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Kim, Kyu-Myong] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA. RP Lau, WKM (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM wkmlau@umd.edu RI Kim, Kyu-Myong/G-5398-2014; Lau, William /E-1510-2012 OI Lau, William /0000-0002-3587-3691 FU Strategic Science Investment fund at NASA Goddard Space Flight Center; Precipitation Measuring Mission; Modeling Analysis and Prediction program of NASA Headquarters; National Science Foundation [111835] FX The revision of this paper benefited from constructive comments from two anonymous reviewers. This work was partially supported by the Strategic Science Investment fund at NASA Goddard Space Flight Center, the Precipitation Measuring Mission, and the Modeling Analysis and Prediction program of NASA Headquarters. Partial support from National Science Foundation Grant 111835 was also provided to W.K.M.L. NR 39 TC 14 Z9 14 U1 3 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 24 PY 2015 VL 112 IS 12 BP 3630 EP 3635 DI 10.1073/pnas.1418682112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CE0EJ UT WOS:000351477000031 PM 25713344 ER PT J AU Hirano, S Hosokawa, T Yoshida, N Omukai, K Yorke, HW AF Hirano, S. Hosokawa, T. Yoshida, N. Omukai, K. Yorke, H. W. TI Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological haloes and the stellar mass distribution SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: numerical; stars: formation; stars: luminosity function, mass function; stars: Population III; dark ages, reionization, first stars ID POPULATION III STARS; MAGNETIC-FIELD AMPLIFICATION; SUPERMASSIVE BLACK-HOLES; LAMBDA-CDM UNIVERSE; COLD-DARK-MATTER; METAL-POOR STARS; 1ST STARS; PROTOSTELLAR FEEDBACK; PROTOSTARS; ACCRETION AB We perform a large set of cosmological simulations of early structure formation and follow the formation and evolution of 1540 star-forming gas clouds to derive the mass distribution of primordial stars. The star formation in our cosmological simulations is characterized by two distinct populations, the so-called Population III. 1 stars and primordial stars formed under the influence of far-ultraviolet (FUV) radiation (Population III. 2(D) stars). In this work, we determine the stellar masses by using the dependences on the physical properties of star-forming cloud and/or the external photo-dissociating intensity from nearby primordial stars, which are derived from the results of 2D radiation hydrodynamic simulations of protostellar feedback. The characteristic mass of the Pop III stars is found to be a few hundred solarmasses at z similar to 25, and it gradually shifts to lower masses with decreasing redshift. At high redshifts z > 20, about half of the star-forming gas clouds are exposed to intense FUV radiation and thus give birth to massive Pop III. 2(D) stars. However, the local FUV radiation by nearby Pop III stars becomes weaker at lower redshifts, when typical Pop III stars have smaller masses and the mean physical separation between the stars becomes large owing to cosmic expansion. Therefore, at z < 20, a large fraction of the primordial gas clouds host Pop III. 1 stars. At z less than or similar to 15, the Pop III.1 stars are formed in relatively cool gas clouds due to efficient radiative cooling by H-2 and HD molecules; such stars have masses of a few x 10 M-circle dot. Since the stellar evolution and the final fate are determined by the stellar mass, Pop III stars formed at different epochs play different roles in the early universe. C1 [Hirano, S.] Univ Tokyo, Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Hosokawa, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Hosokawa, T.] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Yoshida, N.] Univ Tokyo, Dept Phys, Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Yoshida, N.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Omukai, K.] Tohoku Univ, Astron Inst, Sendai, Miyagi 9808578, Japan. [Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hirano, S (reprint author), Univ Tokyo, Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. EM hirano@astron.s.u-tokyo.ac.jp FU Ministry of Education, Science and Culture of Japan [25800102, 25287050]; National Aeronautics and Space Administration (NASA) FX We thank Masahiro M. Machida, Hajime Susa, Kenji Hasegawa, and Kohei Inayoshi for stimulating discussions. We also thank the anonymous referee, whose careful comments improved the clarity of this paper. The numerical calculations were carried out on Cray XC30 and the general-purpose PC farm at Center for Computational Astrophysics, CfCA, of National Astronomical Observatory of Japan, T2K-Tsukuba System at Center for Computational Sciences, University of Tsukuba, and SR16000 at YITP in Kyoto University. This work was supported by Grant-in-Aid for JSPS Fellows (SH) and by the Grants-in-Aid for Basic Researches by the Ministry of Education, Science and Culture of Japan (25800102: TH, 25287050: NY). Portions of this research were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). NR 66 TC 26 Z9 26 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 21 PY 2015 VL 448 IS 1 BP 568 EP 587 DI 10.1093/mnras/stv044 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CC3TS UT WOS:000350273500037 ER PT J AU Grudinin, IS Yu, N AF Grudinin, Ivan S. Yu, Nan TI Dispersion engineering of crystalline resonators via microstructuring SO OPTICA LA English DT Article ID WHISPERING-GALLERY MODES; KERR FREQUENCY COMBS; SILICON-NITRIDE; OPTICAL RESONATORS; MICRORESONATORS; GENERATION AB Record quality factors and large selection of materials make optical crystalline resonators attractive for emerging areas of research. While basic parameters of a resonator are important, fine-tuning of its mode frequencies can dramatically improve efficiency of nonlinear optical interactions. However, dispersion engineering of high-quality crystalline resonators has not been reported due to limitations of existing methods. Moreover, spectral and dispersion engineering often cannot be effectively combined in demonstrated approaches. Here, we show by numerical modeling that dispersion can be engineered by microstructuring the light-guiding boundary of a resonator that is built around an axially symmetric substrate. We experimentally demonstrate ultrahigh-quality-factor (1 x 10(8)) crystalline resonators capable of generating Kerr combs with expanded bandwidth. The new approach enables spectral and dispersion engineering flexibility in any resonator with axial symmetry that can support a photonic belt structure. (C) 2015 Optical Society of America C1 [Grudinin, Ivan S.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Grudinin, IS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM grudinin@jpl.nasa.gov NR 36 TC 23 Z9 23 U1 0 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2334-2536 J9 OPTICA JI Optica PD MAR 20 PY 2015 VL 2 IS 3 BP 221 EP 224 DI 10.1364/OPTICA.2.000221 PG 4 WC Optics SC Optics GA CI6KE UT WOS:000354867000005 ER PT J AU Auchettl, K Slane, P Romani, RW Posselt, B Pavlov, GG Kargaltsev, O Ng, CY Temim, T Weisskopf, MC Bykov, A Swartz, DA AF Auchettl, Katie Slane, Patrick Romani, Roger W. Posselt, Bettina Pavlov, George G. Kargaltsev, Oleg Ng, C-Y. Temim, Tea Weisskopf, Martin. C. Bykov, Andrei Swartz, Douglas A. TI X-RAY ANALYSIS OF THE PROPER MOTION AND PULSAR WIND NEBULA FOR PSR J1741-2054 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (PSR J1741-2054); X-rays: general ID NEUTRON-STAR; DISTRIBUTIONS; LAT AB We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling similar to 300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at mu = 109 +/- 10 mas yr(-1) in a direction consistent with the symmetry axis of the observed Ha nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index Gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(-2.5)(+3.2)) d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of Gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures. C1 [Auchettl, Katie; Slane, Patrick] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Auchettl, Katie] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia. [Romani, Roger W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Posselt, Bettina; Pavlov, George G.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Kargaltsev, Oleg] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Ng, C-Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Temim, Tea] NASA Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Temim, Tea] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Weisskopf, Martin. C.; Swartz, Douglas A.] NASA Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Bykov, Andrei] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Bykov, Andrei] St Petersburg State Politech Univ, St Petersburg, Russia. RP Auchettl, K (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Bykov, Andrei/E-3131-2014; OI Posselt, Bettina/0000-0003-2317-9747; /0000-0002-5847-2612; Temim, Tea/0000-0001-7380-3144 NR 17 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2015 VL 802 IS 1 AR 68 DI 10.1088/0004-637X/802/1/68 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE4XW UT WOS:000351834700068 ER PT J AU Chen, CTJ Hickox, RC Alberts, S Harrison, CM Alexander, DM Assef, R Brodwin, M Brown, MJI Del Moro, A Forman, WR Gorjian, V Goulding, AD Hainline, KN Jones, C Kochanek, CS Murray, SS Pope, A Rovilos, E Stern, D AF Chen, Chien-Ting J. Hickox, Ryan C. Alberts, Stacey Harrison, Chris M. Alexander, David M. Assef, Roberto Brodwin, Mark Brown, Michael J. I. Del Moro, Agnese Forman, William R. Gorjian, Varoujan Goulding, Andrew D. Hainline, Kevin N. Jones, Christine Kochanek, Christopher S. Murray, Stephen S. Pope, Alexandra Rovilos, Emmanouel Stern, Daniel TI A CONNECTION BETWEEN OBSCURATION AND STAR FORMATION IN LUMINOUS QUASARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: starburst; infrared: galaxies; quasars: general; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; X-RAY-EMISSION; HEAVILY OBSCURED QUASARS; XMM-NEWTON OBSERVATIONS; BLACK-HOLE ACCRETION; IRAC SHALLOW SURVEY; WIDE-FIELD SURVEY; HOST GALAXIES AB We present a measurement of the star formation properties of a uniform sample of mid-IR-selected, optically unobscured, and obscured quasars (QSO1s and QSO2s) in the Bootes. survey region. We use a spectral energy distribution analysis for photometric data spanning optical to far-IR wavelengths to separate the active galactic nucleus (AGN) and host galaxy components. We find that when compared to a matched sample of QSO1s, the QSO2s have roughly twice the far-IR detection fractions, far-IR fluxes, and infrared star formation luminosities (L-IR(SF)). Correspondingly, we show that the AGN obscured fraction rises from 0.3 to 0.7 between (4-40) x 10(11)L(circle dot). We also find evidence associating X-ray absorption with the presence of far-IR-emitting dust. Overall, these results are consistent with galaxy evolution models in which quasar obscuration is associated with. dust-enshrouded starburst galaxies. C1 [Chen, Chien-Ting J.; Hickox, Ryan C.; Hainline, Kevin N.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. [Alberts, Stacey; Pope, Alexandra] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Harrison, Chris M.; Alexander, David M.; Del Moro, Agnese; Rovilos, Emmanouel] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Assef, Roberto] Univ Diego Portales, Nucleo Astron, Fac Ingn, Santiago, Chile. [Brodwin, Mark] Univ Missouri, Kansas City, MO 64110 USA. [Brown, Michael J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Forman, William R.; Goulding, Andrew D.; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gorjian, Varoujan; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Murray, Stephen S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Chen, CTJ (reprint author), Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. EM ctchen@dartmouth.edu RI Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Chen, Chien-Ting/0000-0002-4945-5079; Forman, William/0000-0002-9478-1682 FU Gemini-CONICYT [32120009]; NASA through ADAP Award [NNX12AE38G]; National Science Foundation [1211096]; Science and Technologies Facilities Council (STFC) [ST/I001573/1]; Leverhulme Trust; Alfred P. Sloan Research Fellowship; Dartmouth Class of Faculty Fellowship; Dartmouth Fellowship; William H. Neukom Institute for Computational Science; [NAS8-03060] FX We thank the anonymous referee for a careful reading of the manuscript and helpful suggestions that strengthened this paper greatly. We thank our colleagues on the AGES, ISS, SDWFS, NDWFS, and the XBootes. teams. and the HerMES team for making the data publicly available. The first Spitzer MIPS survey of the Bootes. region was obtained using GTO time provided by the Spitzer Infrared Spectrograph Team (PI,. James Houck) and by M. Rieke. We thank the collaborators in that work for access to the 24 mu m. catalog generated from those data by Emeric Le Floc'h. This work was supported under Contract NAS8-03060. R.J.A. was supported by Gemini-CONICYT Grant 32120009. K.N.H and R.C.H. were partially supported by NASA through ADAP Award NNX12AE38G and by the National Science Foundation through Grant 1211096. This work was also supported by Science and Technologies Facilities Council (STFC) grant ST/I001573/1 (D.M.A. and A.D.M.) and the Leverhulme Trust (D.M.A.). R.C.H. acknowledges support from an Alfred P. Sloan Research Fellowship and Dartmouth Class of 1962 Faculty Fellowship. C.-T. J.C was supported by a Dartmouth Fellowship and the William H. Neukom 1964 Institute for Computational Science. NR 112 TC 11 Z9 11 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2015 VL 802 IS 1 AR 50 DI 10.1088/0004-637X/802/1/50 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE4XW UT WOS:000351834700050 ER PT J AU Grefenstette, BW Reynolds, SP Harrison, FA Humensky, TB Boggs, SE Fryer, CL DeLaney, T Madsen, KK Miyasaka, H Wik, DR Zoglauer, A Forster, K Kitaguchi, T Lopez, L Nynka, M Christensen, FE Craig, WW Hailey, CJ Stern, D Zhang, WW AF Grefenstette, Brian W. Reynolds, Stephen P. Harrison, Fiona A. Humensky, T. Brian Boggs, Steven E. Fryer, Chris L. DeLaney, Tracey Madsen, Kristin K. Miyasaka, Hiromasa Wik, Daniel R. Zoglauer, Andreas Forster, Karl Kitaguchi, Takao Lopez, Laura Nynka, Melania Christensen, Finn E. Craig, William W. Hailey, Charles J. Stern, Daniel Zhang, William W. TI LOCATING THE MOST ENERGETIC ELECTRONS IN CASSIOPEIA A SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: individual objects (Cassiopeia A); ISM: supernova remnants; radiation mechanisms: non-thermal; X-rays: ISM ID SUPERNOVA REMNANT CASSIOPEIA; X-RAY-EMISSION; PARTICLE-ACCELERATION; SYNCHROTRON EMISSION; MAGNETIC-FIELD; A SUPERNOVA; TI-44; EJECTA; SHELL; CONSTRAINTS AB We present deep (>2.4 Ms) observations of the Cassiopeia A supernova remnant with NuSTAR, which operates in the 3-79 keV bandpass and is the first instrument capable of spatially resolving the remnant above 15 keV. We find that the emission is not entirely dominated by the forward shock nor by a smooth "bright ring" at the reverse shock. Instead we find that the >15 keV emission is dominated by knots near the center of the remnant and dimmer filaments near the remnant's outer rim. These regions are fit with unbroken power laws in the 15-50 keV bandpass, though the central knots have a steeper (Gamma similar to-3.35) spectrum than the outer filaments (Gamma similar to-3.06). We argue this difference implies that the central knots are located in the 3-D interior of the remnant rather than at the outer rim of the remnant and seen in the center due to projection effects. The morphology of >15 keV emission does not follow that of the radio emission nor that of the low energy (<12 keV) X-rays, leaving the origin of the >15 keV emission an open mystery. Even at the forward shock front we find less steepening of the spectrum than expected from an exponentially cut off electron distribution with a single cutoff energy. Finally, we find that the GeV emission is not associated with the bright features in the NuSTAR band while the TeV emission may be, suggesting that both hadronic and leptonic emission mechanisms may be at work. C1 [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.; Miyasaka, Hiromasa; Forster, Karl] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Humensky, T. Brian] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Boggs, Steven E.; Zoglauer, Andreas; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fryer, Chris L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [DeLaney, Tracey; Zhang, William W.] West Virginia Wesleyan Coll, Phys & Engn Dept, Buckhannon, WV 26201 USA. [Wik, Daniel R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Wik, Daniel R.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kitaguchi, Takao] RIKEN, Wako, Saitama 3510198, Japan. [Lopez, Laura] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Nynka, Melania; Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Grefenstette, BW (reprint author), CALTECH, Cahill Ctr Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA. EM bwgref@srl.caltech.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891 FU NASA [NNG08FD60C]; NASA FX B.G. thanks Una Hwang for the Chandra 4-6 keV band image. This work was supported under NASA contract NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS), jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 51 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2015 VL 802 IS 1 AR 15 DI 10.1088/0004-637X/802/1/15 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE4XW UT WOS:000351834700015 ER PT J AU Hu, RY Demory, BO Seager, S Lewis, N Showman, AP AF Hu, Renyu Demory, Brice-Olivier Seager, Sara Lewis, Nikole Showman, Adam P. TI A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER-7 B AND KEPLER-10 B SO ASTROPHYSICAL JOURNAL LA English DT Article DE atmospheric effects; planets and satellites: individual (Kepler-7 b, Kepler-10 b); radiative transfer; techniques: photometric ID TIDALLY LOCKED EXOPLANETS; EXTRASOLAR GIANT PLANETS; ATMOSPHERIC CIRCULATION; HOT JUPITERS; LIGHT CURVES; HD 189733B; THEORETICAL SPECTRA; TRANSITING PLANETS; HEAT REDISTRIBUTION; ECCENTRIC ORBITS AB Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler-7 b and the rocky planet Kepler-10 b using the model. In general, we find that a hot exoplanet's visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler-7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11 degrees +/- 3 degrees to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces. C1 [Hu, Renyu] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hu, Renyu] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Demory, Brice-Olivier] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Seager, Sara; Lewis, Nikole] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Seager, Sara] MIT, Dept Phys, Cambridge, MA 02139 USA. [Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. RP Hu, RY (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM renyu.hu@jpl.nasa.gov OI Demory, Brice-Olivier/0000-0002-9355-5165 FU NASA Science Mission directorate; NASA through Hubble Fellowship [51332]; Space Telescope Science Institute [NAS 5-26555]; NASA through the Sagan Fellowship Program FX RH thanks Avi Shporer for providing the program to compute ingress and egress shapes, Tiffany Kataria for making available preliminary 3D atmospheric circulation simulations, Edwin Kite for discussion on the molten lava planet, Feng Tian for discussion on the atmospheric escape of rocky planets, and Wesley Traub and Yuk L. Yung for helpful discussions. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Support for RH's work was provided in part by NASA through Hubble Fellowship grant # 51332 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NKL's work was performed in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. NR 80 TC 16 Z9 16 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2015 VL 802 IS 1 AR 51 DI 10.1088/0004-637X/802/1/51 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE4XW UT WOS:000351834700051 ER PT J AU Liuzzi, G Masiello, G Serio, C Fonti, S Mancarella, F Roush, TL AF Liuzzi, Giuliano Masiello, Guido Serio, Carmine Fonti, Sergio Mancarella, Francesca Roush, Ted L. TI Simultaneous physical retrieval of Martian geophysical parameters using Thermal Emission Spectrometer spectra: the phi-MARS algorithm SO APPLIED OPTICS LA English DT Article ID MGS-TES; ICE CLOUDS; IASI CODE; ATMOSPHERE; WATER; VARIABILITY; RADIANCE; DUST AB In this paper, we present a new methodology for the simultaneous retrieval of surface and atmospheric parameters of Mars. The methodology is essentially based on similar codes implemented for high-resolution instruments looking at Earth, supported by a statistical retrieval procedure used to initialize the physical retrieval algorithm with a reliable first guess of the atmospheric parameters. The methodology has been customized for the Thermal Emission Spectrometer (TES), which is a low-resolution interferometer. However, with minor changes to the forward and inverse modules, it is applicable to any instrument looking at Mars, and with particular effectiveness to high-resolution instruments. The forward module is a monochromatic radiative transfer model with the capability to calculate analytical Jacobians of any desired geophysical parameter. In the present work, we describe the general methodology and its application to a large sample of TES spectra. Results are drawn for the case of surface temperature and emissivity, atmospheric temperature profile, water vapor, and dust and ice mixing ratios. Comparison with climate models and other TES data analyses show very good agreement and consistency. (c) 2015 Optical Society of America C1 [Liuzzi, Giuliano; Masiello, Guido; Serio, Carmine] Univ Basilicata, Scuola Ingn, I-85100 Potenza, Italy. [Masiello, Guido; Serio, Carmine] Univ Basilicata, Unita Ric, CNISM, I-85100 Potenza, Italy. [Fonti, Sergio; Mancarella, Francesca] Univ Salento, Dipartimento Matemat & Fis, I-73100 Lecce, Italy. [Roush, Ted L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Liuzzi, G (reprint author), Univ Basilicata, Scuola Ingn, Via Ateneo Lucano 10, I-85100 Potenza, Italy. EM giuliano.liuzzi@unibas.it RI Masiello, Guido/I-6459-2015; Liuzzi, Giuliano/M-1987-2015; OI Masiello, Guido/0000-0002-7986-8296; Liuzzi, Giuliano/0000-0003-3638-5750 FU Italian Space Agency (ASI) FX The TES dataset used in this work was obtained from the Planetary Data System (PDS). We thank NASA for the VRA program that has allowed one of the authors (S. F.) to spend fruitful research periods at the Ames Research Center. Finally, thanks to the Italian Space Agency (ASI) for the financial support. NR 37 TC 1 Z9 1 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 20 PY 2015 VL 54 IS 9 BP 2334 EP 2346 DI 10.1364/AO.54.002334 PG 13 WC Optics SC Optics GA CE2IC UT WOS:000351638300024 PM 25968519 ER PT J AU Fulle, M Della Corte, V Rotundi, A Weissman, P Juhasz, A Szego, K Sordini, R Ferrari, M Ivanovski, S Lucarelli, F Accolla, M Merouane, S Zakharov, V Epifani, EM Lopez-Moreno, JJ Rodriguez, J Colangeli, L Palumbo, P Grun, E Hilchenbach, M Bussoletti, E Esposito, F Green, SF Lamy, PL McDonnell, JAM Mennella, V Molina, A Morales, R Moreno, F Ortiz, JL Palomba, E Rodrigo, R Zarnecki, JC Cosi, M Giovane, F Gustafson, B Herranz, ML Jeronimo, JM Leese, MR Lopez-Jimenez, AC Altobelli, N AF Fulle, M. Della Corte, V. Rotundi, A. Weissman, P. Juhasz, A. Szego, K. Sordini, R. Ferrari, M. Ivanovski, S. Lucarelli, F. Accolla, M. Merouane, S. Zakharov, V. Epifani, E. Mazzotta Lopez-Moreno, J. J. Rodriguez, J. Colangeli, L. Palumbo, P. Gruen, E. Hilchenbach, M. Bussoletti, E. Esposito, F. Green, S. F. Lamy, P. L. McDonnell, J. A. M. Mennella, V. Molina, A. Morales, R. Moreno, F. Ortiz, J. L. Palomba, E. Rodrigo, R. Zarnecki, J. C. Cosi, M. Giovane, F. Gustafson, B. Herranz, M. L. Jeronimo, J. M. Leese, M. R. Lopez-Jimenez, A. C. Altobelli, N. TI DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV-GERASIMENKO SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE comets: general; comets: individual (67P/Churyumov-Gerasimenko); space vehicles: instruments ID SECONDARY-ELECTRON YIELD; ROSETTA MISSION; DUST; ASTEROIDS; SURFACE; GRAINS AB The Grain Impact Analyzer and Dust Accumulator (GIADA) instrument on board ESA's Rosetta mission is constraining the origin of the dust particles detected within the coma of comet 67 P/Churyumov-Gerasimenko (67P). The collected particles belong to two families: (i) compact particles (ranging in size from 0.03 to 1mm), witnessing the presence of materials that underwent processing within the solar nebula and (ii) fluffy aggregates (ranging in size from 0.2 to 2.5 mm) of sub-micron grains that may be a record of a primitive component, probably linked to interstellar dust. The dynamics of the fluffy aggregates constrain their equivalent bulk density to < 1 kg m(-3). These aggregates are charged, fragmented, and decelerated by the spacecraft negative potential and enter GIADA in showers of fragments at speeds < 1m s(-1). The density of such optically thick aggregates is consistent with the low bulk density of the nucleus. The mass contribution of the fluffy aggregates to the refractory component of the nucleus is negligible and their coma brightness contribution is less than 15%. C1 [Fulle, M.] INAF, Osservatorio Astron, I-34143 Trieste, Italy. [Della Corte, V.; Rotundi, A.; Sordini, R.; Ferrari, M.; Ivanovski, S.; Accolla, M.; Palumbo, P.] INAF, Ist Astrofis & Planetol Spaziali, I-0133 Rome, Italy. [Rotundi, A.; Ferrari, M.; Lucarelli, F.; Accolla, M.; Palumbo, P.; Bussoletti, E.] Univ Napoli Parthenope, CDN IC4, Dip Sci & Tecnol, I-80143 Naples, Italy. [Weissman, P.] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA. [Juhasz, A.; Szego, K.] Wigner Res Ctr Phys, Budapest, Hungary. [Merouane, S.] Max Planck Inst Stromungsforsch, D-37077 Gottingen, Germany. [Zakharov, V.] Univ Paris Diderot, Univ Paris 06, CNRS, LESIA,Obs Paris, F-92195 Meudon, France. [Epifani, E. Mazzotta; Esposito, F.] INAF, Osservatorio Astron Capodimonte, I-80133 Naples, Italy. [Epifani, E. Mazzotta] INAF, Osservatorio Astron Roma, Rome, Italy. [Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Moreno, F.; Ortiz, J. L.; Herranz, M. L.; Jeronimo, J. M.; Lopez-Jimenez, A. C.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Colangeli, L.] ESA, Estec, NL-2201 AZ Noordwijk, Netherlands. [Gruen, E.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Green, S. F.; McDonnell, J. A. M.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Lamy, P. L.] CNRS, UMR 7326, Lab Astrophys Marseilles, F-13388 Marseilles 13, France. [Lamy, P. L.] Aix Marseille Univ, F-13388 Marseilles 13, France. [McDonnell, J. A. M.] Univ Kent, Canterbury CT2 7NZ, Kent, England. [McDonnell, J. A. M.] UnispaceKent, Canterbury CT2 8EF, Kent, England. [Molina, A.] Univ Granada, Fac Ciencias, Dept Fs Aplicada, E-18071 Granada, Spain. [Rodrigo, R.] CSIC, INTA, Ctr Astrobiol, E-28691 Madrid, Spain. [Rodrigo, R.; Zarnecki, J. C.] Int Space Sci Inst, CH-3012 Bern, Switzerland. [Cosi, M.] Selex ES, I-50013 Florence, Italy. [Giovane, F.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Gustafson, B.] Univ Florida, Gainesville, FL 32611 USA. [Altobelli, N.] ESA, ESAC, E-28692 Madrid, Spain. RP Fulle, M (reprint author), INAF, Osservatorio Astron, Via Tiepolo 11, I-34143 Trieste, Italy. EM fulle@oats.inaf.it RI Lopez-Moreno, Jose Juan/C-7976-2011; Lopez Jimenez, Antonio C./L-4738-2014; Green, Simon/C-7408-2009; OI Lopez Jimenez, Antonio C./0000-0002-6297-0681; Esposito, Francesca/0000-0001-9962-1648; Ferrari, Marco/0000-0002-7447-6146; /0000-0002-2242-6147; Rotundi, Alessandra/0000-0001-5467-157X; Lopez-Moreno, Jose Juan/0000-0002-7946-2624; fulle, marco/0000-0001-8435-5287; Palomba, Ernesto/0000-0002-9101-6774; Moreno, Fernando/0000-0003-0670-356X FU Agenzia Spaziale Italiana, IT; Spanish Ministry of Education and Science MEC, ES; NASA through the US Rosetta Project FX GIADA was built by a consortium led by the Univ. Napoli Parthenope & INAF-Oss. Astr. Capodimonte in collaboration with the Inst. de Astrofisica de Andalucia, Selex-ES, FI, and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with the support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a PI proposal from the University of Kent; Sci. & Tech. contribution were provided by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE, and USA. Science support was provided by NASA through the US Rosetta Project managed by the Jet Propulsion Laboratory/California Institute of Technology. GIADA calibrated data will be available through ESA's PSA website (www.rssd.esa.int/index.php?project=PSA&page=index). We would like to thank Angioletta Coradini for her contribution as a GIADA Co-I. We thank the Rosetta Science Ground Segment at ESAC, the Rosetta Mission Operations Centre at ESOC and the Rosetta Project at ESTEC for their outstanding work enabling the science return of the Rosetta Mission. We thank the referee, G.J. Flynn, for having greatly improved the manuscript. NR 25 TC 23 Z9 23 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2015 VL 802 IS 1 AR L12 DI 10.1088/2041-8205/802/1/L12 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE3PK UT WOS:000351739800012 ER PT J AU Lignell, A Gudipati, MS AF Lignell, Antti Gudipati, Murthy S. TI Mixing of the Immiscible: Hydrocarbons in Water-Ice near the Ice Crystallization Temperature SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID KUIPER-BELT OBJECTS; RARE-GAS MATRICES; PYRENE; SPECTROSCOPY; COMETS; ABSORPTION; EVOLUTION; ANALOGS; FLUORESCENCE; AGGREGATION AB Structural changes in hydrocarbon-doped water-ice during amorphous to crystalline phase conversion are investigated using polycyclic aromatic hydrocatbons (PARS) as probes. We show that aggregation of impurity molecules occurs due to the amorphous crystalline transition in ice, especially when they are hydrophobic molecules such as PAHs. Using ultraviolet visible (UV vis), Fourier-transform Infrared (FTIR), and laser-induced-fluorescence (LIP) spectroscopic techniques, we show that, although ice infrared absorption features change from a broad structureless band corresponding to amorphous ice to a sharp structured crystalline ice bands, simultaneously, sharper isolated PAH UV absorption features measured in the amorphous ice host turn broad upon ice crystallization. A simultaneous decrease in the monomer fluorescence and increase in the excimer emission band is observed, a clear indication for the formation of PAR molecular aggregates when amorphous ice is converted to crystalline ice at higher temperatures. Similar to the irreversible amorphous crystalline phase transitions, the UV, fluorescence, and excimer,emissions indicate that PAH's undergo irreversible aggregation. Our studies suggest that organic impurities exist as aggregates rather than monomer's trapped in crystalline water-ice when cycled through temperatures that convert amorphous ice to crystalline ice, rendering a better insight into phenomena such as the formation of cometary crust. This aggregate formation also may significantly change the secondary reaction pathways and rates in impurity-doped ices in the lab, on Earth, in the solar system, and in the interstellar medium. C1 [Lignell, Antti; Gudipati, Murthy S.] CALTECH, Jet Prop Lab, Ice Spect Lab, Div Sci, Pasadena, CA 91109 USA. [Gudipati, Murthy S.] Univ Maryland, IPST, College Pk, MD 20742 USA. RP Gudipati, MS (reprint author), CALTECH, Jet Prop Lab, Ice Spect Lab, Div Sci, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM murthy.gudipati@jpl.nasa.gov RI Lignell, Antti/C-2146-2009; Gudipati, Murthy/F-7575-2011 OI Lignell, Antti/0000-0001-7664-5583; FU NASA; Cassini Data Analysis Programs; Spitzer Science Center; Astrobiology Institute Node Early Habitable Environments (NASA Ames); JPL's DRDF; JPL's RTD FX This research was enabled through partial funding from the following NASA programs: Planetary Atmospheres, Cassini Data Analysis Programs, Spitzer Science Center, and Astrobiology Institute Node Early Habitable Environments (NASA Ames). JPL's DRDF and R&TD funding for infrastructure of the "ice spectroscopy laboratory" is also gratefully acknowledged. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 59 TC 4 Z9 4 U1 5 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 19 PY 2015 VL 119 IS 11 SI SI BP 2607 EP 2613 DI 10.1021/jp509513s PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CE1FK UT WOS:000351557300046 PM 25302532 ER PT J AU Turner, JL Beck, SC Benford, DJ Consiglio, SM Ho, PTP Kovacs, A Meier, DS Zhao, JH AF Turner, J. L. Beck, S. C. Benford, D. J. Consiglio, S. M. Ho, P. T. P. Kovacs, A. Meier, D. S. Zhao, J-H. TI Highly efficient star formation in NGC 5253 possibly from stream-fed accretion SO NATURE LA English DT Article ID SMALL-MAGELLANIC-CLOUD; GALAXY NGC-5253; DWARF GALAXIES; CENTRAL REGION; COLD STREAMS; GAS; CLUSTER; STARBURST; DUST; SPECTROSCOPY AB Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang(1) and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges'. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation(3). Here we report the detection of the J = 3 -> 2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 percent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy. C1 [Turner, J. L.; Consiglio, S. M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beck, S. C.] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Ramat Aviv, Israel. [Benford, D. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Ho, P. T. P.] Acad Sinica, Astron & Astrophys, Taipei 10617, Taiwan. [Kovacs, A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Kovacs, A.] Univ Minnesota, Inst Astrophys, Minneapolis, MN 55405 USA. [Meier, D. S.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM USA. [Meier, D. S.] Natl Radio Astron Observ, Socorro, NM USA. [Zhao, J-H.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Turner, JL (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM turner@astro.ucla.edu RI Kovacs, Attila/C-1171-2010; Benford, Dominic/D-4760-2012 OI Kovacs, Attila/0000-0001-8991-9088; Benford, Dominic/0000-0002-9884-4206 FU Smithsonian Institution; Academica Sinica FX We thank J. Carpenter, S. Goodwin, M. Heyer, L. Hunt, R. Hurt, M. Jura, C. Lada, C. Leitherer and S. Van Dyk for assistance with the analysis. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academica Sinica. NR 36 TC 13 Z9 13 U1 1 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAR 19 PY 2015 VL 519 IS 7543 BP 331 EP + DI 10.1038/nature14218 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CD6AY UT WOS:000351171900036 PM 25788096 ER PT J AU Bizimis, M Peslier, AH AF Bizimis, Michael Peslier, Anne H. TI Water in Hawaiian garnet pyroxenites: Implications for water heterogeneity in the mantle SO CHEMICAL GEOLOGY LA English DT Article DE Water; Garnet pyroxenites; FTIR; Recycling; Lithosphere ID OCEAN-ISLAND BASALTS; QUANTITATIVE ABSORBENCY SPECTROSCOPY; HF ISOTOPE CONSTRAINTS; TRACE-ELEMENT EVIDENCE; EARTHS UPPER-MANTLE; SALT-LAKE-CRATER; HIGH-PRESSURE; MELT INCLUSIONS; PARTITION-COEFFICIENTS; PERIDOTITE XENOLITHS AB Mapping the compositional variability of the Earth's mantle is fundamental for understanding mantle dynamics, crustal recycling and melt generation. The geochemistry of intraplate oceanic basalts in particular points to a heterogeneous convecting mantle, often explained by variable proportions of fertile (pyroxenite, eclogite) and depleted (peridotitic) domains. A key parameter necessary to constrain the Earth's deep processes is water because it influences melting and affects the physical properties of the Earth's mantle. However, there are only a few direct water determinations on samples of the oceanic mantle. Here we report water concentrations by FTIR on garnet pyroxenite xenoliths from Salt Lake Crater vent, Oahu, Hawaii, in order to constrain the role of lithological variability in the distribution of water in the upper oceanic mantle. The clinopyroxenes have 260 to 576 ppm H2O and the orthopyroxenes about half these amounts. Curiously, garnets have water concentrations below detection limits (< 0.5 ppm H2O). Calculated melts in equilibrium with the pyroxenes have, on average, 2.3 +/- 0.4wt.% H2O and 243 +/- 83 H2O/Ce. These H2O concentrations are similar to estimates for the H2O concentration of primary magmas of the rejuvenated Hawaiian stage volcanism, and 3 to 5 times higher than primary magmas of the shield stage. This supports earlier conclusions where the pyroxenites are interpreted as high pressure cumulates from alkali magmas similar to the rejuvenated stage magmas within the Pacific lithosphere. The reconstructed bulk pyroxenites have 211 to 467 ppm H2O, similar to estimates for the source of Hawaiian magmas and two to four times higher than estimates for the depleted MORB source (similar to 100 ppm H2O). Despite their high water concentrations, however, the bulk pyroxenites have much lower H2O/Ce ratios than the MORB source (35-115 vs. 150-210, respectively) or Hawaiianmagma sources (> 160). The discrepancy between the low H2O/Ce ratios in the bulk pyroxenites and high H2O/Ce in the equilibrium melts is consistent with experimental data that predicts 4 to 5 times higher partition coefficient for Ce than H in these pyroxenes. Therefore, the process of high-pressure crystallization in the oceanic lithosphere will create pyroxene-rich lithologies which are paradoxically, both "wet" (i.e., high H2O concentrations) and "dry" (low H2O/Ce ratios) compared to the source of their parental melts. Phlogopite is present as a trace phase in these rocks (< 0.4% modal) with relatively minor contribution on the bulk water contents. The coupled high H2O, low H2O/Ce ratios of the pyroxenites are similar to the inferred source of several Enriched Mantle (EM)-type Ocean Island Basalts (OIB), like the Samoa, Pitcairn, Society, and Kergulen hot spots, as well as the EM-1 type Koolau endmember of the Hawaiian magmas. We suggest that recycling of pyroxenite-bearing oceanic lithosphere can explain the relatively high H2O and low H2O/Ce ratios of some EM-type OIB. Our data suggests a link between lithological variability and heterogeneous water distribution in the upper mantle. (C) 2015 Elsevier B. V. All rights reserved. C1 [Bizimis, Michael] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. [Peslier, Anne H.] Jacobs, NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Bizimis, M (reprint author), Univ S Carolina, Dept Earth & Ocean Sci, 701 Sumter St,EWS 617, Columbia, SC 29208 USA. EM mbizimis@geol.sc.edu OI Bizimis, Michael/0000-0002-4611-6928 FU NSF [OCE-1129280, OCE-1129072] FX Our sincere thanks to the journal reviewers Jackie Dixon and Leonid Danyushevsky for their thorough and piercing comments, which resulted in a much-improved contribution. Many thanks to the Editor, Catherine Chauvel for comments and the editorial handling. We thank Shawn Wallace and Ed Weaver at the University of South Carolina for help with the tedious sample preparation procedure. This work was supported by NSF grants OCE-1129280 to MB and OCE-1129072 to AHP. NR 159 TC 16 Z9 17 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD MAR 18 PY 2015 VL 397 BP 61 EP 75 DI 10.1016/j.chemgeo.2015.01.008 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE2TP UT WOS:000351671900006 ER PT J AU Reddy, TR Frierdich, AJ Beard, BL Johnson, CM AF Reddy, Thiruchelvi R. Frierdich, Andrew J. Beard, Brian L. Johnson, Clark M. TI The effect of pH on stable iron isotope exchange and fractionation between aqueous Fe(II) and goethite SO CHEMICAL GEOLOGY LA English DT Article DE Fe isotopes; Goethite; pH; Isotopic fractionation ID FE(II)-FE(III) ELECTRON-TRANSFER; MULTI-DIRECTION APPROACH; ACID-MINE DRAINAGE; FERROUS IRON; MINERALIZATION PATHWAYS; SPECTROSCOPIC EVIDENCE; ATOM EXCHANGE; FE; REDUCTION; EQUILIBRIUM AB Enriched Fe isotope tracer studies demonstrate that aqueous Fe(II) undergoes electron transfer and atom exchange with goethite. Such processes influence contaminant fate and trace-elementmobility, and result in stable Fe isotope fractionation in both biological and abiological processes. To date, the majority of experimental studies of aqueous Fe(II) and Fe oxide interactions have been done at circumneutral pH. The effect of pH variations on the rate and extent of Fe isotope exchange between aqueous Fe(II) and iron oxide minerals, as well as the natural mass-dependent fractionation between these species, has not been adequately explored. Here, the three-isotope method (Fe-57-Fe-56-Fe-54), using an enriched Fe-57 tracer, was used to investigate the effect of pH (between 2.5 and 7.5) on the rate and extent of isotopic exchange. Fe-56/Fe-54 ratios were used to determine the natural, mass-dependent stable isotope fractionation, between aqueous Fe(II) and goethite. Three Fe(II) solutions differing in their initial Fe-56/Fe-54 ratios were used to approach isotopic equilibrium from multiple directions. The Fe-57-enriched tracer data indicate that the extent of isotopic exchange between Fe(II)(aq) and goethite was positively correlated with pH, where the least amount of exchange occurred at the lowest pH. Similarly, initial kinetic isotope fractionations were influenced by pH; at low pH, minimal kinetic isotope effects were observed relative to large effects at high pH, suggesting a relation between the extent of sorbed Fe(II) and kinetic isotope effects. Continued exchange over time at high pH, however, erases the initial kinetic isotope effects, and the system fundamentally reached isotopic equilibrium by the end of the experiment. Our results show that the interplay between kinetic and equilibrium effects may prevent confident extrapolation to infer equilibrium fractionation factors when only small amounts of Fe exchange occur. (C) 2015 Elsevier B.V. All rights reserved. C1 [Reddy, Thiruchelvi R.; Frierdich, Andrew J.; Beard, Brian L.; Johnson, Clark M.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Frierdich, Andrew J.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. [Reddy, Thiruchelvi R.; Beard, Brian L.; Johnson, Clark M.] Univ ofWisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. RP Johnson, CM (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM clarkj@geology.wisc.edu RI Frierdich, Andrew/A-1596-2016 FU National Science Foundation [1122855, 1347848]; NASA [NNA13AA94A] FX The authors thank two anonymous journal reviewers whose comments helped to improve themanuscript, and to editor Koretsky for additional comments on the manuscript. We thank Francois-Xavier Dabzac, and Aaron Satkoski for their help with the Micromass IsoProbe and Nu Instruments Nu Plasma II. We also thank Eric Roden and Michelle Scherer for helpful discussions regarding the work. This material is based upon work supported by the National Science Foundation grant 1122855 and the NASA grant NNA13AA94A to C.M.J. and B.L.B. The National Science Foundation also provided support to A.J.F. under award no. 1347848. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF or NASA. NR 59 TC 8 Z9 9 U1 9 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD MAR 18 PY 2015 VL 397 BP 118 EP 127 DI 10.1016/j.chemgeo.2015.01.018 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE2TP UT WOS:000351671900010 ER PT J AU Dietrich, JP Strickland, SA Hutchinson, GP Van Gaest, AL Krupkin, AB Ylitalo, GM Arkoosh, MR AF Dietrich, Joseph P. Strickland, Stacy A. Hutchinson, Greg P. Van Gaest, Ahna L. Krupkin, Alex B. Ylitalo, Gina M. Arkoosh, Mary R. TI Assimilation Efficiency of PBDE Congeners in Chinook Salmon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POLYBROMINATED DIPHENYL ETHERS; BROMINATED FLAME RETARDANTS; CARP CYPRINUS-CARPIO; PERSISTENT ORGANIC POLLUTANTS; POLYCHLORINATED-BIPHENYLS; DIETARY ACCUMULATION; COLUMBIA RIVER; PUGET-SOUND; BRITISH-COLUMBIA; BIOACCUMULATION AB Polybrominated diphenyl ether (PEPE) flame retardants are environmental contaminants that can accumulate in biota. PBDE accumulation in an organism depends on exposure, assimilation efficiency, and elimination/Metabolism. Net assimilation efficiency represents the fraction of the contaminant that is retained in the organism after exposure. In the present study, congener-specific estimates of net PBDE assimilation efficiencies were calculated from dietary exposures of juvenile Chinook salmon. The fish were exposed to one to eight PBDE congeners up to 1500 ng total PBDEs/g food. Mean assimilation efficiencies varied from 0.32 to 0.50 for BDE congeners 28, 47, 99, 100; 153, and 154. The assimilation efficiency of BDE49 was significantly greater than 100%, suggesting biotransformation from higher brominated congeners. Whole body concentrations of BDE49 significantly increased with both exposure to increasing concentrations of BDE99 and decreasing fish lipid levels, implying lipid-influenced debromination of BDE99 to BDE49. Excluding BDE49, PBDE assimilation efficiency was not significantly related to the numbers of congeners in the diets, or congener hydrophobicity, but was greater hi foods with higher lipid levels. Estimates of PBDP, assimilation efficiency can be used in bioaccumulation models to assess threats from PBDE exposure to Chinook salmon health and recovery efforts, as well as to their predators. C1 [Dietrich, Joseph P.; Arkoosh, Mary R.] NOAA, Environm & Fisheries Sci Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. [Strickland, Stacy A.; Hutchinson, Greg P.; Van Gaest, Ahna L.; Krupkin, Alex B.] Frank Orth & Associates, Kirkland, WA 98034 USA. [Ylitalo, Gina M.] NOAA, Environm & Fisheries Sci Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, East Seattle, WA 98112 USA. RP Dietrich, JP (reprint author), NOAA, Environm & Fisheries Sci Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2032 SE OSU Dr, Newport, OR 97365 USA. EM joseph.dietrich@noaa.gov FU NOAA; US EPA,; Region 10, Puget Sound Science and Technical Studies Assistance Program; Federal Grant [13-923270-01]; [EPA-R10-PS-1004] FX Funds for this work were provided by NOAA and US EPA, Region 10, Puget Sound Science and Technical Studies Assistance Program; EPA-R10-PS-1004, Federal Grant No. 13-923270-01. NR 51 TC 3 Z9 3 U1 11 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 17 PY 2015 VL 49 IS 6 BP 3878 EP 3886 DI 10.1021/es5057038 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CD8DC UT WOS:000351324400072 PM 25692390 ER PT J AU Moissl-Eichinger, C Auerbach, AK Probst, AJ Mahnert, A Tom, L Piceno, Y Andersen, GL Venkateswaran, K Rettberg, P Barczyk, S Pukall, R Berg, G AF Moissl-Eichinger, Christine Auerbach, Anna K. Probst, Alexander J. Mahnert, Alexander Tom, Lauren Piceno, Yvette Andersen, Gary L. Venkateswaran, Kasthuri Rettberg, Petra Barczyk, Simon Pukall, Rueiger Berg, Gabriele TI Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments SO SCIENTIFIC REPORTS LA English DT Article ID PLANETARY PROTECTION; DIVERSITY; SPACECRAFT; BACTERIA; COMMUNITIES; ROOMS; SEQUENCES; ARCHAEA; RESISTANCE; TAXONOMY AB Space agencies maintain highly controlled cleanrooms to ensure the demands of planetary protection. To study potential effects of microbiome control, we analyzed microbial communities in two particulate-controlled cleanrooms (ISO 5 and ISO 8) and two vicinal uncontrolled areas (office, changing room) by cultivation and 16S rRNA gene amplicon analysis (cloning, pyrotagsequencing, and PhyloChip G3 analysis). Maintenance procedures affected the microbiome on total abundance and microbial community structure concerning richness, diversity and relative abundance of certain taxa. Cleanroom areas were found to be mainly predominated by potentially human-associated bacteria; archaeal signatures were detected in every area. Results indicate that microorganisms were mainly spread from the changing room (68%) into the cleanrooms, potentially carried along with human activity. The numbers of colony forming units were reduced by up to similar to 400 fold from the uncontrolled areas towards the ISO 5 cleanroom, accompanied with a reduction of the living portion of microorganisms from 45% (changing area) to 1% of total 16S rRNA gene signatures as revealed via propidium monoazide treatment of the samples. Our results demonstrate the strong effects of cleanroom maintenance on microbial communities in indoor environments and can be used to improve the design and operation of biologically controlled cleanrooms. C1 [Moissl-Eichinger, Christine; Auerbach, Anna K.; Probst, Alexander J.] Univ Regensburg, Inst Microbiol, D-93053 Regensburg, Germany. [Moissl-Eichinger, Christine; Auerbach, Anna K.; Probst, Alexander J.] Univ Regensburg, Archaea Ctr, D-93053 Regensburg, Germany. [Moissl-Eichinger, Christine] Med Univ Graz, Dept Internal Med, A-8036 Graz, Austria. [Moissl-Eichinger, Christine] BioTechMed Graz, A-8010 Graz, Austria. [Mahnert, Alexander; Berg, Gabriele] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria. [Tom, Lauren; Piceno, Yvette; Andersen, Gary L.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Venkateswaran, Kasthuri] Jet Prop Lab, Pasadena, CA 91109 USA. [Rettberg, Petra; Barczyk, Simon] German Aerosp Ctr, Inst Aerosp Med & Radiat Biol, D-51147 Cologne, Germany. [Pukall, Rueiger] DSMZ Deutsch Sammlung Mikroorganismen & Zellkult, Leibniz Inst, D-38124 Braunschweig, Germany. RP Moissl-Eichinger, C (reprint author), Univ Regensburg, Inst Microbiol, Univ Str 31, D-93053 Regensburg, Germany. EM christine.moissl-eichinger@medunigraz.at RI Tom, Lauren/E-9739-2015; Moissl-Eichinger, Christine/A-6682-2015; Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015; Rettberg, Petra/K-2378-2015; Probst, Alexander/K-2813-2016 OI Moissl-Eichinger, Christine/0000-0001-6755-6263; Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827; Rettberg, Petra/0000-0003-4439-2395; FU German National Academic Foundation (Studienstiftung des deutschen Volkes); ESTEC [20234/06/NL/EK, 20508/07/NL/EK, 4000103794/11/NL/EK] FX The work described in this paper was carried out by DLR and University of Regensburg under contract with ESA, ESTEC contract no. 20234/06/NL/EK, 20508/07/NL/EK and mainly 4000103794/11/NL/EK. We thank G. Bose and B. Vogt for sampling support at the Airbus/EADS facilities and T. Dohr for rendering the 3D-model of the cleanroom facility. We also would like to thank H. Muller (Graz) for bioinformatic support. AJP was supported by the German National Academic Foundation (Studienstiftung des deutschen Volkes). We thank G. Kminek for valuable discussion and support. NR 54 TC 6 Z9 6 U1 2 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD MAR 17 PY 2015 VL 5 AR 9156 DI 10.1038/srep09156 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CD6VP UT WOS:000351228500004 PM 25778463 ER PT J AU Mitchell, KL Barmatz, MB Jamieson, CS Lorenz, RD Lunine, JI AF Mitchell, Karl L. Barmatz, Martin B. Jamieson, Corey S. Lorenz, Ralph D. Lunine, Jonathan I. TI Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Titan; liquid alkanes; seas; loss tangent; microwave; composition ID ETHANE; MIXTURES; SURFACE; LAKES AB The complex dielectric constants of liquids methane and ethane were measured at 90K and 14.1GHz, close to the frequency of the Cassini RADAR. The liquid ethane loss tangent is far greater than that of liquid methane, facilitating discrimination by remote sensing. The results suggest a methane-dominated composition for the northern sea, Ligeia Mare, on the basis of a recent loss tangent determination using Cassini RADAR altimetry. This contrasts a previous far higher loss tangent for the southern lake, Ontario Lacus, which is inconsistent with simple mixtures of methane and ethane. The apparent nonequilibrium methane-to-ethane ratio of Ligeia Mare can be explained by poor admixture of periodically cycled methane with a deeper ethane-rich alkanofer system, consistent with obliquity-driven volatile cycling, sequestration of ethane from the hydrocarbon cycle by incorporation into crustal clathrate hydrates, or periodic flushing of Ligeia Mare into adjacent Kraken Mare by fresh rainfall. C1 [Mitchell, Karl L.; Barmatz, Martin B.; Jamieson, Corey S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Jamieson, Corey S.] SETI Inst, Mountain View, CA USA. [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Lunine, Jonathan I.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Mitchell, KL (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Karl.L.Mitchell@jpl.nasa.gov RI Lorenz, Ralph/B-8759-2016 OI Lorenz, Ralph/0000-0001-8528-4644 FU NASA; Outer Planets Research Program FX This research was carried out at the California Institute of Technology Jet Propulsion Laboratory under a contract from NASA. It was supported by the Outer Planets Research Program. We thank Marco Mastrogiuseppe and various members of the Cassini RADAR team, for their inputs and useful discussions, Aurya Javeed, for his support in programming the new method for calculating the complex dielectric constant, and Sebastien Rodriguez and one anonymous reviewer, for their suggestions and comments which helped to improve this manuscript. NR 28 TC 14 Z9 14 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 16 PY 2015 VL 42 IS 5 BP 1340 EP 1345 DI 10.1002/2014GL059475 PG 6 WC Geosciences, Multidisciplinary SC Geology GA CE5CL UT WOS:000351847600009 ER PT J AU Mouginot, J Rignot, E AF Mouginot, J. Rignot, E. TI Ice motion of the Patagonian Icefields of South America: 1984-2014 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE ice velocity; remote sensing; Patagonia; icefields; ice velocity change ID GLACIAR JORGE MONTT; SEA-LEVEL RISE; CHILEAN PATAGONIA; RADAR INTERFEROMETRY; CALVING GLACIER; PERITO MORENO; FLOW; SATELLITE; RETREAT; FLUCTUATIONS AB We present the first comprehensive high-resolution mosaic of ice velocity of the Northern (NPI) and Southern Patagonian Icefields (SPI), from multiple synthetic aperture radar and optical data collected between 1984 and 2014. The results reveal that many of the outlet glaciers extend far into the central ice plateaus, which implies that changes in ice dynamics propagate far inside the accumulation area. We report pronounced seasonal to interannual variability of ice motion on Pio XI and Jorge Montt, a doubling in speed of Jorge Montt, a major slow down of O'Higgins, significant fluctuations of Upsala and a deceleration of San Rafael, which illustrate the need for sustained, continuous time series of ice motion to understand the long-term evolution of the rapidly thinning icefields. The velocity product also resolves major ambiguities in glacier drainage in areas of relatively flat topography illustrating the need to combine topography and flow direction to map drainage basins. C1 [Mouginot, J.; Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Rignot, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Mouginot, J (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM jmougino@uci.edu RI Mouginot, Jeremie/G-7045-2015; Rignot, Eric/A-4560-2014; OI Rignot, Eric/0000-0002-3366-0481; Mouginot, Jeremie/0000-0001-9155-5455 FU National Aeronautics and Space Administration FX This work was performed at the University of California, Irvine, and at the Jet Propulsion Laboratory, California Institute of Technology, under a grant from the National Aeronautics and Space Administration. The authors gratefully acknowledge the European Space Agency, the Canadian Space Agency, the Japan Aerospace Exploration Agency, and the National Aeronautics, United States Geological Survey, and Space Administration for the use of ERS-1 and ERS-2, RADARSAT-1, ALOS PALSAR, SIR-C, and Landsat data. NR 41 TC 10 Z9 10 U1 7 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 16 PY 2015 VL 42 IS 5 BP 1441 EP 1449 DI 10.1002/2014GL062661 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CE5CL UT WOS:000351847600023 ER PT J AU Williams, AP Schwartz, RE Iacobellis, S Seager, R Cook, BI Still, CJ Husak, G Michaelsen, J AF Williams, A. Park Schwartz, Rachel E. Iacobellis, Sam Seager, Richard Cook, Benjamin I. Still, Christopher J. Husak, Gregory Michaelsen, Joel TI Urbanization causes increased cloud base height and decreased fog in coastal Southern California SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE stratus; fog; urban heat island; coastal California; climate change ID SEA-SURFACE TEMPERATURE; MARINE BOUNDARY-LAYER; CLIMATE MODEL; UNITED-STATES; URBAN-GROWTH; LOS-ANGELES; SUMMER FOG; DENSE FOG; PATTERNS; FEEDBACK AB Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA. C1 [Williams, A. Park; Seager, Richard; Cook, Benjamin I.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Schwartz, Rachel E.; Iacobellis, Sam] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Still, Christopher J.] Oregon State Univ, Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Husak, Gregory; Michaelsen, Joel] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. RP Williams, AP (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM williams@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012; Williams, Park/B-8214-2016; OI Williams, Park/0000-0001-8176-8166; Clemesha, Rachel/0000-0002-3881-2384 FU Lamont-Doherty Earth Observatory of Columbia University; NSF award EASM2: Linking Nearterm Future Changes in Weather and Hydroclimate in Western North America to Adaptation for Ecosystem and Water Management FX Airfield data are from the U.S. Surface Airways Hourly Data Set, provided by the National Climate Data Center (ftp.ncdc.noaa.gov/pub/data/noaa/). Monthly Tmin and Tmax data are from PRISM (Oregon State University, www.prism.nacse.org). Radiosonde data are from www.esrl.noaa.gov/raobs. Land cover data come from www.mrlc.gov/nlcd2011.php, http://glcf.umd.edu, and http://silvis.forest.wisc.edu/maps/housing/pbg_1940_2030. Climate reanalysis data are from NASA's MERRA product (disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). Research was supported by the Lamont-Doherty Earth Observatory of Columbia University and NSF award EASM2: Linking Nearterm Future Changes in Weather and Hydroclimate in Western North America to Adaptation for Ecosystem and Water Management. Thanks for helpful comments from S.A. Baguskas, K. Bellomo, D. Cayan, K. D. Clarke, E.R. Cook, C. Gautier, A. Gershunov, P. Gentine, J.E. Smerdon, and E. Waller. NR 62 TC 13 Z9 13 U1 5 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 16 PY 2015 VL 42 IS 5 BP 1527 EP 1536 DI 10.1002/2015GL063266 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CE5CL UT WOS:000351847600034 ER PT J AU Ao, CO Jiang, JH Mannucci, AJ Su, H Verkhoglyadova, O Zhai, CX Cole, J Donner, L Iversen, T Morcrette, C Rotstayn, L Watanabe, M Yukimoto, S AF Ao, Chi O. Jiang, Jonathan H. Mannucci, Anthony J. Su, Hui Verkhoglyadova, Olga Zhai, Chengxing Cole, Jason Donner, Leo Iversen, Trond Morcrette, Cyril Rotstayn, Leon Watanabe, Masahiro Yukimoto, Seiji TI Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE CMIP5; radio occultation; geopotential height; UTLS; GPS; GNSS ID GLOBAL POSITIONING SYSTEM; SEA-SURFACE TEMPERATURE; ERA-INTERIM REANALYSIS; EARTHS ATMOSPHERE; CLIMATE; ASSIMILATION; UNCERTAINTY; FIELDS; MODEL AB We present a detailed comparison of geopotential height fields between the Coupled Model Inter-Comparison Project phase 5 (CMIP5) models and satellite observations from GPS radio occultation (RO). Our comparison focuses on the annual mean, seasonal cycle, and interannual variability of 200 hPa geopotential height in the years 2002-2008. Using a wide sample of atmosphere-only model runs (AMIP) from the CMIP5 archive, we find that most models agree well with the observations and weather reanalyses in the tropics in both the annual means and interannual variabilities. However, the agreement is poor over the extratropics with the largest model spreads in the high latitudes and the largest bias in the southern middle to high latitudes that persist all seasons. The models also show excessive seasonal variability over the Northern midlatitude land areas as well as the Southern Ocean but insufficient variability over the tropics and Antarctica. While the underlying causes for the model discrepancies require further analyses, this study demonstrates that global observations from GPS RO provide accurate benchmark-quality measurements in the upper troposphere and lower stratosphere through which biases in climate models as well as weather reanalyses can be identified. C1 [Ao, Chi O.; Jiang, Jonathan H.; Mannucci, Anthony J.; Su, Hui; Verkhoglyadova, Olga; Zhai, Chengxing] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cole, Jason] Environm Canada, Canadian Ctr Climate Modeling & Anal, Toronto, ON, Canada. [Donner, Leo] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Iversen, Trond] Norwegian Climate Ctr, Meteorol Inst, Oslo, Norway. [Morcrette, Cyril] Met Off Hadley Ctr, Exeter, Devon, England. [Rotstayn, Leon] CSIRO, Melbourne, Vic, Australia. [Watanabe, Masahiro] Univ Tokyo, Atmospher & Ocean Res Inst, Model Interdisciplinary Res Climate, Chiba, Japan. [Yukimoto, Seiji] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan. RP Ao, CO (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM chi.o.ao@jpl.nasa.gov RI Morcrette, Cyril/H-7282-2012; Rotstayn, Leon/A-1756-2012; Richards, Amber/K-8203-2015; OI Morcrette, Cyril/0000-0002-4240-8472; Rotstayn, Leon/0000-0002-2385-4223; Cole, Jason/0000-0003-0450-2748; Verkhoglyadova, Olga/0000-0002-9295-9539 FU NASA ROSES CLARREO SDT; MAP; NDOA; Norwegian Research Council through EarthClim; EVA; Norwegian supercomputer program; National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding support from the NASA ROSES CLARREO SDT, MAP, and NDOA projects are gratefully acknowledged. The work with NorESM is supported by the Norwegian Research Council through EarthClim, EVA, and the Norwegian supercomputer program. We thank the anonymous reviewers for their thoughtful comments that improved the manuscript. All the data used in this paper are publicly available: Monthly averaged gridded (Level 3) GPS RO data from http://genesis.jpl.nasa.gov, CMIP5 model outputs from the Earth System Grid (http://www.earthsystemgrid.org), and ERA-Interim from http://www.ecmwf.int, and MERRA from http://gmao.gsfc.nasa.gov/merra/. NR 33 TC 2 Z9 2 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 1678 EP 1689 DI 10.1002/2014JD022239 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100004 ER PT J AU Hammerling, DM Kawa, SR Schaefer, K Doney, S Michalak, AM AF Hammerling, Dorit M. Kawa, S. Randolph Schaefer, Kevin Doney, Scott Michalak, Anna M. TI Detectability of CO2 flux signals by a space-based lidar mission SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE CO2 fluxes; space-based lidar; Southern Ocean; signal detection; permafrost thawing; fossil fuel emissions ID ATMOSPHERIC CO2; CARBON-DIOXIDE; SOUTHERN-OCEAN; SENSITIVITY; ABSORPTION; CLIMATE; SURFACE; SPECTROMETER; SIMULATIONS; VARIABILITY AB Satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for improving our quantitative understanding of the carbon cycle. Prospective observations include those from space-based lidar such as the active sensing of CO2 emissions over nights, days, and seasons (ASCENDS) mission. Here we explore the ability of such a mission to detect regional changes in CO2 fluxes. We investigate these using three prototypical case studies, namely, the thawing of permafrost in the northern high latitudes, the shifting of fossil fuel emissions from Europe to China, and changes in the source/sink characteristics of the Southern Ocean. These three scenarios were used to design signal detection studies to investigate the ability to detect the unfolding of these scenarios compared to a baseline scenario. Results indicate that the ASCENDS mission could detect the types of signals investigated in this study, with the caveat that the study is based on some simplifying assumptions. The permafrost thawing flux perturbation is readily detectable at a high level of significance. The fossil fuel emission detectability is directly related to the strength of the signal and the level of measurement noise. For a nominal (lower) fossil fuel emission signal, only the idealized noise-free instrument test case produces a clearly detectable signal, while experiments with more realistic noise levels capture the signal only in the higher (exaggerated) signal case. For the Southern Ocean scenario, differences due to the natural variability in the El Nino-Southern Oscillation climatic mode are primarily detectable as a zonal increase. C1 [Hammerling, Dorit M.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Kawa, S. Randolph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schaefer, Kevin] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Doney, Scott] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. RP Hammerling, DM (reprint author), Natl Ctr Atmospher Res, Inst Math Appl Geosci, POB 3000, Boulder, CO 80307 USA. EM dorith@ucar.edu RI Doney, Scott/F-9247-2010; OI Doney, Scott/0000-0002-3683-2437; Hammerling, Dorit/0000-0003-3583-3611 FU National Aeronautics and Space Administration through the Research Opportunities in Space and Earth Sciences Carbon Cycle Science program [NNX08AJ92G]; Jet Propulsion Laboratory [1442785]; ASCENDS Science Requirements Definition Team; U.S. National Science Foundation [AGS-1048827]; National Oceanic and Atmospheric Administration [NA09OAR4310063]; National Aeronautics and Space Administration [NNX10AR63G] FX This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX08AJ92G issued through the Research Opportunities in Space and Earth Sciences Carbon Cycle Science program and by Jet Propulsion Laboratory subcontract 1442785 as well as the ASCENDS Science Requirements Definition Team. S. Doney acknowledges support from U.S. National Science Foundation (AGS-1048827). K. Schaefer acknowledges support from the National Oceanic and Atmospheric Administration under grant NA09OAR4310063 and from the National Aeronautics and Space Administration under grant NNX10AR63G. All the data used in this study can be requested by emailing Dorit Hammerling (dorith@ucar.edu). We thank Robert Andres for providing CDIAC fossil fuel emission fluxes and his advice in applying them. We thank Ivan Lima for his support with the Southern Ocean fluxes and Michael Manyin and Yuping Liu for executing PCTM model runs. NR 46 TC 2 Z9 2 U1 3 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 1794 EP 1807 DI 10.1002/2014JD022483 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100011 ER PT J AU Wong, S Fetzer, EJ Schreier, M Manipon, G Fishbein, EF Kahn, BH Yue, Q Irion, FW AF Wong, Sun Fetzer, Eric J. Schreier, Mathias Manipon, Gerald Fishbein, Evan F. Kahn, Brian H. Yue, Qing Irion, Fredrick W. TI Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE atmospheric infrared sounding; specific humidity; temperature; validation ID WATER-VAPOR; INTERIM REANALYSIS; QUALITY-ASSURANCE; MODIS; RADIOSONDE; SATELLITE; AIRS/AMSU/HSB; ASSIMILATION; RETRIEVAL; PROFILES AB The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (similar to 5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within 1K at altitudes above the 700hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5K) but slightly larger than the NNW errors for thick COD (reaching 3.5K near the surface). The AIRS BEST quality control retains retrievals with uncertainties closer to those of the NNW. The AIRS error estimates reported in the L2 product tend to underestimate the precision (RMSE) implied by comparisons to the radiosonde measurements and do not reflect the observed cloud dependency of uncertainties. C1 [Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wong, S (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM sun.wong@jpl.nasa.gov RI Yue, Qing/F-4619-2017 OI Yue, Qing/0000-0002-3559-6508 FU JPL AIRS project; NASA MEaSUREs; NASA Earth System Data Record Uncertainty Analysis; National Aeronautics and Space Administration FX We thank Janice Bytheway at University of Colorado at Fort Collins for providing the ASCII archive of the IGRA data, Imke Durre at NOAA Climate Data Center, and Junhong Wang at the State University of New York at Albany for providing information about the Vaisala RS92 sondes in IGRA data. We appreciate the help from Evan Manning and Van Dang at JPL for providing information on AIRS retrievals. We also thank Nicholas Nalli at NOAA/NESDIS Center for Satellite Application and Research (STAR) for comments to improve the manuscript. The original IGRA data can be obtained from the ftp site ftp.ncdc.noaa.gov. The MODIS data used in this study were acquired as part of the NASA's Earth-Sun System Division and archived and distributed by the MODIS Adaptive Processing System (MODAPS). AIRS Version 6 Level 2 support products can be obtained from Goddard Earth Sciences Data and Information Services Data. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by the JPL AIRS project, NASA MEaSUREs, and NASA Earth System Data Record Uncertainty Analysis. NR 63 TC 7 Z9 7 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 1880 EP 1901 DI 10.1002/2014JD022440 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100016 ER PT J AU Chiacchio, M Solmon, F Giorgi, F Stackhouse, P Wild, M AF Chiacchio, Marc Solmon, Fabien Giorgi, Filippo Stackhouse, Paul, Jr. Wild, Martin TI Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE regional modeling; radiation budget; dimming and brightening ID GENERAL-CIRCULATION MODEL; LARGE-SCALE MODELS; SOLAR-RADIATION; SURFACE RADIATION; ANTHROPOGENIC SULFATE; EARTHS SURFACE; ERA-INTERIM; EAST-ASIA; PART I; FLUXES AB Shortwave (SW) and longwave (LW) components of the radiation budget at the surface and top of atmosphere (TOA) are evaluated in the regional climate model RegCM version 4 driven by European Centre for Medium-Range Weather Forecasts Reanalysis over Europe. The simulated radiative components were evaluated with those from satellite-based products and reanalysis. At the surface the model overestimated the absorbed solar radiation but was compensated by a greater loss of thermal energy while both SW and LW TOA net fluxes were underestimated representing too little solar energy absorbed and too little outgoing thermal energy. Averaged biases in radiative parameters were generally within 25 Wm(-2), were dependent on differences by as much as 0.2 in cloud fraction, surface, and planetary albedo and less dependent on surface temperature associated with the surface longwave parameters, and are in line with other studies. Clear-sky fluxes showed better results when cloud cover differences had no influence. We also found a clear distinction between land versus water with smaller biases over land at the surface and over water at the TOA due to differences in cloud fraction and albedo. Finally, we inspected dimming and brightening for the period 1979-2010 with an indication for dimming early in the time series (i.e., 1979-1987) and brightening after, which agrees with surface-based observations. After 2000, however, a decrease in the brightening by more than 1 order of magnitude was evident which is in contrast to the continued brightening found in surface records and satellite-derived estimates. C1 [Chiacchio, Marc; Solmon, Fabien; Giorgi, Filippo] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Chiacchio, Marc] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. [Chiacchio, Marc] Bolin Ctr Climate Res, Stockholm, Sweden. [Stackhouse, Paul, Jr.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Wild, Martin] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. RP Chiacchio, M (reprint author), Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. EM marc.chiacchio@misu.su.se RI Wild, Martin/J-8977-2012; Giorgi, Filippo/C-3169-2013 FU Department of Meteorology at the University of Stockholm; Bolin Centre for Climate Research FX This study was financially supported by the Department of Meteorology at the University of Stockholm and the Bolin Centre for Climate Research. We would like to thank the three anonymous reviewers and the editor for their constructive comments that greatly improved this manuscript. We are in gratitude toward Graziano Giuliani for all his support and technical assistance for this work. SRB and CERES data products were obtained from the NASA Langley Research Center Atmospheric Science Data Center (https://eosweb.larc.nasa.gov/). Information regarding CERES EBAF data was retrieved from https://climatedataguide.ucar.edu/climate-data/ceres-ebaf-clouds-andeart hs-radiant-energysytems-ceresenergy-balance-and-filled. ERA-Interim data were obtained from the European Centre for Medium Range Forecasting (http://data-portal.ecmwf.int/). CRU data were taken from the University of East Anglia (http://www.cru.uea.ac.uk/home/). NR 94 TC 5 Z9 5 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 1951 EP 1971 DI 10.1002/2014JD022497 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100020 ER PT J AU Wargan, K Pawson, S Olsen, MA Witte, JC Douglass, AR Ziemke, JR Strahan, SE Nielsen, JE AF Wargan, Krzysztof Pawson, Steven Olsen, Mark A. Witte, Jacquelyn C. Douglass, Anne R. Ziemke, Jerald R. Strahan, Susan E. Nielsen, J. Eric TI The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE ozone; assimilation; aura; UTLS ID VARIATIONAL STATISTICAL-ANALYSIS; RECURSIVE FILTERS; NUMERICAL ASPECTS; TRANSPORT MODEL; MLS O-3; COVARIANCES; CLIMATOLOGY; SATELLITE; EXCHANGE; LAYER AB Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. This study evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation of the lower stratospheric (the tropopause to 50hPa) ozone column with ozonesondes is 0.99 and the (high) bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper tropospheric (500hPa to the tropopause) assimilated ozone column is about 10% lower than the ozonesonde column, but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400K potential temperature surface, but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces about 25% fewer occurrences per day during the 3years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause. C1 [Wargan, Krzysztof; Pawson, Steven; Nielsen, J. Eric] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Wargan, Krzysztof; Witte, Jacquelyn C.; Nielsen, J. Eric] Sci Syst & Applicat Inc, Lanham, MD USA. [Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [Olsen, Mark A.; Ziemke, Jerald R.] Morgan State Univ, Goddard Earth Sci Technol & Res Ctr, Baltimore, MD 21239 USA. [Strahan, Susan E.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res Ctr, Columbia, MD USA. RP Wargan, K (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM krzysztof.wargan-1@nasa.gov RI Douglass, Anne/D-4655-2012; Pawson, Steven/I-1865-2014; OI Pawson, Steven/0000-0003-0200-717X; Wargan, Krzysztof/0000-0002-3795-2983 FU NASA FX This research was funded by NASA, largely through the Modeling, Analysis and Prediction Program. High-performance computing resources were provided by NASA's HEC program, with generous allocations on the NASA Climate Computing Service (NCCS) machines. We are grateful to P.K. Bhartia and Joanna Joiner for discussions regarding OMI retrievals and efficiency functions, which led to a substantially improved representation of OMI data in GEOS-5. We thank Gordon Labow for his insight into the details of how the ozone climatology was used in the OMI processing. Finally, we would like to express our gratitude to three anonymous reviewers for their insightful comments that helped us improve the manuscript significantly. The complete set of assimilated ozone and selected meteorological fields used in this study are available through the Aura Validation Data Center website: http://avdc.gsfc.nasa.gov. All auxiliary data, including O-F and O-A fields, can be obtained by contacting the corresponding author. NR 44 TC 7 Z9 7 U1 4 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 2013 EP 2036 DI 10.1002/2014JD022493 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100024 ER PT J AU Li, J Carlson, BE Lacis, AA AF Li, Jing Carlson, Barbara E. Lacis, Andrew A. TI Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE single scattering albedo; spectral dependence; absorbing angstrom exponent; aerosol type; East Asian aerosols ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; WAVELENGTH DEPENDENCE; BROWN CARBON; LIGHT-ABSORPTION; BLACK CARBON; PHYSICAL-PROPERTIES; POLLUTION AEROSOLS; AMMONIUM-SULFATE; DUST AEROSOLS AB Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at similar to 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size. C1 [Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Li, Jing] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Li, J (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM jl2862@columbia.edu OI Li, Jing/0000-0002-0540-0412 FU NASA [509496.02.08.04.24]; NASA Radiation Science program; Hal Maring FX We thank the Principal Investigators (PIs) for their efforts in establishing and maintaining the Beijing AERONET site, the 19 other East Asian AERONET sites, the 11 biomass burning sites in South America, the 14 dust sites in North Africa/Arabian Peninsula, and the 18 urban/industrial sites in North America and Europe used in this study. The AERONET data are obtained from AERONET website at http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_inv. This study is funded by NASA climate grant 509496.02.08.04.24. Jing Li also acknowledges Hal Maring and the NASA Radiation Science program for providing funding for this investigation. NR 62 TC 4 Z9 4 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 2037 EP 2052 DI 10.1002/2014JD022433 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100025 ER PT J AU Jensen, EJ Pfister, L Ueyama, R Bergman, JW Kinnison, D AF Jensen, E. J. Pfister, L. Ueyama, R. Bergman, J. W. Kinnison, D. TI Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Convection ID WATER-VAPOR; LOWER STRATOSPHERE; TAPE-RECORDER; ASIAN MONSOON; MODEL; LAYER; CLIMATE; OZONE; SIMULATIONS; CIRCULATION AB Convectively influenced trajectory calculations are used to investigate the impact of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime (similar or equal to 1-2 months) is comparable to the time required for slow ascent through the TTL. MERRA horizontal winds are used for the diabatic trajectories, and off-line calculations of TTL radiative heating are used to determine the vertical motion field. The locations and times of convective influence events along the trajectories are determined from 3-hourly, geostationary satellite measurements of convective clouds. The trajectory model reproduces most of the prominent features in the 100 hPa CO geographic distribution indicated by the MLS observations for the winter and summer 2007 periods simulated. CO concentrations and tendencies simulated with the Whole Atmosphere Climate Chemistry Model (WACCM) are used to specify boundary-layer concentrations for convective influence and CO loss rates resulting from reaction with OH. The broad maximum in CO concentration over the Pacific during Boreal winter is primarily a result of the strong radiative heating (corresponding to upward vertical motion) associated with the abundant TTL cirrus in this region. Convection over the Pacific brings clean maritime air to the tropopause region and actually decreases the 100 hPa CO. The relative abundance of CO over the continental convective regions during wintertime is sensitive to small variations in convective cloud-top height. Both the simulated and the observed summertime 100 hPa CO distributions are dominated by the maximum co-located with the upper level anticyclone forced by the Asian monsoon convection. Sensitivity tests indicate that the summertime Asian monsoon anticyclone 100 hPa CO maximum is dominated by extreme convective systems with detrainment of polluted air above about 360-365K potential temperature. This result stems directly from the fact that the heating rates are negative (downward motion) below 360-365K during summertime through most of the tropics; therefore, air detrained from convection at lower levels will generally just sink back down into the middle troposphere. We find that most of the CO feeding into the Asian monsoon anticyclone comes from convection over the Tibetan Plateau and India, with relatively minor contributions from southeast Asia and eastern China. C1 [Jensen, E. J.; Pfister, L.; Ueyama, R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bergman, J. W.] Bay Area Environm Res Inst, Sonoma, CA USA. [Bergman, J. W.; Kinnison, D.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov FU NASA Aura Science Team Program FX This work was supported by the NASA Aura Science Team Program. We also wish to thank Mijeong Park for helpful discussions. The MLS data used in this paper are available from the NASA Goddard Space Flight Center Earth Sciences Data and Information Services Center (http://mirador.gsfc.nasa.gov/cgi-bin/mirador/homepageAlt.pl?keyword=MLS ). NR 49 TC 3 Z9 4 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 16 PY 2015 VL 120 IS 5 BP 2067 EP 2086 DI 10.1002/2014JD022661 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE2VL UT WOS:000351678100027 ER PT J AU Lee, H Yuan, T Jung, HC Beighley, E AF Lee, Hyongki Yuan, Ting Jung, Hahn Chul Beighley, Edward TI Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Wetland water depth; PALSAR ScanSAR; Envisat altimetry; MODIS VCF; PALSAR interferometry; SWOT ID AMAZON FLOODPLAIN; RADAR ALTIMETRY; CENTRAL-AFRICA; LEVEL CHANGES; RIVER-BASIN; STORAGE AB We have, for the first time, developed a simple linear regression model based on PALSAR ScanSAR backscattering coefficients (sigma(0)), water levels from Envisat altimetry, and MODIS Vegetation Continuous Field (VCF) product to generate water depth maps over flooded forest in the central Congo Basin. The water depth maps we generated are relative to the lowest water level from Envisat altimetry, which is assumed to be a base level with essentially zero depth. The predicted and observed water depths along the Envisat pass showed excellent agreements with RMS differences of 12.8 cm to 17.8 cm. The water depth maps were also independently validated with oh/at obtained from PALSAR interferometry, and storage anomalies estimated by multiplying inundation extents from PALSAR ScanSAR with spatially averaged water level anomalies from Envisat altimetry. The water storage volumes calculated from our water depth maps were calculated to be 11.3 +/- 2.0 km(3), 103 +/- 23 km(3), and 93 +/- 1.8 km(3) for 12/05/2006,12/08/2007, and 12/10/2008, respectively. It is expected that our method can be applied to other river basins that have flooded forest with satellite radar altimeter over-passes. The water depth maps can be directly used to calibrate and validate the spatial and temporal variation of inundation extent and water depth in the wetland derived from a 2-D hydrodynamic model. Furthermore, our water depth maps can be used as a "true" dataset to perform a pre-launch "virtual mission" study of the Surface Water Ocean Topography (SWOT) mission to be launched in 2020. (C) 2014 Elsevier Inc. All rights reserved. C1 [Lee, Hyongki; Yuan, Ting] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Lee, Hyongki; Yuan, Ting] Univ Houston, Natl Ctr Airborne Laser Mapping, Houston, TX 77204 USA. [Jung, Hahn Chul] NASA, Goddard Space Flight Ctr, Off Appl Sci, Greenbelt, MD 20771 USA. [Jung, Hahn Chul] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Beighley, Edward] Northeastern Univ, Dept Civil & Environm Engn, Boston, MA 02115 USA. RP Lee, H (reprint author), Univ Houston, Natl Ctr Airborne Laser Mapping, Dept Civil & Environm Engn, N107 Engn Bldg 1, Houston, TX 77204 USA. EM hlee@uh.edu FU NASA's New Investigator Program in Earth Sciences [NNX14AI01G]; GRACE Program [NNX12AJ95G]; Terrestrial Hydrology Program [NNX12AQ36G, NNX14AD82G] FX This research was supported by grants from NASA's New Investigator Program in Earth Sciences (NNX14AI01G), GRACE Program (NNX12AJ95G), and Terrestrial Hydrology Program (NNX12AQ36G and NNX14AD82G). ALOS PALSAR data were provided by ASF, and Envisat altimetry data were provided by European Space Agency (ESA). We thank Doug Alsdorf and three anonymous reviewers for their constructive comments. Some of the figures were prepared using the Generic Mapping Tool (GMT) graphics package. NR 30 TC 3 Z9 3 U1 3 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2015 VL 159 BP 70 EP 79 DI 10.1016/j.rse.2014.11.030 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CF7PO UT WOS:000352749000006 ER PT J AU Ni, WJ Sun, GQ Ranson, KJ Pang, Y Zhang, ZY Yao, W AF Ni, Wenjian Sun, Guoqing Ranson, Kenneth Jon Pang, Yong Zhang, Zhiyu Yao, Wei TI Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Dense deciduous forest; Forest height; Ground surface elevation; Stereo imagery; ZY-3; Photogrammetry ID ABOVEGROUND BIOMASS; MODEL; LIDAR; HEIGHT AB Forest height is an important indicator for forest biomass. Ground surface elevation is essential to derive forest height from spaceborne data including interferometric synthetic aperture radar or stereo imagery. Considering the good performance of stereo images in characterizing the vertical structure of forest with non-closed canopies, the main issue addressed in this study is whether stereo imagery acquired in winter can view the ground surface under dense deciduous forest. To make full use of information provided by different observation geometries, the three sets of matching points from different view were combined. Then the vertical distribution of matching points from stereo images was referenced to the vegetation vertical structure and the ground surface elevation from airborne laser scanner (ALS) data. The vertical distribution of matching points from stereo images over typical deciduous forest stands including sparse, disturbed and dense forests were examined. Most matching points were located on the ground surface while some points came from branches and trunks in all the three forest stands. This phenomenon was also observed from a transect of a digital surface model from ZY-3. Twelve elevation indices, including minimum, maximlim, mean elevations and an additional nine percentiles of cumulative probability (El 0 to E90) from the matching points of ZY-3 over 30 m x 30 m cell were compared with the ground surface elevation from ALS data. The results showed that E30 gave the best measurement of ground surface elevation with R-2 > 0.99 and RMSE = 2.54 m. (C) 2014 Elsevier Inc All rights reserved. C1 [Ni, Wenjian; Zhang, Zhiyu] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China. [Sun, Guoqing] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Ranson, Kenneth Jon] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Pang, Yong] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China. [Yao, Wei] Tech Univ Munich, Inst Photogrammetry & Cartog, D-80333 Munich, Germany. RP Ni, WJ (reprint author), A20 North,Datun Rd, Beijing 100101, Peoples R China. EM niwj@radi.ac.cn RI Ranson, Kenneth/G-2446-2012 OI Ranson, Kenneth/0000-0003-3806-7270 FU National Basic Research Program of China [2013CB733404]; National Natural Science Foundation of China [41471311, 41171283]; NASA; Chinese Academy of Sciences FX This work was supported in part by the National Basic Research Program of China (Grant No. 2013CB733404), and the National Natural Science Foundation of China (Grant Nos. 41471311, 41171283). This work was also supported in part by NASA's Earth Science Research Division and the Hundred Talents Program of the Chinese Academy of Sciences. NR 22 TC 2 Z9 2 U1 5 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2015 VL 159 BP 194 EP 202 DI 10.1016/j.rse.2014.12.007 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CF7PO UT WOS:000352749000015 ER PT J AU Yu, HB Chin, M Bian, HS Yuan, TL Prospero, JM Omar, AH Remer, LA Winker, DM Yang, YK Zhang, Y Zhang, ZB AF Yu, Hongbin Chin, Mian Bian, Huisheng Yuan, Tianle Prospero, Joseph M. Omar, Ali H. Remer, Lorraine A. Winker, David M. Yang, Yuekui Zhang, Yan Zhang, Zhibo TI Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO lidar measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Aerosol; Dust; Transport; CALIPSO; Satellite ID NORTH-AFRICAN DUST; SPECTRAL-RESOLUTION LIDAR; SAHARAN DUST; OPTICAL DEPTH; MINERAL DUST; TROPICAL ATLANTIC; AMAZON BASIN; DESERT DUST; SAMUM 2006; AEROSOL AB The trans-Atlantic dust transport has important implications for human and ecosystem health, the terrestrial and oceanic biogeochemical cycle, weather systems, and climate. This study provides an observation-based multiyear estimate of trans-Atlantic dust transport using a 7-year (2007-2013) record of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements of the three dimensional distribution of aerosol backscatter, extinction and depolarization ratio in both cloud-free and above-cloud conditions. We estimate that on a basis of the 7-year average and integration over 10 degrees S-30 degrees N, 182 Tg a(-1) dust leaves the coast of North Africa at 15 degrees W, of which 132 Tg a(-1) and 43 Tg a(-1) reaches 35 degrees W and 75 degrees W, respectively. These flux estimates have an overall known uncertainty of (45-70)%. Because of lack of reliable observations, uncertainties associated with the diurnal variation of dust and the missing below-cloud dust cannot be quantified. Significant seasonal variations are observed in both the magnitude of total dust mass flux and its meridional and vertical distributions. The interannual variability of annual dust mass flux is highly anti-correlated with the prior-year Sahel Precipitation Index. Using only cloud-free aerosol observations to calculate dust mass flux could introduce a high bias when compared with all-sky conditions that include both cloud-free and above-cloud aerosol observations. The bias is about 20% at 35 degrees W and 75 degrees W in boreal winter and spring based on the 7-year average, as long as dust within and below low-level clouds is negligible. (C) 2014 Elsevier Inc All rights reserved. C1 [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Yu, Hongbin; Chin, Mian; Bian, Huisheng; Yuan, Tianle; Yang, Yuekui; Zhang, Yan] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Bian, Huisheng; Yuan, Tianle; Remer, Lorraine A.] Univ Maryland, Joint Ctr Earth Sci & Technol, Baltimore, MD 21201 USA. [Prospero, Joseph M.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Omar, Ali H.; Winker, David M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Yang, Yuekui; Zhang, Yan] Univ Space Res Assoc, Columbia, MD USA. [Zhang, Zhibo] Univ Maryland, Dept Phys, Baltimore, MD 21201 USA. RP Yu, HB (reprint author), NASA GSFC Code 613, Greenbelt, MD 20771 USA. EM Hongbin.Yu@nasa.gov RI Yu, Hongbin/C-6485-2008; Yuan, Tianle/D-3323-2011; Yang, Yuekui/B-4326-2015; Chin, Mian/J-8354-2012; Omar, Ali/D-7102-2017; OI Yu, Hongbin/0000-0003-4706-1575; Omar, Ali/0000-0003-1871-9235; Prospero, Joseph/0000-0003-3608-6160 FU NASA CALIPSO/CloudSat project [NNX14AB21G]; Science of Terra and Aqua project [NNX11AH66G] FX The work was supported by the NASA CALIPSO/CloudSat project (NNX14AB21G) managed by Dr. David Considine and the Science of Terra and Aqua project (NNX11AH66G) managed by Dr. Richard Eckman. The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center (https://eosweb.larc.nasa.gov/project/calipso/calipso_table). We thank PIs of AERONET Cape Verde and La Parguera sites for collecting the data (http://aeronet/cgi-bin/webtool_opera_v2_new) that are used in this study. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.ready.noaa.gov) used in this publication. NR 79 TC 14 Z9 14 U1 4 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2015 VL 159 BP 232 EP 249 DI 10.1016/j.rse.2014.12.010 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CF7PO UT WOS:000352749000018 ER PT J AU Zibordi, G Melin, F Voss, KJ Johnson, BC Franz, BA Kwiatkowska, E Huot, JP Wang, MH Antoine, D AF Zibordi, Giuseppe Melin, Frederic Voss, Kenneth J. Johnson, B. Carol Franz, Bryan A. Kwiatkowska, Ewa Huot, Jean-Paul Wang, Menghua Antoine, David TI System vicarious calibration for ocean color climate change applications: Requirements for in situ data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Ocean color; System Vicarious Calibration; Climate Data Record ID ATMOSPHERIC CORRECTION; COASTAL SITES; AERONET-OC; VALIDATION; SENSORS; PRODUCTS; SEAWIFS; MODIS; IRRADIANCE; RADIANCES AB System Vicarious Calibration (SVC) ensures a relative radiometric calibration to satellite ocean color sensors that minimizes uncertainties in the water-leaving radiance L-w derived from the top of atmosphere radiance L-T. This is achieved through the application of gain-factors, g-factors, to pre-launch absolute radiometric calibration coefficients of the satellite sensor corrected for temporal changes in radiometric sensitivity. The g-factors are determined by the ratio of simulated to measured spectral L-T values where the former are computed using: i. highly accurate in situ Lw reference measurements; and ii. the same atmospheric models and algorithms applied for the atmospheric correction of satellite data. By analyzing basic relations between relative uncertainties of L-w and L-T, and g-factors consistently determined for the same satellite mission using different in situ data sources, this work suggests that the creation of ocean color Climate Data Records (CDRs) should ideally rely on: i. one main long-term in situ calibration system (site and radiometry) established and sustained with the objective to maximize accuracy and precision over time of g-factors and thus minimize possible biases among satellite data products from different missions; and additionally ii. unique (i.e., standardized) atmospheric model and algorithms for atmospheric correction to maximize cross-mission consistency of data products at locations different from that supporting SVC Finally, accounting for results from the study and elements already provided in literature, requirements and recommendations for SVC sites and field radiometric measurements are streamlined. (C) 2015 The Authors. Published by Elsevier Inc This is an open access article under the CC BY-NC-ND license. C1 [Zibordi, Giuseppe; Melin, Frederic] European Commiss, Joint Res Ctr, Ispra, Italy. [Voss, Kenneth J.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Johnson, B. Carol] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. [Franz, Bryan A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kwiatkowska, Ewa] EUMETSAT, Remote Sensing & Prod Div, Darmstadt, Germany. [Huot, Jean-Paul] European Space Agcy, NL-2200 AG Noordwijk, Netherlands. [Wang, Menghua] NOAA, Ctr Satellite Applicat & Res, College Pk, MD USA. [Antoine, David] Univ Paris 06, Sorbonne Univ, UMR 7093, Lab Oceanog Villefranche, Villefranche Sur Mer, France. [Antoine, David] Curtin Univ, Dept Imaging & Appl Phys, Remote Sensing & Satellite Res Grp, Perth, WA 6845, Australia. RP Zibordi, G (reprint author), European Commiss, Joint Res Ctr, Ispra, Italy. EM giuseppe.zibordi@jrc.ec.europa.eu RI Wang, Menghua/F-5631-2010; Antoine, David/C-3817-2013 OI Wang, Menghua/0000-0001-7019-3125; Antoine, David/0000-0002-9082-2395 NR 39 TC 13 Z9 13 U1 0 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2015 VL 159 BP 361 EP 369 DI 10.1016/j.rse.2014.12.015 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CF7PO UT WOS:000352749000027 ER PT J AU Jackson, TL Farrell, WM Zimmerman, MI AF Jackson, Telana L. Farrell, William M. Zimmerman, Michael I. TI Rover wheel charging on the lunar surface SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Plasma; Charging; Moon; Solar wind ID PLASMA WAKE; FORCES; FIELDS; WIND AB The environment at the Moon is dynamic, with highly variable solar wind plasma conditions at the lunar dayside, terminator, and night side regions. Moving objects such as rover wheels will charge due to contact electrification with the surface, but the degree of charging is controlled by the local plasma environment. Using a dynamic charging model of a wheel, it is demonstrated herein that moving tires will tribocharge substantially when venturing into plasma-current starved regions such as polar craters or the lunar nightside. The surface regolith distribution and the overall effect on charge accumulation of grains cohesively sticking to the rover tire has been incorporated into the model. It is shown that dust sticking can limit the overall charge accumulated on the system. However charge dissipation times are greatly increased in shadowed regions and can present a potential hazard to astronauts and electrical systems performing extravehicular activities. We show that dissipation times change with wheel composition and overall system tribocharging is dependent upon wheel velocity. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Jackson, Telana L.; Farrell, William M.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Zimmerman, Michael I.] Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA. RP Jackson, TL (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM Telana.L.Jackson@nasa.gov RI Farrell, William/I-4865-2013 FU NASA Solar System Exploration Research Virtual Institute (SSERVI) FX We gratefully acknowledge the NASA Solar System Exploration Research Virtual Institute (SSERVI), which directly supported this work. NR 24 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 15 PY 2015 VL 55 IS 6 BP 1710 EP 1720 DI 10.1016/j.asr.2014.12.027 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CD2TO UT WOS:000350932100017 ER PT J AU Yan, JG Xu, LY Li, F Matsumoto, K Rodriguez, JAP Miyamoto, H Dohm, JM AF Yan, Jianguo Xu, Luyuan Li, Fei Matsumoto, Koji Rodriguez, J. Alexis P. Miyamoto, Hideaki Dohm, James M. TI Lunar core structure investigation: Implication of GRAIL gravity field model SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Lunar core radius; Lunar core density; Lunar mean moment of inertia; Lunar mean density; Monte Carlo simulation ID MOON; SATELLITE; INTERIOR AB The details of the structure of the core are important to understanding the evolution and thermal history of the Moon. Even with existing information, including seismic measurements from the Apollo mission, as well as geodetic measurements from Lunar Laser Ranging (LLR) data and gravity, it is still difficult to constrain the size of the lunar core and its density with certainty. Here, we investigate the radius and density of the lunar core using simple constraints of the estimated mean density and mean moment of inertia of the Moon with the help of a Monte Carlo simulation algorithm. This includes a comparison between the results based from the more recent GRAIL gravity field model GRGM660PRIM with those of the gravity field model SGM100h. Analysis through an improved gravity field model indicates that the lunar core is smaller and denser than previously estimated, and the result (a core radius with 370 km) is consistent with more recent result. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Yan, Jianguo; Li, Fei] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430070, Peoples R China. [Yan, Jianguo; Matsumoto, Koji] Natl Astron Observ Japan, RISE Project, Oshu 0230861, Japan. [Xu, Luyuan; Miyamoto, Hideaki; Dohm, James M.] Univ Tokyo, Univ Museum, Tokyo 1130033, Japan. [Rodriguez, J. Alexis P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Yan, JG (reprint author), Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430070, Peoples R China. EM jgyan_511@163.com; luyuanxu@um.u-tokyo.ac.jp; fli@whu.edu.cn; koji.matsumoto@nao.ac.jp; alexis@psi.edu; hm@um.u-tokyo.ac.jp; jmd@um.u-tokyo.ac.jp RI Miyamoto, Hideaki/B-9666-2008 FU National Natural Science Foundation of China [41174019, 41374024]; National Astronomical Observatory of Japan FX The GRAIL gravity field harmonic model is kindly provided by PDS website. This work is supported by National Natural Science Foundation of China (41174019, 41374024) and National Astronomical Observatory of Japan. Professors H. Miyamoto and J.M. Dohm express their gratitude to the Tokyo Dome Corporation for their support of the TeNQ exhibit and the branch of Space Exploration Education & Discovery, the University Museum, the University of Tokyo. NR 32 TC 3 Z9 3 U1 3 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 15 PY 2015 VL 55 IS 6 BP 1721 EP 1727 DI 10.1016/j.asr.2014.12.038 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CD2TO UT WOS:000350932100018 ER PT J AU Anderson, R Bridges, JC Williams, A Edgar, L Ollila, A Williams, J Nachon, M Mangold, N Fisk, M Schieber, J Gupta, S Dromart, G Wiens, R Le Mouelic, S Forni, O Lanza, N Mezzacappa, A Sautter, V Blaney, D Clark, B Clegg, S Gasnault, O Lasue, J Leveille, R Lewin, E Lewis, KW Maurice, S Newsom, H Schwenzer, SP Vaniman, D AF Anderson, Ryan Bridges, J. C. Williams, A. Edgar, L. Ollila, A. Williams, J. Nachon, M. Mangold, N. Fisk, M. Schieber, J. Gupta, S. Dromart, G. Wiens, R. Le Mouelic, S. Forni, O. Lanza, N. Mezzacappa, A. Sautter, V. Blaney, D. Clark, B. Clegg, S. Gasnault, O. Lasue, J. Leveille, R. Lewin, E. Lewis, K. W. Maurice, S. Newsom, H. Schwenzer, S. P. Vaniman, D. TI ChemCam results from the Shaler outcrop in Gale crater, Mars SO ICARUS LA English DT Article DE Mars; Mars, surface; Mineralogy; Spectroscopy ID INDUCED BREAKDOWN SPECTROSCOPY; INSTRUMENT SUITE; DISTANCES; METEORITE; CHLORINE; SULFUR; UNIT AB The ChemCam campaign at the fluvial sedimentary outcrop "Shaler" resulted in observations of 28 non-soil targets, 26 of which included active laser induced breakdown spectroscopy (LIBS), and all of which included Remote Micro-Imager (RMI) images. The Shaler outcrop can be divided into seven facies based on gain size, texture, color, resistance to erosion, and sedimentary structures. The ChemCam observations cover Facies 3 through 7. For all targets, the majority of the grains were below the limit of the RMI resolution, but many targets had a portion of resolvable grains coarser than similar to 0.5 mm. The Shaler facies show significant scatter in LIBS spectra and compositions from point to point, but several key compositional trends are apparent, most notably in the average K2O content of the observed facies. Facies 3 is lower in K2O than the other facies and is similar in composition to the "snake," a clastic dike that occurs lower in the Yellowknife Bay stratigraphic section. Facies 7 is enriched in 1(20 relative to the other fades and shows some compositional and textural similarities to float rocks near Yellowknife Bay. The remaining facies (4, 5, and 6) are similar in composition to the Sheepbed and Gillespie Lake members, although the Shaler fades have slightly elevated K2O and FeOT. Several analysis points within Shaler suggest the presence of feldspars, though these points have excess FeOT which suggests the presence of Fe oxide cement or inclusions. The majority of LIBS analyses have compositions which indicate that they are mixtures of pyroxene and feldspar. The Shaler feldspathic compositions are more alkaline than typical feldspars from shergottites, suggesting an alkaline basaltic source region, particularly for the K2O enriched Facies 7. Apart from possible iron-oxide cement, there is little evidence for chemical alteration at Shaler, although calcium-sulfate veins comparable to those observed lower in the stratigraphic section are present. The differing compositions, and inferred provenances at Shaler, suggest compositionally heterogeneous terrain in the Gale crater rim and surroundings, and intermittent periods of deposition. Published by Elsevier Inc. C1 [Anderson, Ryan] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Bridges, J. C.] Univ Leicester, Space Res Ctr, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Williams, A.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Edgar, L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Ollila, A.; Williams, J.; Newsom, H.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Nachon, M.; Mangold, N.; Le Mouelic, S.] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, F-44322 Nantes, France. [Fisk, M.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Schieber, J.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Gupta, S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Dromart, G.] Univ Lyon, Lab Geol Lyon, F-69364 Lyon, France. [Lanza, N.; Clegg, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forni, O.; Gasnault, O.; Lasue, J.; Maurice, S.] CNRS, IRAP, F-31028 Toulouse 4, France. [Forni, O.; Gasnault, O.; Lasue, J.; Maurice, S.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Mezzacappa, A.] Delaware State Univ, Optic Sci Ctr Appl Res, Dover, DE 19901 USA. [Sautter, V.] Museum Hist Nat Paris, F-75005 Paris, France. [Blaney, D.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Clark, B.] Space Sci Inst, Boulder, CO 80301 USA. [Leveille, R.] McGill Univ, Dept Nat Resource Sci, Ste Anne De Bellevue, PQ H9X 3V9, Canada. [Lewin, E.] Univ Grenoble 1, ISTerre, Grenoble, France. [Lewis, K. W.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Schwenzer, S. P.] Open Univ, Dept Phys Sci, Milton Keynes LE1 7RH, Bucks, England. [Vaniman, D.] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Anderson, R (reprint author), US Geol Survey, Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM rbanderson@usgs.gov; jcb36@leicester.ac.uk; amywill@ucdavis.edu; ledgarl@asu.edu; aollila@unm.edu; josh505@unm.edu; marion.nach@gmail.com; nicolas.mangold@univ-nantes.fr; Martin.Fisk@oregonstate.edu; jschiebe@indiana.edu; s.gupta@imperial.ac.uk; gilles.dromart@ens-Iyon.fr; rwiens@lanl.gov; stephane.lemouelic@univ-nantes.fr; olivier.forni@irap.omp.eu; nlanza@lanl.gov; amezzacappa09@students.desu.edu; vsautter@mnhn.fr; diana.Lblaney@jpl.nasa.gov; bclark@spacescience.org; sclegg@lanl.gov; olivier.gasnault@irap.omp.eu; jeremie.lasue@irap.omp.eu; rich.leveille@gmail.com; Eric.LEWIN@obs.ujf-grenoble.fr; sylvestre.maurice@irap.omp.eu; newsom@unm.edu; dvaniman@psi.edu RI Williams, Amy/B-6623-2014; LEWIN, Eric/F-1451-2017; OI Williams, Amy/0000-0001-6299-0845; Gasnault, Olivier/0000-0002-6979-9012; Schwenzer, Susanne Petra/0000-0002-9608-0759; Clegg, Sam/0000-0002-0338-0948 FU Mars Science Laboratory project; Centre National d'Etudes Spatiales (CNES); Shoemaker Postdoctoral Fellowship; UK Space Agency; National Aeronautics and Space Administration FX This work was supported by the Mars Science Laboratory project. The French contribution to ChemCam on MSL is supported by the Centre National d'Etudes Spatiales (CNES). Anderson acknowledges support from the Shoemaker Postdoctoral Fellowship. Gupta, Bridges, and Schwenzer acknowledge the support of the UK Space Agency. Contributions from Blaney have been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. We thank Brian Balta and an anonymous reviewer for their thoughtful and constructive comments. NR 49 TC 10 Z9 10 U1 7 U2 57 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 2 EP 21 DI 10.1016/j.icarus.2014.07.025 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300002 ER PT J AU Cousin, A Meslin, PY Wiens, RC Rapin, W Mangold, N Fabre, C Gasnault, O Forni, O Tokar, R Ollila, A Schroder, S Lasue, J Maurice, S Sautter, V Newsom, H Vaniman, D Le Mouelic, S Dyar, D Berger, G Blaney, D Nachon, M Dromart, G Lanza, N Clark, B Clegg, S Goetz, W Berger, J Barraclough, B Delapp, D AF Cousin, A. Meslin, P. Y. Wiens, R. C. Rapin, W. Mangold, N. Fabre, C. Gasnault, O. Forni, O. Tokar, R. Ollila, A. Schroeder, S. Lasue, J. Maurice, S. Sautter, V. Newsom, H. Vaniman, D. Le Mouelic, S. Dyar, D. Berger, G. Blaney, D. Nachon, M. Dromart, G. Lanza, N. Clark, B. Clegg, S. Goetz, W. Berger, J. Barraclough, B. Delapp, D. CA MSL Sci Team TI Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils SO ICARUS LA English DT Article DE Mars; Mars, surface; Spectroscopy; Regoliths ID INDUCED BREAKDOWN SPECTROSCOPY; CHEMCAM INSTRUMENT SUITE; CHEMICAL-COMPOSITION; MARS; LASER; ROVER; PATHFINDER; CHEMISTRY; TARGETS; ROCKS AB The ChemCam instrument onboard the Curiosity rover provides for the first time an opportunity to study martian soils at a sub-millimeter resolution. In this work, we analyzed 24 soil targets probed by ChemCam during the first 250 sols on Mars. Using the depth profile capability of the ChemCam LIBS (Laser-Induced Breakdown Spectroscopy) technique, we found that 45% of the soils contained coarse grains (>500 mu m). Three distinct clusters have been detected: Cluster 1 shows a low SiO2 content; Cluster 2 corresponds to coarse grains with a felsic composition, whereas Cluster 3 presents a typical basaltic composition. Coarse grains from Cluster 2 have been mostly observed exposed in the vicinity of the landing site, whereas coarse grains from Clusters 1 and 3 have been detected mostly buried, and were found all along the rover traverse. The possible origin of these coarse grains was investigated. Felsic (Cluster 2) coarse grains have the same origin as the felsic rocks encountered near the landing site, whereas the origin of the coarse grains from Clusters I and 3 seems to be more global. Fine-grained soils (particle size < laser beam diameter which is between 300 and 500 mu m) show a homogeneous composition all along the traverse, different from the composition of the rocks encountered at Gale. Although they contain a certain amount of hydrated amorphous component depleted in Si02, possibly present as a surface coating, their overall chemical homogeneity and their close-to-basaltic composition suggest limited, or isochemical alteration, and a limited interaction with liquid water. Fine particles and coarse grains from Cluster 1 have a similar composition, and the former could derive from weathering of the latter. Overall martian soils have a bulk composition between that of fine particles and coarse grains. This work shows that the ChemCam instrument provides a means to study the variability of soil composition at a scale not achievable by bulk chemical analyses. (C) 2014 Elsevier Inc. All rights reserved. C1 [Cousin, A.; Wiens, R. C.; Lanza, N.; Clegg, S.; Delapp, D.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Meslin, P. Y.; Rapin, W.; Gasnault, O.; Forni, O.; Schroeder, S.; Lasue, J.; Maurice, S.; Berger, G.] Inst Rech Astrophys & Planetol, Toulouse, France. [Mangold, N.; Le Mouelic, S.; Nachon, M.] Univ Nantes, LPGNantes, Lab Planetol & Geodynam, CNRS UMR 6112, F-44035 Nantes, France. [Fabre, C.] Univ Lorraine, Nancy, France. [Tokar, R.; Vaniman, D.; Barraclough, B.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Ollila, A.; Newsom, H.] Univ New Mexico, Albuquerque, NM 87131 USA. [Sautter, V.] Museum Natl Hist Nat, F-75231 Paris, France. [Dyar, D.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Blaney, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dromart, G.] Lab Geol Lyon, Lyon, France. [Clark, B.] Space Sci Inst, Bouler, CO 80301 USA. [Goetz, W.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Berger, J.] Western Univ, Dept Earth Sci, London, ON N6A 5B7, Canada. RP Cousin, A (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM acousin@lanl.gov RI Gonzalez, Rafael/D-1748-2009; Rodriguez-Manfredi, Jose/L-8001-2014; BERGER, Gilles/F-7118-2016; Ramos, Miguel/K-2230-2014; OI Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Ramos, Miguel/0000-0003-3648-6818; Gasnault, Olivier/0000-0002-6979-9012; Clegg, Sam/0000-0002-0338-0948 FU NASA's Mars Program Office FX NASA's Mars Program Office sponsored this research. The whole team acknowledges JPL for developing and leading this successful mission. The team also acknowledges CNES for its important role shared in the ChemCam operations. The data reported in this paper are archived at the Planetary Data System, accessible at http://pdsgeosciences.wustl.edu/missions/msl/index.htm. NR 73 TC 22 Z9 22 U1 5 U2 59 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 22 EP 42 DI 10.1016/j.icarus.2014.04.052 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300003 ER PT J AU Lanza, NL Ollila, AM Cousin, A Wiens, RC Clegg, S Mangold, N Bridges, N Cooper, D Schmidt, M Berger, J Arvidson, R Melikechi, N Newsom, HE Tokar, R Hardgrove, C Mezzacappa, A Jackson, RS Clark, B Forni, O Maurice, S Nachon, M Anderson, RB Blank, J Deans, M Delapp, D Leveille, R McInroy, R Martinez, R Meslin, PY Pinet, P AF Lanza, Nina L. a Ollila, Ann M. b Cousin, Agnes a Wiens, Roger C. a Clegg, Samuel a Mangold, Nicolas c Bridges, Nathan d Cooper, Daniel a Schmidt, Mariek e Berger, Jeffrey f Arvidson, Raymond. g Melikechi, Noureddine h Newsom, Horton E. b Tokar, Robert i Hardgrove, Craig j Mezzacappa, Alissa h Jackson, Ryan S. b Clark, Benton k Forni, Olivier Maurice, Sylvestre m Nachon, Marion c Anderson, Ryan B. n Blank, Jennifer o Deans, Matthew p Delapp, Dorothea a Leveille, Richard q McInroy, Rhonda a Martinez, Ronald a Meslin, Pierre-Yves m Pinet, Patrick m TI Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data SO ICARUS LA English DT Article DE Mars, surface; Spectroscopy; Geological processes; Experimental techniques ID ATACAMA DESERT IMPLICATIONS; CHEMCAM INSTRUMENT SUITE; GUSEV CRATER; WEATHERING RINDS; SPIRIT ROVER; VARNISH FORMATION; MARS; SEARCH; SOILS; LIFE AB Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces. (C) 2014 Elsevier Inc. All rights reserved. C1 [Lanza, Nina L. a; Cousin, Agnes a; Wiens, Roger C. a; Clegg, Samuel a; Cooper, Daniel a; Delapp, Dorothea a; McInroy, Rhonda a; Martinez, Ronald a] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ollila, Ann M. b; Newsom, Horton E. b; Jackson, Ryan S. b] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Mangold, Nicolas c; Nachon, Marion c] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, UMR6112, F-44322 Nantes, France. [Bridges, Nathan d] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Schmidt, Mariek e] Brock Univ, Dept Earth Sci, St Catharines, ON L2S 3A1, Canada. [Berger, Jeffrey f] Univ Western Ontario, London, ON N6A 5B7, Canada. [Arvidson, Raymond. g] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Melikechi, Noureddine h; Mezzacappa, Alissa h] Delaware State Univ, Opt Sci Ctr Appl Res, Dover, DE 19901 USA. [Tokar, Robert i] Inst Plant Sci, Tucson, AZ 85719 USA. [Hardgrove, Craig j] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Clark, Benton k] Space Sci Inst, Boulder, CO 80301 USA. [Forni, Olivier; Maurice, Sylvestre m; Meslin, Pierre-Yves m; Pinet, Patrick m] Univ Toulouse, F-31000 Toulouse, France. [Forni, Olivier; Maurice, Sylvestre m; Meslin, Pierre-Yves m; Pinet, Patrick m] CNRS, IRAP, F-31028 Toulouse 4, France. [Anderson, Ryan B. n] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Blank, Jennifer o] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Deans, Matthew p] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Leveille, Richard q] McGill Univ, Dept Nat Resource Sci, Ste Anne De Bellevue, PQ H9X 3V9, Canada. RP Lanza, NL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM nlanza@lanl.gov; aollila@unm.edu; rwiens@lanl.gov; sclegg@lanl.gov; nicolas.mangold@univ-nantes.fr; nathan.bridges@jhuapl.edu; dcooper@lanl.gov; mschmidt2@brocku.ca; jberge44@uwo.ca; arvidson@wunder.wustl.edu; nmelikechi@desu.edu; newsom@unm.edu; rItokar@psi.edu; chardgrove@gmail.com; amezzacappa09@students.desu.edu; rjacks04@unm.edu; bclark@spacescience.org; olivier.forni@irap.omp.eu; sylvestre.maurice@irap.omp.eu; marion.nach@gmail.com; rbanderson@usgs.gov; jgblank@gmail.com; matthew.deans@nasa.gov; ddelapp@lanl.gov; rich.leveille@gmail.com; rhondam@lanl.gov; rkmartinez@lanl.gov; pmeslin@irap.omp.edu OI Clegg, Sam/0000-0002-0338-0948 FU Mars Science Laboratory project; Centre National d'Etudes Spatiales (CNES) on the French part of the ChemCam project FX This work was supported by the Mars Science Laboratory project, with additional support from the Centre National d'Etudes Spatiales (CNES) on the French part of the ChemCam project. We wish to thank M. Spilde for assistance with the SEM and two anonymous reviewers for their very helpful comments. NR 42 TC 7 Z9 9 U1 3 U2 53 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 62 EP 73 DI 10.1016/j.icarus.2014.05.038 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300005 ER PT J AU Johnson, JR Bell, JF Bender, S Blaney, D Cloutis, E DeFlores, L Ehlmann, B Gasnault, O Gondet, B Kinch, K Lemmon, M Le Mouelic, S Maurice, S Rice, M Wiens, RC AF Johnson, Jeffrey R. Bell, J. F., III Bender, S. Blaney, D. Cloutis, E. DeFlores, L. Ehlmann, B. Gasnault, O. Gondet, B. Kinch, K. Lemmon, M. Le Mouelic, S. Maurice, S. Rice, M. Wiens, R. C. CA MSL Sci Team TI ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars SO ICARUS LA English DT Article DE Mars; Mars, surface; Spectroscopy ID MAGNETIC-PROPERTIES EXPERIMENTS; VISIBLE/NEAR-INFRARED SPECTRA; INSTRUMENT SUITE; GUSEV CRATER; ROVER; PATHFINDER; MINERALS; SPIRIT; DUST; OPPORTUNITY AB The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (<1 nm) visible/near-infrared reflectance spectra from a landed platform on Mars. Relative reflectance spectra of surface rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at <600 nm is greatly subdued in brushed rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by the ChemCam passive measurements as well. Ongoing efforts to model and correct for this dust component should improve calibration of the relative reflectance spectra. This will be useful as additional measurements are acquired during the rover's future examinations of hematite-, sulfate-, and phyllosilicate-bearing materials near the base of Mt. Sharp that are spectrally active in the 400-840 nm region. (C) 2014 Elsevier Inc. All rights reserved. C1 [Johnson, Jeffrey R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Bell, J. F., III] Arizona State Univ, Tempe, AZ 85287 USA. [Bender, S.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Blaney, D.; DeFlores, L.] Jet Prop Lab, Pasadena, CA 91109 USA. [Cloutis, E.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. [Ehlmann, B.; Rice, M.] CALTECH, Pasadena, CA 91125 USA. [Gasnault, O.; Maurice, S.] Univ Toulouse, CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Gondet, B.] Inst Astrophys Spatiale, F-91405 Orsay, France. [Kinch, K.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Lemmon, M.] Texas A&M Univ, College Stn, TX 77842 USA. [Le Mouelic, S.] Univ Nantes, Lab Planetol & Geodynam, Nantes, France. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, JR (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM Jeffrey.R.Johnson@jhuapl.edu RI Kinch, Kjartan/C-5742-2015; Lemmon, Mark/E-9983-2010; Gonzalez, Rafael/D-1748-2009; Rodriguez-Manfredi, Jose/L-8001-2014; Johnson, Jeffrey/F-3972-2015; Ramos, Miguel/K-2230-2014; OI Kinch, Kjartan/0000-0002-4629-8880; Lemmon, Mark/0000-0002-4504-5136; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Ramos, Miguel/0000-0003-3648-6818; Gasnault, Olivier/0000-0002-6979-9012 FU Mars Science Laboratory Participating Scientist program; Centre National d'Etudes Spatiales (CNES); Danish Council for Independent Research/Natural Sciences (FNU) [12-127126] FX The authors wish to thank the entire engineering and science teams who were integral in landing the Curiosity rover successfully, and in operating a complicated science instrument package efficiently to maximize the science return. In particular, the diligence of the downlink and uplink teams is truly appreciated, as is the generosity of the ChemCam team in agreeing to use the instrument in a manner distinct from its main purpose. The results demonstrated the excellent sensitivity of the instrument's spectrometers and the benefits of flexibility when operating instruments on Mars. K. Seelos UHU/APL) provided the CRISM spectrum, and A. Ody (Universite Paris-Sud, Orsay, France) provided the bright and dark OMEGA spectra. S. Clegg (LANL) provided the list of ChemCam targets assigned to specific geologic units. Helpful reviews were provided by M. Lane and an anonymous reviewer. J.R. Johnson was funded by the Mars Science Laboratory Participating Scientist program. The French contribution to MSL is supported by the Centre National d'Etudes Spatiales (CNES). Work by K. Kinch was supported by the Danish Council for Independent Research/Natural Sciences (FNU Grant 12-127126). NR 71 TC 4 Z9 4 U1 5 U2 33 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 74 EP 92 DI 10.1016/j.icarus.2014.02.028 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300006 ER PT J AU Le Mouelic, S Gasnault, O Herkenhoff, KE Bridges, NT Langevin, Y Mangold, N Maurice, S Wiens, RC Pinet, P Newsom, HE Deen, RG Bell, JF Johnson, JR Rapin, W Barraclough, B Blaney, DL Deflores, L Maki, J Malin, MC Perez, R Saccoccio, M AF Le Mouelic, S. Gasnault, O. Herkenhoff, K. E. Bridges, N. T. Langevin, Y. Mangold, N. Maurice, S. Wiens, R. C. Pinet, P. Newsom, H. E. Deen, R. G. Bell, J. F., III Johnson, J. R. Rapin, W. Barraclough, B. Blaney, D. L. Deflores, L. Maki, J. Malin, M. C. Perez, R. Saccoccio, M. TI The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars SO ICARUS LA English DT Article DE Mars; Mars, surface; Mineralogy; Data reduction techniques; Image processing ID INSTRUMENT SUITE; CURIOSITY ROVER; SYSTEM; UNIT AB The Mars Science Laboratory rover, "Curiosity" landed near the base of a 5 km-high mound of layered material in Gale crater. Mounted on the rover mast, the ChemCam instrument is designed to remotely determine the composition of soils and rocks located a few meters from the rover, using a Laser-Induced Breakdown Spectrometer (LIBS) coupled to a Remote Micro-Imager (RMI). We provide an overview of the diverse imaging investigations that were carried out by ChemCam's RMI during the first year of operation on Mars. 1182 individual panchromatic RMI images were acquired from Sol 10 to Sol 360 to document the ChemCam LIBS measurements and to characterize soils, rocks and rover hardware. We show several types of derived imaging products, including mosaics of images taken before and after laser shots, difference images to enhance the most subtle laser pits, merges with color Mastcam-100 images, micro-topography using the Z-stack technique, and time lapse movies. The very high spatial resolution of RMI is able to resolve rock textures at sub-mm scales, which provides clues regarding the origin (igneous versus sedimentary) of rocks, and to reveal information about their diagenetic and weathering evolution. In addition to its scientific value over the range accessible by LIES (1-7 m), we also show that RMI can also serve as a powerful long distance reconnaissance tool to characterize the landscape at distances up to several kilometers from the rover. (C) 2014 Elsevier Inc. All rights reserved. C1 [Le Mouelic, S.; Mangold, N.] Univ Nantes, CNRS UMR 6112, Lab Planetol & Geodynam, LPGNantes, F-44035 Nantes 3, France. [Gasnault, O.; Maurice, S.; Pinet, P.; Rapin, W.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Gasnault, O.; Maurice, S.; Pinet, P.; Rapin, W.] CNRS, IRAP, F-31028 Toulouse 4, France. [Herkenhoff, K. E.] USGS Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Bridges, N. T.; Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Langevin, Y.] Inst Astrophys Spatiale, Orsay, France. [Wiens, R. C.; Barraclough, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Newsom, H. E.] Univ New Mexico, Albuquerque, NM 87131 USA. [Deen, R. G.; Blaney, D. L.; Deflores, L.; Maki, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bell, J. F., III] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Malin, M. C.] Malin Space Sci Syst, San Diego, CA 92191 USA. [Perez, R.; Saccoccio, M.] CENS, Toulouse, France. Univ London Imperial Coll Sci Technol & Med, London W12 0HS, England. RP Le Mouelic, S (reprint author), Univ Nantes, CNRS, Lab Planetol & Geodynam, 2 Rue Houssiniere,BP 92208, F-44035 Nantes 3, France. EM stephane.lemouelic@univ-nantes.fr RI Johnson, Jeffrey/F-3972-2015; Bridges, Nathan/D-6341-2016; OI Gasnault, Olivier/0000-0002-6979-9012 FU Centre National d'Etudes Spatiales (CNES); NASA's Mars Program Office; National Aeronautics and Space Administration FX This research was carried out with funding from the Centre National d'Etudes Spatiales (CNES). Work in the US was carried out under contract from NASA's Mars Program Office. The work of the JPL co-authors was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank F. Calef, K. Edgett and also two anonymous reviewers for their very constructive remarks and inputs. The authors gratefully acknowledge JPL for developing, leading and operating this successful mission. NR 32 TC 20 Z9 20 U1 6 U2 39 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 93 EP 107 DI 10.1016/j.icarus.2014.05.030 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300007 ER PT J AU Newsom, HE Mangold, N Kah, LC Williams, JM Arvidson, RE Stein, N Ollila, AM Bridges, JC Schwenzer, SP King, PL Grant, JA Pinet, P Bridges, NT Calef, F Wiens, RC Spray, JG Vaniman, DT Elston, WE Berger, JA Garvin, JB Palucis, MC AF Newsom, Horton E. Mangold, Nicolas Kah, Linda C. Williams, Joshua M. Arvidson, Ray E. Stein, Nathan Ollila, Ann M. Bridges, John C. Schwenzer, Susanne P. King, Penelope L. Grant, John A. Pinet, Patrick Bridges, Nathan T. Calef, Fred, III Wiens, Roger C. Spray, John G. Vaniman, David T. Elston, Wolf E. Berger, Jeff A. Garvin, James B. Palucis, Marisa C. CA MSL Sci Team TI Gale crater and impact processes - Curiosity's first 364 Sols on Mars SO ICARUS LA English DT Article DE Mars, surface; Impact processes; Cratering ID CRETACEOUS-TERTIARY BOUNDARY; YAXCOPOIL-1 DRILL CORE; CLAY MINERAL FORMATION; VALLES MARINERIS; LANDING SITE; GUSEV CRATER; SCIENCE; EVOLUTION; ORIGIN; CHICXULUB AB Impact processes at all scales have been involved in the formation and subsequent evolution of Gale crater. Small impact craters in the vicinity of the Curiosity MSL landing site and rover traverse during the 364 Sols after landing have been studied both from orbit and the surface. Evidence for the effect of impacts on basement outcrops may include loose blocks of sandstone and conglomerate, and disrupted (fractured) sedimentary layers, which are not obviously displaced by erosion. Impact ejecta blankets are likely to be present, but in the absence of distinct glass or impact melt phases are difficult to distinguish from sedimentary/volcaniclastic breccia and conglomerate deposits. The occurrence of individual blocks with diverse petrological characteristics, including igneous textures, have been identified across the surface of Bradbury Rise, and some of these blocks may represent distal ejecta from larger craters in the vicinity of Gale. Distal ejecta may also occur in the form of impact spherules identified in the sediments and drift material. Possible examples of impactites in the form of shatter cones, shocked rocks, and ropy textured fragments of materials that may have been molten have been observed, but cannot be uniquely confirmed. Modification by aeolian processes of craters smaller than 40 m in diameter observed in this study, are indicated by erosion of crater rims, and infill of craters with aeolian and airfall dust deposits. Estimates for resurfacing suggest that craters less than 15 m in diameter may represent steady state between production and destruction. The smallest candidate impact crater observed is 0.6 m in diameter. The observed crater record and other data are consistent with a resurfacing rate of the order of 10 mm/Myr; considerably greater than the rate from impact cratering alone, but remarkably lower than terrestrial erosion rates. (C) 2014 Elsevier Inc. All rights reserved. C1 [Newsom, Horton E.; Williams, Joshua M.; Ollila, Ann M.; Elston, Wolf E.] Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Mangold, Nicolas] Univ Nantes, CNRS, UMR 6112, LPGN, Nantes, France. [Kah, Linda C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Arvidson, Ray E.; Stein, Nathan] Washington Univ, St Louis, MO USA. [Bridges, John C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Schwenzer, Susanne P.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [King, Penelope L.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia. [King, Penelope L.] Univ Guelph, Guelph, ON N1G 2W1, Canada. [Grant, John A.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. [Pinet, Patrick] Univ Toulouse 3, IRAP, Toulouse, France. [Bridges, Nathan T.] Appl Phys Lab, Laurel, MD 20723 USA. [Calef, Fred, III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wiens, Roger C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Spray, John G.] Univ New Brunswick, Planetary & Space Sci Ctr, Fredericton, NB E3B 5A3, Canada. [Vaniman, David T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Berger, Jeff A.] Univ Western Ontario, London, ON, Canada. [Garvin, James B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Palucis, Marisa C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Newsom, HE (reprint author), Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RI Gonzalez, Rafael/D-1748-2009; Rodriguez-Manfredi, Jose/L-8001-2014; Bridges, Nathan/D-6341-2016; King, Penelope/A-1791-2011; Ramos, Miguel/K-2230-2014; OI Rodriguez-Manfredi, Jose/0000-0003-0461-9815; King, Penelope/0000-0002-8364-9168; Ramos, Miguel/0000-0003-3648-6818; Schwenzer, Susanne Petra/0000-0002-9608-0759 FU Mars Science Laboratory Mission (NASA/JPL); JPL FX We wish to thank the dedicated team of scientists, engineers and support personnel at JPL and the author's institutions for the creation and daily operation of the marvelous tool represented by the Curiosity rover and the orbital assets which provide context and communication for the MSL mission and science. Financial support provided by the Mars Science Laboratory Mission (NASA/JPL) and other institutional support. We also greatly appreciated the comments by several reviewers of this manuscript. NR 124 TC 14 Z9 14 U1 4 U2 28 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 108 EP 128 DI 10.1016/j.icarus.2014.10.013 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300008 ER PT J AU Moores, JE Lemmon, MT Kahanpaa, H Rafkin, SCR Francis, R Pla-Garcia, J Bean, K Haberle, R Newman, GC Mischna, M Vasavada, AR Juarez, MD Renno, N Bell, J Calef, F Cantor, B Mcconnochie, TH Harri, AM Genzer, M Wong, MH Smith, MD Martin-Torres, FJ Zorzano, MP Kemppinen, O McCullough, E AF Moores, John E. Lemmon, Mark T. Kahanpaeae, Henrik Rafkin, Scot C. R. Francis, Raymond Pla-Garcia, Jorge Bean, Keri Haberle, Robert Newman, Claire Mischna, Michael Vasavada, Ashwin R. Juarez, Manuel De la Torre Renno, Nilton Bell, Jim Calef, Fred Cantor, Bruce Mcconnochie, Timothy H. Harri, Ari-Matti Genzer, Maria Wong, Michael H. Smith, Michael D. Martin-Torres, F. Javier Zorzano, Maria-Paz Kemppinen, Osku McCullough, Emily TI Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover SO ICARUS LA English DT Article DE Mars; Mars, atmosphere; Atmospheres, dynamics; Atmospheres, structure ID MARTIAN DUST CYCLE; CONVECTIVE VORTICES; ENGINEERING CAMERAS; DEVILS; MOTION; MODEL AB The Navigation Cameras (Navcam) of the Mars Science Laboratory rover, Curiosity, have been used to examine two aspects of the planetary boundary layer: vertical dust distribution and dust devil frequency. The vertical distribution of dust may be obtained by using observations of the distant crater rim to derive a line-of-sight optical depth within Gale Crater and comparing this optical depth to column optical depths obtained using Mastcam observations of the solar disc. The line of sight method consistently produces lower extinctions within the crater compared to the bulk atmosphere. This suggests a relatively stable atmosphere in which dust may settle out leaving the air within the crater clearer than air above and explains the correlation in observed column opacity between the floor of Gale Crater and the higher elevation Meridiani Planum. In the case of dust devils, despite an extensive campaign only one optically thick vortex (tau = 1.5 +/- 0.5 x 10(-3)) was observed compared to 149 pressure events >0.5 Pa observed in REMS pressure data. Correcting for temporal coverage by REMS and geographic coverage by Navcam still suggests 104 vortices should have been viewable, suggesting that most vortices are dustless. Additionally, the most intense pressure excursions observed on other landing sites (pressure drop >2.5 Pa) are lacking from the observations by the REMS instrument. Taken together, these observations are consistent with pre-landing circulation modeling of the crater showing a suppressed, shallow boundary layer. They are further consistent with geological observations of dust that suggests the northern portion of the crater is a sink for dust in the current era. (C) 2014 Elsevier Inc. All rights reserved. C1 [Moores, John E.] York Univ, CRESS, Toronto, ON M3J IP3, Canada. [Bean, Keri] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Kahanpaeae, Henrik; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku] Finnish Meteorol Inst, FI-00560 Helsinki, Finland. [Rafkin, Scot C. R.] Southwest Res Inst, Boulder, CO 80302 USA. [Francis, Raymond; McCullough, Emily] Univ Western Ontario, London, ON N6A 5B9, Canada. [Pla-Garcia, Jorge; Zorzano, Maria-Paz] Inst Nacl Tecnica Aeroespacial, Cent Astrobiol, Torrejo De Ardoz 28850, Spain. [Haberle, Robert] Ames Res Ctr, Naval Air Stn, Mountain View, CA 94035 USA. [Newman, Claire] Ashima Res Corp, Pasadena, CA 91106 USA. [Mischna, Michael; Vasavada, Ashwin R.; Juarez, Manuel De la Torre; Calef, Fred] Jet Prop Lab Caltech, Pasadena, CA 91109 USA. [Renno, Nilton; Wong, Michael H.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bell, Jim] Arizona State Univ, Phoenix, AZ 85004 USA. [Mischna, Michael; Juarez, Manuel De la Torre; Calef, Fred] Malin Space Sci Syst, San Diego, CA 91014 USA. [Mcconnochie, Timothy H.] GSFC U Maryland, College Pk, MD 20742 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Martin-Torres, F. Javier] CSIC UGR, Granada, Spain. RP Moores, JE (reprint author), York Univ, CRESS, 4700 Keele St, Toronto, ON M3J IP3, Canada. EM jmoores@yorku.ca; lemmon@tamu.edu; Henrik.Kahanpaa@fmi.fi; rafkin@boulder.swri.edu; Raymond.francis@cpsx.uwo.ca; jpla@cab.inta-csic.es; Keri.Bean@jpl.nasa.gov; Robert.M.Haberle@nasa.gov; Claire@ashimaresearch.com; Michael.A.Mischna@jpl.nasa.gov; Ashwin.R.Vasavada@jpl.nasa.gov; mtj@jpl.nasa.gov; nrenno@umich.edu; Jim.Bell@asu.edu; Fred.Calef@jpl.nasa.gov; cantor@msss.com; timothy.h.mcconnochie@nasa.gov; Ari-Matti.Harri@fmi.fi; Maria.Genzer@fmi.fi; mike.wong@umich.edu; michael.d.smith@nasa.gov; javiermt@iact.ugr-csic.es; zorzanomm@cab.inta-csic.es; osku.kemppinen@fmi.fi; emccul12@uwo.ca RI Zorzano, Maria-Paz/C-5784-2015; Lemmon, Mark/E-9983-2010; Martin-Torres, Francisco Javier/G-6329-2015; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015 OI Kahanpaa, Henrik/0000-0001-9108-186X; Zorzano, Maria-Paz/0000-0002-4492-9650; Lemmon, Mark/0000-0002-4504-5136; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650 FU Canadian Space Agency FX JEM would like to acknowledge the contributions of the Mars Science Laboratory Participating Scientist Program for access to the science team and to rover operations and of the Canadian Space Agency for providing funding for this work. This manuscript was substantially improved by the suggestions of two reviewers: Mike Wolff and Ralph Lorenz. NR 39 TC 17 Z9 17 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR 15 PY 2015 VL 249 SI SI BP 129 EP 142 DI 10.1016/j.icarus.2014.09.020 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CA5SE UT WOS:000348967300009 ER PT J AU Chen, SP Zhang, X Fan, WH Yi, TH Quach, DV Bux, S Meng, QS Kauzlarich, SM Munir, ZA AF Chen, Shaoping Zhang, Xia Fan, Wenhao Yi, Tanghong Quach, Dat V. Bux, Sabah Meng, Qingsen Kauzlarich, Susan M. Munir, Zuhair A. TI One-step low temperature reactive consolidation of high purity nanocrystalline Mg2Si SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Mg2Si; Reactive sintering; MgH2; SPS; Nanocrystalline ID MANGANESE SILICIDE FILMS; LITHIUM-ION BATTERIES; THERMOELECTRIC PROPERTIES; SOLID-STATE; MAGNESIUM-SILICIDE; NANOCOMPOSITES AB Bulk nanocrystalline Mg2Si thermoelectric materials were synthesized and consolidated in a one-step process through a solid-state reaction between magnesium hydride and silicon, using the spark plasma sintering (SPS) method. The hydrogen produced in the process alleviates the problem of the oxidation of Mg. The samples were reactively sintered at temperatures in the range 723-823 K and under a uniaxial pressure in the range of 71-164 MPa in 5 min. Powder X-ray diffraction (XRD) analysis showed the products to be pure Mg2Si. The grain size of the consolidated samples was less than 500 nm, as determined by transmission electron spectroscopy (TEM). Residual nano-pores were observed by scanning electron microscopy at grain boundaries; their presence is believed to be the consequence of hydrogen evolution during the reactive sintering. The effect of synthesis temperature and pressure on crystallite size, density, and transport properties was determined. The results showed that use of MgH2 instead of Mg in the one-step method prevents the formation of MgO. The addition of 1 at.% Bi as a dopant improved the power factor significantly. Samples with 1 at.% Bi had a ZT of 0.6 at 775 K. (C) 2014 Elsevier B. V. All rights reserved. C1 [Chen, Shaoping; Zhang, Xia; Fan, Wenhao; Meng, Qingsen] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China. [Chen, Shaoping; Meng, Qingsen] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China. [Yi, Tanghong; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Quach, Dat V.; Munir, Zuhair A.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Bux, Sabah] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chen, SP (reprint author), Coll Mat Sci & Engn, 79 West Yingze St, Taiyuan 030024, Shanxi, Peoples R China. EM chenshaoping@tyut.edu.cn; fanwenhao1979@163.com FU NASA Science Missions Directorate's Radioisotope Power Systems Technology Advancement Program FX Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. This work was supported by the NASA Science Missions Directorate's Radioisotope Power Systems Technology Advancement Program. The authors thank Tela X. Favaloro for some preliminary transport properties measurements and Ali Shakouri for useful discussion. The funding support of NSFDMR1100313, NSF/DOE and Partnership CBET-1048799 is acknowledged. We also thank the financial support from National Science Fund for Young Scholars ( Grant No. 51101111), Research Project Shanxi Scholarship Council of China (Grant No. 2012-031), and Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi. NR 31 TC 6 Z9 6 U1 17 U2 117 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAR 15 PY 2015 VL 625 BP 251 EP 257 DI 10.1016/j.jallcom.2014.11.073 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA AY2HG UT WOS:000347408900036 ER PT J AU de Groh, HC Puleo, BJ Waters, DL Miller, SK AF de Groh, Henry C., III Puleo, Bernadette J. Waters, Deborah L. Miller, Sharon K. TI Antiadhesion elastomer seal coatings for UV and atomic oxygen protection SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE applications; coatings; elastomers; rubber; surfaces and interfaces ID ZNO AB Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 mg/cm(2). Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nm and 254 nm, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 MJ/m(2) day. Exposures between 0 and 147 MJ/m(2) (UV-C) and 245 MJ/m(2) (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 mg/cm(2). The leakage of seals coated with Braycote+20%Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4%Z-cote ZnO sunscreen were not significantly affected by combined doses of 2x10(21) atoms/cm(2) AO with 73 MJ/m(2) UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 MJ/m(2) and DC-7-16.4%Z-cote coated seals were undamaged at all exposures up to the limits tested thus far which were 147 MJ/m(2) UV-C and 245 MJ/m(2) NUV. The coatings decreased adhesion sufficiently for docking seals at temperatures equal to or greater than -8 degrees C thus offer a simple and inexpensive way to mitigate adhesion. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41662. C1 [de Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP de Groh, HC (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM henry.c.degroh@nasa.gov FU NASA's NASA Docking System project FX Chris C. Daniels, Nicholas G. Garafolo, Nicholas Penney, and William J. Anderer helped immensely with the accomplishment of this work: the conception of the test methods and hardware, maintenance of the custom software, and manufacture of specimens are due to them. Particular acknowledgment is due Heather A. Oravec for her help testing Medium-scale seals. This work was funded by NASA's NASA Docking System project. NR 43 TC 1 Z9 1 U1 2 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8995 EI 1097-4628 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD MAR 15 PY 2015 VL 132 IS 11 AR 41662 DI 10.1002/app.41662 PG 11 WC Polymer Science SC Polymer Science GA AW6DK UT WOS:000346359400038 ER PT J AU Huterer, D Kirkby, D Bean, R Connolly, A Dawson, K Dodelson, S Evrard, A Jain, B Jarvis, M Linder, E Mandelbaum, R May, M Raccanelli, A Reid, B Rozo, E Schmidt, F Sehgal, N Slosar, A van Engelen, A Wu, HY Zhao, GB AF Huterer, Dragan Kirkby, David Bean, Rachel Connolly, Andrew Dawson, Kyle Dodelson, Scott Evrard, August Jain, Bhuvnesh Jarvis, Michael Linder, Eric Mandelbaum, Rachel May, Morgan Raccanelli, Alvise Reid, Beth Rozo, Eduardo Schmidt, Fabian Sehgal, Neelima Slosar, Anze van Engelen, Alex Wu, Hao-Yi Zhao, Gongbo TI Growth of cosmic structure: Probing dark energy beyond expansion SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmology; Large-scale structure; Dark energy ID OSCILLATION SPECTROSCOPIC SURVEY; HALO MASS FUNCTION; MATTER POWER SPECTRUM; LARGE-SCALE STRUCTURE; WEAK-LENSING SURVEYS; INTRINSIC GALAXY ALIGNMENTS; REDSHIFT-SPACE DISTORTIONS; N-BODY SIMULATIONS; DIGITAL SKY SURVEY; SDSS-III AB The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe. One way to explain the acceleration of the Universe is invoke dark energy parameterized by an equation of state w. Distance measurements provide one set of constraints on w, but dark energy also affects how rapidly structure grows; the greater the acceleration, the more suppressed the growth of structure. Upcoming surveys are therefore designed to probe w with direct observations of the distance scale and the growth of structure, each complementing the other on systematic errors and constraints on dark energy. A consistent set of results will greatly increase the reliability of the final answer. Another possibility is that there is no dark energy, but that General Relativity does not describe the laws of physics accurately on large scales. While the properties of gravity have been measured with exquisite precision at stellar system scales and densities, within our solar system and by binary pulsar systems, its properties in different environments are poorly constrained. To fully understand if General Relativity is the complete theory of gravity we must test gravity across a spectrum of scales and densities. Rapid developments in gravitational wave astronomy and numerical relativity are directed at testing gravity in the high curvature, high density regime. Cosmological evolution provides a polar opposite test bed, probing how gravity behaves in the lowest curvature, low density environments. There are a number of different implementations of astrophysically relevant modifications of gravity. Generically, the models are able to reproduce the distance measurements while at the same time altering the growth of structure. In particular, as detailed below, the Poisson equation relating over-densities to gravitational potentials is altered, and the potential that determines the geodesics of relativistic particles (such as photons) differs from the potential that determines the motion of non-relativistic particles. Upcoming surveys will exploit these differences to determine whether the acceleration of the Universe is due to dark energy or to modified gravity. To realize this potential, both wide field imaging and spectroscopic redshift surveys play crucial roles. Projects including DES, eBOSS, DESI, PFS, LSST, Euclid, and WFIRST are in line to map more than a 1000 cubic-billion-light-year volume of the Universe. These will map the cosmic structure growth rate to 1% in the redshift range 0 < z < 2, over the last 3/4 of the age of the Universe. (C) 2014 Elsevier B.V. All rights reserved. C1 [Huterer, Dragan; Evrard, August; Wu, Hao-Yi] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Kirkby, David] UC Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bean, Rachel] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Connolly, Andrew] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Dawson, Kyle] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Dodelson, Scott] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Jain, Bhuvnesh; Jarvis, Michael] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Linder, Eric; Reid, Beth] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [May, Morgan; Slosar, Anze] Brookhaven Natl Lab, Upton, NY 11973 USA. [Raccanelli, Alvise] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Rozo, Eduardo] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Schmidt, Fabian] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Sehgal, Neelima; van Engelen, Alex] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Zhao, Gongbo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Schmidt, Fabian] Max Planck Inst Astrophys, D-85748 Garching, Germany. RP Huterer, D (reprint author), Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. EM huterer@umich.edu RI Mandelbaum, Rachel/N-8955-2014; OI Mandelbaum, Rachel/0000-0003-2271-1527; Raccanelli, Alvise/0000-0001-6726-0438; Kirkby, David/0000-0002-8828-5463; Evrard, August/0000-0002-4876-956X NR 209 TC 20 Z9 20 U1 2 U2 92 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR 15 PY 2015 VL 63 SI SI BP 23 EP 41 DI 10.1016/j.astropartphys.2014.07.004 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AT3GR UT WOS:000344824400003 ER PT J AU Rhodes, J Allen, S Benson, BA Chang, T de Putter, R Dodelson, S Dore, O Honscheid, K Linder, E Menard, B Newman, J Nord, B Rozo, E Rykoff, E Vallinotto, A Weinberg, D AF Rhodes, J. Allen, S. Benson, B. A. Chang, T. de Putter, R. Dodelson, S. Dore, O. Honscheid, K. Linder, E. Menard, B. Newman, J. Nord, B. Rozo, E. Rykoff, E. Vallinotto, A. Weinberg, D. TI Exploiting cross correlations and joint analyses SO ASTROPARTICLE PHYSICS LA English DT Editorial Material DE Dark energy; Cosmology; Cross correlations ID POLE TELESCOPE SURVEY; DIGITAL SKY SURVEY; DARK-ENERGY; REDSHIFT DISTRIBUTIONS; GALAXY CLUSTERS; COSMOLOGICAL CONSTRAINTS; PHOTOMETRIC REDSHIFTS; MASS MEASUREMENTS; SELF-CALIBRATION; LENSING SURVEYS C1 [Rhodes, J.; de Putter, R.; Dore, O.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [Rhodes, J.; de Putter, R.; Dore, O.] CALTECH, Pasadena, CA 91125 USA. [Allen, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Allen, S.; Rykoff, E.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Dodelson, S.; Nord, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Dodelson, S.] Univ Chicago, Kavli Inst Cosmol Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dodelson, S.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Chang, T.] Acad Sinica, IAA, Taipei 10617, Taiwan. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Honscheid, K.; Weinberg, D.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Linder, E.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. [Linder, E.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Menard, B.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Menard, B.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Newman, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, J.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Vallinotto, A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Vallinotto, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Weinberg, D.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. RP Rhodes, J (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr,MS 169-237, Pasadena, CA 91109 USA. EM jason.d.rhodes@jpl.nasa.gov NR 78 TC 0 Z9 0 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR 15 PY 2015 VL 63 SI SI BP 42 EP 54 DI 10.1016/j.astropartphys.2014.02.009 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AT3GR UT WOS:000344824400004 ER PT J AU Abazajian, KN Arnold, K Austermann, J Benson, BA Bischoff, C Bock, J Bond, JR Borrill, J Calabrese, E Carlstrom, JE Carvalho, CS Chang, CL Chiang, HC Church, S Cooray, A 'Crawford, TM Dawson, KS Das, S Devlin, MJ Dobbs, M Dodelson, S Dore, O Dunkley, J Errard, J Fraisse, A Gallicchio, J Halverson, NW Hanany, S Hildebrandt, SR Hincks, A Hlozek, R Holder, G Holzapfel, WL Honscheid, K Hu, W Hubmayr, J Irwin, K Jones, WC Kamionkowski, M Keating, B Keisler, R Knox, L Komatsu, E Kovac, J Kuo, CL Lawrence, C Lee, AT Leitch, E Linder, E Lubin, P McMahon, J Miller, A Newburgh, L Niemack, MD Nguyen, H Nguyen, HT Page, L Pryke, C Reichardt, CL Ruhl, JE Sehgal, N Seljak, U Sievers, J Silverstein, E Slosar, A Smith, KM Spergel, D Staggs, ST Stark, A Stompor, R Vieregg, AG Wang, G Watson, S Wollack, EJ Wu, WLK Yoon, KW Zahn, O AF Abazajian, K. N. Arnold, K. Austermann, J. Benson, B. A. Bischoff, C. Bock, J. Bond, J. R. Borrill, J. Calabrese, E. Carlstrom, J. E. Carvalho, C. S. Chang, C. L. Chiang, H. C. Church, S. Cooray, A. 'Crawford, T. M. Dawson, K. S. Das, S. Devlin, M. J. Dobbs, M. Dodelson, S. Dore, O. Dunkley, J. Errard, J. Fraisse, A. Gallicchio, J. Halverson, N. W. Hanany, S. Hildebrandt, S. R. Hincks, A. Hlozek, R. Holder, G. Holzapfel, W. L. Honscheid, K. Hu, W. Hubmayr, J. Irwin, K. Jones, W. C. Kamionkowski, M. Keating, B. Keisler, R. Knox, L. Komatsu, E. Kovac, J. Kuo, C. -L. Lawrence, C. Lee, A. T. Leitch, E. Linder, E. Lubin, P. McMahon, J. Miller, A. Newburgh, L. Niemack, M. D. Nguyen, H. Nguyen, H. T. Page, L. Pryke, C. Reichardt, C. L. Ruhl, J. E. Sehgal, N. Seljak, U. Sievers, J. Silverstein, E. Slosar, A. Smith, K. M. Spergel, D. Staggs, S. T. Stark, A. Stompor, R. Vieregg, A. G. Wang, G. Watson, S. Wollack, E. J. Wu, W. L. K. Yoon, K. W. Zahn, O. TI Neutrino physics from the cosmic microwave background and large scale structure SO ASTROPARTICLE PHYSICS LA English DT Article DE Neutrinos; Cosmology; Cosmic microwave background; Large scale structure ID OSCILLATION SPECTROSCOPIC SURVEY; DIGITAL SKY SURVEY; POWER-SPECTRUM; SDSS-III; COSMOLOGICAL IMPLICATIONS; WEIGHING NEUTRINOS; GALAXIES; TELESCOPE; SYSTEMATICS; MATTER AB This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sigma m(v)) = 16 meV and sigma(N-eff)= 0.020. Such a mass measurement will produce a high significance detection of non-zero sigma m(v), whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of N-eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N-eff = 3.046. (C) 2014 Elsevier B.V. All rights reserved. C1 [Abazajian, K. N.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arnold, K.; Keating, B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Austermann, J.; Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Benson, B. A.; Carlstrom, J. E.; 'Crawford, T. M.; Gallicchio, J.; Hu, W.; Keisler, R.; Vieregg, A. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bischoff, C.; Kovac, J.; Stark, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bock, J.; Hildebrandt, S. R.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Bond, J. R.; Sievers, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Carvalho, C. S.] Univ Lisbon, Ctr Astron & Astrofis, P-1349018 Lisbon, Portugal. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Church, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Das, S.; Wang, G.] Argonne Natl Lab, Dept High Energy Phys, Lemont, IL 60439 USA. [Devlin, M. J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dobbs, M.; Holder, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Dodelson, S.; Nguyen, H.] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dore, O.; Lawrence, C.; Nguyen, H. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Errard, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fraisse, A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Hanany, S.; Pryke, C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Hincks, A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hlozek, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Holzapfel, W. L.; Lee, A. T.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Honscheid, K.; Reichardt, C. L.; Seljak, U.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hubmayr, J.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Irwin, K.; Kuo, C. -L.; Silverstein, E.; Wu, W. L. K.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kamionkowski, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Komatsu, E.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Leitch, E.] Univ Chicago, Chicago, IL 60637 USA. [Linder, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lubin, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [McMahon, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Miller, A.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Newburgh, L.; Page, L.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Niemack, M. D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Sehgal, N.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Slosar, A.] Brookhaven Natl Lab, Upton, NY 11375 USA. [Smith, K. M.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Spergel, D.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Stompor, R.] Univ Paris Diderot, CEA Irfu, Observ Paris, Sorbonne Paris Cite,APC,CNRS IN2P3, F-75205 Paris, France. [Watson, S.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Abazajian, KN (reprint author), Univ Calif Irvine, Dept Phys & Astron, 4129 Frederick Reines Hall, Irvine, CA 92697 USA. EM kevork@uci.edu; arnold@ucsd.edu; jason.austermann@colorado.edu; bbenson@kicp.uchicago.edu; cbischoff@cfa.harvard.edu; jjb@astro.caltech.edu; bond@cita.utoronto.edu; jdborrill@lbl.gov; erminia.calabrese@astro.ox.ac.uk; jc@kicp.uchicago.edu; cscarvalho@oal.ul.pt; clchang@kicp.uchicago.edu; cynthia@physicschick.com; schurch@stanford.edu; acooray@uci.edu; tcrawfor@kicp.uchicago.edu; kdawson@astro.utah.edu; sudeepphys@gmail.com; devlin@physics.upenn.edu; Matt.Dobbs@McGill.ca; dodelson@fnal.gov; Olivier.P.Dore@jpl.nasa.gov; j.dunkley@physics.ox.ac.uk; josquin.errard@gmail.com; afraisse@princeton.edu; gallicchio@uchicago.edu; Nils.Halverson@colorado.edu; hanany@physics.umn.edu; srh@caltech.edu; ahincks@phas.ubc.ca; rhlozek@princeton.edu; gil.holder@gmail.com; swlh@cosmology.berkeley.edu; kh@physics.osu.edu; whu@kicp.uchicago.edu; hubmayr@nist.gov; kent.irwin@nist.gov; wcjones@princeton.edu; kamion@phajhu.edu; bkeating@ucsd.edu; rkeisler@gmail.com; Ilmox@ucdavis.edu; komatsu@MPA-Garching.MPG.DE; jmkovac@cfa.harvard.edu; clkuo@stanford.edu; charles.r.lawrence@jpl.nasa.gov; adrian.lee@berkeley.edu; eml@astro.caltech.edu; evlinder@lbl.gov; lubin@cfi.deepspace.ucsb.edu; jeffmcm@umich.edu; amber@phys.columbia.edu; newburgh@princeton.edu; niemack@cornell.edu; hogann@fnal.gov; hien.t.nguyen@jpl.nasa.gov; page@princeton.edu; pryke@physics.umn.edu; cr@berkeley.edu; ruhl@case.edu; neelima.sehgal@stonybrook.edu; useljak@berkeley.edu; sievers@cita.utoronto.ca; evas@stanford.edu; anze@bnl.gov; kmsmith@perimeterinstitute.ca; dns@astro.princeton.edu; staggs@princeton.edu; aas@cfa.harvard.edu; radek@apc.univ-paris-diderot.fr; avieregg@kicp.uchicago.edu; gwang@anl.gov; gswatson@syr.edu; edward.j.wollack@nasa.gov; wIwu@stanford.edu; kiwon@stanford.edu; zahn@berkeley.edu RI Holzapfel, William/I-4836-2015; Wollack, Edward/D-4467-2012; OI Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996; Wollack, Edward/0000-0002-7567-4451; Kamionkowski, Marc/0000-0001-7018-2055; Sievers, Jonathan/0000-0001-6903-5074; Carvalho, C. Sofia/0000-0002-7241-9797 NR 99 TC 86 Z9 86 U1 7 U2 87 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAR 15 PY 2015 VL 63 SI SI BP 66 EP 80 DI 10.1016/j.astropartphys.2014.05.014 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AT3GR UT WOS:000344824400006 ER PT J AU Newman, JA Abate, A Abdalla, FB Allam, S Allen, SW Ansar, R Baile, S Barkhouse, WA Beers, TC Blanton, MR Brodwin, M Brownstein, JR Brunner, RJ Kind, MC Cervantes-Cota, JL Cheu, E Chisari, NE Colless, M Comparat, J Coupon, J Cunha, CE de la Macorra, A Dell'Antonio, IP Frye, BL Gawiser, EJ Gehrels, N Grady, K Hagen, A Hall, PB Hearin, AP Hildebrandt, H Hirata, CM Ho, S Honscheid, K Huterer, D Ivezic, Z Kneib, JP Kruk, JW Lahav, O Mandelbaum, R Marshall, JL Matthews, DJ Menard, B Miguel, R Moniez, M Moos, HW Moustakas, J Myers, AD Papovich, C Peacock, JA Park, C Rahman, M Rhodes, J Ricol, JS Sadeh, I Slozar, A Schmidt, SJ Stern, DK Tyson, JA von der Linden, A Wechsler, RH Wood-Vasey, WM Zentner, AR AF Newman, Jeffrey A. Abate, Alexandra Abdalla, Filipe B. Allam, Sahar Allen, Steven W. Ansar, Reza Baile, Stephen Barkhouse, Wayne A. Beers, Timothy C. Blanton, Michael R. Brodwin, Mark Brownstein, Joel R. Brunner, Robert J. Kind, Matias Carrasco Cervantes-Cota, Jorge L. Cheu, Elliott Chisari, Nora Elisa Colless, Matthew Comparat, Johan Coupon, Jean Cunha, Carlos E. de la Macorra, Axel Dell'Antonio, Ian P. Frye, Brenda L. Gawiser, Eric J. Gehrels, Neil Grady, Kevin Hagen, Alex Hall, Patrick B. Hearin, Andew P. Hildebrandt, Hendrik Hirata, Christopher M. Ho, Shirley Honscheid, Klaus Huterer, Dragan Ivezic, Zeljko Kneib, Jean-Paul Kruk, Jeffrey W. Lahav, Ofer Mandelbaum, Rachel Marshall, Jennifer L. Matthews, Daniel J. Menard, Brice Miguel, Ramon Moniez, Marc Moos, H. W. Moustakas, John Myers, Adam D. Papovich, Casey Peacock, John A. Park, Changbom Rahman, Mubdi Rhodes, Jason Ricol, Jean-Stephane Sadeh, Iftach Slozar, Anze Schmidt, Samuel J. Stern, Daniel K. Tyson, J. Anthony von der Linden, Anja Wechsler, Risa H. Wood-Vasey, W. M. Zentner, Andrew R. TI Spectroscopic needs for imaging dark energy experiments SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmology; Dark energy; Surveys ID PHOTOMETRIC REDSHIFT ERRORS; VLT DEEP SURVEY; WEAK-LENSING TOMOGRAPHY; PHOTO-Z PERFORMANCE; DIGITAL SKY SURVEY; IA SUPERNOVAE; CROSS-CORRELATIONS; COSMIC SHEAR; PRECISION COSMOLOGY; SURVEY REQUIREMENTS AB Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our "training set" of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments. Requirements: Spectroscopic redshift measurements for similar to 30,000 objects over >similar to 15 widely-separated regions, each at least similar to 20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to similar to 50%). Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (lambda/Delta lambda > similar to 3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST. Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. - rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments. Requirements: If extremely low levels of systematic incompleteness (2O3 used in preliminary 163Ho production by means of neutron irradiation. NR 47 TC 29 Z9 29 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR 10 PY 2015 VL 75 IS 3 AR 112 DI 10.1140/epjc/s10052-015-3329-5 PG 11 WC Physics, Particles & Fields SC Physics GA CJ7HK UT WOS:000355665200001 ER PT J AU Barnes, R Deitrick, R Greenberg, R Quinn, TR Raymond, SN AF Barnes, Rory Deitrick, Russell Greenberg, Richard Quinn, Thomas R. Raymond, Sean N. TI LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: dynamical evolution and stability; planets and satellites: formation; stars: individual (HD 128311, HD 73526, HD 45364, HD 60532) ID PLANET-PLANET SCATTERING; EXTRA-SOLAR PLANETS; HUBBLE-SPACE-TELESCOPE; MAIN-SEQUENCE STARS; GIANT PLANETS; HABITABLE ZONES; GLOBAL DYNAMICS; STELLAR SPIN; HOT JUPITERS; HD 128311 AB We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179 degrees.9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits. C1 [Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Deitrick, Russell] NASA, Astrobiol Inst, Virtual Planetary Lab, Lead Team, Washington, DC USA. [Greenberg, Richard] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Raymond, Sean N.] CNRS, Lab Astrophys Bordeaux, UMR 5804, F-33270 Floirac, France. RP Barnes, R (reprint author), Univ Washington, Dept Astron, Box 951580, Seattle, WA 98195 USA. EM rory@asiro.washington.edu FU NASA's Virtual Planetary Laboratory [NNA13AA93A]; NSF grant [AST-1108882] FX This work was supported by NASA's Virtual Planetary Laboratory under Cooperative Agreement No. NNA13AA93A and NSF grant AST-1108882. NR 73 TC 8 Z9 8 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 101 DI 10.1088/0004-637X/801/2/101 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500030 ER PT J AU Chang, C Busha, MT Wechsler, RH Refregier, A Amara, A Rykoff, E Becker, MR Bruderer, C Gamper, L Leistedt, B Peiris, H Abbott, T Abdalla, FB Balbinot, E Banerji, M Bernstein, RA Bertin, E Brooks, D Carner, A Desai, S da Costa, LN Cunha, CE Eifler, T Evrard, AE Neto, AR Gerdes, D Gruen, D James, D Kuehn, K Maia, MAG Makler, M Ogando, R Plazas, A Sanchez, E Santiago, B Schubnell, M Sevilla-Noarbe, I Smith, C Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Zuntz, J AF Chang, C. Busha, M. T. Wechsler, R. H. Refregier, A. Amara, A. Rykoff, E. Becker, M. R. Bruderer, C. Gamper, L. Leistedt, B. Peiris, H. Abbott, T. Abdalla, F. B. Balbinot, E. Banerji, M. Bernstein, R. A. Bertin, E. Brooks, D. Carner, A. Desai, S. da Costa, L. N. Cunha, C. E. Eifler, T. Evrard, A. E. Rausti Neto, A. Gerdes, D. Gruen, D. James, D. Kuehn, K. Maia, M. A. G. Makler, M. Ogando, R. Plazas, A. Sanchez, E. Santiago, B. Schubnell, M. Sevilla-Noarbe, I. Smith, C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Zuntz, J. TI MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: numerical; surveys; techniques: image processing ID RESOLVED STELLAR POPULATIONS; STAR-GALAXY CLASSIFICATION; IMAGE-ANALYSIS; COSMIC SHEAR; MONTE-CARLO; WIDE-FIELD; SIMULATIONS; CATALOG; CLUSTERS; SYSTEMATICS AB We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function-amapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg(2) coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples-star-galaxy classification and proximity effects on object detection-are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable. C1 [Chang, C.; Refregier, A.; Amara, A.; Bruderer, C.; Gamper, L.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Busha, M. T.; Wechsler, R. H.; Rykoff, E.; Becker, M. R.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Busha, M. T.; Wechsler, R. H.; Rykoff, E.; Becker, M. R.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Leistedt, B.; Peiris, H.; Abdalla, F. B.; Brooks, D.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Abbott, T.; James, D.; Smith, C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Bernstein, R. A.] Carnegie Observa, Pasadena, CA 91101 USA. [Bertin, E.; Evrard, A. E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.; Evrard, A. E.] CNRS, UMR7095, F-75014 Paris, France. [Carner, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carner, A.; da Costa, L. N.; Rausti Neto, A.; Maia, M. A. G.; Ogando, R.; Santiago, B.] Lab Interinstituc & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Desai, S.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Desai, S.] Excellence Cluster Universe, D-85748 Garching, Germany. [Cunha, C. E.] Robert Bosch LLC, Palo Alto, CA 94304 USA. [Eifler, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.; Gerdes, D.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Evrard, A. E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gruen, D.] Univ Observ Munich, D-81679 Munich, Germany. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Makler, M.] ICRA, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Plazas, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Soares-Santos, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Chang, C (reprint author), ETH, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. RI Balbinot, Eduardo/E-8019-2015; Ogando, Ricardo/A-1747-2010; da Costa, Luiz Alberto/I-1326-2013; Makler, Martin/G-2639-2012; Sanchez, Eusebio/H-5228-2015; OI Banerji, Manda/0000-0002-0639-5141; Balbinot, Eduardo/0000-0002-1322-3153; Ogando, Ricardo/0000-0003-2120-1154; da Costa, Luiz Alberto/0000-0002-7731-277X; Makler, Martin/0000-0003-2206-2651; Sanchez, Eusebio/0000-0002-9646-8198; Becker, Matthew/0000-0001-7774-2246; Suchyta, Eric/0000-0002-7047-9358; Evrard, August/0000-0002-4876-956X; Chang, Chihway/0000-0002-7887-0896; Abdalla, Filipe/0000-0003-2063-4345 FU Swiss National Science Foundation [200021-149442, 200021-143906]; Department of Energy contract [DE-AC3-76SF00515]; Perren Fund; IMPACT Fund; STFC; European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC [306478]; PROGRAMA DE APOIO AO POS-DOUTORADO NO ESTADO DO RIO DE JANEIRO - PAPDRJ; SFB-Transregio 33 "The Dark Universe" by the Deutsche Forschungsgemeinschaft (DFG); DFG cluster of excellence "Origin and Structure of the Universe"; DOE [DE-AC02-98CH10886]; European Research Council in the form of a Starting Grant [240672]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey FX We thank Gary Bernstein, Eric Huff, Tesla Jeltema, Huan Lin, and Felipe Menanteau for helpful comments and discussions on the paper. C.C., A.R., A. A., and C.B. are supported by the Swiss National Science Foundation grants 200021-149442 and 200021-143906. M.T.B., R.H.W., E.R., and M.R.B. acknowledge support from the Department of Energy contract to SLAC National Accelerator Laboratory No. DE-AC3-76SF00515. B.L. is supported by the Perren Fund and the IMPACT Fund. H.V.P. is supported by STFC and the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 306478-CosmicDawn. A.C.R. is supported by the PROGRAMA DE APOIO AO POS-DOUTORADO NO ESTADO DO RIO DE JANEIRO - PAPDRJ. D.G. was supported by SFB-Transregio 33 "The Dark Universe" by the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence "Origin and Structure of the Universe." A.P. is supported by DOE grant DE-AC02-98CH10886. J.Z. acknowledges support from the European Research Council in the form of a Starting Grant with number 240672.; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. NR 72 TC 13 Z9 13 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 73 DI 10.1088/0004-637X/801/2/73 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500002 ER PT J AU DeVore, CR Antiochosi, SK Black, CE Harding, AK Kalapotharakos, C Kazanas, D Timokhin, AN AF DeVore, C. R. Antiochosi, S. K. Black, C. E. Harding, A. K. Kalapotharakos, C. Kazanas, D. Timokhin, A. N. TI A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; plasmas; pulsars: general ID GAMMA-RAY FLARES; FORCE-FREE MAGNETOSPHERE; ROTATING NEUTRON-STARS; CRAB-NEBULA; PARTICLE-ACCELERATION; MAGNETIC RECONNECTION; OBLIQUE ROTATORS; SIMULATIONS; WIND; ELECTRODYNAMICS AB Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity-an electric current sheet-consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres. C1 [DeVore, C. R.; Antiochosi, S. K.; Black, C. E.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Black, C. E.] Catholic Univ Amer, Washington, DC 20064 USA. [Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Kalapotharakos, C.; Timokhin, A. N.] Univ Maryland, College Pk, MD 20742 USA. RP DeVore, CR (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM c.richard.devore@nasa.gov RI DeVore, C/A-6067-2015 OI DeVore, C/0000-0002-4668-591X FU NASA Goddard Space Flight Center's Science Innovation Fund FX We gratefully acknowledge the financial support for our research provided by NASA Goddard Space Flight Center's Science Innovation Fund and thank our anonymous referee for suggestions that helped to improve our paper. C.R.D. also wishes to acknowledge the late M. Yvonne Rapp for friendship and inspiration that are greatly missed. NR 62 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 109 DI 10.1088/0004-637X/801/2/109 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500038 ER PT J AU Gressel, O Turner, NJ Nelson, RP McNally, CP AF Gressel, Oliver Turner, Neal J. Nelson, Richard P. McNally, Colin P. TI GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; magnetohydrodynamics (MHD); methods: numerical; protoplanetary disks ID WEAKLY MAGNETIZED DISKS; KELVIN-HELMHOLTZ INSTABILITY; LOCAL SHEAR INSTABILITY; WIND-DRIVEN ACCRETION; MRI CHANNEL FLOWS; X-RAY IONIZATION; T TAURI DISKS; MAGNETOROTATIONAL-INSTABILITY; PROTOSTELLAR DISKS; DEAD-ZONE AB Protoplanetary disks (PPDs) are believed to accrete onto their central T Tauri star because of magnetic stresses. Recently published shearing box simulations indicate that Ohmic resistivity, ambipolar diffusion (AD) and the Hall effect all play important roles in disk evolution. In the presence of a vertical magnetic field, the disk remains laminar between 1-5 AU, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. Questions remain, however, about the establishment of a true physical wind solution in the shearing box simulations because of the symmetries inherent in the local approximation. We present global MHD simulations of PPDs that include Ohmic resistivity and AD, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. Our results show that the disk remains laminar, and that a physical wind solution arises naturally in global disk models. The wind is sufficiently efficient to explain the observed accretion rates. Furthermore, the ionization fraction at intermediate disk heights is large enough for magneto-rotational channel modes to grow and subsequently develop into belts of horizontal field. Depending on the ionization fraction, these can remain quasi-global, or break-up into discrete islands of coherent field polarity. The disk models we present here show a dramatic departure from our earlier models including Ohmic resistivity only. It will be important to examine how the Hall effect modifies the evolution, and to explore the influence this has on the observational appearance of such systems, and on planet formation and migration. C1 [Gressel, Oliver; McNally, Colin P.] Niels Bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nelson, Richard P.] Queen Mary Univ London, Astron Unit, London E1 4N5, England. RP Gressel, O (reprint author), Niels Bohr Int Acad, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark. EM oliver.gresscl@nbi.dk; neal.turner@jpl.nasa.gov; r.p.nelson@qmul.ac.uk; cmcnally@nbi.dk OI Gressel, Oliver/0000-0002-5398-9225 FU National Aeronautics and Space Administration; NASA Origins of Solar Systems program [13-OSS13-0114]; Danish Council for Independent Research (DFF); FP7 Marie Curie Actions-COFUND [DFF-1325-00111]; People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA [327995]; U.K. STFC FX We thank Martin Pessah, Anna Tenerani and Marco Velli for useful advice on plasma instabilities, and the referee for a helpful report. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and with the support of the NASA Origins of Solar Systems program via grant 13-OSS13-0114. The research leading to these results has received funding from the Danish Council for Independent Research (DFF) and FP7 Marie Curie Actions-COFUND under the grant-ID: DFF-1325-00111, and from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 327995. This work used the NIRVANA-III code developed by Udo Ziegler at the Leibniz Institute for Astrophysics (AIP). We acknowledge that the results of this research have been partly achieved using the PRACE-3IP project (FP7 RI-312763) resource Fionn based in Ireland at the Irish Centre for High-End Computing (ICHEC). Computations were also performed on the astro2 node at the Danish Center for Supercomputing (DCSC), and on the U.K. STFC-funded DiRAC facility. NR 95 TC 34 Z9 35 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 84 DI 10.1088/0004-637X/801/2/84 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500013 ER PT J AU Kataria, T Showman, AP Fortney, JJ Stevenson, KB Line, MR Kreidberg, L Bean, JL Desert, JM AF Kataria, Tiffany Showman, Adam P. Fortney, Jonathan J. Stevenson, Kevin B. Line, Michael R. Kreidberg, Laura Bean, Jacob L. Desert, Jean-Michel TI THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE atmospheric effects; methods: numerical; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: gaseous planets; planets and satellites: individual (WASP-43b) ID HUBBLE-SPACE-TELESCOPE; TIDALLY LOCKED EXOPLANETS; PLANET HD 189733B; EXTRASOLAR PLANET; TRANSMISSION SPECTRUM; EMISSION-SPECTRUM; THERMAL STRUCTURE; GIANT PLANETS; BROWN DWARFS; LIGHT CURVES AB The hot Jupiter WASP-43b (2 M-J, 1 R-J, T-orb = 19.5 hr) has now joined the ranks of transiting hot Jupiters HD 189733b and HD 209458b as an exoplanet with a large array of observational constraints. Because WASP-43b receives a similar stellar flux as HD 209458b but has a rotation rate four times faster and a higher gravity, studyingWASP-43b probes the effect of rotation rate and gravity on the circulation when stellar irradiation is held approximately constant. Here we present three-dimensional (3D) atmospheric circulation models of WASP-43b, exploring the effects of composition, metallicity, and frictional drag. We find that the circulation regime of WASP-43b is not unlike other hot Jupiters, with equatorial superrotation that yields an eastward-shifted hotspot and large day-night temperature variations (similar to 600 K at photospheric pressures). We then compare our model results to Hubble Space Telescope (HST)/WFC3 spectrophotometric phase curve measurements of WASP-43b from 1.12 to 1.65 mu m. Our results show the 5x solar model light curve provides a good match to the data, with a peak flux phase offset and planet/star flux ratio that is similar to observations; however, the model nightside appears to be brighter. Nevertheless, our 5x solar model provides an excellent match to the WFC3 dayside emission spectrum. This is a major success, as the result is a natural outcome of the 3D dynamics with no model tuning. These results demonstrate that 3D circulation models can help interpret exoplanet atmospheric observations, even at high resolution, and highlight the potential for future observations with HST, James Webb Space Telescope, and other next-generation telescopes. C1 [Kataria, Tiffany; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Kataria, Tiffany; Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Kataria, Tiffany] Univ Exeter, Sch Phys, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Fortney, Jonathan J.; Line, Michael R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Stevenson, Kevin B.; Kreidberg, Laura; Bean, Jacob L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Desert, Jean-Michel] Univ Colorado, CASA, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Stevenson, Kevin B.] NASA, Washington, DC USA. RP Kataria, T (reprint author), Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. EM tkataria@astro.ex.ac.uk FU NASA through a grant from the Space Telescope Science Institute [GO-13467]; Harriet P.Jenkins Pre-Doctoral Fellowship Program (JPFP); NASA; NSF; Alfred P. Sloan Foundation; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX The authors were supported by NASA through a grant from the Space Telescope Science Institute (program GO-13467). T.K. acknowledges support from the Harriet P.Jenkins Pre-Doctoral Fellowship Program (JPFP). A.P.S. and T.K. were supported by Origins grant NNX12AI79G.. K.B.S. acknowledges support from the Sagan Fellowship Program, supported by NASA and administered by the NASA Exoplanet Science Institute (NExScI). L.K. acknowledges support from the NSF Graduate Research Fellowship Program. J.B. acknowledges support from the Alfred P. Sloan Foundation. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 62 TC 21 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 86 DI 10.1088/0004-637X/801/2/86 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500015 ER PT J AU Perley, DA Perley, RA Hjorth, J Michalowski, MJ Cenko, SB Jakobsson, P Kruher, T Levan, AJ Malesani, D Tanvir, NR AF Perley, D. A. Perley, R. A. Hjorth, J. Michalowski, M. J. Cenko, S. B. Jakobsson, P. Krueher, T. Levan, A. J. Malesani, D. Tanvir, N. R. TI CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: starburst; gamma-ray burst: general; radio continuum: galaxies ID STAR-FORMING GALAXIES; CORE-COLLAPSE SUPERNOVAE; SIMILAR-TO 2; ULTRALUMINOUS INFRARED GALAXIES; MASS-METALLICITY RELATION; DIGITAL SKY SURVEY; SUBMILLIMETER GALAXIES; LUMINOSITY FUNCTION; FORMATION RATES; FORMATION HISTORY AB Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300M(circle dot) yr(-1). Three of the four detections correspond to events consistent with being optically obscured "dark" bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S-3GHz > 10 mu Jy, corresponding to SFR > 50M(circle dot) yr(-1) at z similar to 1 or > 250M(circle dot) yr(-1) at z similar to 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR. C1 [Perley, D. A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Perley, R. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Hjorth, J.; Malesani, D.] Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Michalowski, M. J.] Univ Edinburgh, Scottish Univ Phys Alliance, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Cenko, S. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Jakobsson, P.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Krueher, T.] European So Observ, Santiago 19, Chile. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Tanvir, N. R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Perley, DA (reprint author), CALTECH, Dept Astron, MC 249-17,1200 East Calif Blvd, Pasadena, CA 91125 USA. EM dperley@astro.caltech.cdu RI Jakobsson, Pall/L-9950-2015 OI Jakobsson, Pall/0000-0002-9404-5650 FU NASA [HST-HF-51296.01-A, NAS 5-26555]; W. M. Keck Foundation; NSF [PHYS-1066293]; Space Telescope Science Institute FX Support for this work was provided by NASA through Hubble Fellowship grant HST-HF-51296.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Partial support for this work was provided by NASA through an award issued by JPL/Caltech. It is also based in part on observations with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. These observations are associated with program GO-12949. We thank F. Owen for discussions regarding deep radio field surveys, C. Casey for advice regarding the star formation rates and masses of submillimeter- and Herschel-selected galaxy populations, and D. A. Kann for helpful comments. We thank U. Rau for assistance with analysis of the GRB 061110A data set, and H. Knutson, M. Zhao, and J. Curtis for acquiring the J and Ks imaging of GRB 051006. We also thank the anonymous referee for helpful suggestions that improved the quality of the paper. This manuscript was completed during the "Fast and Furious: Understanding Exotic Astrophysical Transients" workshop at the Aspen Center for Physics, which is supported in part by the NSF under grant No. PHYS-1066293. NR 113 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 102 DI 10.1088/0004-637X/801/2/102 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500031 ER PT J AU Roser, JE Ricca, A AF Roser, J. E. Ricca, A. TI POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS AS SOURCES OF INTERSTELLAR INFRARED EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: ISM; ISM: lines and bands; ISM: molecules; molecular data ID BLIND SIGNAL SEPARATION; POLYAROMATIC HYDROCARBONS; PHOTODISSOCIATION REGIONS; SMALL GRAINS; SPECTROSCOPY; FEATURES; BANDS; PREDICTION; MOLECULES; DUST AB Polycyclic aromatic hydrocarbons (or PAHs) have been the subject of astrochemical research for several decades as principal sources of the interstellar aromatic infrared emission bands. PAH clusters could possibly contribute to these emission bands, but a lack of data on their infrared properties has made this hypothesis difficult to evaluate. Here we investigate homogeneous neutral PAH clusters by measuring the mid-infrared absorption spectra of the five nonlinear PAH molecules phenanthrene, chrysene, pyrene, perylene, and benzo[ghi] perylene within solid argon ice at a fixed temperature of 5 K. We attribute observed spectral shifts in their principal absorption bands as a function of argon/PAH ratio to clustering of the PAH molecules within the argon matrix. These shifts are related to the cluster structures forming in the matrix and the topology of the monomer PAH molecule. We predict that interstellar PAH molecules that are relatively large (no fewer than 50 carbon atoms per molecule) and compact will have clusters that contribute to the asymmetrically red-shaded profile of the interstellar 11.2 mu m emission band. C1 [Roser, J. E.; Ricca, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roser, J. E.; Ricca, A.] SETI Inst, Mountain View, CA 94043 USA. RP Roser, JE (reprint author), NASA, Ames Res Ctr, Mail Stop 245-6,Bldg N245,Room 148,POB 1, Moffett Field, CA 94035 USA. EM Joseph.E.Roser@nasa.gov FU NASA [NNH09ZDA001N, NNX11AK09A]; Carbon in the Galaxy consortium [NNH10ZDA001N] FX J.E. Roser thanks NASA's Laboratory Astrophysics program grant NNH09ZDA001N and both J.E. Roser and A. Ricca thank NASA's Laboratory Astrophysics program grant NNX11AK09A and the "Carbon in the Galaxy" consortium grant NNH10ZDA001N for their generous support of this work. We thank A.G.G.M. Tielens and L.J. Allamandola for their astute comments on draft versions of the text. NR 33 TC 2 Z9 2 U1 4 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 108 DI 10.1088/0004-637X/801/2/108 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500037 ER PT J AU Sallum, S Eisner, JA Close, LM Hinz, PM Skemer, AJ Bailey, V Briguglio, R Follette, KB Males, JR Morzinski, KM Puglisi, A Rodigas, TJ Weinberger, AJ Xomper, M AF Sallum, S. Eisner, J. A. Close, Laird M. Hinz, Philip M. Skemer, Andrew J. Bailey, Vanessa Briguglio, Runa Follette, Katherine B. Males, Jared R. Morzinski, Katie M. Puglisi, Alfio Rodigas, Timothy J. Weinberger, Alycia J. Xomper, Marco TI NEW SPATIALLY RESOLVED OBSERVATIONS OF THE T Cha TRANSITION DISK AND CONSTRAINTS ON THE PREVIOUSLY CLAIMED SUBSTELLAR COMPANION SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: high angular resolution; protoplanetary disks; stars: individual (T Cha); techniques: interferometric ID SPARSE APERTURE MASKING; PROTOPLANETARY DISKS; SCATTERED-LIGHT; X-RAY; PRETRANSITIONAL DISK; CIRCUMSTELLAR DISKS; SCALE ASYMMETRIES; DUST GROWTH; GM-AURIGAE; TAURI AB We present multi-epoch non-redundant masking observations of the T Cha transition disk, taken at the Very Large Telescope and Magellan in the II, Ks, and L' bands. T Cha is one of a small number of transition disks that host companion candidates discovered by high-resolution imaging techniques, with a putative companion at a position angle of 78 degrees, separation of 62 mas, and contrast of Delta L' = 5.1 mag. We find comparable binary parameters in our re-reduction of the initial detection images, and similar parameters in the 2011 L', 2013 NaCo L', and 2013 NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L' data set that cannot be explained by orbital motion, and a non-detection in the 2013 MagAO/Clio2 L' data. However, Monte Carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with noise. There is also a significant probability of false non-detections in both of these data sets. We discuss physical scenarios that could cause the best fits, and argue that previous companion and scattering explanations are inconsistent with the results of the much larger data set presented here. C1 [Sallum, S.; Eisner, J. A.; Close, Laird M.; Hinz, Philip M.; Skemer, Andrew J.; Bailey, Vanessa; Follette, Katherine B.; Males, Jared R.; Morzinski, Katie M.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Briguglio, Runa; Puglisi, Alfio; Xomper, Marco] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Rodigas, Timothy J.; Weinberger, Alycia J.] Carnegie Inst DTM, Washington, DC 20015 USA. [Males, Jared R.; Morzinski, Katie M.] NASA, Washington, DC USA. RP Sallum, S (reprint author), Univ Arizona, Dept Astron, 933 North Cherry Ave, Tucson, AZ 85721 USA. EM ssallum@email.arizona.edu OI Xompero, Marco/0000-0002-5565-084X; Skemer, Andrew/0000-0001-6098-3924; Morzinski, Katie/0000-0002-1384-0063; Bailey, Vanessa/0000-0002-5407-2806 FU NSF AAG [1211329]; NASA; National Science Foundation Graduate Research Fellowship [DGE-1143953] FX This work was supported by NSF AAG grant #1211329. J.R.M and K.M.M. were supported under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1143953. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. NR 77 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 85 DI 10.1088/0004-637X/801/2/85 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500014 ER PT J AU Sekanina, Z Kracht, R AF Sekanina, Zdenek Kracht, Rainer TI STRONG EROSION-DRIVEN NONGRAVITATIONAL EFFECTS IN ORBITAL MOTIONS OF THE KREUTZ SUNGRAZING SYSTEM'S DWARF COMETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; methods: data analysis ID SUN-GRAZING COMET; SOLAR; TAILS; SOHO AB We investigate the relationships among the angular orbital elements-the longitude of the ascending node Omega, the inclination i, and the argument of perihelion omega-of the Kreutz system's faint, dwarf sungrazers observed only with the Solar and Heliospheric Observatory/STEREO coronagraphs; their published orbits were derived using a parabolic, purely gravitational approximation. In a plot of i against Omega the bright Kreutz sungrazers (such as C/1843 D1, C/1882 R1, C/1963 R1, etc.) fit a curve of fixed apsidal orientation, whereas the dwarf members are distributed along a curve that makes with the apsidal curve an angle of 15 degrees. The dwarf sungrazers' perihelion longitude is statistically invariable, but their perihelion latitude increases systematically with Omega. We find that this trend can be explained by a strong erosion-driven nongravitational acceleration normal to the orbit plane, confirmed for several test dwarf Kreutz sungrazers by orbital solutions with nongravitational terms incorporated directly in the equations of motion on a condition of fixed apsidal orientation. Proceeding in three steps, we first apply Marsden et al.'s standard formalism, solving for the normal acceleration only, and eventually relax additional constraints on the nongravitational law and the acceleration's radial and transverse components. The resulting nongravitational accelerations on the dwarf sungrazers exceed the maximum for cataloged comets in nearly parabolic orbits by up to three orders of magnitude, topping in exceptional cases the Sun's gravitational acceleration! A mass-loss model suggests that the dwarf sungrazers' nuclei fragment copiously and their dimensions diminish rapidly near the Sun, implying the objects' imminent demise shortly before they reach perihelion. C1 [Sekanina, Zdenek] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sekanina, Z (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Zdenek.Sekanina@jpl.nasa.gov; R.Kracht@t-online.de NR 34 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 135 DI 10.1088/0004-637X/801/2/135 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500064 ER PT J AU Stark, CC Kuchner, MJ Lincowski, A AF Stark, Christopher C. Kuchner, Marc J. Lincowski, Andrew TI THE PSEUDO-ZODI PROBLEM FOR EDGE-ON PLANETARY SYSTEMS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; planetary systems ID INFRARED INTERFEROMETRIC SURVEY; MAIN-SEQUENCE STARS; DEBRIS-DISK STARS; INTERSTELLAR-MEDIUM; DUST CLOUD; CIRCUMSTELLAR MATERIAL; EPSILON-ERIDANI; KUIPER-BELT; HOT DUST; HR 4796A AB Future direct observations of extrasolar Earth-sized planets in the habitable zone (HZ) could be hampered by a worrisome source of noise, starlight-reflecting exozodiacal dust. Mid-infrared surveys are currently underway to constrain the amount of exozodiacal dust in the HZs around nearby stars. However, at visible wavelengths another source of dust, invisible to these surveys, may dominate over exozodiacal dust. For systems observed near edge-on, a cloud of dust with face-on optical depth 10(-7) beyond similar to 5 AU can mimic the surface brightness of a cloud of exozodiacal dust with equal optical depth if the dust grains are sufficiently forward-scattering. We posit that dust migrating inward from cold debris belts via Poynting-Robertson drag could produce this "pseudo-zodiacal" effect, potentially making it similar to 50% as common as exozodiacal clouds. We place constraints on the disk radii and scattering phase function required to produce the effect. C1 [Stark, Christopher C.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lincowski, Andrew] Univ Arizona, Tucson, AZ 85721 USA. RP Stark, CC (reprint author), NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. EM christopher.c.stark@nasa.gov OI Lincowski, Andrew/0000-0003-0429-9487 FU NASA Postdoctoral Program at Goddard Space Flight Center FX This research was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 38 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 128 DI 10.1088/0004-637X/801/2/128 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500057 ER PT J AU Takei, D Drake, JJ Yamaguchi, H Slane, P Uchiyama, Y Katsuda, S AF Takei, D. Drake, J. J. Yamaguchi, H. Slane, P. Uchiyama, Y. Katsuda, S. TI X-RAY FADING AND EXPANSION IN THE "MINIATURE SUPERNOVA REMNANT" OF GK PERSEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (GK Persei nova Persei 1901); novae, cataclysmic variables; X-rays: stars ID GALACTIC PLANETARY-NEBULAE; NOVA-PERSEI; INTERSTELLAR-MEDIUM; PROPER MOTIONS; CASSIOPEIA-A; EMISSION; SHELL; SPECTROSCOPY; ABUNDANCE; SPECTRUM AB We report on a second epoch of Chandra X-ray imaging spectroscopy of the spatially resolved old nova remnant GK Persei. An ACIS-S3 observation of 97.4 ks was conducted in 2013 November after a lapse of 13.8 yr from the last visit in 2000. The X-ray emitting nebula appeared more faint and patchy compared with the first epoch. The flux decline was particularly evident in fainter regions and the mean decline was 30%-40% in the 0.5-1.2 keV energy band. A typical expansion of the brightest part of the remnant was 1''.9, which corresponds to an expansion rate of 0''.14 yr(-1). The soft X-ray spectra extracted from both the 2000 and 2013 data can be explained by a non-equilibrium ionization collisional plasma model convolved with interstellar absorption, though do not allow us to constrain the origin of the flux evolution. The plasma temperature has not significantly evolved since the 2000 epoch and we conclude that the fading of the X-ray emission is due largely to expansion. This implies that recent expansion has been into a lower density medium, a scenario that is qualitatively consistent with the structure of the circumstellar environment photographed soon after the initial explosion more than a century ago. Fainter areas are fading more quickly than brighter areas, indicating that they are fainter because of a lower ambient medium density and consequently more rapid expansion. C1 [Takei, D.] RIKEN, SPring Ctr 8, Inst Phys & Chem Res, Sayo, Hyogo 6795148, Japan. [Drake, J. J.; Slane, P.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Yamaguchi, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yamaguchi, H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Uchiyama, Y.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Katsuda, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. RP Takei, D (reprint author), RIKEN, SPring Ctr 8, Inst Phys & Chem Res, 1-1-1 Kouto, Sayo, Hyogo 6795148, Japan. EM takei@spring8.or.jp FU RIKEN/SPDR program; Chandra grant [GO4-15025X]; NASA contract [NAS8-03060] FX We thank Chandra for allocating a part of the telescope time in Cycle-15, and acknowledge HST and VLA for their archival images. D.T. thanks T.Yuasa, K.Morihana, and J.Ueda for valuable discussions, and acknowledges financial support from the RIKEN/SPDR program, Grant-in-Aid for JSPS Fellows for Research Abroad, and Chandra grant GO4-15025X. J.J.D. and P.S. were supported by NASA contract NAS8-03060 to the Chandra X-ray Center, and thank the Director, B. Wilkes, for continuing advice and support. NR 45 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 92 DI 10.1088/0004-637X/801/2/92 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500021 ER PT J AU Tenerani, A Rappazzo, AF Velli, M Pucci, F AF Tenerani, Anna Rappazzo, Antonio Franco Velli, Marco Pucci, Fulvia TI THE TEARING MODE INSTABILITY OF THIN CURRENT SHEETS: THE TRANSITION TO FAST RECONNECTION IN THE PRESENCE OF VISCOSITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; magnetohydrodynamics (MHD); solar wind; Sun: corona ID SHEAR AB This paper studies the growth rate of reconnection instabilities in thin current sheets in the presence of both resistivity and viscosity. In a previous paper, Pucci & Velli, it was argued that at sufficiently high Lundquist number S it is impossible to form current sheets with aspect ratios L/a that scale as L/a similar to S-alpha with alpha > 1/3 because the growth rate of the tearing mode would then diverge in the ideal limit S --> infinity. Here we extend their analysis to include the effects of viscosity, always present in numerical simulations along with resistivity, and which may play a role in the solar corona and other astrophysical environments. A finite Prandtl number allows current sheets to reach larger aspect ratios before becoming rapidly unstable in pileup-type regimes. Scalings with Lundquist and Prandtl numbers are discussed, as well as the transition to kinetic reconnection. C1 [Tenerani, Anna; Velli, Marco] Univ Calif Los Angeles, EPPS, Los Angeles, CA 90095 USA. [Tenerani, Anna] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rappazzo, Antonio Franco] Adv Heliophys, Pasadena, CA 91106 USA. [Pucci, Fulvia] Univ Roma Tor Vergata, Rome, Italy. RP Tenerani, A (reprint author), Univ Calif Los Angeles, EPPS, Los Angeles, CA 90095 USA. EM annatenerani@epss.ucla.edu FU National Aeronautics and Space Administration FX We wish to thank D. Del Sarto and F. Pegoraro for useful discussions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 26 TC 15 Z9 15 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 145 DI 10.1088/0004-637X/801/2/145 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500074 ER PT J AU ZuHone, JA Brunetti, G Giacintucci, S Markevitch, M AF ZuHone, J. A. Brunetti, G. Giacintucci, S. Markevitch, M. TI TESTING SECONDARY MODELS FOR THE ORIGIN OF RADIO MINI-HALOS IN GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; magnetohydrodynamics (MHD); radio continuum: galaxies; X-rays: galaxies: clusters ID COLD-FRONT FORMATION; COSMIC-RAY PROTONS; COOL-CORE; GAMMA-RAY; PARTICLE REACCELERATION; MAGNETIC-FIELD; COMA CLUSTER; EMISSION; GAS; TURBULENCE AB We present an MHD simulation of the emergence of a radio minihalo in a galaxy cluster core in a "secondary" model, where the source of the synchrotron-emitting electrons is hadronic interactions between cosmic-ray protons with the thermal intracluster gas, an alternative to the "reacceleration model" where the cosmic ray electrons are reaccelerated by turbulence induced by core sloshing, which we discussed in an earlier work. We follow the evolution of cosmic-ray electron spectra and their radio emission using passive tracer particles, taking into account the time-dependent injection of electrons from hadronic interactions and their energy losses. We find that secondary electrons in a sloshing cluster core can generate diffuse synchrotron emission with luminosity and extent similar to observed radio minihalos. However, we also find important differences with our previous work. We find that the drop in radio emission at cold fronts is less prominent than that in our reacceleration-based simulations, indicating that in this flavor of the secondary model the emission is more spatially extended than in some observed minihalos. We also explore the effect of rapid changes in the magnetic field on the radio spectrum. While the resulting spectra in some regions are steeper than expected from stationary conditions, the change is marginal, with differences in the synchrotron spectral index of Delta alpha less than or similar to 0.15-0.25, depending on the frequency band. This is a much narrower range than claimed in the best-observed minihalos and produced in the reacceleration model. Our results provide important suggestions to constrain these models with future observations. C1 [ZuHone, J. A.; Markevitch, M.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Brunetti, G.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [Giacintucci, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP ZuHone, JA (reprint author), NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Astrophys Sci Div, Code 662, Greenbelt, MD 20771 USA. OI Brunetti, Gianfranco/0000-0003-4195-8613; Giacintucci, Simona/0000-0002-1634-9886 FU NASA Postdoctoral Program; DOE; [PRIN-INAF-2009] FX J. A. Z. thanks Uri Keshet for useful discussions. Analysis of the simulation data was carried out using the AMR analysis and visualization toolset yt (Turk et al. 2011), which is available for download at http://yt-project.org. J. A. Z. is supported under the NASA Postdoctoral Program. G. B. acknowledges partial support by grant PRIN-INAF-2009. The software used in this work was in part developed by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. NR 55 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2015 VL 801 IS 2 AR 146 DI 10.1088/0004-637X/801/2/146 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3GE UT WOS:000350965500075 ER PT J AU Aydemir, U Zevalkink, A Ormeci, A Gibbs, ZM Bux, S Snyder, GJ AF Aydemir, Umut Zevalkink, Alex Ormeci, Alim Gibbs, Zachary M. Bux, Sabah Snyder, G. Jeffrey TI Thermoelectric Enhancement in BaGa2Sb2 by Zn Doping SO CHEMISTRY OF MATERIALS LA English DT Article ID LATTICE THERMAL-CONDUCTIVITY; ZINTL PHASE; POWER-GENERATION; BAND-STRUCTURE; LOWER LIMIT; LA-ND; COMPOUND; EFFICIENCY; CLATHRATE; FRAMEWORK AB The Zintl phase BaGa2Sb2 has a unique crystal structure in which large tunnels formed by ethane-like dimeric [Sb3GaGaSb3] units are filled with Ba atoms. BaGa2Sb2 was obtained in high purity from ball-milling followed by hot pressing. It shows semiconducting behavior, in agreement with the valence precise Zintl counting and band structure calculations, with a band gap similar to 0.4 eV. The thermal conductivity of BaGa2Sb2 is found to be relatively low (0.95 W/K m at 550 K), which is an inherent property of compounds with complex crystal structures. As BaGa2Sb2 has a low carrier concentration (similar to 2 x 10 (18)h(+)/cm(3)) at room temperature, the charge carrier tuning was performed by substituting trivalent Ga with divalent Zn. Zn-doped samples display heavily doped p-type semiconducting behavior with carrier concentrations in the range (58) x 10 (19)h(+)/cm(3). Correspondingly, the zT values were increased by a factor of 6 by doping compared to the undoped sample, reaching a value of similar to 0.6 at 800 K. Zn-doped BaGa2Sb2 can thus be considered as a promising new thermoelectric material for intermediate-temperature applications. C1 [Aydemir, Umut; Gibbs, Zachary M.; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Zevalkink, Alex; Bux, Sabah] CALTECH, Jet Prop Lab, Thermal Energy Convers Technol Grp, Pasadena, CA 91109 USA. [Ormeci, Alim] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. RP Aydemir, U (reprint author), CALTECH, Dept Appl Phys & Mat Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM uaydemir@caltech.edu RI Snyder, G/I-2263-2015; Snyder, G. Jeffrey/E-4453-2011; Aydemir, Umut/P-8424-2015; Ormeci, Alim/F-1082-2012 OI Snyder, G. Jeffrey/0000-0003-1414-8682; Aydemir, Umut/0000-0003-1164-1973; Ormeci, Alim/0000-0001-5468-3378 FU Scientific and Technological Research Council of Turkey; NASA Science Missions Directorate's Radioisotope Power Systems Technology Advancement Program FX U.A. acknowledges the financial assistance of The Scientific and Technological Research Council of Turkey. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was supported by the NASA Science Missions Directorate's Radioisotope Power Systems Technology Advancement Program. We would like to acknowledge the Molecular Materials Research Center (MMRC) at Caltech for allowing use of their instruments for the optical measurements obtained in this work. A.O. thanks Ulrike Nitzsche from IFW Dresden, Germany, for technical help in computational work. NR 45 TC 12 Z9 12 U1 3 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD MAR 10 PY 2015 VL 27 IS 5 BP 1622 EP 1630 DI 10.1021/cm5042937 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CD2ON UT WOS:000350919000023 ER PT J AU Eplee, RE Turpie, KR Meister, G Patt, FS Franz, BA Bailey, SW AF Eplee, Robert E., Jr. Turpie, Kevin R. Meister, Gerhard Patt, Frederick S. Franz, Bryan A. Bailey, Sean W. TI On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean color applications SO APPLIED OPTICS LA English DT Article ID REFLECTIVE SOLAR BANDS; SEAWIFS; SATELLITE; PERFORMANCE; DIFFUSER; STABILITY; SENSORS; MOON AB The NASA Ocean Biology Processing Group (OBPG) developed two independent calibrations of the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate resolution reflective solar bands using solar diffuser measurements and lunar observations, and implemented a combined solar- and lunar-based calibration to track temporal changes in radiometric response of the instrument. Differences between the solar and lunar data sets have been used to identify issues and verify improvements in each. Linearization of the counts-to-radiance conversion yields a more consistent calibration at low radiance levels. Correction of a recently identified error in the VIIRS solar unit vector coordinate frame has been incorporated into the solar data and diffuser screen transmission functions. Temporal trends in the solar diffuser stability monitor data have been evaluated and addressed. Fits to the solar calibration time series show mean residuals per band of 0.067%-0.17%. Periodic residuals in the VIIRS lunar data are confirmed to arise from a wavelength-dependent libration effect for the sub-spacecraft point in the output of the U.S. Geological Survey Robotic Lunar Observatory photometric model of the Moon. Temporal variations in the relative spectral responses for each band have been assessed, and significant impact on band M1 (412 nm) lunar data has been identified and rectified. Fits to the lunar calibration time series, incorporating sub-spacecraft point libration corrections, show mean residuals per band of 0.069%-0.20%. Lunar calibrations have been used to adjust the solar-derived radiometric corrections for bands M1, M3, and M4. After all corrections, the relative differences in the solar and lunar calibrations for bands M1-M7 are 0.093%-0.22%. The OBPG has achieved a radiometric stability for the VIIRS on-orbit calibration that is commensurate with those achieved for SeaWiFS and Aqua MODIS, supporting the incorporation of VIIRS data into the long-term NASA ocean color data record. (C) 2015 Optical Society of America C1 [Eplee, Robert E., Jr.; Patt, Frederick S.] Sci Applicat Int Corp, Beltsville, MD 20705 USA. [Turpie, Kevin R.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Catonsville, MD 21250 USA. [Meister, Gerhard; Franz, Bryan A.] NASA, Goddard Space Flight Ctr, Ocean Ecol Branch, Greenbelt, MD 20771 USA. [Bailey, Sean W.] FutureTech Corp, Greenbelt, MD 20770 USA. RP Eplee, RE (reprint author), Sci Applicat Int Corp, 4600 Powdermill Rd,Suite 400, Beltsville, MD 20705 USA. EM Robert.E.Eplee@nasa.gov RI Franz, Bryan/D-6284-2012; Bailey, Sean/D-3077-2017 OI Franz, Bryan/0000-0003-0293-2082; Bailey, Sean/0000-0001-8339-9763 NR 51 TC 22 Z9 22 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 10 PY 2015 VL 54 IS 8 BP 1984 EP 2006 DI 10.1364/AO.54.001984 PG 23 WC Optics SC Optics GA CC9AE UT WOS:000350658900022 PM 25968375 ER PT J AU Narukage, N Auchere, F Ishikawa, R Kano, R Tsuneta, S Winebarger, AR Kobayashi, K AF Narukage, Noriyuki Auchere, Frederic Ishikawa, Ryohko Kano, Ryouhei Tsuneta, Saku Winebarger, Amy R. Kobayashi, Ken TI Vacuum ultraviolet spectropolarimeter design for precise polarization measurements SO APPLIED OPTICS LA English DT Article ID LINE POLARIZATION; SOLAR; POLARIMETER; REGION; SUN AB Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-alpha line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise. (C) 2015 Optical Society of America C1 [Narukage, Noriyuki; Ishikawa, Ryohko; Kano, Ryouhei] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Auchere, Frederic] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Tsuneta, Saku] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Winebarger, Amy R.; Kobayashi, Ken] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Narukage, N (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM noriyuki.narukage@nao.ac.jp OI Auchere, Frederic/0000-0003-0972-7022 FU Japan Society for the Promotion of Science (JSPS) [25220703]; National Astronomical Observatory of Japan (NAOJ); JSPS KAKENHI Grant [24340040, 23340052, 24740134]; NASA Low Cost Access to Space [12-SHP 12/2-0283]; Institute of Space and Astronomical Science (ISAS) FX The authors acknowledge all members of the CLASP team. The team was an international partnership between NASA Marshall Space Flight Center and JAXA; additional partners include National Astronomical Observatory of Japan, Kyoto University, National Institute for Fusion Science, Instituto de Astrofisica de Canarias, Institut d'Astrophysique Spatiale, Le Centre national d'etudes spatiales, the University of Alabama in Huntsville, Lockheed Martin, High Altitude Observatory, and Universitetet i Oslo. We are especially grateful to Dr. Kubo, Mr. Bando, Prof. Suematsu, Prof. Hara, and Prof. Ichimoto for the discussion about the spectropolarimeter design proposed in the paper, and Dr. Katsukawa for adjusting the CLASP telescope design. The CLASP sounding rocket experiment is founded by NASA, CNES, JAXA, and the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (Grant Number 25220703, PI: S. Tsuneta). The development of this instrument in Japan was also supported by the basic research program of the Institute of Space and Astronomical Science (ISAS), internal research funding of the National Astronomical Observatory of Japan (NAOJ), and JSPS KAKENHI Grant Numbers 24340040, 23340052, and 24740134. U.S. participation is funded by NASA Low Cost Access to Space (Award Number 12-SHP 12/2-0283). NR 18 TC 5 Z9 5 U1 1 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 10 PY 2015 VL 54 IS 8 BP 2080 EP 2084 DI 10.1364/AO.54.002080 PG 5 WC Optics SC Optics GA CC9AE UT WOS:000350658900033 PM 25968386 ER PT J AU Yamaguchi, H Badenes, C Foster, AR Bravo, E Williams, BJ Maeda, K Nobukawa, M Eriksen, KA Brickhouse, NS Petre, R Koyama, K AF Yamaguchi, Hiroya Badenes, Carles Foster, Adam R. Bravo, Eduardo Williams, Brian J. Maeda, Keiichi Nobukawa, Masayoshi Eriksen, Kristoffer A. Brickhouse, Nancy S. Petre, Robert Koyama, Katsuji TI A CHANDRASEKHAR MASS PROGENITOR FOR THE TYPE Ia SUPERNOVA REMNANT 3C 397 FROM THE ENHANCED ABUNDANCES OF NICKEL AND MANGANESE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE atomic data; infrared: ISM; ISM: individual objects (3C 397, G41.1-0.3); ISM: supernova remnants; nuclear reactions, nucleosynthesis, abundances; X-rays: ISM ID DELAYED-DETONATION MODELS; LARGE-MAGELLANIC-CLOUD; X-RAY; CIRCUMSTELLAR MATERIAL; KEPLERS SUPERNOVA; WHITE-DWARFS; MILKY-WAY; NUCLEOSYNTHESIS; EMISSION; SPECTRA AB Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies. C1 [Yamaguchi, Hiroya; Williams, Brian J.; Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yamaguchi, Hiroya] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Yamaguchi, Hiroya; Brickhouse, Nancy S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Badenes, Carles] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Badenes, Carles] Univ Pittsburgh, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA. [Bravo, Eduardo] Univ Politecn Cataluna, ETS Arquitectura Valles, E-08173 Sant Cugat Del Valles, Spain. [Maeda, Keiichi] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Maeda, Keiichi] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Nobukawa, Masayoshi; Koyama, Katsuji] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Eriksen, Kristoffer A.] Los Alamos Natl Lab, Theoret Design Div, Los Alamos, NM 87545 USA. [Koyama, Katsuji] Osaka Univ, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. RP Yamaguchi, H (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. EM hiroya.yamaguchi@nasa.gov RI XRAY, SUZAKU/A-1808-2009; OI Brickhouse, Nancy/0000-0002-8704-4473; Bravo, Eduardo/0000-0003-0894-6450; Badenes, Carles/0000-0003-3494-343X FU Spanish MINECO [AYA2013-40545]; JSPS [23740141/26800100, 24740123, 23000004/24540229] FX We thank Drs. Ken'ichi Nomoto, Samar Safi- Harb, Randall K. Smith, and Michael C. Witthoeft for helpful discussion and suggestions. E.B. is supported by Spanish MINECO grant AYA2013-40545. Japanese authors acknowledge financial support by JSPS Grant-in-Aid for Scientific Research Numbers 23740141/26800100 (K.M.), 24740123 (M.N.), and 23000004/24540229 (K.K). NR 46 TC 21 Z9 21 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2015 VL 801 IS 2 AR L31 DI 10.1088/2041-8205/801/2/L31 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CD3NJ UT WOS:000350985200012 ER PT J AU Hilker, T Lyapustin, AI Tucker, CJ Hall, FG Myneni, RB Wang, YJ Bi, J de Moura, YM Sellers, PJ AF Hilker, Thomas Lyapustin, Alexei I. Tucker, Compton J. Hall, Forrest G. Myneni, Ranga B. Wang, Yujie Bi, Jian de Moura, Yhasmin Mendes Sellers, Piers J. TI Reply to Gonsamo et al.: Effect of the Eastern Atlantic-West Russia pattern on Amazon vegetation has not been demonstrated SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Hilker, Thomas] Coll Forestry, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA. [Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Wang, Yujie; Sellers, Piers J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hall, Forrest G.; Wang, Yujie] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Myneni, Ranga B.; Bi, Jian] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [de Moura, Yhasmin Mendes] Inst Nacl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12245970 Sao Paulo, SP, Brazil. RP Hilker, T (reprint author), Coll Forestry, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA. EM thomas.hilker@oregonstate.edu RI Myneni, Ranga/F-5129-2012; OI Moura, Yhasmin/0000-0001-8494-8787 NR 6 TC 0 Z9 0 U1 0 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 10 PY 2015 VL 112 IS 10 BP E1056 EP E1056 DI 10.1073/pnas.1423471112 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC8VK UT WOS:000350646500004 PM 25713133 ER PT J AU Ade, PAR Aghanim, N Ahmed, Z Aikin, RW Alexander, KD Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barkats, D Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Benton, SJ Bernard, JP Bersanelli, M Bielewicz, P Bischoff, CA Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Brevik, JA Bucher, M Buder, I Bullock, E Burigana, C Butler, RC Buza, V Calabrese, E Cardoso, JF Catalano, A Challinor, A Chary, RR Chiang, HC Christensen, PR Colombo, LPL Combet, C Connors, J Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dowell, CD Duband, L Ducout, A Dunkley, J Dupac, X Dvorkin, C Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Filippini, JP Finelli, F Fliescher, S Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Golwala, SR Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Halpern, M Hansen, FK Hanson, D Harrison, DL Hasselfield, M Helou, G Henrot-Versillee, S Herranz, D Hildebrandt, SR Hilton, GC Hivon, E Hobson, M Holmes, WA Hovest, W Hristov, VV Huffenberger, KM Hui, H Hurier, G Irwin, KD Jaffe, AH Jaffe, TR Jewell, J Jones, WC Juvela, M Karakci, A Karkare, KS Kaufman, JP Keating, BG Kefeli, S Keihanen, E Kernasovskiy, SA Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Kovac, JM Krachmalnicoff, N Kunz, M Kuo, CL Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leitch, EM Leonardi, R Levrier, F Lewis, A Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Lueker, M Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Mason, P Matarrese, S Megerian, KG Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Nguyen, HT Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I O'Brient, R Ogburn, RW Orlando, A Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Pryke, C Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Richter, S Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Schwarz, R Scott, D Seiffert, MD Sheehy, CD Spencer, LD Staniszewski, ZK Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Teply, GP Terenzi, L Thompson, KL Toffolatti, L Tolan, JE Tomasi, M Tristram, M Tucci, M Turner, AD Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Vieregg, AG Villa, F Wade, LA Wandelt, BD Watson, R Weber, AC Wehus, IK White, M White, SDM Willmert, J Wong, CL Yoon, KW Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ahmed, Z. Aikin, R. W. Alexander, K. D. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barkats, D. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Benton, S. J. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bischoff, C. A. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Brevik, J. A. Bucher, M. Buder, I. Bullock, E. Burigana, C. Butler, R. C. Buza, V. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Connors, J. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dowell, C. D. Duband, L. Ducout, A. Dunkley, J. Dupac, X. Dvorkin, C. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Filippini, J. P. Finelli, F. Fliescher, S. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Golwala, S. R. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Halpern, M. Hansen, F. K. Hanson, D. Harrison, D. L. Hasselfield, M. Helou, G. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hilton, G. C. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hristov, V. V. Huffenberger, K. M. Hui, H. Hurier, G. Irwin, K. D. Jaffe, A. H. Jaffe, T. R. Jewell, J. Jones, W. C. Juvela, M. Karakci, A. Karkare, K. S. Kaufman, J. P. Keating, B. G. Kefeli, S. Keihanen, E. Kernasovskiy, S. A. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kovac, J. M. Krachmalnicoff, N. Kunz, M. Kuo, C. L. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leitch, E. M. Leonardi, R. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Lueker, M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Mason, P. Matarrese, S. Megerian, K. G. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Nguyen, H. T. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. O'Brient, R. Ogburn, R. W. Orlando, A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Pryke, C. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Richter, S. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Schwarz, R. Scott, D. Seiffert, M. D. Sheehy, C. D. Spencer, L. D. Staniszewski, Z. K. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Teply, G. P. Terenzi, L. Thompson, K. L. Toffolatti, L. Tolan, J. E. Tomasi, M. Tristram, M. Tucci, M. Turner, A. D. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Vieregg, A. G. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Weber, A. C. Wehus, I. K. White, M. White, S. D. M. Willmert, J. Wong, C. L. Yoon, K. W. Yvon, D. Zacchei, A. Zonca, A. CA BICEP KECK Planck Collaborations TI Joint Analysis of BICEP2/Keck Array and Planck Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROBE WMAP OBSERVATIONS; GRAVITY-WAVES; POLARIZATION; ANISOTROPY; EMISSION; SUBMILLIMETER; SPECTRUM; SCALE; DUST AB We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg(2) patch of sky centered on RA 0 h, Dec. -57.5 degrees. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 mu K deg in Q and U at 143 GHz). We detect 150 x 353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies >= 150 GHz to a lensed-Lambda CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r(0.05) < 0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0 sigma significance. C1 [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ahmed, Z.; Irwin, K. D.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Crill, B. P.; Dore, O.; Filippini, J. P.; Golwala, S. R.; Helou, G.; Hildebrandt, S. R.; Hristov, V. V.; Hui, H.; Kefeli, S.; Lueker, M.; Mason, P.; Pearson, T. J.; Rocha, G.; Seiffert, M. D.; Staniszewski, Z. K.; Teply, G. P.] CALTECH, Pasadena, CA 91125 USA. [Alexander, K. D.; Bischoff, C. A.; Buder, I.; Buza, V.; Connors, J.; Dvorkin, C.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Arnaud, M.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, IRFU,CEA DSM CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Barkats, D.] Joint ALMA Observ, Santiago, Chile. [Barreiro, R. B.; Benoit, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander, Spain. [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Karakci, A.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,AstroParticule & Cosmol,CNRS IN2P3,CEA lrfu, F-75205 Paris 13, France. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Dowell, C. D.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Megerian, K. G.; Mitra, S.; Nguyen, H. T.; O'Brient, R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Seiffert, M. D.; Staniszewski, Z. K.; Turner, A. D.; Wade, L. A.; Weber, A. C.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Benabed, K.; Benoit-Levy, A.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Benton, S. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bouchet, F. R.] Univ Paris 04, UPMC, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Bullock, E.; Pryke, C.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Sci & Fis Terra, I-44122 Ferrara, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Calabrese, E.; Dunkley, J.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Labe Phys Subatom & Cosmol, F-38026 Grenoble, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, Paris, France. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Challinor, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Cambridge CB3 0WA, England. [Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ USA. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, IPAG, F-38000 Grenoble, France. [Desert, F. -X.; Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Duband, L.] Serv Basses Temperatures Commiss Energie Atom, F-38054 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Filippini, J. P.; Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Fliescher, S.; Pryke, C.; Schwarz, R.; Sheehy, C. D.; Willmert, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Halpern, M.; Hasselfield, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Hanson, D.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Hilton, G. C.; Irwin, K. D.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Irwin, K. D.; Kuo, C. L.; Ogburn, R. W.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Kaufman, J. P.; Keating, B. G.; Orlando, A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kneissl, R.] ESO Vitacura, European Southern Observ, Santiago 19001, Chile. [Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Lagache, G.] Aix Marseille Univ, CNRS, Lab Astrophys Marseille, F-13388 Marseille, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, FI-00076 Aalto, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, FI-00076 Aalto, Finland. [Leitch, E. M.; Turner, A. D.] Univ Chicago, Chicago, IL 60637 USA. [Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Novikov, D.; Novikov, I.] Russian Acad Sci, PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Rebolo, R.] CSIC, Madrid, Spain. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Rome, Italy. [Savini, G.] UCL, Opt Sci Lab, London, England. [Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM Brendan.P.Crill@jpl.nasa.gov; pryke@physics.umn.edu RI Herranz, Diego/K-9143-2014; Novikov, Dmitry/P-1807-2015; Yvon, Dominique/D-2280-2015; Toffolatti, Luigi/K-5070-2014; Lahteenmaki, Anne/L-5987-2013; Barreiro, Rita Belen/N-5442-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Lopez-Caniego, Marcos/M-4695-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Valiviita, Jussi/A-9058-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Lattanzi, Massimiliano/D-8120-2011; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; Vielva, Patricio/F-6745-2014; Piacentini, Francesco/E-7234-2010; Stolyarov, Vladislav/C-5656-2017; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Butler, Reginald/N-4647-2015; OI Savini, Giorgio/0000-0003-4449-9416; Zacchei, Andrea/0000-0003-0396-1192; Valenziano, Luca/0000-0002-1170-0104; Scott, Douglas/0000-0002-6878-9840; Bouchet, Francois/0000-0002-8051-2924; Reach, William/0000-0001-8362-4094; Hurier, Guillaume/0000-0002-1215-0706; Juvela, Mika/0000-0002-5809-4834; Watson, Robert/0000-0002-5873-0124; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Herranz, Diego/0000-0003-4540-1417; Toffolatti, Luigi/0000-0003-2645-7386; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Lattanzi, Massimiliano/0000-0003-1059-2532; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; bonavera, laura/0000-0001-8039-3876; Alexander, Kate/0000-0002-8297-2473; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Finelli, Fabio/0000-0002-6694-3269; De Zotti, Gianfranco/0000-0003-2868-2595; Sandri, Maura/0000-0003-4806-5375; Franceschi, Enrico/0000-0002-0585-6591; Polenta, Gianluca/0000-0003-4067-9196; Morgante, Gianluca/0000-0001-9234-7412; Lopez-Caniego, Marcos/0000-0003-1016-9283; de Bernardis, Paolo/0000-0001-6547-6446; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Orlando, Angiola/0000-0001-8004-5054; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Karkare, Kirit/0000-0002-5215-6993; Barkats, Denis/0000-0002-8971-1954; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379 FU U.S. National Science Foundation [ANT-0742818, ANT-1044978, ANT-0742592, ANT-1110087]; JPL Research and Technology Development Fund from the NASA [06-ARPA206-0040, 10-SAT10-0017]; National Science Foundation [ANT-1145172, ANT-1145143, ANT-1145248]; Keck Foundation (Caltech); ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX BICEP2 was supported by the U.S. National Science Foundation under Grants No. ANT-0742818 and No. ANT-1044978 (Caltech and Harvard) and No. ANT-0742592 and No. ANT-1110087 (Chicago and Minnesota). The development of antenna-coupled detector technology was supported by the JPL Research and Technology Development Fund and Grants No. 06-ARPA206-0040 and No. 10-SAT10-0017 from the NASA APRA and SAT programs. The Keck Array project was supported by the National Science Foundation under Grants No. ANT-1145172 (Harvard), No. ANT-1145143 (Minnesota) and No. ANT-1145248 (Stanford), and from the Keck Foundation (Caltech). We thank the staff of the U.S. Antarctic Program and in particular the South Pole Station without whose help this research would not have been possible. The Planck Collaboration acknowledges the support of the following: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found in Ref. [52]. NR 44 TC 304 Z9 305 U1 9 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 9 PY 2015 VL 114 IS 10 AR 101301 DI 10.1103/PhysRevLett.114.101301 PG 17 WC Physics, Multidisciplinary SC Physics GA CC8ND UT WOS:000350624500002 PM 25815919 ER PT J AU Kelly, PL Rodney, SA Treu, T Foley, RJ Brammer, G Schmidt, KB Zitrin, A Sonnenfeld, A Strolger, LG Graur, O Filippenko, AV Jha, SW Riess, AG Bradac, M Weiner, BJ Scolnic, D Malkan, MA von der Linden, A Trenti, M Hjorth, J Gavazzi, R Fontana, A Merten, JC McCully, C Jones, T Postman, M Dressler, A Patel, B Cenko, SB Graham, ML Tucker, BE AF Kelly, Patrick L. Rodney, Steven A. Treu, Tommaso Foley, Ryan J. Brammer, Gabriel Schmidt, Kasper B. Zitrin, Adi Sonnenfeld, Alessandro Strolger, Louis-Gregory Graur, Or Filippenko, Alexei V. Jha, Saurabh W. Riess, Adam G. Bradac, Marusa Weiner, Benjamin J. Scolnic, Daniel Malkan, Matthew A. von der Linden, Anja Trenti, Michele Hjorth, Jens Gavazzi, Raphael Fontana, Adriano Merten, Julian C. McCully, Curtis Jones, Tucker Postman, Marc Dressler, Alan Patel, Brandon Cenko, S. Bradley Graham, Melissa L. Tucker, Bradley E. TI Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens SO SCIENCE LA English DT Article ID GRAVITATIONAL LENS; TIME DELAYS; IA SUPERNOVA; PS1-10AFX; COSMOLOGY; DISCOVERY; MASSES; MACS AB In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. C1 [Kelly, Patrick L.; Filippenko, Alexei V.; Graham, Melissa L.; Tucker, Bradley E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Rodney, Steven A.; Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Treu, Tommaso] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Foley, Ryan J.] Univ Illinois, Urbana, IL 61801 USA. [Foley, Ryan J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brammer, Gabriel; Strolger, Louis-Gregory; Riess, Adam G.; Postman, Marc] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schmidt, Kasper B.; Sonnenfeld, Alessandro; McCully, Curtis; Jones, Tucker] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Zitrin, Adi; Merten, Julian C.] CALTECH, Pasadena, CA 91125 USA. [Strolger, Louis-Gregory] Western Kentucky Univ, Bowling Green, KY 42101 USA. [Graur, Or] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Graur, Or] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Bradac, Marusa] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Weiner, Benjamin J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Scolnic, Daniel] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Scolnic, Daniel] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [von der Linden, Anja] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [von der Linden, Anja] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Trenti, Michele] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Gavazzi, Raphael] Inst Astrophys Paris, F-75014 Paris, France. [Fontana, Adriano] INAF OAR, I-00040 Rome, Italy. [McCully, Curtis] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Dressler, Alan] Carnegie Observ, Pasadena, CA 91101 USA. [Cenko, S. Bradley] NASA Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Tucker, Bradley E.] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. RP Kelly, PL (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM pkelly@astro.berkeley.edu OI Graur, Or/0000-0002-4391-6137; Trenti, Michele/0000-0001-9391-305X FU NASA through HST [GO-13459, GO-13386]; NASA through Hubble Fellowship - STScI [HST-HF-51312.01, HF2-51334.001-A]; Christopher R. Redlich Fund; TABASGO Foundation; Gary and Cynthia Bengier; NSF [AST-1211916, AST-1313484]; Danish National Research Foundation; NSF CAREER [AST-0847157]; NASA HSI [GO-13386, GO-13343]; Centre National d'Etudes Spatiales; W. M. Keck Foundation; [NAS 5-26555] FX This work is based on data obtained with the NASA/ESA Hubble Space Telescope. We thank O. Fox, W. Zheng, J. Bloom, C. Keeton, J. Mauerhan, C. Steidel, and A. Strom for helpful discussions, as well as the Space Telescope Science Institute (STScI) and Director Matt Mountain for supporting our proposal for follow-up observations. GLASS is supported by NASA through HST grant GO-13459. Support for S.A.R. was provided by NASA through Hubble Fellowship grant HST-HF-51312.01 awarded by STScI, which is operated by the Association of Universities for Research in Astronomy for NASA, under contract NAS 5-26555. Follow-up imaging through the FrontierSN program is supported by NASA through HST grant GO-13386. A.V.F.'s group at the University of California Berkeley has received generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, Gary and Cynthia Bengier, and NSF grant AST-1211916. The Dark Cosmotogy Centre is funded by the Danish National Research Foundation. Support for A.Z. was provided by NASA through Hubble Fellowship grant HF2-51334.001-A awarded by STScI. SN research at Rutgers University is supported in part by NSF CAREER award AST-0847157 to S.W.J. J.C.M. is supported by NSF grant AST-1313484 and by NASA HSI grants GO-13343 and GO-13386; this research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. R.G. acknowledges the Centre National d'Etudes Spatiales for financial support on the GLASS project. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The HST imaging data used in this paper can be obtained from the Barbara A. Mikulski Archive for Space Telescopes at https://archives.stsci.edu, and the Keck-I LRIS spectra can be obtained at https://hercules.berkeley.edu/database. NR 23 TC 33 Z9 33 U1 5 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAR 6 PY 2015 VL 347 IS 6226 BP 1123 EP 1126 DI 10.1126/science.aaa3350 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC4WB UT WOS:000350354200048 PM 25745167 ER PT J AU Moore, CJ Taylor, SR Gair, JR AF Moore, C. J. Taylor, S. R. Gair, J. R. TI Estimating the sensitivity of pulsar timing arrays SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE pulsar timing; gravitational waves; black holes ID SUPERMASSIVE BLACK-HOLES; GRAVITATIONAL-RADIATION; PACKAGE; TEMPO2; WAVES; COSMOLOGY; EFFICIENT; GALAXIES; MODEL AB The sensitivity curve of a canonical pulsar timing array is calculated for two types of source: a monochromatic wave and a stochastic background. These calculations are performed in both a Bayesian and frequentist framework, using both analytical and numerical methods. These calculations are used to clarify the interpretation of the sensitivity curves and to illustrate the sometimes overlooked fact that the sensitivity curve depends not only on the properties of the pulse time-of-arrival data set but also on the properties of the source being observed. The Bayesian and frequentist frameworks were found to give consistent results and the analytic and numerical calculations were also found to be in good agreement. C1 [Moore, C. J.; Taylor, S. R.; Gair, J. R.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Taylor, S. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, CJ (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM cjm96@ast.cam.ac.uk; stephen.r.taylor@jpl.nasa.gov; jrg23@cam.ac.uk OI Taylor, Stephen/0000-0003-0264-1453 FU Higher Education Funding Council for England; Science and Technology Facilities Council; STFC; Royal Society; NASA Postdoctoral Program at the Jet Propulsion Laboratory FX This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://hpc.cam.ac.uk/), provided by Dell Inc using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. Both CM and ST are supported by the STFC. JG's work is supported by the Royal Society. This research was in part supported by ST's appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. NR 32 TC 9 Z9 9 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD MAR 5 PY 2015 VL 32 IS 5 AR 055004 DI 10.1088/0264-9381/32/5/055004 PG 19 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CC8RZ UT WOS:000350637200004 ER PT J AU Wohl, CJ Foster, LL Applin, SI Connell, JW AF Wohl, Christopher J. Foster, Leanna L. Applin, Samantha I. Connell, John W. TI Synthesis and Surface Characterization of Copoly(imide alkyl ether)s Containing Pendant Fluoroalkyl Groups SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE coatings; monomers; oligomers and telechelics; structure-property relations; surfaces and interfaces ID POLYOXETANE SOFT BLOCKS; LAMINAR-FLOW CONTROL; MODIFYING MACROMOLECULES; POLYMERS; POLYURETHANES; AIRCRAFT; EXPOSURE; COATINGS; CHAIN AB A series of copoly(imide alkyl ether)s were synthesized to explore surface migration of fluorinated alkyl ether blocks (AEFO)s. Mechanical and surface properties of solution cast, thermally imidized films were determined. Incorporation of the AEFO oligomers at loading levels up to 5 wt % resulted in a slight decrease (usually less than 10%) in tensile modulus. Surface migration of the AEFOs raised the advancing water contact angle from approximately 80 degrees to above 95 degrees for the copolymer systems. The composition at which addition of more AEFO further increased water contact angle values was related to the number of fluorine atoms in the perfluorinated side chains. Surface excess concentration of the AEFO at different loading levels was calculated from X-ray photoelectron spectroscopy results. At higher AEFO loading levels, the surface excess concentration was relatively constant suggesting formation of stable structures within the bulk similar to micelle formation in surfactant solutions. Based on these results, it was determined that surface saturation occurred with the fluorinated AEFO species at loading levels as low as 1 wt % engendering changes in surface properties while retaining the bulk imide properties. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41538. C1 [Wohl, Christopher J.; Foster, Leanna L.; Applin, Samantha I.; Connell, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Wohl, CJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM c.j.wohl@nasa.gov FU NASA Langley Creativity and Innovation fund FX The authors thank Dr. Everett Carpenter and Dmitry Pestov from Virginia Commonwealth University for XPS measurements and data processing as well as Dr. Jeffrey Hinkley from NASA Langley Research Center for scientific discussion and guidance. This work was funded by the NASA Langley Creativity and Innovation fund. NR 35 TC 0 Z9 0 U1 2 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8995 EI 1097-4628 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD MAR 5 PY 2015 VL 132 IS 9 AR 41538 DI 10.1002/app.41538 PG 11 WC Polymer Science SC Polymer Science GA AU8EN UT WOS:000345829400012 ER PT J AU Ni, WJ Sun, GQ Ranson, KJ AF Ni, Wenjian Sun, Guoqing Ranson, Kenneth J. TI Characterization of ASTER GDEM elevation data over vegetated area compared with lidar data SO INTERNATIONAL JOURNAL OF DIGITAL EARTH LA English DT Article DE stereo-mapping; NED; photogrammetry; ASTER GDEM; vegetation canopy height ID CANOPY HEIGHT; DIGITAL PHOTOGRAMMETRY; SAR INTERFEROMETRY; MAPPING VEGETATION; FOREST; SRTM; BIOMASS; MODEL; TOPOGRAPHY; IMAGES AB Current researches based on areal or spaceborne stereo images with very high resolutions (<1 m) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is the state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 m) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that the accurate coregistration between ASTER GDEM and national elevation dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-second and further improved to 0.6 if only homogenous vegetated areas were considered. C1 [Ni, Wenjian] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing, Peoples R China. [Ni, Wenjian; Sun, Guoqing] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Ni, WJ (reprint author), Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing, Peoples R China. EM niwenjian@irsa.ac.cn RI Ranson, Kenneth/G-2446-2012; Beckley, Matthew/D-4547-2013; rslab, hiwater/O-7037-2015; rslab, water/O-7043-2015 OI Ranson, Kenneth/0000-0003-3806-7270; FU National Basic Research Program of China [2013CB733404]; National Natural Science Foundation of China [41001208, 91125003]; NASA Terrestrial Ecology Program [NNX09AG66G] FX This work was partially supported by the National Basic Research Program of China (Grant no.2013CB733404), the National Natural Science Foundation of China (Grant nos. 41001208 and 91125003), support for the study was also provided by the NASA Terrestrial Ecology Program (NNX09AG66G). The LVIS data sets were provided by the Laser Vegetation and Ice Sensor (LVIS) team in the Laser Remote Sensing Laboratory at NASA Goddard Space Flight Center with support from the University of Maryland, College Park. The authors thank each of the foregoing. Special thanks to the ASTER GDEM team and USGS for the open data access. NR 24 TC 1 Z9 1 U1 5 U2 32 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1753-8947 EI 1753-8955 J9 INT J DIGIT EARTH JI Int. J. Digit. Earth PD MAR 4 PY 2015 VL 8 IS 3 BP 198 EP 211 DI 10.1080/17538947.2013.861025 PG 14 WC Geography, Physical; Remote Sensing SC Physical Geography; Remote Sensing GA CC0NN UT WOS:000350032600002 ER PT J AU Liu, YH Guo, F Daughton, W Li, H Hesse, M AF Liu, Yi-Hsin Guo, Fan Daughton, William Li, Hui Hesse, Michael TI Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAY BURSTS; CURRENT SHEET; GUIDE-FIELD; TEMPERATURE ANISOTROPY; NONTHERMAL PARTICLES; PULSAR WIND; DISSIPATION; MODEL; JETS; SIMULATIONS AB Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma > O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains similar to 0.1 in both the nonrelativistic and relativistic limits. C1 [Liu, Yi-Hsin; Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guo, Fan; Daughton, William; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liu, YH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Guo, Fan/H-1723-2013; Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013; OI NASA MMS, Science Team/0000-0002-9504-5214; Guo, Fan/0000-0003-4315-3755 FU NASA through NPP program; Heliophysics Theory program; MMS mission; DOE through the LDRD program at LANL; DOE/OFES support; CMSO FX Y.-H. Liu thanks for helpful discussions withS. Zenitani, N. Bessho and J. Tenbarge. This work was support by NASA through the NPP program, the Heliophysics Theory program and MMS mission. H. L. and F. G. are supported by the DOE through the LDRD program at LANL and DOE/OFES support to LANL in collaboration with CMSO. Simulations were performed at the National Center for Computational Sciences at ORNL and with LANL institutional computing. NR 52 TC 24 Z9 25 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 3 PY 2015 VL 114 IS 9 AR 095002 DI 10.1103/PhysRevLett.114.095002 PG 5 WC Physics, Multidisciplinary SC Physics GA CC6VA UT WOS:000350505900008 PM 25793820 ER PT J AU Xia, JY Niu, SL Ciais, P Janssens, IA Chen, JQ Ammann, C Arain, A Blanken, PD Cescatti, A Bonal, D Buchmann, N Curtis, PS Chen, SP Dong, JW Flanagan, LB Frankenberg, C Georgiadis, T Gough, CM Hui, DF Kiely, G Li, JW Lund, M Magliulo, V Marcolla, B Merbold, L Montagnani, L Moors, EJ Olesen, JE Piao, SL Raschi, A Roupsard, O Suyker, AE Urbaniak, M Vaccari, FP Varlagin, A Vesala, T Wilkinson, M Weng, E Wohlfahrt, G Yan, LM Luo, YQ AF Xia, Jianyang Niu, Shuli Ciais, Philippe Janssens, Ivan A. Chen, Jiquan Ammann, Christof Arain, Altaf Blanken, Peter D. Cescatti, Alessandro Bonal, Damien Buchmann, Nina Curtis, Peter S. Chen, Shiping Dong, Jinwei Flanagan, Lawrence B. Frankenberg, Christian Georgiadis, Teodoro Gough, Christopher M. Hui, Dafeng Kiely, Gerard Li, Jianwei Lund, Magnus Magliulo, Vincenzo Marcolla, Barbara Merbold, Lutz Montagnani, Leonardo Moors, Eddy J. Olesen, Jorgen E. Piao, Shilong Raschi, Antonio Roupsard, Olivier Suyker, Andrew E. Urbaniak, Marek Vaccari, Francesco P. Varlagin, Andrej Vesala, Timo Wilkinson, Matthew Weng, Ensheng Wohlfahrt, Georg Yan, Liming Luo, Yiqi TI Joint control of terrestrial gross primary productivity by plant phenology and physiology SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ecosystem carbon uptake; growing season length; photosynthetic capacity; spatiotemporal variability; climate extreme ID CLIMATE-CHANGE; CHLOROPHYLL FLUORESCENCE; ECOSYSTEM PRODUCTIVITY; VEGETATION PHENOLOGY; STOMATAL CONDUCTANCE; FOREST PHENOLOGY; CARBON UPTAKE; MODELS; PHOTOSYNTHESIS; VARIABILITY AB Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPP(max)). The product of CUP and GPP(max) explained > 90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPP(max) than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPP(max) and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. C1 [Xia, Jianyang; Janssens, Ivan A.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Ciais, Philippe; Janssens, Ivan A.; Chen, Jiquan] Inst Geog Sci & Nat Resources Res, Synth Res Ctr Chinese Ecosyst Res Network, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China. [Ammann, Christof; Arain, Altaf; Blanken, Peter D.] Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. [Arain, Altaf; Blanken, Peter D.; Cescatti, Alessandro] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium. [Chen, Jiquan; Ammann, Christof; Arain, Altaf] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48824 USA. [Janssens, Ivan A.; Chen, Jiquan; Ammann, Christof] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA. [Blanken, Peter D.; Cescatti, Alessandro; Bonal, Damien] Fed Res Stn Agroscope, Climate & Air Pollut Grp, CH-8046 Zurich, Switzerland. [Buchmann, Nina; Curtis, Peter S.; Chen, Shiping] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada. [Bonal, Damien; Buchmann, Nina] Univ Colorado, Dept Geog, Boulder, CO 80302 USA. [Bonal, Damien; Buchmann, Nina; Curtis, Peter S.] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy. [Curtis, Peter S.; Chen, Shiping; Dong, Jinwei] Univ Lorraine, Inst Natl Rech Agron, UMR 1137, F-54280 Champenoux, France. [Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B.] ETH, Inst Agr Sci, CH-8092 Zurich, Switzerland. [Flanagan, Lawrence B.; Frankenberg, Christian; Georgiadis, Teodoro] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA. [Curtis, Peter S.] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China. [Chen, Shiping] Univ Lethbridge, Dept Biol Sci, Lethbridge, AB TIK 3M4, Canada. [Dong, Jinwei] Jet Prop Lab, Tropospher Sounding Assimilat & Modeling Grp, Pasadena, CA 91109 USA. [Dong, Jinwei] Inst Biometeorol, I-40129 Bologna, Italy. [Dong, Jinwei] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA. [Frankenberg, Christian] Tennessee State Univ, Dept Biol Sci, Nashville, TN 37209 USA. [Dong, Jinwei] Natl Univ Ireland Univ Coll Cork, Dept Civil & Environm Engn, Cork, Ireland. [Georgiadis, Teodoro] Natl Univ Ireland Univ Coll Cork, Environm Res Inst, Cork, Ireland. [Gough, Christopher M.; Hui, Dafeng] Tennessee State Univ, Dept Agr & Environm Sci, Nashville, TN 37209 USA. [Georgiadis, Teodoro; Gough, Christopher M.] Aarhus Univ, Dept Biosci, DK-4000 Roskilde, Denmark. [Georgiadis, Teodoro] CNR, Inst Mediterranean Agr & Forest Syst, I-80040 Ercolano, Italy. [Georgiadis, Teodoro] Fdn Edmund Mach, Sustainable Agro Ecosyst & Bioresources Dept, I-38010 San Michele All Adige, Italy. [Hui, Dafeng] Prov Autonoma Bolzano, I-39100 Bolzano, Italy. [Flanagan, Lawrence B.; Frankenberg, Christian] Wageningen Univ, Earth Syst Sci & Climate Change Grp, NL-6700 AA Wageningen, Netherlands. [Yan, Liming; Luo, Yiqi] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark. [Weng, Ensheng; Wohlfahrt, Georg] Peking Univ, Coll Urban & Environm Sci, Dept Ecol, Beijing 100871, Peoples R China. [Vaccari, Francesco P.; Varlagin, Andrej; Vesala, Timo] Chinese Acad Sci, Ctr Excellence Tibetan Earth Sci, Inst Tibetan Plateau Res, Key Lab Alpine Ecol & Biodivers, Beijing 100085, Peoples R China. [Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew] CNR, Inst Biometeorol, I-50145 Florence, Italy. [Piao, Shilong; Raschi, Antonio; Roupsard, Olivier] Cirad Persyst, UMR Ecol Fonct & Biogeochim Sols & Agroecosyst, F-34060 Montpellier, France. [Moors, Eddy J.; Olesen, Jorgen E.] Trop Agr Ctr Res & High Educ, Turrialba 7170, Costa Rica. [Moors, Eddy J.] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA. [Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J.] Univ Helsinki, Forest Sci, FIN-00014 Helsinki, Finland. [Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. [Hui, Dafeng; Kiely, Gerard; Li, Jianwei] European Acad Bolzano, Inst Alpine Environm, I-39100 Bolzano, Italy. [Gough, Christopher M.; Hui, Dafeng; Kiely, Gerard] Fudan Univ, Sch Life Sci, Shanghai 200433, Peoples R China. [Flanagan, Lawrence B.; Gough, Christopher M.] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. RP Xia, JY (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. EM jxia@ou.edu; sniu@igsnrr.ac.cn; yluo@ou.edu RI Vesala, Timo/C-3795-2017; Chen, Jiquan/D-1955-2009; Janssens, Ivan/P-1331-2014; Frankenberg, Christian/A-2944-2013; Vaccari, Francesco Primo/C-2123-2009; Merbold, Lutz/K-6103-2012; Dong, Jinwei/C-4949-2009; Buchmann, Nina/E-6095-2011; Weng, Ensheng/E-4390-2012; Urbaniak, Marek/E-8764-2012; Lund, Magnus/J-4922-2013; magliulo, vincenzo/A-4858-2012; Montagnani, Leonardo/F-1837-2016; Wohlfahrt, Georg/D-2409-2009; Olesen, Jorgen/C-2905-2016; li, wenchao/S-5567-2016; OI Vesala, Timo/0000-0002-4852-7464; Janssens, Ivan/0000-0002-5705-1787; Marcolla, Barbara/0000-0001-6357-4616; Hui, Dafeng/0000-0002-5284-2897; Kiely, Gerard/0000-0003-2189-6427; Frankenberg, Christian/0000-0002-0546-5857; Vaccari, Francesco Primo/0000-0002-5253-2135; Merbold, Lutz/0000-0003-4974-170X; Dong, Jinwei/0000-0001-5687-803X; Weng, Ensheng/0000-0002-1858-4847; Urbaniak, Marek/0000-0002-1225-9170; Lund, Magnus/0000-0003-1622-2305; magliulo, vincenzo/0000-0001-5505-6552; Montagnani, Leonardo/0000-0003-2957-9071; Wohlfahrt, Georg/0000-0003-3080-6702; Olesen, Jorgen/0000-0002-6639-1273; Varlagin, Andrej/0000-0002-2549-5236 FU Office of Science, US Department of Energy for AmeriFlux, CarboEuropeIP; FAP-GTOS-TCO (Food and Agriculture Project Global Terrestrial Observing System - Terrestrial Carbon Observations); iLEAPS (Intergrated Land Ecosystem - Atmosphere Processes Study); NitroEurope; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval; Environment Canada; AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program) [DE-FG02-04ER63917, DE-FG02-04ER63911]; US Department of Energy; Terrestrial Ecosystem Sciences [DE SC0008270]; National Science Foundation [DEB 0743778, DEB 0840964, EPS 0919466, EF 1137293, IIA-1301789] FX We thank the anonymous reviewers and Steven Running for their constructive comments and suggestions, and Lianhong Gu and Ying-Ping Wang for their help in data analyses. The eddy covariance database used in this study was the outcome of the La Thuile FLUXNET (a global network of micrometeorological tower sites) Workshop 2007, which was supported by the Office of Science, US Department of Energy for AmeriFlux, CarboEuropeIP, FAP-GTOS-TCO (Food and Agriculture Project Global Terrestrial Observing System - Terrestrial Carbon Observations), iLEAPS (Intergrated Land Ecosystem - Atmosphere Processes Study), NitroEurope, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval, and Environment Canada, and database development and technical support were from the Berkeley Water Center, the Lawrence Berkeley National Laboratory, and Microsoft Research eScience. The data were mainly acquired by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Programs DE-FG02-04ER63917 and DE-FG02-04ER63911), GHG-Europe (Greenhouse gas management in European land use systems), SOERE (Systeme d'Observation et d'Experimentation sur le long terme pour la Recherche en Environnement) FORE-T (Fonctionnement des ecosystemes forestiers) Fluxnet-Canada Research Network and Canadian Carbon Program (supported by CFCAS (Canadian Foundation for Climate and Atmospheric Sciences), NSERC (Natural Sciences and Engineering Council of Canada), BIOCAP (Biosphere Implications of CO2 Policy in Canada), Environment Canada, and NRCan (Natural Resources Canada), GreenGrass, KoFlux, LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia), NECC (North Equatorial Countercurrent), OzFlux, TCOS-Siberia (Terrestrial Carbon Observation System Siberia), and USCCC (US-China Carbon Consortium). This work was financially supported by US Department of Energy, Terrestrial Ecosystem Sciences Grant DE SC0008270 and National Science Foundation Grants DEB 0743778, DEB 0840964, EPS 0919466, EF 1137293, and IIA-1301789. NR 54 TC 27 Z9 29 U1 26 U2 172 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 3 PY 2015 VL 112 IS 9 BP 2788 EP 2793 DI 10.1073/pnas.1413090112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CC3DK UT WOS:000350224900054 PM 25730847 ER PT J AU Hand, N Leauthaud, A Das, S Sherwin, BD Addison, GE Bond, JR Calabrese, E Charbonnier, A Devlin, MJ Dunkley, J Erben, T Hajian, A Halpern, M Harnois-Deraps, J Heymans, C Hildebrandt, H Hincks, AD Kneib, JP Kosowsky, A Makler, M Miller, L Moodley, K Moraes, B Niemack, MD Page, LA Partridge, B Sehgal, N Shan, HY Sievers, JL Spergel, DN Staggs, ST Switzer, ER Taylor, JE Van Waerbeke, L Welker, C Wollack, EJ AF Hand, Nick Leauthaud, Alexie Das, Sudeep Sherwin, Blake D. Addison, Graeme E. Bond, J. Richard Calabrese, Erminia Charbonnier, Aldee Devlin, Mark J. Dunkley, Joanna Erben, Thomas Hajian, Amir Halpern, Mark Harnois-Deraps, Joachim Heymans, Catherine Hildebrandt, Hendrik Hincks, Adam D. Kneib, Jean-Paul Kosowsky, Arthur Makler, Martin Miller, Lance Moodley, Kavilan Moraes, Bruno Niemack, Michael D. Page, Lyman A. Partridge, Bruce Sehgal, Neelima Shan, Huanyuan Sievers, Jonathan L. Spergel, David N. Staggs, Suzanne T. Switzer, Eric R. Taylor, James E. Van Waerbeke, Ludovic Welker, Charlotte Wollack, Edward J. TI First measurement of the cross-correlation of CMB lensing and galaxy lensing SO PHYSICAL REVIEW D LA English DT Article ID ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; POWER SPECTRUM; COSMIC SHEAR; CFHTLS-WIDE; WEAK; MODEL; ALIGNMENTS; MATTER; BIAS AB We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 sigma, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts similar to 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements. C1 [Hand, Nick] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Leauthaud, Alexie] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778582, Japan. [Das, Sudeep] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Das, Sudeep; Sherwin, Blake D.] Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Addison, Graeme E.; Halpern, Mark; Harnois-Deraps, Joachim; Hincks, Adam D.; Van Waerbeke, Ludovic] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Bond, J. Richard; Hajian, Amir; Harnois-Deraps, Joachim; Sievers, Jonathan L.; Switzer, Eric R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Calabrese, Erminia; Dunkley, Joanna] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Charbonnier, Aldee] Univ Fed Rio de Janeiro, Observat Valongo, BR-20080090 Rio De Janeiro, RJ, Brazil. [Charbonnier, Aldee; Makler, Martin; Moraes, Bruno] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Devlin, Mark J.] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Erben, Thomas; Hildebrandt, Hendrik] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Harnois-Deraps, Joachim] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Heymans, Catherine] Univ Edinburgh, Inst Astron, Royal Observ, Scottish Univ Phys Alliance, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kneib, Jean-Paul; Shan, Huanyuan] Ecole Polytech Fed Lausanne, Lab Astrophys LASTRO, Observat Sauverny, CH-1290 Versoix, Switzerland. [Kneib, Jean-Paul] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Miller, Lance] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Moodley, Kavilan; Sievers, Jonathan L.] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Moraes, Bruno] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Moraes, Bruno] CAPES Fdn, Minist Educ Brazil, BR-70040020 Brasilia, DF, Brazil. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Page, Lyman A.; Sievers, Jonathan L.; Staggs, Suzanne T.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Switzer, Eric R.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taylor, James E.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Welker, Charlotte] Inst Astrophys, F-75014 Paris, France. [Welker, Charlotte] Univ Paris 06, F-75005 Paris, France. RP Hand, N (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM nhand@berkeley.edu RI Kneib, Jean-Paul/A-7919-2015; Shan, Huanyuan/G-3353-2015; Makler, Martin/G-2639-2012; Wollack, Edward/D-4467-2012; EPFL, Physics/O-6514-2016; OI Kneib, Jean-Paul/0000-0002-4616-4989; Shan, Huanyuan/0000-0001-8534-837X; Makler, Martin/0000-0003-2206-2651; Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074 FU U.S. National Science Foundation [AST-0408698, AST-0965625, PHY-0855887, PHY-1214379]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under the Compute Canada; Government of Ontario; Ontario Research Fund: Research Excellence; University of Toronto; ICRA/CBPF/MCTI; FINEP; FAPERJ; Laboratorio Interinstitucional de e-Astronomia (LIneA); National Science Foundation [DGE-1106400]; Berkeley Fellowship for Graduate Study; Deutsche Forschungsgemeinschaft [ER 327/3-1]; Transregional Collaborative Research Centre TR 33 "The Dark Universe"; CAPES Foundation [12174-13-0]; European Research Council under the EC [240185]; Marie-Curie International Incoming Fellowship [FP7-PEOPLE-2012-IIF/327561]; Swiss National Science Foundation (SNSF); NSFC of China [11103011]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Marie Curie IOF [252760]; CITA National Fellowship; DFG [Hi 1495/2-1]; ERC; CNRS; NSF [1066293] FX We thank the CFHTLenS team for their pipeline development and verification upon which much of this survey pipeline was built. We also thank Jeff Newman and Peter Freeman for helpful conversations about statistical analysis. This work was supported by the U.S. National Science Foundation through Grants No. AST-0408698 and No. AST-0965625 for the ACT project, as well as Grants No. PHY-0855887 and No. PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund: Research Excellence, and the University of Toronto. This work was based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The Brazilian partnership on CFHT is managed by the Laboratorio Nacional de Astrofisica (LNA). This work made use of the CHE cluster, managed and funded by ICRA/CBPF/MCTI, with financial support from FINEP and FAPERJ. We thank the support of the Laboratorio Interinstitucional de e-Astronomia (LIneA). N. H. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400 and the Berkeley Fellowship for Graduate Study. T. E. is supported by the Deutsche Forschungsgemeinschaft through Project No. ER 327/3-1 and by the Transregional Collaborative Research Centre TR 33 "The Dark Universe." B. M. acknowledges financial support from the CAPES Foundation Grant No. 12174-13-0. C. H. acknowledges support from the European Research Council under the EC FP7 Grant No. 240185. H. Y. S. acknowledges the support from Marie-Curie International Incoming Fellowship (FP7-PEOPLE-2012-IIF/327561), Swiss National Science Foundation (SNSF) and NSFC of China under Grant No. 11103011. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. H. H. is supported by the Marie Curie IOF 252760, by a CITA National Fellowship, and the DFG Grant No. Hi 1495/2-1. J. P. K. acknowledges support from the ERC advanced grant LIDA and from CNRS. We acknowledge support from NSF Grant No. 1066293 and thank the Aspen Center for Physics for hospitality during the writing of this paper. NR 56 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2015 VL 91 IS 6 AR 062001 DI 10.1103/PhysRevD.91.062001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CD3RW UT WOS:000350999100004 ER PT J AU Ely, TA AF Ely, Todd A. TI Transforming Mean and Osculating Elements Using Numerical Methods SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article DE Mean elements; Averaging; Identity transformations; Dynamical systems ID GRAVITY AB Mean element propagation of perturbed two body orbits has as its mathematical basis the averaging theory of nonlinear dynamical systems. Mean elements define an orbit's long-term evolution characteristics consisting of both secular and long-period effects. Using averaging theory, a near-identity transformation can be found that transforms between the mean elements and their osculating counterparts that augment the mean elements with short period effects. The ability to perform the conversion is necessary so that orbit design conducted in either mean elements or osculating can be effectively converted between each element type. In the present work, the near-identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the mean or osculating elements to first-order. C1 [Ely, Todd A.] CALTECH, Jet Prop Lab, Mission Design & Nav Sect, MS 301-121,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Ely, TA (reprint author), CALTECH, Jet Prop Lab, Mission Design & Nav Sect, MS 301-121,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Todd.A.Ely@jpl.nasa.gov NR 14 TC 0 Z9 0 U1 1 U2 1 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD MAR PY 2015 VL 62 IS 1 BP 21 EP 43 DI 10.1007/s40295-015-0036-2 PG 23 WC Engineering, Aerospace SC Engineering GA DB5QE UT WOS:000368567900002 ER PT J AU Parker, JS McElrath, TP Anderson, RL Sweetser, TH AF Parker, Jeffrey S. McElrath, Timothy P. Anderson, Rodney L. Sweetser, Theodore H. TI Trajectory Design for MoonRise: A Proposed Lunar South Pole Aitken Basin Sample Return Mission SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article DE MoonRise; Trajectory design; Lunar mission; Lunar sample return; Low-energy transfers; New frontiers AB This paper presents the mission design for the proposed MoonRise New Frontiers mission: a lunar far side lander and return vehicle, with an accompanying communication satellite. Both vehicles are launched together, but fly separate low-energy transfers to the Moon. The communication satellite enters lunar orbit immediately upon arrival at the Moon, whereas the lander enters a staging orbit about the lunar Lagrange points. The lander descends and touches down on the surface 17 days after the communication satellite enters orbit. The lander remains on the surface for nearly two weeks before lifting off and returning to Earth via a low-energy return. C1 [Parker, Jeffrey S.] Univ Colorado, Colorado Ctr Astrodynam Res, 431 UCB, Boulder, CO 80309 USA. [McElrath, Timothy P.; Anderson, Rodney L.; Sweetser, Theodore H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Parker, JS (reprint author), Univ Colorado, Colorado Ctr Astrodynam Res, 431 UCB, Boulder, CO 80309 USA. EM parkerjs@gmail.com NR 23 TC 0 Z9 0 U1 0 U2 0 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD MAR PY 2015 VL 62 IS 1 BP 44 EP 72 DI 10.1007/s40295-015-0037-1 PG 29 WC Engineering, Aerospace SC Engineering GA DB5QE UT WOS:000368567900003 ER PT J AU Comarazamy, DE Gonzalez, JE Luvall, JC AF Comarazamy, Daniel E. Gonzalez, Jorge E. Luvall, Jeffrey C. TI Quantification and mitigation of long-term impacts of urbanization and climate change in the tropical coastal city of San Juan, Puerto Rico SO INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES LA English DT Article DE urbanization; remote sensing; mitigation; global warming ID URBAN HEAT-ISLAND; LAND-USE CHANGE; MONTANE CLOUD FORESTS; LOWLAND DEFORESTATION; MEXICO-CITY; PRECIPITATION; SIMULATION; STORAGE; MODEL; TEMPERATURES AB Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming (GW). The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by the use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico, as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with climate scenarios combining urban development and sprawl with regional climate change over the past 50 years and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the lowland coastal plain vegetation with man-made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The GW signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences owing to GW are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core. C1 [Comarazamy, Daniel E.; Gonzalez, Jorge E.] CUNY, NOAA CREST Ctr, New York, NY 10021 USA. [Gonzalez, Jorge E.] CUNY, Dept Mech Engn, New York, NY 10021 USA. [Luvall, Jeffrey C.] NASA Marshall Space Flight Ctr, Global Hydrol & Climate Ctr, Huntsville, AL USA. RP Gonzalez, JE (reprint author), CUNY, NOAA CREST Ctr, New York, NY 10021 USA. EM gonzalez@me.ccny.cuny.edu NR 50 TC 2 Z9 2 U1 4 U2 19 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1748-1317 EI 1748-1325 J9 INT J LOW-CARBON TEC PD MAR PY 2015 VL 10 IS 1 SI SI BP 87 EP 97 DI 10.1093/ijlct/ctt059 PG 11 WC Energy & Fuels SC Energy & Fuels GA CP4NM UT WOS:000359859000008 ER PT J AU Grauer, J Morelli, E AF Grauer, Jared Morelli, Eugene TI Comment on "Method for Real-Time Frequency Response and Uncertainty Estimation" Reply SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Editorial Material C1 [Grauer, Jared; Morelli, Eugene] NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. RP Grauer, J (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, Mail Stop 308, Hampton, VA 23681 USA. NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAR PY 2015 VL 38 IS 3 BP 549 EP 550 DI 10.2514/1.G001090 PG 2 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CO7BG UT WOS:000359311900019 ER PT J AU Hubbard, S Davidian, K Hanson, W Autry, G Pittman, B AF Hubbard, Scott Davidian, Ken Hanson, Ward Autry, Greg Pittman, Bruce TI Emerging Commercial Remote Sensing: Economic Perspective SO NEW SPACE LA English DT Editorial Material C1 [Hubbard, Scott] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Davidian, Ken] FAA, Off Commercial Space Transportat, Washington, DC USA. [Hanson, Ward] Stanford Inst Econ Policy Res, Palo Alto, CA USA. [Autry, Greg] Univ So Calif, Marshall Sch Business, Lloyd Greif Ctr Entrepreneurial Studies, Clin Entrepreneurship, Pasadena, CA USA. [Pittman, Bruce] NASA, Ames Res Ctr Space Portal, Flight Projects, San Jose, CA USA. RP Hubbard, S (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2168-0256 EI 2168-0264 J9 NEW SPACE JI New Space PD MAR 1 PY 2015 VL 3 IS 1 BP 10 EP 18 DI 10.1089/space.2015.1501 PG 9 WC Engineering, Aerospace SC Engineering GA CJ5WG UT WOS:000355562700003 ER PT J AU Sigler, M DeMaster, D Boveng, P Cameron, M Moreland, E Williams, K Towler, R AF Sigler, Mike DeMaster, Doug Boveng, Peter Cameron, Michael Moreland, Erin Williams, Kresimir Towler, Rick TI Advances in Methods for Marine Mammal and Fish Stock Assessments: Thermal Imagery and CamTrawl SO MARINE TECHNOLOGY SOCIETY JOURNAL LA English DT Article DE Arctic; survey; thermal imaging; underwater camera; ice seals ID EASTERN BERING-SEA; CLIMATE-CHANGE; ECOSYSTEM; NORTHERN; CHUKCHI AB National Oceanic and Atmospheric Administration (NOAA) has adopted an integrated ecosystem research approach to understand climate effects on fish, seabirds, and marine mammals in the Arctic. The integrated ecosystem approach combines traditional oceanography, fisheries, and mammal research techniques to improve scientific understanding of how ecosystems function as a whole. Innovative technologies are being developed to aid in this effort. Two new technologies that NOAA deploys in the Arctic are an advanced thermal imaging technology used to survey ice seal abundance and a high-resolution, nonlethal technology, which integrates cameras and trawls to sample pelagic fishes (CamTrawl). The ice seal surveys relied on thermal imagery to detect warm seal bodies hauled out on cold sea ice. Compared to observer-based surveys, thermal detection surveys require fewer personnel and less postsurvey processing time, can be flown at a higher altitude (reducing disturbance of seals), and yield higher rates of seal detection. The CamTrawl is a self-contained stereo-camera system fitted to the aft end of a trawl at the cod end (i.e., capture bag), which can be left open. By integrating a camera system in the aft portion of a trawl, the CamTrawl concentrates marine organisms and presents this captive group to the cameras without having to recover them for onboard counting, as is done in traditional trawl tows. Compared to traditional survey methods, the CamTrawl more precisely places marine organisms spatially in their environment, which is useful because of small-scale variation in the composition and distribution of fish schools. C1 [Sigler, Mike; DeMaster, Doug] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Juneau, AK USA. [Boveng, Peter; Cameron, Michael; Moreland, Erin; Williams, Kresimir; Towler, Rick] NOAA, Natl Marine Fisheries Serv, NW Fisheries Ctr, Seattle, WA 98112 USA. RP Sigler, M (reprint author), NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM Mike.Sigler@noaa.gov NR 14 TC 3 Z9 3 U1 3 U2 12 PU MARINE TECHNOLOGY SOC INC PI COLUMBIA PA 5565 STERRETT PLACE, STE 108, COLUMBIA, MD 21044 USA SN 0025-3324 EI 1948-1209 J9 MAR TECHNOL SOC J JI Mar. Technol. Soc. J. PD MAR-APR PY 2015 VL 49 IS 2 BP 99 EP 106 PG 8 WC Engineering, Ocean; Oceanography SC Engineering; Oceanography GA CI9BD UT WOS:000355064500011 ER PT J AU Iscen, A Caluwaerts, K Bruce, J Agogino, A SunSpiral, V Tumer, K AF Iscen, Atil Caluwaerts, Ken Bruce, Jonathan Agogino, Adrian SunSpiral, Vytas Tumer, Kagan TI Learning Tensegrity Locomotion Using Open-Loop Control Signals and Coevolutionary Algorithms SO ARTIFICIAL LIFE LA English DT Article DE Evolutionary algorithms; tensegrity; locomotion; coevolution; fitness shaping ID FRAMEWORKS; SYSTEMS; DESIGN AB Soft robots offer many advantages over traditional rigid robots. However, soft robots can be difficult to control with standard control methods. Fortunately, evolutionary algorithms can offer an elegant solution to this problem. Instead of creating controls to handle the intricate dynamics of these robots, we can simply evolve the controls using a simulation to provide an evaluation function. In this article, we show how such a control paradigm can be applied to an emerging field within soft robotics: robots based on tensegrity structures. We take the model of the Spherical Underactuated Planetary Exploration Robot ball (SUPERball), an icosahedron tensegrity robot under production at NASA Ames Research Center, develop a rolling locomotion algorithm, and study the learned behavior using an accurate model of the SUPERball simulated in the NASA Tensegrity Robotics Toolkit. We first present the historical-average fitness-shaping algorithm for coevolutionary algorithms to speed up learning while favoring robustness over optimality. Second, we use a distributed control approach by coevolving open-loop control signals for each controller. Being simple and distributed, open-loop controllers can be readily implemented on SUPERball hardware without the need for sensor information or precise coordination. We analyze signals of different complexities and frequencies. Among the learned policies, we take one of the best and use it to analyze different aspects of the rolling gait, such as lengths, tensions, and energy consumption. We also discuss the correlation between the signals controlling different parts of the tensegrity robot. C1 [Iscen, Atil] Oregon State Univ, Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [Caluwaerts, Ken] Univ Ghent, Reservoir Lab, B-9000 Ghent, Belgium. [Bruce, Jonathan; Agogino, Adrian] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Agogino, Adrian; SunSpiral, Vytas] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [SunSpiral, Vytas] SGT Inc, Greenbelt, MD USA. [Tumer, Kagan] Oregon State Univ, Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. RP Iscen, A (reprint author), Oregon State Univ, Elect Engn & Comp Sci, Corvallis, OR 97331 USA. EM iscena@onid.oregonstate.edu; ken.caluwaerts@nasa.gov; jbruce@soe.ucsc.edu; adrian.k.agogino@nasa.gov; vytas.sunspiral@nasa.gov; kagan.tumer@oregonstate.edu FU NASA Innovative Advanced Concepts (NIAC) program; Research Foundation-Flanders (FWO); NSF [DGE1106400]; NASA [NAS2-03144] FX This research was supported by the NASA Innovative Advanced Concepts (NIAC) program. Ken Caluwaerts was supported by a Ph.D. fellowship of the Research Foundation-Flanders (FWO). Support also came from NSF Graduate Research Fellowship DGE1106400, and from NASA Prime Contract NAS2-03144 awarded to the University of California, Santa Cruz, University Affiliated Research Center. NR 40 TC 1 Z9 1 U1 3 U2 13 PU MIT PRESS PI CAMBRIDGE PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA SN 1064-5462 EI 1530-9185 J9 ARTIF LIFE JI Artif. Life PD SPR PY 2015 VL 21 IS 2 BP 119 EP 140 DI 10.1162/ARTL_a_00163 PG 22 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA CI7TO UT WOS:000354967900002 PM 25951199 ER PT J AU Choi, J Jung, HS Yun, SH AF Choi, Jaewon Jung, Hyung-Sup Yun, Sang-Ho TI An Efficient Mosaic Algorithm Considering Seasonal Variation: Application to KOMPSAT-2 Satellite Images SO SENSORS LA English DT Article DE high-resolution optical satellite imagery; Kompsat-2; seasonal characteristics; seamlines; feathering algorithm ID NORMALIZATION AB As the aerospace industry grows, images obtained from Earth observation satellites have been successfully used in various fields. Specifically, the demand for a high-resolution (HR) optical images is gradually increasing, and hence the generation of a high-quality mosaic image is being magnified as an interesting issue. In this paper, we have proposed an efficient mosaic algorithm for HR optical images that are significantly different due to seasonal change. The algorithm includes main steps such as: (1) seamline extraction from gradient magnitude and seam images; (2) histogram matching; and (3) image feathering. Eleven Kompsat-2 images characterized by seasonal variations are used for the performance validation of the proposed method. The results of the performance test show that the proposed method effectively mosaics Kompsat-2 adjacent images including severe seasonal changes. Moreover, the results reveal that the proposed method is applicable to HR optic images such as GeoEye, IKONOS, QuickBird, RapidEye, SPOT, WorldView, etc. C1 [Choi, Jaewon; Jung, Hyung-Sup] Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea. [Yun, Sang-Ho] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Jung, HS (reprint author), Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea. EM jwchoi74@uos.ac.kr; hsjung@uos.ac.kr; Sang-Ho.Yun@jpl.nasa.gov OI Jung, Hyung-Sup/0000-0003-2335-8438 FU National Research Foundation of Korea (NRF) - Ministry of Education (ME) [NRF-2013R1A1A2064802]; National Aeronautics and Space Administration at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA FX This work was supported by in part by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (ME) (No. NRF-2013R1A1A2064802), and in part by contract with the National Aeronautics and Space Administration at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. NR 17 TC 2 Z9 2 U1 1 U2 4 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD MAR PY 2015 VL 15 IS 3 BP 5649 EP 5665 DI 10.3390/s150305649 PG 17 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA CH6QK UT WOS:000354160900054 PM 25760052 ER PT J AU McKinna, LIW Fearns, PRC Weeks, SJ Werdell, PJ Reichstetter, M Franz, BA Shea, DM Feldman, GC AF McKinna, Lachlan I. W. Fearns, Peter R. C. Weeks, Scarla J. Werdell, P. Jeremy Reichstetter, Martina Franz, Bryan A. Shea, Donald M. Feldman, Gene C. TI A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE optically shallow; remote sensing; geometric depth; benthic reflectance; Great Barrier Reef; inherent optical properties ID GREAT-BARRIER-REEF; INHERENT OPTICAL-PROPERTIES; REMOTE-SENSING IMAGERY; FLORIDA-KEYS WATERS; SHALLOW WATERS; CHLOROPHYLL-A; MULTISPECTRAL IMAGERY; COASTAL ENVIRONMENTS; DIFFUSE ATTENUATION; LEAVING RADIANCES AB A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, a(t)(443), the particulate backscattering coefficient at 443 nm, b(bp)(443), and the diffuse attenuation coefficient at 488 nm, K-d(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of a(t)(443), b(bp)(443), and K-d(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data. C1 [McKinna, Lachlan I. W.; Werdell, P. Jeremy; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.] NASA, Goddard Space Flight Ctr, Ocean Ecol Lab, Greenbelt, MD 20771 USA. [McKinna, Lachlan I. W.; Fearns, Peter R. C.] Curtin Univ, Dept Imaging & Appl Phys, Remote Sensing & Satellite Res Grp, Perth, WA 6845, Australia. [Weeks, Scarla J.; Reichstetter, Martina] Univ Queensland, Sch Geog Planning & Environm, Biophys Oceanog Grp, Brisbane, Qld, Australia. [Shea, Donald M.] Sci Applicat Int Corp, Greenbelt, MD USA. RP McKinna, LIW (reprint author), NASA, Goddard Space Flight Ctr, Ocean Ecol Lab, Greenbelt, MD 20771 USA. EM lachlan.i.mckinna@nasa.gov FU Australian Research Council [LP100100342]; Great Barrier Reef Foundation; NASA Postdoctoral Program Fellowship at Goddard Space Flight Center FX This research was generously supported by an Australian Research Council Linkage Project Grant (LP100100342), the Great Barrier Reef Foundation, and a NASA Postdoctoral Program Fellowship at Goddard Space Flight Center administered by Oak Ridge Associated Universities. We thank Sean Bailey, John Wilding, and Tommy Owens for their kind support with code development and the handling and processing of large volumes of MODIS Aqua data. We recognize the valuable advice regarding shallow water optics kindly provided by ZhongPing Lee during the early development of this research project. The authors also thank Rodrigo Garcia for his advice regarding implementation of the Levenberg-Marquardt algorithm. We also wish to acknowledge the efforts of the anonymous reviewers for their insightful comments and attention to detail. The IOP data set used in the radiative transfer modeling study can be accessed from the IOCCG's website (http://www.ioccg.org/groups/OCAG_data.html). All MODIS Aqua Level-1A data used are freely available from the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov/). The 3DGBR bathymetric data set is freely available from e-Atlas website (http://eatlas.org.au/data/uuid/200aba6b-6fb6-443e-b84b-86b0bbdb53ac), whilst the benthic albedo map can be accessed via PANGEA (R) earth and environmental science data publishing website (http://doi.pangaea.de/10.1594/PANGAEA.835979). NR 89 TC 4 Z9 4 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR PY 2015 VL 120 IS 3 BP 1741 EP 1770 DI 10.1002/2014JC010224 PG 30 WC Oceanography SC Oceanography GA CH3BG UT WOS:000353900000016 ER PT J AU Li, YL Han, WQ Lee, T AF Li, Yuanlong Han, Weiqing Lee, Tong TI Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden-Julian oscillations SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE sea surface salinity; Madden-Julian oscillation; Indo-Pacific Ocean ID SOUTH INDIAN-OCEAN; TROPICAL WESTERN PACIFIC; DATA ASSIMILATION SYSTEM; BARRIER-LAYER THICKNESS; MIXED-LAYER; HEAT-BUDGET; SATELLITE-OBSERVATIONS; INTERANNUAL VARIATION; AQUARIUS SALINITY; SUMMER MONSOON AB Intraseasonal sea surface salinity (SSS) variability in the equatorial Indo-Pacific Ocean is investigated using the Aquarius/SAC-D satellite measurements and Hybrid Coordinate Ocean Model (HYCOM). Large-scale SSS variations at 20-90 day time scales induced by Madden-Julian oscillations (MJOs) are prominent in the central-to-eastern Indian Ocean (IO) and western Pacific Ocean (PO) with a standard deviation of approximate to 0.15 psu. The relationship between SSS anomaly and freshwater flux is nearly in phase in the central-to-eastern IO and out of phase in the western PO during a MJO cycle. A series of HYCOM experiments are performed to explore the causes for SSS variability. In most areas of the equatorial Indo-Pacific Ocean, wind stress-forced ocean dynamical processes act as the main driver of intraseasonal SSS, while precipitation plays a secondary role. In some areas of the western PO and western IO, however, precipitation effect is the leading contributor. In comparison, evaporation effect induced by radiation and wind speed changes is generally much smaller. Besides the external forcing by MJOs, ocean internal variability can also cause considerable intraseasonal SSS changes, explaining 10-20% of the total variance in some regions. Composite analysis for MJO events reveals that the effects of wind stress, precipitation, and evaporation vary at different phases of a MJO cycle. The MJO-induced SSS signature is the result of complicated superimposition and interaction of these effects. The effect of wind stress also varies significantly from event to event. It affects SSS variability primarily through horizontal ocean current advection and to a lesser extent through vertical entrainment. C1 [Li, Yuanlong; Han, Weiqing] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Li, YL (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. EM yuanlong.li@colorado.edu FU NASA Ocean Salinity Science Team [NNX14AI82G]; NASA Ocean Vector Wind Science Team [NNX14AM68G] FX This research is supported the NASA Ocean Salinity Science Team award NNX14AI82G and the NASA Ocean Vector Wind Science Team award NNX14AM68G. We would like to thank Dr. Ralph Milliff for the useful discussion. Two anonymous reviewers provide helpful comments for improving our work. We appreciate the help from Office of Information Technology (OIT) of University of Colorado and the National Center for Atmospheric Research (NCAR) CISL for providing and maintaining the computational resource. Aquarius CAP_RC and B_ADJ Level 3 Version 3.0 SSS data are distributed by the Physical Oceanography Distributed Active Archive Center (PO.DAAC) and accessible at the FTP site ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/; MOAA GPV data are kindly provided by Dr. Shigeki Hosoda through the FTP site ftp://ftp2.jamstec.go.jp/pub/argo/MOAA_GPV/; TMI SST data are available at the website http://www.remss.com/missions/tmi; in-situ observational data from the RAMA and TAO/TRITON buoys are provided by the NOAA Pacific Marine Environmental Laboratory (PMEL) through the website http://www.pmel.noaa.gov/tao/index.shtml; OAFlux evaporation data are downloaded from http://oaflux.whoi.edu/; OSCAR ocean surface current data are available at http://www.oscar.noaa.gov/; data analysis and graphing work in this study are finished with a licensed Matlab program. NR 109 TC 9 Z9 9 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR PY 2015 VL 120 IS 3 BP 2233 EP 2258 DI 10.1002/2014JC010647 PG 26 WC Oceanography SC Oceanography GA CH3BG UT WOS:000353900000042 ER PT J AU Lindstrom, E Bryan, F Schmitt, R AF Lindstrom, Eric Bryan, Frank Schmitt, Ray TI SPURS: Salinity Processes in the Upper-ocean Regional Study THE NORTH ATLANTIC EXPERIMENT INTRODUCTION SO OCEANOGRAPHY LA English DT Editorial Material C1 [Lindstrom, Eric] NASA Headquarters, Global Ocean Observing Syst Steering Comm, Washington, DC 20546 USA. [Bryan, Frank] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Oceanog Sect, Boulder, CO 80307 USA. [Schmitt, Ray] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA. RP Lindstrom, E (reprint author), NASA Headquarters, Global Ocean Observing Syst Steering Comm, Washington, DC 20546 USA. EM eric.j.lindstrom@nasa.gov RI Bryan, Frank/I-1309-2016 OI Bryan, Frank/0000-0003-1672-8330 NR 8 TC 11 Z9 11 U1 0 U2 6 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD MAR PY 2015 VL 28 IS 1 SI SI BP 14 EP 19 DI 10.5670/oceanog.2015.01 PG 6 WC Oceanography SC Oceanography GA CH0QE UT WOS:000353726500001 ER PT J AU Bingham, FM Li, P Li, ZJ Vu, Q Chao, Y AF Bingham, Frederick M. Li, Peggy Li, Zhijin Quoc Vu Chao, Yi TI Data Management Support for the SPURS Atlantic Field Campaign SO OCEANOGRAPHY LA English DT Article ID NORTH-ATLANTIC; SURFACE SALINITY; MODELING SYSTEM; OCEAN SALINITY; MONTEREY BAY; TEMPERATURE; VARIABILITY; LAYER AB We developed the data management system for the US National Aeronautics and Space Administration-sponsored Salinity Processes in the Upper-ocean Regional Study (SPURS) Atlantic field campaign (SPURS-1). Data management support means more than simply collecting and archiving static data sets. It involves a complex mixture of data visualization, interaction with principal investigators, Web development, public outreach, quality assurance, and archiving for posterity. C1 [Bingham, Frederick M.] Univ N Carolina, Wilmington, NC 28401 USA. [Li, Peggy; Li, Zhijin; Quoc Vu] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Chao, Yi] Remote Sensing Solut Inc, Pasadena, CA USA. RP Bingham, FM (reprint author), Univ N Carolina, Wilmington, NC 28401 USA. EM frederick.bingham@gmail.com FU NASA [NNX11AE83G] FX Many people contributed to the SPURS-DMS, including: Jessica Anderson, Julius Busecke, Vardis Tsontos, Jorge Vazquez, Kurt Baker, Vincent Varamo, Xiaoyan Qi, Annette deCharon and her group at the University of Maine, and Dan Seidov and his colleagues at NODC. NASA provided funding under grant NNX11AE83G to UNCW. The research described in this publication was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Peter Cornillon and another anonymous reviewer read the manuscript carefully and provided thoughtful comments. NR 23 TC 1 Z9 1 U1 1 U2 2 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD MAR PY 2015 VL 28 IS 1 SI SI BP 46 EP 55 DI 10.5670/oceanog.2015.13 PG 10 WC Oceanography SC Oceanography GA CH0QE UT WOS:000353726500005 ER PT J AU Markham, B Storey, J Morfitt, R AF Markham, Brian Storey, James Morfitt, Ron TI Landsat-8 Sensor Characterization and Calibration SO REMOTE SENSING LA English DT Editorial Material ID THERMAL INFRARED-SENSOR; OPERATIONAL LAND IMAGER; ON-ORBIT; RADIOMETRIC CALIBRATION; PERFORMANCE; OLI; METHODOLOGY; DESIGN; TIRS C1 [Markham, Brian] NASA, GSFC, Greenbelt, MD 20771 USA. [Storey, James] NASA, GSFC, USGS EROS, Tech Support Serv,SGT, Greenbelt, MD 20771 USA. [Morfitt, Ron] USGS Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA. RP Markham, B (reprint author), NASA, GSFC, Code 618, Greenbelt, MD 20771 USA. EM brian.l.markham@nasa.gov; james.c.storey@nasa.gov; rmorfitt@usgs.gov NR 18 TC 4 Z9 4 U1 1 U2 13 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAR PY 2015 VL 7 IS 3 BP 2279 EP 2282 DI 10.3390/rs70302279 PG 4 WC Remote Sensing SC Remote Sensing GA CH0BZ UT WOS:000353685200002 ER PT J AU Du, XM Bernardes, S Cao, DY Jordan, TR Yan, Z Yang, G Li, ZP AF Du, Xiaomin Bernardes, Sergio Cao, Daiyong Jordan, Thomas R. Yan, Zhen Yang, Guang Li, Zhipeng TI Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Based on ASTER Data-Part 2, Validation and Sensitivity Analysis SO REMOTE SENSING LA English DT Article ID WUDA; TEMPERATURE; EMISSIVITY; COALFIELD; IMAGES; INDIA; CHINA; FIELD AB The self-adaptive gradient-based thresholding (SAGBT) method is a simple non-interactive coal fire detection approach involving segmentation and a threshold identification algorithm that adapts to the spatial distribution of thermal features over a landscape. SAGBT detects coal fire using multispectral thermal images acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. The method was detailed by our previous work "Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Based on ASTER Data-Part 1, Methodology". The current study evaluates the performance of SAGBT and validates its results by using ASTER thermal infrared (TIR) images and ground temperature data collected at the Wuda coalfield (China) during satellite overpass. We further analyzed algorithm performance by using nighttime TIR images and images from different seasons. SAGBT-derived fires matched fire spots measured in the field with an average offset of 32.44 m and a matching rate of 70%-85%. Coal fire areas from TIR images generally agreed with coal-related anomalies from visible-near infrared (VNIR) images. Further, high-temperature pixels in the ASTER image matched observed coal fire areas, including the major extreme high-temperature regions derived from field samples. Finally, coal fires detected by daytime and by nighttime images were found to have similar spatial distributions, although fires differ in shape and size. Results included the stratification of our study site into two temperature groups (high and low temperature), using a fire boundary. We conclude that SAGBT can be successfully used for coal fire detection and analysis at our study site. C1 [Du, Xiaomin; Cao, Daiyong; Yang, Guang] China Univ Min & Technol, Sch Geosci & Surveying Engn, Beijing 100083, Peoples R China. [Du, Xiaomin; Jordan, Thomas R.] Univ Georgia, Dept Geog, Ctr Geospatial Res, Athens, GA 30602 USA. [Bernardes, Sergio] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Yan, Zhen] Univ Georgia, Dept Stat, Athens, GA 30602 USA. [Li, Zhipeng] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China. RP Bernardes, S (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. EM xiaomin@uga.edu; sergio.bernardes@nasa.gov; cdy@cumtb.edu; tombob@uga.edu; yzhead@uga.edu; yg0817@163.com; lizhipeng428@gmail.com FU Strategic Priority Research Program of the Chinese Academy of Sciences, Carbon Emission from Coal Spontaneous Combustion [XDA05030200]; China Scholarship Council FX Funding for this work was provided by a Strategic Priority Research Program of the Chinese Academy of Sciences, Carbon Emission from Coal Spontaneous Combustion (Grant No. XDA05030200). The first author's visiting study at the University of Georgia (UGA) was sponsored by the China Scholarship Council. We thank Chunla He at UGA for improving the SAS scripts and analyses of the hypothesis test results. The authors wish to thank the anonymous reviewers for their constructive suggestions that improved the paper. Image acquisition was granted by the Land Processes Distributed Active Archive Center (LP DAAC) of the National Aeronautics and Space Administration (NASA), including the tasking of the ASTER orbital sensor to acquire images during field activities in China. ASTER images were accessed through the Earth Resources Observation Systems (EROS) Data Center of the U.S. Geological Survey (USGS). NR 21 TC 1 Z9 1 U1 0 U2 6 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAR PY 2015 VL 7 IS 3 BP 2602 EP 2626 DI 10.3390/rs70302602 PG 25 WC Remote Sensing SC Remote Sensing GA CH0BZ UT WOS:000353685200014 ER PT J AU Yuan, T Lee, H Jung, HC AF Yuan, Ting Lee, Hyongki Jung, Hahn Chul TI Toward Estimating Wetland Water Level Changes Based on Hydrological Sensitivity Analysis of PALSAR Backscattering Coefficients over Different Vegetation Fields SO REMOTE SENSING LA English DT Article ID SYNTHETIC-APERTURE RADAR; TROPICAL WETLANDS; CONGO BASIN; BAND SAR; AMAZON; LOUISIANA; ALTIMETRY; MARSHES; DYNAMICS; FORESTS AB Synthetic Aperture Radar (SAR) has been successfully used to map wetland's inundation extents and types of vegetation based on the fact that the SAR backscatter signal from the wetland is mainly controlled by the wetland vegetation type and water level changes. This study describes the relation between L-band PALSAR [GRAPHICS] and seasonal water level changes obtained from Envisat altimetry over the island of ile Mbamou in the Congo Basin where two distinctly different vegetation types are found. We found positive correlations between [GRAPHICS] and water level changes over the forested southern ile Mbamou whereas both positive and negative correlations were observed over the non-forested northern ile Mbamou depending on the amount of water level increase. Based on the analysis of [GRAPHICS] sensitivity, we found that denser vegetation canopy leads to less sensitive [GRAPHICS] variation with respect to the water level changes regardless of forested or non-forested canopy. Furthermore, we attempted to estimate water level changes which were then compared with the Envisat altimetry and InSAR results. Our results demonstrated a potential to generate two-dimensional maps of water level changes over the wetlands, and thus may have substantial synergy with the planned Surface Water and Ocean Topography (SWOT) mission. C1 [Yuan, Ting; Lee, Hyongki] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Yuan, Ting; Lee, Hyongki] Univ Houston, Natl Ctr Airborne Laser Mapping, Houston, TX 77204 USA. [Jung, Hahn Chul] NASA, Goddard Space Flight Ctr, Off Appl Sci, Greenbelt, MD 20771 USA. [Jung, Hahn Chul] SSAI, Lanham, MD 20706 USA. RP Lee, H (reprint author), Univ Houston, Dept Civil & Environm Engn, N107 Engn Bldg 1, Houston, TX 77204 USA. EM tyuan@uh.edu; hlee@uh.edu; hahnchul.jung@nasa.gov FU NASA's GRACE Program [NNX12AJ95G]; Terrestrial Hydrology Program [NNX12AQ36G]; New Investigator Program [NNX14AI01G] FX This research was supported by NASA's GRACE Program (NNX12AJ95G), Terrestrial Hydrology Program (NNX12AQ36G), and New Investigator Program (NNX14AI01G). ALOS PALSAR images are copyrighted JAXA and provided by Alaska Satellite Facility (ASF). Envisat altimetry data were provided by European Space Agency (ESA). In situ gauge data at Brazzaville was provided by Frederique Seyler. In situ gauge data over the Everglades was obtained from the Everglades Depth Estimation Network (http://sofia.usgs.gov/eden/stationlist-area.php?area=ENP). We also thank three anonymous reviewers for their constructive comments. NR 50 TC 5 Z9 5 U1 0 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD MAR PY 2015 VL 7 IS 3 BP 3153 EP 3183 DI 10.3390/rs70303153 PG 31 WC Remote Sensing SC Remote Sensing GA CH0BZ UT WOS:000353685200039 ER PT J AU Blackburn, L Briggs, MS Camp, J Christensen, N Connaughton, V Jenke, P Remillard, RA Veitch, J AF Blackburn, L. Briggs, M. S. Camp, J. Christensen, N. Connaughton, V. Jenke, P. Remillard, R. A. Veitch, J. TI HIGH-ENERGY ELECTROMAGNETIC OFFLINE FOLLOW-UP OF LIGO-VIRGO GRAVITATIONAL-WAVE BINARY COALESCENCE CANDIDATE EVENTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gravitational waves; gamma-ray burst: general ID GAMMA-RAY BURSTS; NEUTRON-STAR MERGERS; X-RAY; OPTICAL AFTERGLOW; JET BREAK; SWIFT; COUNTERPARTS; CURVES; TELESCOPES; EMISSION AB We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterparts in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15-20%. C1 [Blackburn, L.; Camp, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blackburn, L.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Briggs, M. S.; Connaughton, V.; Jenke, P.] Univ Alabama, Huntsville, AL 35899 USA. [Christensen, N.] Carleton Coll, Northfield, MN 55057 USA. NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Remillard, R. A.] MIT, Cambridge, MA 02139 USA. [Veitch, J.] Univ Birmingham, Birmingham, W Midlands, England. RP Blackburn, L (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. OI Remillard, Ronald/0000-0003-4815-0481; Veitch, John/0000-0002-6508-0713 FU NASA Postdoctoral Program fellowship at GSFC; research programme of the Foundation for Fundamental Research on Matter (FOM); Netherlands Organization for Scientific Research (NWO); Science and Technology Facilities Council (STFC) [ST/K005014/1]; NSF [PHY-1204371]; Max-Planck-Gesellschaft FX We thank Colleen Wilson-Hodge for assistance with the GBM direct response model. We would also like to thank Collin Capano, Kipp Cannon, Thomas Dent, Leo Singer, Peter Shawhan, Ruslan Vaulin, Xilong Fan and the LIGO Burst and CBC working groups for helpful discussion and ideas. LB did much of this work under the support of a the NASA Postdoctoral Program fellowship at GSFC, administered by Oak Ridge Associated Universities through a contract with NASA. J.V. was supported by the research programme of the Foundation for Fundamental Research on Matter (FOM), which is partially supported by the Netherlands Organization for Scientific Research (NWO), and by Science and Technology Facilities Council (STFC) grant ST/K005014/1. The authors would also like to acknowledge the support of the NSF through grant PHY-1204371. Finally we thank the Albert Einstein Institute in Hannover, supported by the Max-Planck-Gesellschaft, for use of the Atlas high-performance computing cluster. NR 58 TC 8 Z9 8 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2015 VL 217 IS 1 AR 8 DI 10.1088/0067-0049/217/1/8 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7EY UT WOS:000353466600008 ER PT J AU Hanish, DJ Capak, P Teplitz, HI Desai, V Armus, L Brinkworth, C Brooke, T Colbert, J Edwards, L Fadda, D Frayer, D Huynh, M Lacy, M Murphy, E Noriega-Crespo, A Paladini, R Scarlata, C Shenoy, S AF Hanish, D. J. Capak, P. Teplitz, H. I. Desai, V. Armus, L. Brinkworth, C. Brooke, T. Colbert, J. Edwards, L. Fadda, D. Frayer, D. Huynh, M. Lacy, M. Murphy, E. Noriega-Crespo, A. Paladini, R. Scarlata, C. Shenoy, S. TI THE SPITZER ARCHIVAL FAR-INFRARED EXTRAGALACTIC SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE infrared: galaxies; surveys ID MULTIBAND IMAGING PHOTOMETER; SPACE-TELESCOPE; COSMOS AB We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared (FIR) extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of FIR data in two wavelength bands (70 and 160 mu m) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals. C1 [Hanish, D. J.; Capak, P.; Teplitz, H. I.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Edwards, L.] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Huynh, M.] Univ Western Australia, Int Ctr Radio Astron Res, Crawley, WA 6009, Australia. [Lacy, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Murphy, E.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Scarlata, C.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Shenoy, S.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hanish, DJ (reprint author), CALTECH, Spitzer Sci Ctr, MC 220-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM danish@alumni.caltech.edu FU NASA [NASA-ADAP NNX10AD52G]; NSF FX Support for this work was provided by NASA through contract NASA-ADAP NNX10AD52G. This publication makes use of raw data from the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory/California Institute of Technology under NASA contract, as well as data products from the Two Micron All Sky Survey, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. NR 11 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2015 VL 217 IS 1 AR 17 DI 10.1088/0067-0049/217/1/17 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7EY UT WOS:000353466600017 ER PT J AU Rowe, JF Coughlin, JL Antoci, V Barclay, T Batalha, NM Borucki, WJ Burke, CJ Bryson, ST Caldwell, DA Campbell, JR Catanzarite, JH Christiansen, JL Cochran, W Gilliland, RL Girouard, FR Haas, MR Helminiak, KG Henze, CE Hoffman, KL Howell, SB Huber, D Hunter, RC Jang-Condell, H Jenkins, JM Klaus, TC Latham, DW Li, J Lissauer, JJ McCauliff, SD Morris, RL Mullally, F Ofir, A Quarles, B Quintana, E Sabale, A Seader, S Shporer, A Smith, JC Steffen, JH Still, M Tenenbaum, P Thompson, SE Twicken, JD Van Laerhoven, C Wolfgang, A Zamudio, KA AF Rowe, Jason F. Coughlin, Jeffrey L. Antoci, Victoria Barclay, Thomas Batalha, Natalie M. Borucki, William J. Burke, Christopher J. Bryson, Steven T. Caldwell, Douglas A. Campbell, Jennifer R. Catanzarite, Joseph H. Christiansen, Jessie L. Cochran, William Gilliland, Ronald L. Girouard, Forrest R. Haas, Michael R. Helminiak, Krzysztof G. Henze, Christopher E. Hoffman, Kelsey L. Howell, Steve B. Huber, Daniel Hunter, Roger C. Jang-Condell, Hannah Jenkins, Jon M. Klaus, Todd C. Latham, David W. Li, Jie Lissauer, Jack J. McCauliff, Sean D. Morris, Robert L. Mullally, F. Ofir, Aviv Quarles, Billy Quintana, Elisa Sabale, Anima Seader, Shawn Shporer, Avi Smith, Jeffrey C. Steffen, Jason H. Still, Martin Tenenbaum, Peter Thompson, Susan E. Twicken, Joseph D. Van Laerhoven, Christa Wolfgang, Angie Zamudio, Khadeejah A. TI PLANETARY CANDIDATES OBSERVED BY KEPLER. V. PLANET SAMPLE FROM Q1-Q12 (36 MONTHS) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; planets and satellites: fundamental parameters ID TRANSIT TIMING OBSERVATIONS; FALSE-POSITIVE RATE; M-DWARF STARS; ECLIPSING BINARIES; DATA RELEASE; HABITABLE ZONE; LIGHT CURVES; EXOPLANET; II.; SYSTEMS AB The Kepler mission discovered 2842 exoplanet candidates with 2 yr of data. We provide updates to the Kepler planet candidate sample based upon 3 yr (Q1-Q12) of data. Through a series of tests to exclude false-positives, primarily caused by eclipsing binary stars and instrumental systematics, 855 additional planetary candidates have been discovered, bringing the total number known to 3697. We provide revised transit parameters and accompanying posterior distributions based on a Markov Chain Monte Carlo algorithm for the cumulative catalog of Kepler Objects of Interest. There are now 130 candidates in the cumulative catalog that receive less than twice the flux the Earth receives and more than 1100 have a radius less than 1.5 R-circle plus. There are now a dozen candidates meeting both criteria, roughly doubling the number of candidate Earth analogs. A majority of planetary candidates have a high probability of being bonafide planets, however, there are populations of likely false-positives. We discuss and suggest additional cuts that can be easily applied to the catalog to produce a set of planetary candidates with good fidelity. The full catalog is publicly available at the NASA Exoplanet Archive. C1 [Rowe, Jason F.; Coughlin, Jeffrey L.; Burke, Christopher J.; Caldwell, Douglas A.; Catanzarite, Joseph H.; Hoffman, Kelsey L.; Huber, Daniel; Li, Jie; Morris, Robert L.; Seader, Shawn; Smith, Jeffrey C.; Tenenbaum, Peter; Thompson, Susan E.; Twicken, Joseph D.] SETI Inst, Mountain View, CA 94043 USA. [Rowe, Jason F.; Barclay, Thomas; Batalha, Natalie M.; Borucki, William J.; Burke, Christopher J.; Bryson, Steven T.; Caldwell, Douglas A.; Campbell, Jennifer R.; Haas, Michael R.; Henze, Christopher E.; Hoffman, Kelsey L.; Howell, Steve B.; Huber, Daniel; Hunter, Roger C.; Jenkins, Jon M.; Lissauer, Jack J.; Mullally, F.; Quarles, Billy; Quintana, Elisa; Seader, Shawn; Smith, Jeffrey C.; Still, Martin; Tenenbaum, Peter; Thompson, Susan E.; Zamudio, Khadeejah A.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Antoci, Victoria] Aarhus Univ, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Barclay, Thomas; Still, Martin] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Campbell, Jennifer R.; McCauliff, Sean D.; Sabale, Anima; Zamudio, Khadeejah A.] Wyle Labs, Moffett Field, CA 94035 USA. [Christiansen, Jessie L.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91106 USA. [Cochran, William] Univ Texas Austin, Dept Astron & McDonald Observ, Austin, TX 78712 USA. [Gilliland, Ronald L.] Penn State Univ, Ctr Exoplanets & Habitable Words, University Pk, PA 16802 USA. [Girouard, Forrest R.] Logyx LLC, Mountain View, CA 94043 USA. [Helminiak, Krzysztof G.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Jang-Condell, Hannah] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Klaus, Todd C.] Moon Express Inc, Moffett Field, CA 94035 USA. [Latham, David W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ofir, Aviv] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Ofir, Aviv] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Shporer, Avi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Steffen, Jason H.] Northwestern Univ, CIERA, Evanston, IL 60208 USA. [Van Laerhoven, Christa] Univ Arizona, Tucson, AZ USA. [Van Laerhoven, Christa] Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Wolfgang, Angie] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. RP Rowe, JF (reprint author), SETI Inst, Mountain View, CA 94043 USA. EM Jason.Rowe@nasa.gov RI Helminiak, Krzysztof/N-6385-2015; OI Helminiak, Krzysztof/0000-0002-7650-3603; Jang-Condell, Hannah/0000-0002-7639-1322; Antoci, Victoria/0000-0002-0865-3650 FU NASA's Science Mission Directorate; NASA [NNX12AD21G, NNX14AB82G, NNX14AB92G]; NASA Postdoctoral Fellowship; Australian Research Council [DE 140101364]; Danish National Research Foundation [DNRF106]; ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) - European Research Council [267864]; National Astronomical Observatory of Japan FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We are grateful to TCERT vetters who tirelessly examined thousands of transit candidates. We are indebted to the entire Kepler Team for all the hard work and dedication that have made such discoveries possible. In one way or another, it seems that everyone in the exoplanet community has somehow contributed toward this work and if I add everyone to the author list there will be no one left to referee, so thank you everyone and the referee. J.F.R. acknowledges NASA grants NNX12AD21G and NNX14AB82G issued through the Kepler Participating Scientist Program. B.Q. acknowledges support from a NASA Postdoctoral Fellowship. D.H. acknowledges NASA grant NNX14AB92G issued through the Kepler Participating Scientist Program and support by the Australian Research Council's Discovery Projects funding scheme (project number DE 140101364). Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant No. DNRF106). V.A. is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement No. 267864). K.G.H. acknowledges support provided by the National Astronomical Observatory of Japan as Subaru Astronomical Research Fellow. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NR 74 TC 39 Z9 39 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2015 VL 217 IS 1 AR 16 DI 10.1088/0067-0049/217/1/16 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7EY UT WOS:000353466600016 ER PT J AU Seader, S Jenkins, JM Tenenbaum, P Twicken, JD Smith, JC Morris, R Catanzarite, J Clarke, BD Li, J Cote, MT Burke, CJ McCauliff, S Girouard, FR Campbell, JR Uddin, AK Zamudio, KA Sabale, A Henze, CE Thompson, SE Klaus, TC AF Seader, Shawn Jenkins, Jon M. Tenenbaum, Peter Twicken, Joseph D. Smith, Jeffrey C. Morris, Rob Catanzarite, Joseph Clarke, Bruce D. Li, Jie Cote, Miles T. Burke, Christopher J. McCauliff, Sean Girouard, Forrest R. Campbell, Jennifer R. Uddin, Akm Kamal Zamudio, Khadeejah A. Sabale, Anima Henze, Christopher E. Thompson, Susan E. Klaus, Todd C. TI DETECTION OF POTENTIAL TRANSIT SIGNALS IN 17 QUARTERS OF KEPLER MISSION DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE planetary systems; planets and satellites: detection ID SYSTEMATIC-ERROR CORRECTION; ECLIPSING BINARIES; PLANET CANDIDATES; LIGHT CURVES; DATA RELEASE AB We present the results of a search for potential transit signals in the full 17-quarter data set collected during Kepler's primary mission that ended on 2013 May 11, due to the on board failure of a second reaction wheel needed to maintain high precision, fixed, pointing. The search includes a total of 198,646 targets, of which 112,001 were observed in every quarter and 86,645 were observed in a subset of the 17 quarters. For the first time, this multi-quarter search is performed on data that have been fully and uniformly reprocessed through the newly released version of the Data Processing Pipeline. We find a total of 12,669 targets that contain at least one signal that meets our detection criteria: periodicity of the signal, a minimum of three transit events, an acceptable signal-to-noise ratio, and four consistency tests that suppress many false positives. Each target containing at least one transit-like pulse sequence is searched repeatedly for other signals that meet the detection criteria, indicating a multiple planet system. This multiple planet search adds an additional 7698 transit-like signatures for a total of 20,367. Comparison of this set of detected signals with a set of known and vetted transiting planet signatures in the Kepler field of view shows that the recovery rate of the search is 90.3%. We review ensemble properties of the detected signals and present various metrics useful in validating these potential planetary signals. We highlight previously undetected transit-like signatures, including several that may represent small objects in the habitable zone of their host stars. C1 [Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.; Smith, Jeffrey C.; Morris, Rob; Catanzarite, Joseph; Clarke, Bruce D.; Li, Jie; Burke, Christopher J.; Thompson, Susan E.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jenkins, Jon M.; Cote, Miles T.; Henze, Christopher E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [McCauliff, Sean; Girouard, Forrest R.; Campbell, Jennifer R.; Uddin, Akm Kamal; Zamudio, Khadeejah A.; Sabale, Anima] NASA, Ames Res Ctr, Wyle Labs, Moffett Field, CA 94035 USA. [Klaus, Todd C.] Moon Express Inc, Moffett Field, CA 94035 USA. RP Seader, S (reprint author), NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. EM shawn.seader@nasa.gov FU NASA FX The results presented here would not be possible without the support of NASA's High End Computing Capability (HECC) Project within the Science Mission Directorate. These results were generated through execution of the Kepler Data Processing Pipeline on the NASA Ames supercomputer. Kepler was selected as the 10th mission of NASA's Discovery Program. Funding for this work is provided by NASA's Science Mission Directorate. NR 37 TC 10 Z9 10 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAR PY 2015 VL 217 IS 1 AR 18 DI 10.1088/0067-0049/217/1/18 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7EY UT WOS:000353466600018 ER PT J AU Koster, R AF Koster, Randal TI "EFFICIENCY SPACE" A Framework for Evaluating Joint Evaporation and Runoff Behavior SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID MODELS C1 NASA GSFC, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Koster, R (reprint author), NASA GSFC, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM randal.d.koster@nasa.gov RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 NR 2 TC 3 Z9 3 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAR PY 2015 VL 96 IS 3 BP 393 EP 396 DI 10.1175/BAMS-D-14-00056.1 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG9RT UT WOS:000353657200004 ER PT J AU Wood, R Wyant, M Bretherton, CS Remillard, J Kollias, P Fletcher, J Stemmler, J de Szoeke, S Yuter, S Miller, M Mechem, D Tselioudis, G Chiu, JC Mann, JAL O'Connor, EJ Hogan, RJ Dong, XQ Miller, M Ghate, V Jefferson, A Min, QL Minnis, P Palikonda, R Albrecht, B Luke, E Hannay, C Lin, YL AF Wood, Robert Wyant, Matthew Bretherton, Christopher S. Remillard, Jasmine Kollias, Pavlos Fletcher, Jennifer Stemmler, Jayson de Szoeke, Simone Yuter, Sandra Miller, Matthew Mechem, David Tselioudis, Georgrge Chiu, J. Christine Mann, Julian A. L. O'Connor, Ewan J. Hogan, Robin J. Dong, Xiquan Miller, Markrk Ghate, Virendra Jefferson, Anne Min, Qilong Minnis, Patrickck Palikonda, Rabindra Albrecht, Bruce Luke, Ed Hannay, Cecile Lin, Yanluan TI CLOUDS, AEROSOLS, AND PRECIPITATION IN THE MARINE BOUNDARY LAYER An ARM Mobile Facility Deployment SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID FREE TROPOSPHERE; MICROPHYSICAL PROPERTIES; DROPLET CONCENTRATION; STRATOCUMULUS CLOUDS; CONDENSATION NUCLEI; DRIZZLE PARAMETERS; SOUTHEAST PACIFIC; DOPPLER RADAR; CLIMATOLOGY; AZORES C1 [Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Fletcher, Jennifer; Stemmler, Jayson] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Remillard, Jasmine; Tselioudis, Georgrge] Columbia Univ, New York, NY USA. [Kollias, Pavlos] McGill Univ, Montreal, PQ, Canada. [de Szoeke, Simone] Oregon State Univ, Corvallis, OR 97331 USA. [Yuter, Sandra; Miller, Matthew] N Carolina State Univ, Raleigh, NC 27695 USA. [Mechem, David] Univ Kansas, Lawrence, KS 66045 USA. [O'Connor, Ewan J.; Hogan, Robin J.] Univ Reading, Reading, Berks, England. [O'Connor, Ewan J.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Dong, Xiquan] Univ N Dakota, Grand Forks, ND 58201 USA. [Miller, Markrk] Rutgers State Univ, New Brunswick, NJ 08903 USA. [Ghate, Virendra] Argonne Natl Lab, Lemont, IL USA. [Jefferson, Anne] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Min, Qilong] SUNY Albany, Albany, NY 12222 USA. [Minnis, Patrickck] NASA Langley Res Ctr, Hampton, VA USA. [Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA. [Albrecht, Bruce] Univ Miami, Coral Gables, FL 33124 USA. [Luke, Ed] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hannay, Cecile] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Lin, Yanluan] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. RP Wood, R (reprint author), Univ Washington, Dept Atmospher Sci, POB 351640, Seattle, WA 98195 USA. EM wood.jcli@ametsoc.org RI Yuter, Sandra/E-8808-2015; Chiu, Christine/E-5649-2013; Wood, Robert/A-2989-2008; lin, yanluan/A-6333-2015; Hogan, Robin/M-6549-2016; OI Yuter, Sandra/0000-0002-3222-053X; Chiu, Christine/0000-0002-8951-6913; Wood, Robert/0000-0002-1401-3828; Hogan, Robin/0000-0002-3180-5157; Stemmler, Jayson/0000-0002-2983-3941; Dong, Xiquan/0000-0002-3359-6117 FU DOE, Office of Science, Office of Biological and Environmental Research Environmental Science Division; DOE [DE-SC0006865MOD0002, DE-SC0008468, DE-SC0006736, DE-SC0000991, DESC0006712, DE-SC0007233, DE-SC0006701] FX The CAP-MBL deployment of the ARM Mobile Facility was supported by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement Program (ARM) Climate Research Facility and the DOE Atmospheric Sciences Program. We are indebted to the scientists and staff who made this work possible by taking and quality controlling the measurements. Data were obtained from the ARM archive, sponsored by DOE, Office of Science, Office of Biological and Environmental Research Environmental Science Division. This work was supported by DOE Grants DE-SC0006865MOD0002 (PI Robert Wood), DE-SC0008468 (PI Xiquan Dong), DE-SC0006736 (PI David Mechem), DE-SC0000991 (PI Patrick Minnis), DESC0006712 (PI George Tselioudis), DE-SC0007233 (PI Christine Chiu), and DE-SC0006701 (PI Sandra Yuter). The CloudSat data were distributed by the CloudSat Data Processing Center at Colorado State University. MODIS data were obtained from the NASA Goddard Land Processes data archive. VOCALS data were obtained from the Earth Observation Laboratory (EOL) at the National Center for Atmospheric Research. The HYSPLIT IV model was obtained from the NOAA/Air Resources Laboratory. Data from the Aerosol Robotic Network (AERONET) were obtained from the web download tool hosted by NASA Goddard Space Flight Center. NR 64 TC 17 Z9 17 U1 1 U2 40 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAR PY 2015 VL 96 IS 3 BP 419 EP 439 DI 10.1175/BAMS-D-13-00180.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG9RT UT WOS:000353657200007 ER PT J AU Nazarenko, L Schmidt, GA Miller, RL Tausnev, N Kelley, M Ruedy, R Russell, GL Aleinov, I Bauer, M Bauer, S Bleck, R Canuto, V Cheng, Y Clune, TL Del Genio, AD Faluvegi, G Hansen, JE Healy, RJ Kiang, NY Koch, D Lacis, AA LeGrande, AN Lerner, J Lo, KK Menon, S Oinas, V Perlwitz, J Puma, MJ Rind, D Romanou, A Sato, M Shindell, DT Sun, S Tsigaridis, K Unger, N Voulgarakis, A Yao, MS Zhang, JL AF Nazarenko, L. Schmidt, G. A. Miller, R. L. Tausnev, N. Kelley, M. Ruedy, R. Russell, G. L. Aleinov, I. Bauer, M. Bauer, S. Bleck, R. Canuto, V. Cheng, Y. Clune, T. L. Del Genio, A. D. Faluvegi, G. Hansen, J. E. Healy, R. J. Kiang, N. Y. Koch, D. Lacis, A. A. LeGrande, A. N. Lerner, J. Lo, K. K. Menon, S. Oinas, V. Perlwitz, J. Puma, M. J. Rind, D. Romanou, A. Sato, M. Shindell, D. T. Sun, S. Tsigaridis, K. Unger, N. Voulgarakis, A. Yao, M. -S. Zhang, Jinlun TI Future climate change under RCP emission scenarios with GISS ModelE2 SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE climate model; future scenarios ID ARCTIC SEA-ICE; CHANGE EVENT; OCEAN MODEL; LEVEL RISE; SIMULATIONS; SENSITIVITY; CMIP5; PARAMETERIZATION; STABILIZATION; CONSTRAINTS AB We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101-2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmospheric version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5 degrees C relative to 1850-1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 degrees C threshold at the end of the 21st century. For RCP8.5, the range is 3.5-4.5 degrees C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO2, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the E2-R climate model produces a complete shutdown of deep water formation in the North Atlantic. C1 [Nazarenko, L.; Aleinov, I.; Bauer, S.; Bleck, R.; Canuto, V.; Cheng, Y.; Faluvegi, G.; Healy, R. J.; Koch, D.; Lerner, J.; Puma, M. J.; Sato, M.; Shindell, D. T.; Tsigaridis, K.; Voulgarakis, A.; Yao, M. -S.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. [Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G. L.; Aleinov, I.; Bauer, M.; Bauer, S.; Cheng, Y.; Del Genio, A. D.; Faluvegi, G.; Hansen, J. E.; Healy, R. J.; Kiang, N. Y.; Lacis, A. A.; LeGrande, A. N.; Lerner, J.; Lo, K. K.; Oinas, V.; Perlwitz, J.; Puma, M. J.; Rind, D.; Romanou, A.; Sato, M.; Sun, S.; Tsigaridis, K.; Voulgarakis, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tausnev, N.; Kelley, M.; Ruedy, R.; Lo, K. K.; Oinas, V.; Sun, S.; Yao, M. -S.] Trinnovim LLC, New York, NY USA. [Bauer, M.; Bleck, R.; Perlwitz, J.; Romanou, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Clune, T. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Menon, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Unger, N.] Yale Univ, New Haven, CT USA. [Voulgarakis, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. [Zhang, Jinlun] Univ Washington, Seattle, WA 98195 USA. RP Nazarenko, L (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. EM larissa.s.nazarenko@nasa.gov RI Schmidt, Gavin/D-4427-2012; Healy, Richard/J-9214-2015; Sun, Shan/H-2318-2015; Shindell, Drew/D-4636-2012; Unger, Nadine/M-9360-2015; Miller, Ron/E-1902-2012 OI Schmidt, Gavin/0000-0002-2258-0486; Healy, Richard/0000-0002-5098-8921; FU NASA Modeling, Analysis and Prediction (MAP) Program; NASA Modeling, Analysis, and Prediction (MAP) Program; National Science Foundation; National Oceanic and Atmospheric Administration; Department of Energy FX We acknowledge funding from the NASA Modeling, Analysis and Prediction (MAP) Program. CMIP5 simulations with the GISS ModelE2 were made possible by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Development of ModelE2 was supported by the NASA Modeling, Analysis, and Prediction (MAP) Program with additional support from the National Science Foundation, the National Oceanic and Atmospheric Administration, and the Department of Energy. We thank Ellen Salmon and the NCCS staff for hosting and providing convenient access to the model output. Model output analyzed in this study is available from the Earth System Grid Federation (http://cmip-pcmdi.llnl.gov/cmip5/). We also thank three anonymous reviewers for helping improve the clarity and salience of the paper. NR 75 TC 7 Z9 7 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD MAR PY 2015 VL 7 IS 1 BP 244 EP 267 DI 10.1002/2014MS000403 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH3XF UT WOS:000353963600013 ER PT J AU Adhikari, S Tsai, VC AF Adhikari, S. Tsai, V. C. TI A model for subglacial flooding through a preexisting hydrological network during the rapid drainage of supraglacial lakes SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE glacial hydrology; supraglacial lake drainage; subglacial flooding; ice sheet dynamics ID GREENLAND ICE-SHEET; FREE-SURFACE FLOW; WATER-FLOW; TEMPERATE GLACIERS; ACCELERATION; DRIVEN; MELT; PROPAGATION; EVOLUTION; FLOTATION AB Increasingly large numbers of supraglacial lakes form and drain every summer on the Greenland Ice Sheet. Some of these lakes drain rapidly within the timescale of a few hours, and the vertical discharge of water during these events may find a preexisting film of water potentially within a distributed drainage system of linked cavities. Here we present a model for subglacial flooding applied specifically to such circumstances. One of many interesting results we find is that water flows in from the far field prior to the arrival of flooding. We systematically evaluate the effect of initial ice/bed opening on the degree of perturbation to the subglacial system. Of particular importance, we find that floods propagate much faster and vertical displacements are much greater for larger openings. For 10 and 1cm of initial opening, for example, floods travel about 68% and 50% farther than in the fully coupled ice/bed scenario after 2h of drainage, respectively. For the same choices of initial opening, the elastostatic displacement at the injection point is about 1.39 and 1.26 times that of the fully coupled scenario. Using the framework with a preexisting water film results in avoiding the pressure singularity that is inherent to classical hydrofracture models, thus opening an avenue for integrating the likes of our model within continuum subglacial hydrological models. Furthermore, we foresee that the theory presented can be used to potentially infer subglacial hydrological conditions from surface observables. C1 [Adhikari, S.; Tsai, V. C.] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Adhikari, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Adhikari, S (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA. EM surendra.adhikari@jpl.nasa.gov RI Tsai, Victor/J-8405-2012 OI Tsai, Victor/0000-0003-1809-6672 FU President's and Director's Fund program FX This research was carried out at the Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) under a contract with the National Aeronautics and Space Administration (NASA) and funded through the President's and Director's Fund program. Conversations with G.H. Gudmundsson are acknowledged. Constructive comments by two anonymous reviewers, the Assistant Editor E. Pettit, and the Editor B. Hubbard improved this manuscript. S. Adhikari wishes to thank E.R. Ivins and E. Larour for their support at JPL. NR 66 TC 1 Z9 1 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD MAR PY 2015 VL 120 IS 3 BP 580 EP 603 DI 10.1002/2014JF003339 PG 24 WC Geosciences, Multidisciplinary SC Geology GA CH0FG UT WOS:000353694200011 ER PT J AU Arvidson, RE Bell, JF Catalano, JG Clark, BC Fox, VK Gellert, R Grotzinger, JP Guinness, EA Herkenhoff, KE Knoll, AH Lapotre, MGA McLennan, SM Ming, DW Morris, RV Murchie, SL Powell, KE Smith, MD Squyres, SW Wolff, MJ Wray, JJ AF Arvidson, R. E. Bell, J. F., III Catalano, J. G. Clark, B. C. Fox, V. K. Gellert, R. Grotzinger, J. P. Guinness, E. A. Herkenhoff, K. E. Knoll, A. H. Lapotre, M. G. A. McLennan, S. M. Ming, D. W. Morris, R. V. Murchie, S. L. Powell, K. E. Smith, M. D. Squyres, S. W. Wolff, M. J. Wray, J. J. TI Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE MRO; CRISM; MER; Opportunity; Meridiani ID OMEGA/MARS EXPRESS; REFLECTANCE SPECTROSCOPY; MINERALS; HISTORY; ORIGIN; PLAYA; SALTS AB Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral (1.0-2.65 mu m) along-track oversampled observations covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria, the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour, the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising groundwaters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates, in both scenarios as the aqueous environment evolved to very arid conditions. C1 [Arvidson, R. E.; Catalano, J. G.; Fox, V. K.; Guinness, E. A.; Powell, K. E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Bell, J. F., III] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Clark, B. C.; Wolff, M. J.] Space Sci Inst, Boulder, CO USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Grotzinger, J. P.; Lapotre, M. G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Knoll, A. H.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [McLennan, S. M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Ming, D. W.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Murchie, S. L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Smith, M. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Wray, J. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Arvidson, RE (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM arvidson@wunder.wustl.edu RI Murchie, Scott/E-8030-2015; Wray, James/B-8457-2008; Powell, Kathryn/K-3467-2015; Catalano, Jeffrey/A-8322-2013 OI Murchie, Scott/0000-0002-1616-8751; Wray, James/0000-0001-5559-2179; Powell, Kathryn/0000-0002-1281-1551; Catalano, Jeffrey/0000-0001-9311-977X FU APL; Cornell University FX We thank the capable team of engineers and scientists at the Jet Propulsion Laboratory and elsewhere who made the Opportunity mission possible, together with the project personnel and scientists associated with the Mars Reconnaissance Orbiter and Mars Odyssey Missions. A particular thank you is extended to the CRISM Science Operations Center personnel at the Applied Physics Laboratory (APL), Johns Hopkins University. This work was supported in part by contracts to Washington University in Saint Louis from APL and Cornell University. Data are available from the NASA Planetary Data System (https://pds.jpl.nasa.gov/). NR 60 TC 5 Z9 5 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 429 EP 451 DI 10.1002/2014JE004686 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100006 ER PT J AU Mangold, N Forni, O Dromart, G Stack, K Wiens, RC Gasnault, O Sumner, DY Nachon, M Meslin, PY Anderson, RB Barraclough, B Bell, JF Berger, G Blaney, DL Bridges, JC Calef, F Clark, B Clegg, SM Cousin, A Edgar, L Edgett, K Ehlmann, B Fabre, C Fisk, M Grotzinger, J Gupta, S Herkenhoff, KE Hurowitz, J Johnson, JR Kah, LC Lanza, N Lasue, J Le Mouelic, S Leveille, R Lewin, E Malin, M McLennan, S Maurice, S Melikechi, N Mezzacappa, A Milliken, R Newsom, H Ollila, A Rowland, SK Sautter, V Schmidt, M Schroder, S d'Uston, C Vaniman, D Williams, R AF Mangold, N. Forni, O. Dromart, G. Stack, K. Wiens, R. C. Gasnault, O. Sumner, D. Y. Nachon, M. Meslin, P. -Y. Anderson, R. B. Barraclough, B. Bell, J. F., III Berger, G. Blaney, D. L. Bridges, J. C. Calef, F. Clark, B. Clegg, S. M. Cousin, A. Edgar, L. Edgett, K. Ehlmann, B. Fabre, C. Fisk, M. Grotzinger, J. Gupta, S. Herkenhoff, K. E. Hurowitz, J. Johnson, J. R. Kah, L. C. Lanza, N. Lasue, J. Le Mouelic, S. Leveille, R. Lewin, E. Malin, M. McLennan, S. Maurice, S. Melikechi, N. Mezzacappa, A. Milliken, R. Newsom, H. Ollila, A. Rowland, S. K. Sautter, V. Schmidt, M. Schroeder, S. d'Uston, C. Vaniman, D. Williams, R. TI Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; Gale crater; sediments; ChemCam; LIBS ID GALE CRATER; INSTRUMENT SUITE; ORIGIN; SYSTEM; CHEMISTRY; ROCKNEST; UNIT AB The Yellowknife Bay formation represents a similar to 5m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (similar to 1m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains. C1 [Mangold, N.; Nachon, M.; Le Mouelic, S.] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, Nantes, France. [Forni, O.; Gasnault, O.; Meslin, P. -Y.; Berger, G.; Lasue, J.; Maurice, S.; Schroeder, S.; d'Uston, C.] Univ Toulouse, CNRS, UPS OMP, Inst Rech Astrophys & Planetol, Toulouse, France. [Dromart, G.] Univ Lyon, Lab Geol Lyon, Lyon, France. [Stack, K.; Barraclough, B.; Ehlmann, B.; Grotzinger, J.] CALTECH, Pasadena, CA 91125 USA. [Wiens, R. C.; Clegg, S. M.; Cousin, A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sumner, D. Y.] Univ Calif Davis, Earth & Planetary Sci, Davis, CA 95616 USA. [Anderson, R. B.; Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Bell, J. F., III; Edgar, L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Blaney, D. L.; Calef, F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Clark, B.] Space Sci Inst, Boulder, CO USA. [Edgett, K.; Malin, M.] Malin Space Sci Syst, San Diego, CA USA. [Fabre, C.] Univ Lorraine, GeoRessources, Nancy, France. [Fisk, M.] Oragon State Univ, Earth Ocean & Atmospher Sci, Corvallis, OR USA. [Gupta, S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. [Hurowitz, J.; McLennan, S.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Kah, L. C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Lanza, N.; Newsom, H.; Ollila, A.] Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Leveille, R.] Canadian Space Agcy, St Hubert, PQ, Canada. [Lewin, E.] Univ Grenoble 1, ISTerre, Grenoble, France. [Melikechi, N.; Mezzacappa, A.] Delaware State Univ, Appl Opt Ctr, Delaware, OH USA. [Milliken, R.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Rowland, S. K.] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Sautter, V.] Museum Natl Hist Nat, F-75231 Paris, France. [Schmidt, M.] Brock Univ, Dept Earth Sci, St Catharines, ON L2S 3A1, Canada. [Vaniman, D.; Williams, R.] Planetary Sci Inst, Tucson, AZ USA. RP Mangold, N (reprint author), Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, Nantes, France. EM nicolas.mangold@univ-nantes.fr RI Johnson, Jeffrey/F-3972-2015; BERGER, Gilles/F-7118-2016; LEWIN, Eric/F-1451-2017; OI Edgett, Kenneth/0000-0001-7197-5751; Clegg, Sam/0000-0002-0338-0948 FU French Space Agency, Centre National d'Etudes Spatiales (CNES); INSU/CNRS; OSUNA (Observatoire des Sciences de l'Univers de Nantes Atlantique) FX We acknowledge the helpful reviews of anonymous reviewers. Support for development and operation of the ChemCam instrument was supported in France by funds from the French Space Agency, Centre National d'Etudes Spatiales (CNES). Support was also received from INSU/CNRS and from OSUNA (Observatoire des Sciences de l'Univers de Nantes Atlantique). Support for development and operation in the U.S. was provided by NASA to the Mars Exploration Program and specifically to the MSL Team. Imaging and chemical data presented here are available in the NASA Planetary Data System (PDS) http://pds-geosciences.wustl.edu/missions/msl. We are grateful to the MSL engineering and management teams (and especially the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA) for making the mission and this scientific investigation possible and to science team members who contributed to mission operations. NR 61 TC 14 Z9 14 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 452 EP 482 DI 10.1002/2014JE004681 PG 31 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100007 ER PT J AU Simon, AA Sanchez-Lavega, A Legarreta, J Sanz-Requena, JF Perez-Hoyos, S Garcia-Melendo, E Carlson, RW AF Simon, Amy A. Sanchez-Lavega, Agustin Legarreta, Jon Sanz-Requena, Jose Francisco Perez-Hoyos, Santiago Garcia-Melendo, Enrique Carlson, Robert W. TI Spectral comparison and stability of red regions on Jupiter SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Jupiter; atmospheres ID VERTICAL CLOUD STRUCTURE; HUBBLE-SPACE-TELESCOPE; SOUTH EQUATORIAL BELT; JOVIAN WHITE OVALS; VOYAGER IRIS; IMAGES; ICE; CHROMOPHORE; ATMOSPHERE; GALILEO AB A rare red cyclone visible on Jupiter in 1994 and 1995 falls in a class of vortices that are intensely colored, yet low altitude, unlike the Great Red Spot (GRS). Dynamical modeling indicates that the presence of nearby anticyclones both aids in formation and lead to the destruction of the cyclone. A study of absolute spectral reflectance from Hubble Space Telescope imaging data shows that GRS is not typically the reddest region of the planet. Rather, transient red cyclones and the reddest parts of the North Equatorial Belt show less reflectance than the GRS at all wavelengths, with enhanced absorption at wavelengths near 500nm. Temporal analysis shows that the darkest regions of the North Equatorial Belt and transient red cyclones are relatively constant in color from 1995 to 2014, while the spectral slope and absolute brightness of the GRS core vary over time. Laboratory data of colored materials that yield a good qualitative fit to the GRS spectrum do not match the spectra of other regions, and wavelengths from 400 to 700nm may be most diagnostic of chromophore identification. C1 [Simon, Amy A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Garcia-Melendo, Enrique] Univ Pais Vasco UPV EHU, Dept Fis Aplicada 1, ETS Ingn, Bilbao, Spain. [Sanchez-Lavega, Agustin; Legarreta, Jon; Perez-Hoyos, Santiago] Unidad Asociada Grp Ciencias Planetarias UPV EHU, Bilbao, Spain. [Legarreta, Jon] Univ Pais Vasco UPV EHU, Dept Ingn Sistemas & Automat, EUITI, Bilbao, Spain. [Sanz-Requena, Jose Francisco] Univ Europea Miguel de Cervantes, Grp Estudis Astron, Valladolid, Spain. [Carlson, Robert W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Simon, AA (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM amy.simon@nasa.gov RI Simon, Amy/C-8020-2012; Perez-Hoyos, Santiago/L-7543-2014; OI Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; LEGARRETA ETXAGIBEL, JON JOSU/0000-0001-6501-2705 FU NASA [NAS 5-26555]; Spanish MICIIN [AYA2012-36666]; Grupos Gobierno Vasco [IT765-13]; UPV/EHU [UFI11/55]; [GO5313]; [GO5642]; [GO6009]; [GO6141]; [GO6452]; [GO11096]; [GO11498]; [GO12045]; [GO13631] FX This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO5313, GO5642, GO6009, GO6141, GO6452, GO11096, GO11498, GO12045, and GO13631, and all data can be retrieved from the Hubble archive at http://archive.stsci.edu/hst/search.php using those program numbers. Sanchez-Lavega was supported by Spanish MICIIN project AYA2012-36666, Grupos Gobierno Vasco IT765-13, and UPV/EHU UFI11/55. NR 63 TC 5 Z9 5 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 483 EP 494 DI 10.1002/2014JE004688 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100008 ER PT J AU Freissinet, C Glavin, DP Mahaffy, PR Miller, KE Eigenbrode, JL Summons, RE Brunner, AE Buch, A Szopa, C Archer, PD Franz, HB Atreya, SK Brinckerhoff, WB Cabane, M Coll, P Conrad, PG Des Marais, DJ Dworkin, JP Fairen, AG Francois, P Grotzinger, JP Kashyap, S ten Kate, IL Leshin, LA Malespin, CA Martin, MG Martin-Torres, FJ McAdam, AC Ming, DW Navarro-Gonzalez, R Pavlov, AA Prats, BD Squyres, SW Steele, A Stern, JC Sumner, DY Sutter, B Zorzano, MP AF Freissinet, C. Glavin, D. P. Mahaffy, P. R. Miller, K. E. Eigenbrode, J. L. Summons, R. E. Brunner, A. E. Buch, A. Szopa, C. Archer, P. D., Jr. Franz, H. B. Atreya, S. K. Brinckerhoff, W. B. Cabane, M. Coll, P. Conrad, P. G. Des Marais, D. J. Dworkin, J. P. Fairen, A. G. Francois, P. Grotzinger, J. P. Kashyap, S. ten Kate, I. L. Leshin, L. A. Malespin, C. A. Martin, M. G. Martin-Torres, F. J. McAdam, A. C. Ming, D. W. Navarro-Gonzalez, R. Pavlov, A. A. Prats, B. D. Squyres, S. W. Steele, A. Stern, J. C. Sumner, D. Y. Sutter, B. Zorzano, M. -P. CA MSL Sci Team TI Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE organic molecules; chlorobenzene; MSL; Mars; SAM; oxychlorine ID ROCKNEST AEOLIAN DEPOSIT; PERCHLORATE; ABUNDANCES; PYROLYSIS; SAMPLES; ORIGIN AB The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C-2 to C-4 dichloroalkanes (up to 70ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. C1 [Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Eigenbrode, J. L.; Brunner, A. E.; Franz, H. B.; Brinckerhoff, W. B.; Conrad, P. G.; Dworkin, J. P.; Kashyap, S.; Malespin, C. A.; Martin, M. G.; McAdam, A. C.; Pavlov, A. A.; Prats, B. D.; Stern, J. C.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Freissinet, C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN USA. [Miller, K. E.; Summons, R. E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Brunner, A. E.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, College Pk, MD 20742 USA. [Buch, A.] Ecole Cent Paris, Lab Genie Proc & Mat, Chatenay Malabry, France. [Franz, H. B.; Kashyap, S.] Univ Maryland, Ctr Res & Explorat Space Sci Technol, Baltimore, MD USA. [Szopa, C.; Cabane, M.] Univ Versailles St Quentin En Yvelines, Univ Paris 06, Observat Spati, Milieux,Lab Atmospheres, Paris, France. [Szopa, C.; Cabane, M.] CNRS, Paris, France. [Archer, P. D., Jr.; Sutter, B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Franz, H. B.; Kashyap, S.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21228 USA. [Atreya, S. K.; Francois, P.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Coll, P.] Univ Paris 07, Univ Paris Est Creteil, Lab Interuniv Syst Atmospher, Creteil, France. [Coll, P.] Hop Henri Mondor, CNRS, F-94010 Creteil, France. [Des Marais, D. J.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Fairen, A. G.; Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Fairen, A. G.] INTA CSIC, Ctr Astrobiol, Madrid, Spain. [Grotzinger, J. P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [ten Kate, I. L.] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands. [Leshin, L. A.] Rensselaer Polytech Inst, Dept Earth & Environm Sci, Troy, NY USA. [Leshin, L. A.] Rensselaer Polytech Inst, Sch Sci, Troy, NY USA. [Malespin, C. A.] Univ Space Res Assoc, Goddard Earth Sci & Technol & Res, Columbia, MD USA. [Martin, M. G.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Martin-Torres, F. J.] Inst Andaluz Ciencias Tierra CSIC UGR, Granada, Spain. [Martin-Torres, F. J.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden. [Ming, D. W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. [Navarro-Gonzalez, R.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Steele, A.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Sumner, D. Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Zorzano, M. -P.] Ctr Astrobiol INTA CSIC, Madrid, Spain. RP Freissinet, C (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM caroline.freissinet@nasa.gov; paul.r.mahaffy@nasa.gov RI Gonzalez, Rafael/D-1748-2009; Martin-Torres, Francisco Javier/G-6329-2015; Rodriguez-Manfredi, Jose/L-8001-2014; Zorzano, Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012; Zorzano, Maria-Paz/C-5784-2015; Glavin, Daniel/D-6194-2012; szopa, cyril/C-6865-2015; Ramos, Miguel/K-2230-2014 OI Kashyap, Srishti/0000-0003-4950-9636; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin, Jason/0000-0002-3961-8997; Zorzano, Maria-Paz/0000-0002-4492-9650; Glavin, Daniel/0000-0001-7779-7765; szopa, cyril/0000-0002-0090-4056; Ramos, Miguel/0000-0003-3648-6818 FU French Space Agency (CNES); MSL Participating Scientist Program FX This work could not have been conducted without the continuous support of the SAM and MSL operations, engineering, and scientific teams. NASA provided support for the development and operation of SAM. SAM-GC was supported by funds from the French Space Agency (CNES). C.F. acknowledges the NPP program. C.F., D.P.G., K.E.M., J.L.E., R.E.S., J.P.D., and M.G.M. acknowledge support from the MSL Participating Scientist Program. Data from these SAM experiments are archived in the Planetary Data System (pds.nasa.gov). NR 35 TC 48 Z9 48 U1 26 U2 103 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 495 EP 514 DI 10.1002/2014JE004737 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100009 ER PT J AU Crumpler, LS Arvidson, RE Bell, J Clark, BC Cohen, BA Farrand, WH Gellert, R Golombek, M Grant, JA Guinness, E Herkenhoff, KE Johnson, JR Jolliff, B Ming, DW Mittlefehldt, DW Parker, T Rice, JW Squyres, SW Sullivan, R Yen, AS AF Crumpler, L. S. Arvidson, R. E. Bell, J. Clark, B. C. Cohen, B. A. Farrand, W. H. Gellert, R. Golombek, M. Grant, J. A. Guinness, E. Herkenhoff, K. E. Johnson, J. R. Jolliff, B. Ming, D. W. Mittlefehldt, D. W. Parker, T. Rice, J. W., Jr. Squyres, S. W. Sullivan, R. Yen, A. S. TI Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; rovers; geology; Noachian ID MERIDIANI-PLANUM; BURNS FORMATION; ROCKS; CHEMISTRY; IMPACT; SOILS; WATER AB Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22km diameter Endeavour Crater (Latitude -2 degrees 1633, Longitude -5 degrees 1051). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy. C1 [Crumpler, L. S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. [Arvidson, R. E.; Guinness, E.; Jolliff, B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Bell, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Clark, B. C.; Farrand, W. H.] Space Sci Inst, Boulder, CO USA. [Cohen, B. A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Golombek, M.; Parker, T.; Yen, A. S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Grant, J. A.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. [Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Ming, D. W.; Mittlefehldt, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Rice, J. W., Jr.] Planetary Sci Inst, Tucson, AZ USA. [Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Sullivan, R.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. RP Crumpler, LS (reprint author), New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. EM larry.crumpler@state.nm.us RI Johnson, Jeffrey/F-3972-2015 FU Mars Exploration Rover mission project through the Jet Propulsion Laboratory, California Institute of Technology; NASA; Mars Reconnaissance Orbiter project through the NASA FX This work was supported by the Mars Exploration Rover mission project through contracts with the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. The Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) is supported by the Mars Reconnaissance Orbiter project through the NASA contract to the Jet Propulsion Laboratory, California Institute of Technology. Data are available from the NASA Planetary Data System (https://pds.jpl.nasa.gov/). NR 54 TC 9 Z9 9 U1 6 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR PY 2015 VL 120 IS 3 BP 538 EP 569 DI 10.1002/2014JE004699 PG 32 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CF9AY UT WOS:000352855100011 ER PT J AU Kang, KX Wahr, J Heflin, M Desai, S AF Kang, Kaixuan Wahr, John Heflin, Michael Desai, Shailen TI Stacking global GPS verticals and horizontals to solve for the fortnightly and monthly body tides: Implications for mantle anelasticity SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE body tide; mantle anelasticity; GPS displacements ID CHANDLER-WOBBLE; OCEAN TIDES; FREE OSCILLATION; TIDAL VARIATIONS; SOLID EARTH; DEFORMATION; CONSTRAINTS; ATTENUATION; ALTIMETRY; ROTATION AB The availability of long-term position measurements from permanent GPS stations distributed around the Earth makes it feasible to extract small, globally coherent, long-period geophysical signals from the data. Using 11years of daily vertical and horizontal positions from over 600 permanent GPS stations worldwide, we solve for the amplitude and phase of the fortnightly and monthly body tides by stacking the surface displacements against spherical harmonics and isolating the fortnightly and monthly signals in the stacks. We use our solutions to help constrain the Earth's anelastic properties, which are not well understood within the tidal frequency band. Our error estimates include the effects of the following: (1) random noise across the fortnightly and monthly tidal bands; (2) fortnightly and monthly ocean tide model errors; (3) errors in the diurnal and semidiurnal ocean tide models that alias into the fortnightly and monthly frequency bands; (4) errors in the solid Earth Green's functions used to compute ocean tidal loading corrections; and (5) leakage from GPS draconitic signals at periods close to the fortnightly and monthly frequencies. The mantle anelasticity coefficients we infer from our solutions are consistent with a frequency dependence of mantle Q with in the range 0.1-0.3. C1 [Kang, Kaixuan] China Earthquake Adm, Inst Seismol, Key Lab Earthquake Geodesy, Wuhan, Peoples R China. [Wahr, John] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Wahr, John] Univ Colorado, Cooperat Inst Environm Studies, Boulder, CO 80309 USA. [Heflin, Michael; Desai, Shailen] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kang, KX (reprint author), China Earthquake Adm, Inst Seismol, Key Lab Earthquake Geodesy, Wuhan, Peoples R China. EM kaixuan.kang@gmail.com FU China National Science Funds [41474064, 41204019, 41204058] FX The GPS data for this paper are available at http://sideshow.jpl.nasa.gov/post/series.html. We thank Duncan Agnew and Richard Ray for discussions concerning the ocean load tide and Jim Ray and Xavier Collilieux for comments concerning the GPS aliasing effects. We also thank the Associate Editor and two anonymous referees for their comments on this paper. This work was initiated while K. Kang was visiting the University of Colorado on a national academic exchange program. K. Kang was partially supported by China National Science Funds(41474064, 41204019, and 41204058). S. D. Desai's and M. B. Heflin's contributions were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. NR 48 TC 2 Z9 2 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAR PY 2015 VL 120 IS 3 BP 1787 EP 1803 DI 10.1002/2014JB011572 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CG3EF UT WOS:000353160200024 ER PT J AU Zhou, XY Smith, EJ AF Zhou, Xiaoyan Smith, Edward J. TI Supercriticality of ICME and CIR shocks SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE interplanetary shocks; corotating interaction region; interplanetary coronal mass ejection; interplanetary shock criticality ID COROTATING INTERACTION REGIONS; MAGNETIC-FIELD; INTERPLANETARY SHOCKS; ECLIPTIC-PLANE; MACH NUMBERS; SOLAR-WIND; ULYSSES; EVOLUTION; IONS AB Interplanetary coronal mass ejection (ICME) and corotating interaction region (CIR) shocks are characterized in terms of supercriticality introduced by Edmiston and Kennel (1984) to classify shocks based on whether dissipation is provided by electron resistivity alone or also requires ion viscosity. The condition for determining supercriticality is a critical Mach number, M-C, a function of (Bn), the angle between the upstream magnetic field, B, and the normal to the shock surface, n, and , the ratio of the plasma and magnetic pressures. The criterion was subsequently revised by Kennel (1987) to include dissipation by electron thermal as well as electrical conductivity. Two early separate studies of ICME and CIR shocks motivated our investigation that included several improvements. We use Kennel (1987) and shocks identified by WIND near 1AU and by Ulysses near 5AU from the same solar cycle to provide Occurrence Probability Distributions and statistical information for all parameters. We answer three questions (1) Is the supercriticality of ICME and CIR shocks different? (2) If so, why? (3) Does the latter M-C criterion change the answers? Our conclusions are (1) about two thirds of CIR shocks are supercritical as compared to one third of ICME shocks, (2) although ICME shock speeds are typically higher than CIR shocks, the fast-mode wave speeds are even higher at 1AU than that of CIR shocks at similar to 5AU causing a reduction in Mach numbers, and (3) CIR shocks are also more supercritical than ICME shocks using both criteria with slight differences. C1 [Zhou, Xiaoyan] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Smith, Edward J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Zhou, XY (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. EM xyzhou@igpp.ucla.edu FU National Aeronautics and Space Administration; Jet Propulsion Laboratory FX The results reported here represent one aspect of research carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work at the University of California, Los Angeles was carried out under a subcontract with the Jet Propulsion Laboratory. The assistance of Justin Kasper in clarifying ICME shock parameters is greatly appreciated. Chris Russell provided helpful comments. Data for this paper are available at http://ufa.esac.esa.int/ufa/#data. NR 23 TC 3 Z9 3 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR PY 2015 VL 120 IS 3 BP 1526 EP 1536 DI 10.1002/2014JA020700 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG4EY UT WOS:000353237600004 ER PT J AU Hwang, KJ Sibeck, DG Fok, MCH Zheng, Y Nishimura, Y Lee, JJ Glocer, A Partamies, N Singer, HJ Reeves, GD Mitchell, DG Kletzing, CA Onsager, T AF Hwang, K. -J. Sibeck, D. G. Fok, M. -C. H. Zheng, Y. Nishimura, Y. Lee, J. -J. Glocer, A. Partamies, N. Singer, H. J. Reeves, G. D. Mitchell, D. G. Kletzing, C. A. Onsager, T. TI The global context of the 14 November 2012 storm event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE flux dropout; radiation belt; Van Allen Probes; flux rope; geomagnetic storm ID OUTER RADIATION BELT; ION-CYCLOTRON WAVES; VAN ALLEN RADIATION; GEOMAGNETIC STORMS; RELATIVISTIC ELECTRONS; MAGNETIC STORM; ACCELERATION; PLASMA; CHORUS; FIELD AB From 2 to 5 UT on 14 November 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause approximate to 20-30 min prior to the sequential Van Allen Probes observations. Ground-based magnetograms and all sky images demonstrate repeatable features in conjunction with the dropouts. We combine the various in situ and ground-based measurements to define and understand the global spatiotemporal features associated with the dropouts observed by the Van Allen Probes. We discuss various proposed hypotheses for the mechanism that plausibly caused this storm-time dropout event as well as formulate a new hypothesis that explains the combined in situ and ground-based observations: the earthward motion of magnetic flux ropes containing lobe plasmas that form along an extended magnetotail reconnection line in the near-Earth plasma sheet. C1 [Hwang, K. -J.; Sibeck, D. G.; Fok, M. -C. H.; Zheng, Y.; Glocer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, K. -J.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. [Nishimura, Y.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Lee, J. -J.] Korea Astron & Space Sci Inst, Solar & Space Weather Res Grp, Taejon, South Korea. [Partamies, N.] Finnish Meteorol Inst, Helskinki, Finland. [Singer, H. J.; Onsager, T.] NOAA, Space Weather Predict Ctr, Boulder, CO USA. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mitchell, D. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Hwang, KJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Kyoung-Joo.Hwang@nasa.gov RI Reeves, Geoffrey/E-8101-2011; Partamies, Noora/G-3408-2014 OI Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348; Partamies, Noora/0000-0003-2536-9341 FU NASA; NSF [AGS-1305374] FX This study was supported, in part, by NASA's Van Allen Probes grant to the Goddard Space Flight Center with data from THEMIS, GOES, LANL, Geotail missions, ground magnetometers, and all sky imagers. Geotail, Van Allen Probes, and THEMIS data sets were provided by the Space Physics Data Facility at Goddard Space Flight Center through their Coordinated Data Analysis Web (http://cdaweb.gsfc.nasa.gov) and THEMIS Web (http://themis.ssl.berkeley.edu/). We acknowledge S. Claudepierre for providing data from the MagEIS instrument of the Van Allen Probes Mission. H. Singer (howard.singer@noaa.gov), G. Reeves (reeves@lanl.gov), N. Partamies (noora.partamies@fmi.fi), and Y. Nishimura (toshi@atmos.ucla.edu) provided GOES, LANL, auroral keogram, and high-resolution all sky image data, respectively. K. J. H. thanks E. A. MacDonald for useful discussions. A portion of this work was supported by NSF Magnetospheric Physics grant AGS-1305374. NR 62 TC 3 Z9 3 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR PY 2015 VL 120 IS 3 BP 1939 EP 1956 DI 10.1002/2014JA020826 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG4EY UT WOS:000353237600032 ER PT J AU Kim, H Clauer, CR Engebretson, MJ Matzka, J Sibeck, DG Singer, HJ Stolle, C Weimer, DR Xu, Z AF Kim, H. Clauer, C. R. Engebretson, M. J. Matzka, J. Sibeck, D. G. Singer, H. J. Stolle, C. Weimer, D. R. Xu, Z. TI Conjugate observations of traveling convection vortices associated with transient events at the magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE transient event; TCV; conjugacy; magnetopause ID WIND DYNAMIC PRESSURE; GROUND MAGNETIC SIGNATURES; GEOMAGNETIC SUDDEN COMMENCEMENTS; LATITUDE BOUNDARY-LAYER; FIELD-ALIGNED CURRENTS; FLUX-TRANSFER EVENTS; DAWN-DUSK ASYMMETRY; SOLAR-WIND; IMPULSE EVENTS; TWIN-VORTICES AB Traveling convection vortices (TCVs) are generally produced by field-aligned currents (FACs) at high latitudes associated with transient changes of the magnetopause. This paper presents multipoint conjugate observations of transient events at the magnetopause measured in space and on the ground. The transient events showing radial fluctuation of the magnetopause in association with sudden increases in solar wind dynamic pressure were detected by both the Time History of Events and Macroscale Interactions during Substorms and the Geostationary Operational Environmental Satellite spacecraft. Geomagnetic signatures seen as TCVs in response to the transient events were observed by the ground magnetometer array in Greenland and Canada and their conjugate locations in Antarctica including recently developed Antarctic magnetometers, mostly located along the 40 degrees magnetic meridian. This new conjugate network provides a unique opportunity to observe geomagnetic field signatures over a relatively large region in both hemispheres. This study focuses mainly on the spatial and temporal features of the TCVs in the conjugate hemispheres in relation to the transient events at the magnetopause. The TCV events are characterized by their single or twin vortex, of which the centers are located approximately at 72 degrees-76 degrees magnetic latitude, propagating either dawnward or duskward away from local noon. While interhemispheric conjugacy is expected with an assumption that TCV signatures are created by FACs directed in both hemispheres, our observations suggest that there might be more complex mechanisms contributing the asymmetrical features, perhaps due to field line mapping and/or conductivity differences. C1 [Kim, H.; Clauer, C. R.; Weimer, D. R.; Xu, Z.] Virginia Polytech Inst & State Univ, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA. [Kim, H.; Clauer, C. R.; Weimer, D. R.; Xu, Z.] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Engebretson, M. J.] Augsburg Coll, Dept Phys, Minneapolis, MN USA. [Matzka, J.; Stolle, C.] German Res Ctr Geosci, Helmholtz Ctr Potsdam, GFZ, Potsdam, Germany. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO USA. RP Kim, H (reprint author), Virginia Polytech Inst & State Univ, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA. EM hmkim@vt.edu OI Xu, Zhonghua/0000-0002-3800-2162 FU National Science Foundation [ATM-0922979]; NSF [ANT-0839588, PLR-1243398, PLR-1341493]; NASA [NAS5-02099]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302] FX Support for this research has been provided by the National Science Foundation through grants to Virginia Tech: ATM-0922979 for the development of the Antarctic measurement systems that provided the data and NSF grants ANT-0839588 and PLR-1243398 that have supported the continuing operation of the measurement program, acquisition and processing of the data, and scientific analysis of the data. The work of M. J. Engebretson was supported by NSF grant, PLR-1341493 to Augsburg College. The OMNI and THEMIS data were obtained and processed using THEMIS Data Analysis Software (TDAS). We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission. Specifically, we thank K. H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. The ACE and Cluster data were provided from Coordinated Data Analysis Web (CDAWeb) at http://cdaweb.gsfc.nasa.gov. The GOES data were accessed using the data archive at NOAA Space Weather Prediction Center (http://www.swpc.noaa.gov). The magnetic field tracing tool (IDL GEOPACK DLM) is provided by Haje Korth at Applied Physics Laboratory, Johns Hopkins University. We would like to thank the following persons/institutes for providing ground magnetometer data: Jeff Love at USGS Geomagnetism Program and Lorne McKee at Natural Resources Canada for the INTERMAGNET data (IQA), DTU Space for the Greenland magnetometer data, GFZ Potsdam and Observatory Niemegk for the Kp index, and Polar Experiment Network for Geospace Upper-atmosphere Investigations (PENGUIn) team for the AGO and South Pole data. NR 65 TC 1 Z9 1 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR PY 2015 VL 120 IS 3 BP 2015 EP 2035 DI 10.1002/2014JA020743 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG4EY UT WOS:000353237600036 ER PT J AU O'Brien, TP Claudepierre, SG Looper, MD Blake, JB Fennell, JF Clemmons, JH Roeder, JL Kanekal, SG Manweiler, JW Mitchell, DG Gkioulidou, M Lanzerotti, LJ Spence, HE Reeves, GD Baker, DN AF O'Brien, T. P. Claudepierre, S. G. Looper, M. D. Blake, J. B. Fennell, J. F. Clemmons, J. H. Roeder, J. L. Kanekal, S. G. Manweiler, J. W. Mitchell, D. G. Gkioulidou, M. Lanzerotti, L. J. Spence, H. E. Reeves, G. D. Baker, D. N. TI On the use of drift echoes to characterize on-orbit sensor discrepancies SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE drift echoes; sensor calibration; radiation belts ID RADIATION; ELECTRONS AB We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel's drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen Probes mission. Drift echoes are only easily observed at high energies (100skeV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo technique has provided a significant clue in resolving substantial flux discrepancies between two instruments measuring fluxes near 2MeV. C1 [O'Brien, T. P.; Claudepierre, S. G.; Looper, M. D.; Blake, J. B.; Fennell, J. F.; Clemmons, J. H.; Roeder, J. L.] Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Manweiler, J. W.] Fundamental Technol LLC, Lawrence, KS USA. [Mitchell, D. G.; Gkioulidou, M.] Johns Hopkins Univ, Appl Phys Lab, Space Dept, Laurel, MD USA. [Lanzerotti, L. J.] New Jersey Inst Technol, Dept Phys, Ctr Solar Terr Res, Newark, NJ 07102 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM USA. [Baker, D. N.] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA. RP O'Brien, TP (reprint author), Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA. EM paul.obrien@aero.org RI Gkioulidou, Matina/G-9009-2015; Reeves, Geoffrey/E-8101-2011; OI Gkioulidou, Matina/0000-0001-9979-2164; Reeves, Geoffrey/0000-0002-7985-8098; Clemmons, James/0000-0002-5298-5222 FU University of New Hampshire [10-068]; NASA by JHU/APL [967399]; JHU/APL under NASA [967399, NAS5-01072, 937836] FX The MagEIS portion of this work was funded by contract 10-068 from the University of New Hampshire, derived from NASA Van Allen Probes mission funding via RBSP-ECT funding provided by JHU/APL contract 967399. The REPT work was supported by JHU/APL contract 967399 under NASA's prime contract NAS5-01072. Both MagEIS and REPT analyses were supported by the ECT Science Operations Center at Los Alamos National Lab. The RBSPICE instrument was supported by JHU/APL subcontract 937836 to the New Jersey Institute of Technology under NASA prime contract NAS5-01072. The authors also acknowledge useful discussions with our colleagues at The Aerospace Corporation, The Laboratory for Atmospheric and Space Physics at University of Colorado, Boulder, the New Jersey Institute of Technology, and Fundamental Technologies, LLC. ECT data used in the paper are available from www.rbsp-ect.lanl.gov or from the author (paul.obrien@aero.org). RBSPICE data are available from rbspice.ftecs.com. NR 16 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR PY 2015 VL 120 IS 3 BP 2076 EP 2087 DI 10.1002/2014JA020859 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG4EY UT WOS:000353237600040 ER PT J AU Maier, KL Gatti, E Wan, E Ponti, DJ Pagenkopp, M Starratt, SW Olson, HA Tinsley, JC AF Maier, Katherine L. Gatti, Emma Wan, Elmira Ponti, Daniel J. Pagenkopp, Mark Starratt, Scott W. Olson, Holly A. Tinsley, John C. TI Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, USA SO QUATERNARY RESEARCH LA English DT Article DE Tephra; Volcanic ash; Pumice; Facies; Rockland ash bed; Loleta ash bed; Sacramento-San Joaquin Delta; Cascades; Fluvial channel; Chronostratigraphy ID FRANCISCO BAY ESTUARY; WESTERN UNITED-STATES; YOUNGEST TOBA TUFF; SEDIMENT ACCUMULATION; MISSISSIPPI RIVER; CENTRAL JAPAN; VOLCANICLASTIC RESEDIMENTATION; STRATIGRAPHIC MARKER; LATE PLEISTOCENE; COASTAL SYSTEM AB We document characteristics of tephra, including fades and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed tephra deposits correlate with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (similar to 0.780 Ma), 2) the Rockland ash bed (similar to 0.575 Ma), 3) the Loleta ash bed (similar to 0.390 Ma), and 4) middle Pleistocene volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (similar to 0.180 Ma). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades and occurs in up to >7-m-thick deposits in cores from similar to 40 m subsurface in the Sacramento-San Joaquin Delta. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in a subsurface Quaternary stratigraphic framework necessary for future hazard assessment. Published by Elsevier Inc. on behalf of University of Washington. C1 [Maier, Katherine L.; Gatti, Emma; Ponti, Daniel J.; Tinsley, John C.] US Geol Survey, Earthquake Sci Ctr, Menlo Pk, CA 94025 USA. [Gatti, Emma] CALTECH, Jet Prop Lab, NASA, Planetary Surface Instruments Grp, Pasadena, CA 91109 USA. [Wan, Elmira; Olson, Holly A.] US Geol Survey, Geol Minerals Energy & Geophys Sci Ctr, Menlo Pk, CA 94025 USA. [Pagenkopp, Mark] Calif Dept Water Resources, West Sacramento, CA 95691 USA. [Starratt, Scott W.] US Geol Survey, Volcano Sci Ctr, Menlo Pk, CA 94025 USA. RP Maier, KL (reprint author), US Geol Survey, Pacific Coastal & Marine Sci Ctr, 400 Nat Bridges Dr, Santa Cruz, CA 95060 USA. EM kcoble@usgs.gov FU U.S. Geological Survey (USGS); California Department of Water Resources; USGS Mendenhall Postdoctoral Fellowship; Delta Science Fellowship FX Financial support for this research and the authors has been provided by the U.S. Geological Survey (USGS), California Department of Water Resources, the USGS Mendenhall Postdoctoral Fellowship (K.L. Maier), and the Delta Science Fellowship (E. Gatti). We thank Brad Aagaard, John Barron, Rob Barry, Mike Bennett, Tom Brocher, David Burtt, Matthew Coble, Steve DeLong, Shane Detweiler, Mike Diggles, Nick Hightower, Jack Hillhouse, Tom Holzer, Kristin Keenan, Keith Knudsen, Dave Perry, Carla Rosa, Scott Sochar, Steven Springhorn, Paul Spudich, Jorge Vasquez, Dave Wahl, and Heather Wright for supporting this research and manuscript development. We are grateful to Jon Warrick, Jason Addison, Siwan Davies, anonymous reviewers, Editor Kenneth Adams, and Senior Editor Derek Booth for providing thorough and helpful comments and reviews for this manuscript. NR 97 TC 0 Z9 0 U1 2 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 EI 1096-0287 J9 QUATERNARY RES JI Quat. Res. PD MAR PY 2015 VL 83 IS 2 BP 378 EP 393 DI 10.1016/j.yqres.2014.12.007 PG 16 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CG2GS UT WOS:000353093500013 ER PT J AU Stephens, GL O'Brien, D Webster, PJ Pilewski, P Kato, S Li, JL AF Stephens, Graeme L. O'Brien, Denis Webster, Peter J. Pilewski, Peter Kato, Seiji Li, Jui-lin TI The albedo of Earth SO REVIEWS OF GEOPHYSICS LA English DT Review ID ENERGY SYSTEM CERES; ANGULAR-DISTRIBUTION MODELS; RADIATIVE FLUX ESTIMATION; OF-ATMOSPHERE SHORTWAVE; INTERANNUAL VARIABILITY; NORTHERN-HEMISPHERE; DECADAL VARIABILITY; SOLAR VARIABILITY; CLIMATE MODELS; EL-NINO AB The fraction of the incoming solar energy scattered by Earth back to space is referred to as the planetary albedo. This reflected energy is a fundamental component of the Earth's energy balance, and the processes that govern its magnitude, distribution, and variability shape Earth's climate and climate change. We review our understanding of Earth's albedo as it has progressed to the current time and provide a global perspective of our understanding of the processes that define it. Joint analyses of surface solar flux data that are a complicated mix of measurements and model calculations with top-of-atmosphere (TOA) flux measurements from current orbiting satellites yield a number of surprising results including (i) the Northern and Southern Hemispheres (NH, SH) reflect the same amount of sunlight within similar to 0.2 Wm(-2). This symmetry is achieved by increased reflection from SH clouds offsetting precisely the greater reflection from the NH land masses. (ii) The albedo of Earth appears to be highly buffered on hemispheric and global scales as highlighted by both the hemispheric symmetry and a remarkably small interannual variability of reflected solar flux (similar to 0.2% of the annual mean flux). We show how clouds provide the necessary degrees of freedom to modulate the Earth's albedo setting the hemispheric symmetry. We also show that current climate models lack this same degree of hemispheric symmetry and regulation by clouds. The relevance of this hemispheric symmetry to the heat transport across the equator is discussed. C1 [Stephens, Graeme L.; Li, Jui-lin] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Stephens, Graeme L.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Stephens, Graeme L.] Meteorol Off, Exeter, Devon, England. [O'Brien, Denis] OBrien R&D LLC, Livermore, CO USA. [Webster, Peter J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Pilewski, Peter] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Pilewski, Peter] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Kato, Seiji] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Stephens, GL (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM graeme.stephens@jpl.nasa.gov NR 106 TC 21 Z9 21 U1 5 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD MAR PY 2015 VL 53 IS 1 BP 141 EP 163 DI 10.1002/2014RG000449 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CG8KR UT WOS:000353556900005 ER PT J AU Buie, MW Olkin, CB Merline, WJ Walsh, KJ Levison, HF Timerson, B Herald, D Owen, WM Abramson, HB Abramson, KJ Breit, DC Caton, DB Conard, SJ Croom, MA Dunford, RW Dunford, JA Dunham, DW Ellington, CK Liu, YZ Maley, PD Olsen, AM Preston, S Royer, R Scheck, AE Sherrod, C Sherrod, L Swift, TJ Taylor, LW Venable, R AF Buie, Marc W. Olkin, Catherine B. Merline, William J. Walsh, Kevin J. Levison, Harold F. Timerson, Brad Herald, Dave Owen, William M., Jr. Abramson, Harry B. Abramson, Katherine J. Breit, Derek C. Caton, D. B. Conard, Steve J. Croom, Mark A. Dunford, R. W. Dunford, J. A. Dunham, David W. Ellington, Chad K. Liu, Yanzhe Maley, Paul D. Olsen, Aart M. Preston, Steve Royer, Ronald Scheck, Andrew E. Sherrod, Clay Sherrod, Lowell Swift, Theodore J. Taylor, Lawrence W., III Venable, Roger TI SIZE AND SHAPE FROM STELLAR OCCULTATION OBSERVATIONS OF THE DOUBLE JUPITER TROJAN PATROCLUS AND MENOETIUS SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; minor planets, asteroids: individual (Patroclus, Menoetius); occultations ID BINARIES AB We present results of a stellar occultation by the Jupiter Trojan asteroid Patroclus and its nearly equal size moon, Menoetius. The geocentric mid-time of the event was 2013 October 21 06:43:02 UT. Eleven sites out of 36 successfully recorded an occultation. Seven chords across Patroclus yielded an elliptical limb fit of 124.6 by 98.2 km. There were six chords across Menoetius that yielded an elliptical limb fit of 117.2 by 93.0 km. There were three sites that got chords on both objects. At the time of the occultation we measured a separation of 664.6 km (0.247 arcsec) and a position angle for Menoetius of 265 degrees.7 measured eastward from J2000 north. Combining this occultation data with previous light curve data, the axial ratios of both objects are 1.3:1.21:1, indicative of a mostly oblate ellipsoid with a slight asymmetry in its equatorial projection. The oblate shape is not an equilibrium shape for the current rotation period, but would be if it were rotating with an similar to 8 h period. This faster period is consistent with a pre-evolved state of the system with an orbital separation that is 50% smaller. Our best estimate of the system density is 0.88 g cm(-3). C1 [Buie, Marc W.; Olkin, Catherine B.; Merline, William J.; Walsh, Kevin J.; Levison, Harold F.] Southwest Res Inst, Boulder, CO 80302 USA. [Timerson, Brad; Abramson, Harry B.; Abramson, Katherine J.; Conard, Steve J.; Dunford, R. W.; Dunford, J. A.; Olsen, Aart M.; Preston, Steve; Royer, Ronald; Scheck, Andrew E.; Swift, Theodore J.; Venable, Roger] Int Occultat Timing Assoc, Topeka, KS USA. [Owen, William M., Jr.] JPL, Pasadena, CA USA. [Breit, Derek C.] IOTA Breit Ideas Observ, Morgan Hill, CA USA. [Caton, D. B.] Appalachian State Univ, Dept Phys & Astron, Dark Sky Observ, Boone, NC 28608 USA. [Croom, Mark A.; Taylor, Lawrence W., III] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Dunham, David W.] IOTA, Greenbelt, MD 20770 USA. [Ellington, Chad K.] IOTA Fundamental Chief Observ, Owings, MD 20736 USA. [Maley, Paul D.] IOTA, Houston, TX USA. [Sherrod, Clay; Sherrod, Lowell] Arkansas Sky Observ, IOTA, Bigelow, AR USA. RP Buie, MW (reprint author), Southwest Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM buie@boulder.swri.edu; btimerson@rochester.rr.com; DRHerald@bigpond.net.au; wmo@jpl.nasa.gov; Harry.Kat86@cox.net; breit_ideas@poyntsource.com; catondb@appstate.edu; steve.conard@comcast.net; mark.a.croom@nasa.gov; dunham@starpower.net; ckellington@gmail.com; liuyanzhe@gmail.com; pdmaley@yahoo.com; aartmolsen@comcast.net; stevepr@acm.org; ronroy@springvillewireless.com; schecae1@gmail.com; drclay@tcworks.net; tjswift@omsoft.com; lawrence.w.taylor@nasa.gov; rjvmd@hughes.net NR 20 TC 2 Z9 2 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2015 VL 149 IS 3 AR 113 DI 10.1088/0004-6256/149/3/113 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1KM UT WOS:000352304000024 ER PT J AU Burgasser, AJ Gillon, M Melis, C Bowler, BP Michelsen, EL Gagliuffi, DB Gelino, CR Jehin, E Delrez, L Manfroid, J Blake, CH AF Burgasser, Adam J. Gillon, Michael Melis, Carl Bowler, Brendan P. Michelsen, Eric L. Gagliuffi, Daniella Bardalez Gelino, Christopher R. Jehin, E. Delrez, L. Manfroid, J. Blake, Cullen H. TI WISE J072003.20-084651.2: AN OLD AND ACTIVE M9.5+T5 SPECTRAL BINARY 6 pc FROM THE SUN SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: spectroscopic; binaries: visual; brown dwarfs; stars: individual (WISE J072003.20-084651.2); stars: low-mass; stars: magnetic field ID SUPERCOSMOS SKY SURVEY; LOW-MASS STARS; DWARF/T-DWARF TRANSITION; PROPER MOTION STARS; PHASE DISPERSION MINIMIZATION; NEAR-INFRARED SPECTROSCOPY; ADAPTIVE OPTICS SYSTEM; L FIELD DWARFS; TO 5 PC; BROWN DWARF AB We report observations of the recently discovered, nearby late-M dwarf WISE J072003.20-084651.2. New astrometric measurements obtained with the TRAPPIST telescope improve the distance measurement to 6.0 +/- 1.0 pc and confirm the low tangential velocity (3.5 +/- 0.6 km s(-1)) reported by Scholz. Low-resolution optical spectroscopy indicates a spectral type of M9.5 and prominent Ha emission (< log(10)L(H alpha)/L-bol > = -4.68 +/- 0.06), but no evidence of subsolar metallicity or Li I absorption. Near-infrared spectroscopy reveals subtle peculiarities that can be explained by the presence of a T5 binary companion, and high-resolution laser guide star adaptive optics imaging reveals a faint (Delta H = 4.1) candidate source 0 ''.14 (0.8 AU) from the primary. With high-resolution optical and near-infrared spectroscopy, we measure a stable radial velocity of +83.8 +/- 0.3 km s(-1), indicative of old disk kinematics and consistent with the angular separation of the possible companion. We measure a projected rotational velocity of v sin i = 8.0 +/- 0.5 km s(-1) and find evidence of low-level variabilty (similar to 1.5%) in a 13 day TRAPPIST light curve, but cannot robustly constrain the rotational period. We also observe episodic changes in brightness (1%-2%) and occasional flare bursts (4%-8%) with a 0.8% duty cycle, and order-of-magnitude variations in H alpha line strength. Combined, these observations reveal WISE J0720-0846 to be an old, very low-mass binary whose components straddle the hydrogen burning minimum mass, and whose primary is a relatively rapid rotator and magnetically active. It is one of only two known binaries among late M dwarfs within 10 pc of the Sun, both of which harbor a mid T-type brown dwarf companion. We show that while this specific configuration is rare (less than or similar to 1.6% probability), roughly 25% of binary companions to late-type M dwarfs in the local population are likely low-temperature T or Y brown dwarfs. C1 [Burgasser, Adam J.; Melis, Carl; Michelsen, Eric L.; Gagliuffi, Daniella Bardalez] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Burgasser, Adam J.; Jehin, E.; Delrez, L.; Manfroid, J.] IAC, San Cristobal la Laguna, Tenerife, Spain. [Gillon, Michael] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Bowler, Brendan P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91101 USA. [Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Gelino, Christopher R.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Blake, Cullen H.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RP Burgasser, AJ (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM aburgasser@ucsd.edu FU National Science Foundation [AST-1313428]; Belgian Fund for Scientific Research (F.R.S.-FNRS) [FRFC 2.5.594.09.F]; F.R.S.-FNRS FX The authors thank Bill Golisch and John Rayner at IRTF; Wayne Earthman, Erik Kovacs, Donnie Redel and Pavl Zachary at Lick Observatory; Diane Harmer and Krissy Reetz at KPNO; Scott Dahm, Greg Doppmann, Heather Hershley, Gary Punawai, Luca Rizzi, and Terry Stickel at Keck for their assistance with the observations. We also acknowledge useful discussions with Gregg Hallinan and Stuart P. Littlefair on M dwarf magnetic activity; and John Gizis, Todd Henry, J. Davy Kirkpatrick, Nicholas Lodieu, and I. Neill Reid on the 10 pc sample. We thank our referee, R. Scholz, for his very helpful comments that allowed us to considerably improve the manuscript. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France; the M, L, T, and Y dwarf compendium housed at DwarfArchives.org; and the SpeX Prism Spectral Libraries at http://www.browndwarfs. org/spexprism. C. M. acknowledges support from the National Science Foundation under award No. AST-1313428. TRAP-PIST is a project funded by the Belgian Fund for Scientific Research (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Foundation. M. Gillon and E. Jehin are F.R.S.-FNRS Research Associates. L. Delrez and J. Manfroid acknowledge the support of the F.R.S.-FNRS for their PhD theses. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 138 TC 11 Z9 11 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2015 VL 149 IS 3 AR 104 DI 10.1088/0004-6256/149/3/104 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1KM UT WOS:000352304000015 ER PT J AU Chiang, HF Reipurth, B Hillenbrand, L AF Chiang, Hsin-Fang Reipurth, Bo Hillenbrand, Lynne TI THE HERBIG BE STAR V1818 ORI AND ITS ENVIRONMENT SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: individual (V1818 Ori); stars: emission-line, Be; stars: variables: T Tauri, Herbig Ae/Be ID YOUNG STELLAR OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; SKY AUTOMATED SURVEY; INFRARED FILTER SET; CLASS-I PROTOSTARS; AE/BE STARS; MAUNA-KEA; MOLECULAR CLOUDS; REFLECTION NEBULAE; SUBARU TELESCOPE AB The little-studied Herbig Be star V1818 Ori is located in the direction of the southern L1641 cloud and the Mon R2 star-forming complex, and is most likely associated with the latter at a distance of similar to 900 pc. A high-resolution spectrum is consistent with a spectral type around B7 V, with lines of H alpha, the red Ca II triplet, and several forbidden lines in emission. An All Sky Automated Survey V-band light curve spanning 9 yr reveals major variability with deep absorption episodes reminiscent of the UX Orionis stars. We have searched for additional young stars clustering around V1818 Ori using grism images and the 2MASS and Wide-field Infrared Survey Explorer catalogs, and have found almost two dozen fainter stars with evidence of youth. Direct images show that the bright star IRAS 05510-1025, only about 3 arcmin from V1818 Ori, is surrounded by a reflection nebula, indicating its association with a molecular cloud. A spectrum of the star shows no emission-lines, and it is found to be a close binary with late B and early G type components. Its radial velocity indicates that it is an interloper, accidentally passing through the cloud and not physically associated with V1818 Ori. C1 [Chiang, Hsin-Fang; Reipurth, Bo] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. [Chiang, Hsin-Fang; Reipurth, Bo] Univ Hawaii Manoa, NASA, Astrobiol Inst, Hilo, HI 96720 USA. [Hillenbrand, Lynne] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Chiang, HF (reprint author), Univ Hawaii Manoa, Inst Astron, 640 North Aohoku Pl, Hilo, HI 96720 USA. EM hchiang@ifa.hawaii.edu; reipurth@ifa.hawaii.edu OI Reipurth, Bo/0000-0001-8174-1932 FU W.M. Keck Foundation; National Aeronautics and Space Administration; National Science Foundation; National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technologies Project [NCC5-626]; U.S. Government [NAG W-2166]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA09DA77A] FX We are grateful to the late George H. Herbig for discussions on HIRES reduction. We thank Michael S. Connelley for discussions on IR data reduction, Tae-Soo Pyo for his assistance during the IRCS observations, and Trent Dupuy for his Keck AO observations. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This research made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication made use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research made use of Montage, funded by the National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. The code is maintained by the NASA/IPAC Infrared Science Archive. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. We acknowledge support by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science. NR 58 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2015 VL 149 IS 3 AR 108 DI 10.1088/0004-6256/149/3/108 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1KM UT WOS:000352304000019 ER PT J AU Jones, T Wang, X Schmidt, KB Treu, T Brammer, GB Bradac, M Dressler, A Henry, AL Malkan, MA Pentericci, L Trenti, M AF Jones, T. Wang, X. Schmidt, K. B. Treu, T. Brammer, G. B. Bradac, M. Dressler, A. Henry, A. L. Malkan, M. A. Pentericci, L. Trenti, M. TI THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). II. GAS-PHASE METALLICITY AND RADIAL GRADIENTS IN AN INTERACTING SYSTEM AT Z similar or equal to 2 SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: ISM; gravitational lensing: strong ID STAR-FORMING GALAXIES; EMISSION-LINE GALAXIES; ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; HIGH-REDSHIFT; MILKY-WAY; ABUNDANCE GRADIENTS; DWARF GALAXIES; FORMATION HISTORIES; PHYSICAL-PROPERTIES AB We present spatially resolved gas-phase metallicity for a system of three galaxies at z = 1.85 detected in the Grism Lens-Amplified Survey from Space (GLASS). The combination of Hubble Space Telescope (HST's) diffraction limit and strong gravitational lensing by the cluster MACS J0717+3745 results in a spatial resolution of similar or equal to 200-300 pc, enabling good spatial sampling despite the intrinsically small galaxy sizes. The galaxies in this system are separated by similar to 50-200 kpc in projection and are likely in an early stage of interaction, evidenced by relatively high specific star formation rates. Their gas-phase metallicities are consistent with larger samples at similar redshift, star formation rate (SFR), and stellar mass. We obtain a precise measurement of the metallicity gradient for one galaxy and find a shallow slope compared to isolated galaxies at high redshift, consistent with a flattening of the gradient due to gravitational interaction. An alternative explanation for the shallow metallicity gradient and elevated SFR is rapid recycling of metal-enriched gas, but we find no evidence for enhanced gas-phase metallicities which should result from this effect. Notably, the measured stellar masses log M*/M-circle dot = 7.2-9.1 probe to an order of magnitude below previous mass-metallicity studies at this redshift. The lowest mass galaxy has properties similar to those expected for Fornax at this redshift, indicating that GLASS is able to directly study the progenitors of local group dwarf galaxies on spatially resolved scales. Larger samples from the full GLASS survey will be ideal for studying the effects of feedback, and the time evolution of metallicity gradients. These initial results demonstrate the utility of HST spectroscopy combined with gravitational lensing for characterizing resolved physical properties of galaxies at high redshift. C1 [Jones, T.; Wang, X.; Schmidt, K. B.; Treu, T.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Treu, T.; Malkan, M. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Brammer, G. B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bradac, M.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Dressler, A.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Henry, A. L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pentericci, L.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Trenti, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Trenti, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. RP Jones, T (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM tajones@physics.ucsb.edu FU Southern California Center for Galaxy Evolution through a CGE Fellowship; NASA [HST-13459, NAS 5-26555]; Packard Foundation; HST Frontier Fields program FX We thank R. Maiolino for providing the metallicity calibrations used in this work, and B. Gibson for providing metallicity gradient evolution tracks from simulations. We thank the anonymous referee for a constructive report which improved the clarity of this paper. T. Johnson and K. Sharon are acknowledged for providing the map of the phase angle. T.A.J. acknowledges support from the Southern California Center for Galaxy Evolution through a CGE Fellowship. We acknowledge support from NASA through grant HST-13459. T. T. acknowledges support by the Packard Foundation in the form of a Packard Research Fellowship and thanks the American Academy in Rome and the Observatory of Monteporzio Catone for their generous hospitality. This paper is based on observations made with the NASA/ESA Hubble Space Telescope, and utilizes gravitational lensing models produced by PIs Bradac, Ebeling, Merten & Zitrin, Sharon, and Williams funded as part of the HST Frontier Fields program conducted by STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The lens models were obtained from the Mikulski Archive for Space Telescopes (MAST). NR 82 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAR PY 2015 VL 149 IS 3 AR 107 DI 10.1088/0004-6256/149/3/107 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CF1KM UT WOS:000352304000018 ER PT J AU Massa, G Graham, T Haire, T Flemming, C Newsham, G Wheeler, R AF Massa, Gioia Graham, Thomas Haire, Tim Flemming, Cedric, II Newsham, Gerard Wheeler, Raymond TI Light-emitting Diode Light Transmission through Leaf Tissue of Seven Different Crops SO HORTSCIENCE LA English DT Article DE anthocyanin; bioregenerative life support; canola; chlorophyll content; controlled-environment plant production; cucumber; intracanopy; lettuce; pepper; radish; soybean ID PLANT-GROWTH; GREEN-LIGHT; PHOTOSYNTHESIS; YIELD; QUALITY; DENSITY; LETTUCE; CANOPY AB Significant advances in controlled-environment (CE) plant production lighting have been made in recent years, driven by rapid improvements in light-emitting diode (LED) technologies. Aside from energy efficiency gains, LEDs offer the ability to customize the spectrum delivered to a crop, which may have untold benefits for growers and researchers alike. Understanding how these specific wavebands are attenuated by plant tissue is important if lighting engineers are to fully optimize systems for CE plant production. In this study, seven different greenhouse and field crops (radish, Raphanus sativus 'Cherry Bomb II'; red romaine lettuce, Lactuca sativa 'Outredgeous', green leaf lettuce, Lactuca sativa 'Waldmann's Green'; pepper, Capsicum annuum 'Fruit Basket'; soybean, Glycine max 'Hoyt'; cucumber, Cucumis sativus 'Spacemaster'; canola, Brassica napus 'Westar') were grown in CE chambers under two different light intensities (225 and 420 mu mol.m(-2).s(-1)). Intact, fully expanded upper canopy leaves were used to determine the level of light transmission, at two to three different plant ages, across seven different wavebands with peaks at 400, 450, 530, 595, 630, 655, and 735 urn. The photosynthetic photon flux (PPF) environment that plants were grown in affected light transmission across the different LED wavelengths in a crop-dependent manner. Plant age had no effect on light transmission at the time intervals examined. Specific waveband transmission from the seven LED sources varied similarly across plant types with low transmission of blue and red wavelengths, intermediate transmission of green and amber wavelengths, and the highest transmission at the far-red wavelengths. Higher native PPF increased anthocyanin levels in red romaine lettuce compared with the lower native PPF treatment. Understanding the differences in light transmission will inform the development of novel, energy-saving lighting architectures for CE plant growth. C1 [Massa, Gioia; Graham, Thomas; Haire, Tim; Flemming, Cedric, II; Newsham, Gerard; Wheeler, Raymond] NASA, Merritt Isl, FL 32899 USA. RP Massa, G (reprint author), NASA, Merritt Isl, FL 32899 USA. EM gioia.massa@nasa.gov OI Haire, Timothy/0000-0002-0718-8232 FU Florida Space Grant Consortium; Oak Ridge Associated Universities (ORAU) NASA Post-Doctoral Research Fellowship Program; Kennedy Space Center; Orbital Technologies Corporation (ORBITEC) Madison, WI; NASA CTPAIR program FX Support for this work was provided through the Florida Space Grant Consortium, Oak Ridge Associated Universities (ORAU) NASA Post-Doctoral Research Fellowship Program, Kennedy Space Center (Gioia Massa; Thomas Graham), and Orbital Technologies Corporation (ORBITEC) Madison, WI (LED supplier). Cedric Flemming was supported through the NASA CTPAIR program. NR 40 TC 2 Z9 2 U1 6 U2 57 PU AMER SOC HORTICULTURAL SCIENCE PI ALEXANDRIA PA 113 S WEST ST, STE 200, ALEXANDRIA, VA 22314-2851 USA SN 0018-5345 EI 2327-9834 J9 HORTSCIENCE JI Hortscience PD MAR PY 2015 VL 50 IS 3 BP 501 EP 506 PG 6 WC Horticulture SC Agriculture GA CF7RM UT WOS:000352754000029 ER PT J AU Collins, MJ Denbina, M Minchew, B Jones, CE Holt, B AF Collins, Michael J. Denbina, Michael Minchew, Brent Jones, Cathleen E. Holt, Benjamin TI On the Use of Simulated Airborne Compact Polarimetric SAR for Characterizing Oil-Water Mixing of the Deepwater Horizon Oil Spill SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Circular polarization; compact polarimetry (CP); oil spill; synthetic aperture radar (SAR) ID SYNTHETIC-APERTURE RADAR; SYMMETRY PROPERTIES; POL SAR; WAVES; SCATTERING; BACKSCATTER; SURFACE; IMAGES AB Compact polarimetry (CP) synthetic aperture radar (SAR) is a form of coherent dual-pol SAR that has been shown to have great potential for maritime surveillance applications such as ship and ice detection. In this paper, we demonstrate the potential of CP data for oil spill characterization. As the availability of CP data is limited at this time, we simulate CP image data from UAVSAR L-Band quad-polarized images. We reconstruct quad-pol SAR data (termed pseudo-quad) from these simulated CP SAR data, and calculate an oil-water mixing index, termed Mdex. We show that the differences between the pseudo-quad and quadpol Mdex maps are negligible. This contributes to the case that CP SAR has great potential for multiple applications in maritime surveillance. C1 [Collins, Michael J.; Denbina, Michael] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada. [Minchew, Brent] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA. [Jones, Cathleen E.; Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Collins, MJ (reprint author), Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada. EM michael.collins@ucalgary.ca FU Natural Science and Engineering Research Council (NSERC) of Canada; Jet Propulsion Laboratory, Pasadena, CA FX The work of M. J. Collins was supported by the Natural Science and Engineering Research Council (NSERC) of Canada, and the Jet Propulsion Laboratory, Pasadena, CA, who sponsored his sabbatical visit. NR 41 TC 9 Z9 10 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD MAR PY 2015 VL 8 IS 3 BP 1062 EP 1077 DI 10.1109/JSTARS.2015.2401041 PG 16 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA CF1BS UT WOS:000352279200011 ER PT J AU Bloem, M Bambos, N AF Bloem, Michael Bambos, Nicholas TI Ground Delay Program Analytics with Behavioral Cloning and Inverse Reinforcement Learning SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS LA English DT Article AB Historical data are used to build two types of models that predict Ground Delay Program implementation decisions and produce insights into how and why those decisions are made. More specifically, behavioral cloning and inverse reinforcement learning models are built that predict hourly Ground Delay Program implementation at Newark Liberty International and San Francisco International airports. Data available to the models include actual and scheduled air traffic metrics and observed and forecasted weather conditions. The developed random forest models are substantially better at predicting hourly Ground Delay Program implementation for these airports than the developed inverse reinforcement learning models. However, all of the models struggle to predict the initialization and cancellation of Ground Delay Programs. The structure of the models are also investigated in order to gain insights into Ground Delay Program implementation decision making. Notably, characteristics of both types of model suggest that Ground Delay Program implementation decisions are more tactical than strategic: they are made primarily based on conditions now or conditions anticipated in only the next couple of hours. C1 [Bloem, Michael] NASA, Ames Res Ctr, Syst Modeling & Optimizat Branch, Moffett Field, CA 94035 USA. [Bambos, Nicholas] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA. [Bambos, Nicholas] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. RP Bloem, M (reprint author), NASA, Ames Res Ctr, Syst Modeling & Optimizat Branch, MS 210-15, Moffett Field, CA 94035 USA. EM michael.bloem@nasa.gov; bambos@stanford.edu NR 33 TC 2 Z9 2 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 EI 2327-3097 J9 J AEROSP INFORM SYST JI J. Aerosp. Inf. Syst. PD MAR PY 2015 VL 12 IS 3 BP 299 EP 313 DI 10.2514/1.I010304 PG 15 WC Engineering, Aerospace SC Engineering GA CF8DH UT WOS:000352785300001 ER PT J AU Balaban, E Saxena, A Narasimhan, S Roychoudhury, I Koopmans, M Ott, C Goebel, K AF Balaban, Edward Saxena, Abhinav Narasimhan, Sriram Roychoudhury, Indranil Koopmans, Michael Ott, Carl Goebel, Kai TI Prognostic Health-Management System Development for Electromechanical Actuators SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS LA English DT Article ID FLIGHT AB Electromechanical actuators have been gaining increased acceptance as safety-critical actuation devices in the next generation of aircraft and spacecraft. The aerospace manufacturers are not ready, however, to completely embrace electromechanical actuators for all applications due to apprehension with regard to some of the more critical fault modes. This work aims to help address these concerns by developing and testing a prognostic health-management system that diagnoses electromechanical actuator faults and employs prognostic algorithms to track fault progression and predict the actuator's remaining useful life. The diagnostic algorithm is implemented using a combined model-based and data-driven reasoner. The prognostic algorithm, implemented using Gaussian process regression, estimates the remaining life of the faulted component. The paper also covers the selection of fault modes for coverage and methods developed for fault injection. Validation experiments were conducted in both laboratory and flight conditions using a flyable electromechanical actuator test stand. The stand allows test actuators to be subjected to realistic environmental and operating conditions while providing the capability to safely inject and monitor propagation of various fault modes. The paper covers both diagnostic and prognostic run-to-failure experiments, conducted in laboratory and flight conditions for several types of faults. The experiments demonstrated robust fault diagnosis on the selected set of component and sensor faults and high-accuracy predictions of failure time in prognostic scenarios. C1 [Balaban, Edward; Goebel, Kai] NASA, Ames Res Ctr, Intelligent Syst Div, Discovery & Syst Hlth Area, Moffett Field, CA 94035 USA. [Saxena, Abhinav; Roychoudhury, Indranil] NASA, Ames Res Ctr, SGT Inc, Intelligent Syst Div,Discovery & Syst Hlth Area, Moffett Field, CA 94035 USA. [Narasimhan, Sriram] Univ Calif Santa Cruz, NASA, Ames Res Ctr, Intelligent Syst Div,Discovery & Syst Hlth Area, Moffett Field, CA 94035 USA. [Ott, Carl] Tesla Motors, Palo Alto, CA 94035 USA. [Ott, Carl] NASA, Ames Res Ctr, US Army, Aviat Dev Directorate, Moffett Field, CA 94035 USA. RP Balaban, E (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, Discovery & Syst Hlth Area, MS 269-4, Moffett Field, CA 94035 USA. EM edward.balaban@nasa.gov; abhinav.saxena@nasa.gov; sriram.narasimhan@nasa.gov; indranil.roychoudhury@nasa.gov; michael.t.koopmans@gmail.com; carl.r.ott.mil@mail.mil; kai.goebel@nasa.gov FU NASA FX The funding for this work was provided by the NASA Aviation Safety Program, Integrated Vehicle Health Management and Systemwide Safety Assurance Technologies projects. We would like to thank our colleagues at NASA Ames Research Center for both their help with this research and in preparation of the manuscript. A special thanks goes to Catlin Mattheis and Austin Lawrence, who helped to create the original Flyable electromechanical actuator (FLEA) testbed prototype while at California Polytechnic State University. Steven Braddom, formerly of the U.S. Army Aeroflightdynamics (AFFD) Directorate Flight Projects Office, provided steadfast support for the initial UH-60 flight tests. The flight tests would also not have been possible without the support of AFFD engineers, technicians, and pilots (Casey Blaskowski, Gary Leong, Gary Fayaud, Ellazar Barrientos, Richard Huber, Jay Fletcher, Juan Saucedo, Scott Miller, Ernie Moralez, Munro Dearing, Randall Watson, and Samuel Caires). We also express our gratitude to Steven Fletcher, Bruce Felt, Pete Chaplin, Phillip Jensen, and Minh Wong for their assistance in fabricating the various components of the FLEA. NR 38 TC 5 Z9 7 U1 2 U2 17 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 1940-3151 EI 2327-3097 J9 J AEROSP INFORM SYST JI J. Aerosp. Inf. Syst. PD MAR PY 2015 VL 12 IS 3 BP 329 EP 344 DI 10.2514/1.I010171 PG 16 WC Engineering, Aerospace SC Engineering GA CF8DH UT WOS:000352785300003 ER PT J AU Rumsey, CL Lee-Rausch, EM AF Rumsey, C. L. Lee-Rausch, E. M. TI NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling SO JOURNAL OF AIRCRAFT LA English DT Article ID HIGH-LIFT FLOWS; ONE-EQUATION; PREDICTION AB Flow about the NASA trapezoidal wing is computed with several turbulence models by using grids from the first high-lift prediction workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently developed four-equation transition model is used and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves agreement with the experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing-tip vortex as it convects downstream. However, none of the models improve the prediction of flap surface pressures near the wing tip. C1 [Rumsey, C. L.; Lee-Rausch, E. M.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. RP Rumsey, CL (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. EM C.L.Rumsey@nasa.gov; E.Lee-Rausch@nasa.gov NR 39 TC 3 Z9 3 U1 1 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2015 VL 52 IS 2 BP 496 EP 509 DI 10.2514/1.C032754 PG 14 WC Engineering, Aerospace SC Engineering GA CF1PX UT WOS:000352321100011 ER PT J AU Gould, K Lovejoy, AE Jegley, D Neal, AL Linton, KA Bergan, AC Bakuckas, JG AF Gould, Kevin Lovejoy, Andrew E. Jegley, Dawn Neal, Albert L. Linton, Kim A. Bergan, Andrew C. Bakuckas, John G., Jr. TI Nonlinear Analysis and Experimental Behavior of a Curved Unitized Stitched Panel SO JOURNAL OF AIRCRAFT LA English DT Article AB The pultruded rod stitched efficient unitized structure concept, developed by The Boeing Company, has been extensively studied as part ofNASA's environmentally responsible aviation project. The pultruded rod stitched efficient unitized structure concept provides a lightweight alternative to aluminumor traditional composite design concepts and is applicable to traditional-shaped fuselage barrels andwings, aswell as advanced configurations such as a hybridwingbody or truss-braced wings. Therefore, NASA, the Federal Aviation Administration, and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of the pultruded rod stitched efficient unitized structure concept by testing a full-scale curved panel in the Federal Aviation Administration full-scale aircraft structural test evaluation and research facility. Testing was conducted in this facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that thepultrudedrodstitchedefficient unitizedstructure concept couldarrest the progressionof damage, including crack arrestment and crack turning. This paper presents the nonlinear posttest analysis and correlation with test results for the curved pultruded rod stitched efficient unitized structurepanel. It is shown that nonlinear analysis can accurately calculate the behavior of this panel under tension, pressure, and combined loading conditions. C1 [Gould, Kevin] Anal Mech Associates Inc, Mech & Concepts Branch, Aerosp Engn, Hampton, VA 23666 USA. [Lovejoy, Andrew E.; Jegley, Dawn] NASA, Langley Res Ctr, Aerosp Engn, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. [Neal, Albert L.] Boeing Co, Adv Struct, Boeing Res & Technol, Design Engn, Berkeley, MO 63134 USA. [Linton, Kim A.] Boeing Co, Adv Struct, Boeing Res & Technol, Seal Beach, CA 90740 USA. [Bergan, Andrew C.] Drexel Univ, Mech Engn & Mech Dept, Philadelphia, PA 19104 USA. [Bakuckas, John G., Jr.] Fed Aviat Adm William J Hughes Tech Ctr, Atlant City Int Airport, Structures & Mat Section, Res Engn, Atlantic City, NJ 08405 USA. RP Gould, K (reprint author), Anal Mech Associates Inc, Mech & Concepts Branch, Aerosp Engn, Mail Stop 190, Hampton, VA 23666 USA. NR 14 TC 0 Z9 0 U1 2 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2015 VL 52 IS 2 BP 628 EP 637 DI 10.2514/1.C032808 PG 10 WC Engineering, Aerospace SC Engineering GA CF1PX UT WOS:000352321100022 ER PT J AU Lynn, KC Commo, SA Ulbrich, NM Harris, CP AF Lynn, Keith C. Commo, Sean A. Ulbrich, Norbert M. Harris, Colin P. TI Experimental Design Considerations for Calibration of Semispan Force Measurement Systems SO JOURNAL OF AIRCRAFT LA English DT Article AB Experimental design considerations for the development of calibration load schedules are discussed for the characterization of traditional five-component semispan balances used in aerodynamic ground testing applications. Detail is given on traditional semispan balance design, use of these types of balances, and a survey of some of the calibration systems currently used to calibrate these measurement systems. Techniques are presented to develop experimental calibration designs used to calibrate these instruments, with consideration given to accounting for physical limitations existing within these calibration systems. The techniques provided rely on traditional statistical engineering approaches, leveraging off of statistics-based experimental design techniques and analysis metrics used to assess the characteristics of the designs. Methods used for optimal design techniques are presented, with a case study given that details the comparison of these statistics-based metrics for traditional and optimized calibration load schedule designs. C1 [Lynn, Keith C.] NASA, Langley Res Ctr, Aeronaut Syst Engn Branch, Hampton, VA 23681 USA. [Commo, Sean A.] NASA, Langley Res Ctr, Syst Engn & Engn Methods, Hampton, VA 23681 USA. [Ulbrich, Norbert M.] Jacobs Technol Inc, Wind Tunnel Div, Moffett Field, CA 94035 USA. [Harris, Colin P.] Triumph Grp Inc, Triumph Aerosp, Force Measurement Syst, San Diego, CA 92121 USA. RP Lynn, KC (reprint author), NASA, Langley Res Ctr, Aeronaut Syst Engn Branch, MS 238, Hampton, VA 23681 USA. FU National Force Measurement Technology Capability; Wind-Tunnel Division at NASA Ames Research Center under NASA's Aeronautics Test Program [NNA09DB39C] FX This work has been supported and funded by the National Force Measurement Technology Capability and the Wind-Tunnel Division at NASA Ames Research Center (Contract NNA09DB39C) under NASA's Aeronautics Test Program. The authors would like to express their sincere appreciation to the individuals that have contributed to the many aspects of this project. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2015 VL 52 IS 2 BP 638 EP 649 DI 10.2514/1.C032811 PG 12 WC Engineering, Aerospace SC Engineering GA CF1PX UT WOS:000352321100023 ER PT J AU Allen, AR Przekop, A AF Allen, Albert R. Przekop, Adam TI Vibroacoustic Tailoring of a Rod-Stiffened Composite Fuselage Panel with Multidisciplinary Considerations SO JOURNAL OF AIRCRAFT LA English DT Article ID REVERBERANT SOUND FIELDS AB An efficient multi-objective design tailoring procedure seeking to improve the vibroacoustic performance of a fuselage panel while maintaining or reducing weight is presented. The structure considered is the pultruded rod stitched efficient unitized structure, a highly integrated composite structure concept designed for a noncylindrical, next-generation flight vehicle fuselage. Modifications to a baseline design are evaluated within a six-parameter design space including spacing, flange width, and web height for both frame and stringer substructure components. The change in sound power radiation attributed to a design change is predicted using finite-element models sized and meshed for analyses in the 500 Hz, 1 kHz, and 2 kHz octave bands. Three design studies are carried out in parallel while considering a diffuse acoustic field excitation and two types of turbulent boundary-layer excitation. Kriging surrogate models are used to reduce the computational costs of resolving the vibroacoustic and weight objective Pareto fronts. The resulting Pareto optimal designs are then evaluated under a static pressurization ultimate load to assess structural strength and stability. Results suggest that choosing alternative configurations within the considered design space can reduce weight and improve vibroacoustic performance without compromising strength and stability of the structure under the static load condition considered, but the tradeoffs are significantly influenced by the spatial characteristics of the assumed excitation field. C1 [Allen, Albert R.] NASA, Langley Res Ctr, Struct Acoust Branch, Hampton, VA 23681 USA. [Przekop, Adam] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. RP Allen, AR (reprint author), NASA, Langley Res Ctr, Struct Acoust Branch, Hampton, VA 23681 USA. EM albert.r.allen@nasa.gov; adam.przekop@nasa.gov FU Environmentally Responsible Aircraft project of the Integrated Systems Research Program FX Support for this work was provided by the Environmentally Responsible Aircraft project of the Integrated Systems Research Program. The authors wish to thank Dawn Jegley and Richard Silcox (NASA Langley Research Center, Hampton, VA) and Alex Velicki (The Boeing Company, Huntington Beach, CA) for their helpful discussions during this work. NR 28 TC 0 Z9 0 U1 3 U2 5 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD MAR-APR PY 2015 VL 52 IS 2 BP 692 EP 702 DI 10.2514/1.C033071 PG 11 WC Engineering, Aerospace SC Engineering GA CF1PX UT WOS:000352321100028 ER PT J AU Crawford, CJ Griffin, D Kipfmueller, KF AF Crawford, Christopher J. Griffin, Daniel Kipfmueller, Kurt F. TI Capturing season-specific precipitation signals in the northern Rocky Mountains, USA, using earlywood and latewood tree rings SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE tree rings; dendroclimatology; seasonal precipitation; northern Rocky Mountains; Douglas-fir; climate ID WESTERN UNITED-STATES; AMERICAN MONSOON; DENDROCLIMATIC RECONSTRUCTION; DOUGLAS-FIR; NEW-MEXICO; GROWTH; VARIABILITY; CLIMATE; TEMPERATURE; REGION AB Douglas-fir (Pseudotsuga menziesii Mirb. Franco) total width, earlywood, and latewood tree ring chronologies were developed from six lower forest border sites in the northern Rocky Mountain region of central Idaho and southwestern Montana, USA, to assess the potential for season-specific moisture reconstructions. These long-lived arid-site trees share strong between-tree and between-site coherence, and subannual tree ring chronologies reliably span the past seven centuries. Mapping spatiotemporal patterns in northern Rocky Mountain precipitation highlighted winter- and summer-dominated precipitation regimes that transition along a west to east gradient. When Douglas-fir tree rings were compared with instrumental climate records, season-specific correlations emerged between earlywood and latewood. Total width, earlywood, and latewood shared the most statistically significant monthly correlations with April-June precipitation, whereas variability in adjusted latewood was tuned to June-August precipitation. Principal component analysis indicated that the leading mode of common variance for earlywood and adjusted latewood explained 65% and 55% variance in the chronologies, respectively. Pearson's correlations between earlywood principal component one and the northern Rocky Mountain precipitation field showed that annual (July-June) and spring (April-June) precipitation exhibited the strongest pattern of significance in central Idaho and southwestern Montana valleys and the Snake River Plain. Summer precipitation (June-August) was correlated with adjusted latewood principal component one and was particularly pronounced along and east of the continental divide in southwestern Montana. These results indicate that Douglas-fir earlywood and adjusted latewood tree rings in the northern Rocky Mountains retain season-specific precipitation signals and may be helpful for studying historical precipitation within the winter-summer transition zone. Key Points C1 [Crawford, Christopher J.] NASA, Oak Ridge Associated Univ, Cryospher Sci Lab, Goddard Space Flight Ctr, Washington, DC 20546 USA. [Crawford, Christopher J.; Griffin, Daniel; Kipfmueller, Kurt F.] Univ Minnesota, Dept Geog Environm & Soc, Minneapolis, MN USA. [Griffin, Daniel] Woods Hole Massachusetts, WHOI, Woods Hole, MA USA. RP Crawford, CJ (reprint author), NASA, Oak Ridge Associated Univ, Cryospher Sci Lab, Goddard Space Flight Ctr, Washington, DC 20546 USA. EM christopher.j.crawford@nasa.gov FU University of Minnesota's College of Liberal Arts Graduate Research Partnership Program; University of Minnesota's Department of Geography, Environment and Society; Association of American Geographers-Paleoenvironmental Change Specialty Group; Association of American Geographers; NOAA Climate and Global Change Postdoctoral Fellowship FX The PRISM climate data for this paper are available at Westmap (http://www.cefa.dri.edu/Westmap) and/or the PRISM Climate Group (http://www.prism.oregonstate.edu). The Douglas-fir tree ring data used in this paper are accessible from the supporting information. This research and CJC were funded through the University of Minnesota's College of Liberal Arts Graduate Research Partnership Program; the University of Minnesota's Department of Geography, Environment and Society; the Association of American Geographers-Paleoenvironmental Change Specialty Group; and a dissertation research grant from the Association of American Geographers. DG was supported by a NOAA Climate and Global Change Postdoctoral Fellowship. We thank Christian Ferguson for his fieldwork assistance, and appreciation is extended to Douglas Owen, Steve Bekedam, and Craters of the Moon National Monument, National Park Service, Salmon-Challis, Sawtooth, and Beaverhead-Deerlodge National Forests for research permission and other assistance. We thank Scott St. George, Matthew Salzer and Max Torbenson for comments during the development of this research and Dennis Baldocchi, Matthew Therrell, and one anonymous reviewer for suggestions that improved this manuscript. NR 60 TC 4 Z9 4 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAR PY 2015 VL 120 IS 3 BP 428 EP 440 DI 10.1002/2014JG002740 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CG1PT UT WOS:000353046200003 ER PT J AU Borghesi, G Bellan, J AF Borghesi, Giulio Bellan, Josette TI A priori and a posteriori investigations for developing large eddy simulations of multi-species turbulent mixing under high-pressure conditions SO PHYSICS OF FLUIDS LA English DT Article ID DIRECT NUMERICAL-SIMULATION; LARGE-SCALE STRUCTURE; MASS DIFFUSION-COEFFICIENTS; SUPERCRITICAL-PRESSURE; SUBGRID-SCALE; LAYER; GEOMETRY; HYDROGEN; NITROGEN; JETS AB A Direct Numerical Simulation (DNS) database was created representing mixing of species under high-pressure conditions. The configuration considered is that of a temporally evolving mixing layer. The database was examined and analyzed for the purpose of modeling some of the unclosed terms that appear in the Large Eddy Simulation (LES) equations. Several metrics are used to understand the LES modeling requirements. First, a statistical analysis of the DNS-database large-scale flow structures was performed to provide a metric for probing the accuracy of the proposed LES models as the flow fields obtained from accurate LESs should contain structures of morphology statistically similar to those observed in the filtered-and-coarsened DNS (FC-DNS) fields. To characterize the morphology of the large-scales structures, the Minkowski functionals of the iso-surfaces were evaluated for two different fields: the second-invariant of the rate of deformation tensor and the irreversible entropy production rate. To remove the presence of the small flow scales, both of these fields were computed using the FC-DNS solutions. It was found that the large-scale structures of the irreversible entropy production rate exhibit higher morphological complexity than those of the second invariant of the rate of deformation tensor, indicating that the burden of modeling will be on recovering the thermodynamic fields. Second, to evaluate the physical effects which must be modeled at the subfilter scale, an a priori analysis was conducted. This a priori analysis, conducted in the coarse-grid LES regime, revealed that standard closures for the filtered pressure, the filtered heat flux, and the filtered species mass fluxes, in which a filtered function of a variable is equal to the function of the filtered variable, may no longer be valid for the high-pressure flows considered in this study. The terms requiring modeling are the filtered pressure, the filtered heat flux, the filtered pressure work, and the filtered species mass fluxes. Improved models were developed based on a scale-similarity approach and were found to perform considerably better than the classical ones. These improved models were also assessed in an a posteriori study. Different combinations of the standard models and the improved ones were tested. At the relatively small Reynolds numbers achievable in DNS and at the relatively small filter widths used here, the standard models for the filtered pressure, the filtered heat flux, and the filtered species fluxes were found to yield accurate results for the morphology of the large-scale structures present in the flow. Analysis of the temporal evolution of several volume-averaged quantities representative of the mixing layer growth, and of the cross-stream variation of homogeneous-plane averages and second-order correlations, as well as of visualizations, indicated that the models performed equivalently for the conditions of the simulations. The expectation is that at the much larger Reynolds numbers and much larger filter widths used in practical applications, the improved models will have much more accurate performance than the standard one. (C) 2015 AIP Publishing LLC. C1 [Borghesi, Giulio; Bellan, Josette] CALTECH, Pasadena, CA 91125 USA. [Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Borghesi, G (reprint author), CALTECH, Pasadena, CA 91125 USA. EM josette.bellan@jpl.nasa.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Gas Phase Chemical Physics in the Chemical Sciences, Geosciences and Biosciences Division) [DE-SC0002679] FX This study was conducted at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology (Caltech), and this material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Gas Phase Chemical Physics in the Chemical Sciences, Geosciences and Biosciences Division) under Award No. DE-SC0002679, and the direction of Dr. Wade Sisk and Dr. Mark Pederson. The computational resources were provided by the National Energy Research Supercomputing Center of the Department of Energy, by the NASA Advanced Supercomputing at Ames Research Center, and by the JPL Supercomputing Center. NR 46 TC 3 Z9 3 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2015 VL 27 IS 3 AR 035117 DI 10.1063/1.4916284 PG 35 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CF1MH UT WOS:000352309400056 ER PT J AU Mannucci, AJ Verkhoglyadova, OP Tsurutani, BT Meng, X Pi, X Wang, C Rosen, G Lynch, E Sharma, S Ridley, A Manchester, W Van Der Holst, B Echer, E Hajra, R AF Mannucci, A. J. Verkhoglyadova, O. P. Tsurutani, B. T. Meng, X. Pi, X. Wang, C. Rosen, G. Lynch, E. Sharma, S. Ridley, A. Manchester, W. Van Der Holst, B. Echer, E. Hajra, R. TI Medium-Range Thermosphere-Ionosphere Storm Forecasts SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID GENERAL-CIRCULATION MODEL; SOLAR C1 [Mannucci, A. J.; Verkhoglyadova, O. P.; Tsurutani, B. T.; Meng, X.; Pi, X.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Wang, C.] Univ So Calif, Math, Los Angeles, CA USA. [Rosen, G.] Univ So Calif, Simulat Lab, Math, Los Angeles, CA USA. [Rosen, G.] Univ So Calif, Simulat Lab, Modeling, Los Angeles, CA USA. [Lynch, E.] Univ Maryland, College Pk, MD 20742 USA. [Sharma, S.] Univ Maryland, Goddard Planetary Heliophys Inst, Dept Astron, College Pk, MD 20742 USA. [Ridley, A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Manchester, W.; Van Der Holst, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Echer, E.; Hajra, R.] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil. RP Mannucci, AJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM anthony.j.mannucci@jpl.nasa.gov RI van der Holst, Bart/A-3557-2013; Hajra, Rajkumar/C-1246-2011; Manchester, Ward/I-9422-2012; Meng, Xing/A-1929-2016; Ridley, Aaron/F-3943-2011 OI Verkhoglyadova, Olga/0000-0002-9295-9539; Ridley, Aaron/0000-0001-6933-8534 FU Living With a Star Targeted Research and Technology NASA/NSF Partnership for Collaborative Space Weather Modeling FX Portions of the research for this paper were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. Sponsorship of the Living With a Star Targeted Research and Technology NASA/NSF Partnership for Collaborative Space Weather Modeling is gratefully acknowledged. Data availability at NASA's Crustal Dynamics Data Information System (http://cddis.nasa.gov) and at NASA's Coordinated Data Analysis Web (http://cdaweb.gsfc.nasa.gov) is acknowledged. NR 23 TC 8 Z9 8 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAR PY 2015 VL 13 IS 3 BP 125 EP 129 DI 10.1002/2014SW001125 PG 5 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CG1JX UT WOS:000353030000001 ER PT J AU Cantrell, JH AF Cantrell, John H. TI Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites SO AIP ADVANCES LA English DT Article ID ULTRASONIC CHARACTERIZATION; SPECTROSCOPY; ADHESION; SURFACE; RESINS AB The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions tau to the ILSS and magnitudes K-N of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The t calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K-N calculations fall in the range (2.01 - 4.67) x10(17) N m(-3). The average ratio K-N/vertical bar tau vertical bar is calculated to be (2.59 +/- 0.043) x 10(10) m(-1) for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that tau may be assessable nondestructively from measurements of K-N via a technique such as angle beam ultrasonic spectroscopy. (C) 2015 Author(s). C1 NASA Langley Res Ctr, Res Directorate, Hampton, VA 23681 USA. RP Cantrell, JH (reprint author), NASA Langley Res Ctr, Res Directorate, Hampton, VA 23681 USA. EM john.h.cantrell@nasa.gov FU Advanced Composites Project, NASA Langley Research Center, Hampton, Virginia, USA FX This research is supported by the Advanced Composites Project, NASA Langley Research Center, Hampton, Virginia, USA. NR 31 TC 1 Z9 1 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAR PY 2015 VL 5 IS 3 AR 037125 DI 10.1063/1.4915315 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CF3LG UT WOS:000352449500026 ER PT J AU Stone, RP Masuda, MM Karinen, JF AF Stone, Robert P. Masuda, Michele M. Karinen, John F. TI Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE cold-water corals; correlation; emergent epifauna; fishing disturbance; gorgonians; Gulf of Alaska; HAPC; logistic regression; longlining; odds ratio; Primnoa; sponges ID HABITAT; ASSOCIATIONS; DISTURBANCE AB Red tree corals (Primnoa pacifica), the largest structure-forming gorgonians in the North Pacific Ocean, form dense thickets in some areas. These thickets are a dominant benthic habitat feature in the Gulf of Alaska (GOA), yet little is known about the ecosystems they support. In 2005, we used a submersible to study the ecology of thickets inside or near five small areas of the eastern GOA later designated in 2006 as habitat areas of particular concern (HAPCs)aEuro center dot areas closed to all bottom contact fishing. We show that red tree corals are keystone species in habitats where they form thickets (mean density 0.52 corals m(-2))-the densest and largest thickets documented anywhere. Measured sponge densities (2.51 sponges m(-2)) were also among the highest documented anywhere. The corals and sponges in the study areas provide essential fish habitat for some fish species, and we show with logistic regression models modified with a scaled binomial variance that bedrock, while important habitat for some fish, is even more important when paired with corals and sponges. Red tree corals were not equally distributed with regard to habitat characteristics, and we show that their presence was correlated with bedrock substrate, moderate to high seabed roughness, and slope > 10A degrees. Most corals and sponges are vulnerable to disturbance from longlining, the principal bottom contact fishing in this region, but the larger corals and sponges are the most vulnerable. We observed evidence of infrequent recruitment events and a strong pulse of predation, apparently from fishing gear-induced trauma, that could exacerbate slow recovery of red tree corals from disturbance. Some red tree coral thickets are provided protection within designated HAPCs and some are not. Modifications to longline gear and an expanded network of HAPCs could help preserve these keystone species and the ecosystems they support. C1 [Stone, Robert P.; Masuda, Michele M.; Karinen, John F.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,TSMRI, Juneau, AK 99801 USA. RP Stone, RP (reprint author), NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,TSMRI, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM bob.stone@noaa.gov FU Habitat Conservation Division of NOAA's Alaska Regional Office FX We thank Stephen Cairns, Alberto Lindner, Helmut Lehnert, Henry Reiswig, James McLean, Christopher Mah, and Terry Gosliner for taxonomic expertise, Delta Oceanographics, and the captain and crew of the RV Velero IV for their assistance and support. The field project was funded by the Habitat Conservation Division of NOAA's Alaska Regional Office. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. NR 36 TC 2 Z9 2 U1 3 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD MAR-APR PY 2015 VL 72 IS 3 BP 900 EP 915 DI 10.1093/icesjms/fsu190 PG 16 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CE4YW UT WOS:000351837500015 ER PT J AU Sacchi, C Bhasin, K Kadowaki, N Vong, F AF Sacchi, Claudio Bhasin, Kul Kadowaki, Naoto Vong, Fred TI TOWARD THE "SPACE 2.0" ERA SO IEEE COMMUNICATIONS MAGAZINE LA English DT Editorial Material C1 [Sacchi, Claudio] Univ Trento, Fac Engn, Trento, Italy. [Bhasin, Kul] NASA, Glenn Res Ctr, Cleveland, OH USA. [Bhasin, Kul] NASA GRC, Space Commun Projects, Cleveland, OH USA. [Bhasin, Kul] AIAA, Cleveland, OH USA. [Bhasin, Kul] Soc Int Opt Engineers SPIE, Bellingham, WA USA. [Kadowaki, Naoto] NICT, Strateg Planning Dept, Yokosuka, Kanagawa, Japan. [Kadowaki, Naoto] NICT, Wireless Network Res Inst, Yokosuka, Kanagawa, Japan. [Vong, Fred] Asia Satellite Telecommun Co Ltd, Hong Kong, Hong Kong, Peoples R China. RP Sacchi, C (reprint author), Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy. NR 4 TC 1 Z9 1 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 EI 1558-1896 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD MAR PY 2015 VL 53 IS 3 BP 16 EP 17 PG 2 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA CE3NV UT WOS:000351734400004 ER PT J AU Martin, MJ Manohara, H AF Martin, Michael James Manohara, Harish TI Thermo-Electric Modeling of Nanotube-Based Environmental Sensors SO JOURNAL OF ELECTRONIC PACKAGING LA English DT Article ID CARBON NANOTUBE; GRAPHENE AB Free-standing electrically conductive nanotube and nanobridge structures offer a simple, small-scale, low-power option for pressure and temperature sensing. To sense pressure, a constant voltage is applied across the bridge. At small scales, the heat transfer coefficient is pressure-dependent. The change in the heat transfer coefficients results in the circuit operating at higher temperatures, with different resistances, at low pressures. This in turn will lead to a change in the electrical resistivity of the system. If the system is held at constant voltage, this can be measured as a change in the current in such systems, representing a simple alternative to existing Pirani gauges. The current work simulates the Joule heating, conduction and convection heat transfer of a 5 mu m long suspended single-wall carbon-nanotube, incorporating temperature-sensitive material properties. The simulation allows prediction of the thermo-electrical response of the systems. The results agree with the trends observed in existing devices. Additional results look at the effects of system length, temperature, and contact resistances between the substrate and the device. C1 [Martin, Michael James] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA. [Manohara, Harish] CALTECH, Jet Prop Lab, Microdevices Lab, Pasadena, CA 91109 USA. RP Martin, MJ (reprint author), Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA. EM martinm2@asme.org RI Martin, Michael/A-1174-2007 OI Martin, Michael/0000-0002-6526-4408 FU JPL-California Institute of Technology summer faculty fellowship, under NASA; National Aeronautics and Space Administration FX Dr. Martin's participation in this work was made possible by a JPL-California Institute of Technology summer faculty fellowship, under an award from NASA. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 21 TC 0 Z9 0 U1 1 U2 7 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1043-7398 EI 1528-9044 J9 J ELECTRON PACKAGING JI J. Electron. Packag. PD MAR PY 2015 VL 137 IS 1 AR 011001 DI 10.1115/1.4028185 PG 6 WC Engineering, Electrical & Electronic; Engineering, Mechanical SC Engineering GA CE2JR UT WOS:000351642400002 ER PT J AU Kazemba, CD Braun, RD Schoenenberger, M Clark, IG AF Kazemba, Cole D. Braun, Robert D. Schoenenberger, Mark Clark, Ian G. TI Dynamic Stability Analysis of Blunt-Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID CAPSULE AB This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch-damping sum coefficient present in the standard formulation of the equations ofmotion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch-damping coefficient. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt-body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. Fromthis, parameter identification is carried out through the use of a least-squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by a limited experimental ballistic range test series or with existing data. The trajectories produced by the identified parameters are found to match closely those from the Mars Exploration Rover ballistic range tests for a range of initial conditions. C1 [Kazemba, Cole D.] NASA, Ames Res Ctr, Syst Anal Branch, STC Inc, Moffett Field, CA 94035 USA. [Braun, Robert D.] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Schoenenberger, Mark] NASA, Langley Res Ctr, Explorat Syst Engn Branch, Hampton, VA 23681 USA. [Clark, Ian G.] CALTECH, Jet Prop Lab, Entry Decent & Landing Syst & Adv Technol Grp, Pasadena, CA 91109 USA. RP Kazemba, CD (reprint author), NASA, Ames Res Ctr, Syst Anal Branch, STC Inc, Mail Stop 229-1, Moffett Field, CA 94035 USA. EM cole.d.kazemba@nasa.gov FU NASA Space Technology Research Fellowship FX This work was supported by a NASA Space Technology Research Fellowship. Cole Kazemba is incredibly grateful for the invaluable advice and support from Milad Mahzari, Soumyo Dutta, Chris Cordell, and the rest of the Georgia Institute of Technology Space Systems Design Laboratory. NR 19 TC 1 Z9 1 U1 0 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 393 EP 403 DI 10.2514/1.A32894 PG 11 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400009 ER PT J AU Schwing, AM Candler, GV AF Schwing, Alan M. Candler, Graham V. TI Detached-Eddy Simulation of Capsule Wake Flows and Comparison to Wind-Tunnel Test Data SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID NAVIER-STOKES EQUATIONS; RELAXATION AB This work examines numerical simulation of supersonic, subsonic, and transonic flows over a bluff body using several numerical techniques. Comparisons between computational fluid dynamics predictions and wind-tunnel test data are shown. The wind-tunnel test used a 7.66%-scale model of the crew module for NASA's multipurpose crew vehicle. A variety of freestream conditions consisting of three Mach numbers and three angles of attack are considered. The wind-tunnel test data include time-averaged integrated forces and moments, static pressure port measurements, and unsteady frequency response. Results obtained using the Spalart-Allmaras Reynolds-averaged Navier-Stokes turbulence model are compared to solutions computed using detached-eddy simulation. Furthermore, low-dissipation numerical fluxes are applied in order to assess their effect on solution fidelity. Across the cases examined, the Reynolds-averaged Navier-Stokes model has difficulty matching the vehicle surface pressures. For supersonic and transonic flows, detached-eddy simulation agrees well with the experiment. Subsonic flows still prove difficult for the methods explored in this work, but detached-eddy simulation and low-dissipation numerical fluxes provide the most accurate prediction of the test data. C1 [Schwing, Alan M.] NASA, Johnson Space Ctr, Appl Aerosci & CFD Branch, Houston, TX 77058 USA. [Candler, Graham V.] Univ Minnesota, Aerosp Engn & Mech, Minneapolis, MN 55455 USA. RP Schwing, AM (reprint author), NASA, Johnson Space Ctr, Appl Aerosci & CFD Branch, 2101 NASA Parkway, Houston, TX 77058 USA. FU NASA Johnson Space Center Academic Fellowship FX This work was sponsored by the NASA Johnson Space Center Academic Fellowship. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NASA, the NASA Johnson Space Center, or the U.S. Government. NR 25 TC 2 Z9 2 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 439 EP 449 DI 10.2514/1.A32834 PG 11 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400013 ER PT J AU Lee, AY Wang, EK AF Lee, Allan Y. Wang, Eric K. TI In-Flight Performance of Cassini Reaction Wheel Bearing Drag in 1997-2013 SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four year prime mission (2004-2008) and has since been approved for a first and second extended mission through September 2017. Cassini uses reaction wheels to achieve the spacecraft pointing stability that is needed during imaging operations of several science instruments. The Cassini flight software makes in-flight estimates of reaction wheel bearing drag torque and made them available to the mission operations team. In trending these telemetry data (for the purpose of monitoring the long-term health of the reaction wheel bearings), anomalous drag torque signatures have been observed over the past 15 years. One of these anomalous drag conditions is bearing cage instability that appeared (and disappeared) spontaneously and unpredictably. Cage instability is an uncontrolled vibratory motion of the bearing cage that can produce high-impact forces internal to the bearing, which will cause intermittent and erratic torque transients. Characteristics of the observed cage instabilities and other drag torque "spikes" are described in this paper. In day-to-day operations, the reaction wheels' rates must be neither too high nor too low. To protect against operating the wheels in any undesirable conditions (such as prolonged low spin rate operations), a ground software tool named a reaction wheel bias optimization tool was developed for the management of the wheels. Flight experience on the use of this ground software tool, as well as other lessons learned on the management of Cassini reaction wheels, is given in this paper. C1 [Lee, Allan Y.] CALTECH, Jet Prop Lab, Guidance & Control Sect, Div Autonomous Syst, Pasadena, CA 91109 USA. RP Lee, AY (reprint author), CALTECH, Jet Prop Lab, Guidance & Control Sect, Div Autonomous Syst, Mail Stop 230-104,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Allan.Y.Lee@jpl.nasa.gov; Eric.K.Wang@jpl.nasa.gov NR 23 TC 0 Z9 0 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 470 EP 480 DI 10.2514/1.A33047 PG 11 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400016 ER PT J AU Schadegg, MM Russell, RP Lantoine, G AF Schadegg, Maximilian M. Russell, Ryan P. Lantoine, Gregory TI Jovian Orbit Capture and Eccentricity Reduction Using Electrodynamic Tether Propulsion SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID SATELLITE-AIDED CAPTURE; TRAJECTORY DESIGN; JUPITER; MISSION; SYSTEM AB The use of electrodynamic tethers for propulsion and power generation is attractive for missions to the outer planets, which are traditionally handicapped by large propellant requirements, large times of flight, and a scarcity of power available. In this work, the orbital dynamics of a spacecraft using electrodynamic tether propulsion during the mission phases of capture, apojove pump down and perijove pump up, in the Jovian system are investigated. The main result is the mapped design space involving mission duration, tether length, and minimum perijove radius. Phase-free flyby sequences are also included, which provide performance upper bounds for a given mission architecture. It is found to be advantageous to use inbound-only flybys of the Galilean moons during capture. Flybys during the apojove pump down phase are only useful in conjunction with a perijove-raising mechanism at apoapse such as solar perturbations or a small propulsive maneuver. The electrodynamic tether systemis also shown to be capable of lowering the spacecraft's orbit to a Europa-Ganymede Hohmann orbit with a total flight time of under a year and a half after entering Jupiter's sphere of influence, using reasonable assumptions for spacecraft mass and tether parameters. C1 [Schadegg, Maximilian M.; Russell, Ryan P.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. [Lantoine, Gregory] CALTECH, Jet Prop Lab, Mission Design & Nav Sect, Pasadena, CA 91109 USA. RP Schadegg, MM (reprint author), Univ Texas Austin, Dept Aerosp Engn & Engn Mech, 1 Univ Stn, Austin, TX 78712 USA. EM max.schadegg@utexas.edu; ryan.russell@utexas.edu; gregory.lantoine@jpl.nasa.gov FU NASA Innovative Advanced Concepts program [NNH12ZUA002N]; NASA FX This study was funded in part by the NASA Innovative Advanced Concepts program, under announcement NNH12ZUA002N. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors would like to thank Rodney Anderson, Henry Garrett, Ira Katz, Damon Landau, Nathan Strange, and Daniel Grebow for their help on this project. NR 22 TC 2 Z9 3 U1 0 U2 11 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 506 EP 516 DI 10.2514/1.A32962 PG 11 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400019 ER PT J AU Cassibry, J Cortez, R Stanic, M Watts, A Seidler, W Adams, R Statham, G Fabisinski, L AF Cassibry, Jason Cortez, Ross Stanic, Milos Watts, Andrew Seidler, William, II Adams, Rob Statham, Geoff Fabisinski, Leo TI Case and Development Path for Fusion Propulsion SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID INERTIAL-ELECTROSTATIC CONFINEMENT; FIELD MAGNETOPLASMADYNAMIC THRUSTERS; RAYLEIGH-TAYLOR INSTABILITY; MAGNETIZED TARGET FUSION; Z-PINCH; SPACE PROPULSION; PART 1; PLASMA; SYSTEM; PHYSICS AB This paper discusses the importance of fusion propulsion for interplanetary space travel, illustrates why the magnetoinertial fusion parameter space may facilitate the most rapid, economic path for development, justifies the choice of pulsed Z pinch, and provides a potential development path leading up to a technical readiness level 9 system. Round trips of less than one year to Mars are only possible using fusion propulsion systems. Such a system will require an onboard nuclear fission reactor for reliable startups, and so fission and fusion developments for space are mutually beneficial. The paper reviews the more than 50 year history of fusion research and summarizes results from a recent study of the fusion parameter space for terrestrial power, which suggests magnetoinertial fusion can provide the smallest, most economical approach for a fusion propulsion system. Emerging experimental data and theory show pulsed Z-pinch fusion solves some of the most deleterious instabilities and scales to fusion breakeven within reach of current pulsed power facilities. The paper illustrates a potential development path to a technical readiness level 9 flight system, starting from an assumed technical readiness level 2 for the current state of fusion propulsion. C1 [Cassibry, Jason] Univ Alabama, Prop Res Ctr, Mech & Aerosp Engn, Huntsville, AL 35899 USA. [Cortez, Ross] Univ Alabama, Aerophys Res Ctr, Huntsville, AL 35899 USA. [Stanic, Milos; Watts, Andrew; Seidler, William, II] Univ Alabama, Prop Res Ctr, Huntsville, AL 35899 USA. [Adams, Rob] NASA, Marshall Space Flight Ctr, Prop Res & Dev Lab, Huntsville, AL 35812 USA. [Statham, Geoff; Fabisinski, Leo] Engn & Sci Serv & Skills Augmentat Grp, Huntsville, AL 35806 USA. RP Cassibry, J (reprint author), Univ Alabama, Prop Res Ctr, Mech & Aerosp Engn, TH S232, Huntsville, AL 35899 USA. FU NASA Marshall Space Flight Center; Boeing Company; Y-12 National Security Complex; Alabama Innovation Fund [AIF 2012-001]; University of Alabama in Huntsville (Propulsion Research Center, Aerophysics Research Center, Office of Vice President of Research); Defense Threat Reduction Agency; L3 Communications Pulsed Science Division FX This work was supported by NASA Marshall Space Flight Center, The Boeing Company, Y-12 National Security Complex, Alabama Innovation Fund AIF 2012-001, the University of Alabama in Huntsville (Propulsion Research Center, Aerophysics Research Center, Office of Vice President of Research), Defense Threat Reduction Agency, and L3 Communications Pulsed Science Division. The authors thank Raymond Sedwick for providing invaluable insights and references to augment the inertial electrostatic confinement discussions. The authors also thank Dan Dorney and Nikki Werkheiser for making the suggestion of a roadmap in the form of Fig. 13 and for ideas on sustainability before reaching the technology enabling human-piloted Mars vehicle. NR 121 TC 1 Z9 1 U1 5 U2 23 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR PY 2015 VL 52 IS 2 BP 595 EP 612 DI 10.2514/1.A32782 PG 18 WC Engineering, Aerospace SC Engineering GA CE2CS UT WOS:000351621400027 ER PT J AU Laufer, A Hoffman, EJ Russell, JS Cameron, SW AF Laufer, Alexander Hoffman, Edward J. Russell, Jeffrey S. Cameron, Scott W. TI What Successful Project Managers Do SO MIT SLOAN MANAGEMENT REVIEW LA English DT Article ID SOFTWARE; OVERRUNS AB In today's dynamic and competitive world, a project manager's key challenge is coping with frequent unexpected events. Such events can be classified according to their level of predictability as follows: events that were anticipated but whose impacts were much stronger than expected; events that could not have been predicted; and events that could have been predicted but were not. Coping with frequent unexpected events requires an organizational culture that allows the project manager to exercise a great amount of flexibility. The traditional approach to project management emphasizes that project success depends on stability. According to this approach, project success can be achieved by focusing on planning and on controlling and managing risks. Although the popularity of this approach has sharply increased across industries, research covering a wide variety of projects consistently reveals poor performance. The authors collected data from more than 150 successful project managers affiliated with more than 20 organizations and concluded that today's successful project managers cope with unexpected events by a combination of traditional and "agile" approaches to project management. Using business examples drawn from their research at organizations such as Procter & Gamble, NASA and the construction services company Boldt, the authors identified four key roles that successful project managers play: The first role, developing collaboration, is performed early on during the project. The second role, integrating planning and review with learning, is performed periodically throughout the project. The third role, preventing major disruptions, is performed occasionally. The fourth role, maintaining forward momentum, is performed continuously. Today's managers must be people-oriented, information-oriented and action-oriented. The authors argue that by assuming the four roles discussed in this article, successful project managers will embrace all three orientations. Reprint 56311. For ordering information, see page 6. C1 [Laufer, Alexander] Univ Wisconsin Madison, Consortium Project Leadership, Madison, WI 53706 USA. [Hoffman, Edward J.] NASA, Washington, DC USA. [Russell, Jeffrey S.] Univ Wisconsin Madison, Continuing Studies Div, Madison, WI USA. [Russell, Jeffrey S.] Univ Wisconsin Madison, Consortium Project Management, Madison, WI USA. [Cameron, Scott W.] Procter & Gamble Co, Global Project Management Technol Proc, Cincinnati, OH 45202 USA. RP Laufer, A (reprint author), Univ Wisconsin Madison, Consortium Project Leadership, Madison, WI 53706 USA. NR 42 TC 1 Z9 2 U1 8 U2 49 PU SLOAN MANAGEMENT REVIEW ASSOC, MIT SLOAN SCHOOL MANAGEMENT PI CAMBRIDGE PA 77 MASSACHUSETTS AVE, E60-100, CAMBRIDGE, MA 02139-4307 USA SN 1532-9194 J9 MIT SLOAN MANAGE REV JI MIT Sloan Manage. Rev. PD SPR PY 2015 VL 56 IS 3 BP 43 EP + PG 10 WC Business; Management SC Business & Economics GA CE4BT UT WOS:000351776500008 ER PT J AU Lu, XM Hu, YX AF Lu, Xiaomei Hu, Yongxiang TI Accuracy of land surface elevation from CALIPSO mission data SO OPTICAL ENGINEERING LA English DT Article DE CALIPSO; laser altimetry ID TOPOGRAPHY MISSION; LASER ALTIMETRY; SHUTTLE RADAR; PERFORMANCE; LIDAR; VALIDATION; HEIGHT; SRTM AB We assess the accuracy of land surface elevation retrieved from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission through comparisons with the U.S. Geological Survey National Elevation Dataset (NED), Shuttle Radar Topography Mission (SRTM), and the altimetry product from the Geoscience Laser Altimeter System onboard the Ice, Cloud, and Land Elevation Satellite (ICESat). The vertical accuracy of the CALIPSO-derived land surface elevation was tested against these three datasets for about 16 million lidar shots over the continental United States. The results show that the CALIPSO-derived elevation was highly correlated with the elevation result from the NED, SRTM, and ICESat datasets. The overall absolute vertical accuracies of the CALIPSO-derived land surface elevation expressed as the root mean square error (RMSE) are 5.58 and 5.90 m when compared with the SRTM and NED results, respectively. Lower accuracy of the CALIPSO-derived land surface elevation was achieved by comparison with the ICESat results (8.35-m RMSE), primarily due to the several kilometers distance between the CALIPSO and ICESat ground footprints. The results show that the variability in terrain, vegetation, canopy, and footprint size can all influence comparisons between the CALIPSO-derived elevation and the results obtained from NED, SRTM, and ICESat datasets. (C) 2015 Society of Photo-Optical Instrumentation Engineers C1 [Lu, Xiaomei] NASA, Langley Res Ctr, Hampton, VA 23666 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. RP Hu, YX (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. EM yongxiang.hu-1@nasa.gov RI Hu, Yongxiang/K-4426-2012 FU NASA Langley Research Center FX This research was supported by Xiaomei Lu's appointment to the NASA Postdoctoral Program at the NASA Langley Research Center administered by Oak Ridge Associated University through a contract with NASA. She also thanks Science Systems & Applications, Inc. (SSAI) in Hampton, Virginia, for providing office space and computer support. CALIPSO data were obtained from NASA Langley Research Center Atmospheric Science Data Center (https://eosweb.larc.nasa.gov/HORDERBIN/HTML_Start.cgi). NED data were provided by the USGS National Map Viewer (http://viewer.nationalmap.gov/viewer/). The SRTM products were obtained from USGS (http:// dds.cr.usgs.gov/srtm/version2_1/SRTM1/). The GLAS altimetry products were downloaded from National Snow and Ice Data Center (NSIDC) Earth Observing System Data Pool (ftp://n5eil01u.ecs.nsidc.org/SAN/GLAS/). NR 37 TC 1 Z9 1 U1 1 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD MAR PY 2015 VL 54 IS 3 AR 031102 DI 10.1117/1.OE.54.3.031102 PG 10 WC Optics SC Optics GA CE1QR UT WOS:000351587500004 ER EF