FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Izon, G Zerkle, AL Zhelezinskaia, I Farquhar, J Newton, RJ Poulton, SW Eigenbrode, JL Claire, MW AF Izon, Gareth Zerkle, Aubrey L. Zhelezinskaia, Iadviga Farquhar, James Newton, Robert J. Poulton, Simon W. Eigenbrode, Jennifer L. Claire, Mark W. TI Multiple oscillations in Neoarchaean atmospheric chemistry SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Neoarchaean; multiple sulphur isotopes; MIF; methane; hydrocarbon haze; atmospheric oxygen ID MASS-INDEPENDENT FRACTIONATION; GREAT OXIDATION EVENT; SOUTH-AFRICA; SULFUR ISOTOPES; ARCHEAN ATMOSPHERE; TRANSVAAL SUPERGROUP; WESTERN-AUSTRALIA; KAAPVAAL CRATON; CARBONATE PLATFORM; OXYGENIC PHOTOSYNTHESIS AB The Great Oxidation Event (GOE) represents a crucial juncture in Earth history, signifying the rise in atmospheric oxygen from parts per million to percent levels at similar to 2.45-2.32 billion-years-ago (Ga). Although planetary oxygenation undoubtedly led to the inception of the contemporary Earth system, the trigger(s) and mechanism(s) controlling this chemical reorganisation remain elusive. Quantitative estimates of the atmosphere's composition in the prelude to the GOE are central to understanding this oxygenation event. Previous analyses of 2.65-2.5 Ga sediments from the Griqualand Basin (South Africa) invoke a tantalising picture of an unusual Earth environment, alluding to an atmosphere periodically dominated by a layer of organic particles ("haze") formed from methane photolysis. However, as yet this hypothesis has remained untested. Here we present four new coupled carbon and quadruple sulphur isotope records from distal, time equivalent (2.7-2.5 Ga), sedimentary successions from South Africa and Western Australia. These extended records reveal similar chemostratigraphic trends, supporting a dynamic terminal-Neoarchaean atmosphere, oscillating between a hazy state at elevated methane concentrations, and a haze-free anoxic background state. We suggest these atmospheric aberrations were related to heightened biogenic methane fluxes fuelled by enhanced nutrient delivery from climatically or weathering induced feedbacks. These data question the canonical view of a simple, unidirectional planetary oxygenation and signify that the overture to the GOE was governed by complex feedbacks within the Earth-biosphere system. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Izon, Gareth; Zerkle, Aubrey L.; Claire, Mark W.] Univ St Andrews, Dept Earth & Environm Sci, St Andrews KY16 9AL, Fife, Scotland. [Zhelezinskaia, Iadviga; Farquhar, James] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Zhelezinskaia, Iadviga; Farquhar, James] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Newton, Robert J.; Poulton, Simon W.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Eigenbrode, Jennifer L.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Claire, Mark W.] Blue Marble Space Inst Sci, Seattle, WA 98109 USA. RP Izon, G (reprint author), Univ St Andrews, Dept Earth & Environm Sci, St Andrews KY16 9AL, Fife, Scotland. EM gji3@st-andrews.ac.uk RI Newton, Robert/B-2599-2009; OI Izon, Gareth/0000-0003-2742-4922; Zerkle, Aubrey/0000-0003-2324-1619 FU NERC [NE/H016805/2, NE/J023485/2]; SAGES Postdoctoral & Early Career Researcher Exchange grant FX We thank A. Czaja, K. Freeman and the staff at the South African National Core Library in Donkerhoek for facilitating access to the core materials, C. Jones and K. Moulton for assistance with sampling and rock crushing, and E. Stueken for the provision of the Delta3xS database. G.I. thanks C.L. Holmes for comments on earlier versions of the manuscript and C.S. Miller for assistance with drafting some of the artwork. This work benefited from careful reviews by Colin Goldblatt and Bozwell Wing and the editorial oversight of Bernard Marty. This study was supported financially by NERC Fellowship NE/H016805/2 (to A.Z.) and a NERC Standard Grant NE/J023485/2 (to A.Z., M.C. and S.P.), along with a SAGES Postdoctoral & Early Career Researcher Exchange grant to G.I. NR 75 TC 11 Z9 11 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD DEC 1 PY 2015 VL 431 BP 264 EP 273 DI 10.1016/j.epsl.2015.09.018 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CU8XY UT WOS:000363828600026 ER PT J AU Hadden, CM Klimek-McDonald, DR Pineda, EJ King, JA Reichanadter, AM Miskioglu, I Gowtham, S Odegard, GM AF Hadden, C. M. Klimek-McDonald, D. R. Pineda, E. J. King, J. A. Reichanadter, A. M. Miskioglu, I. Gowtham, S. Odegard, G. M. TI Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments SO CARBON LA English DT Article ID NEAR-INFRARED SPECTROSCOPY; GRAPHITE-POLYPROPYLENE NANOCOMPOSITES; MOLECULAR-DYNAMICS SIMULATIONS; STRESS-STRAIN BEHAVIOR; EPOXY-RESIN; THERMAL-CONDUCTIVITY; NANOTUBE COMPOSITES; POLYMER COMPOSITES; SHEAR-STRENGTH; NETWORKS AB Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Hadden, C. M.; Klimek-McDonald, D. R.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.] Michigan Technol Univ, Houghton, MI 49931 USA. [Pineda, E. J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Odegard, GM (reprint author), Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. EM gmodegar@mtu.edu OI Klimek-McDonald, Danielle/0000-0002-1997-0774; King, Julia/0000-0001-6924-970X; Odegard, Gregory/0000-0001-7577-6565 FU NASA under the Aeronautical Sciences Program [NNX11A072A]; Air Force Office of Scientific Research under the Low Density Materials Program [FA9550-13-1-0030]; Michigan Space Grant Consortium [2993583]; NSF I/UCRC on Novel High Voltage/Temperature Materials and Structures [IIP-1362040]; Michigan Technological University Summer Undergraduate Research Fellowship Program FX This research was funded by NASA under the Aeronautical Sciences Program (Grant NNX11A072A), the Air Force Office of Scientific Research under the Low Density Materials Program (Grant FA9550-13-1-0030), the Michigan Space Grant Consortium (Grant 2993583), the NSF I/UCRC on Novel High Voltage/Temperature Materials and Structures (Grant IIP-1362040), and the Michigan Technological University Summer Undergraduate Research Fellowship Program. The authors thank XG Sciences for donating graphene nanoplatelets and Hexcel for donating AS4 carbon fiber for this work. The authors would also like to thank the following undergraduate students for their assistance on this project: Michael T. Best, Courtney A. Castelic, James A. Kenney, Kerry L. King, Andrew P. Lewis, Ryan E. McInnis, Mary Kate Mitchell, Ryan J. Patrick, Andrew N. Payton, Travis J.D. Pellosma, Alexander E. Powell, Elizabeth J. Skultety, Stephanie L. Tankersley, Peter H. Winegar, and Lucas D. Zoromski. SUPERIOR, a high-performance computing cluster at Michigan Technological University, was used in obtaining results presented in this publication. NR 53 TC 14 Z9 14 U1 26 U2 191 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD DEC PY 2015 VL 95 BP 100 EP 112 DI 10.1016/j.carbon.2015.08.026 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CU1WM UT WOS:000363312900013 ER PT J AU Versino, D Mourad, HM Davila, CG Addessio, FL AF Versino, Daniele Mourad, Hashem M. Davila, Carlos G. Addessio, Francis L. TI A thermodynamically consistent discontinuous Galerkin formulation for interface separation SO COMPOSITE STRUCTURES LA English DT Article DE Interface failure; De lamination; Cohesive-zone models; Damage modeling; Discontinuous Galerkin method; Dynamic structural analysis ID FINITE-ELEMENT; COHESIVE ELEMENTS; BRITTLE MATERIALS; DELAMINATION; COMPOSITES; FRACTURE; SIMULATION; MODELS; DAMAGE; IMPLEMENTATION AB This paper describes the formulation of an interface damage model, based on the discontinuous Galerlcin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. The proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical results obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. As a result of this notable advantage, the proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture. Furthermore, in explicit dynamic analysis, the stable tithe increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Versino, Daniele; Mourad, Hashem M.; Addessio, Francis L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Davila, Carlos G.] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. RP Mourad, HM (reprint author), Los Alamos Natl Lab, Div Theoret, T-3, Los Alamos, NM 87545 USA. EM hmourad@lanl.gov FU Joint DoD/DOE Munitions Technology Development Program (JMP) FX The work of D. Versino, H. M. Mourad and F. L. Addessio at Los Alamos National Laboratory was funded under the Joint DoD/DOE Munitions Technology Development Program (JMP). This support is gratefully acknowledged. NR 40 TC 1 Z9 1 U1 4 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD DEC 1 PY 2015 VL 133 BP 595 EP 606 DI 10.1016/j.compstruct.2015.07.080 PG 12 WC Materials Science, Composites SC Materials Science GA CT8LW UT WOS:000363069100054 ER PT J AU Iurlaro, L Gherlone, M Di Sciuva, M Tessler, A AF Iurlaro, Luigi Gherlone, Marco Di Sciuva, Marco Tessler, Alexander TI Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner's Mixed Variational Theorem SO COMPOSITE STRUCTURES LA English DT Article DE Refined Zigzag Theory; Composite plates; Sandwich plates; Reissner's Mixed Variational Theorem; Transverse shear stress ID MULTILAYERED ORTHOTROPIC PLATES; SHEAR DEFORMATION-THEORY; FREE-VIBRATION ANALYSIS; BEAMS; ELEMENT AB A mixed-field Refined Zigzag Theory (RZT((m))) for laminated plates is presented. The theory is developed using Reissner's Mixed Variational Theorem (RMVT) and employs the kinematic assumptions of the displacement-based Refined Zigzag Theory (RZT). In addition, a robust set of assumed transverse-shear stresses is implemented. The stresses, initially derived by integration of the three-dimensional elasticity equations, satisfy a priori the continuity conditions along the layer interfaces and on the bounding surfaces. With the aid of the strain-compatibility variational statement of RMVT, the transverse-shear stresses are expressed in terms of first-order derivatives of the kinematic variables. The RZT((m)) retains a fixed number of kinematic variables (seven) regardless of the number of material layers. To ascertain the importance of transverse-shear stress assumptions, the layer-wise polynomial approximation scheme is also implemented. Numerical results concerning the elasto-static and vibration problems of simply supported and clamped plates, demonstrate that RZT((m)) is more accurate than RZT, both in terms of local and global responses. These results also reveal that the transverse-shear stresses achieved by a layer-wise polynomial scheme are considerably less accurate, particularly for highly heterogeneous laminates. Furthermore, the RZT((m)) is well suited for developing C-0-continuous finite elements, thus resulting attractive for large-scale analysis of laminated structures. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco] Politecn Torino, Dept Mech & Aerosp Engn, I-10129 Turin, Italy. [Tessler, Alexander] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. RP Iurlaro, L (reprint author), Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM luigi.iurlaro@polito.it OI Gherlone, Marco/0000-0002-5711-0046 NR 43 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD DEC 1 PY 2015 VL 133 BP 809 EP 817 DI 10.1016/j.compstruct.2015.08.004 PG 9 WC Materials Science, Composites SC Materials Science GA CT8LW UT WOS:000363069100074 ER PT J AU Keihm, S Tosi, F Capria, MT De Sanctis, MC Longobardo, A Palomba, E Russell, CT Raymond, CA AF Keihm, S. Tosi, F. Capria, M. T. De Sanctis, M. C. Longobardo, A. Palomba, E. Russell, C. T. Raymond, C. A. TI Separation of thermal inertia and roughness effects from Dawn/VIR measurements of Vesta surface temperatures in the vicinity of Marcia Crater SO ICARUS LA English DT Article DE Asteroid Vesta; Asteroids, composition; Asteroids, surfaces; Cratering ID ASTEROID 21 LUTETIA; THERMOPHYSICAL MODEL; FRAMING CAMERA; DUST TRANSPORT; SUBMILLIMETER; PHYSICS; MILLIMETER; STANDARDS; EMISSION; REGOLITH AB A physical model of small scale roughness has been applied to the analyses of VIR (Visible InfraRed mapping spectrometer) - measured surface temperatures in the Marcia Crater region of asteroid Vesta. Model-generated surface temperatures which include the effects of minicrater-induced flux enhancements and viewing geometry are compared with the measured surface temperature dependence on solar incidence and emission angles. Results indicate that an extremely low thermal inertia (I = <5 J K-1 m(-2) s(-1/2)) and high roughness (rms slopes similar to 35 degrees) characterizes almost all of the areas in and around Marcia Crater. The one clear exception is the relatively cool pitted terrain region within Marcia Crater which requires either a higher thermal inertia value (I similar to 10) or significantly less roughness to match the VIR data. The I similar to 5 finding is the lowest value found for the regolith of any airless body in the inner Solar System and is difficult to reproduce in either laboratory measurements or theoretical models of the thermal conductivity of dry granular materials in vacuum. (C) 2015 Elsevier Inc. All rights reserved. C1 [Keihm, S.; Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tosi, F.; Capria, M. T.; De Sanctis, M. C.; Longobardo, A.; Palomba, E.] INAF IAPS Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Keihm, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Stephen.J.Keihm@jpl.nasa.gov OI capria, maria teresa/0000-0002-9814-9588; De Sanctis, Maria Cristina/0000-0002-3463-4437; Palomba, Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434 FU Italian Space Agency FX Part of this work has been conducted at the Jet Propulsion laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration (NASA). Part of this work has been conducted at INAF-IAPS Institute (Rome, Italy), supported by the Italian Space Agency. NR 44 TC 1 Z9 1 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2015 VL 262 BP 30 EP 43 DI 10.1016/j.icarus.2015.08.028 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CT8VN UT WOS:000363095100004 ER PT J AU Davies, AG Veeder, GJ Matson, DL Johnson, TV AF Davies, Ashley Gerard Veeder, Glenn J. Matson, Dennis L. Johnson, Torrence V. TI Map of Io's volcanic heat flow SO ICARUS LA English DT Article DE Io; Volcanism; Geological processes; Jupiter, satellites; Geophysics ID INFRARED MAPPING SPECTROMETER; THERMAL EMISSION VARIABILITY; GROUND-BASED OBSERVATIONS; KECK AO OBSERVATIONS; TIDAL DISSIPATION; GLOBAL DISTRIBUTION; KANEHEKILI FLUCTUS; ACTIVE VOLCANOS; JANUS PATERA; MU-M AB We present a map of Io's volcanic heat flow. Io's high heat flow is a result of intense tidal heating, which generates widespread volcanic activity. The surface expression of ongoing volcanic activity constrains the location and magnitude of tidal dissipation within Io. Tidal heating models place heating either at relatively shallow (aesthenosphere) levels, or deep in the mantle. It was thought that actual tidal heating could be approximated using a combination of these end-member models. Io's volcanic heat flow has now been mapped in sufficient detail to compare with the models. Our maps show that the distribution of heat flow is not matched by current models of deep nor shallow tidal heating, nor by any combination of these two models. We find relatively low heat flow at sub-jovian (0 degrees W) and anti-jovian (180 degrees W) longitudes, at odds with the pure aesthenospheric heating model. Furthermore, there are large swaths of Io's surface where there is poor correlation between the number of hot spots in an area and the power emitted. We have previously accounted for approximate to 54% of Io's observed heat flow. We now show that Io's anomalously warm poles, possibly the result of heat flow from deep-mantle heating, would yield the "missing" energy (48 TW) if the polar surfaces are at temperatures of similar to 90 K to similar to 95 K and cover latitudes above similar to 43 degrees to similar to 48 degrees respectively. This possibility implies a ratio of deep to shallow heating of about 1:1. However, explaining regional variations in surface volcanic activity requires more detailed modeling of the location and magnitude of the internal tidal dissipation and the consequences of mantle convection and advection within Io. Future model predictions can be compared to our heat flow map. (C) 2015 Elsevier Inc. All rights reserved. C1 [Davies, Ashley Gerard; Johnson, Torrence V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Veeder, Glenn J.; Matson, Dennis L.] Bear Fight Inst, Winthrop, WA 98862 USA. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, Ms 183-401,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ashley.Davies@jpl.nasa.gov FU NASA Outer Planets Research program FX We thank Imke de Pater and an anonymous reviewer for their reviews of this paper. We thank Dave Williams (ASU) for his provision of information gleaned from the Io Geological Map (a project he spearheaded), which greatly assisted us in this task. We also thank Alison Canning Davies for her help with the manuscript. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA, and by the Bear Fight Institute, Winthrop, WA. AGD and GJV thank the NASA Outer Planets Research program for support. California Institute of Technology, 2015. All rights reserved. NR 69 TC 2 Z9 2 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2015 VL 262 BP 67 EP 78 DI 10.1016/j.icarus.2015.08.003 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CT8VN UT WOS:000363095100007 ER PT J AU Palmer, EM Heggy, E Capria, MT Tosi, F AF Palmer, Elizabeth M. Heggy, Essam Capria, Maria T. Tosi, Federico TI Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations SO ICARUS LA English DT Article DE Asteroid Vesta; Asteroids, surfaces; Radar observations ID RADAR OBSERVATIONS; FRAMING CAMERA; REGOLITH; LUNAR; MINERALOGY; HOWARDITE; EUCRITE; MISSION; PALLAS; CERES AB Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 x 10(-3) to 8 x 10(-3). We estimate the surface porosity to be similar to 55% in the upper meter of the regolith, as derived from VIR observations. This is similar to 12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band. (C) 2015 Elsevier Inc. All rights reserved. C1 [Palmer, Elizabeth M.] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. [Palmer, Elizabeth M.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Heggy, Essam] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA. [Heggy, Essam] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. [Capria, Maria T.; Tosi, Federico] INAF IAPS, Inst Space Astrophys & Planetol, I-00133 Rome, Italy. RP Palmer, EM (reprint author), Western Michigan Univ, Dept Geosci, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA. EM Elizabeth.M.Palmer@wmich.edu; heggy@usc.edu; mariateresa.capria@iaps.inaf.it; federico.tosi@iaps.inaf.it OI capria, maria teresa/0000-0002-9814-9588; Tosi, Federico/0000-0003-4002-2434 FU NASA Planetary Geology and Geophysics Program [NNXZ08AKA2G]; Italian Space Agency (ASI); UCLA FX The authors acknowledge Prof. Christopher Russell from UCLA for useful discussions, and also the Dawn Science, Instrument and Operations Teams for their support. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was supported in part by the NASA Planetary Geology and Geophysics Program under Grant NNXZ08AKA2G. VIR is funded by the Italian Space Agency (ASI) and was developed under the leadership of INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome-Italy. Palmer was funded by a graduate student research award from UCLA. NR 63 TC 1 Z9 1 U1 3 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2015 VL 262 BP 93 EP 101 DI 10.1016/j.icarus.2015.08.031 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CT8VN UT WOS:000363095100009 ER PT J AU Tate, CG Moersch, J Jun, I Ming, DW Mitrofanov, I Litvak, M Behar, A Boynton, WV Deflores, L Drake, D Ehresmann, B Fedosov, F Golovin, D Hardgrove, C Harshman, K Hassler, DM Kozyrev, AS Kuzmin, R Lisov, D Malakhov, A Milliken, R Mischna, M Mokrousov, M Nikiforov, S Sanin, AB Starr, R Varenikov, A Vostrukhin, A Zeitlin, C AF Tate, C. G. Moersch, J. Jun, I. Ming, D. W. Mitrofanov, I. Litvak, M. Behar, A. Boynton, W. V. Deflores, L. Drake, D. Ehresmann, B. Fedosov, F. Golovin, D. Hardgrove, C. Harshman, K. Hassler, D. M. Kozyrev, A. S. Kuzmin, R. Lisov, D. Malakhov, A. Milliken, R. Mischna, M. Mokrousov, M. Nikiforov, S. Sanin, A. B. Starr, R. Varenikov, A. Vostrukhin, A. Zeitlin, C. TI Water equivalent hydrogen estimates from the first 200 sols of Curiosity's traverse (Bradbury Landing to Yellowknife Bay): Results from the Dynamic Albedo of Neutrons (DAN) passive mode experiment SO ICARUS LA English DT Article DE Mars; Mars, surface; Cosmic rays ID GALE CRATER; MARS ODYSSEY; GAMMA-RAY; INSTRUMENT; DETECTOR; SPECTRA AB The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory (MSL) rover Curiosity is designed to detect neutrons to determine hydrogen abundance within the subsurface of Mars (Mitrofanov, I.G. et al. [2012]. Space Sci. Rev. 170, 559-582. http://dx.doi.org/10.10071s11214-012-9924-y; Litvak, M.L. et al. [2008]. Astrobiology 8, 605-613. http://dx.doLorg/10.1089/ast.2007.0157). While DAN has a pulsed neutron generator for active measurements, in passive mode it only measures the leakage spectrum of neutrons produced by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Galactic Cosmic Rays (GCR). DAN passive measurements provide better spatial coverage than the active measurements because they can be acquired while the rover is moving. Here we compare DAN passive-mode data to models of the instrument's response to compositional differences in a homogeneous regolith in order to estimate the water equivalent hydrogen (WEH) content along the first 200 sols of Curiosity's traverse in Gale Crater, Mars. WEH content is shown to vary greatly along the traverse. These estimates range from 0.5 +/- 0.1 wt.% to 3.9 +/- 0.2 wt.% for fixed locations (usually overnight stops) investigated by the rover and 0.6 +/- 0.2 wt.% to 7.6 +/- 1.3 wt.% for areas that the rover has traversed while continuously acquiring DAN passive data between fixed locations. Estimates of WEH abundances at fixed locations based on passive mode data are in broad agreement with those estimated at the same locations using active mode data. Localized (meter-scale) anomalies in estimated WEH values from traverse measurements have no particular surface expression observable in co-located images. However at a much larger scale, the hummocky plains and bedded fractured units are shown to be distinct compositional units based on the hydrogen content derived from DAN passive measurements. DAN passive WEH estimates are also shown to be consistent with geologic models inferred from other MSL instruments, which indicate that fluvial/lacustrine activity occurred at certain locations (e.g., Yellowknife Bay). (C) 2015 Elsevier Inc. All rights reserved. C1 [Tate, C. G.; Moersch, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Moersch, J.; Hardgrove, C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Jun, I.; Behar, A.; Deflores, L.; Mischna, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ming, D. W.] NASA, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Mitrofanov, I.; Litvak, M.; Fedosov, F.; Golovin, D.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Malakhov, A.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Varenikov, A.; Vostrukhin, A.] RAS, Space Res Inst, Moscow 117901, Russia. [Boynton, W. V.; Harshman, K.] Univ Arizona, Tucson, AZ 85721 USA. [Drake, D.] TechSource Inc, Los Alamos, NM 87544 USA. [Ehresmann, B.; Hassler, D. M.] SW Res Inst, Boulder, CO 80302 USA. [Milliken, R.] Brown Univ, Providence, RI 02912 USA. [Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Zeitlin, C.] SW Res Inst, Earth, Oceans, Space Div, Durham, NH 03824 USA. RP Tate, CG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. FU J. Moersch's MSL Participating Scientist Award [NASA JPL 1451872] FX This work was financially supported by J. Moersch's MSL Participating Scientist Award (NASA JPL 1451872). Our computational resources included the University of Tennessee high performance computing cluster "Newton". We would like to thank Mike Malin for productive discussions regarding the effects of regolith density on the results. We would also like to thank the MSL operations and science teams for helping acquire these data. NR 44 TC 1 Z9 1 U1 2 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2015 VL 262 BP 102 EP 123 DI 10.1016/j.icarus.2015.09.002 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CT8VN UT WOS:000363095100010 ER PT J AU Kelley, MSP Lindler, DJ Bodewits, D A'Hearn, MF Lisse, CM Kolokolova, L Kissel, J Hermalyn, B AF Kelley, Michael S. P. Lindler, Don J. Bodewits, Dennis A'Hearn, Michael F. Lisse, Carey M. Kolokolova, Ludmilla Kissel, Jochen Hermalyn, Brendan TI A distribution of large particles in the coma of Comet 103P/Hartley 2 (vol 222, pg 634, 2013) SO ICARUS LA English DT Correction C1 [Kelley, Michael S. P.; Bodewits, Dennis; A'Hearn, Michael F.; Kolokolova, Ludmilla] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Kissel, Jochen] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Hermalyn, Brendan] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Kelley, MSP (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM msk@astro.umd.edu; don.j.lindler@nasa.gov; dennis@astro.umd.edu; ma@astro.umd.edu; Carey.Lisse@jhuapl.edu; ludmilla@astro.umd.edu RI Lisse, Carey/B-7772-2016 OI Lisse, Carey/0000-0002-9548-1526 FU NASA (USA) [NNX12AQ64G] FX This work was supported by NASA (USA) through the Planetary Mission Data Analysis Program contract NNX12AQ64G to the University of Maryland. NR 6 TC 2 Z9 2 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2015 VL 262 BP 187 EP 189 DI 10.1016/j.icarus.2015.09.004 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CT8VN UT WOS:000363095100017 ER PT J AU Hoglund, L Ting, DZY Soibel, A Hill, CJ Fisher, AM Keo, SA Gunapala, SD AF Hoeglund, Linda Ting, David Z. -Y. Soibel, Alexander Hill, Cory J. Fisher, Anita M. Keo, Sam A. Gunapala, Sarath D. TI Minority Carrier Lifetimes in InSb/InAsSb Quantum Dot and InAsSb nBn Photodetectors SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Article DE Infrared detectors; quantum dots; minority carrier lifetime; photoluminescence; absorption; InSb; InAsSb ID INFRARED PHOTODIODES AB The energy level scheme and the minority carrier lifetime in a type-II midwave InSb/InAs0.92Sb0.08 quantum dot structure were compared with bulk InAs0.915Sb0.085 using photoluminescence, absorption, and optical modulation response. Two hole energy levels separated by similar to 65 meV were identified in the quantum dots, and a decrease of the hole energy barrier with increasing temperatures was observed. The quantum dot minority carrier lifetime increased from 700 ns at 77 K to 1230 ns at 175 K, and is significantly longer than the bulk InAs0.915Sb0.085 lifetime of 300 ns. By insertion of quantum dots in the bulk material, the dominating recombination mechanism changed from the Shockley-Read-Hall to radiative recombination. C1 [Hoeglund, Linda; Ting, David Z. -Y.; Soibel, Alexander; Hill, Cory J.; Fisher, Anita M.; Keo, Sam A.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, Pasadena, CA 91109 USA. RP Hoglund, L (reprint author), CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM hoglund.linda@gmail.com; david.z.ting@jpl.nasa.gov; alexander.soibel@jpl.nasa.gov; cory.j.hill@jpl.nasa.gov; anita.m.fisher@jpl.nasa.gov; sam.a.keo@jpl.nasa.gov; sarath.d.gunapala@jpl.nasa.gov NR 16 TC 4 Z9 4 U1 6 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1041-1135 EI 1941-0174 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD DEC 1 PY 2015 VL 27 IS 23 BP 2492 EP 2495 DI 10.1109/LPT.2015.2472396 PG 4 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA CU0LZ UT WOS:000363209500019 ER PT J AU Shivakumar, KN Panduranga, R Skujins, J Miller, S AF Shivakumar, Kunigal N. Panduranga, Raghu Skujins, John Miller, Sandi TI Assessment of mode-II fracture tests for unidirectional fiber reinforced composite laminates SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES LA English DT Article DE Mode-II test methods; fracture toughness; shear precracking; wedge precracking; contact finite element analysis ID NOTCHED FLEXURE SPECIMEN; DELAMINATION RESISTANCE; TOUGHNESS AB Three basic mode-II test methods (ENF, JIS, and ASTM D7905M-14) are assessed using the material system AS4/8552 carbon/epoxy unidirectional composite laminate to understand similarities and differences. The modified JIS method uses a PTFE film coated stainless steel rod instead of the PTFE strip that was proposed in JIS. The ASTM D7905M-14 test method determines FEP film crack front (NPC) and shear precrack front (PC) fracture toughnesses. Alternately, wedge precracked specimens were also tested to assess the shear versus opening mode precracking on mode-II fracture toughness. The analysis and test results revealed that the JIS method is a mixed-mode I-II test and result in lower value of mode-II fracture toughness. The G(I) loading is about 51J/m(2) for the material tested and G(IIc) measured by JIS is always less than pure mode-II fracture toughness. The G(IIc) measured from the ASTM D7905M-14 NPC and the ENF tests are almost identical, but the ASTM test offers a compliance equation that may be beneficial in fatigue crack growth studies. As suggested in ASTM standard, shear precracked specimen is appropriate to measure mode-II fracture toughness. C1 [Shivakumar, Kunigal N.; Panduranga, Raghu; Skujins, John] N Carolina Agr & Tech State Univ, Ctr Composite Mat Res, Dept Mech Engn, Greensboro, NC 27411 USA. [Miller, Sandi] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Shivakumar, KN (reprint author), N Carolina Agr & Tech State Univ, Ctr Composite Mat Res, Dept Mech Engn, 1601 East Market St, Greensboro, NC 27411 USA. EM kunigal@ncat.edu FU National Rotorcraft Technology Center [W911W6-11-2-0012]; NASA URC-Center for Aviation Safety [NNX09AVO8A] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the National Rotorcraft Technology Center (grant # W911W6-11-2-0012) and NASA URC-Center for Aviation Safety (grant # NNX09AVO8A). NR 29 TC 1 Z9 1 U1 3 U2 17 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0731-6844 EI 1530-7964 J9 J REINF PLAST COMP JI J. Reinf. Plast. Compos. PD DEC PY 2015 VL 34 IS 23 BP 1905 EP 1925 DI 10.1177/0731684415602335 PG 21 WC Materials Science, Composites; Polymer Science SC Materials Science; Polymer Science GA CU2CA UT WOS:000363328300001 ER PT J AU Ono, M Pavone, M Kuwata, Y Balaram, J AF Ono, Masahiro Pavone, Marco Kuwata, Yoshiaki Balaram, J. TI Chance-constrained dynamic programming with application to risk-aware robotic space exploration SO AUTONOMOUS ROBOTS LA English DT Article DE Dynamic programming; Constrained stochastic optimal control; Chance-constrained optimization; Markov decision processes; Path planning ID POWERED-DESCENT GUIDANCE; MODEL-PREDICTIVE CONTROL; CONVEX-OPTIMIZATION; MANAGEMENT; POLICIES AB Existing approaches to constrained dynamic programming are limited to formulations where the constraints share the same additive structure of the objective function (that is, they can be represented as an expectation of the summation of one-stage costs). As such, these formulations cannot handle joint probabilistic (chance) constraints, whose structure is not additive. To bridge this gap, this paper presents a novel algorithmic approach for joint chance-constrained dynamic programming problems, where the probability of failure to satisfy given state constraints is explicitly bounded. Our approach is to (conservatively) reformulate a joint chance constraint as a constraint on the expectation of a summation of indicator random variables, which can be incorporated into the cost function by considering a dual formulation of the optimization problem. As a result, the primal variables can be optimized by standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate algorithm effectiveness on three optimal control problems, namely a path planning problem, a Mars entry, descent and landing problem, and a Lunar landing problem. All Mars simulations are conducted using real terrain data of Mars, with four million discrete states at each time step. The numerical experiments are used to validate our theoretical and heuristic arguments that the proposed algorithm is both (i) computationally efficient, i.e., capable of handling real-world problems, and (ii) near-optimal, i.e., its degree of conservatism is very low. C1 [Ono, Masahiro; Balaram, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Pavone, Marco] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Kuwata, Yoshiaki] Space Exploration Technol Corp SpaceX, Guidance Control & Nav Div, Hawthorne, TX USA. RP Ono, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM ono@jpl.nasa.gov; pavone@stanford.edu; kuwata@alum.mit.edu; j.balaram@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA under Space Technology Research Grants Program [NNX12AQ43G] FX The research described in this paper was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Marco Pavone was supported in part by NASA under the Space Technology Research Grants Program, Grant NNX12AQ43G. NR 47 TC 0 Z9 0 U1 3 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5593 EI 1573-7527 J9 AUTON ROBOT JI Auton. Robot. PD DEC PY 2015 VL 39 IS 4 SI SI BP 555 EP 571 DI 10.1007/s10514-015-9467-7 PG 17 WC Computer Science, Artificial Intelligence; Robotics SC Computer Science; Robotics GA CT6YV UT WOS:000362960600007 ER PT J AU Verstraete, MM Diner, DJ Bezy, JL AF Verstraete, Michel M. Diner, David J. Bezy, Jean-Loup TI Planning for a spaceborne Earth Observation mission: From user expectations to measurement requirements SO ENVIRONMENTAL SCIENCE & POLICY LA English DT Article DE Earth Observation; User expectations; Measurement requirements; End-to-end simulator; Airborne instrument; Calibration and validation; Products and services ID SPECTROMETER; AEROSOL AB This paper outlines the preparatory scientific activities that should precede and accompany the design and development of a spaceborne instrument for Earth Observation (EO), to guarantee fitness for purpose, ensure quality and performance, and minimize risks. This roadmap is addressed to policy and decision makers, program managers, customers and users of remote sensing products, as well as scientists involved in this field, and aims to provide the necessary background and motivation for the many steps and processes that are necessary to conduct a successful spaceborne EO mission. The paper focuses on, and is limited to, the description of a comprehensive, ideal methodology; it does not address the needs of a particular mission, or the engineering processes of design and development of the satellite hardware that will meet the user expectations. It should prove useful for the competent authorities to understand the scope and purpose (as well as the reasons for the associated implied costs) of preparatory phases, for the users and customers to express their expectations in ways that are conducive to the definition of a spaceborne EO mission, and for the scientific community to logically derive measurement requirements that are actionable by engineers to design and implement a successful mission (including both space and ground segments) that delivers relevant remote sensing products to the users. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Verstraete, Michel M.] SANSA, Earth Observat Directorate, Innovat Hub, ZA-0087 Pretoria, South Africa. [Verstraete, Michel M.] Univ Witwatersrand, Global Change & Sustainabil Res Inst, ZA-2000 Johannesburg, South Africa. [Diner, David J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bezy, Jean-Loup] European Space Agcy ESA ESTEC, Earth Observat Directorate, Noordwijk, Netherlands. RP Verstraete, MM (reprint author), SANSA, Earth Observat Directorate, Innovat Hub, Mark Shuttleworth St, ZA-0087 Pretoria, South Africa. EM MVerstraete@sansa.org.za; David.J.Diner@jpl.nasa.gov; Jean-Loup.Bezy@esa.int OI Verstraete, Michel/0000-0003-0968-8721 FU South African Department of Science and Technology (DST) FX The authors gratefully acknowledge the support of their respective home institutions. The South African National Space Agency (SANSA) is financially supported by the South African Department of Science and Technology (DST). The research of David J. Diner is carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration. The authors thank Margaret Frerking of the JPL Office of the Chief Engineer for valuable discussions regarding Technology Readiness Levels. Responsibility for errors and opinions rests exclusively with the authors. NR 13 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1462-9011 EI 1873-6416 J9 ENVIRON SCI POLICY JI Environ. Sci. Policy PD DEC PY 2015 VL 54 BP 419 EP 427 DI 10.1016/j.envsci.2015.08.005 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA CT2AC UT WOS:000362603400044 ER PT J AU Coppa, AC Kapoor, M Noebe, R Thompson, GB AF Coppa, Anne C. Kapoor, Monica Noebe, Ron Thompson, Gregory B. TI The compositional stability of the P-phase in Ni-Ti-Pd shape memory alloys SO INTERMETALLICS LA English DT Article DE Ni-Ti-Pd alloy; Compositional stability; P-phase; P1-phase; Atom probe tomography ID TRANSMISSION ELECTRON-MICROSCOPY; PRECIPITATE PHASE; MARTENSITIC-TRANSFORMATION; CONCENTRATION GRADIENTS; SPECIMEN PREPARATION; SITE PREFERENCE; STRAIN FIELDS; MICROSTRUCTURE; RICH; BEHAVIOR AB The precipitation of the P-phase in Ni-Ti-Pd and Ni-Ti-Pt shape memory alloys has been shown to dramatically increase the martensitic transformation temperature and strength in Ni-rich ternary alloys, yet little is known about the phase's compositional stability. Therefore, the compositional limits of the P-phase have been systematically studied by varying the Pd and Ni content while maintaining the general P-phase Ti-11(Ni + Pd)(13) stoichiometry. Each alloy was solutionized at 1050 degrees C followed by water quenching, and aging at 400 degrees C for 100 h. Four distinct phases were identified by electron and x-ray diffraction: Ti2Pd3, B2 NM, P- and P1-phases. The latter precipitate phases became more stable with increasing Ni at the expense of the Pd content. Atom probe tomography revealed the P-phase composition to be 45.8Ti-29.2Ni-25Pd (at.%) or Ti-11(Ni7Pd6) as compared to the P1-phase 44.7Ti-45.8Ni -9APd (at.%) or Ti5Ni5Pd. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Coppa, Anne C.; Kapoor, Monica; Thompson, Gregory B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35401 USA. [Noebe, Ron] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Thompson, GB (reprint author), Univ Alabama, Dept Met & Mat Engn, Box 870202, Tuscaloosa, AL 35401 USA. EM gthompson@eng.ua.edu FU NASA [NNX09AO61A]; NASA Transformative Aeronautics Concepts Program (TACP), Transformational Tools & Technologies Project FX The authors gratefully acknowledge funding for this research under NASA grant NNX09AO61A. RDN gratefully acknowledges support from the NASA Transformative Aeronautics Concepts Program (TACP), Transformational Tools & Technologies Project (Dale Hopkins, Technical Lead for Structures & Materials Discipline). This study utilized the Central Analytical Facility (CAF), supported by and located on the campus at The University of Alabama, including Rich Martens and Chad Hornbuckle for assistance in understanding the complexities of atom probe sample preparation and data reconstruction. NR 49 TC 0 Z9 0 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 EI 1879-0216 J9 INTERMETALLICS JI Intermetallics PD DEC PY 2015 VL 67 BP 56 EP 62 DI 10.1016/j.intermet.2015.07.014 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CS5SZ UT WOS:000362139900008 ER PT J AU Houborg, R Fisher, JB Skidmore, AK AF Houborg, Rasmus Fisher, Joshua B. Skidmore, Andrew K. TI Advances in remote sensing of vegetation function and traits SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Remote sensing; Traits; Vegetation function; Satellites; UAV; Multispectral; Hyperspectral; Thermal ID MODEL; FLUORESCENCE; RED AB Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales. However, the translation of remote sensing signals into meaningful descriptors of vegetation function and traits is still associated with large uncertainties due to complex interactions between leaf, canopy, and atmospheric mediums, and significant challenges in the treatment of confounding factors in spectrum-trait relations. This editorial provides (1) a background on major advances in the remote sensing of vegetation, (2) a detailed timeline and description of relevant historical and planned satellite missions, and (3) an outline of remaining challenges, upcoming opportunities and key research objectives to be tackled. The introduction sets the stage for thirteen Special Issue papers here that focus on novel approaches for exploiting current and future advancements in remote sensor technologies. The described enhancements in spectral, spatial and temporal resolution and radiometric performance provide exciting opportunities to significantly advance the ability to accurately monitor and model the state and function of vegetation canopies at multiple scales on a timely basis. (C) 2015 Elsevier B.V. All rights reserved. C1 [Houborg, Rasmus] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div, Thuwal, Saudi Arabia. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands. RP Houborg, R (reprint author), King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div, Thuwal, Saudi Arabia. EM Rasmus.houborg@kaust.edu.sa RI Skidmore, Andrew/C-7441-2011; OI Skidmore, Andrew/0000-0002-7446-8429; Fisher, Joshua/0000-0003-4734-9085 FU King Abdullah University of Science and Technology (KAUST); NASA; JPL Research & Technology Development; University of Twente, Faculty of ITC FX The editors would like to thank all authors for their contributions to the special issue. The reviewers are acknowledged for their excellent, constructive, and timely feedback, which significantly helped shape the content of the special issue. Special thanks goes out to the JAG editorial board and Editor in Chief, Freek van der Meer who have been very helpful and extensive in their support. RH acknowledges funding support from the King Abdullah University of Science and Technology (KAUST). JBF contributed from the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA); government sponsorship acknowledged. Support was provided by NASA Carbon Cycle Science, Terrestrial Hydrology Program, and Earth Ventures Instruments, and by JPL Research & Technology Development. AS activities are funded by the University of Twente, Faculty of ITC. NR 28 TC 11 Z9 11 U1 7 U2 79 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD DEC PY 2015 VL 43 SI SI BP 1 EP 6 DI 10.1016/j.jag.2015.06.001 PG 6 WC Remote Sensing SC Remote Sensing GA CS5UO UT WOS:000362144000001 ER PT J AU Nag, S Gatebe, CK de Weck, O AF Nag, Sreeja Gatebe, Charles K. de Weck, Olivier TI Observing system simulations for small satellite formations estimating bidirectional reflectance SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Multi-angular remote sensing; Small satellite; Formation; BRDF; OSSE ID AIRBORNE SPECTRAL MEASUREMENTS; BRDF MODELS; RADIOMETER; MISR; EFFICIENCY; RADIATION; INVERSION; PRODUCTS; CLOUDS; ALBEDO AB The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spacebome instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible. (C) 2015 Published by Elsevier B.V. C1 [Nag, Sreeja; de Weck, Olivier] MIT, Cambridge, MA 02139 USA. [Nag, Sreeja; Gatebe, Charles K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gatebe, Charles K.] Univ Space Res Assoc, Columbia, MD 21046 USA. RP Nag, S (reprint author), Bay Area Environm Res Inst, Sonoma, CA 95476 USA. EM sreejanag@alum.mit.edu RI Gatebe, Charles/G-7094-2011 OI Gatebe, Charles/0000-0001-9261-2239 FU Schlumberger Faculty; NASA FX The authors acknowledge the following people, without whose help this paper in its present quality would not have been possible: Rajesh Poudyal (GSFC) for extracting and post-processing the BRDF data for the CAR instrument, Warren Wiscombe (GSFC) for his contribution and consistent drive toward Leonardo-BRDF which first proposed the concept of formation flight for BRDF, Ralph Kahn (GSFC), David Miller (MIT), Kerri Cahoy (MIT) and Alexei Lyapustin (GSFC) for their valuable ideas toward making this study better. The primary author is funded by the Schlumberger Faculty for the Future Fellowship and the NASA Earth and Space Science Fellowship. NR 56 TC 6 Z9 6 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD DEC PY 2015 VL 43 SI SI BP 102 EP 118 DI 10.1016/j.jag.2015.04.022 PG 17 WC Remote Sensing SC Remote Sensing GA CS5UO UT WOS:000362144000009 ER PT J AU Balasubramaniam, R Hasan, MM AF Balasubramaniam, R. Hasan, Mohammad M. TI Transient condensation of flowing vapor on a flat-plate: A scaling analysis SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Condensation; Forced convection; Flat-plate; Scaling analysis ID FILM CONDENSATION AB We perform an analysis of condensation of pure vapor flowing over a cooled flat plate. We estimate the time taken to achieve steady-state condensation by a transient analysis where we use results from previous studies that show that the time-dependent behavior is governed by the propagation of a kinematic wave along the condensate film. The steady-state time at any streamwise location along the plate depends on the steady-state film thickness at that location. Classical theories of laminar steady-state condensation are reviewed, and a scaling analysis is performed to capture the scalings for relevant quantities such as the liquid film thickness, liquid velocity, and heat transfer coefficient. The results from the scaling analysis are entirely consistent with the classical theories. Finally, the scaling analysis is extended to take into account effects of turbulence in the liquid film. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Balasubramaniam, R.] Case Western Reserve Univ, Natl Ctr Space Explorat Res, NASA, Glenn Res Ctr, Cleveland, OH 44106 USA. [Hasan, Mohammad M.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Balasubramaniam, R (reprint author), Case Western Reserve Univ, Natl Ctr Space Explorat Res, NASA, Glenn Res Ctr, Cleveland, OH 44106 USA. NR 9 TC 0 Z9 0 U1 4 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD DEC PY 2015 VL 91 BP 793 EP 799 DI 10.1016/j.ijheatmasstransfer.2015.08.011 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CS5PQ UT WOS:000362130700080 ER PT J AU Kharangate, CR O'Neill, LE Mudawar, I Hasan, MM Nahra, HK Balasubramaniam, R Hall, NR Macner, AM Mackey, JR AF Kharangate, Chirag R. O'Neill, Lucas E. Mudawar, Issam Hasan, Mohammad M. Nahra, Henry K. Balasubramaniam, Ramaswamy Hall, Nancy R. Macner, Ashley M. Mackey, Jeffrey R. TI Effects of subcooling and two-phase inlet on flow boiling heat transfer and critical heat flux in a horizontal channel with one-sided and double-sided heating SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Flow boiling; Critical heat flux; Subcooling; Two-phase inlet; Gravity effects ID ENHANCED SURFACES; EARTH GRAVITY; CHF MECHANISM; MICROGRAVITY; MODEL; MICROCHANNEL; MULTIPLE; BEHAVIOR; LIQUID; LONG AB This study explores the influence of inlet subcooling and two-phase inlet on flow boiling heat transfer and critical heat flux in a horizontal 2.5-mm wide by 5-mm high rectangular channel for top wall heating, bottom wall heating and double-sided heating configurations using FC-72 as working fluid. High-speed video imaging is used to identify dominant interfacial characteristics for different combinations of inlet conditions and heating configurations. Three inlet conditions are compared: highly subcooled liquid, slightly subcooled liquid, and saturated two-phase mixture for mass velocities between 205.1 and 3211.6 kg/m(2)s. Gravity is shown having a dominant influence on interfacial behavior at low mass velocities below 400 kg/m(2) s, while inertia dwarfs gravity effects at high mass velocities around 1600 kg/m(2) s. Overall, CHF increases monotonically with increasing inlet subcooling. CHF variation between the three heating configurations is large for low mass velocities and diminishes for high mass velocities. A dimensionless parameter, heat utility ratio, is shown to be an effective means for assessing the influence of subcooling on CHF. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kharangate, Chirag R.; O'Neill, Lucas E.; Mudawar, Issam] Purdue Univ, Sch Mech Engn, BTPFL, W Lafayette, IN 47907 USA. [Hasan, Mohammad M.; Nahra, Henry K.; Balasubramaniam, Ramaswamy; Hall, Nancy R.; Macner, Ashley M.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Mackey, Jeffrey R.] Vantage Partners, Brookpark, OH 44142 USA. RP Mudawar, I (reprint author), Purdue Univ, Sch Mech Engn, BTPFL, 585 Purdue Mall, W Lafayette, IN 47907 USA. EM mudawar@ecn.purdue.edu FU National Aeronautics and Space Administration (NASA) [NNX13AB01G]; NASA Office of the Chief Technologist's Space Technology Research Fellowship Grant [NNX11AM81H] FX The authors are grateful for the support of this project by the National Aeronautics and Space Administration (NASA) under Grant No. NNX13AB01G. Support was also provided by the NASA Office of the Chief Technologist's Space Technology Research Fellowship Grant No. NNX11AM81H. The authors thank David F. Chao, James D. Wagner, Rochelle I. May, Daniel M. Hauser and Bruce J. Frankenfield of the NASA Glenn Research Center for their technical assistance. NR 38 TC 6 Z9 6 U1 3 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD DEC PY 2015 VL 91 BP 1187 EP 1205 DI 10.1016/j.ijheatmasstransfer.2015.08.059 PG 19 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CS5PQ UT WOS:000362130700118 ER PT J AU Walker, W Yayathi, S Shaw, J Ardebili, H AF Walker, W. Yayathi, S. Shaw, J. Ardebili, H. TI Thermo-electrochemical evaluation of lithium-ion batteries for space applications SO JOURNAL OF POWER SOURCES LA English DT Article DE Space exploration; Thermo-electrochemical analysis; Thermo-electrochemical testing; Thermal radiation environments; Robotic power supply: test-correlated computational analysis ID MANAGEMENT-SYSTEM; RUNAWAY AB Advanced energy storage and power management systems designed through rigorous materials selection, testing and analysis processes are essential to ensuring mission longevity and success for space exploration applications. Comprehensive testing of Boston Power Swing 5300 lithium-ion (Li-ion) cells utilized by the National Aeronautics and Space Administration (NASA) to power humanoid robot Robonaut 2 (R2) is conducted to support the development of a test-correlated Thermal Desktop (TD) Systems Improved Numerical Differencing Analyzer (SINDA) (TD-S) model for evaluation of power system thermal performance. Temperature, current, working voltage and open circuit voltage measurements are taken during nominal charge-discharge operations to provide necessary characterization of the Swing 5300 cells for TD-S model correlation. Building from test data, embedded FORTRAN statements directly simulate Ohmic heat generation of the cells during charge-discharge as a function of surrounding temperature, local cell temperature and state of charge. The unique capability gained by using TD-S is demonstrated by simulating R2 battery thermal performance in example orbital environments for hypothetical extra-vehicular activities (EVA) exterior to a small satellite. Results provide necessary demonstration of this TD-S technique for thermo-electrochemical analysis of Li-ion cells operating in space environments. Published by Elsevier B.V. C1 [Walker, W.; Yayathi, S.; Shaw, J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Walker, W.; Ardebili, H.] Univ Houston, Mat Sci & Engn Program, Houston, TX 77004 USA. [Ardebili, H.] Univ Houston, Dept Mech Engn, Houston, TX USA. RP Walker, W (reprint author), NASA, Lyndon B Johnson Space Ctr, Thermal Design Branch, Houston, TX 77058 USA. EM william.walker@nasa.gov OI Shaw, James/0000-0002-3290-8692 NR 23 TC 3 Z9 3 U1 2 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2015 VL 298 BP 217 EP 227 DI 10.1016/j.jpowsour.2015.08.054 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CS5VQ UT WOS:000362146800027 ER PT J AU Menzies, T Pasareanu, C AF Menzies, Tim Pasareanu, Corina TI Guest editorial: special multi-issue on selected topics in automated software engineering SO AUTOMATED SOFTWARE ENGINEERING LA English DT Editorial Material C1 [Pasareanu, Corina] Carnegie Mellon Univ, Moffett Field, CA USA. [Pasareanu, Corina] NASA Ames, Moffett Field, CA USA. EM tim.menzies@gmail.com; pcorina@email.arc.nasa.gov NR 0 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0928-8910 EI 1573-7535 J9 AUTOMAT SOFTW ENG JI Automat. Softw. Eng. PD DEC PY 2015 VL 22 IS 4 SI SI BP 437 EP 438 DI 10.1007/s10515-015-0181-7 PG 2 WC Computer Science, Software Engineering SC Computer Science GA CR8KJ UT WOS:000361600000001 ER PT J AU Costa, GCC Jacobson, NS AF Costa, Gustavo C. C. Jacobson, Nathan S. TI Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Silicate; Mass spectrometry; Thermodynamics; Coating ID SIO2 SCALE VOLATILITY; OPTICAL BASICITY; HIGH-TEMPERATURE; THERMODYNAMICS; PHASE; OXIDES; MODEL AB The Yb2O3-SiO2 system is a promising coating material for silicon-based ceramics and composites in combustion environments due to the low silica activity in this silicate system. These activities lead to lower reactivity with the water vapor component of a combustion environment and hence less formation of Si(OH)(4)(g). In this study the silica activities in the Yb2O3-SiO2 system are measured via a vapor pressure technique. Reducing agents are used to increase the vapor pressure of SiO(g) so that it is measureable in the temperature range of interest. The measured SiO(g) pressures are then used to calculated the silica activities. Activities are reported as a function of temperature for the Yb2O3 + Yb2SiO5 and Yb2SiO5 + Yb2Si2O7 biphasic fields. Combining the results of this work with those reported earlier, it was found that the flux of silicon tetra-hydroxide and the thermodynamic activity of silica are lower in the biphasic fields of yttrium silicates and yttrium oxide than the biphasic field consisting of ytterbium silicates and ytterbium oxide. This difference has been attributed to the smaller ionic potential of yttrium and higher optical basicity of yttrium silicates when compared to the bigger ionic potential of ytterbium and smaller optical basicity of ytterbium silicates in these systems. The measured activities are then used to calculate some representative Si(OH)(4)(g) fluxes from Yb2O3-SiO2 compounds in a typical laboratory test furnace and compared to literature values. Published by Elsevier Ltd. C1 [Costa, Gustavo C. C.; Jacobson, Nathan S.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Costa, GCC (reprint author), NASA Glenn Res Ctr, 21000 Brookpark Rd,MS 106-1, Cleveland, OH 44135 USA. EM gustavo.costa@nasa.gov FU NASA Transformative Tools and Technologies Program; NASA/ORAU Post-Doctoral Program FX This work was supported by the NASA Transformative Tools and Technologies Program. We are grateful to the NASA/ORAU Post-Doctoral Program for the Support of GCCC. Helpful input with E. Copland/CSIRO Australia and R. Rogers/NASA GRC are appreciated. NR 33 TC 0 Z9 0 U1 11 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD DEC PY 2015 VL 35 IS 15 BP 4259 EP 4267 DI 10.1016/j.jeurceramsoc.2015.07.019 PG 9 WC Materials Science, Ceramics SC Materials Science GA CR8BJ UT WOS:000361575800023 ER PT J AU Daniels, T Smith, WL Kireev, S AF Daniels, Taumi Smith, William L., Sr. Kireev, Stanislav TI Simulation of Airborne Radiometric Detection of Wake Vortices SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmospheric modeling; Fourier transform spectrometer (FTS); numerical simulation; radiometer; wake vortex AB This paper describes an analysis of the potential of using an airborne Fourier transform spectrometer (FTS) or radiometer to detect wake vortices. The goal was to determine the requirements for an infrared (IR) FTS to effectively detect wake vortices. Initially, a theoretical analysis of wake vortex detection by thermal radiation was realized in a series of simulations. The first stage used the Terminal Area Simulation System (TASS) dynamic model to simulate wake vortex temperature, moisture, and velocity fields. The second stage used these fields as input to the line-by-line radiative transfer model (LBLRTM) to simulate responses from both an imaging IR hyperspectral FTS and an IR imaging radiometer. These numerical simulations generated FTS and radiometer imagery that was compared with the original temperature data. This research supported an effort, using ground-based imaging FTS instruments, to make measurements of wake vortices of various landing aircraft. Results from two different field campaigns have been previously reported. Instrument specifications for wake vortex thermal detection are recommended for an imaging radiometer sensitive within the following two narrow spectral bands: 670-750 cm(-1) and 2200-2350 cm(-1). The instrument must have at the very minimum a noise equivalent differential tempera ture < 2 mK and a spectral resolution of at least 32 cm(-1). C1 [Daniels, Taumi] NASA, Langley Res Ctr, Electromagnet & Sensors Branch, Hampton, VA 23681 USA. [Smith, William L., Sr.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Kireev, Stanislav] Hampton Univ, Hampton, VA 23668 USA. RP Daniels, T (reprint author), NASA, Langley Res Ctr, Electromagnet & Sensors Branch, Hampton, VA 23681 USA. EM taumi.daniels@nasa.gov NR 19 TC 0 Z9 0 U1 2 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6336 EP 6343 DI 10.1109/TGRS.2015.2436215 PG 8 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400002 ER PT J AU Normand, JCL Heggy, E AF Normand, Jonathan C. L. Heggy, Essam TI InSAR Assessment of Surface Deformations in Urban Coastal Terrains Associated With Groundwater Dynamics SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hydrogeology and remote sensing; interferometric synthetic aperture radar (InSAR) ID SATELLITE RADAR INTERFEROMETRY; TIME-SERIES ANALYSIS; SAR INTERFEROMETRY; PERMANENT SCATTERERS; LAND SUBSIDENCE; LOS-ANGELES; CANADA; WATER; CITY; CALIFORNIA AB Monitoring ground deformations arising from groundwater dynamics in dense urban coastal terrains is crucial for the sustainable development of infrastructures in these highly populated areas. The city of Montreal, which is located in the Saint-Laurent plain in eastern Canada, with its fast-growing populations, is a unique case study for other similar cities in coastal terrains. The city undergoes high-level house foundation damages with densities reaching up to 89 repairs/km(2) resulting from time-dependent ground deformations that are correlated to groundwater dynamics and evapotranspiration. Using Radarsat-2 C-Band synthetic aperture radar interferometry, we observe 3-to 5-mm ground line-of-sight displacement variations temporally outphased by few months relative to the 2-m subartesian aquifer hydraulic head variations. The deformations are observed over a 60-km(2) area located in the central part of the Montreal Island in Canada, from 2008 to 2010. We observe displacements of similar to 1 mm/year uplift in the areas covered by 15-m-thick clay layer. These displacements are well correlated to the number of house repairs. We also observe similar to 2 mm/year subsidence on elevated terrains, associated with evapotranspiration. The amplitudes of the displacements observed during this two-year study are significant when integrated over the average lifetime of urban structures. We conclude that the observed ground deformations are related to the seasonal variation of hydraulic head in most of the areas of Montreal. Moreover, wetter climate forecasts over upcoming decades for this area, will accentuate groundwater level fluctuations; thus, more ground deformations are foreseen, and have to be considered in future infrastructure design standards. C1 [Normand, Jonathan C. L.] Univ Quebec, Montreal, PQ H3C 3P8, Canada. [Normand, Jonathan C. L.; Heggy, Essam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Normand, JCL (reprint author), Univ Quebec, Montreal, PQ H3C 3P8, Canada. FU Jet Propulsion Laboratory FX The authors would like thank C. Codjia from the University of Quebec in Montreal (UQAM) for his advice and support, as well as the Canadian Space Agency, who provided the Radarsat-2 images through their educational program SOAR-EDU. The authors also thank M. Craymer from the Canada Centre for Remote Sensing (CCRS) and the city of Montreal, which provided GPS weekly solutions and renovation information that enabled us to validate our radar observations. The first author would like to thank the Jet Propulsion Laboratory, which funded his research as part of UQAM Master Program. The authors also thank the precious advices and reviews of P. Castellazzi and A. Calderhead, as well as an anonymous reviewer. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 77 TC 0 Z9 0 U1 3 U2 69 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6356 EP 6371 DI 10.1109/TGRS.2015.2437368 PG 16 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400004 ER PT J AU Bue, BD Thompson, DR Eastwood, M Green, RO Gao, BC Keymeulen, D Sarture, CM Mazer, AS Luong, HH AF Bue, Brian D. Thompson, David R. Eastwood, Michael Green, Robert O. Gao, Bo-Cai Keymeulen, Didier Sarture, Charles M. Mazer, Alan S. Luong, Huy H. TI Real-Time Atmospheric Correction of AVIRIS-NG Imagery SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Atmospheric correction; ATmospheric REMoval (ATREM); imaging spectroscopy; Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG); real time ID VEGETATION LIQUID WATER; IMAGING SPECTROMETRY; SATELLITE SIGNAL; SOLAR SPECTRUM AB We demonstrate real-time model-based atmospheric correction onboard the Next Generation Airborne Visible/Infrared Imaging Spectrometer. We achieve a reduction in processing time from hours or days to seconds by modifying a standard physics-based atmospheric correction algorithm to support real-time execution. We achieved this reduction by modifying the physics-based ATmospheric REMoval algorithm to leverage a large lookup table of precomputed scattering and transmission coefficients, indexed by parameters specifying the aircraft operating conditions at capture time. Interpolation among the precomputed coefficients allows surface reflectance retrieval at the sensor acquisition rate of 500 Mb/s. Our system produced science-quality reflectance products during over 30 test flights and, to our knowledge, is the first reported demonstration of real-time model-driven visible shortwave infrared atmospheric correction onboard an aircraft. C1 [Bue, Brian D.; Thompson, David R.; Eastwood, Michael; Green, Robert O.; Keymeulen, Didier; Sarture, Charles M.; Mazer, Alan S.; Luong, Huy H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gao, Bo-Cai] US Navy, Res Lab, Washington, DC 20375 USA. RP Bue, BD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM brian.d.bue@jpl.nasa.gov; david.r.thompson@jpl.nasa.gov; michael.l.eastwood@jpl.nasa.gov; robert.o.green@jpl.nasa.gov; bo-cai.gao@nrl.navy.mil; didier.keymeulen@jpl.nasa.gov; charles.m.sarture@jpl.nasa.gov; alan.s.mazer@jpl.nasa.gov; huy.h.luong@jpl.nasa.gov FU JPL Lew Allen Award [R.14.022.059] FX This work was supported by JPL Lew Allen Award R.14.022.059, awarded to David R. Thompson, 2013. NR 24 TC 1 Z9 1 U1 0 U2 23 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6419 EP 6428 DI 10.1109/TGRS.2015.2439215 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400009 ER PT J AU Oveisgharan, S Saatchi, SS Hensley, S AF Oveisgharan, Shadi Saatchi, Sassan S. Hensley, Scott TI Sensitivity of Pol-InSAR Measurements to Vegetation Parameters SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Extinction; oriented volume; polarimetric synthetic aperture radar interferometry (POLINSAR); sensitivity; vegetation ID POLARIMETRIC SAR INTERFEROMETRY; COHERENT SCATTERING MODEL; FRACTAL-GENERATED TREES; FOREST STRUCTURE; TROPICAL-FOREST; ELECTROMAGNETIC BACKSCATTERING; RADAR INTERFEROMETRY; CANOPIES; VOLUME; TOMOGRAPHY AB Estimation of forest height from combined polarimetric and interferometric synthetic aperture radar (Pol-InSAR) measurements has been the focus of radar remote sensing studies in the past decade. The simplicity of the random-volume-overground (RVoG) model makes it one of the most widely used candidates for estimating canopy height. However, the polarization-independent extinction coefficient assumption in the RVoG model fails in some certain types of the canopies, as suggested by the oriented-volume-over-ground (OVoG) model. The sensitivity of coherence magnitude and phase to different parameters of the canopy is expressed in a closed-form formulation in this paper for the first time. In order to simplify our formulation, the forest is represented by a layer of discrete randomly distributed dielectric scatterers over ground, with azimuthal symmetry. The sensitivity analysis of this work quantifies the contribution of differential extinction due to polarization change in interferometric coherence. Therefore, we can quantitatively evaluate whether the RVoG model is accurate enough to be used for a specific kind of canopy or the OVoG model is needed for better estimation. A simple layer of leaves over ground is used to simulate the sensitivity of Pol-InSAR measurements to different parameters. C1 [Oveisgharan, Shadi; Saatchi, Sassan S.; Hensley, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Oveisgharan, S (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM shadi.oveisgharan@jpl.nasa.gov; sasan.s.saatchi@jpl.nasa.gov; shensley@jpl.nasa.gov FU NASA Postdoctoral Program; Nasa-Isro Synthetic Aperture Radar (NISAR) Project FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and was supported in part by the NASA Postdoctoral Program and in part by the Nasa-Isro Synthetic Aperture Radar (NISAR) Project. NR 49 TC 2 Z9 2 U1 2 U2 33 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6561 EP 6572 DI 10.1109/TGRS.2015.2444351 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400020 ER PT J AU McLinden, ML Wollack, EJ Heymsfield, GM Li, LH AF McLinden, Matthew L. Wollack, Edward J. Heymsfield, Gerald M. Li, Lihua TI Reduced Image Aliasing With Microwave Radiometers and Weather Radar Through Windowed Spatial Averaging SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Meteorological radar; radar; radar imaging; radar remote sensing; radiometry; remote sensing AB Microwave remote sensing instruments detect and image physical phenomena such as brightness temperature and volume reflectivity. The spatial resolution of these measurements is limited by the physical properties of the instrument such as the antenna size, the spatial scan pattern, and temporal sampling. Analysis shows that common sampling schemes undersample the spatial information present at the antenna. Here, we address methods to better capture the spatial information available by applying the Nyquist-Shannon sampling theory to the spatial averaging and sampling of remote sensing data. The use of overlapping windows for spatial averaging rather than treating pixels independently improves the image fidelity while maintaining the system sensitivity. Additionally, the sensitivity to spatially small targets can be maximized by matching the window shape to the antenna pattern. The spatial imaging of scanning radiometers, radars, and phased-array systems is addressed. These principles are demonstrated with the theory and data from the National Aeronautics and Space Administration Goddard Space Flight Center's High-Altitude Imaging Wind and Rain Airborne Profiler (HI WRAP) radar. C1 [McLinden, Matthew L.; Li, Lihua] NASA, Goddard Space Flight Ctr, Microwave Instrument Technol Branch, Greenbelt, MD 20771 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Heymsfield, Gerald M.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA. RP McLinden, ML (reprint author), NASA, Goddard Space Flight Ctr, Microwave Instrument Technol Branch, Greenbelt, MD 20771 USA. EM matthew.l.mclinden@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU National Aeronautics and Space Administration FX This work was supported by the National Aeronautics and Space Administration largely through instrument development and deployment work in support of the Global Precipitation Measurement ground validation and the Hurricane and Severe Storm Sentinel (HS3) experiment. NR 22 TC 0 Z9 0 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6639 EP 6649 DI 10.1109/TGRS.2015.2445100 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400026 ER PT J AU Lukashin, C Jin, ZH Kopp, G MacDonnell, DG Thome, K AF Lukashin, Constantine Jin, Zhonghai Kopp, Greg MacDonnell, David G. Thome, Kurt TI CLARREO Reflected Solar Spectrometer: Restrictions for Instrument Sensitivity to Polarization SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; sensitivity to polarization ID CALIBRATION AB The foundation for future space mission Climate Absolute Radiance and Refractivity Observatory (CLARREO) is the ability to produce climate change benchmark records and provide on-orbit calibration standard through the highly accurate and Systeme Internationale-traceable observations. The accuracy of CLARREO measurements is set to 0.3% (k = 2) for spectrally resolved reflectance. The instrument sensitivity to polarization and polarization of reflected light at the top of atmosphere are the sources for systematic uncertainty. In this paper, we estimate radiometric errors due to polarization effects for CLARREO benchmark and reference intercalibration observations. Data from the Polarization and Anisotropy of Reflectance for Atmospheric Sciences coupled with Observations from Lidar (PARASOL) instrument, a spaceborne polarimeter, have been used in combination with the orbital modeling of Earth's sampling. For the CLARREO benchmark data, we used simulated annual nadir sampling for the polar orbit with 90 inclination, and for the intercalibration with cross-track sensors on the JPSS, such as CERES and VIIRS, we simulated on-orbit matched data sampling. Selected PARASOL data over one full solar year provided polarization parameters in visible (VIS) spectral range. For estimating polarization in near infrared (NIR) spectral range, we used a radiative transfer model. Our results show that to limit error contribution due to polarization to half of the allowed total, the sensitivity to polarization of CLARREO reflected solar instrument should not exceed 0.5% (k = 2) in spectral range from VIS to NIR. C1 [Lukashin, Constantine; MacDonnell, David G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Jin, Zhonghai] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Kopp, Greg] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Thome, Kurt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lukashin, C (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM constantine.lukashin-1@nasa.gov; zhonghai.jin@nasa.gov; Greg.Kopp@LASP.Colorado.edu; david.g.macdonnell@nasa.gov; kurtis.thome@nasa.gov FU NASA CLARREO project FX The authors would like to thank PARASOL data distribution centers at CNES and ICARE, France, for providing data access. The authors would also like to thank F.-M. Breon for his help in understanding PARASOL data. This work was supported by the NASA CLARREO project. NR 17 TC 0 Z9 0 U1 4 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6703 EP 6709 DI 10.1109/TGRS.2015.2446197 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400031 ER PT J AU Ferraz, A Mallet, C Jacquemoud, S Goncalves, GR Tome, M Soares, P Pereira, LG Bretar, F AF Ferraz, Antonio Mallet, Clement Jacquemoud, Stephane Goncalves, Gil Rito Tome, Margarida Soares, Paula Pereira, Luisa Gomes Bretar, Frederic TI Canopy Density Model: A New ALS-Derived Product to Generate Multi layer Crown Cover Maps SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Density estimation robust algorithm; forestry; lasers; probability density function; remote sensing; vegetation mapping ID LASER-SCANNING DATA; AIRBORNE LIDAR DATA; BANDWIDTH SELECTION; VEGETATION COVER; GAP FRACTION; STEM VOLUME; FOREST; PREDICTION; VARIABLES; CASCADES AB The canopy density model (CDM), a new product interpolated from airborne laser scanner (ALS) data and dedicated to forest structure characterization is presented. It exploits both the multiecho capability of the ALS and a nonparametric density estimation technique called kernel density estimators (KDEs). The CDM is used to delineate the outmost perimeter of vegetation features and to compute forest crown cover (CrC0). Contrary to other works that focus on single-layer forest canopies, Cr Co is derived here for each layer, namely, the overstory, the understory, and ground vegetation. The root-mean-square error of prediction determined by using field data acquired over 44 forest stands in a forest in Portugal allows the testing of the reliability of the method: It ranges from 6.21% (overstory) to 13.76% (ground vegetation). In addition, we investigate the ability of the CDM to map the CrCo for individual trees. Finally, two existing methods have been applied to our study site in order to assess improvements, advantages, and drawbacks of our approach. C1 [Ferraz, Antonio] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Mallet, Clement] Univ Paris Est, MATIS, SRIG, Inst Natl Informat Geog & Forestiere IGN, F-94160 St Mande, France. [Jacquemoud, Stephane] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Inst Phys Globe Paris,UMR 7154, F-75013 Paris, France. [Goncalves, Gil Rito] Univ Coimbra, INESC Coimbra, P-3001501 Coimbra, Portugal. [Goncalves, Gil Rito] Univ Coimbra, Dept Math, P-3001501 Coimbra, Portugal. [Tome, Margarida; Soares, Paula] Univ Lisbon, Sch Agron, Forest Res Ctr, P-1349017 Lisbon, Portugal. [Pereira, Luisa Gomes] Univ Aveiro, Escola Super Tecnol & Gestao Agueda, P-3754909 Agueda, Portugal. [Bretar, Frederic] Consulate Gen France Shanghai, Shanghai 200001, Peoples R China. RP Ferraz, A (reprint author), CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM Antonio.A.Ferraz@jpl.nasa.gov; clement.mallet@ign.fr; jacquemoud@ipgp.fr; gil@mat.uc.pt; maga-tome@isa.ulisboa.pt; paulasoares@isa.ulisboa.pt; luisapereira@ua.pt; Frederic.bretar@gmail.com RI Tome, Margarida/F-5776-2010; Soares, Paula/F-8251-2010; Jacquemoud, Stephane/F-8842-2010; Ferraz, Antonio/D-9662-2017; OI Tome, Margarida/0000-0002-6242-8593; Soares, Paula/0000-0002-7603-5467; Ferraz, Antonio/0000-0002-5328-5471; Mallet, Clement/0000-0002-2675-165X FU Portuguese Foundation for Science and Technology [PTDC/AGR-CFL/72380/2006, Pest-OE/EEI/UI308/2014, UID/MULTI/00308/2013]; French National Research Agency (ANR) through the FORESEE Project [ANR-2010-BIOE-008]; Jet Propulsion Laboratory through the NASA Postdoctoral Program; Portuguese Foundation for Science and Technology through the Forest Research Center Project [UID/AGR/00239/2013] FX This work was supported in part by the Portuguese Foundation for Science and Technology under Grant PTDC/AGR-CFL/72380/2006 and Grant Pest-OE/EEI/UI308/2014 and in part by the French National Research Agency (ANR) through the FORESEE Project under Grant ANR-2010-BIOE-008. The work of A. Ferraz was supported in part by the Jet Propulsion Laboratory through the NASA Postdoctoral Program, which was administrated by the Oak Ridge Associated Universities through a contract with NASA. The work of G. Goncalves was supported in part by the Portuguese Foundation for Science and Technology under Grant UID/MULTI/00308/2013. The work of Margarida Tome and Paula Soares was supported by the Portuguese Foundation for Science and Technology through the Forest Research Center Project under Grant UID/AGR/00239/2013. NR 56 TC 6 Z9 6 U1 4 U2 42 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2015 VL 53 IS 12 BP 6776 EP 6790 DI 10.1109/TGRS.2015.2448056 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CR7LV UT WOS:000361532400037 ER PT J AU Stephens, GL L'Ecuyer, T AF Stephens, Graeme L. L'Ecuyer, Tristan TI The Earth's energy balance SO ATMOSPHERIC RESEARCH LA English DT Review ID INTERTROPICAL CONVERGENCE ZONE; CLIMATOLOGY PROJECT GPCP; LAST GLACIAL MAXIMUM; AIR-SEA FLUXES; RADIATION BUDGET; ATMOSPHERE RADIATION; HYDROLOGIC-CYCLE; VOS OBSERVATIONS; SAMPLING ERRORS; UPPER-OCEAN AB This paper reviews the status of our understanding of the Earth's annual, global mean energy balance, the hemispheric energy balances and the symmetry observed about the equator, and explores the influence of latitudinal changes of energy both on the annual mean and seasonal transports of energy from low latitudes to higher latitudes. Based on the best available information we show that our planet continues to be out of balance with additional heat being added to it at the rate of 0.6 +/- 0.4 Wm(-2). This heat appears to be taken up primarily by the oceans of the SH and perhaps mostly equatorward of 37 S. The nature of the adjustments applied to our best estimates of individual, annual mean fluxes of energy to produce a balance are described and the results of applying a more formal constraint for these adjustments are discussed. The energy balances of the Southern and Northern Hemispheres are then shown to be practically identical which in turn suggests the transport of energy across the equator in the net is close to zero. In fact the hemispheres are not identically symmetrical with the SH being slightly out of balance absorbing the additional heat and transporting a small amount of net heat across the equator to the balanced NH. The symmetry in absorbed solar and the near symmetry in OLR are remarkable in their own right and are a result of the effects of clouds both on solar reflection and OLR that act to offset land-ocean interhemispheric differences. We then demonstrate important interhemispheric seasonal influences on the heat transported to the winter pole that conspire to make these seasonal transports lopsided. This asymmetry is a direct result of the eccentricity of the Earth's orbit that induces larger energy losses from the southern winter hemisphere. This in turn produces a latitudinal asymmetry in the location of on the tropical trough zone, a region from which energy is always moved to the winter pole, requiring it be located deeper into the NH. (C) 2015 Elsevier B.V. All rights reserved. C1 [Stephens, Graeme L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stephens, Graeme L.] Univ Reading, Dept Meteorol, Reading RG6 2AH, Berks, England. [L'Ecuyer, Tristan] Univ Wisconsin, Dept Atmospher Sci, Madison, WI USA. RP Stephens, GL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU NASA Energy and Water Cycle Study (NEWS) program [NNX15AD13G]; [NNN12AA01C] FX This study was supported in part by the NASA Energy and Water Cycle Study (NEWS) program grant NNX15AD13G, by the NNN12AA01C that supports the lead author's research exploiting NASA's A-Train constellation and his involvement as co-chair of GEWEX. NR 64 TC 4 Z9 4 U1 19 U2 125 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD DEC 1 PY 2015 VL 166 BP 195 EP 203 DI 10.1016/j.atmosres.2015.06.024 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CQ7IJ UT WOS:000360775900019 ER PT J AU Lee, SJ Adams, JS Bandler, SR Chervenak, JA Eckart, ME Finkbeiner, FM Kelley, RL Kilbourne, CA Porter, FS Sadleir, JE Smith, SJ Wassell, EJ AF Lee, S. J. Adams, J. S. Bandler, S. R. Chervenak, J. A. Eckart, M. E. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Sadleir, J. E. Smith, S. J. Wassell, E. J. TI Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV SO APPLIED PHYSICS LETTERS LA English DT Article ID IMPEDANCE MEASUREMENTS; WIDTHS AB We are developing arrays of X-ray microcalorimeters on a 50-mm pitch that utilize transition-edge sensors as the sensor to measure the temperature rise when X-rays are absorbed. An array of this type of pixel has great potential for the study of point sources in future X-ray observatory missions. The pixels have gold absorbers with dimensions 45 x 45 x 4.2 mu m(3). We measured an energy resolution of 0.72 +/- 0.03 eV full width at half maximum for the Al K alpha complex in a subset of pixels within the array, which is the best resolution to date using a non-dispersive detector at this energy. We describe our characterization of this device including measurements of the heat capacity, thermal conductance to the heat bath, and the temperature and current sensitivity of the detector, and discuss its potential for improved performance. (C) 2015 AIP Publishing LLC. C1 [Lee, S. J.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Adams, J. S.; Smith, S. J.] CRESST, Baltimore, MD 21250 USA. [Adams, J. S.; Smith, S. J.] Univ Maryland, Baltimore, MD 21250 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Wassell, E. J.] SGT Inc, Seabrook, MD 20706 USA. RP Lee, SJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM quantization@gmail.com RI Lee, Sang Jun/A-3892-2015; Smith, Stephen/B-1256-2008; Porter, Frederick/D-3501-2012 OI Lee, Sang Jun/0000-0002-8199-3993; Smith, Stephen/0000-0003-4096-4675; Porter, Frederick/0000-0002-6374-1119 NR 24 TC 5 Z9 5 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2015 VL 107 IS 22 AR 223503 DI 10.1063/1.4936793 PG 4 WC Physics, Applied SC Physics GA CY3LT UT WOS:000366311900045 ER PT J AU Neeley, AR Freeman, SA Harris, LA AF Neeley, Aimee R. Freeman, Scott A. Harris, Lora A. TI Multi-method approach to quantify uncertainties in the measurements of light absorption by particles SO OPTICS EXPRESS LA English DT Article ID QUANTITATIVE FILTER TECHNIQUE; INHERENT OPTICAL-PROPERTIES; INFRARED SPECTRAL REGION; OCEAN-COLOR; AQUATIC PARTICLES; PARTICULATE ABSORPTION; PATHLENGTH AMPLIFICATION; PHYTOPLANKTON; COEFFICIENTS; WATER AB Through technological and research advances, numerous methods and protocols have emerged to estimate spectral absorption of light by particles, a(p), in an aquatic medium. However, the level of agreement among measurements remains elusive. We employed a multi-method approach to estimate the measurement precision of measuring optical density of particles on a filter pad using two common spectrophotometric methods, and the determination precision, or uncertainty, of the computational techniques for estimating a(p) for six ocean color wavelengths (412, 443, 490, 510, 555, 670 nm). The optical densities measured with the two methods exhibited a significant, positive correlation. Optical density measurement precision ranged from 0.061%-63% and exhibited a significant, positive correlation. Multi-method uncertainty ranged from 7.48%-119%. Values of a(p) at 555 nm and 670 nm exhibited the highest values of uncertainty. Poor performance of modeled a(p) compared to determined a(p) suggest uncertainties are propagated into bio-optical algorithms. (c) 2015 Optical Society of America C1 [Neeley, Aimee R.; Freeman, Scott A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Neeley, Aimee R.; Freeman, Scott A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Harris, Lora A.] Univ Maryland, Ctr Environm Sci, Solomons, MD 20688 USA. RP Neeley, AR (reprint author), NASA, Goddard Space Flight Ctr, Code 616,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM aimee.neeley@nasa.gov FU National Aeronautics and Space Administration [NNG11HP11C] FX This work was supported by funding from the Ocean Biology and Biogeochemistry program of the National Aeronautics and Space Administration (NNG11HP11C). This is contribution No. 5098 of the University of Maryland Center for Environmental Science. Appreciation is extended to all of the participants in the 2014 Absorption Workshop for their expertise and advice, in particular Collin Roesler, Rick Reynolds and Eurico D'Sa for their feedback on this work. Assistance and advice provided by Mike Novak and Jeremy Werdell were greatly appreciated. NR 50 TC 1 Z9 1 U1 1 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 30 PY 2015 VL 23 IS 24 BP 31043 EP 31058 DI 10.1364/OE.23.031043 PG 16 WC Optics SC Optics GA CY7UF UT WOS:000366614100078 PM 26698734 ER PT J AU Pandey, A Chakrabarty, RK Liu, L Mishchenko, MI AF Pandey, Apoorva Chakrabarty, Rajan K. Liu, Li Mishchenko, Michael I. TI Empirical relationships between optical properties and equivalent diameters of fractal soot aggregates at 550 nm wavelength SO OPTICS EXPRESS LA English DT Article ID LIGHT-SCATTERING; T-MATRIX; RADIATIVE PROPERTIES; PART 1; ABSORPTION; MORPHOLOGY; SIMULATION; PARTICLES; DIMENSION; AEROSOLS AB Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension D-f = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numerically-exact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships. (C) 2015 Optical Society of America C1 [Pandey, Apoorva; Chakrabarty, Rajan K.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Liu, Li; Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Chakrabarty, RK (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, 1 Brookings Dr, St Louis, MO 63130 USA. EM chakrabarty@wustl.edu FU National Science Foundation [AGS1455215]; NASA ROSES [NNX15AI66G] FX This material is based upon work supported by the National Science Foundation under Grant No. AGS1455215 and by NASA ROSES under Grant No. NNX15AI66G. NR 25 TC 3 Z9 3 U1 4 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 30 PY 2015 VL 23 IS 24 BP A1354 EP A1362 DI 10.1364/OE.23.0A1354 PG 9 WC Optics SC Optics GA CY7UF UT WOS:000366614100002 PM 26698786 ER PT J AU Ackermann, M Albert, A Anderson, B Atwood, WB Baldini, L Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Cecchi, C Charles, E Chekhtman, A Chiang, J Chiaro, G Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cuoco, A Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Digel, SW Di Venere, L Drell, PS Drlica-Wagner, A Essig, R Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Grenier, IA Guiriec, S Gustafsson, M Hays, E Hewitt, JW Horan, D Jogler, T Johannesson, G Kuss, M Larsson, S Latronico, L Li, J Li, L Garde, ML Longo, F Loparco, F Lubrano, P Malyshev, D Mayer, M Mazziotta, MN McEnery, JE Meyer, M Michelson, PF Mizuno, T Moiseev, AA Monzani, ME Morselli, A Murgia, S Nuss, E Ohsugi, T Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Sanchez-Conde, M Schulz, A Sehgal, N Sgro, C Siskind, EJ Spada, F Spandre, G Spinelli, P Strigari, L Tajima, H Takahashi, H Thayer, JB Tibaldo, L Torres, DF Troja, E Vianello, G Werner, M Winer, BL Wood, KS Wood, M Zaharijas, G Zimmer, S AF Ackermann, M. Albert, A. Anderson, B. Atwood, W. B. Baldini, L. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cuoco, A. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Digel, S. W. Di Venere, L. Drell, P. S. Drlica-Wagner, A. Essig, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Grenier, I. A. Guiriec, S. Gustafsson, M. Hays, E. Hewitt, J. W. Horan, D. Jogler, T. Johannesson, G. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Garde, M. Llena Longo, F. Loparco, F. Lubrano, P. Malyshev, D. Mayer, M. Mazziotta, M. N. McEnery, J. E. Meyer, M. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monzani, M. E. Morselli, A. Murgia, S. Nuss, E. Ohsugi, T. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Sanchez-Conde, M. Schulz, A. Sehgal, N. Sgro, C. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Strigari, L. Tajima, H. Takahashi, H. Thayer, J. B. Tibaldo, L. Torres, D. F. Troja, E. Vianello, G. Werner, M. Winer, B. L. Wood, K. S. Wood, M. Zaharijas, G. Zimmer, S. CA Fermi-LAT Collaboration TI Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID INSTRUMENT RESPONSE FUNCTIONS; LOCAL GROUP; SATELLITE; KINEMATICS; PROFILE; HALO; CONSTRAINTS; STARS AB The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on gamma-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new PASS8 event-level analysis. None of the dSphs are significantly detected in gamma rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass less than or similar to 100 GeV annihilating via quark and tau-lepton channels. C1 [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Jogler, T.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Jogler, T.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Conrad, J.; Garde, M. Llena; Meyer, M.; Sanchez-Conde, M.; Zimmer, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Conrad, J.; Larsson, S.; Li, L.; Garde, M. Llena; Meyer, M.; Sanchez-Conde, M.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Atwood, W. B.; Caputo, R.; Ritz, S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.; Ritz, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.; Bellazzini, R.; Kuss, M.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.; Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Cuoco, A.; Desiante, R.; Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Cuoco, A.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, Lab Univers & Particules Montpellier, CNRS IN2P3, F-34059 Montpellier, France. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caraveo, P. A.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] Agcy Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Essig, R.] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Fukazawa, Y.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Grenier, I. A.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, D-37077 Gottingen, Germany. [Hewitt, J. W.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA. [Johannesson, G.] Univ Iceland, Sci Inst, IS-107 Reykjavik, Iceland. [Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain. [McEnery, J. E.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Sehgal, N.] SUNY Stony Brook, Phys & Astron Dept, Stony Brook, NY 11794 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Strigari, L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Wood, K. S.] Naval Res Lab, Space Sci Div, Washington, DC 20375 USA. [Zaharijas, G.] Univ Trieste, I-34127 Trieste, Italy. [Zaharijas, G.] Univ Nova Gorica, Lab Astroparticle Phys, SI-5000 Nova Gorica, Slovenia. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM brandon.anderson@fysik.su.se; kadrlica@fnal.gov; mdwood@slac.stanford.edu RI Morselli, Aldo/G-6769-2011; Reimer, Olaf/A-3117-2013; Meyer, Manuel/E-2697-2016; giglietto, nicola/I-8951-2012; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Di Venere, Leonardo/C-7619-2017; OI Strigari, Louis/0000-0001-5672-6079; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Mazziotta, Mario Nicola/0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Morselli, Aldo/0000-0002-7704-9553; Reimer, Olaf/0000-0001-6953-1385; Meyer, Manuel/0000-0002-0738-7581; giglietto, nicola/0000-0002-9021-2888; Bissaldi, Elisabetta/0000-0001-9935-8106; Torres, Diego/0000-0002-1522-9065; Funk, Stefan/0000-0002-2012-0080; Di Venere, Leonardo/0000-0003-0703-824X; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791 FU Italian Ministry of Education, University and Research (MIUR) [FIRB-2012-RBFR12PM1F] FX The Fermi-LAT Collaboration acknowledges support for LAT development, operation, and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. M. R. funded by the Contract No. FIRB-2012-RBFR12PM1F from the Italian Ministry of Education, University and Research (MIUR). NR 58 TC 154 Z9 154 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2015 VL 115 IS 23 AR 231301 DI 10.1103/PhysRevLett.115.231301 PG 8 WC Physics, Multidisciplinary SC Physics GA CX7JH UT WOS:000365877500001 PM 26684107 ER PT J AU Torres-Perez, JL Guild, LS Armstrong, RA Corredor, J Zuluaga-Montero, A Polanco, R AF Torres-Perez, Juan L. Guild, Liane S. Armstrong, Roy A. Corredor, Jorge Zuluaga-Montero, Anabella Polanco, Ramon TI Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals SO PLOS ONE LA English DT Article ID REEF CORALS; MARINE-PHYTOPLANKTON; PHOTOSYNTHETIC PIGMENTS; SPECTRAL REFLECTANCE; HYPERSPECTRAL DATA; LIGHT-ABSORPTION; SYMBIOTIC ALGAE; ZOOXANTHELLAE; SYMBIODINIUM; CHLOROPHYLLS AB Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health. C1 [Torres-Perez, Juan L.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Guild, Liane S.] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Armstrong, Roy A.] Univ Puerto Rico, Dept Marine Sci, Bioopt Oceanog Lab, Mayaguez, PR 00680 USA. [Corredor, Jorge] Univ Puerto Rico, Dept Marine Sci, Chem Oceanog Lab, Mayaguez, PR 00680 USA. [Zuluaga-Montero, Anabella] Univ Puerto Rico, Soc Ambiente Marino, San Juan, PR 00931 USA. [Polanco, Ramon] Univ Turabo, Escuela Ciencias Nat & Tecnol, Gurabo, PR 00778 USA. RP Torres-Perez, JL (reprint author), NASA, Ames Res Ctr, Bay Area Environm Res Inst, MS 245-4,Bldg 245,Rm 120, Moffett Field, CA 94035 USA. EM juan.l.torresperez@nasa.gov FU NASA Postdoctoral Program [NNH06CC03B] FX JLTP was funded under the NASA Postdoctoral Program (NNH06CC03B) during part of this study. NR 61 TC 2 Z9 2 U1 6 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 30 PY 2015 VL 10 IS 11 AR e0143709 DI 10.1371/journal.pone.0143709 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX7NW UT WOS:000365889800059 PM 26619210 ER PT J AU DiBraccio, GA Slavin, JA Raines, JM Gershman, DJ Tracy, PJ Boardsen, SA Zurbuchen, TH Anderson, BJ Korth, H McNutt, RL Solomon, SC AF DiBraccio, Gina A. Slavin, James A. Raines, Jim M. Gershman, Daniel J. Tracy, Patrick J. Boardsen, Scott A. Zurbuchen, Thomas H. Anderson, Brian J. Korth, Haje McNutt, Ralph L., Jr. Solomon, Sean C. TI First observations of Mercury's plasma mantle by MESSENGER SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FLUX-TRANSFER EVENTS; MAGNETIC-FIELD; MAGNETOTAIL BOUNDARY; MAGNETOPAUSE; MAGNETOSPHERE; MARINER-10; INSTRUMENT; ATMOSPHERE; DYNAMICS; PARTICLE AB We present the first observations of Mercury's plasma mantle, a primary region for solar wind entry into the planetary magnetosphere, located in the high-latitude magnetotail. MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations from two orbits on 10 November 2012 have been analyzed. The main plasma mantle features are (1) a steady decrease in proton density as MESSENGER moved deeper into the magnetotail; (2) frequent flux transfer events throughout the magnetosheath and into the magnetotail, suggesting that these events are the primary source for solar wind plasma injection; (3) a diamagnetic depression, due to the presence of plasma, as pressure balance is maintained; and (4) a clear proton velocity dispersion, resulting from lower-energy protons being transported deep into the magnetosphere as higher-energy protons escape downtail. From these velocity dispersions we infer cross-magnetosphere electric potentials of 23 kV and 29 kV, consistent with estimates determined from measurements of magnetopause reconnection rate and tail loading and unloading events. C1 [DiBraccio, Gina A.; Slavin, James A.; Raines, Jim M.; Tracy, Patrick J.; Zurbuchen, Thomas H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [DiBraccio, Gina A.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Gershman, Daniel J.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Gershman, Daniel J.; Boardsen, Scott A.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. [Boardsen, Scott A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Anderson, Brian J.; Korth, Haje; McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DE USA. RP DiBraccio, GA (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM gdibracc@umich.edu RI Slavin, James/H-3170-2012 OI Slavin, James/0000-0002-9206-724X FU NASA Discovery Program [NASW-00002, NAS5-97271] FX The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory. MESSENGER data are publicly available through the Planetary Data System. We thank the two reviewers for providing helpful comments. NR 38 TC 1 Z9 1 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2015 VL 42 IS 22 BP 9666 EP 9675 DI 10.1002/2015GL065805 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DB2MO UT WOS:000368343200010 ER PT J AU Murphy, KR Mann, IR Sibeck, DG AF Murphy, Kyle R. Mann, Ian R. Sibeck, David G. TI On the dependence of storm time ULF wave power on magnetopause location: Impacts for ULF wave radial diffusion SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FIELD LINE RESONANCES; SOLAR-WIND; MAGNETOSPHERE; COEFFICIENTS; IONOSPHERE; EXCITATION; PULSATIONS; ELECTRONS; BELTS AB Ultralow frequency (ULF) waves play a crucial role in energetic particle dynamics in the inner magnetosphere. We examine the role of the magnetopause location in controlling the amplitude and penetration of ULF waves within the inner magnetosphere during 63 coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven geomagnetic storms. Significantly, at the time when the magnetopause is most compressed, ULF wave power increases and penetrates to the deepest L shells. Most likely this is explained by proximity to the energy source and accumulation of energy within a smaller volume through solar wind-magnetopause-magnetosphere coupling, and changes in the storm time Alfven continuum resulting from variations in the cold plasma density. The observed ULF wave power is consistently larger than Kp-dependent statistical estimates-especially in the heart of the outer radiation belt. This has important implications for radiation belt dynamics, including main phase loss and storm time ULF wave radial diffusion. C1 [Murphy, Kyle R.; Mann, Ian R.; Sibeck, David G.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mann, Ian R.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. RP Murphy, KR (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM kyle.r.murphy@nasa.gov FU Canadian Natural Sciences and Engineering Research Council (NSERC) postdoctoral fellowship; Discovery Grant from Canadian NSERC; NASA Van Allen Probes Mission FX K.R.M. is supported by a Canadian Natural Sciences and Engineering Research Council (NSERC) postdoctoral fellowship. I.R.M. is supported by a Discovery Grant from Canadian NSERC. D.G.S. is partly supported by the NASA Van Allen Probes Mission. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. The CARISMA and solarwind/IMF data used in this study are freely available at www.CARISMA.ca and omniweb.gsfc.nasa.gov, respectively. NR 32 TC 3 Z9 3 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2015 VL 42 IS 22 BP 9676 EP 9684 DI 10.1002/2015GL066592 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2MO UT WOS:000368343200011 ER PT J AU Wang, SH Zhang, Q Millan, L Li, KF Yung, YL Sander, SP Livesey, NJ Santee, ML AF Wang, Shuhui Zhang, Qiong Millan, Luis Li, King-Fai Yung, Yuk L. Sander, Stanley P. Livesey, Nathaniel J. Santee, Michelle L. TI First evidence of middle atmospheric HO2 response to 27 day solar cycles from satellite observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MICROWAVE LIMB SOUNDER; SPECTRAL IRRADIANCE; STRATOSPHERIC OZONE; OH; VARIABILITY; CLIMATE; MESOSPHERE; IMPACT AB HO2 and OH, also known as HOx, play an important role in controlling middle atmospheric O-3. Due to their photochemical production and short chemical lifetimes, HOx are expected to respond rapidly to solar irradiance changes, resulting in O-3 variability. While OH solar cycle signals have been investigated, HO2 studies have been limited by the lack of reliable observations. Here we present the first evidence of HO2 variability during solar 27 day cycles by investigating the recently developed HO2 data from the Aura Microwave Limb Sounder (MLS). We focus on 2012-2015, when solar variability is strong near the peak of Solar Cycle 24. The features of HO2 variability, with the strongest signals at 0.01-0.068 hPa, correlate well with those of solar Lyman a. When continuous MLS OH observations are not available, the new HO2 data could be a promising alternative for investigating HOx variability and the corresponding impacts on O-3 and the climate. C1 [Wang, Shuhui; Millan, Luis; Sander, Stanley P.; Livesey, Nathaniel J.; Santee, Michelle L.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Zhang, Qiong; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Li, King-Fai] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA. RP Wang, SH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Shuhui.Wang@jpl.nasa.gov RI Millan, Luis/J-2759-2015; OI Li, King-Fai/0000-0003-0150-2910 FU NASA FX We acknowledge the support of the NASA Aura Science Team, Upper Atmosphere Research, and Tropospheric Chemistry programs. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract to the National Aeronautics and Space Administration. We acknowledge the LASP Interactive Solar Irradiance Datacenter (LISIRD) for Lyman alpha record (http://lasp.colorado.edu/lisird/). NR 24 TC 0 Z9 0 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2015 VL 42 IS 22 BP 10004 EP 10009 DI 10.1002/2015GL065237 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DB2MO UT WOS:000368343200049 ER PT J AU Glatthor, N Hopfner, M Baker, IT Berry, J Campbell, JE Kawa, SR Krysztofiak, G Leyser, A Sinnhuber, BM Stiller, GP Stinecipher, J von Clarmann, T AF Glatthor, N. Hoepfner, M. Baker, I. T. Berry, J. Campbell, J. E. Kawa, S. R. Krysztofiak, G. Leyser, A. Sinnhuber, B. -M. Stiller, G. P. Stinecipher, J. von Clarmann, T. TI Tropical sources and sinks of carbonyl sulfide observed from space SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DATA ASSIMILATION SYSTEM; GENERAL-CIRCULATION; MODEL; CLIMATE; CYCLE; SURFACE; CO2; STRATOSPHERE; SIMULATIONS; VEGETATION AB According to current budget estimations the seasonal variation of carbonyl sulfide (COS) is governed by oceanic release and vegetation uptake. Its assimilation by plants is assumed to be similar to the photosynthetic uptake of CO2 but, contrary to the latter process, to be irreversible. Therefore, COS has been suggested as cotracer of the carbon cycle. Observations of COS, however, are sparse, especially in tropical regions. We use the comprehensive data set of spaceborne measurements of the Michelson Interferometer for Passive Atmospheric Sounding to analyze its global distribution. Two major features are observed in the tropical upper troposphere around 250 hPa: enhanced amounts over the western Pacific and the Maritime Continent, peaking around 550 parts per trillion by volume (pptv) in boreal summer, and a seasonally varying depletion of COS extending from tropical South America to Africa. The large-scale COS depletion, which in austral summer amounts up to -40 pptv as compared to the rest of the respective latitude band, has not been observed before and reveals the seasonality of COS uptake through tropical vegetation. The observations can only be reproduced by global models, when a large vegetation uptake and a corresponding increase in oceanic emissions as proposed in several recent publications are assumed. C1 [Glatthor, N.; Hoepfner, M.; Leyser, A.; Sinnhuber, B. -M.; Stiller, G. P.; von Clarmann, T.] Karlsruhe Inst Technol, Inst Meteorol & Klimaforsch, D-76021 Karlsruhe, Germany. [Baker, I. T.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Berry, J.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Campbell, J. E.] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA. [Kawa, S. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krysztofiak, G.] Univ Orleans, CNRS, LPC2E, Orleans, France. [Stinecipher, J.] Univ Calif, Environm Syst Grad Grp, Merced, CA USA. RP Glatthor, N (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Klimaforsch, D-76021 Karlsruhe, Germany. EM norbert.glatthor@kit.edu RI Hopfner, Michael/A-7255-2013; Sinnhuber, Bjorn-Martin/A-7007-2013 OI Hopfner, Michael/0000-0002-4174-9531; Sinnhuber, Bjorn-Martin/0000-0001-9608-7320 FU EU [603557]; German Federal Ministry of Education and Research through ROMIC-THREAT [BMBF-01LG1217B] FX The authors like to thank the European Space Agency for giving access to MIPAS level-1 data. Meteorological analysis data have been provided by ECMWF. This work is a contribution to the EU StratoClim project (grant 603557). Part of this work was supported by the German Federal Ministry of Education and Research through the project ROMIC-THREAT (BMBF-01LG1217B). We acknowledge provision of airborne in situ COS data of the HIPPO-campaign (E.L. Atlas, S.A. Montzka, and J.W. Elkins), the ARCTAS- and INTEX-B campaigns (D.R. Blake), and of the National Oceanic and Atmospheric Administration (S.A. Montzka and C. Sweeney). MIPAS COS data can be accessed via http://www.imk-asf.kit.edu/english/sat.php. NR 37 TC 8 Z9 8 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2015 VL 42 IS 22 BP 10082 EP 10090 DI 10.1002/2015GL066293 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2MO UT WOS:000368343200058 ER PT J AU Corbett, JG Loeb, NG AF Corbett, J. G. Loeb, N. G. TI On the relative stability of CERES reflected shortwave and MISR and MODIS visible radiance measurements during the Terra satellite mission SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ANGLE IMAGING SPECTRORADIOMETER; ANGULAR-DISTRIBUTION MODELS; AEROSOL OPTICAL DEPTH; SEA-ICE; RADIATION BUDGET; CALIBRATION; FLUX; METHODOLOGY; INSTRUMENT; TRENDS AB Fifteen years of visible, near-infrared, and broadband shortwave radiance measurements from Clouds and the Earth's Radiant Energy System (CERES), Multiangle Imaging Spectroradiometer (MISR), and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board NASA's Terra satellite are analyzed in order to assess their long-term relative stability for climate purposes. A regression-based approach between CERES, MODIS, and MISR (An camera only) reflectances is used to calculate the bias between the different reflectances relative to a reference year. When compared to the CERES shortwave broadband reflectance, relative drift between the MISR narrowbands is within 1% decade(-1). Compared to the CERES shortwave reflectance, the MODIS narrowband reflectances show a relative drift of less than -1.33% decade(-1). When compared to MISR, the MODIS reflectances show a relative drift of between -0.36% decade(-1) and -2.66% decade(-1). We show that the CERES Terra SW measurements are stable over the time period relative to CERES Aqua. Using this as evidence that CERES Terra may be absolutely stable, we suggest that the CERES, MISR, and MODIS instruments meet the radiometric stability goals for climate applications set out in Ohring et al. (2005). C1 [Corbett, J. G.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Loeb, N. G.] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA USA. RP Corbett, JG (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM joseph.g.corbett@nasa.gov FU CERES FX We gratefully acknowledge the efforts of Walter Miller and Igor Antropv of SSAI who provided a MODIS Collection 6 subset for this study. Funding was provided through CERES. The CERES Edition 3A SSF (including the MODIS radiances), CERES SSF1deg-lite, and MISR data sets were obtained from the NASA Langely Research Center Atmospheric Science Data Center. The CERES data can be obtained from http://ceres.larc.nasa.gov/order_data.php, and the MISR data can be obtained from https://eosweb.larc.nasa.gov/project/misr/misr_table. The edition of the SSFM data set used in this study can be obtained from the authors by contacting J. Corbett. NR 38 TC 0 Z9 0 U1 4 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2015 VL 120 IS 22 DI 10.1002/2015JD023484 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5EJ UT WOS:000367825200014 ER PT J AU Field, RD Luo, M Kim, D Del Genio, AD Voulgarakis, A Worden, J AF Field, Robert D. Luo, Ming Kim, Daehyun Del Genio, Anthony D. Voulgarakis, Apostolos Worden, John TI Sensitivity of simulated tropospheric CO to subgrid physics parameterization: A case study of Indonesian biomass burning emissions in 2006 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-MONOXIDE; LOWER STRATOSPHERE; CLIMATE MODEL; EQUATORIAL ASIA; DEEP CONVECTION; FIRE EMISSIONS; BOUNDARY-LAYER; GEOS-CHEM; TRANSPORT; CHEMISTRY AB Recent cumulus and turbulence parameterization changes to the NASA GISS ModelE2 have improved representation of the Madden-Julian Oscillation and low cloud distribution, but their effect on composition-related quantities is not known. In this study, we simulate the vertical transport of carbon monoxide (CO) from uncontrolled biomass burning in Indonesia in late 2006, during which uniquely high CO was detected in the upper troposphere. Two configurations of ModelE2, one without the changes (AR5) and one with the changes (AR5'), are used for an ensemble simulation of the transport of CO from the biomass burning. The simulation results are evaluated against new CO profiles retrieved jointly from the Aura Tropospheric Emission Spectrometer and the Microwave Limb Sounder. Modeled upper tropospheric CO using the AR5 physics was unrealistically high. The AR5' physics suppress deep convection that reaches near the tropopause, reducing vertical transport of CO to the upper troposphere and bringing the model into better agreement with satellite CO. In this regard, the most important changes were related to the strength of entrainment of environmental air into the convective column, the strength of re-evaporation above cloud base, and a negative plume buoyancy threshold based on density temperature. This study illustrates how individual, noncomposition model changes can lead to significantly different modeled composition, which in this case improved agreement with satellite retrievals. This study also illuminates the potential usefulness of CO satellite observations in constraining unobservable processes in general circulation models. C1 [Field, Robert D.; Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Field, Robert D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Luo, Ming; Worden, John] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kim, Daehyun] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Voulgarakis, Apostolos] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. RP Field, RD (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM robert.field@columbia.edu RI Chem, GEOS/C-5595-2014 FU NASA [NNX13AD46G, NNX13AM18G]; NASA Modeling and Analysis Program; European Commission; Jet Propulsion Laboratory, California Institute of Technology FX R.F. was supported by the NASA Atmospheric Chemistry Modeling and Analysis Program grant NNX13AD46G, D.K. by the NASA grant NNX13AM18G, and A.D.G. by the NASA Modeling and Analysis Program. AV thanks the European Commission's Marie Curie International Research Staff Exchange Scheme (IRSES) for funding under the project titled "Regional climate-air quality interactions (REQUA)". Research was partially supported by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration (NASA). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. All data in the study can be obtained by contacting the lead author. NR 56 TC 2 Z9 2 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2015 VL 120 IS 22 DI 10.1002/2015JD023402 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5EJ UT WOS:000367825200022 ER PT J AU Jiang, JH Su, H Zhai, CX Wu, LT Minschwaner, K Molod, AM Tompkins, AM AF Jiang, Jonathan H. Su, Hui Zhai, Chengxing Wu, Longtao Minschwaner, Kenneth Molod, Andrea M. Tompkins, Adrian M. TI An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BREWER-DOBSON CIRCULATION; HALOGEN OCCULTATION EXPERIMENT; TROPICAL TROPOPAUSE LAYER; RELAXED ARAKAWA-SCHUBERT; CHANGING CLIMATE; DEEP CONVECTION; HUMIDITY; TRANSPORT; SATELLITE; ASSIMILATION AB Global water vapor (H2O) measurements from Microwave Limb Sounder (MLS) are used to evaluate upper tropospheric (UT) and lower stratospheric (LS) H2O products produced by NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA), its newest release MERRA2, and European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalyses. Focusing on the H2O amount and transport from UT to LS, we show that all reanalyses overestimate annual global mean UT H2O by up to similar to 150% compared to MLS observations. Substantial differences in H2O transport are also found between the observations and reanalyses. Vertically, H2O transport across the tropical tropopause (16-20 km) in the reanalyses is faster by up to similar to 86% compared to MLS observations. In the tropical LS (21-25 km), the mean vertical transport from ECMWF is 168% faster than the MLS estimate, while MERRA and MERRA2 have vertical transport velocities within 10% of MLS values. Horizontally at 100 hPa, both observation and reanalyses show faster poleward transport in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Compared to MLS observations, the H2O horizontal transport for both MERRA and MERRA2 is 106% faster in the NH but about 42-45% slower in the SH. ECMWF horizontal transport is 16% faster than MLS observations in both hemispheres. The ratio of northward to southward transport velocities for ECMWF is 1.4, which agrees with MLS observation, while the corresponding ratios for MERRA and MERRA2 are about 3.5 times larger. C1 [Jiang, Jonathan H.; Su, Hui; Zhai, Chengxing; Wu, Longtao] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Minschwaner, Kenneth] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM USA. [Molod, Andrea M.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Tompkins, Adrian M.] Abdus Salaam Int Ctr Theoret Phys, Earth Syst Phys, Trieste, Italy. RP Jiang, JH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Jonathan.H.Jiang@jpl.nasa.gov FU NASA ROSES AST; MAP; NDOA; NEWS programs; NASA-sponsored Jet Propulsion Laboratory; NASA; Aura MLS project; GMAO; ECMWF teams FX The authors appreciate the funding support by the NASA ROSES AST, MAP, NDOA, and NEWS programs. This work is performed at the NASA-sponsored Jet Propulsion Laboratory, California Institute of Technology sponsored by NASA. We are also thankful for the support by the Aura MLS project, GMAO, and ECMWF teams. The MLS data used for this study can be obtained online at http://mls.jpl.nasa.gov/, the MERRA data are available at http://gmao.gsfc.nasa.gov/products/, and the ECMWF data can be obtained at http://apps.ecmwf.int/datasets/. The authors gratefully acknowledge the GMAO staff who developed MERRA-2 and for permission to access the data. NR 83 TC 10 Z9 10 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2015 VL 120 IS 22 DI 10.1002/2015JD023752 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5EJ UT WOS:000367825200006 ER PT J AU Kahn, BH Schreier, MM Yue, Q Fetzer, EJ Irion, FW Platnick, S Wang, C Nasiri, SL L'Ecuyer, TS AF Kahn, B. H. Schreier, M. M. Yue, Q. Fetzer, E. J. Irion, F. W. Platnick, S. Wang, C. Nasiri, S. L. L'Ecuyer, T. S. TI Pixel-scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC INFRARED SOUNDER; MICROPHYSICAL PROPERTY RETRIEVALS; RADIATIVE-TRANSFER MODEL; RADIANCE MEASUREMENTS; GLOBAL CLIMATOLOGY; CIRRUS CLOUDS; PART II; PHASE; ALGORITHM; PRODUCTS AB Comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (tau) and effective radius (r(e)) retrievals and their uncertainty estimates are described at the pixel scale. While an estimated 27% of all AIRS fields of view contain ice cloud, only 7% contain spatially uniform ice according to the MODIS 1 km optical property phase mask. The ice cloud comparisons are partitioned by horizontal variability in cloud amount, cloud top thermodynamic phase, vertical layering of clouds, and other parameters. The magnitudes of t and r(e) and their relative uncertainties are compared for a wide variety of pixel-scale cloud complexity. The correlations of t and r(e) between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure, with the highest correlations found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans. While the t comparisons are essentially unbiased for homogeneous ice cloud with variability that depends on scene complexity, a bias of 5-10 mu m remains in r(e) within themost homogeneous scenes identified, consistent with known radiative transfer differences in the visible and infrared bands. The AIRS and MODIS uncertainty estimates reflect the wide variety of cloud complexity, with greater magnitudes in scenes with larger horizontal variability. The AIRS averaging kernels suggest scene-dependent information content that is consistent with infrared sensitivity to ice clouds. The AIRS-normalized chi(2) radiance fits suggest that accounting for horizontal cloud variability is likely to improve the AIRS ice cloud retrievals. C1 [Kahn, B. H.; Schreier, M. M.; Yue, Q.; Fetzer, E. J.; Irion, F. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Platnick, S.; Wang, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nasiri, S. L.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [L'Ecuyer, T. S.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. RP Kahn, BH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM brian.h.kahn@jpl.nasa.gov RI L'Ecuyer, Tristan/E-5607-2012; Platnick, Steven/J-9982-2014; Yue, Qing/F-4619-2017 OI L'Ecuyer, Tristan/0000-0002-7584-4836; Platnick, Steven/0000-0003-3964-3567; Yue, Qing/0000-0002-3559-6508 FU National Aeronautics and Space Administration; NASA [NNN13D455T]; AIRS Project at JPL FX A portion of this research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The AIRS version 6 and MODIS collection 6 data sets were processed by and obtained from the Goddard Earth Services Data and Information Services Center (http://daac.gsfc.nasa.gov/) and the Level 1 and Atmosphere and Archive Distribution System (http://ladsweb.nascom.nasa.gov). B.H.K. was supported by the NASA Science of Terra and Aqua program under grant NNN13D455T and the AIRS Project at JPL. The authors thank the three anonymous reviewers for their constructive comments and Donifan Barahona, Andrew Gettelman, and Lazaros Oreopoulos for the conversations that helped benefit the focus of this work. (C)2015. All rights reserved. Government sponsorship acknowledged. NR 64 TC 3 Z9 3 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2015 VL 120 IS 22 DI 10.1002/2015JD023950 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5EJ UT WOS:000367825200018 ER PT J AU Stachnik, JP Waliser, DE Majda, AJ Stechmann, SN Thual, S AF Stachnik, Justin P. Waliser, Duane E. Majda, Andrew J. Stechmann, Samuel N. Thual, Sulian TI Evaluating MJO event initiation and decay in the skeleton model using an RMM-like index SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MADDEN-JULIAN OSCILLATION; SIMPLE MULTICLOUD PARAMETERIZATION; OUTGOING LONGWAVE RADIATION; COUPLED EQUATORIAL WAVES; INTRASEASONAL OSCILLATIONS; NORTHERN SUMMER; TROPICAL WAVES; LIFE-CYCLE; VARIABILITY; CIRCULATION AB The Madden-Julian oscillation (MJO) skeleton model is a low-order dynamic model that is capable of simulating many of the observed features of the MJO. This study develops a model-based "MJO" index that is similar to the well-known real-time multivariate MJO (RMM) index to better facilitate comparison between the skeleton model and observational data. Multivariate and univariate empirical orthogonal function (EOF) analyses were performed on the convective heating and zonal wind data taken from the skeleton model for simulations forced with an idealized warm pool and observed sea surface temperatures (SSTs). The leading EOF modes indicated a wave number 1 convectively coupled circulation anomaly with zonal asymmetries that closely resembled the observed RMM EOFs, especially when the model was forced with observed SSTs. The RMM-like index was used to compute an MJO climatology and document the occurrence of primary, continuing, and terminating MJO events in the skeleton model. The overall amount of MJO activity and event lengths compared reasonably well to observations for such a simple model. Attempts at reconciling the observed geographic distribution of individual MJO initiation and termination events were not successful for the stochastic simulations, though stochasticity is necessary in order to produce composite MJOs that initiate and decay with time scales similar to observations. Finally, analysis indicates that the existence of slow-moving, eastward traveling waves with higher wave numbers (k approximate to 12) embedded within the large-scale flow often precedes MJO termination in the skeleton model. C1 [Stachnik, Justin P.; Waliser, Duane E.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Stachnik, Justin P.; Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Majda, Andrew J.; Thual, Sulian] NYU, Courant Inst, Dept Math, New York, NY USA. [Majda, Andrew J.; Thual, Sulian] NYU, Courant Inst, Ctr Atmosphere Ocean Sci, New York, NY USA. [Stechmann, Samuel N.] Univ Wisconsin, Dept Math, Madison, WI 53706 USA. [Stechmann, Samuel N.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. RP Stachnik, JP (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM Justin.P.Stachnik@jpl.nasa.gov FU National Aeronautics and Space Administration; Office of Naval Research (ONR) [N00014-12-1-0912] FX The RMM index was obtained from the Australian Bureau of Meteorology website. The NOAA OI SST v2 data were provided by the NOAA/Office of Oceanic and Atmospheric Research (OAR)/Earth System Research Laboratory (ESRL) Physical Sciences Division (PSD) in Boulder, CO, USA, and obtained from their website at http://www.esrl.noaa.gov/psd/. Three anonymous reviewers provided helpful comments. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This study was funded by the Office of Naval Research (ONR) award N00014-12-1-0912. NR 63 TC 2 Z9 2 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2015 VL 120 IS 22 DI 10.1002/2015JD023916 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5EJ UT WOS:000367825200007 ER PT J AU Yu, Q Bowman, JM Fortenberry, RC Mancini, JS Lee, TJ Crawford, TD Klemperer, W Francisco, JS AF Yu, Qi Bowman, Joel M. Fortenberry, Ryan C. Mancini, John S. Lee, Timothy J. Crawford, T. Daniel Klemperer, William Francisco, Joseph S. TI Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN+ SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SELF-CONSISTENT-FIELD; QUARTIC FORCE-FIELDS; SPECTROSCOPIC CONSTANTS; POLYATOMIC-MOLECULES; ENERGIES; SYSTEMS; ISOTOPOLOGUES; SURFACES; U93.174; CATION AB A semiglobal potential energy surface (PES) and quartic force field (QFF) based on fitting high-level electronic structure energies are presented to describe the structures and spectroscopic properties of NNHNN+. The equilibrium structure of NNHNN+ is linear with the proton equidistant between the two nitrogen groups and thus of D-infinity h symmetry. Vibrational second-order perturbation theory (VPT2) calculations based on the QFF fails to describe the proton rattle motion, i.e., the antisymmetric proton stretch, due to the very flat nature of PES around the global minimum but performs properly for other modes with sharper potential wells. Vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) calculations using a version of MULTIMODE without angular momentum terms successfully describe this motion and predict the fundamental to be at 759 cm(1). This is in good agreement with the value of 746 cm(1) from a fixed-node diffusion Monte Carlo calculation and the experimental Ar-tagged result of 743 cm(1). Other VSCF/VCI energies are in good agreement with other experimentally reported ones. Both double-harmonic intensity and rigorous MULTIMODE intensity calculations show the proton-transfer fundamental has strong intensity. C1 [Yu, Qi; Bowman, Joel M.; Mancini, John S.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Yu, Qi; Bowman, Joel M.; Mancini, John S.] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. [Fortenberry, Ryan C.] Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA. [Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crawford, T. Daniel] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Klemperer, William] Harvard Univ, Dept Chem, Cambridge, MA 02138 USA. [Francisco, Joseph S.] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Bowman, JM (reprint author), Emory Univ, Dept Chem, Atlanta, GA 30322 USA. EM jmbowma@emory.edu; rfortenberry@georgiasouthern.edu RI Lee, Timothy/K-2838-2012; Crawford, Thomas/A-9271-2017 OI Crawford, Thomas/0000-0002-7961-7016 FU National Science Foundation [CHE-14635.52]; Georgia Southern University; U.S. National Science Foundation (NSF) [CHE-1058420]; NSF [CHE-0741927]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH13ZDA017C] FX The National Science Foundation grant No. CHE-14635.52 supported the work done by J.M.B., QY., and J.S.M. R.C.F. acknowledges Georgia Southern University for providing startup funds utilized in this work. T.D.C. acknowledges support from the U.S. National Science Foundation (NSF) through award CHE-1058420 and by NSF Multi-User Chemistry Research Instrumentation and Facility (CRIF:MU) award CHE-0741927, which provided the computer hardware employed. This work is also supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement Notice NNH13ZDA017C issued through the Science Mission Directorate. NR 50 TC 7 Z9 7 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2015 VL 119 IS 47 BP 11623 EP 11631 DI 10.1021/acs.jpca.5b09682 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CX9DU UT WOS:000366006000017 PM 26529262 ER PT J AU Duncanson, L Rourke, O Dubayah, R AF Duncanson, L. Rourke, O. Dubayah, R. TI Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests SO SCIENTIFIC REPORTS LA English DT Article ID BIOMASS EQUATIONS; CARBON STOCKS; ABOVEGROUND BIOMASS; SECONDARY FORESTS; TROPICAL TREES; LIDAR; DENSITY; MODELS AB Accurate quantification of forest carbon stocks is required for constraining the global carbon cycle and its impacts on climate. The accuracies of forest biomass maps are inherently dependent on the accuracy of the field biomass estimates used to calibrate models, which are generated with allometric equations. Here, we provide a quantitative assessment of the sensitivity of allometric parameters to sample size in temperate forests, focusing on the allometric relationship between tree height and crown radius. We use LiDAR remote sensing to isolate between 10,000 to more than 1,000,000 tree height and crown radius measurements per site in six U.S. forests. We find that fitted allometric parameters are highly sensitive to sample size, producing systematic overestimates of height. We extend our analysis to biomass through the application of empirical relationships from the literature, and show that given the small sample sizes used in common allometric equations for biomass, the average site-level biomass bias is -+70% with a standard deviation of 71%, ranging from -4% to +193%. These findings underscore the importance of increasing the sample sizes used for allometric equation generation. C1 [Duncanson, L.; Dubayah, R.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Duncanson, L.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Rourke, O.] Univ Maryland, Dept Math, AMSC, College Pk, MD 20742 USA. RP Duncanson, L (reprint author), Univ Maryland, Dept Geog Sci, 2181 Lefrak Hall, College Pk, MD 20742 USA. EM lduncans@umd.edu FU NASA [NNX11AL36H]; Carbon Monitoring System (CMS) [NNX13AP69G]; Natural Sciences and Engineering Research Council of Canada FX This work was funded by NASA's Earth and Space Sciences Fellowship (Grant NNX11AL36H) and Carbon Monitoring System (CMS) (PI: Dubayah, Grant NNX13AP69G). The first author also gratefully acknowledges funding from the Natural Sciences and Engineering Research Council of Canada's Postgraduate Fellowship Program. Additionally, the authors thank the NASA Earth Exchange (NEX) program for providing access to high end computing in support of this research. Many thanks as well to Bruce Cook for collecting and preprocessing the LiDAR data, Compton Tucker, Matt Hansen, George Hurtt, and especially Joe Mascaro for their many helpful comments on this manuscript. NR 44 TC 4 Z9 4 U1 3 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 24 PY 2015 VL 5 AR 17153 DI 10.1038/srep17153 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CW7RX UT WOS:000365198000001 PM 26598233 ER PT J AU Gair, JR Romano, JD Taylor, SR AF Gair, Jonathan R. Romano, Joseph D. Taylor, Stephen R. TI Mapping gravitational-wave backgrounds of arbitrary polarisation using pulsar timing arrays SO PHYSICAL REVIEW D LA English DT Article ID BLACK-HOLE BINARIES; LOW-FREQUENCY; GENERAL-RELATIVITY; COSMIC STRINGS; RADIATION; LIMITS; ANISOTROPIES; COSMOLOGY; GRAVITY; PROBE AB We extend our previous work on mapping gravitational-wave backgrounds using techniques borrowed from the analysis of cosmic microwave background data to backgrounds which have non-general-relativity (non-GR) polarisations. Our analysis and results are presented in the context of pulsar timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse ("breathing") and vector-longitudinal polarisations, and a semianalytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogous to our previous findings that pulsar timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background. C1 [Gair, Jonathan R.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gair, Jonathan R.] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland. [Romano, Joseph D.] Univ Texas Brownsville, Dept Phys & Astron, Brownsville, TX 78520 USA. [Romano, Joseph D.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Taylor, Stephen R.] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. RP Gair, JR (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. OI Taylor, Stephen/0000-0003-0264-1453 FU Royal Society; NASA; NSF [PHY-1205585, PHY-1505861, HRD-1242090, PFC-1430284, PHY-1066293]; NANOGrav Physics Frontier Center; Higher Education Funding Council for England; Science and Technology Facilities Council FX J. G.'s work is supported by the Royal Society. This research was in part supported by S. T.'s appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory administered by Oak Ridge Associated Universities through a contract with NASA. J. D. R. acknowledges support from NSF Grants No. PHY-1205585, No. PHY-1505861, No. HRD-1242090, and the NANOGrav Physics Frontier Center, NSF Grant No. PFC-1430284. This research has made use of Python and its standard libraries: NUMPY and MATPLOTLIB. We have also made use of MEALPix (a Matlab implementation of HEALPix [45]) developed by the GWAstro Research Group and available from http://gwastro.psu.edu. This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/) provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. The authors also acknowledge support of NSF Grant No. PHY-1066293 and the hospitality of the Aspen Center for Physics, where this work was completed. NR 53 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 23 PY 2015 VL 92 IS 10 AR 102003 DI 10.1103/PhysRevD.92.102003 PG 37 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX2FQ UT WOS:000365512100001 ER PT J AU Penteado, EM Boogert, ACA Pontoppidan, KM Ioppolo, S Blake, GA Cuppen, HM AF Penteado, E. M. Boogert, A. C. A. Pontoppidan, K. M. Ioppolo, S. Blake, G. A. Cuppen, H. M. TI Spectroscopic constraints on CH3OH formation: CO mixed with CH3OH ices towards young stellar objects SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astrochemistry; stars: formation; stars: individual: L1489 IRS, AFGL 7009S; ISM: abundances; ISM: molecules; infrared: ISM ID MICRON KECK/NIRSPEC SPECTRA; SOLID CO; INTERSTELLAR ICES; INFRARED-SPECTROSCOPY; QUIESCENT MEDIUM; CO-H2O ICES; DARK CLOUD; BAND; PROTOSTARS; METHANOL AB The prominent infrared absorption band of solid CO - commonly observed towards young stellar objects (YSOs) - consists of three empirically determined components. The broad 'red component' (2136 cm(-1), 4.681 mu m) is generally attributed to solid CO mixed in a hydrogen-bonded environment. Usually, CO embedded in the abundantly present water is considered. However, CO: H2O mixtures cannot reproduce the width and position of the observed red component without producing a shoulder at 2152 cm(-1), which is not observed in astronomical spectra. Cuppen et al. showed that CO:CH3OH mixtures do not suffer from this problem. Here, this proposition is expanded by comparing literature laboratory spectra of different CO-containing ice mixtures to high-resolution (R = lambda/Delta lambda = 25 000) spectra of the massive YSOAFGL7009S and of the low-mass YSOL1489 IRS. The previously unpublished spectrum of AFGL 7009S shows a wide band of solid (CO)-C-13, the first detection of (CO)-C-13 ice in the polar phase. In this source, both the (CO)-C-12 and (CO)-C-13 ice bands are well fitted with CO: CH3OH mixtures, while respecting the profiles and depths of the methanol bands at other wavelengths, whereas mixtures with H2O cannot. The presence of a gradient in the CO:CH3OH mixing ratio in the grain mantles is also suggested. Towards L1489 IRS, the profile of the (CO)-C-12 band is also better fitted with CH3OH-containing ices, although the CH3OH abundance needed is a factor of 2.4 above previous measurements. Overall, however, the results are reasonably consistent with models and experiments about formation of CH3OH by the hydrogenation of CO ices. C1 [Penteado, E. M.; Cuppen, H. M.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands. [Boogert, A. C. A.] Univ Space Res Assoc, NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Pontoppidan, K. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ioppolo, S.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Penteado, EM (reprint author), Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalsweg 135, NL-6525 AJ Nijmegen, Netherlands. EM e.monfardini@science.ru.nl; H.Cuppen@science.ru.nl RI Cuppen, Herma/F-9729-2015 OI Cuppen, Herma/0000-0003-4397-0739 FU European Research Council (ERC-StG) [259510-KISMOL]; VIDI research program - Netherlands Organization for Scientific Research (NWO) [700.10.427]; Royal Society; NASA Origins of Solar Systems program; NSF AAG program FX EMP and HMC acknowledge the European Research Council (ERC-2010-StG, Grant Agreement no. 259510-KISMOL) for financial support. HMC is grateful for support from the VIDI research program 700.10.427, which is financed by The Netherlands Organization for Scientific Research (NWO). SI acknowledges financial support from the Royal Society. GAB gratefully acknowledges support from the NASA Origins of Solar Systems and NSF AAG programs. NR 34 TC 4 Z9 4 U1 2 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2015 VL 454 IS 1 BP 531 EP 540 DI 10.1093/mnras/stv1987 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6QJ UT WOS:000363657000036 ER PT J AU Davis, TA Rowlands, K Allison, JR Shabala, SS Ting, YS Lagos, CD Kaviraj, S Bourne, N Dunne, L Eales, S Ivison, RJ Maddox, S Smith, DJB Smith, MWL Temi, P AF Davis, Timothy A. Rowlands, Kate Allison, James R. Shabala, Stanislav S. Ting, Yuan-Sen Lagos, Claudia del P. Kaviraj, Sugata Bourne, Nathan Dunne, Loretta Eales, Steve Ivison, Rob J. Maddox, Steve Smith, Daniel J. B. Smith, Matthew W. L. Temi, Pasquale TI Molecular and atomic gas in dust lane early-type galaxies - I. Low star formation efficiencies in minor merger remnants (vol 449, pg 3503, 2015) SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Correction DE errata, addenda; ISM: molecules; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: interactions; galaxies: ISM C1 [Davis, Timothy A.; Lagos, Claudia del P.; Ivison, Rob J.] European So Observ, D-85748 Garching, Germany. [Davis, Timothy A.; Kaviraj, Sugata; Smith, Daniel J. B.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL1 9AB, Herts, England. [Rowlands, Kate] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Allison, James R.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Shabala, Stanislav S.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Ting, Yuan-Sen] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lagos, Claudia del P.] Univ Western Australia, Int Ctr Radio Astron ICRAR, Crawley, WA 6009, Australia. [Bourne, Nathan; Dunne, Loretta; Ivison, Rob J.; Maddox, Steve] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dunne, Loretta; Maddox, Steve] Univ Canterbury, Dept Phys & Astron, Christchurch 8140, New Zealand. [Eales, Steve; Smith, Matthew W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Temi, Pasquale] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Davis, TA (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM t.davis4@herts.ac.uk RI Ivison, R./G-4450-2011 OI Ivison, R./0000-0001-5118-1313 NR 1 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2015 VL 454 IS 1 BP 657 EP 658 DI 10.1093/mnras/stv1973 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6QJ UT WOS:000363657000047 ER PT J AU Adams, JD Herter, TL Hora, JL Schneider, N Lau, RM Staguhn, JG Simon, R Smith, N Gehrz, RD Allen, LE Bontemps, S Carey, SJ Fazio, GG Gutermuth, RA Fernandez, AG Hankins, M Hill, T Keto, E Koenig, XP Kraemer, KE Megeath, ST Mizuno, DR Motte, F Myers, PC Smith, HA AF Adams, J. D. Herter, T. L. Hora, J. L. Schneider, N. Lau, R. M. Staguhn, J. G. Simon, R. Smith, N. Gehrz, R. D. Allen, L. E. Bontemps, S. Carey, S. J. Fazio, G. G. Gutermuth, R. A. Fernandez, A. Guzman Hankins, M. Hill, T. Keto, E. Koenig, X. P. Kraemer, K. E. Megeath, S. T. Mizuno, D. R. Motte, F. Myers, P. C. Smith, H. A. TI SOFIA/FORCAST OBSERVATIONS OF WARM DUST IN S106: A FRAGMENTED ENVIRONMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; H II regions; infrared: stars; radiative transfer; stars: formation ID YOUNG STELLAR OBJECTS; H-II REGIONS; 1ST SCIENCE OBSERVATIONS; SPITZER-SPACE-TELESCOPE; IN-FLIGHT PERFORMANCE; ARRAY-CAMERA IRAC; MASSIVE STAR-FORMATION; BIPOLAR NEBULA; PHOTODISSOCIATION REGIONS; MIDINFRARED CAMERA AB We present mid-IR (19-37 pm) imaging observations of S106 from SOFIA/FORCAST, complemented with IR observations from SpitzerlIRAC (3.6-8.0 mu m), IRTF/MIRLIN (11.3 and 12.5 mu m), and HerschelIPACS (70 and 160 pm). We use these observations, observations in the literature, and radiation transfer modeling to study the heating and composition of the warm (similar to 100 K) dust in the region. The dust is heated radiatively by the source S106 IR, with little contributions from grain-electron collisions and Ly alpha radiation. The dust luminosity is greater than or similar to(9.02 +/- 1.01) x 10(4) L-circle dot), consistent with heating by a mid- to late-type 0 star. We find a temperature gradient (similar to 75-107 K) in the lobes, which is consistent with a dusty equatorial geometry around S106 IR. Furthermore, the SOFIA observations resolve several cool (similar to 65-70 K) lanes and pockets of warmer (similar to 75-90 K) dust in the ionization shadow, indicating that the environment is fragmented. We model the dust mass as a composition of amorphous silicates, amorphous carbon, big grains, very small grains, and polycyclic aromatic hydrocarbons. We present the relative abundances of each grain component for several locations in S106. C1 [Adams, J. D.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, NASA, Armstrong Flight Res Ctr, Palmdale, CA 93550 USA. [Adams, J. D.; Herter, T. L.; Lau, R. M.; Hankins, M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Hora, J. L.; Fazio, G. G.; Fernandez, A. Guzman; Keto, E.; Myers, P. C.; Smith, H. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Schneider, N.; Simon, R.] Univ Cologne, Phys Inst 1, KOSMA, D-50937 Cologne, Germany. [Staguhn, J. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Staguhn, J. G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Smith, N.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Gehrz, R. D.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Allen, L. E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Bontemps, S.] Univ Bordeaux, LAB, CNRS, UMR 5804, F-33270 Florac, France. [Carey, S. J.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Gutermuth, R. A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Hill, T.] Joint ALMA Observ, Santiago, Chile. [Koenig, X. P.] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Kraemer, K. E.; Mizuno, D. R.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA. [Megeath, S. T.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Motte, F.] Univ Paris Diderot, CNRS, CEA, Lab AIM Paris Saclay,Irfu, F-91191 Gif Sur Yvette, France. RP Adams, JD (reprint author), Univ Space Res Assoc, Stratospher Observ Infrared Astron, NASA, Armstrong Flight Res Ctr, 2825 East Ave P, Palmdale, CA 93550 USA. OI Kraemer, Kathleen/0000-0002-2626-7155 FU Universities Space Research Association, Inc. (USRA), under NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; NASA by USRA [8500-98-014]; NASA [1407]; NASA by JPL/Caltech; NASA; United States Air Force FX We thank the SOFIA ground crew, flight crew, and Mission Operations for their successful execution of the SOFIA observations. We also thank an anonymous referee for making suggestions that led to the improvement of this paper. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided to Cornell by NASA through award 8500-98-014 issued by USRA. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under NASA contract 1407. This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. R.D.G. acknowledges support from NASA and the United States Air Force. NR 77 TC 0 Z9 0 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 54 DI 10.1088/0004-637X/814/1/54 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200054 ER PT J AU David, TJ Stauffer, J Hillenbrand, LA Cody, AM Conroy, K Stassun, KG Pope, B Aigrain, S Gillen, E Cameron, AC Barrado, D Rebull, LM Isaacson, H Marcy, GW Zhang, CL Riddle, RL Ziegler, C Law, NM Baranec, C AF David, Trevor J. Stauffer, John Hillenbrand, Lynne A. Cody, Ann Marie Conroy, Kyle Stassun, Keivan G. Pope, Benjamin Aigrain, Suzanne Gillen, Ed Cameron, Andrew Collier Barrado, David Rebull, L. M. Isaacson, Howard Marcy, Geoffrey W. Zhang, Celia Riddle, Reed L. Ziegler, Carl Law, Nicholas M. Baranec, Christoph TI HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: eclipsing; open clusters and associations: general; stars: fundamental parameters; stars: pre-main sequence; stars: rotation; starspots ID LOW-MASS STARS; LIMB-DARKENING COEFFICIENTS; IMAGING SURVEY; OPEN CLUSTERS; YOUNG STARS; SPACED DATA; ROTATION; EVOLUTION; DWARFS; ISOCHRONES AB The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M-circle dot and R/R-circle dot values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status. C1 [David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Stauffer, John; Rebull, L. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Cody, Ann Marie] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Conroy, Kyle; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Pope, Benjamin; Aigrain, Suzanne; Gillen, Ed] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Cameron, Andrew Collier] Univ St Andrews, Sch Phys & Astronomy, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Barrado, David] INTA CSIC, Ctr Astrobiol, Dept Astrofis, E-28691 Madrid, Spain. [Isaacson, Howard; Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ziegler, Carl; Law, Nicholas M.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Baranec, Christoph] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. RP David, TJ (reprint author), CALTECH, Dept Astron, Pasadena, CA 91125 USA. EM tjd@astro.caltech.edu RI Barrado Navascues, David/C-1439-2017; OI David, Trevor/0000-0001-6534-6246; Barrado Navascues, David/0000-0002-5971-9242; Cameron, Andrew/0000-0002-8863-7828; Conroy, Kyle/0000-0002-5442-8550; Rebull, Luisa/0000-0001-6381-515X; Pope, Benjamin/0000-0003-2595-9114; Stassun, Keivan/0000-0002-3481-9052 FU National Science Foundation [DGE1144469, AST-0906060, AST-0960343, AST-1207891]; France Cordova through the Neugebauer Scholarship; NASA; NASA [NNX15AV62G, NAS5-26555]; NASA Science Mission directorate; NASA Office of Space Science [NNX09AF08G]; W. M. Keck Foundation; Alfred P. Sloan Foundation; STFC [ST/M001296/1]; UKs Science and Technology Facilities Council; Mt. Cuba Astronomical Foundation FX We thank the referee for suggestions that led to significant improvements in this paper. We thank Lisa Prato for her estimate of the infrared flux ratio and look forward to a direct detection of the secondary. The material presented herein is based upon work supported in 2015 by the National Science Foundation Graduate Research Fellowship under grant No. DGE1144469. T.J.D. gratefully acknowledges support from France Cordova through the Neugebauer Scholarship. This research was partially supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support for this work was provided by NASA via grant NNX15AV62G. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The Robo-AO system was developed by collaborating partner institutions, the California Institute of Technology and the Inter-University Centre for Astronomy and Astrophysics, and supported by the National Science Foundation under grant No. AST-0906060, AST-0960343, and AST-1207891, the Mt. Cuba Astronomical Foundation, and by a gift from Samuel Oschin. C.B. acknowledges support from the Alfred P. Sloan Foundation. A.C.C. acknowledges support from STFC grant ST/M001296/1. Funding for WASP comes from consortium universities and from UKs Science and Technology Facilities Council. NR 49 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 62 DI 10.1088/0004-637X/814/1/62 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200062 ER PT J AU Figueroa-Feliciano, E Anderson, AJ Castro, D Goldfinger, DC Rutherford, J Eckart, ME Kelley, RL Kilbourne, CA McCammon, D Morgan, K Porter, FS Szymkowiak, AE AF Figueroa-Feliciano, E. Anderson, A. J. Castro, D. Goldfinger, D. C. Rutherford, J. Eckart, M. E. Kelley, R. L. Kilbourne, C. A. McCammon, D. Morgan, K. Porter, F. S. Szymkowiak, A. E. CA XQC Collaboration TI SEARCHING FOR keV STERILE NEUTRINO DARK MATTER WITH X-RAY MICROCALORIMETER SOUNDING ROCKETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; Galaxy: halo; line: identification; neutrinos; techniques: spectroscopic; X-rays: diffuse background ID XMM-NEWTON OBSERVATION; INTERSTELLAR-MEDIUM; EMISSION-LINES; SPECTRUM; SPECTROSCOPY; ABUNDANCES; ELEMENTS; CHANDRA; PLASMA; REGION AB High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field of view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l = 165 degrees, b = -5 degrees with an effective exposure of 106 s, obtaining a limit on the sterile neutrino mixing angle of sin(2) 2 theta < 7.2 x 10(-10) at 95% CL for a 7 keV neutrino. Better sensitivity at the level of sin(2) 2 theta similar to 2.1 x 10(-11) at 95% CL for a 7 keV neutrino is achievable with future 300-s observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters. C1 [Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCammon, D.; Morgan, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Szymkowiak, A. E.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. RP Figueroa-Feliciano, E (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM enectali@mit.edu RI Porter, Frederick/D-3501-2012; Morgan, Kelsey/J-5053-2016; OI Porter, Frederick/0000-0002-6374-1119; Morgan, Kelsey/0000-0002-6597-1030; McCammon, Dan/0000-0001-5170-4567 FU NASA [NNX13AD02G, NNX13AH21G]; Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) by the American Recovery and Reinvestment Act [DE-AC05-06OR23100]; NASA; Chandra GO grant [GO3-14080]; National Aeronautics and Space Administration through the Smithsonian Astrophysical Observatory [SV3-73016]; National Aeronautics Space Administration [NAS8-03060] FX E.F.F. acknowledges support from NASA Award NNX13AD02G for the Micro-X Project. A.J.A. is supported by a Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. D.C.G. is supported by a NASA Space Technology Research Fellowship. D.C. acknowledges support for this work provided by the Chandra GO grant GO3-14080, as well as, the National Aeronautics and Space Administration through the Smithsonian Astrophysical Observatory contract SV3-73016 to MIT for Support of the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. The XQC project is supported in part by NASA grant NNX13AH21G. NR 60 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 82 DI 10.1088/0004-637X/814/1/82 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200082 ER PT J AU Guiriec, S Mochkovitch, R Piran, T Daigne, F Kouveliotou, C Racusin, J Gehrels, N McEnery, J AF Guiriec, S. Mochkovitch, R. Piran, T. Daigne, F. Kouveliotou, C. Racusin, J. Gehrels, N. McEnery, J. TI GRB 131014A: A LABORATORY FOR STUDYING THE THERMAL-LIKE AND NON-THERMAL EMISSIONS IN GAMMA-RAY BURSTS, AND THE NEW L-i(nTh)-E-peak, i(nTh, rest) RELATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; black hole physics; distance scale; gamma-ray burst: general; radiation mechanisms: non-thermal; radiation mechanisms: thermal ID PROMPT EMISSION; PHOTOSPHERIC COMPONENT; LUMINOSITY RELATION; COSMIC FIREBALLS; INTERNAL SHOCKS; SPECTRAL PEAK; ICMART MODEL; ENERGY; MECHANISM; MONITOR AB Over the past few years, evidence has been accumulated in support of the existence of a thermal-like component during the prompt phase of gamma-ray bursts (GRBs). However, this component, which is often associated with the GRB jet's photosphere, is usually subdominant compared to a much stronger non-thermal one. The prompt emission of GRB 131014A-detected by the Fermi Gamma-ray Space Telescope (hereafter Fermi)-provides a unique opportunity to trace the history of this thermal-like component. Indeed, the thermal emission in GRB 131014A is much more intense than in other GRBs and a pure thermal episode is observed during the initial 0.16 s. The thermal-like component cools monotonically during the first second while the non-thermal emission kicks off. The intensity of the non-thermal component progressively increases until being energetically dominant at late time, similar to what is typically observed. This is a perfect scenario to disentangle the thermal component from the non-thermal component. The initial decaying and cooling phase of the thermal-like component is followed by a strong re-brightening and a re-heating episode; however, despite a much brighter second emission phase, the temperature of the thermal component does not reach its initial value. This re-brightening episode is followed by a global constant cooling until the end of the burst. We note that there is a shallower low-energy spectral slope than the typical index value +1, corresponding to a pure Planck function, which. better matches with the thermal-like spectral shape; a spectral index around +0.6 seems to be in better agreement with the data. The non-thermal component is adequately fitted with a Band function whose low- and high-energy power-law indices are similar to-0.7 and 1. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with m(s) > 1, star-forming gas clouds are formed at z > 100 when the formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while retaining a high temperature. The protostars formed in such "hot" clouds grow very rapidly through accretion to become extremely massive stars that may leave massive black holes with a few hundred solar masses at z > 100. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments on CMB polarization and spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum. C1 [Hirano, Shingo; Zhu, Nick; Yoshida, Naoki] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Zhu, Nick; Spergel, David] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Yoshida, Naoki] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hirano, S (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. EM shingo.hirano@utap.phys.s.u-tokyo.ac.jp FU JSPS [25287050] FX We thank Jens Chluba and Carla Maria Coppola for helpful advice about chemistry implementations. We also thank Takashi Hosokawa, Kazuyuki Omukai, and Teruaki Suyama for discussions and comments on the earliest star formation. N.Z. is grateful for the hospitality of the Department of Astrophysical Sciences at Princeton University. N.Z's. visit was supported by the University of Tokyo-Princeton strategic partnership grant. Numerical calculations were carried out on Cray XC30 and the general-purpose PC farm at Center for Computational Astrophysics, CfCA, of the National Astronomical Observatory of Japan. This work was supported by a Grant-in-Aid for JSPS Fellows (S.H.) and by the JSPS Grant-in-Aid for Scientific Research 25287050 (N.Y.). Portions of this research were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). NR 65 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 18 DI 10.1088/0004-637X/814/1/18 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200018 ER PT J AU Kalas, PG Rajan, A Wang, JJ Millar-Blanchaer, MA Duchene, G Chen, C Fitzgerald, MP Dong, RB Graham, JR Patience, J Macintosh, B Murray-Clay, R Matthews, B Rameau, J Marois, C Chilcote, J De Rosa, RJ Doyon, R Draper, ZH Lawler, S Ammons, SM Arriaga, P Bulger, J Cotten, T Follette, KB Goodsell, S Greenbaum, A Hibon, P Hinkley, S Hung, LW Ingraham, P Konapacky, Q Lafreniere, D Larkin, JE Long, D Maire, J Marchis, F Metchev, S Morzinski, KM Nielsen, EL Oppenheimer, R Perrin, MD Pueyo, L Rantakyro, FT Ruffio, JB Saddlemyer, L Savransky, D Schneider, AC Sivaramakrishnan, A Soummer, R Song, I Thomas, S Vasisht, G Ward-Duong, K Wiktorowicz, SJ Wolff, SG AF Kalas, Paul G. Rajan, Abhijith Wang, Jason J. Millar-Blanchaer, Maxwell A. Duchene, Gaspard Chen, Christine Fitzgerald, Michael P. Dong, Ruobing Graham, James R. Patience, Jennifer Macintosh, Bruce Murray-Clay, Ruth Matthews, Brenda Rameau, Julien Marois, Christian Chilcote, Jeffrey De Rosa, Robert J. Doyon, Rene Draper, Zachary H. Lawler, Samantha Ammons, S. Mark Arriaga, Pauline Bulger, Joanna Cotten, Tara Follette, Katherine B. Goodsell, Stephen Greenbaum, Alexandra Hibon, Pascale Hinkley, Sasha Hung, Li-Wei Ingraham, Patrick Konapacky, Quinn Lafreniere, David Larkin, James E. Long, Douglas Maire, Jerome Marchis, Franck Metchev, Stan Morzinski, Katie M. Nielsen, Eric L. Oppenheimer, Rebecca Perrin, Marshall D. Pueyo, Laurent Rantakyroe, Fredrik T. Ruffio, Jean-Baptiste Saddlemyer, Leslie Savransky, Dmitry Schneider, Adam C. Sivaramakrishnan, Anand Soummer, Remi Song, Inseok Thomas, Sandrine Vasisht, Gautam Ward-Duong, Kimberly Wiktorowicz, Sloane J. Wolff, Schuyler G. TI DIRECT IMAGING OF AN ASYMMETRIC DEBRIS DISK IN THE HD 106906 PLANETARY SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; stars: individual (HD 106906); techniques: high angular resolution ID CENTAURUS OB ASSOCIATION; VERY-LOW-MASS; SCORPIUS-CENTAURUS; FOMALHAUT B; HR 8799; DYNAMICAL INSTABILITIES; PROTOPLANETARY DISCS; CIRCUMSTELLAR DISK; RADIATIVE-TRANSFER; OPTICAL-IMAGES AB We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius similar to 50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphology seen for the HD 15115 debris disk. The planet candidate is oriented similar to 21 degrees away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet. C1 [Kalas, Paul G.; Wang, Jason J.; Duchene, Gaspard; Dong, Ruobing; Graham, James R.; De Rosa, Robert J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Rajan, Abhijith; Patience, Jennifer; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Millar-Blanchaer, Maxwell A.; Chilcote, Jeffrey] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Duchene, Gaspard] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Duchene, Gaspard] CNRS, IPAG, F-38000 Grenoble, France. [Chen, Christine; Long, Douglas; Perrin, Marshall D.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi; Wolff, Schuyler G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Fitzgerald, Michael P.; Arriaga, Pauline; Hung, Li-Wei; Larkin, James E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Macintosh, Bruce; Follette, Katherine B.; Nielsen, Eric L.; Ruffio, Jean-Baptiste] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Murray-Clay, Ruth] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Matthews, Brenda; Marois, Christian; Draper, Zachary H.; Lawler, Samantha; Saddlemyer, Leslie] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Rameau, Julien; Doyon, Rene; Lafreniere, David] Univ Montreal, Dept Phys, Inst Rech Exoplanetes, Montreal, PQ H3C 3J7, Canada. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94040 USA. [Bulger, Joanna] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Cotten, Tara; Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Goodsell, Stephen; Hibon, Pascale; Rantakyroe, Fredrik T.] Gemini Observ, La Serena, Chile. [Greenbaum, Alexandra; Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hinkley, Sasha] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Ingraham, Patrick; Thomas, Sandrine] AURA LSST, Tucson, AZ 85719 USA. [Konapacky, Quinn] Univ Calif San Diego, La Jolla, CA 92093 USA. [Marchis, Franck; Nielsen, Eric L.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Metchev, Stan] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Metchev, Stan] Univ Western Ontario, Ctr Planetary & Space Explorat, London, ON N6A 3K7, Canada. [Metchev, Stan] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Morzinski, Katie M.] Univ Arizona, Ctr Astron Adapt Opt, Steward Observ, Tucson, AZ 85721 USA. [Oppenheimer, Rebecca] Amer Museum Nat Hist, New York, NY 10024 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Schneider, Adam C.] Univ Toledo, Toledo, OH 43606 USA. [Vasisht, Gautam] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. [Wiktorowicz, Sloane J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Millar-Blanchaer, Maxwell A.; Chilcote, Jeffrey] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Kalas, PG (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. RI Savransky, Dmitry/M-1298-2014; OI Savransky, Dmitry/0000-0002-8711-7206; Oppenheimer, Rebecca/0000-0001-7130-7681; Nielsen, Eric/0000-0001-6975-9056; Perrin, Marshall/0000-0002-3191-8151; Morzinski, Katie/0000-0002-1384-0063; Fitzgerald, Michael/0000-0002-0176-8973; Duchene, Gaspard/0000-0002-5092-6464; Wang, Jason/0000-0003-0774-6502; Greenbaum, Alexandra/0000-0002-7162-8036 FU NASA [NNX15AD95G, NNX14AJ80G, NNX11AD21G]; NSF [AST-0909188, AST-1411868, AST-1413718]; University of California [LFRP-118057]; NASA's Science Mission Directorate FX The Gemini Observatory is operated by the AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). This research was supported in part by NASA cooperative agreements NNX15AD95G, NNX14AJ80G, and NNX11AD21G, NSF AST-0909188, AST-1411868, and AST-1413718, and the University of California LFRP-118057. This work benefited from NASA's Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA's Science Mission Directorate. We thank an anonymous referee for comments that improved our manuscript. NR 66 TC 19 Z9 19 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 32 DI 10.1088/0004-637X/814/1/32 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200032 ER PT J AU Katsuda, S Acero, F Tominaga, N Fukui, Y Hiraga, JS Koyama, K Lee, SH Mori, K Nagataki, S Ohira, Y Petre, R Sano, H Takeuchi, Y Tamagawa, T Tsuji, N Tsunemi, H Uchiyama, Y AF Katsuda, Satoru Acero, Fabio Tominaga, Nozomu Fukui, Yasuo Hiraga, Junko S. Koyama, Katsuji Lee, Shiu-Hang Mori, Koji Nagataki, Shigehiro Ohira, Yutaka Petre, Robert Sano, Hidetoshi Takeuchi, Yoko Tamagawa, Toru Tsuji, Naomi Tsunemi, Hiroshi Uchiyama, Yasunobu TI EVIDENCE FOR THERMAL X-RAY LINE EMISSION FROM THE SYNCHROTRON-DOMINATED SUPERNOVA REMNANT RX J1713.7-3946 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (RX J1713.7-3946); ISM: supernova remnants; supernovae: general; X-rays: general ID TEV GAMMA-RAY; XMM-NEWTON OBSERVATIONS; PHOTON IMAGING CAMERA; METAL-POOR STARS; INTERSTELLAR-MEDIUM; SHOCK ACCELERATION; UBVRI PHOTOMETRY; COSMIC-RAYS; NUCLEOSYNTHESIS; SHELL AB We report the first detection of thermal X-ray line emission from the supernova remnant (SNR) RX J1713.7-3946, the prototype of the small class of synchrotron-dominated SNRs. A softness-ratio map generated using XMM-Newton data shows that faint interior regions are softer than bright shell regions. Using Suzaku and deep XMM-Newton observations, we have extracted X-ray spectra from the softest area, finding clear line features at E-ph similar to 1 and similar to 1.35 keV. These lines can be best explained as Ne Lya and Mg Heck from a thermal emission component. Since the abundance ratios of metals to Fe are much higher than solar values in the thermal component, we attribute the thermal emission to reverse-shocked SN ejecta. The measured Mg/Ne, Si/Ne, and Fe/Ne ratios of 2.0-2.6, 1.5-2.0, and <0.05 solar suggest that the progenitor star of RX J1713.7-3946 was a relatively low-mass star (less than or similar to 20 M-circle dot), consistent with a previous inference based on the effect of stellar winds of the progenitor star on the surrounding medium. Since the mean blastwave speed of similar to 6000 km s(-1) (the radius of 9.6 pc divided by the age of 1600 years) is relatively fast compared with other core-collapse SNRs, we propose that RX J1713.7-3946 is a result of an SN Ib/c whose progenitor was a member of an interacting binary. While our analysis provides strong evidence for X-ray line emission, our interpretation of its nature as thermal emission from SN ejecta requires further confirmation especially through future precision spectroscopic measurements using ASTRO-H. C1 [Katsuda, Satoru; Lee, Shiu-Hang] Japan Aerosp Explorat Agcy JAXA, ISAS, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Acero, Fabio] Univ Paris Diderot, Lab AIM, Serv Astrophys,CEA Saclay, CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Tominaga, Nozomu] Konan Univ, Fac Sci & Engn, Dept Phys, Kobe, Hyogo 6588501, Japan. [Tominaga, Nozomu] Univ Tokyo, Kav li Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Fukui, Yasuo; Sano, Hidetoshi] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Hiraga, Junko S.] Kwansei Gakuin Univ, Sch Sci & Technol, Dept Phys, Sanda 6691337, Japan. [Koyama, Katsuji; Tsunemi, Hiroshi] Osaka Univ, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Koyama, Katsuji] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Mori, Koji] Miyazaki Univ, Fac Engn, Dept Appl Phys & Elect Engn, Miyazaki 8892192, Japan. [Nagataki, Shigehiro] RIKEN, Astrophys Big Bang Lab, Wako, Saitama 3510198, Japan. [Ohira, Yutaka] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2525258, Japan. [Petre, Robert] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Sano, Hidetoshi; Takeuchi, Yoko; Tamagawa, Toru] Nagoya Univ, Inst Adv Res, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Tsuji, Naomi; Uchiyama, Yasunobu] RIKEN, Nishina Ctr, High Energy Astrophys Lab, Wako, Saitama 3510198, Japan. Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. RP Katsuda, S (reprint author), Japan Aerosp Explorat Agcy JAXA, ISAS, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. FU Japan Society for the Promotion of Science KAKENHI [25800119, 24540229, 23000004] FX We thank fruitful discussions with Dr. Masaomi Tanaka on supernova types and progenitor stars. We also thank the anonymous referee for very fast and constructive comments that improved the presentation of the results. This work is supported by Japan Society for the Promotion of Science KAKENHI Grant Numbers 25800119 (S. Katsuda), 24540229 (K. Koyama), 23000004 (H. Tsunemi). NR 60 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 29 DI 10.1088/0004-637X/814/1/29 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200029 ER PT J AU Lohfink, AM Ogle, P Tombesi, F Walton, D Balokovic, M Zoghbi, A Ballantyne, DR Boggs, SE Christensen, FE Craig, WW Fabian, AC Hailey, CJ Harrison, FA King, AL Madejski, G Matt, G Reynolds, CS Stern, D Ursini, F Zhang, WW AF Lohfink, A. M. Ogle, P. Tombesi, F. Walton, D. Balokovic, M. Zoghbi, A. Ballantyne, D. R. Boggs, S. E. Christensen, F. E. Craig, W. W. Fabian, A. C. Hailey, C. J. Harrison, F. A. King, A. L. Madejski, G. Matt, G. Reynolds, C. S. Stern, D. Ursini, F. Zhang, W. W. TI THE CORONA OF THE BROAD-LINE RADIO GALAXY 3C 390.3 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; X-rays: individual (3C 390.3) ID ACTIVE GALACTIC NUCLEI; ACCRETING BLACK-HOLES; X-RAY-SPECTRUM; XMM-NEWTON; OBSERVATIONAL EVIDENCE; NUSTAR; VARIABILITY; ENERGY; EMISSION; REVERBERATION AB We present the results from a joint SuzakulNuSTAR broadband spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-off (E-cut = 117(14)(+18) keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is 69(-24)(+124) and the optical depth is 4.1(-3.6)(+0.5), this leads to an electron temperature of 30(-8)(+32) keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R similar to 0.3), and of that the vast majority is from distant neutral matter. However, we also discover a soft-X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe XXV and Fe XXVI. C1 [Lohfink, A. M.; Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Ogle, P.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Tombesi, F.; Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Walton, D.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Balokovic, M.; Harrison, F. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Zoghbi, A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Hailey, C. J.] Danish Tech Univ, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [King, A. L.; Madejski, G.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Matt, G.; Ursini, F.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Ursini, F.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. RP Lohfink, AM (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM alohfink@ast.cam.ac.uk RI Boggs, Steven/E-4170-2015; Zoghbi, Abderahmen/A-8445-2017; OI Boggs, Steven/0000-0001-9567-4224; Zoghbi, Abderahmen/0000-0002-0572-9613; Ballantyne, David/0000-0001-8128-6976 FU ERC; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; National Aeronautics and Space Administration FX We thank the anonymous referee for helpful comments. A.L. thanks Julien Malzac for helpful discussions and acknowledges support from the ERC Advanced Grant FEEDBACK. F.T. would like to thank M. Coleman Miller and Brian Morsony for useful comments. M.B. acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). NR 55 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 24 DI 10.1088/0004-637X/814/24 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200024 ER PT J AU Maneva, YG Vinas, AF Moya, PS Wicks, RT Poedts, S AF Maneva, Y. G. Vinas, Adolfo F. Moya, Pablo S. Wicks, Robert T. Poedts, Stefaan TI DISSIPATION OF PARALLEL AND OBLIQUE ALFVEN-CYCLOTRON WAVES-IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; plasmas; scattering; solar wind; turbulence; waves ID HYBRID SIMULATIONS; MAGNETIC-FIELD; TEMPERATURE ANISOTROPY; ELECTROMAGNETIC-WAVES; INSTABILITY-DRIVEN; 1 AU; PROTONS; PLASMA; TURBULENCE; FLUCTUATIONS AB We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvencyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfven-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting a particles in a finite-beta fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, omega <= 0.34 Omega(p), Alfven-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvenic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope alpha = 3/2. We vary the propagation angle from theta = 0 degrees to theta = 30 degrees and theta = 60 degrees, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60 degrees, whereas the protons exhibit perpendicular cooling at all propagation angles. C1 [Maneva, Y. G.; Poedts, Stefaan] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, B-3001 Leuven, Belgium. [Vinas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moya, Pablo S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Maneva, YG (reprint author), Katholieke Univ Leuven, Ctr Math Plasma Astrophys, B-3001 Leuven, Belgium. EM yana.maneva@wis.kuleuven.be RI Wicks, Robert/A-1180-2009; Moya, Pablo/C-3163-2011; Poedts, Stefaan/C-9775-2012 OI Wicks, Robert/0000-0002-0622-5302; Moya, Pablo/0000-0002-9161-0888; Poedts, Stefaan/0000-0002-1743-0651 FU F+ fellowship at KU Leuven; NASA [NNX10AC56G]; Wind/SWE-VIS grant; KU Leuven [GOA/2015-014]; ESA Prodex [Csimilar to90347]; Interuniversity Attraction Poles Program - Belgian Science Policy Office [IAP P7/08 CHARM]; Hercules foundation; Flemish Government-department EWI FX This work was supported by the F+ fellowship at KU Leuven and NASA grant NNX10AC56G. We are grateful to L. Ofman for various fruitful discussions and his valuable help in providing the parallel version of the hybrid code. A.F.V. would like to thank the Wind/SWE-VIS grant for the support. S.P. and Y.M. would like to acknowledge GOA/2015-014 (KU Leuven) and C similar to 90347 (ESA Prodex) grants for partial support. The research was partly funded by the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office (IAP P7/08 CHARM). Part of the computations used the infrastructure of the VSC-Flemish Supercomputer Center, funded by the Hercules foundation and the Flemish Government-department EWI. NR 41 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 33 DI 10.1088/0004-637X/814/1/33 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200033 ER PT J AU Moor, A Henning, T Juhasz, A Abraham, P Balog, Z Kospal, A Pascucci, I Szabo, GM Vavrek, R Cure, M Csengeri, T Grady, C Gusten, R Kiss, C AF Moor, A. Henning, Th. Juhasz, A. Abraham, P. Balog, Z. Kospal, A. Pascucci, I. Szabo, Gy. M. Vavrek, R. Cure, M. Csengeri, T. Grady, C. Guesten, R. Kiss, Cs. TI DISCOVERY OF MOLECULAR GAS AROUND HD 131835 IN AN APEX MOLECULAR LINE SURVEY OF BRIGHT DEBRIS DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; stars: individual (HD 131835) ID A-TYPE STARS; HERBIG AE/BE STARS; CENTAURUS OB ASSOCIATION; SPITZER-SPACE-TELESCOPE; PLANET-FINDING CAMPAIGN; PICTORIS MOVING GROUP; CIRCLE-DOT STARS; SOLAR-TYPE STARS; BETA-PICTORIS; CIRCUMSTELLAR DISK AB Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and TRAM 30 m radio telescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk at both 70 and 100 mu m, with a characteristic radius of 170 AU. While in stellar properties HD 131835 resembles /3 Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young (<= 40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of a detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young, and in terms of its disk, more massive analog of the beta Pic system. However, it is also possible that this system, similar to HD 21997, possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals. C1 [Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Kiss, Cs.] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, H-1525 Budapest, Hungary. [Henning, Th.; Balog, Z.; Kospal, A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Juhasz, A.] Inst Astron, Cambridge CB3 OHA, England. [Pascucci, I.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Szabo, Gy. M.] ELTE Gothard Astrophys Observ, H-9700 Szombathely, Hungary. [Vavrek, R.] ESA ESAC, Herschel Sci Ctr, E-28691 Madrid, Spain. [Cure, M.] Univ Valparaiso, Inst Fis & Astron, Valparaiso, Chile. [Csengeri, T.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Grady, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Grady, C.] Eureka Sci, Oakland, CA 94602 USA. RP Moor, A (reprint author), Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, POB 67, H-1525 Budapest, Hungary. EM moor@konkoly.hu OI Balog, Zoltan/0000-0003-1748-2926 FU MTA CSFK Lendulet Disk Research Group; European Space Agency (ESA) [PECS-98073]; Hungarian Research Fund OTKA [K101393, K104607]; Hungarian Academy of Sciences; NASA [NNG13PB64P]; DISCSIM project - European Research Council [341137]; National Aeronautics and Space Administration; National Science Foundation FX We thank the anonymous referee for useful comments that helped us to improve the manuscript. This work was supported by the Momentum grant of the MTA CSFK Lendulet Disk Research Group, the PECS-98073 program of the European Space Agency (ESA), and the Hungarian Research Fund OTKA grants K101393 and K104607. A.M. acknowledges support from the Bolyai Research Fellowship of the Hungarian Academy of Sciences. C.G. acknowledges support under the NASA Origins of Solar System Program on NNG13PB64P. A.J. acknowledges the support of the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. The publication also makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 124 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 42 DI 10.1088/0004-637X/814/1/42 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200042 ER PT J AU Pascucci, I Edwards, S Heyer, M Rigliaco, E Hillenbrand, L Gorti, U Hollenbach, D Simon, MN AF Pascucci, I. Edwards, S. Heyer, M. Rigliaco, E. Hillenbrand, L. Gorti, U. Hollenbach, D. Simon, M. N. TI NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; ISM: clouds; ISM: individual objects (Taurus); ISM: kinematics and dynamics; stars: formation; stars: kinematics and dynamics ID MAIN-SEQUENCE EVOLUTION; LARGE-SCALE STRUCTURE; FORMING REGIONS; DISK EVOLUTION; YOUNG STARS; MAGNETOSPHERIC ACCRETION; CHAMELEON I; V773 TAURI; MILKY-WAY; AURIGA AB We present a detailed analysis of narrow Na I and K I absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na I lambda 5889.95 line is detected toward all but one source, while the weaker K I lambda 7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na I and CO detections and peak centroids demonstrates that the atomic gas. and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na I radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na I and K I absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud-cloud interactions. C1 [Pascucci, I.; Simon, M. N.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Edwards, S.] Smith Coll, Coll Astron Dept 2, Northampton, MA 01063 USA. [Heyer, M.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Rigliaco, E.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Hillenbrand, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Gorti, U.; Hollenbach, D.] SETI Inst, Mountain View, CA 94043 USA. [Gorti, U.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pascucci, I (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM pascucci@lpl.arizona.edu FU NSF Astronomy & Astrophysics Research Grant [1312962] FX The authors thank D. E. Welty for providing the high-resolution optical spectra toward HD 27778 and J. L. Pineda for sharing the Herschel spectra. I.P. would like to thank T. Koskinen and P. Lavvas for stimulating discussions on giant exoplanet atmospheres and L. Hartmann and T. Megeath for helpful discussions on star formation processes. This work was partially supported by an NSF Astronomy & Astrophysics Research Grant (ID: 1312962). NR 69 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 14 DI 10.1088/0004-637X/814/1/14 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200014 ER PT J AU Sutton, AD Roberts, TP Middleton, MJ AF Sutton, Andrew D. Roberts, Timothy P. Middleton, Matthew J. TI X-RAY SPECTRAL RESIDUALS IN NGC 5408 X-1: DIFFUSE EMISSION FROM STAR FORMATION, OR THE SIGNATURE OF A SUPER-EDDINGTON WIND? SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; X-rays: binaries ID HOLMBERG IX X-1; BLACK-HOLE; XMM-NEWTON; ULTRALUMINOUS STATE; NEARBY GALAXIES; RADIO-EMISSION; ORBITAL PERIOD; BROAD-BAND; II X-1; ACCRETION AB If ultraluminous X-ray sources (ULXs) are powered by accretion onto stellar remnant black holes, then many must be accreting at super-Eddington rates. It is predicted that such high accretion rates should give rise to massive, radiatively driven winds. However, observational evidence of a wind, in the form of absorption or emission features, has remained elusive. As such, the reported detection of X-ray spectral residuals in XMM-Newton spectra of NGC 5408 X-1, which could be related to absorption in a wind is potentially very exciting. However, it has previously been assumed by several authors that these features simply originate from background diffuse plasma emission related to star formation in the ULX's host galaxy. In this work we utilize the spatial resolving power of Chandra to test whether we can rule out this latter interpretation. We demonstrate that the majority of the luminosity in these spectral features is emitted from a highly localized region close to the ULX, and appears point-like even with Chandra. It is therefore highly likely that the spectral features are associated with the ULX itself, and little of the flux in this spectral component originates from spatially extended emission in the host galaxy. This may be consistent with the suggestion of absorption in an optically thin phase of a super-Eddington wind. Alternatively, we could be seeing emission from collisionally ionized material close to the black hole, but critically this would be difficult to reconcile with models where the source inclination largely determines the observed X-ray spectral and timing properties. C1 [Sutton, Andrew D.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, Huntsville, AL 35812 USA. [Sutton, Andrew D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Roberts, Timothy P.] Univ Durham, Dept Phys, Ctr Extragalact Astron, Durham DH1 3LE, England. [Middleton, Matthew J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP Sutton, AD (reprint author), NASA, George C Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA. EM andrew.d.sutton@nasa.gov FU Science and Technology Facilities Council [ST/K000861/1, ST/L00075X/1]; NASA; ERC [340442] FX We thank Douglas Swartz for useful suggestions and discussion. A.D.S. and T.P.R. acknowledge funding from the Science and Technology Facilities Council as part of the consolidated grants ST/K000861/1 and ST/L00075X/1. A.D.S. also acknowledges funding through a NASA Post-doctoral Program appointment at Marshall Space Flight Center, administered by Oak Ridge Associated Universities on behalf of NASA. M.J.M. appreciates support from ERC grant 340442. NR 52 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 73 DI 10.1088/0004-637X/814/1/73 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200073 ER PT J AU Teng, SH Rigby, JR Stern, D Ptak, A Alexander, DM Bauer, FE Boggs, SE Brandt, WN Christensen, FE Comastri, A Craig, WW Farrah, D Gandhi, P Hailey, CJ Harrison, FA Hickox, RC Koss, M Luo, B Treister, E Zhang, WW AF Teng, Stacy H. Rigby, Jane R. Stern, Daniel Ptak, Andrew Alexander, D. M. Bauer, Franz E. Boggs, Stephen E. Brandt, W. Niel Christensen, Finn E. Comastri, Andrea Craig, William W. Farrah, Duncan Gandhi, Poshak Hailey, Charles J. Harrison, Fiona A. Hickox, Ryan C. Koss, Michael Luo, Bin Treister, Ezequiel Zhang, William W. TI A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; X-RAY-EMISSION; STAR-FORMING GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; ABSORPTION-LINE QUASAR; COMPTON-THICK AGN; IRAS 1-JY SAMPLE; XMM-NEWTON; OPTICAL SPECTROSCOPY; SEYFERT-GALAXIES AB We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120-5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS. 05189-2524 and Mrk. 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2-10 keV to bolometric luminosity, and unabsorbed 2-10 keV to mid-IR [O IV] line luminosity than do Seyfert 1 galaxies. We identify IRAS. 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk. 231. We speculate that the X-ray weakness of IRAS. 08572+ 3915 is related to its powerful outflow observed at other wavelengths. C1 [Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew; Zhang, William W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Teng, Stacy H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Teng, Stacy H.] Inst Def Analyses, Div Sci & Technol, Alexandria, VA 22311 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, Stephen E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, W. Niel; Luo, Bin] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. Niel; Luo, Bin] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Comastri, Andrea] INAF Osservatorio Astronom Bologna, I-40127 Bologna, Italy. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Farrah, Duncan] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Gandhi, Poshak] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hickox, Ryan C.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Koss, Michael] ETH, Dept Phys, Inst Astron, CH-8093 Zurich, Switzerland. [Treister, Ezequiel] Univ Concepcion, Dept Astron, Concepcion, Chile. RP Teng, SH (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RI Boggs, Steven/E-4170-2015 OI Boggs, Steven/0000-0001-9567-4224 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ESA; USA (NASA); NASA; NASA XMM-Newton [AO-12, 72261]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; FONDECYT [1120061]; CONICYT [ACT1101] FX We thank Lee Armus who provided useful comments in the early planning phase of the NuSTAR ULIRG program. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). The scientific results reported in this article are based in part on observations made by the Chandra X-ray Observatory and data obtained from the Chandra Data Archive published previously in cited articles. This work, in part, made use of observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). We made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, Caltech, under contract with NASA. S.H.T. was supported by a NASA Postdoctoral Program Fellowship. Partial funding for this research was provided by a NASA XMM-Newton AO-12 Grant award associated with proposal number 72261. Support for the work of E.T. was provided by the Center of Excellence in Astrophysics and Associated Technologies (PFB 06), by the FONDECYT regular grant 1120061 and by the CONICYT Anillo project ACT1101. NR 112 TC 9 Z9 9 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2015 VL 814 IS 1 AR 56 DI 10.1088/0004-637X/814/1/56 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW9HQ UT WOS:000365310200056 ER PT J AU De Rosa, RJ Nielsen, EL Blunt, SC Graham, JR Konopacky, QM Marois, C Pueyo, L Rameau, J Ryan, DM Wang, JJ Bailey, V Chontos, A Fabrycky, DC Follette, KB Macintosh, B Marchis, F Ammons, SM Arriaga, P Chilcote, JK Cotten, TH Doyon, R Duchene, G Esposito, TM Fitzgerald, MP Gerard, B Goodsell, SJ Greenbaum, AZ Hibon, P Ingraham, P Johnson-Groh, M Kalas, PG Lafreniere, D Maire, J Metchev, S Millar-Blanchaer, MA Morzinski, KM Oppenheimer, R Patel, RI Patience, JL Perrin, MD Rajan, A Rantakyro, FT Ruffio, JB Schneider, AC Sivaramakrishnan, A Song, I Tran, D Vasisht, G Ward-Duong, K Wolff, SG AF De Rosa, Robert J. Nielsen, Eric L. Blunt, Sarah C. Graham, James R. Konopacky, Quinn M. Marois, Christian Pueyo, Laurent Rameau, Julien Ryan, Dominic M. Wang, Jason J. Bailey, Vanessa Chontos, Ashley Fabrycky, Daniel C. Follette, Katherine B. Macintosh, Bruce Marchis, Franck Ammons, S. Mark Arriaga, Pauline Chilcote, Jeffrey K. Cotten, Tara H. Doyon, Rene Duchene, Gaspard Esposito, Thomas M. Fitzgerald, Michael P. Gerard, Benjamin Goodsell, Stephen J. Greenbaum, Alexandra Z. Hibon, Pascale Ingraham, Patrick Johnson-Groh, Mara Kalas, Paul G. Lafreniere, David Maire, Jerome Metchev, Stanimir Millar-Blanchaer, Maxwell A. Morzinski, Katie M. Oppenheimer, Rebecca Patel, Rahul I. Patience, Jennifer L. Perrin, Marshall D. Rajan, Abhijith Rantakyroe, Fredrik T. Ruffio, Jean-Baptiste Schneider, Adam C. Sivaramakrishnan, Anand Song, Inseok Tran, Debby Vasisht, Gautam Ward-Duong, Kimberly Wolff, Schuyler G. TI ASTROMETRIC CONFIRMATION AND PRELIMINARY ORBITAL PARAMETERS OF THE YOUNG EXOPLANET 51 ERIDANI b WITH THE GEMINI PLANET IMAGER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; planets and satellites: detection; stars: individual (51 Eri) ID BETA-PICTORIS B; FINDING CAMPAIGN; EXTRASOLAR PLANETS; SOLAR NEIGHBORHOOD; MOVING GROUP; 1ST LIGHT; BINARY; STARS; COMPANIONS; DISCOVERY AB We present new Gemini Planet Imager observations of the young exoplanet 51. Eridani. b that provide further evidence that the companion is physically associated with 51. Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51. Eridani. b is an unbound foreground or background T-dwarf in a chance alignment with 51. Eridani to 2 x 10(-7), an order of magnitude lower than previously reported. If 51. Eridani. b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis of 14(-3)(+7) AU, corresponding to a period of 41(-12)(+35) years (assuming a mass of 1.75 M-circle dot for the central star), and an inclination of 138(-13)(+15) deg. The remaining orbital elements are only marginally constrained by the current measurements. These preliminary values suggest an orbit that does not share the same inclination as the orbit of the distant M-dwarf binary, GJ. 3305, which is a wide physically bound companion to 51. Eridani. C1 [De Rosa, Robert J.; Graham, James R.; Ryan, Dominic M.; Wang, Jason J.; Duchene, Gaspard; Esposito, Thomas M.; Kalas, Paul G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nielsen, Eric L.; Blunt, Sarah C.; Marchis, Franck] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Nielsen, Eric L.; Bailey, Vanessa; Chontos, Ashley; Follette, Katherine B.; Macintosh, Bruce; Ruffio, Jean-Baptiste] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Blunt, Sarah C.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Konopacky, Quinn M.; Tran, Debby] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Marois, Christian] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Marois, Christian; Gerard, Benjamin; Johnson-Groh, Mara] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. [Pueyo, Laurent; Perrin, Marshall D.; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Rameau, Julien; Doyon, Rene; Lafreniere, David] Univ Montreal, Dept Phys, Inst Rech Exoplanetes, Montreal, PQ H3C 3J7, Canada. [Fabrycky, Daniel C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Arriaga, Pauline; Fitzgerald, Michael P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Chilcote, Jeffrey K.; Maire, Jerome; Millar-Blanchaer, Maxwell A.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Cotten, Tara H.; Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Duchene, Gaspard] Univ Grenoble Alpes, CNRS, Inst Plantol & Astrophys Grenoble, F-38000 Grenoble, France. [Goodsell, Stephen J.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Goodsell, Stephen J.] Gemini Observ, Hilo, HI 96720 USA. [Greenbaum, Alexandra Z.; Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hibon, Pascale; Rantakyroe, Fredrik T.] Gemini Observ, La Serena, Chile. [Ingraham, Patrick] Large Synopt Survey Telescope, Tucson, AZ 85719 USA. [Metchev, Stanimir] Univ Western Ontario, Dept Phys & Astron, Ctr Planetary Sci & Explorat, London, ON N6A 3K7, Canada. [Metchev, Stanimir; Patel, Rahul I.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11790 USA. [Morzinski, Katie M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Oppenheimer, Rebecca] Amer Museum Nat Hist, New York, NY 10024 USA. [Patience, Jennifer L.; Rajan, Abhijith; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Schneider, Adam C.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Vasisht, Gautam] CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. RP De Rosa, RJ (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. OI Oppenheimer, Rebecca/0000-0001-7130-7681; Nielsen, Eric/0000-0001-6975-9056; Perrin, Marshall/0000-0002-3191-8151; Morzinski, Katie/0000-0002-1384-0063; De Rosa, Robert/0000-0002-4918-0247; Fitzgerald, Michael/0000-0002-0176-8973; Wang, Jason/0000-0003-0774-6502; Greenbaum, Alexandra/0000-0002-7162-8036; Bailey, Vanessa/0000-0002-5407-2806; Fabrycky, Daniel/0000-0003-3750-0183 FU NSF [AST-0909188, AST-1313718, AST-1411868, AST-141378, NNX11AF74G, DGE-1232825]; NASA [NNX15AD95G/NEXSS, NNX11AD21G, NNX14AJ80G]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Sciences and Engineering Research Council of Canada; JPL Research and Technology Grant FX Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Supported by NSF grants AST-0909188 and AST-1313718 (R. J.D.R., J.R.G., J.J.W., T.M.E., P.G.K.), AST-1411868 (B.M., K.F., J.L.P., A.R., K.W.D.), AST-141378 (P.A., G.D., M.P.F.), NNX11AF74G (A.Z.G., A.S.), and DGE-1232825 (A.Z.G.). Supported by NASA grants NNX15AD95G/NEXSS and NNX11AD21G (R.J.D.R., J.R.G., J.J.W., T.M.E., P.G.K.), and NNX14AJ80G (E.L.N., S.C.B., B.M., F.M., M.P.). J.R., R.D. and D.L. acknowledge support from the Fonds de Recherche du Quebec. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (SMA). B.G. and M.J.G. acknowledge support from the National Sciences and Engineering Research Council of Canada. G.V. acknowledges a JPL Research and Technology Grant for improvements to the GPI CAL system. NR 39 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2015 VL 814 IS 1 AR L3 DI 10.1088/2041-8205/814/1/L3 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5KX UT WOS:000365035400003 ER PT J AU Jun, HD Stern, D Graham, MJ Djorgovski, SG Mainzer, A Cutri, RM Drake, AJ Mahabal, AA AF Jun, Hyunsung D. Stern, Daniel Graham, Matthew J. Djorgovski, S. G. Mainzer, Amy Cutri, Roc M. Drake, Andrew J. Mahabal, Ashish A. TI INFRARED TIME LAGS FOR THE PERIODIC QUASAR PG 1302-102 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; quasars: individual (PG 1302-102) ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLE; BROAD-LINE REGION; REVERBERATION MEASUREMENTS; SEYFERT-GALAXIES; TRANSIENT SURVEY; BRIGHT QUASARS; INNER RADIUS; DUST TORUS; MISSION AB The optical light curve of the quasar PG 1302-102 at z = 0.278 shows a strong, smooth 5.2 year periodic signal, detectable over a period of similar to 20 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within similar to 10(5) years due to gravitational wave emission alone. Here, we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from WISE and Akari, we confirm that the periodic behavior reported in the optical light curve from Graham et al. is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and 4.6 mu m time lags of (2219 +/- 153, 2408 +/- 148) days for a near face-on orientation of the torus, or (4103 +/- 153, 4292 +/- 148) days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared light curves and the light-travel time of the accretion disk photons to reach the dust glowing regions support that a source within the accretion disk is responsible for the optical variability of PG 1302-102, echoed at the farther out dusty regions. The implied distance of this dusty, assumed toroidal region is similar to 1.5 pc for a near face-on geometry or similar to 1.1 pc for the relativistic Doppler-boosted case. C1 [Jun, Hyunsung D.; Stern, Daniel; Mainzer, Amy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Mahabal, Ashish A.] CALTECH, Pasadena, CA 91125 USA. [Cutri, Roc M.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. RP Jun, HD (reprint author), NASA, Washington, DC 20546 USA. EM hyunsung.jun@jpl.nasa.gov OI Cutri, Roc/0000-0002-0077-2305 FU National Aeronautics and Space Administration; NSF [AST-1313422, AST-1413600]; NASA through ADAP [12-ADAP12-0109] FX We thank the anonymous referee for the comments that greatly improved the paper, as well as Daniel D'Orazio, Moshe Elitzur, Saavik Ford, Zoltan Haiman, Barry McKernan, and Robert Nikutta for helpful discussions. This research was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. NEOWISE is funded by the National Aeronautics and Space Administration. CRTS was supported by the NSF grants AST-1313422 and AST-1413600. D.S. acknowledges support from NASA through ADAP award 12-ADAP12-0109. NR 43 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2015 VL 814 IS 1 AR L12 DI 10.1088/2041-8205/814/1/L12 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5KX UT WOS:000365035400012 ER PT J AU Rigby, JR Bayliss, MB Gladders, MD Sharon, K Wuyts, E Dahle, H Johnson, T Pena-Guerrero, M AF Rigby, J. R. Bayliss, M. B. Gladders, M. D. Sharon, K. Wuyts, E. Dahle, H. Johnson, T. Pena-Guerrero, M. TI C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: star formation; gravitational lensing: strong; techniques: spectroscopic ID LYMAN BREAK GALAXIES; SIMILAR-TO 7; WOLF-RAYET GALAXIES; LY-ALPHA EMISSION; LENSED GALAXIES; HIGH-REDSHIFT; REIONIZATION; Z=1.7; YOUNG; METALLICITY AB We measure [C III] 1907, C III] 1909 angstrom emission lines in 11 gravitationally lensed star-forming galaxies at z similar to 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C III] emitters, C III] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths < -5 angstrom. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies. C1 [Rigby, J. R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Bayliss, M. B.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bayliss, M. B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gladders, M. D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gladders, M. D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sharon, K.; Johnson, T.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Wuyts, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Dahle, H.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Pena-Guerrero, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Rigby, JR (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. OI Johnson, Traci/0000-0002-8829-5303 FU NASA [NAS 5-26555]; Research Council of Norway FX This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This Letter includes observations made with the NASA/ESA Hubble Space Telescope and with the International Ultraviolet Explorer, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. J.R. thanks the "First Carnegie Symposium in honor of Leonard Searle." We thank G. Sonneborn and S. Heap for advice regarding IUE spectra. H.D. acknowledges support from the Research Council of Norway. NR 35 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2015 VL 814 IS 1 AR L6 DI 10.1088/2041-8205/814/1/L6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5KX UT WOS:000365035400006 ER PT J AU Suzuki, K Kamimura, A Hooker, SB AF Suzuki, Koji Kamimura, Akiko Hooker, Stanford B. TI Rapid and highly sensitive analysis of chlorophylls and carotenoids from marine phytoplankton using ultra-high performance liquid chromatography (UHPLC) with the first derivative spectrum chromatogram (FDSC) technique SO MARINE CHEMISTRY LA English DT Article DE Algal pigments; Chlorophylls; Carotenoids; Marine phytoplankton; Ultra-high performance liquid chromatography (UHPLC); First derivative spectrum chromatogram (FDSC) ID SUB-ARCTIC PACIFIC; ALGAL PIGMENTS; HPLC METHOD; BERING-SEA; IN-SITU; IDENTIFICATION; PRESSURE; COLUMN; TEMPERATURE; OCEAN AB We developed a rapid and highly sensitive analytical method for chlorophylls and carotenoids derived from marine phytoplankton using ultra-high performance liquid chromatography (UHPLC). High-performance liquid chromatography (HPLC) has been widely used in phytoplanlcton pigment analysis since the 1980s for estimating the abundance, composition, and photosynthetic physiology of natural algal assemblages or laboratory cultures. However, the run-time of the HPLC analyses is generally ca. 30 min or more, which is time-consuming for analysts. Our UHPLC technique enabled us to complete the separations of chlorophylls and carotenoids from marine phytoplankton within 7 min with similar resolution as conventional HPLC methods. The analytical method was tested on authentic pigment standards, marine phytoplankton cultures, and field samples that were collected from the central tropical and subarctic Pacific plus the neritic Bering Sea. Critical pigment pairs that generally co-eluted as a single peak were successively resolved by obtaining the first derivative spectrum chromatograms (FDSCs) with a photodiode array (PDA) detector based on differences in pigment absorption spectra, e.g., chlorophyll (Chl) c(2) and Mg 2,4 divinyl (DV) pheoporphyrin a(5) monomethyl ester (MgDVP), as well as DVChl b and Chl b. Because the maximum injection volume of UHPLC is generally lower than that of HPLC to minimize the unwanted broadening of chromatographic peaks, the detection sensitivity needed to be increased, especially for oligotrophic seawater samples with low pigment concentration. To overcome this sensitivity issue, a PDA detector equipped with an 85 mm path length capillary cell was used with a fluorescence detector. As a result, the limit of quantitation (LOQ) as determined by absorbance was of the order of 0.1 ng for chlorophylls and carotenoids. Furthermore, a bead-beating technique using N,N-dimethylformamide (DMF) and zirconia beads was utilized to minimize the volume of the organic solvent used for pigment extraction. Our UHPLC method can replace the conventional HPLC techniques, and allows us to yield high-throughput data of the chlorophylls and carotenoids derived from marine phytoplankton. (C) 2015 Elsevier B.V. All rights reserved. C1 [Suzuki, Koji; Kamimura, Akiko] Hokkaido Univ, Fac Environm Earth Sci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Suzuki, Koji; Kamimura, Akiko] Japan Sci & Technol Agcy, CREST, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Hooker, Stanford B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Suzuki, K (reprint author), Hokkaido Univ, Fac Environm Earth Sci, Kita Ku, North 10 West 5, Sapporo, Hokkaido 0600810, Japan. EM kojis@ees.hokudai.ac.jp RI Suzuki, Koji/A-4349-2013; Hooker, Stanford/E-2162-2012 OI Suzuki, Koji/0000-0001-5354-1044; FU Japan Aerospace Exploration Agency (JAXA) [GCOM-C1 RA 4]; Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; [22681004]; [22221001] FX The present study was conducted as part of the project "Development of simulation techniques to nowcast the biodiversity of marine phytoplankton" in the CREST program "Establishment of core technology for the preservation of marine diversity and ecosystems" of the Japan Science and Technology Agency (JST). In addition, this study was partly supported by the GCOM-C1 RA 4 of Japan Aerospace Exploration Agency (JAXA), the Grant-in-Aid for Scientific Research on Innovative Areas (#22681004), Scientific Research (S) (#22221001) and the project "The study of Kuroshio ecosystem dynamics for sustainable management" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We wish to thank Dr. H. Endo and Ms. N. Araki for their help in the field and laboratory. Prof. S. Taguchi and Dr. T. Fujiki are acknowledged for the NEPCC culture. We thank Prof. A. Tanaka for the DVChl b standard. Two anonymous referees are also acknowledged for their constructive comments and helpful suggestions on the manuscript. NR 73 TC 2 Z9 2 U1 25 U2 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4203 EI 1872-7581 J9 MAR CHEM JI Mar. Chem. PD NOV 20 PY 2015 VL 176 BP 96 EP 109 DI 10.1016/j.marchem.2015.07.010 PG 14 WC Chemistry, Multidisciplinary; Oceanography SC Chemistry; Oceanography GA CV4UP UT WOS:000364262300009 ER PT J AU Brehm, C Barad, MF Housman, JA Kiris, CC AF Brehm, Christoph Barad, Michael F. Housman, Jeffrey A. Kiris, Cetin C. TI A comparison of higher-order finite-difference shock capturing schemes SO COMPUTERS & FLUIDS LA English DT Article DE Higher order; Shock capturing; Finite difference; WENO; Localized artificial diffusivity; Artificial dissipation ID ESSENTIALLY NONOSCILLATORY SCHEMES; DECAYING COMPRESSIBLE TURBULENCE; DIRECT NUMERICAL-SIMULATION; LARGE-EDDY SIMULATION; EFFICIENT IMPLEMENTATION; FLOWS; RESOLUTION AB The efficiency of computational fluid dynamics simulations can be greatly enhanced by employing higher-order accurate numerical schemes which provide superior accuracy for a given cost. For unsteady turbulent flow simulations involving shocks, contacts, and/or material discontinuities, various higher-order shock capturing schemes are available in the literature. The desired numerical scheme should be free of spurious numerical oscillations across discontinuities and it should obtain higher-order accuracy in smooth flow regions in an efficient manner. Sufficient robustness is necessary for effectively utilizing these numerical methods in engineering and science applications. Three classes of higher-order shock capturing schemes are compared in this paper: (1) central finite-difference schemes with explicit artificial dissipation, (2) a compact centered finite-difference scheme with localized artificial diffusivity and (3) weighted essentially non-oscillatory schemes in both explicit and compact finite difference forms. Multiple variations of these methods were implemented and tested using a block-structured Cartesian mesh solver. The current paper assesses shock capturing capabilities as well as effects on the accuracy in smooth flow regions using a variety of test cases that range from canonical shock problems to homogeneous isotropic turbulence at a turbulent Mach number of 0.5 where shocklets are formed. Finally, a computational cost breakdown for each scheme is provided and the overall computational efficiency of the different schemes are compared to each other. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Brehm, Christoph; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.] NASA Ames Res Ctr, Sci & Technol Corp, Moffett Field, CA 94035 USA. RP Brehm, C (reprint author), NASA Ames Res Ctr, Sci & Technol Corp, Moffett Field, CA 94035 USA. EM christoph.brehm@nasa.gov NR 49 TC 4 Z9 4 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD NOV 20 PY 2015 VL 122 BP 184 EP 208 DI 10.1016/j.compfluid.2015.08.023 PG 25 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA CU8XU UT WOS:000363828200014 ER PT J AU Haskins, JB Bauschlicher, CW Lawson, JW AF Haskins, Justin B. Bauschlicher, Charles W., Jr. Lawson, John W. TI Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID BIS(TRIFLUOROMETHANESULFONYL) IMIDE ANION; MOLECULAR-DYNAMICS SIMULATIONS; TOTAL-ENERGY CALCULATIONS; POLARIZABLE FORCE-FIELDS; AUGMENTED-WAVE METHOD; MOLTEN-SALTS; DFT CALCULATIONS; BASIS-SET; ELECTROLYTES; BATTERIES AB Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li+ oft the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpytroliditium bis(trifluoromethanesulfonyl)-imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)-imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li+ solvation shell through DFT computations Of [Li(Anion)(n)]((n-1)-) clusters, DFT-MD simulations of isolated Li+ in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI]) whereas solvation shells with four anions dominate in [EMIM] [BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li-(Anion)(n)]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DPT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the heat systems. C1 [Lawson, John W.] NASA, Ames Res Ctr, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA. [Haskins, Justin B.] NASA, Ames Res Ctr, Thermal Protect Mat Branch, AMA Inc, Moffett Field, CA 94035 USA. [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Entry Syst & Technol Div, Moffett Field, CA 94035 USA. [Lawson, John W.] NASA, Ames Res Ctr, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA. RP Lawson, JW (reprint author), NASA, Ames Res Ctr, Thermal Protect Mat Branch, Mail Stop 234-1, Moffett Field, CA 94035 USA. EM john.w.lawson@nasa.gov FU NASA Aeronautics Research Institute Seedling program FX This work was supported by funding from the NASA Aeronautics Research Institute Seedling program. NR 68 TC 5 Z9 5 U1 19 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 19 PY 2015 VL 119 IS 46 BP 14705 EP 14719 DI 10.1021/acs.jpcb.5b06951 PG 15 WC Chemistry, Physical SC Chemistry GA CX1NP UT WOS:000365463200014 PM 26505208 ER PT J AU Everitt, CWF Parmley, R Taber, M Bencze, W Burns, K Frank, D Kolodziejczak, J Mester, J Muhlfelder, B Murray, D Reynolds, G Till, W Vassar, R AF Everitt, C. W. F. Parmley, R. Taber, M. Bencze, W. Burns, K. Frank, D. Kolodziejczak, J. Mester, J. Muhlfelder, B. Murray, D. Reynolds, G. Till, W. Vassar, R. TI Gravity Probe B cryogenic payload SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE GP-B; cryogenic payload; gyroscope; spacecraft; NASA; Stanford; Gravity Probe B AB This paper gives a detailed account of the Gravity Probe B cryogenic payload comprised of a unique Dewar and Probe. The design, fabrication, assembly, and ground and on-orbit performance will be discussed, culminating in a 17 month 9 day on-orbit liquid helium lifetime. C1 [Everitt, C. W. F.; Taber, M.; Bencze, W.; Mester, J.; Muhlfelder, B.; Murray, D.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Parmley, R.; Burns, K.; Frank, D.; Reynolds, G.; Vassar, R.] Lockheed Martin Corp, Sunnyvale, CA 94089 USA. [Kolodziejczak, J.; Till, W.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35808 USA. RP Everitt, CWF (reprint author), Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM francis@relgyro.stanford.edu NR 8 TC 6 Z9 6 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD NOV 19 PY 2015 VL 32 IS 22 AR 224009 DI 10.1088/0264-9381/32/22/224009 PG 39 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CW9TG UT WOS:000365340500010 ER PT J AU Everitt, CWF Muhlfelder, B DeBra, DB Parkinson, BW Turneaure, JP Silbergleit, AS Acworth, EB Adams, M Adler, R Bencze, WJ Berberian, JE Bernier, RJ Bower, KA Brumley, RW Buchman, S Burns, K Clarke, B Conklin, JW Eglington, ML Green, G Gutt, G Gwo, DH Hanuschak, G He, X Heifetz, MI Hipkins, DN Holmes, TJ Kahn, RA Keiser, GM Kozaczuk, JA Langenstein, T Li, J Lipa, JA Lockhart, JM Luo, M Mandel, I Marcelja, F Mester, JC Ndili, A Ohshima, Y Overduin, J Salomon, M Santiago, DI Shestople, P Solomonik, VG Stahl, K Taber, M Van Patten, RA Wang, S Wade, JR Worden, PW Bartel, N Herman, L Lebach, DE Ratner, M Ransom, RR Shapiro, II Small, H Stroozas, B Geveden, R Goebel, JH Horack, J Kolodziejczak, J Lyons, AJ Olivier, J Peters, P Smith, M Till, W Wooten, L Reeve, W Anderson, M Bennett, NR Burns, K Dougherty, H Dulgov, P Frank, D Huff, LW Katz, R Kirschenbaum, J Mason, G Murray, D Parmley, R Ratner, MI Reynolds, G Rittmuller, P Schweiger, PF Shehata, S Triebes, K VandenBeukel, J Vassar, R Al-Saud, T Al-Jadaan, A Al-Jibreen, H Al-Meshari, M Al-Suwaidan, B AF Everitt, C. W. F. Muhlfelder, B. DeBra, D. B. Parkinson, B. W. Turneaure, J. P. Silbergleit, A. S. Acworth, E. B. Adams, M. Adler, R. Bencze, W. J. Berberian, J. E. Bernier, R. J. Bower, K. A. Brumley, R. W. Buchman, S. Burns, K. Clarke, B. Conklin, J. W. Eglington, M. L. Green, G. Gutt, G. Gwo, D. H. Hanuschak, G. He, X. Heifetz, M. I. Hipkins, D. N. Holmes, T. J. Kahn, R. A. Keiser, G. M. Kozaczuk, J. A. Langenstein, T. Li, J. Lipa, J. A. Lockhart, J. M. Luo, M. Mandel, I. Marcelja, F. Mester, J. C. Ndili, A. Ohshima, Y. Overduin, J. Salomon, M. Santiago, D. I. Shestople, P. Solomonik, V. G. Stahl, K. Taber, M. Van Patten, R. A. Wang, S. Wade, J. R. Worden, P. W., Jr. Bartel, N. Herman, L. Lebach, D. E. Ratner, M. Ransom, R. R. Shapiro, I. I. Small, H. Stroozas, B. Geveden, R. Goebel, J. H. Horack, J. Kolodziejczak, J. Lyons, A. J. Olivier, J. Peters, P. Smith, M. Till, W. Wooten, L. Reeve, W. Anderson, M. Bennett, N. R. Burns, K. Dougherty, H. Dulgov, P. Frank, D. Huff, L. W. Katz, R. Kirschenbaum, J. Mason, G. Murray, D. Parmley, R. Ratner, M. I. Reynolds, G. Rittmuller, P. Schweiger, P. F. Shehata, S. Triebes, K. VandenBeukel, J. Vassar, R. Al-Saud, T. Al-Jadaan, A. Al-Jibreen, H. Al-Meshari, M. Al-Suwaidan, B. TI The Gravity Probe B test of general relativity SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE Gravity Probe B; general relativity; gyroscope; cryogenic; space; geodetic; frame-dragging AB The Gravity Probe B mission provided two new quantitative tests of Einstein's theory of gravity, general relativity (GR), by cryogenic gyroscopes in Earth's orbit. Data from four gyroscopes gave a geodetic drift-rate of -6601.8 +/- 18.3 marc-s yr(-1) and a frame-dragging of -37.2 +/- 7.2 marcs yr(-1), to be compared with GR predictions of -6606.1 and -39.2 marcs yr(-1) (1 marc-s = 4.848 x 10(-9) radians). The present paper introduces the science, engineering, data analysis, and heritage of Gravity Probe B, detailed in the accompanying 20 CQG papers. C1 [Everitt, C. W. F.; Muhlfelder, B.; DeBra, D. B.; Parkinson, B. W.; Turneaure, J. P.; Silbergleit, A. S.; Acworth, E. B.; Adams, M.; Adler, R.; Bencze, W. J.; Berberian, J. E.; Bernier, R. J.; Bower, K. A.; Brumley, R. W.; Buchman, S.; Burns, K.; Clarke, B.; Conklin, J. W.; Eglington, M. L.; Green, G.; Gutt, G.; Gwo, D. H.; Hanuschak, G.; He, X.; Heifetz, M. I.; Hipkins, D. N.; Holmes, T. J.; Kahn, R. A.; Keiser, G. M.; Kozaczuk, J. A.; Langenstein, T.; Li, J.; Lipa, J. A.; Lockhart, J. M.; Luo, M.; Mandel, I.; Marcelja, F.; Mester, J. C.; Ndili, A.; Ohshima, Y.; Overduin, J.; Salomon, M.; Santiago, D. I.; Shestople, P.; Solomonik, V. G.; Stahl, K.; Taber, M.; Van Patten, R. A.; Wang, S.; Wade, J. R.; Worden, P. W., Jr.] Stanford Univ, Stanford, CA 94305 USA. [Geveden, R.; Horack, J.; Kolodziejczak, J.; Lyons, A. J.; Olivier, J.; Peters, P.; Till, W.; Wooten, L.] NASA, George C Marshall Space Flight Ctr, New York, NY USA. [Goebel, J. H.; Smith, M.] NASA, Ames Space Flight Ctr, New York, NY USA. [Reeve, W.; Anderson, M.; Bennett, N. R.; Burns, K.; Dougherty, H.; Dulgov, P.; Frank, D.; Huff, L. W.; Katz, R.; Kirschenbaum, J.; Mason, G.; Murray, D.; Parmley, R.; Ratner, M. I.; Reynolds, G.; Rittmuller, P.; Schweiger, P. F.; Shehata, S.; Triebes, K.; VandenBeukel, J.; Vassar, R.] Lockheed Martin, Bethesda, MD USA. [Al-Saud, T.; Al-Jadaan, A.; Al-Jibreen, H.; Al-Meshari, M.; Al-Suwaidan, B.] King Abdulaziz City Sci & Technol, Riyadh, Saudi Arabia. RP Everitt, CWF (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM francis@relgyro.stanford.edu; barry@relgyro.stanford.edu; ddebra@stanford.edu; thegpsbrad@gmail.com; johnturn@stanford.edu; alex.gleit@gmail.com; acworth@gmail.com; mea172@gmail.com; gyroron@gmail.com; wbencze@apple.com; john_berberian@hotmail.com; robert.j.bernier@gmail.com; bower@relgyro.stanford.edu; brums@relgyro.stanford.edu; sbuchman@stanford.edu; kevin.m.burns@lmco.com; bruce.d.clarke@nasa.gov; jwconklin@ufl.edu; mike.eglington@gmail.com; gaylordg@att.net; gregory.gutt@gmail.com; gwoggg@gmail.com; gzh@stanfordalumni.org; hexiaoxia@gmail.com; mish_hei@yahoo.com; dhipkins@relgyro.stanford.edu; tholmes.contex@gmail.com; rakahn@stanford.edu; mac@relgyro.stanford.edu; kozaczuk@stanford.edu; tom.langenstein@stanford.edu; jie_qing88@yahoo.com; jlipa@stanford.edu; jmlock@sfsu.edu; ming94305@yahoo.com; ilyamandel@chgk.info; franem@gmail.com; jmester@aui.edu; awele@relgyro.stanford.edu; y-ohshima@cb.jp.nec.com; james.overduin@gmail.com; michael.salomon@cleanhorizon.com; davitivan@gmail.com; pshestople@yahoo.com; vova@vsofts.com; stahl.karl@gmail.com; mtaberca@comcast.net; rkvanpat@att.net; suwen@stanford.edu; jrw@stanford.edu; pworden@stanford.edu; bartel@yorku.ca; louherman@aol.com; dlebach@gmail.com; michaeli.ratner@gmail.com; RRansom@okanagan.bc.ca; ishapiro@cfa.harvard.edu; huntsmall@comcast.net; bretts@relgyro.stanford.edu; Rex.D.Geveden@teledyne.com; drjhgoebel@gmail.com; John.Horack@tbe.com; kolodz@nasa.gov; tony.lyons@nasa.gov; JROLIVIER1@aol.com; Palmer.Peters@nasa.gov; msmith@arc.nasa.gov; billnmar@charter.net; lewis.wooten@nasa.gov; billreeve@yahoo.com; mark.anderson@lmco.com; normanrbennett@gmail.com; kevin.m.burns@lmco.com; hugh.dougherty@lmco.com; paul.j.dulgov@lmco.com; dave.frank@lmco.com; lynn.huff@lmco.com; russell.katz@lmco.com; jon.kirschenbaum@lmco.com; gary.e.mason@lmco.com; cooperred@aol.com; rtparmley@comcast.net; mratner@cfa.harvard.edu; wayside4@gmail.com; phillip.a.rittmuller@lmco.com; paul.schweiger@lmco.com; shawky.shehata@lmco.com; jeff.vanden.beukel@lmco.com; rhvassar@gmail.com; talsaud@kacst.edu.sa; aljadaan@stanford.edu; hjibreen@stanford.edu; meshari@kacst.edu.sa; bswauidan@kacst.edu.sa RI Horack, John/J-6670-2016; OI Mandel, Ilya/0000-0002-6134-8946 NR 40 TC 13 Z9 13 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD NOV 19 PY 2015 VL 32 IS 22 AR 224001 DI 10.1088/0264-9381/32/22/224001 PG 29 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CW9TG UT WOS:000365340500002 ER PT J AU Wang, SW Lipa, JA Gwo, DH Triebes, K Turneaure, JP Farley, RP Davidson, D Bower, KA Acworth, EB Bernier, RJ Huff, LW Schweiger, PF Goebel, JH AF Wang, Suwen Lipa, J. A. Gwo, D-H Triebes, K. Turneaure, J. P. Farley, R. P. Davidson, D. Bower, K. A. Acworth, E. B. Bernier, R. J. Huff, L. W. Schweiger, P. F. Goebel, J. H. TI The design and performance of the Gravity Probe B telescope SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE GP-B; telescope; star tracking; cryogenic; precision pointing; general relativity AB The Gravity Probe B spacecraft was launched on 20 April 2004 to measure the geodetic and frame-dragging effects predicted by the theory of general relativity. A cryogenic optical telescope was used to establish the inertial reference frame for the measurements by tracking a reference or guide star. The motion of this star was independently checked by reference to background galaxies. With the mission now over, we describe the design, construction and evaluation of the optical and electrical performance of the telescope, comparing ground and flight results. We find that the pointing noise was sufficiently low to meet the mission requirements and in fair agreement with extrapolations from ground tests. Due to slight defocusing, the linear range of the telescope output was significantly wider than expected. C1 [Wang, Suwen; Lipa, J. A.; Gwo, D-H; Turneaure, J. P.; Bower, K. A.; Acworth, E. B.; Bernier, R. J.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Triebes, K.; Farley, R. P.; Huff, L. W.; Schweiger, P. F.] Lockheed Martin Missiles & Space, Palo Alto, CA USA. [Triebes, K.; Goebel, J. H.] NASA, Ames Res Ctr, Space Projects Div, Mountain View, CA USA. [Davidson, D.] Davidson Optron Inc, West Covina, CA USA. RP Wang, SW (reprint author), Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM suwen.meister@gmail.com FU NASA [NAS8-39225] FX We are grateful to the entire GP-B team for its support of the telescope development task. We appreciate the effort of T Pope in the design and testing of the optical system and M Sullivan for design support. We thank F Chilese for his work on windows development. We thank R Kirschman for his early work in developing the cryogenic readout concept. We thank P Ehrensberger, R Wolcott, R Cliff, H Demroff, and K Coleman for their efforts in the development of the telescope electronics. We thank D Clark and K Cumbermack for cryogenic test support. We thank G Henry and M Ratner for useful advice and support with ground observations of the guide star. This work was supported by NASA contract number NAS8-39225. NR 32 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD NOV 19 PY 2015 VL 32 IS 22 AR 224008 DI 10.1088/0264-9381/32/22/224008 PG 34 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CW9TG UT WOS:000365340500009 ER PT J AU Myneni, K Smith, DD Chang, H Luckay, HA AF Myneni, Krishna Smith, David D. Chang, Hongrok Luckay, H. A. TI Temperature sensitivity of the cavity scale factor enhancement for a Gaussian absorption resonance SO PHYSICAL REVIEW A LA English DT Article ID VAPOR; DENSITY; LASER AB We derive analytic expressions for the on-resonant cavity scale factor enhancement dependence on temperature, S-0(T), for an intracavity medium with a Gaussian absorption resonance. Results are expressed as functions of the cavity parameters and the two resonance parameters: alpha(0)(T), the peak absorption coefficient, and Gamma(R)(alpha)(T), the resonance width. A semiempirical model is developed for the temperature-dependent absorption coefficient, alpha(F)(Delta, T), in an alkali-metal-atom vapor cell, and is used to compare the predicted behavior of alpha(0)(T) and Gamma(R)(alpha)(T) with the measured values for the D-2 F = 2 -> F' resonance in Rb-87, over the temperature range 298-325 K. Measurements of S-0(T) in a low-finesse ring cavity, using the same vapor cell as the intracavity dispersive medium, were performed and found to be in agreement with the temperature-dependent behavior predicted by our theory, with quantitative agreement to 2 K for the critical temperature. The practical range of S-0 is found to be limited by the achievable temperature stability of the resonance parameters of the dispersive medium. C1 [Myneni, Krishna] US Army Aviat & Missile Res Dev & Engn Ctr, Redstone Arsenal, AL 35898 USA. [Smith, David D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Chang, Hongrok] Miltec, Huntsville, AL 35806 USA. [Luckay, H. A.] Jacobs Technol, ESSSA Grp, Huntsville, AL 35812 USA. RP Myneni, K (reprint author), US Army Aviat & Missile Res Dev & Engn Ctr, Redstone Arsenal, AL 35898 USA. EM krishna.myneni.civ@mail.mil FU US Army AMRDEC Navigation Technologies Group; NASA Game Changing Development (GCD) Office, Fast-Light Optical Gyroscopes program FX K.M. and D.D.S. were supported by the US Army AMRDEC Navigation Technologies Group. D.D.S., H.C., and H.A.L. were supported by the NASA Game Changing Development (GCD) Office, Fast-Light Optical Gyroscopes program. We wish to thank Brian Grantham for a useful discussion on present-day gyroscope technology, and Dr. Shawn Pethel for a careful reading of the manuscript. NR 14 TC 3 Z9 3 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV 19 PY 2015 VL 92 IS 5 AR 053845 DI 10.1103/PhysRevA.92.053845 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CW4VW UT WOS:000364995700012 ER PT J AU Kuang, WJ Tangborn, A AF Kuang, Weijia Tangborn, Andrew TI Dynamic responses of the Earth's outer core to assimilation of observed geomagnetic secular variation SO PROGRESS IN EARTH AND PLANETARY SCIENCE LA English DT Article DE Geodynamo; Geomagnetic field; Secular variation; Core flow; Data assimilation ID NUMERICAL GEODYNAMO MODEL; MAGNETIC-FIELD; SURFACE OBSERVATIONS; MHD SYSTEM; SAC-C; CHAMP; FLOW AB Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L approximate to 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m >= 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in the future. C1 [Kuang, Weijia] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Tangborn, Andrew] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. RP Kuang, WJ (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM weijia.kuang-1@nasa.gov NR 44 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 2197-4284 J9 PROG EARTH PLANET SC JI Prog. Earth Planet. Sci. PD NOV 18 PY 2015 VL 2 AR UNSP 40 DI 10.1186/s40645-015-0071-4 PG 17 WC Geosciences, Multidisciplinary SC Geology GA DU0UL UT WOS:000381919900001 ER PT J AU Aguilar, M Aisa, D Alpat, B Alvino, A Ambrosi, G Andeen, K Arruda, L Attig, N Azzarello, P Bachlechner, A Barao, F Barrau, A Barrin, L Bartoloni, A Basara, L Battarbee, M Battiston, R Bazo, J Becker, U Behlmann, M Beischer, B Berdugo, J Bertucci, B Bindi, V Bizzaglia, S Bizzarri, M Boella, G de Boer, W Bollweg, K Bonnivard, V Borgia, B Borsini, S Boschini, MJ Bourquin, M Burger, J Cadoux, F Cai, XD Capell, M Caroff, S Casaus, J Castellini, G Cernuda, I Cerreta, D Cervelli, F Chae, MJ Chang, YH Chen, AI Chen, GM Chen, H Chen, HS Cheng, L Chou, HY Choumilov, E Choutko, V Chung, CH Clark, C Clavero, R Coignet, G Consolandi, C Contin, A Corti, C Gil, EC Coste, B Creus, W Crispoltoni, M Cui, Z Dai, YM Delgado, C Della Torre, S Demirkoz, MB Derome, L Di Falco, S Di Masso, L Dimiccoli, F Diaz, C von Doetinchem, P Donnini, F Duranti, M D'Urso, D Egorov, A Eline, A Eppling, FJ Eronen, T Fan, YY Farnesini, L Feng, J Fiandrini, E Fiasson, A Finch, E Fisher, P Formato, V Galaktionov, Y Gallucci, G Garcia, B Garcia-Lopez, R Gargiulo, C Gast, H Gebauer, I Gervasi, M Ghelfi, A Giovacchini, F Goglov, P Gong, J Goy, C Grabski, V Grandi, D Graziani, M Guandalini, C Guerri, I Guo, KH Haas, D Habiby, M Haino, S Han, KC He, ZH Heil, M Hoffman, J Huang, ZC Huh, C Incagli, M Ionica, M Jang, WY Jinchi, H Kanishev, K Kim, GN Kim, KS Kirn, T Korkmaz, MA Kossakowski, R Kounina, O Kounine, A Koutsenko, V Krafczyk, MS La Vacca, G Laudi, E Laurenti, G Lazzizzera, I Lebedev, A Lee, HT Lee, SC Leluc, C Li, HL Li, JQ Li, JQ Li, Q Li, Q Li, TX Li, W Li, Y Li, ZH Li, ZY Lim, S Lin, CH Lipari, P Lippert, T Liu, D Liu, H Liu, H Lolli, M Lomtadze, T Lu, MJ Lu, SQ Lu, YS Luebelsmeyer, K Luo, F Luo, JZ Lv, SS Majka, R Mana, C Marin, J Martin, T Martinez, G Masi, N Maurin, D Menchaca-Rocha, A Meng, Q Mo, DC Morescalchi, L Mott, P Muller, M Nelson, T Ni, JQ Nikonov, N Nozzoli, F Nunes, P Obermeier, A Oliva, A Orcinha, M Palmonari, F Palomares, C Paniccia, M Papi, A Pauluzzi, M Pedreschi, E Pensotti, S Pereira, R Picot-Clemente, N Pilo, F Piluso, A Pizzolotto, C Plyaskin, V Pohl, M Poireau, V Putze, A Quadrani, L Qi, XM Qin, X Qu, ZY Raiha, T Rancoita, PG Rapin, D Ricol, JS Rodriguez, I Rosier-Lees, S Rozhkov, A Rozza, D Sagdeev, R Sandweiss, J Saouter, P Schael, S Schmidt, SM von Dratzig, AS Schwering, G Scolieri, G Seo, ES Shan, BS Shan, YH Shi, JY Shi, XY Shi, YM Siedenburg, T Son, D Song, JW Spada, F Spinella, F Sun, W Sun, WH Tacconi, M Tang, CP Tang, XW Tang, ZC Tao, L Tescaro, D Ting, SCC Ting, SM Tomassetti, N Torsti, J Turkoglu, C Urban, T Vagelli, V Valente, E Vannini, C Valtonen, E Vaurynovich, S Vecchi, M Velasco, M Vialle, JP Vitale, V Vitillo, S Wang, LQ Wang, NH Wang, QL Wang, RS Wang, X Wang, ZX Weng, ZL Whitman, K Wienkenhover, J Willenbrock, M Wu, H Wu, X Xia, X Xie, M Xie, S Xiong, RQ Xu, NS Xu, W Yan, Q Yang, J Yang, M Yang, Y Ye, QH Yi, H Yu, YJ Yu, ZQ Zeissler, S Zhang, C Zhang, JH Zhang, MT Zhang, SD Zhang, SW Zhang, XB Zhang, Z Zheng, ZM Zhuang, HL Zhukov, V Zichichi, A Zimmermann, N Zuccon, P AF Aguilar, M. Aisa, D. Alpat, B. Alvino, A. Ambrosi, G. Andeen, K. Arruda, L. Attig, N. Azzarello, P. Bachlechner, A. Barao, F. Barrau, A. Barrin, L. Bartoloni, A. Basara, L. Battarbee, M. Battiston, R. Bazo, J. Becker, U. Behlmann, M. Beischer, B. Berdugo, J. Bertucci, B. Bindi, V. Bizzaglia, S. Bizzarri, M. Boella, G. de Boer, W. Bollweg, K. Bonnivard, V. Borgia, B. Borsini, S. Boschini, M. J. Bourquin, M. Burger, J. Cadoux, F. Cai, X. D. Capell, M. Caroff, S. Casaus, J. Castellini, G. Cernuda, I. Cerreta, D. Cervelli, F. Chae, M. J. Chang, Y. H. Chen, A. I. Chen, G. M. Chen, H. Chen, H. S. Cheng, L. Chou, H. Y. Choumilov, E. Choutko, V. Chung, C. H. Clark, C. Clavero, R. Coignet, G. Consolandi, C. Contin, A. Corti, C. Gil, E. Cortina Coste, B. Creus, W. Crispoltoni, M. Cui, Z. Dai, Y. M. Delgado, C. Della Torre, S. Demirkoz, M. B. Derome, L. Di Falco, S. Di Masso, L. Dimiccoli, F. Diaz, C. von Doetinchem, P. Donnini, F. Duranti, M. D'Urso, D. Egorov, A. Eline, A. Eppling, F. J. Eronen, T. Fan, Y. Y. Farnesini, L. Feng, J. Fiandrini, E. Fiasson, A. Finch, E. Fisher, P. Formato, V. Galaktionov, Y. Gallucci, G. Garcia, B. Garcia-Lopez, R. Gargiulo, C. Gast, H. Gebauer, I. Gervasi, M. Ghelfi, A. Giovacchini, F. Goglov, P. Gong, J. Goy, C. Grabski, V. Grandi, D. Graziani, M. Guandalini, C. Guerri, I. Guo, K. H. Haas, D. Habiby, M. Haino, S. Han, K. C. He, Z. H. Heil, M. Hsieh, T. H. Huang, Z. C. Huh, C. Incagli, M. Ionica, M. Jang, W. Y. Jinchi, H. Kanishev, K. Kim, G. N. Kim, K. S. Kirn, Th. Korkmaz, M. A. Kossakowski, R. Kounina, O. Kounine, A. Koutsenko, V. Krafczyk, M. S. La Vacca, G. Laudi, E. Laurenti, G. Lazzizzera, I. Lebedev, A. Lee, H. T. Lee, S. C. Leluc, C. Li, H. L. Li, J. Q. Li, J. Q. Li, Q. Li, Q. Li, T. X. Li, W. Li, Y. Li, Z. H. Li, Z. Y. Lim, S. Lin, C. H. Lipari, P. Lippert, T. Liu, D. Liu, H. Liu, Hu Lolli, M. Lomtadze, T. Lu, M. J. Lu, S. Q. Lu, Y. S. Luebelsmeyer, K. Luo, F. Luo, J. Z. Lv, S. S. Majka, R. Mana, C. Marin, J. Martin, T. Martinez, G. Masi, N. Maurin, D. Menchaca-Rocha, A. Meng, Q. Mo, D. C. Morescalchi, L. Mott, P. Mueller, M. Nelson, T. Ni, J. Q. Nikonov, N. Nozzoli, F. Nunes, P. Obermeier, A. Oliva, A. Orcinha, M. Palmonari, F. Palomares, C. Paniccia, M. Papi, A. Pauluzzi, M. Pedreschi, E. Pensotti, S. Pereira, R. Picot-Clemente, N. Pilo, F. Piluso, A. Pizzolotto, C. Plyaskin, V. Pohl, M. Poireau, V. Putze, A. Quadrani, L. Qi, X. M. Qin, X. Qu, Z. Y. Raeihae, T. Rancoita, P. G. Rapin, D. Ricol, J. S. Rodriguez, I. Rosier-Lees, S. Rozhkov, A. Rozza, D. Sagdeev, R. Sandweiss, J. Saouter, P. Schael, S. Schmidt, S. M. von Dratzig, A. Schulz Schwering, G. Scolieri, G. Seo, E. S. Shan, B. S. Shan, Y. H. Shi, J. Y. Shi, X. Y. Shi, Y. M. Siedenburg, T. Son, D. Song, J. W. Spada, F. Spinella, F. Sun, W. Sun, W. H. Tacconi, M. Tang, C. P. Tang, X. W. Tang, Z. C. Tao, L. Tescaro, D. Ting, Samuel C. C. Ting, S. M. Tomassetti, N. Torsti, J. Tuerkoglu, C. Urban, T. Vagelli, V. Valente, E. Vannini, C. Valtonen, E. Vaurynovich, S. Vecchi, M. Velasco, M. Vialle, J. P. Vitale, V. Vitillo, S. Wang, L. Q. Wang, N. H. Wang, Q. L. Wang, R. S. Wang, X. Wang, Z. X. Weng, Z. L. Whitman, K. Wienkenhoever, J. Willenbrock, M. Wu, H. Wu, X. Xia, X. Xie, M. Xie, S. Xiong, R. Q. Xu, N. S. Xu, W. Yan, Q. Yang, J. Yang, M. Yang, Y. Ye, Q. H. Yi, H. Yu, Y. J. Yu, Z. Q. Zeissler, S. Zhang, C. Zhang, J. H. Zhang, M. T. Zhang, S. D. Zhang, S. W. Zhang, X. B. Zhang, Z. Zheng, Z. M. Zhuang, H. L. Zhukov, V. Zichichi, A. Zimmermann, N. Zuccon, P. CA AMS Collaboration TI Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERACTION CROSS-SECTIONS; NEAR-EARTH ORBIT; ISOTOPIC COMPOSITION; BESS SPECTROMETER; LIGHT-NUCLEI; GEV-C; SPECTRA; PROTON; AMS-02; TEV AB Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detailed variation with rigidity of the helium flux spectral index is presented for the first time. The spectral index progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law. C1 [Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Mueller, M.; Obermeier, A.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, Inst Phys, D-52056 Aachen, Germany. [Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Mueller, M.; Obermeier, A.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, JARA FAME, D-52056 Aachen, Germany. [Demirkoz, M. B.; Korkmaz, M. A.; Tuerkoglu, C.] METU, Dept Phys, TR-06800 Ankara, Turkey. [Caroff, S.; Coignet, G.; Feng, J.; Fiasson, A.; Goy, C.; Kossakowski, R.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Caroff, S.; Coignet, G.; Feng, J.; Fiasson, A.; Goy, C.; Kossakowski, R.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] Univ Savoie Mont Blanc, F-74941 Annecy Le Vieux, France. [Li, W.; Shan, B. S.; Shan, Y. H.; Zheng, Z. M.] Beihang Univ BUAA, Beijing 100191, Peoples R China. [Dai, Y. M.; Wang, Q. L.; Yu, Y. J.] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Chen, G. M.; Chen, H. S.; Li, Z. H.; Lu, Y. S.; Tang, X. W.; Tang, Z. C.; Yang, M.; Yu, Z. Q.; Zhang, C.; Zhang, S. W.; Zhuang, H. L.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Contin, A.; Guandalini, C.; Laurenti, G.; Lolli, M.; Zichichi, A.] INFN Sez Bologna, I-40126 Bologna, Italy. [Contin, A.; Zichichi, A.] Univ Bologna, I-40126 Bologna, Italy. [Bachlechner, A.; Becker, U.; Behlmann, M.; Burger, J.; Cai, X. D.; Capell, M.; Chen, A. I.; Chen, H.; Choumilov, E.; Choutko, V.; Consolandi, C.; Contin, A.; Egorov, A.; Eline, A.; Eppling, F. J.; Fisher, P.; Galaktionov, Y.; Goglov, P.; Heil, M.; Hsieh, T. H.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Lebedev, A.; Li, J. Q.; Li, Q.; Plyaskin, V.; Rozhkov, A.; Shi, X. Y.; Sun, W.; Sun, W. H.; Ting, Samuel C. C.; Ting, S. M.; Vaurynovich, S.; Wang, X.; Weng, Z. L.; Willenbrock, M.; Xie, M.; Xu, W.; Yan, Q.; Zhang, S. D.; Zuccon, P.] MIT, Cambridge, MA 02139 USA. [Chang, Y. H.; Chou, H. Y.; Creus, W.] Natl Cent Univ, Chungli 32054, Tao Yuan, Taiwan. [Sagdeev, R.] Univ Maryland, East West Ctr Space Sci, College Pk, MD 20742 USA. [Picot-Clemente, N.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Huh, C.; Jang, W. Y.; Kim, G. N.; Kim, K. S.; Lim, S.; Son, D.] Kyungpook Natl Univ, CHEP, Taegu 702701, South Korea. [Castellini, G.] CNR IROE, I-50125 Florence, Italy. [Barrin, L.; Coste, B.; Formato, V.; Gargiulo, C.; Kanishev, K.; Tacconi, M.] European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland. [Azzarello, P.; Bourquin, M.; Cadoux, F.; Gil, E. Cortina; Haas, D.; Habiby, M.; Leluc, C.; Li, Y.; Paniccia, M.; Pohl, M.; Rapin, D.; Saouter, P.; Vitillo, S.; Wu, X.] Univ Geneva, DPNC, CH-1211 Geneva 4, Switzerland. [Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.; Tomassetti, N.] Univ Grenoble Alpes, CNRS, IN2P3, LPSC, F-38026 Grenoble, France. [Feng, J.; Guo, K. H.; He, Z. H.; Huang, Z. C.; Li, T. X.; Li, Y.; Li, Z. Y.; Lu, S. Q.; Lv, S. S.; Mo, D. C.; Ni, J. Q.; Qi, X. M.; Tang, C. P.; Wang, Z. X.; Xu, N. S.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China. [Bindi, V.; Corti, C.; von Doetinchem, P.; Nelson, T.; Pereira, R.; Whitman, K.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] Jacobs Sverdrup, Houston, TX 77058 USA. [Attig, N.; Lippert, T.; Schmidt, S. M.] Julich Supercomp Ctr, D-52425 Julich, Germany. [Attig, N.; Lippert, T.; Schmidt, S. M.] Res Ctr Julich, JARA FAME, D-52425 Julich, Germany. [Andeen, K.; de Boer, W.; Gebauer, I.; Nikonov, N.; Vagelli, V.; Zeissler, S.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Clavero, R.; Garcia-Lopez, R.; Tescaro, D.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Spain. [Clavero, R.; Garcia-Lopez, R.; Tescaro, D.] Univ La Laguna, Dept Astrofis, E-38206 San Cristobal la Laguna, Tenerife, Spain. [Arruda, L.; Barao, F.; Nunes, P.; Orcinha, M.] LIP, Lab Instrumentacao Fis Expt Particulas, P-1000 Lisbon, Portugal. [Han, K. C.; Jinchi, H.] NCSIST, Taoyuan 325, Taiwan. [Aguilar, M.; Berdugo, J.; Casaus, J.; Cernuda, I.; Delgado, C.; Diaz, C.; Garcia, B.; Giovacchini, F.; Liu, Hu; Mana, C.; Marin, J.; Martinez, G.; Oliva, A.; Palomares, C.; Rodriguez, I.; Velasco, M.; Xia, X.] CIEMAT, E-28040 Madrid, Spain. [Grabski, V.; Menchaca-Rocha, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Boella, G.; Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; La Vacca, G.; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M.] INFN Sez Milano Bicocca, I-20126 Milan, Italy. [Boella, G.; Gervasi, M.; Pensotti, S.] Univ Milano Bicocca, I-20126 Milan, Italy. [Gong, J.; Li, J. Q.; Li, Q.; Liu, H.; Luo, J. Z.; Meng, Q.; Shi, J. Y.; Sun, W. H.; Wu, H.; Xiong, R. Q.; Yi, H.; Zhang, J. H.] Southeast Univ, Nanjing 210096, Jiangsu, Peoples R China. [Finch, E.; Majka, R.; Sandweiss, J.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Bazo, J.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Borsini, S.; Cerreta, D.; Crispoltoni, M.; Di Masso, L.; Donnini, F.; Duranti, M.; D'Urso, D.; Farnesini, L.; Fiandrini, E.; Formato, V.; Graziani, M.; Ionica, M.; Laudi, E.; Nozzoli, F.; Papi, A.; Pauluzzi, M.; Piluso, A.; Pizzolotto, C.; Qin, X.; Scolieri, G.; Vagelli, V.; Vitale, V.] INFN Sez Perugia, I-06100 Perugia, Italy. [Aisa, D.; Bertucci, B.; Bizzarri, M.; Cerreta, D.; Crispoltoni, M.; Di Masso, L.; Donnini, F.; Duranti, M.; Fiandrini, E.; Graziani, M.; Laudi, E.; Pauluzzi, M.; Piluso, A.] Univ Perugia, I-06100 Perugia, Italy. [Cervelli, F.; Di Falco, S.; Gallucci, G.; Guerri, I.; Incagli, M.; Lomtadze, T.; Morescalchi, L.; Pedreschi, E.; Pilo, F.; Spinella, F.; Vannini, C.] INFN Sez Pisa, I-56100 Pisa, Italy. [Guerri, I.] Univ Pisa, I-56100 Pisa, Italy. [Basara, L.; Battiston, R.; Coste, B.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.; Lu, M. J.] INFN TIFPA, I-38123 Trento, Italy. [Battiston, R.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.] Univ Trent, I-38123 Trento, Italy. [Bartoloni, A.; Borgia, B.; Lipari, P.; Spada, F.; Valente, E.] INFN Sez Roma, I-100185 Rome, Italy. [Borgia, B.; Valente, E.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Vecchi, M.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. [Chae, M. J.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Cheng, L.; Cui, Z.; Luo, F.; Song, J. W.; Wang, L. Q.; Wang, N. H.] Shandong Univ SDU, Jinan 250100, Shandong, Peoples R China. [Shi, Y. M.; Wang, R. S.; Xie, S.; Ye, Q. H.] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. [Yang, Y.] Natl Cheng Kung Univ, Tainan 701, Taiwan. [Lee, H. T.] ASGC, Taipei 11529, Taiwan. [Fan, Y. Y.; Feng, J.; Haino, S.; Lee, S. C.; Li, H. L.; Li, Z. Y.; Lin, C. H.; Liu, D.; Lu, S. Q.; Qu, Z. Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Battarbee, M.; Eronen, T.; Torsti, J.; Valtonen, E.] Univ Turku, Dept Phys & Astron, Space Res Lab, FI-20014 Turku, Finland. [Battiston, R.] ASI, I-00133 Rome, Italy. [D'Urso, D.; Nozzoli, F.; Pizzolotto, C.; Vitale, V.] ASDC, I-00133 Rome, Italy. [Fan, Y. Y.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. [Li, H. L.; Qin, X.; Xia, X.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Li, J. Q.; Li, Q.; Xie, M.; Zhang, S. D.] Harbin Inst Technol, Harbin 150001, Peoples R China. [Liu, Hu] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China. [Lu, M. J.] Univ Sci & Technol China, Anhua 230026, Peoples R China. [Morescalchi, L.] Univ Siena, I-53100 Siena, Italy. [Putze, A.] CNRS, Lab Annecy Le Vieux Phys Particules, LAPTh, F-74941 Annecy Le Vieux, France. [Qu, Z. Y.] Nankai Univ, Tianjin 300071, Peoples R China. [Shi, X. Y.] Beijing Normal Univ, Beijing 100875, Peoples R China. RP Aguilar, M (reprint author), CIEMAT, E-28040 Madrid, Spain. RI Pizzolotto, Cecilia/G-5821-2013; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Orcinha, Miguel/O-2362-2016; Ye, Qinghao/O-5630-2015; Demirkoz, Bilge/C-8179-2014; Palomares, Carmen/H-7783-2015; Vecchi, Manuela/J-9180-2014; Duranti, Matteo/I-7691-2013; Tomassetti, Nicola/K-2380-2016; Masi, Nicolo/G-7911-2016; Paniccia, Mercedes/A-4519-2017; Delgado, Carlos/K-7587-2014; OI Pizzolotto, Cecilia/0000-0003-0200-2408; Orcinha, Miguel/0000-0003-1874-2144; Palomares, Carmen/0000-0003-4374-9065; Duranti, Matteo/0000-0003-0980-6425; Tomassetti, Nicola/0000-0002-0856-9299; Masi, Nicolo/0000-0002-3729-7608; Paniccia, Mercedes/0000-0001-8482-2703; Delgado, Carlos/0000-0002-7014-4101; Ambrosi, Giovanni/0000-0001-6977-9559; LI, Qiang/0000-0002-2870-4101; Gallucci, Giovanni/0000-0003-3554-9733; Vagelli, Valerio/0000-0002-4495-9331; Basara, Laurent/0000-0002-5726-9954; Corti, Claudio/0000-0001-9127-7133; Morescalchi, Luca/0000-0002-7819-8139; Bertucci, Bruna/0000-0001-7584-293X; Graziani, Maura/0000-0001-7570-2048; Rancoita, Pier Giorgio/0000-0002-1990-4283; La Vacca, Giuseppe/0000-0002-2168-9447; Della Torre, Stefano/0000-0002-7669-0859; Seo, Eun-Suk/0000-0001-8682-805X FU Sao Paulo Research Foundation (FAPESP), Brazil [2014/19149-7, 2014/50747-8]; CAS, China; NSFC, China; MOST, China; National Laboratory for Aeronautics and Astronautics, China; provincial government of Shandong, China; provincial government of Jiangsu, China; provincial government of Guangdong, China; China Scholarship Council, China; Finnish Funding Agency for Innovation (Tekes), Finland [40361/01, 40518/03]; Academy of Finland, Finland [258963]; CNRS, France; IN2P3, France; CNES, France; Enigmass, France; ANR, France; JARA-HPC, Germany [JARA0052]; INFN, Italy; ASI under ASI-INFN Agreement, Italy [2013-002-R.0, 2014-037-R.0]; CHEP, Kyungpook National University, Korea [NRF-2009-0080142, NRF-2012-010226]; Ewha Womans University, Korea [NRF-2013-004883]; Consejo Nacional de Ciencia y Tecnologia at UNAM, Mexico; CIEMAT, Spain; IAC, Spain; SEIDI MINECO, Spain; CDTI, Spain; Centro Nacional de Fisica de Particulas, Astroparticulas y Nuclear, Spain; Swiss National Science Foundation (SNSF), Switzerland; Academia Sinica, Taiwan; Ministry of Science and Technology (MOST), Taiwan [103-2682-M-008-002, 103-2112-M-001-036]; Turkish Atomic Energy Authority at METU, Turkey; DLR, Germany FX We thank former NASA Administrator Daniel S. Goldin for his dedication to the legacy of the ISS as a scientific laboratory and his decision for NASA to fly the AMS as a DOE payload. We also acknowledge the continuous support of the NASA leadership including Charles Bolden, William H. Gerstenmaier, and Michael T. Suffredini and of the JSC and MSFC flight control teams which has allowed the AMS to operate optimally on the ISS for over four years. We are grateful for the support of Jim Siegrist and Michael Salamon of the DOE. We also acknowledge the continuous support from MIT and its School of Science, Michael Sipser, Marc Kastner, Ernest Moniz, and Richard Milner. We acknowledge the important contribution of P. Dennett. Research supported by Sao Paulo Research Foundation (FAPESP) Grants No. 2014/19149-7 and No. 2014/50747-8, Brazil; CAS, NSFC, MOST, National Laboratory for Aeronautics and Astronautics, the provincial governments of Shandong, Jiangsu, Guangdong, and the China Scholarship Council, China; the Finnish Funding Agency for Innovation (Tekes) Grants No. 40361/01 and No. 40518/03 and the Academy of Finland Grant No. 258963, Finland; CNRS, IN2P3, CNES, Enigmass, and the ANR, France; J. Trumper, J. D. Woerner, DLR, and JARA-HPC under Project No. JARA0052, Germany; INFN and ASI under ASI-INFN Agreements No. 2013-002-R.0 and No. 2014-037-R.0, Italy; Grants No. NRF-2009-0080142 and No. NRF-2012-010226 at CHEP, Kyungpook National University and No. NRF-2013-004883 at Ewha Womans University, Korea; the Consejo Nacional de Ciencia y Tecnologia at UNAM, Mexico; CIEMAT, IAC, SEIDI MINECO, CDTI, and Centro Nacional de Fisica de Particulas, Astroparticulas y Nuclear, Spain; the Swiss National Science Foundation (SNSF), federal and cantonal authorities, Switzerland; Academia Sinica and the Ministry of Science and Technology (MOST) under Grants No. 103-2682-M-008-002 and No. 103-2112-M-001-036, former President of Academia Sinica Yuan-Tseh Lee, and former Ministers of MOST Maw-KuenWu and Luo-Chuan Lee, Taiwan; and the Turkish Atomic Energy Authority at METU, Turkey. We gratefully acknowledge the strong support from CERN, including Rolf-Dieter Heuer, and from the European Space Agency. We are grateful for important discussions with Barry Barish, Jonathan Ellis, Jonathan Feng, Igor Moskalenko, Steve Olsen, George Smoot, Michael Turner, Steven Weinberg, Frank Wilczek, and Arnold Wolfendale. NR 76 TC 23 Z9 23 U1 14 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2015 VL 115 IS 21 AR 211101 DI 10.1103/PhysRevLett.115.211101 PG 9 WC Physics, Multidisciplinary SC Physics GA CW3RW UT WOS:000364910500002 PM 26636836 ER PT J AU Jakosky, BM Grebowsky, JM Luhmann, JG Brain, DA AF Jakosky, Bruce M. Grebowsky, Joseph M. Luhmann, Janet G. Brain, David A. TI Initial results from the MAVEN mission to Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN ATMOSPHERE; VENUS; EXPRESS; HISTORY AB The Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars orbiter has been gathering information on the Mars upper atmosphere, ionosphere, and solar and solar wind interactions since its orbit insertion in September 2014. MAVEN's science goals are to understand processes driving the escape of atmospheric gases to space at the present epoch, and their variations with solar and local heliospheric conditions together with geographical and seasonal influences. This introduction and the accompanying articles provide a selection of key results obtained up to the time of writing, including measurements of the overall geometry and variability of the Martian magnetosphere, upper atmosphere, and ionosphere and their responses to interplanetary coronal mass ejections and solar energetic particle influxes. The ultimate goal is to use these results to determine the integrated loss to space through time and its role in overall Mars atmosphere evolution. C1 [Jakosky, Bruce M.; Brain, David A.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Grebowsky, Joseph M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Luhmann, Janet G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Jakosky, BM (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM bruce.jakosky@lasp.colorado.edu NR 45 TC 16 Z9 16 U1 5 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8791 EP 8802 DI 10.1002/2015GL065271 PG 12 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800001 ER PT J AU Espley, JR DiBraccio, GA Connerney, JEP Brain, D Gruesbeck, J Soobiah, Y Halekas, J Combi, M Luhmann, J Ma, YJ Jia, Y Jakosky, B AF Espley, Jared R. DiBraccio, Gina A. Connerney, John E. P. Brain, David Gruesbeck, Jacob Soobiah, Yasir Halekas, Jasper Combi, Michael Luhmann, Janet Ma, Yingjuan Jia, Yingdong Jakosky, Bruce TI A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND INTERACTION; PILE-UP BOUNDARY; C/2013 A1; GLOBAL-SURVEYOR; PLASMA ENVIRONMENT; DUST; GIOTTO; ENCOUNTER; DYNAMICS; SHAPES AB The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective. C1 [Espley, Jared R.; DiBraccio, Gina A.; Connerney, John E. P.; Gruesbeck, Jacob; Soobiah, Yasir] NASA, Goddard Space Flight Ctr, Lab Planetary Magnetospheres, Greenbelt, MD 20771 USA. [Brain, David; Jakosky, Bruce] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Gruesbeck, Jacob; Soobiah, Yasir] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Halekas, Jasper] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. [Combi, Michael] Univ Michigan, Atmospher Oceanic & Space Sci Dept, Ann Arbor, MI USA. [Luhmann, Janet] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ma, Yingjuan; Jia, Yingdong] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. RP Espley, JR (reprint author), NASA, Goddard Space Flight Ctr, Lab Planetary Magnetospheres, Greenbelt, MD 20771 USA. EM Jared.Espley@NASA.gov RI Combi, Michael/J-1697-2012; Ma, Yingjuan/B-4895-2017; OI Combi, Michael/0000-0002-9805-0078; Ma, Yingjuan/0000-0003-2584-7091; Halekas, Jasper/0000-0001-5258-6128 FU NASA through the Mars Exploration Program; NASA FX The MAVEN project is supported by NASA through the Mars Exploration Program. DiBraccio was supported by a NASA Postdoctoral Program appointment at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. MAVEN data are publicly available through the Planetary Data System. The wavelet analysis software used in this work was based on software provided by C. Torrence and G. Compo and is available at http://paos.colorado.edu/research/wavelets/. The MAVEN spacecraft staff at Lockheed Martin worked diligently under stressful circumstances to make sure the data during the comet's closest approach were collected for the science team. Their efforts and sacrifices are sincerely appreciated. The authors sincerely thank the careful, thoughtful, and polite reviewers whose suggestions made the paper better. NR 47 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8810 EP 8818 DI 10.1002/2015GL066300 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800003 ER PT J AU Connerney, JEP Espley, JR DiBraccio, GA Gruesbeck, JR Oliversen, RJ Mitchell, DL Halekas, J Mazelle, C Brain, D Jakosky, BM AF Connerney, J. E. P. Espley, J. R. DiBraccio, G. A. Gruesbeck, J. R. Oliversen, R. J. Mitchell, D. L. Halekas, J. Mazelle, C. Brain, D. Jakosky, B. M. TI First results of the MAVEN magnetic field investigation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GLOBAL SURVEYOR OBSERVATIONS; MARTIAN SHOCK; MARS; UPSTREAM; WAVES; BOUNDARY; MAGNETOSPHERE; ESCAPE; REGION; VENUS AB Two Mars Atmosphere and Volatile EvolutioN magnetic field sensors sample the ambient magnetic field at the outer edge of each solar array. We characterized relatively minor spacecraft-generated magnetic fields using in-flight subsystem tests and spacecraft maneuvers. Dynamic spacecraft fields associated with the power subsystem (<= 1 nT) are compensated for using spacecraft engineering telemetry to identify active solar array circuits and monitor their electrical current production. Static spacecraft magnetic fields are monitored using spacecraft roll maneuvers. Accuracy of measurement of the environmental magnetic field is demonstrated by comparison with field directions deduced from the symmetry properties of the electron distribution function measured by the Solar Wind Electron Analyzer. We map the bow shock, magnetic pileup boundary, the V x B convection electric field and ubiquitous proton cyclotron, and 1 Hz waves in the ion foreshock region. C1 [Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.; Gruesbeck, J. R.; Oliversen, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gruesbeck, J. R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mitchell, D. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, IRAP, F-31062 Toulouse, France. [Brain, D.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Connerney, JEP (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jack.connerney@nasa.gov OI Halekas, Jasper/0000-0001-5258-6128 FU NASA FX This research was supported by a NASA Postdoctoral Program appointment (G. A. DiBraccio) at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and by the CNES for the part based on observations with the SWEA instrument embarked on Maven. We also gratefully acknowledge the support of project staff at GSFC and Lockheed Martin for contributions to the design and execution of in-flight maneuvers and subsystem tests required to characterize and mitigate spacecraft magnetic fields. Data used in this study are available at the planetary plasma interactions planetary data system node (http://ppi.pds.nasa.gov/project/maven/). NR 37 TC 9 Z9 8 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8819 EP 8827 DI 10.1002/2015GL065366 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800004 ER PT J AU DiBraccio, GA Espley, JR Gruesbeck, JR Connerney, JEP Brain, DA Halekas, JS Mitchell, DL McFadden, JP Harada, Y Livi, R Collinson, G Hara, T Mazelle, C Jakosky, BM AF DiBraccio, Gina A. Espley, Jared. R. Gruesbeck, Jacob R. Connerney, John E. P. Brain, David A. Halekas, Jasper S. Mitchell, David L. McFadden, James P. Harada, Yuki Livi, Roberto Collinson, Glyn Hara, Takuya Mazelle, Christian Jakosky, Bruce M. TI Magnetotail dynamics at Mars: Initial MAVEN observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETIC-FIELD; SOLAR-WIND; MARTIAN MAGNETOSPHERE; PLASMA OBSERVATIONS; ION-ACCELERATION; FLAPPING MOTION; CURRENT SHEET; VENUS; RECONNECTION; ESCAPE AB We report on the complex nature of the induced Martian magnetotail using simultaneous magnetic field and plasma measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Two case studies are analyzed from which we identify (1) repetitive loading and unloading of tail magnetic flux as the field magnitude changes dramatically, exhibiting signatures similar to substorm activity within intrinsic magnetospheres; (2) multiple current sheet crossings indicative of plasma sheet flapping; (3) tailward flowing high-energy planetary ions (O+ and O-2(+)), confined exclusively to the cross-tail current sheet, contributing to atmospheric escape; and (4) signatures of magnetic flux ropes, suggesting the occurrence of tail reconnection. These events illustrate the complexity of the Martian magnetotail as MAVEN provides key observations relevant to the unanswered questions of induced magnetosphere dynamics. C1 [DiBraccio, Gina A.; Espley, Jared. R.; Gruesbeck, Jacob R.; Connerney, John E. P.; Collinson, Glyn] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Gruesbeck, Jacob R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brain, David A.; Jakosky, Bruce M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Halekas, Jasper S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA USA. [Mitchell, David L.; McFadden, James P.; Harada, Yuki; Livi, Roberto; Hara, Takuya] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Collinson, Glyn] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Mazelle, Christian] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, Christian] Univ Toulouse 3, F-31062 Toulouse, France. RP DiBraccio, GA (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM gina.a.dibraccio@nasa.gov OI Halekas, Jasper/0000-0001-5258-6128 FU NASA FX The MAVEN project is supported by NASA through the Mars Exploration Program. MAVEN data are publicly available through the Planetary Data System. This research was supported by a NASA Postdoctoral Program appointment at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Observations with the SWEA instrument were supported by the Centre National d'Etudes Spatiales (CNES). NR 47 TC 8 Z9 8 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8828 EP 8837 DI 10.1002/2015GL065248 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800005 ER PT J AU Harada, Y Halekas, JS McFadden, JP Mitchell, DL Mazelle, C Connerney, JEP Espley, J Larson, DE Brain, DA Andersson, L DiBraccio, GA Collinson, GA Livi, R Hara, T Ruhunusiri, S Jakosky, BM AF Harada, Y. Halekas, J. S. McFadden, J. P. Mitchell, D. L. Mazelle, C. Connerney, J. E. P. Espley, J. Larson, D. E. Brain, D. A. Andersson, L. DiBraccio, G. A. Collinson, G. A. Livi, R. Hara, T. Ruhunusiri, S. Jakosky, B. M. TI Magnetic reconnection in the near-Mars magnetotail: MAVEN observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND; FLUX ROPES; FIELD; REGION; PLASMA; TAIL AB We report Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of electrons, ions, and magnetic fields which provide comprehensive demonstration of magnetic reconnection signatures in the Martian magnetotail. In the near-Mars tail current sheet at X-MSO similar to-1.3R(M), trapped electrons with two-sided loss cones were observed, indicating the closed magnetic field topology. In the closed field region, MAVEN observed Hall magnetic field signatures and Marsward bulk flows of H+, O+, and O-2(+) ions, which suggest the presence of X lines tailward from the spacecraft. Velocity distribution functions of the reconnection outflow ions exhibit counterstreaming beams separated along the current sheet normal, and their bulk velocities in the outflow direction inversely depend on ion mass. These characteristics are in qualitative agreement with previous multispecies kinetic simulations. The near-Mars magnetotail provides a unique environment for studying multi-ion reconnection. C1 [Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Larson, D. E.; Livi, R.; Hara, T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mazelle, C.] IRAP, CNRS, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. [Connerney, J. E. P.; Espley, J.; DiBraccio, G. A.; Collinson, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brain, D. A.; Andersson, L.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Harada, Y (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM haraday@ssl.berkeley.edu OI Halekas, Jasper/0000-0001-5258-6128 NR 39 TC 7 Z9 7 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8838 EP 8845 DI 10.1002/2015GL065004 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800006 ER PT J AU Rahmati, A Larson, DE Cravens, TE Lillis, RJ Dunn, PA Halekas, JS Connerney, JE Eparvier, FG Thiemann, EMB Jakosky, BM AF Rahmati, A. Larson, D. E. Cravens, T. E. Lillis, R. J. Dunn, P. A. Halekas, J. S. Connerney, J. E. Eparvier, F. G. Thiemann, E. M. B. Jakosky, B. M. TI MAVEN insights into oxygen pickup ions at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND; AQUEOUS SEDIMENTATION; CROSS-SECTIONS; ESCAPE; ATOMS; PRECIPITATION; DISTRIBUTIONS; SIMULATION; VICINITY; COMETS AB Since Mars Atmosphere and Volatile EvolutioN (MAVEN)'s arrival at Mars on 21 September 2014, the SEP (Solar Energetic Particle) instrument on board the MAVEN spacecraft has been detecting oxygen pickup ions with energies of a few tens of keV up to similar to 200 keV. These ions are created in the distant upstream part of the hot atomic oxygen exosphere of Mars, via photoionization, charge exchange with solar wind protons, and electron impact. Once ionized, atomic oxygen ions are picked up by the solar wind and accelerated downstream, reaching energies high enough for SEP to detect them. We model the flux of oxygen pickup ions observed by MAVEN SEP in the undisturbed upstream solar wind and compare our results with SEP's measurements. Model-data comparisons of SEP fluxes confirm that pickup oxygen associated with the Martian exospheric hot oxygen is indeed responsible for the MAVEN SEP observations. C1 [Rahmati, A.; Cravens, T. E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Larson, D. E.; Lillis, R. J.; Dunn, P. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Connerney, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eparvier, F. G.; Thiemann, E. M. B.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Cravens, TE (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. EM cravens@ku.edu RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; EPARVIER, FRANCIS/0000-0001-7143-2730; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNH10CC04C]; NASA through the Mars Exploration Program FX All data shown in the figures can be obtained from the corresponding author. MAVEN data are in the Planetary Data System. This work was supported by NASA grant NNH10CC04C to the University of Colorado and by subcontract to the University of Kansas. The MAVEN project is supported by NASA through the Mars Exploration Program. NR 36 TC 16 Z9 15 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8870 EP 8876 DI 10.1002/2015GL065262 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800010 ER PT J AU Steckiewicz, M Mazelle, C Garnier, P Andre, N Penou, E Beth, A Sauvaud, JA Toublanc, D Mitchell, DL McFadden, JP Luhmann, JG Lillis, RJ Connerney, JEP Espley, JR Andersson, L Halekas, JS Larson, DE Jakosky, BM AF Steckiewicz, M. Mazelle, C. Garnier, P. Andre, N. Penou, E. Beth, A. Sauvaud, J. -A. Toublanc, D. Mitchell, D. L. McFadden, J. P. Luhmann, J. G. Lillis, R. J. Connerney, J. E. P. Espley, J. R. Andersson, L. Halekas, J. S. Larson, D. E. Jakosky, B. M. TI Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CROSS-SECTIONS; MAGNETIC-FIELD; MARS; COLLISIONS; IONOSPHERE; PHOTONS; MOLECULES; OXYGEN AB The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft is providing new detailed observations of the Martian ionosphere thanks to its unique orbital coverage and instrument suite. During most periapsis passages on the nightside ionosphere suprathermal electron depletions were detected. A simple criterion was implemented to identify the 1742 depletions observed from 16 November 2014 to 28 February 2015. A statistical analysis reveals that the main ion and electron populations within the depletions are surprisingly constant in time and altitude. Absorption by CO2 is the main loss process for suprathermal electrons, and electrons that strongly peaked around 6 eV are resulting from this interaction. The observation of depletions appears however highly dependent on altitude. Depletions are mainly located above strong crustal magnetic sources above 170 km, whereas the depletions observed for the first time below 170 km are globally scattered onto the Martian surface with no particular dependence on crustal fields. C1 [Steckiewicz, M.; Mazelle, C.; Garnier, P.; Andre, N.; Penou, E.; Beth, A.; Sauvaud, J. -A.; Toublanc, D.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Steckiewicz, M.; Mazelle, C.; Garnier, P.; Andre, N.; Penou, E.; Beth, A.; Sauvaud, J. -A.; Toublanc, D.] CNRS, IRAP, Toulouse, France. [Mitchell, D. L.; McFadden, J. P.; Luhmann, J. G.; Lillis, R. J.; Larson, D. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Connerney, J. E. P.; Espley, J. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Andersson, L.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Steckiewicz, M (reprint author), Univ Toulouse, UPS OMP, IRAP, Toulouse, France. EM morgane.steckiewicz@irap.omp.eu RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Beth, Arnaud/0000-0002-5644-2022; Halekas, Jasper/0000-0001-5258-6128 FU NASA; MAVEN project FX This work was supported by the French space agency CNES for the part based on observations obtained with the SWEA instrument embarked on MAVEN. The MAVEN project is supported by NASA through the Mars Exploration Program. The authors acknowledge the support of the MAVEN project and particularly all the instrument and science teams for making the MAVEN mission such an outstanding success and providing us with high-quality data. We are also grateful to the CDPP/AMDA team (http://amda.cdpp.eu) and Emmanuel Penou for providing support with data analysis tools. MAVEN data are publicly available through the Planetary Data System. The authors thank Yasir Soobiah and an anonymous reviewer for their assistance in evaluating this paper. NR 20 TC 7 Z9 7 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8877 EP 8884 DI 10.1002/2015GL065257 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800011 ER PT J AU Vogt, MF Withers, P Mahaffy, PR Benna, M Elrod, MK Halekas, JS Connerney, JEP Espley, JR Mitchell, DL Mazelle, C Jakosky, BM AF Vogt, Marissa F. Withers, Paul Mahaffy, Paul R. Benna, Mehdi Elrod, Meredith K. Halekas, Jasper S. Connerney, John E. P. Espley, Jared R. Mitchell, David L. Mazelle, Christian Jakosky, Bruce M. TI Ionopause-like density gradients in the Martian ionosphere: A first look with MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARS-GLOBAL-SURVEYOR; PILE-UP BOUNDARY; SOLAR-WIND; BOW SHOCK; VENUS; SHAPES AB For unmagnetized planets, the top of the ionosphere is often marked by a sharp change in electron density and other plasma properties, called an ionopause. Here we present a statistical study of dayside ionopause-like density gradients observed in 54% of ion density profiles from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission spacecraft at Mars. Prior studies of the Martian ionopause have lacked simultaneous comprehensive measurements of plasma and magnetic field properties. Therefore, we use MAVEN observations of the electron density, magnetic field, and ion and electron energy spectra to study the factors that influence properties of the ionopause. On average, profiles with an ionopause are accompanied by a higher energy flux of protons at high altitudes and stronger magnetic field at low altitude than profiles without an ionopause. At altitudes above similar to 300 km, the O+/O-2(+) ratio is significantly larger for profiles with an ionopause than those without an ionopause. These findings enhance our understanding of this important plasma boundary at Mars. C1 [Vogt, Marissa F.; Withers, Paul] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Withers, Paul] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Halekas, Jasper S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mitchell, David L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mazelle, Christian] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, Christian] Univ Toulouse 3, F-31062 Toulouse, France. [Jakosky, Bruce M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Vogt, MF (reprint author), Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. EM marissav@ucla.edu RI Vogt, Marissa/C-6237-2014; Benna, Mehdi/F-3489-2012; OI Vogt, Marissa/0000-0003-4885-8615; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX13AO35G]; NASA FX M.V. gratefully acknowledges helpful discussion with Laila Andersson, David Andrews, David Brain, and Zachary Girazian, and invaluable assistance from Gina DiBraccio, Chris Fowler, and Davin Larson regarding the MAVEN IDL software. M.V. and P.W. were supported by NASA grant NNX13AO35G. We acknowledge two anonymous reviewers for their constructive comments. The MAVEN project is supported by NASA through the Mars Exploration Program. MAVEN data are available via the Planetary Plasma Interactions node of NASA's Planetary Data System at http://ppi.pds.nasa.gov/. This work was supported by CNES for the part based on observations with MAVEN SWEA. NR 25 TC 2 Z9 2 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8885 EP 8893 DI 10.1002/2015GL065269 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800012 ER PT J AU Halekas, JS Lillis, RJ Mitchell, DL Cravens, TE Mazelle, C Connerney, JEP Espley, JR Mahaffy, PR Benna, M Jakosky, BM Luhmann, JG McFadden, JP Larson, DE Harada, Y Ruhunusiri, S AF Halekas, J. S. Lillis, R. J. Mitchell, D. L. Cravens, T. E. Mazelle, C. Connerney, J. E. P. Espley, J. R. Mahaffy, P. R. Benna, M. Jakosky, B. M. Luhmann, J. G. McFadden, J. P. Larson, D. E. Harada, Y. Ruhunusiri, S. TI MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN UPPER-ATMOSPHERE; ENERGETIC NEUTRAL ATOMS; 1ST-ENA OBSERVATIONS; CHARGE-EXCHANGE; EXPRESS; VARIABILITY; ENAS AB Mars Atmosphere and Volatile EvolutioN mission (MAVEN) observes a tenuous but ubiquitous flux of protons with the same energy as the solar wind in the Martian atmosphere. During high flux intervals, we observe a corresponding negative hydrogen population. The correlation between penetrating and solar wind fluxes, the constant energy, and the lack of a corresponding charged population at intermediate altitudes implicate products of hydrogen energetic neutral atoms from charge exchange between the upstream solar wind and the exosphere. These atoms, previously observed in neutral form, penetrate the magnetosphere unaffected by electromagnetic fields (retaining the solar wind velocity), and some fraction reconvert to charged form through collisions with the atmosphere. MAVEN characterizes the energy and angular distributions of both penetrating and backscattered particles, potentially providing information about the solar wind, the hydrogen corona, and collisional interactions in the atmosphere. The accretion of solar wind hydrogen may provide an important source term to the Martian atmosphere over the planet's history. C1 [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Lillis, R. J.; Mitchell, D. L.; Luhmann, J. G.; McFadden, J. P.; Larson, D. E.; Harada, Y.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Cravens, T. E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Mazelle, C.] Inst Rech Astrophys & Planetol, Toulouse, France. [Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Benna, M.] Univ Maryland, CSST, Baltimore, MD 21201 USA. [Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Halekas, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM jasper-halekas@uiowa.edu RI Benna, Mehdi/F-3489-2012; Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Halekas, Jasper/0000-0001-5258-6128 NR 27 TC 15 Z9 15 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8901 EP 8909 DI 10.1002/2015GL064693 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800014 ER PT J AU Halekas, JS McFadden, JP Connerney, JEP Espley, JR Brain, DA Mitchell, DL Larson, DE Harada, Y Hara, T Ruhunusiri, S Jakosky, BM AF Halekas, J. S. McFadden, J. P. Connerney, J. E. P. Espley, J. R. Brain, D. A. Mitchell, D. L. Larson, D. E. Harada, Y. Hara, T. Ruhunusiri, S. Jakosky, B. M. TI Time-dispersed ion signatures observed in the Martian magnetosphere by MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PLASMA SHEET; MARS; ENERGIZATION; OSCILLATIONS; CLUSTERS AB Mars Atmosphere and Volatile EvolutioN mission's (MAVEN) high-cadence measurements reveal the frequent occurrence of ion energy dispersion events inside the Martian magnetosphere. The systematics of observed dispersion signatures suggest time dispersion of a broad source spectrum over a flight distance of a few thousand kilometers and disfavor mechanisms involving spatial dispersion. Pickup of heavy planetary ions in strong variable electric fields provides one potential mechanism that could produce the observed time dispersion signatures. The periodicity of many observed dispersion signatures, with frequencies near the upstream proton cyclotron frequency, suggests a possible role for low-frequency plasma waves in accelerating the observed ions from a source near the induced magnetospheric boundary to the observation location inside the magnetospheric tail lobes. The observed dispersion signatures may provide a new way to track the flow of energy from the upstream region through the magnetosphere and the role of waves in driving the escape of ions from the atmosphere. C1 [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [McFadden, J. P.; Mitchell, D. L.; Larson, D. E.; Harada, Y.; Hara, T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Espley, J. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Halekas, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM jasper-halekas@uiowa.edu OI Halekas, Jasper/0000-0001-5258-6128 NR 27 TC 9 Z9 9 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8910 EP 8916 DI 10.1002/2015GL064781 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800015 ER PT J AU Ruhunusiri, S Halekas, JS Connerney, JEP Espley, JR McFadden, JP Larson, DE Mitchell, DL Mazelle, C Jakosky, BM AF Ruhunusiri, Suranga Halekas, J. S. Connerney, J. E. P. Espley, J. R. McFadden, J. P. Larson, D. E. Mitchell, D. L. Mazelle, C. Jakosky, B. M. TI Low-frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETOSHEATH; MARS; SHOCK; OSCILLATIONS; IDENTIFICATION; MAGNETOPAUSE; FLUCTUATIONS; BOUNDARY AB We characterize low-frequency plasma waves in the Martian magnetosphere and in the upstream region by using transport ratios. To compute the transport ratios, we use Mars Atmosphere and Volatile EvolutioN mission's (MAVEN) solar wind ion analyzer and suprathermal and thermal ion composition instrument measurements of the ion moments and the magnetometer measurements of the magnetic field. We find that the Alfven waves are the most dominant wave mode in the upstream region and the magnetosheath. Fast waves are found frequently near the bow shock and the magnetic pileup boundary. Mirror and slow waves, on the other hand, occur much less frequently. We also find that the Alfven and fast wave occurrences vary dominantly near the bow shock in response to the solar wind dynamic pressure. C1 [Ruhunusiri, Suranga; Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Connerney, J. E. P.; Espley, J. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McFadden, J. P.; Larson, D. E.; Mitchell, D. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. [Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Ruhunusiri, S (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM suranga-ruhunusiri@uiowa.edu OI Halekas, Jasper/0000-0001-5258-6128 FU NASA; CNES FX This work was supported by NASA and was partially supported by the CNES. MAVEN data are publicly available through the Planetary Data System. NR 32 TC 8 Z9 7 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8917 EP 8924 DI 10.1002/2015GL064968 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800016 ER PT J AU Harada, Y Halekas, JS McFadden, JP Mitchell, DL Mazelle, C Connerney, JEP Espley, J Larson, DE Brain, DA DiBraccio, GA Curry, SM Hara, T Livi, R Ruhunusiri, S Jakosky, BM AF Harada, Y. Halekas, J. S. McFadden, J. P. Mitchell, D. L. Mazelle, C. Connerney, J. E. P. Espley, J. Larson, D. E. Brain, D. A. DiBraccio, G. A. Curry, S. M. Hara, T. Livi, R. Ruhunusiri, S. Jakosky, B. M. TI Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID VENUS EXPRESS OBSERVATIONS; SOLAR-WIND INTERACTION; MAGNETIC-FIELD; PLASMA ENVIRONMENT; HYBRID SIMULATION; ASYMMETRIES; IONOSPHERE AB We present Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of Marsward and tailward fluxes of suprathermal (>25 eV) ions in the near-Mars (similar to 1-1.5 Mars radii downstream) magnetotail. Statistical results show that the Marsward proton flux and magnetic field draping pattern are well organized by the upstream motional electric field direction. We observe both significant Marsward proton fluxes and tightly wrapped magnetic field lines in the hemisphere pointed in the opposite direction to the upstream electric field. These characteristics are very similar to those observed at Venus. On the other hand, the net flux of oxygen ions points tailward on average in the Martian tail, while net Venusward flows of oxygen ions were observed frequently in the same hemisphere at Venus. The mechanism by which the Marsward proton flux is produced in the presence of tailward oxygen ion flux remains unclear. C1 [Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Larson, D. E.; Curry, S. M.; Hara, T.; Livi, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. [Connerney, J. E. P.; Espley, J.; DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Harada, Y (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM haraday@ssl.berkeley.edu OI Halekas, Jasper/0000-0001-5258-6128 NR 35 TC 5 Z9 5 U1 3 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8925 EP 8932 DI 10.1002/2015GL065005 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800017 ER PT J AU Hara, T Mitchell, DL McFadden, JP Seki, K Brain, DA Halekas, JS Harada, Y Espley, JR DiBraccio, GA Connerney, JEP Andersson, L Mazelle, C Jakosky, BM AF Hara, Takuya Mitchell, David L. McFadden, James P. Seki, Kanako Brain, David A. Halekas, Jasper S. Harada, Yuki Espley, Jared R. DiBraccio, Gina A. Connerney, John E. P. Andersson, Lailla Mazelle, Christian Jakosky, Bruce M. TI Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND; RECONSTRUCTION; MAGNETOPAUSE; CLUSTER; ESCAPE AB Simultaneous Mars Atmosphere and Volatile EvolutioN mission (MAVEN) plasma and magnetic field observations reveal a detached magnetic flux rope in the Martian induced magnetosphere. The flux rope was identified by an increase in the magnetic field amplitude accompanied by smooth vector rotations. In addition, MAVEN observed a pronounced ion composition change across the structure, with solar wind ions dominating outside and planetary ions dominating within. Grad-Shafranov reconstruction is applied to determine the two-dimensional spatial structure of the flux rope. The event occurred near the dusk terminator, downstream from strong crustal magnetic fields. One possibility is that the flux rope was created by magnetic reconnection associated with interplanetary and/or crustal magnetic fields. A weak interplanetary coronal mass ejection (ICME) arrived at Mars a few hours before the event. A pressure pulse and turbulent magnetic fields due to the ICME might be responsible for driving magnetic reconnection to detach the flux rope from the crustal source. C1 [Hara, Takuya; Mitchell, David L.; McFadden, James P.; Harada, Yuki] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Seki, Kanako] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Brain, David A.; Andersson, Lailla] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Halekas, Jasper S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Espley, Jared R.; DiBraccio, Gina A.; Connerney, John E. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mazelle, Christian] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, Christian] Univ Toulouse 3, F-31062 Toulouse, France. RP Hara, T (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM hara@ssl.berkeley.edu OI Halekas, Jasper/0000-0001-5258-6128 NR 41 TC 4 Z9 4 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8933 EP 8941 DI 10.1002/2015GL065720 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800018 ER PT J AU Dong, Y Fang, X Brain, DA McFadden, JP Halekas, JS Connerney, JE Curry, SM Harada, Y Luhmann, JG Jakosky, BM AF Dong, Y. Fang, X. Brain, D. A. McFadden, J. P. Halekas, J. S. Connerney, J. E. Curry, S. M. Harada, Y. Luhmann, J. G. Jakosky, B. M. TI Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND INTERACTION; UPPER-ATMOSPHERE; EXPRESS; MODEL; SIMULATION; FIELDS; VENUS; BEAMS AB We present observations by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission of a substantial plume-like distribution of escaping ions from the Martian atmosphere, organized by the upstream solar wind convection electric field. From a case study of MAVEN particle-and-field data during one spacecraft orbit, we identified three escaping planetary ion populations: plume fluxes mainly along the upstream electric field over the north pole region of the Mars-Sun-Electric field (MSE) coordinate system, antisunward ion fluxes in the tail region, and much weaker upstream pickup ion fluxes. A statistical study of O+ fluxes using 3 month MAVEN data shows that the plume is a constant structure with strong fluxes widely distributed in the MSE northern hemisphere, which constitutes an important planetary ion escape channel. The escape rate through the plume is estimated to be similar to 30% of the tailward escape and similar to 23% of the total escape for > 25 eV O+ ions. C1 [Dong, Y.; Fang, X.; Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [McFadden, J. P.; Curry, S. M.; Harada, Y.; Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Connerney, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Dong, Y (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM yaxue.dong@lasp.colorado.edu RI Fang, Xiaohua/C-2773-2008; OI Fang, Xiaohua/0000-0002-6584-2837; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX11AN38G] FX The MAVEN project is supported by NASA through the Mars Exploration Program. This work was also supported by NASA grant NNX11AN38G. We are grateful to Kanako Seki, Kei Masunaga, and Takuya Hara for their helpful discussions. The MAVEN data are available through the Planetary Data System. NR 34 TC 15 Z9 15 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8942 EP 8950 DI 10.1002/2015GL065346 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800019 ER PT J AU Mahaffy, PR Benna, M Elrod, M Yelle, RV Bougher, SW Stone, SW Jakosky, BM AF Mahaffy, P. R. Benna, M. Elrod, M. Yelle, R. V. Bougher, S. W. Stone, S. W. Jakosky, B. M. TI Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN ATMOSPHERE AB The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures. The scale height temperatures are mapped over the course of the first few months of the mission from high down to midlatitudes. NGIMS measurements near the homopause of Ar-40/N-2 ratios agree with those reported by the Sample Analysis at Mars investigation and allow the altitude of the homopause for the most abundant gases to be established. C1 [Mahaffy, P. R.; Benna, M.; Elrod, M.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Benna, M.] Univ Maryland, CRESST, Baltimore, MD 21201 USA. [Elrod, M.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Yelle, R. V.; Stone, S. W.] Univ Arizona, Tucson, AZ USA. [Bougher, S. W.] Univ Michigan, Ann Arbor, MI 48109 USA. [Jakosky, B. M.] Univ Colorado, Boulder, CO 80309 USA. RP Mahaffy, PR (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Code 699, Greenbelt, MD 20771 USA. EM Paul.R.Mahaffy@nasa.gov RI Benna, Mehdi/F-3489-2012; Stone, Shane/C-4662-2017 OI Stone, Shane/0000-0002-7290-2412 FU MAVEN project; NASA's Science Mission Directorate FX The dedicated NGIMS operations and software team is acknowledged including Eric Raaen, Micah Johnson, Ed Weidner, Eric Lyness, Tiffany Naves, Tom Nolan, Kiran Patel, and Nick Dobson. The NGIMS data are available in a readily accessible format on the Planetary Data System. This investigation was supported by the MAVEN project and by NASA's Science Mission Directorate. NR 9 TC 21 Z9 21 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8951 EP 8957 DI 10.1002/2015GL065329 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800020 ER PT J AU Benna, M Mahaffy, PR Grebowsky, JM Fox, JL Yelle, RV Jakosky, BM AF Benna, M. Mahaffy, P. R. Grebowsky, J. M. Fox, J. L. Yelle, R. V. Jakosky, B. M. TI First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADIO OCCULTATION MEASUREMENTS; ELECTRON-DENSITY PROFILES; MARS ATMOSPHERE; TOPOGRAPHY; TOPSIDE AB We report the results of the observations of the ionosphere of Mars by the Neutral Gas and Ion Mass Spectrometer. These observations were conducted during the first 8 months of theMars Atmosphere and Volatile EvolutioN mission (MAVEN). These observations revealed the spatial and temporal structures in the density distributions of 22 ions: H-2(+), H-3(+), He+, O2+, C+, CH+, N+, NH+, O+, OH+, H2O+, H3O+, N-2(+)/CO+, HCO+/HOC+/N2H+, NO+, HNO+, O-2(+), HO2+, Ar+, ArH+, CO2+, and OCOH+. Dusk/dawn and day/night asymmetries in the density distributions were observed for nearly all ion species. Additionally, high-density fluctuations were detected on the nightside and may reflect the effect of the partial screening of the atmosphere of Mars by the weak intrinsic magnetic field of the planet. The two first MAVEN "deep dip" campaigns were used to investigate the location of the primary ion peak. This peak was detected at 190 km near the terminator but was below the spacecraft altitude of 130 km near the subsolar point. C1 [Benna, M.; Mahaffy, P. R.; Grebowsky, J. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Benna, M.] Univ Maryland, CSST, Baltimore, MD 21201 USA. [Fox, J. L.] Wright State Univ, Dept Phys, Dayton, OH 45435 USA. [Yelle, R. V.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Benna, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM mehdi.benna@nasa.gov RI Benna, Mehdi/F-3489-2012 FU NASA FX The MAVEN/NGIMS investigation was supported by NASA. Instrument testing and calibrations were completed at the Planetary Environments Laboratory of NASA's Goddard Space Flight Center. We are grateful for the engineering/technical support especially from E. Weidner, E. Lyness, T. Navas, M. Johnson (Instrument Operations), and E. Raaen and M. Elrod (Calibration). We also thank E. Zubritsky for her editing support. Information on NGIMS data processing supporting this article were in Benna et al. [2015]. The NGIMS data supporting this article are publicly available at the Planetary Data System (http://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/MAVE N/ngims.html). NR 33 TC 12 Z9 12 U1 4 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8958 EP 8965 DI 10.1002/2015GL066146 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800021 ER PT J AU Withers, P Vogt, M Mayyasi, M Mahaffy, P Benna, M Elrod, M Bougher, S Dong, CF Chaufray, JY Ma, YJ Jakosky, B AF Withers, Paul Vogt, Marissa Mayyasi, Majd Mahaffy, Paul Benna, Mehdi Elrod, Meredith Bougher, Stephen Dong, Chuanfei Chaufray, Jean-Yves Ma, Yingjuan Jakosky, Bruce TI Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN IONOSPHERE; UPPER-ATMOSPHERE; SOLAR-WIND; WATER; FIELD AB Prior to the arrival of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft at Mars, the only available measurements of the composition of the planet's ionosphere were those acquired by the two Viking Landers during their atmospheric entries. Many numerical models of the composition of the ionosphere of Mars have been developed, but these have only been validated for species, altitudes, and conditions for which Viking data exist. Here we compare the ionospheric composition and structure predicted by 10 ionospheric models at solar zenith angles of 45-60 degrees against ion density measurements acquired by the MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS). The most successful models included three-dimensional plasma transport driven by interactions with the surrounding space environment but had relatively simple ionospheric chemistry. C1 [Withers, Paul] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Withers, Paul; Vogt, Marissa; Mayyasi, Majd] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Bougher, Stephen; Dong, Chuanfei] Univ Michigan, Atmospher Ocean & Space Sci Dept, Ann Arbor, MI 48109 USA. [Chaufray, Jean-Yves] Inst Pierre Simon Laplace, Lab Atmosphere Milieux & Observat Spatiales, Paris, France. [Ma, Yingjuan] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Jakosky, Bruce] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Withers, P (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM withers@bu.edu RI Dong, Chuanfei/E-6485-2010; Vogt, Marissa/C-6237-2014; Benna, Mehdi/F-3489-2012; Ma, Yingjuan/B-4895-2017; OI Dong, Chuanfei/0000-0002-8990-094X; Vogt, Marissa/0000-0003-4885-8615; Ma, Yingjuan/0000-0003-2584-7091; Mayyasi, Majd/0000-0002-5663-602X FU NASA [NNX13AO35G]; NASA FX We acknowledge Francisco Gonzalez-Galindo and an anonymous reviewer. P.W. and M.V. were supported, in part, by NASA award NNX13AO35G. MAVEN data are available from the NASA Planetary Data System (http://pds.nasa.gov). The MAVEN project is supported by NASA through the Mars Exploration Program. NR 24 TC 5 Z9 5 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8966 EP 8976 DI 10.1002/2015GL065205 PG 11 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800022 ER PT J AU Fox, JL Benna, M Mahaffy, PR Jakosky, BM AF Fox, Jane L. Benna, M. Mahaffy, P. R. Jakosky, B. M. TI Water and water ions in the Martian thermosphere/ionosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CROSS-SECTION MEASUREMENTS; ELECTRON-IMPACT; ATMOSPHERE; VAPOR; MARS; PHOTOCHEMISTRY; MOLECULES; MODEL; H2O; CO2 AB First results from the Neutral Gas and Ion Mass Spectrometer instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft reveal density profiles of protonated species that are mostly in good qualitative agreement with recent models of the Martian thermosphere/ionosphere. We present here the first photochemical model in which the density profiles of water and water ions in the ionosphere/thermosphere are predicted. We find that the computed peak densities of OH+, H2O+, and H3O+ are in fairly good agreement with the measured values. The computed column density of water is predicted to be about 10(10) cm(-2), and the mixing ratio at 80 km is 0.4 ppb. The actual water densities must be small enough so that HCO+ is not destroyed by proton transfer to water during the daytime and large enough so that H3O+ dominates the ionosphere at low altitudes just beyond the terminator. The calculations also show that the mass-2 ion is almost certainly H-2(+). C1 [Fox, Jane L.] Wright State Univ, Dept Phys, Dayton, OH 45435 USA. [Benna, M.] Univ Maryland, CRESST, Catonsville, MD 21201 USA. [Benna, M.; Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Fox, JL (reprint author), Wright State Univ, Dept Phys, Dayton, OH 45435 USA. EM jane.fox@wright.edu RI Benna, Mehdi/F-3489-2012 FU NASA FX We thank the reviewers for their careful reading of the manuscript. The MAVEN mission has been funded by NASA through the Mars Exploration Program. NR 38 TC 3 Z9 3 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8977 EP 8985 DI 10.1002/2015GL065465 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800023 ER PT J AU Thiemann, EMB Eparvier, FG Andersson, LA Fowler, CM Peterson, WK Mahaffy, PR England, SL Larson, DE Lo, DY Schneider, NM Deighan, JI McClintock, WE Jakosky, BM AF Thiemann, E. M. B. Eparvier, F. G. Andersson, L. A. Fowler, C. M. Peterson, W. K. Mahaffy, P. R. England, S. L. Larson, D. E. Lo, D. Y. Schneider, N. M. Deighan, J. I. McClintock, W. E. Jakosky, B. M. TI Neutral density response to solar flares at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EMISSION AB First direct observations of heating of the Mars neutral atmosphere by solar flares are presented in this study. Solar flares were detected using the Extreme Ultraviolet Monitor on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, and upper atmospheric temperature enhancements were determined by changes in the density scale height of Argon (Ar) made by the Neutral Gas and Ion Mass Spectrometer also on board MAVEN. We analyzed 14 M-class or greater flares that occurred during the early part of the MAVEN mission in addition to a 30 day period of high flare activity during May 2015. We report that the Mars dayside upper atmosphere shows significant heating near the flare soft X-ray peak; and it responds and recovers rapidly to heating from M-class or larger flares. In addition, we present atmospheric density versus altitude profiles that were taken near the soft X-ray peak of two flares. C1 [Thiemann, E. M. B.; Eparvier, F. G.; Andersson, L. A.; Fowler, C. M.; Peterson, W. K.; Schneider, N. M.; Deighan, J. I.; McClintock, W. E.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [England, S. L.; Larson, D. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lo, D. Y.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Thiemann, EMB (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM thiemann@lasp.colorado.edu RI Peterson, WK/A-8706-2009; OI Peterson, WK/0000-0002-1513-6096; SCHNEIDER, NICHOLAS/0000-0001-6720-5519 FU NASA [NNX13AO36G] FX The MAVEN project is supported by NASA through the Mars Exploration Program. S.L.E.'s contribution was supported by NASA grant NNX13AO36G. MAVEN data are publically available through the NASA Planetary Data System: https://pds.nasa.gov/. E.M.B.T. would like to thank S. Bougher and X. Fang for their helpful discussions regarding this study. We would like to thank the anonymous reviewers for their feedback which we believe improved this study overall. NR 29 TC 2 Z9 2 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8986 EP 8992 DI 10.1002/2015GL066334 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800024 ER PT J AU Yigit, E England, SL Liu, GP Medvedev, AS Mahaffy, PR Kuroda, T Jakosky, BM AF Yigit, Erdal England, Scott L. Liu, Guiping Medvedev, Alexander S. Mahaffy, Paul R. Kuroda, Takeshi Jakosky, Bruce M. TI High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UPPER-ATMOSPHERE AB First high-altitude observations of gravity wave (GW)-induced CO2 density perturbations in the Martian thermosphere retrieved from NASA's Neutral Gas Ion Mass Spectrometer (NGIMS) instrument on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite are presented and interpreted using the extended GW parameterization of Yi. git et al. (2008) and the Mars Climate Database as an input. Observed relative density perturbations between 180 and 220 km of 20-40% demonstrate appreciable local time, latitude, and altitude variations. Modeling for the spatiotemporal conditions of the MAVEN observations suggests that GWs can directly propagate from the lower atmosphere to the thermosphere, produce appreciable dynamical effects, and likely contribute to the observed fluctuations. Modeled effects are somewhat smaller than the observed, but their highly variable nature is in qualitative agreement with observations. Possible reasons for discrepancies between modeling and measurements are discussed. C1 [Yigit, Erdal] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Yigit, Erdal; Medvedev, Alexander S.] Max Planck Inst Solar Syst Res, Gottingen, Germany. [England, Scott L.; Liu, Guiping] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Medvedev, Alexander S.] Univ Gottingen, Inst Astrophys, D-37073 Gottingen, Germany. [Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kuroda, Takeshi] Tohoku Univ, Dept Geophys, Sendai, Miyagi 980, Japan. [Jakosky, Bruce M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Yigit, E (reprint author), George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. EM eyigit@gmu.edu RI Yigit, Erdal/C-8609-2009; OI Yigit, Erdal/0000-0002-2819-2521; Medvedev, Alexander/0000-0003-2713-8977 FU NASA [NNX13AO36G] FX Modeling data supporting Figures 3 and 4 are available from E.Y. (eyigit@gmu.edu). Mars Climate Database is available at http://www-mars.lmd.jussieu.fr/mars/access.html. This work was partially supported by NASA grant NNX13AO36G. The MAVEN project is supported by NASA through the Mars Exploration Program. NR 25 TC 7 Z9 7 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 8993 EP 9000 DI 10.1002/2015GL065307 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800025 ER PT J AU Chaffin, MS Chaufray, JY Deighan, J Schneider, NM McClintock, WE Stewart, AIF Thiemann, E Clarke, JT Holsclaw, GM Jain, SK Crismani, MMJ Stiepen, A Montmessin, F Eparvier, FG Chamberlain, PC Jakosky, BM AF Chaffin, M. S. Chaufray, J. Y. Deighan, J. Schneider, N. M. McClintock, W. E. Stewart, A. I. F. Thiemann, E. Clarke, J. T. Holsclaw, G. M. Jain, S. K. Crismani, M. M. J. Stiepen, A. Montmessin, F. Eparvier, F. G. Chamberlain, P. C. Jakosky, B. M. TI Three-dimensional structure in the Mars H corona revealed by IUVS on MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LYMAN-ALPHA-DATA; MARTIAN ATMOSPHERE; HYDROGEN CORONA; IONOSPHERE; EXOSPHERE; VARIABILITY; EVOLUTION; WATER AB Loss of water to space via neutral hydrogen escape has been an important process throughout Martian history. Contemporary loss rates can be constrained through observations of the extended neutral hydrogen atmosphere of Mars in scattered sunlight at 121.6 nm. Historically, such observations have been interpreted with coupled density and radiative transfer models, inferring escape fluxes from brightness profiles gathered by flybys, orbiters, and telescope observations. Here we demonstrate that the spherical symmetry assumed by prior analyses cannot reproduce observations by the Imaging Ultraviolet Spectrograph (IUVS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We present unique observations of the Mars H corona to large radial distances and mapping results from initial MAVEN science at Mars. These observations represent the first detection of three-dimensional structure in the H corona of Mars, with implications for understanding the atmosphere today and the loss of H to space throughout Martian history. C1 [Chaffin, M. S.; Deighan, J.; Schneider, N. M.; McClintock, W. E.; Stewart, A. I. F.; Thiemann, E.; Holsclaw, G. M.; Jain, S. K.; Crismani, M. M. J.; Stiepen, A.; Eparvier, F. G.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Chaufray, J. Y.; Montmessin, F.] LATMOS IPSL, Yvelines Lle De France, Guyancourt, France. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Chamberlain, P. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chaffin, MS (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. EM michael.chaffin@colorado.edu RI Clarke, John/C-8644-2013; Crismani, Matteo/H-3791-2016; Chamberlin, Phillip/C-9531-2012; OI Crismani, Matteo/0000-0003-3127-2466; Chamberlin, Phillip/0000-0003-4372-7405; CHAFFIN, MICHAEL/0000-0002-1939-4797; SCHNEIDER, NICHOLAS/0000-0001-6720-5519 FU NASA [11-Planet11F-0060]; Centre National d'Etudes Spatiales; Belgian American Educational Foundation; Rotary District FX This work and the MAVEN project are supported by NASA through the Mars Exploration Program. The data used (all IUVS L1C coronal lyman alpha data from mission start to 10 March 2015 tagged "early," " outbound," and "apoapse" with version/revision tag v02_r01, as well as EUVM Lyman alpha channel data) are archived in NASA's Planetary Data System. The IUVS data used are accessible at the following link: http://atmos.nmsu.edu/data_and_services/atmospheres_data/MAVEN/maven_iuv s.html. Thanks are owed to the many engineers on the MAVEN team who worked to enable observations of the corona within hours of the spacecraft's arrival at Mars. Eric Quemerais provided a version of his IPH brightness modeling code used to simulate the IPH underlying Mars coronal brightness. Roger Yelle provided useful discussion and motivation to search for geographical effects. M.S. Chaffin developed the H corona model with partial assistance from NASA Earth and Space Science Fellowship grant 11-Planet11F-0060. J.-Y. Chaufray is supported by the Centre National d'Etudes Spatiales. A. Stiepen is supported by the Belgian American Educational Foundation and the Rotary District 1630. NR 29 TC 12 Z9 12 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9001 EP 9008 DI 10.1002/2015GL065287 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800026 ER PT J AU Deighan, J Chaffin, MS Chaufray, JY Stewart, AIF Schneider, NM Jain, SK Stiepen, A Crismani, M McClintock, WE Clarke, JT Holsclaw, GM Montmessin, F Eparvier, FG Thiemann, EMB Chamberlin, PC Jakosky, BM AF Deighan, J. Chaffin, M. S. Chaufray, J. -Y. Stewart, A. I. F. Schneider, N. M. Jain, S. K. Stiepen, A. Crismani, M. McClintock, W. E. Clarke, J. T. Holsclaw, G. M. Montmessin, F. Eparvier, F. G. Thiemann, E. M. B. Chamberlin, P. C. Jakosky, B. M. TI MAVEN IUVS observation of the hot oxygen corona at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN ATMOSPHERE; ESCAPE AB Observation of the hot oxygen corona at Mars has been an elusive measurement in planetary science. Characterizing this component of the planet's exosphere provides insight into the processes driving loss of oxygen at the current time, which informs understanding of the planet's climatic evolution. The Mars Atmosphere and Volatile EvolutioN (MAVEN) Imaging Ultraviolet Spectrograph (IUVS) instrument is now regularly collecting altitude profiles of the hot oxygen corona as part of its investigation of atmospheric escape from Mars. Observations obtained thus far have been examined and found to display the expected gross structure and variability with EUV forcing anticipated by theory. The quality and quantity of the data set provides valuable constraints for the coronal modeling community. C1 [Deighan, J.; Chaffin, M. S.; Stewart, A. I. F.; Schneider, N. M.; Jain, S. K.; Stiepen, A.; Crismani, M.; McClintock, W. E.; Holsclaw, G. M.; Eparvier, F. G.; Thiemann, E. M. B.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Chaufray, J. -Y.; Montmessin, F.] LATMOS CNRS, Paris, France. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Deighan, J (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. EM justin.deighan@lasp.colorado.edu RI Chamberlin, Phillip/C-9531-2012; Clarke, John/C-8644-2013; Crismani, Matteo/H-3791-2016; OI Chamberlin, Phillip/0000-0003-4372-7405; Crismani, Matteo/0000-0003-3127-2466; SCHNEIDER, NICHOLAS/0000-0001-6720-5519 FU NASA; Belgian American Educational Foundation; Rotary District FX This work was funded by NASA through the MAVEN project. A. Stiepen is supported by the Belgian American Educational Foundation and the Rotary District 1630. Results presented here and in the accompanying papers represent the work of hundreds of scientists and engineers who designed, built, and operated the spacecraft and instruments and carried out the scientific analyses. We thank the two anonymous reviewers for their valuable comments and suggestions. The data used are archived in the Planetary Atmospheres Node of the Planetary Data System (http://pds-atmospheres.nmsu.edu). NR 18 TC 9 Z9 9 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9009 EP 9014 DI 10.1002/2015GL065487 PG 6 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800027 ER PT J AU Chaufray, JY Deighan, J Chaffin, MS Schneider, NM McClintock, WE Stewart, AIF Jain, SK Crismani, M Stiepen, A Holsclaw, GM Clarke, JT Montmessin, F Eparvier, FG Thiemann, EMB Chamberlin, PC Jakosky, BM AF Chaufray, J. Y. Deighan, J. Chaffin, M. S. Schneider, N. M. McClintock, W. E. Stewart, A. I. F. Jain, S. K. Crismani, M. Stiepen, A. Holsclaw, G. M. Clarke, J. T. Montmessin, F. Eparvier, F. G. Thiemann, E. M. B. Chamberlin, P. C. Jakosky, B. M. TI Study of the Martian cold oxygen corona from the OI 130.4nm by IUVS/MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ULTRAVIOLET SPECTROMETER EXPERIMENT; UPPER-ATMOSPHERE; CROSS-SECTIONS; ATOMIC OXYGEN; MARS; ESCAPE; IONOSPHERE; EMISSIONS; MARINER-6; HYDROGEN AB First observations of the OI 130.4 nm resonant line performed by the Imaging Ultraviolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) are presented in this paper. This emission line is observed during the different orbit phases of MAVEN. The atomic oxygen density and the temperature at 200 km are retrieved from an automatic pipeline using a radiative transfer model for resonant scattering lines for a selection of coronal profiles. These selected profiles are representative of the coronal scans done during the first months of the mission (from November 2014 to January 2015). The derived oxygen density and the temperature near the exobase are in the predicted range by the current thermospheric models of Mars for moderate solar activity, and some diurnal variations are observed. However, the absolute calibration of the instrument significantly limits the accuracy of density and temperature results. C1 [Chaufray, J. Y.; Montmessin, F.] UPMC, UVSQ, CNRS, LATMOS IPSL, Guyancourt, France. [Deighan, J.; Chaffin, M. S.; Schneider, N. M.; McClintock, W. E.; Stewart, A. I. F.; Jain, S. K.; Crismani, M.; Stiepen, A.; Holsclaw, G. M.; Eparvier, F. G.; Thiemann, E. M. B.; Jakosky, B. M.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chaufray, JY (reprint author), UPMC, UVSQ, CNRS, LATMOS IPSL, Guyancourt, France. EM chaufray@latmos.ipsl.fr RI Chamberlin, Phillip/C-9531-2012; Clarke, John/C-8644-2013; Crismani, Matteo/H-3791-2016; OI Chamberlin, Phillip/0000-0003-4372-7405; Crismani, Matteo/0000-0003-3127-2466; SCHNEIDER, NICHOLAS/0000-0001-6720-5519 FU NASA; Centre National d'Etudes Spatiales; Belgian American Educational Foundation; Rotary District FX This work and the MAVEN project are supported by NASA through the Mars Exploration Program. The data used (all IUVS data tagged "early," " out-bound," "apoapse," and "periapse" with revision/version tag v02_r01 and EUVM level 3 data) are archived in NASA's Planetary Data System http://atmos.nmsu.edu/data_and_services/atmospheres_data/MAVEN/maven_iuv s.html. Thanks are owed to the many engineers on the MAVEN team who worked to enable observations of the corona within hours of the spacecraft's arrival. J-Y. Chaufray is supported by the Centre National d'Etudes Spatiales. A. Stiepen is supported by the Belgian American Educational Foundation and the Rotary District 1630. We thank S.W. Bougher and an anonymous reviewer for their useful comments to improve this paper. NR 50 TC 4 Z9 4 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9031 EP 9039 DI 10.1002/2015GL065341 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800030 ER PT J AU Evans, JS Stevens, MH Lumpe, JD Schneider, NM Stewart, AIF Deighan, J Jain, SK Chaffin, MS Crismani, M Stiepen, A McClintock, WE Holsclaw, GM Lefevre, F Lo, DY Clarke, JT Eparvier, FG Thiemann, EMB Chamberlin, PC Bougher, SW Bell, JM Jakosky, BM AF Evans, J. S. Stevens, M. H. Lumpe, J. D. Schneider, N. M. Stewart, A. I. F. Deighan, J. Jain, S. K. Chaffin, M. S. Crismani, M. Stiepen, A. McClintock, W. E. Holsclaw, G. M. Lefevre, F. Lo, D. Y. Clarke, J. T. Eparvier, F. G. Thiemann, E. M. B. Chamberlin, P. C. Bougher, S. W. Bell, J. M. Jakosky, B. M. TI Retrieval of CO2 and N-2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ULTRAVIOLET SPECTROMETER EXPERIMENT; TITANS UPPER-ATMOSPHERE; MARS UPPER-ATMOSPHERE; CROSS-SECTIONS; ERROR ANALYSIS; ATOMIC OXYGEN; MARINER 6; EMISSIONS; AIRGLOW; IMPACT AB We present direct number density retrievals of carbon dioxide (CO2) and molecular nitrogen (N-2) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the Imaging Ultraviolet Spectrograph on board NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We use retrieved CO2 densities to derive temperature variability between 170 and 220 km. Analysis of the data shows (1) low-mid latitude northern hemisphere CO2 densities at 170km vary by a factor of about 2.5, (2) on average, the N-2/CO2 increases from 0.042 +/- 0.017 at 130 km to 0.12 +/- 0.06 at 200 km, and (3) the mean upper atmospheric temperature is 324 +/- 22 K for local times near 14:00. C1 [Evans, J. S.; Lumpe, J. D.] Computat Phys Inc, Springfield, VA 22151 USA. [Stevens, M. H.] Naval Res Lab, Washington, DC 20375 USA. [Schneider, N. M.; Stewart, A. I. F.; Deighan, J.; Jain, S. K.; Chaffin, M. S.; Crismani, M.; Stiepen, A.; McClintock, W. E.; Holsclaw, G. M.; Eparvier, F. G.; Thiemann, E. M. B.; Jakosky, B. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Lefevre, F.] CNRS, LATMOS, Paris, France. [Lo, D. Y.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bougher, S. W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Bell, J. M.] NIA, Hampton, VA USA. RP Evans, JS (reprint author), Computat Phys Inc, Springfield, VA 22151 USA. EM evans@cpi.com RI Chamberlin, Phillip/C-9531-2012; Clarke, John/C-8644-2013; Crismani, Matteo/H-3791-2016; OI Chamberlin, Phillip/0000-0003-4372-7405; Crismani, Matteo/0000-0003-3127-2466; SCHNEIDER, NICHOLAS/0000-0001-6720-5519 FU NASA; University of Colorado Laboratory for Atmospheric and Space Physics; Belgian American Educational Foundation; Rotary District FX The MAVEN project is supported by NASA through the Mars Exploration Program. J.S.E. acknowledges support from the University of Colorado Laboratory for Atmospheric and Space Physics and thanks John Correira for his assistance in generating figures for this paper. M.H.S. was supported by the NASA MAVEN Participating Scientist program. A. Stiepen is supported by the Belgian American Educational Foundation and the Rotary District 1630. The IUVS processing pipeline automatically generates level 2 retrieval data products, which are stored at the Planetary Atmospheres Node of the Planetary Data System (http://atmos.nmsu.edu/data_and_services/atmospheres_data/MAVEN/maven_iu vs.html). Data files can be identified by file names with the orbit numbers given, the word "periapse," and the identifier v03_r01. Data release v03_r01 includes CO2 and N2 density profiles and upper atmosphere temperatures. Later releases will include additional species and derived quantities. NR 68 TC 6 Z9 6 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9040 EP 9049 DI 10.1002/2015GL065489 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800031 ER PT J AU Groller, H Yelle, RV Koskinen, TT Montmessin, F Lacombe, G Schneider, NM Deighan, J Stewart, AIF Jain, SK Chaffin, MS Crismani, MMJ Stiepen, A Lefevre, F McClintock, WE Clarke, JT Holsclaw, GM Mahaffy, PR Bougher, SW Jakosky, BM AF Groeller, H. Yelle, R. V. Koskinen, T. T. Montmessin, F. Lacombe, G. Schneider, N. M. Deighan, J. Stewart, A. I. F. Jain, S. K. Chaffin, M. S. Crismani, M. M. J. Stiepen, A. Lefevre, F. McClintock, W. E. Clarke, J. T. Holsclaw, G. M. Mahaffy, P. R. Bougher, S. W. Jakosky, B. M. TI Probing the Martian atmosphere with MAVEN/IUVS stellar occultations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CROSS-SECTION MEASUREMENTS; TEMPERATURE-DEPENDENCE; CO2; THERMOSPHERE; PROFILES; REGION; MARS; O-2; NM; CASSINI/UVIS AB The first campaign of stellar occultations with the Imaging Ultraviolet Spectrograph (IUVS) instrument on board of Mars Atmosphere and Volatile EvolutioN (MAVEN) mission was executed between 24 and 26 March 2015. From this campaign 13 occultations are used to retrieve CO2 and O-2 number densities in the altitude range between 100 and 150 km. Observations probe primarily the low-latitude regions on the nightside of the planet, just past the dawn and dusk terminator. Calculation of temperature from the CO2 density profiles reveals that the lower thermosphere is significantly cooler than predicted by the models in the Mars Climate Database. A systematically cold layer with temperatures of 105-120 K is seen in the occultations at a pressure level around 7 x 10(-6) Pa. C1 [Groeller, H.; Yelle, R. V.; Koskinen, T. T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Montmessin, F.; Lacombe, G.; Lefevre, F.] Univ Versailles St Quentin, LATMOS, CNRS, Guyancourt, France. [Schneider, N. M.; Deighan, J.; Stewart, A. I. F.; Jain, S. K.; Chaffin, M. S.; Crismani, M. M. J.; Stiepen, A.; McClintock, W. E.; Holsclaw, G. M.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bougher, S. W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Groller, H (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM hgr@lpl.arizona.edu RI Clarke, John/C-8644-2013; Crismani, Matteo/H-3791-2016; OI Crismani, Matteo/0000-0003-3127-2466; SCHNEIDER, NICHOLAS/0000-0001-6720-5519 FU NASA; Belgian American Educational Foundation; Rotary District FX The MAVEN project is supported by NASA through the Mars Exploration Program. A. Stiepen is supported the Belgian American Educational Foundation and the Rotary District 1630. The data used are archived in the Planetary Atmospheres Node of the Planetary Data System. The authors wish to thank Francisco Gonzalez-Galindo and an anonymous reviewer, whose constructive comments helped to improve the paper. NR 29 TC 1 Z9 1 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9064 EP 9070 DI 10.1002/2015GL065294 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800034 ER PT J AU Withers, P Vogt, M Mahaffy, P Benna, M Elrod, M Jakosky, B AF Withers, Paul Vogt, Marissa Mahaffy, Paul Benna, Mehdi Elrod, Meredith Jakosky, Bruce TI Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN IONOSPHERE; UPPER-ATMOSPHERE; MODEL AB We compare Viking and Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) observations of the thermosphere and ionosphere of Mars in order to test predictions of large variations in conditions over the solar cycle and with season. Substantial differences exist between the Viking observations at solar minimum and near aphelion and the MAVEN NGIMS observations at moderate solar activity and near perihelion. Differences in the O/CO2 ratio, the O+ ionospheric peak, ion densities at high altitude, and neutral and ion scale heights can be attributed to differences in solar activity and season, but the relative importance of solar activity and season for these differences was not established. Current models do not explain the observed differences in the mixing ratios of N, NO, and O-2. These results place new constraints on models of how the thermosphere and ionosphere of Mars vary over the solar cycle and with season. C1 [Withers, Paul] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Withers, Paul; Vogt, Marissa] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Jakosky, Bruce] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Withers, P (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM withers@bu.edu RI Vogt, Marissa/C-6237-2014; Benna, Mehdi/F-3489-2012 OI Vogt, Marissa/0000-0003-4885-8615; FU NASA [NNX13AO35G] FX We acknowledge Marie-Eve Gagne and Francisco Gonzalez-Galindo for helpful reviews. P.W. and M.V. were supported, in part, by NASA award NNX13AO35G. P.W. thanks Yingjuan Ma for providing Viking Lander 1 ion density data and Zachary Girazian for helpful discussions. MAVEN data are available from the NASA Planetary Data System (http://pds.nasa.gov). The MAVEN project is supported by NASA through the Mars Exploration Program. NR 37 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9071 EP 9079 DI 10.1002/2015GL065985 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800035 ER PT J AU Mendillo, M Narvaez, C Matta, M Vogt, M Mahaffy, P Benna, M Jakosky, B AF Mendillo, Michael Narvaez, Clara Matta, Majd Vogt, Marissa Mahaffy, Paul Benna, Mehdi Jakosky, Bruce TI MAVEN and the Mars Initial Reference Ionosphere model SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ANOMALIES AB The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite measured the distribution of thermal ions (2-150 amu) at ionospheric heights (similar to 130-400 km) under midday conditions during the "Deep-Dip" orbit campaign from 17 to 22 April 2015. Assuming charge neutrality, we use the sum of NGIMS ions as a proxy for electron density (N-e) and compare results with a new version of the Mars Initial Reference Ionosphere (MIRI) developed for this study. At altitudes where the transition between photochemical and dynamical processes occurs (130-200 km), the NGIMS results agree with the shape of the MIRI-predicted N-e(h) profiles, but the model predictions are a factor of 2 higher. Above 200 km, the NGIMS gradients of total ions versus height diverge even more from MIRI's N-e(h) predictions for reasons that may involve crustal-B field effects, ionopause-like boundaries, and horizontal plasma transport away from the noon sector-factors not yet included in MIRI. C1 [Mendillo, Michael; Narvaez, Clara; Matta, Majd; Vogt, Marissa] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Mahaffy, Paul; Benna, Mehdi] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jakosky, Bruce] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Narvaez, C (reprint author), Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. EM cnarvaez@bu.edu RI Vogt, Marissa/C-6237-2014; Benna, Mehdi/F-3489-2012; OI Vogt, Marissa/0000-0003-4885-8615; Mayyasi, Majd/0000-0002-5663-602X FU NASA/MAVEN Participating Scientist grants [NNX-13AO20G, NNX-13AO35G]; MAVEN from the University of Colorado [1000320450]; MAVEN mission contract FX We are grateful for the assistance of the NGIMS team for making the Deep-Dip data from Campaign #2 available in such a timely fashion. We thank, in particular, Meredith Elrod. This work was supported, in part, by NASA/MAVEN Participating Scientist grants NNX-13AO20G and NNX-13AO35G at Boston University, and to MAVEN subcontract 1000320450 from the University of Colorado to Boston University. At the NASA Goddard Space Flight Center, the NGIMS program is supported by its MAVEN mission contract. The NGIMS data can be found at the PDS: Planetary Atmospheres Data Node. Website: http://atmos.nmsu.edu/PDS/data/PDS4/MAVEN/. NR 17 TC 0 Z9 0 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9080 EP 9086 DI 10.1002/2015GL065732 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800036 ER PT J AU Luhmann, JG Dong, CF Ma, YJ Curry, SM Mitchell, D Espley, J Connerney, J Halekas, J Brain, DA Jakosky, BM Mazelle, C AF Luhmann, J. G. Dong, Chuanfei Ma, Yingjuan Curry, S. M. Mitchell, D. Espley, J. Connerney, J. Halekas, J. Brain, D. A. Jakosky, B. M. Mazelle, C. TI Implications of MAVEN Mars near-wake measurements and models SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND INTERACTION; INDUCED MAGNETOSPHERES; MAGNETIC-FIELD; VENUS; INTERPLANETARY; MAGNETOTAILS AB Mars is typically viewed as a member of the category of weakly magnetized planets, with a largely induced magnetosphere and magnetotail produced by the draped fields of the solar wind interaction. However, selected Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) suprathermal electron and magnetic field observations in the near wake, sampled along its elliptical orbit during the early prime mission at altitudes ranging from its similar to 150 km periapsis to the tail magnetosheath, reinforce a picture seen in an MHD model where magnetic fields are rooted in the planet throughout much of the Martian magnetotail. C1 [Luhmann, J. G.; Curry, S. M.; Mitchell, D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Dong, Chuanfei] Univ Michigan, AOSS Dept, Ann Arbor, MI 48109 USA. [Ma, Yingjuan] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Espley, J.; Connerney, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Halekas, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Brain, D. A.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Mazelle, C.] CNRS, IRAP, Toulouse, France. [Mazelle, C.] Univ Toulouse 3, F-31062 Toulouse, France. RP Luhmann, JG (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM jgluhman@ssl.berkeley.edu RI Dong, Chuanfei/E-6485-2010; Ma, Yingjuan/B-4895-2017; OI Dong, Chuanfei/0000-0002-8990-094X; Ma, Yingjuan/0000-0003-2584-7091; Halekas, Jasper/0000-0001-5258-6128 FU NASA; SWEA by CNES FX The MAVEN mission, led by coauthor and Principal Investigator Bruce M. Jakosky, is supported by NASA through its Mars Exploration Program. We are grateful to the spacecraft builders at Lockheed-Martin in Littleton, CO, the Project Leaders and Managers at Goddard Space Flight Center and NASA, the Science Operations Center at Laboratory for Space Physics, University of Colorado, Boulder, and the instrument providers who worked tirelessly to realize the MAVEN data. The data used here are part of the MAVEN archive accessible through NASA's Planetary Data System. This work was enabled through partial support of SWEA by CNES. NR 31 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9087 EP 9094 DI 10.1002/2015GL066122 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800037 ER PT J AU Curry, SM Luhmann, JG Ma, YJ Dong, CF Brain, D Leblanc, F Modolo, R Dong, Y McFadden, J Halekas, J Connerney, J Espley, J Hara, T Harada, Y Lee, C Fang, X Jakosky, B AF Curry, S. M. Luhmann, J. G. Ma, Y. J. Dong, C. F. Brain, D. Leblanc, F. Modolo, R. Dong, Y. McFadden, J. Halekas, J. Connerney, J. Espley, J. Hara, T. Harada, Y. Lee, C. Fang, X. Jakosky, B. TI Response of Mars O+ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN data-based models SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN ATMOSPHERE; DISTRIBUTIONS; ESCAPE; VENUS AB We simulate and compare three phases of the Mars-solar wind interaction with the 8 March interplanetary coronal mass ejection (ICME) event using Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations in order to derive heavy ion precipitation and escape rates. The MAVEN observations provide the initial conditions for three steady state MHD model cases, which reproduce the observed features in the solar wind density, velocity, and magnetic field seen along the MAVEN orbit. Applying the MHD results to a kinetic test particle model, we simulate global precipitation and escape maps of O+ during the (1) pre-ICME phase, (2) sheath phase, and (3) ejecta phase. We find that the Case 1 had the lowest precipitation and escape rates of 9.5x 10(25) and 4.1x 10(25) s(-1), Case 2 had the highest rates of 9.5x 10(25) and 4.1 x 10(25) s(-1), and Case 3 had rates of 3.2 x 10(25) and 1.3 x 10(25) s(-1), respectively. Additionally, Case 2 produced a high-energy escaping plume > 10 keV, which mirrored corresponding STATIC observations. C1 [Curry, S. M.; Luhmann, J. G.; McFadden, J.; Hara, T.; Harada, Y.; Lee, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ma, Y. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA USA. [Dong, C. F.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Brain, D.; Dong, Y.; Fang, X.; Jakosky, B.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Leblanc, F.; Modolo, R.] UVSQ, LATMOS, Guyancourt, France. [Halekas, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Connerney, J.; Espley, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Curry, SM (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM smcurry@umich.edu RI Dong, Chuanfei/E-6485-2010; Fang, Xiaohua/C-2773-2008; Ma, Yingjuan/B-4895-2017; OI Dong, Chuanfei/0000-0002-8990-094X; Fang, Xiaohua/0000-0002-6584-2837; Ma, Yingjuan/0000-0003-2584-7091; Halekas, Jasper/0000-0001-5258-6128 FU NASA FX The MAVEN project is supported by NASA through the Mars Exploration Program, and MAVEN data are publicly available through the Planetary Data System. This research would not be possible without the diligent efforts of the spacecraft and instrument teams over many years. Additionally, the authors would like to thank Andrew Poppe and Christina Lee for their support. NR 30 TC 3 Z9 3 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9095 EP 9102 DI 10.1002/2015GL065304 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800038 ER PT J AU Dong, CF Ma, YJ Bougher, SW Toth, G Nagy, AF Halekas, JS Dong, YX Curry, SM Luhmann, JG Brain, D Connerney, JEP Espley, J Mahaffy, P Benna, M McFadden, JP Mitchell, DL DiBraccio, GA Lillis, RJ Jakosky, BM Grebowsky, JM AF Dong, Chuanfei Ma, Yingjuan Bougher, Stephen W. Toth, Gabor Nagy, Andrew F. Halekas, Jasper S. Dong, Yaxue Curry, Shannon M. Luhmann, Janet G. Brain, David Connerney, Jack E. P. Espley, Jared Mahaffy, Paul Benna, Mehdi McFadden, James P. Mitchell, David L. DiBraccio, Gina A. Lillis, Robert J. Jakosky, Bruce M. Grebowsky, Joseph M. TI Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ION DISTRIBUTIONS; DYNAMO REGION; ESCAPE; ELECTRODYNAMICS; CYCLE AB We study the solar wind interaction with the Martian upper atmosphere during the 8 March 2015 interplanetary coronal mass ejection (ICME) by using a global multifluid MHD model. Comparison of the simulation results with observations from Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft shows good agreement. The total ion escape rate is increased by an order of magnitude, from 2.05 x 10(24) s(-1) (pre-ICME phase) to 2.25 x 10(25) s(-1) (ICME sheath phase), during this time period. Two major ion escape channels are illustrated: accelerated pickup ion loss through the dayside plume and ionospheric ion loss through the nightside plasma wake region. Interestingly, the tailward ion loss is significantly increased at the ejecta phase. Both bow shock and magnetic pileup boundary (BS and MPB) locations are decreased from (1.2R(M), 1.57R(M)) at the pre-ICME phase to (1.16R(M), 1.47R(M)), respectively, during the sheath phase along the dayside Mars-Sun line. Furthermore, both simulation and observational results indicate that there is no significant variation in the Martian ionosphere (at altitudes less than or similar to 200 km, i.e., the photochemical region) during this event. C1 [Dong, Chuanfei; Bougher, Stephen W.; Toth, Gabor; Nagy, Andrew F.] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Dong, Chuanfei; Curry, Shannon M.; Luhmann, Janet G.; McFadden, James P.; Mitchell, David L.; Lillis, Robert J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ma, Yingjuan] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Halekas, Jasper S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Dong, Yaxue; Brain, David; Jakosky, Bruce M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Connerney, Jack E. P.; Espley, Jared; Mahaffy, Paul; Benna, Mehdi; DiBraccio, Gina A.; Grebowsky, Joseph M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Dong, CF (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM dcfy@umich.edu RI Dong, Chuanfei/E-6485-2010; Benna, Mehdi/F-3489-2012; Lillis, Robert/A-3281-2008; Toth, Gabor/B-7977-2013; Ma, Yingjuan/B-4895-2017; OI Dong, Chuanfei/0000-0002-8990-094X; Lillis, Robert/0000-0003-0578-517X; Toth, Gabor/0000-0002-5654-9823; Ma, Yingjuan/0000-0003-2584-7091; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX13AO56H] FX This research was partially supported by NASA's MAVEN mission to Mars, and NASA Earth and Space Science FellowshipNNX13AO56H. We are grateful to the whole spacecraft team and instrument leads. The observational data used here are part of the MAVEN archive accessible through NASA's Planetary Data System. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The Space Weather Modeling Framework that contains the BATS-R-US code used in this study is publicly available from http://csem.engin.umich.edu/tools/swmf. For distribution of the model results used in this study, please contact the corresponding author. C.F. Dong further acknowledge the useful discussions with Bart van der Holst and Michael Liemohn at the University of Michigan and Martin Rubin at the University of Bern, Switzerland. NR 34 TC 8 Z9 8 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9103 EP 9112 DI 10.1002/2015GL065944 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800039 ER PT J AU Ma, YJ Russell, CT Fang, X Dong, Y Nagy, AF Toth, G Halekas, JS Connerney, JEP Espley, JR Mahaffy, PR Benna, M McFadden, JP Mitchell, DL Jakosky, BM AF Ma, Y. J. Russell, C. T. Fang, X. Dong, Y. Nagy, A. F. Toth, G. Halekas, J. S. Connerney, J. E. P. Espley, J. R. Mahaffy, P. R. Benna, M. McFadden, J. P. Mitchell, D. L. Jakosky, B. M. TI MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID IONOSPHERE; FIELD AB The Mars Atmosphere and Volatile EvolutioN mission (MAVEN), launched on 18 November 2013, is now in its primary science phase, orbiting Mars with a 4.5 h period. In this study, we use a time-dependent MHD model to interpret plasma observations made by MAVEN particle and field instruments. Detailed comparisons between the model and the relevant plasma observations from MAVEN are presented for an entire Mars rotation under relatively quiet solar wind conditions. Through comparison along MAVEN orbits, we find that the time-dependent multispecies single-fluid MHD model is able to reproduce the main features of the plasma environment around Mars. Using the model results, we find that photoionization beyond the terminator is the dominant ion source as compared with day-night transport in maintaining the nightside ionosphere. Model results also show that both the time-varying solar wind conditions and the continuously rotating crustal field work together to control the ion escape variation with time. C1 [Ma, Y. J.; Russell, C. T.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Fang, X.; Dong, Y.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Nagy, A. F.; Toth, G.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McFadden, J. P.; Mitchell, D. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Ma, YJ (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. EM yingjuan@igpp.ucla.edu RI Benna, Mehdi/F-3489-2012; Toth, Gabor/B-7977-2013; Fang, Xiaohua/C-2773-2008; Ma, Yingjuan/B-4895-2017; OI Halekas, Jasper/0000-0001-5258-6128; Toth, Gabor/0000-0002-5654-9823; Fang, Xiaohua/0000-0002-6584-2837; Ma, Yingjuan/0000-0003-2584-7091; Russell, Christopher/0000-0003-1639-8298 FU NASA [NNX13AO31G, NNG06GF31G, NNH1OCCO4C, NNX11AN38G]; NSF [AST-0908472] FX The work presented here was supported by NASA grants NNX13AO31G, NNG06GF31G, NNH1OCCO4C, and NNX11AN38G, and NSF grant AST-0908472. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The MAVEN observational data used in the study were obtained from the NASA Planetary Data System (PDS). The Space Weather Modeling Framework that contains the BATS-R-US code used in this study is publicly available from http://csem.engin.umich.edu/tools/swmf". For distribution of the model results used in this study, please contact the corresponding author. NR 32 TC 6 Z9 6 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9113 EP 9120 DI 10.1002/2015GL065218 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800040 ER PT J AU Collinson, G Halekas, J Grebowsky, J Connerney, J Mitchell, D Espley, J DiBraccio, G Mazelle, C Sauvaud, JA Fedorov, A Jakosky, B AF Collinson, Glyn Halekas, Jasper Grebowsky, Joseph Connerney, Jack Mitchell, David Espley, Jared DiBraccio, Gina Mazelle, Christian Sauvaud, Jean-Andre Fedorov, Andrei Jakosky, Bruce TI A hot flow anomaly at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EARTHS BOW SHOCK; DIAMAGNETIC CAVITIES UPSTREAM; MULTI-SPACECRAFT MEASUREMENTS; CLUSTER OBSERVATIONS; GLOBAL SURVEYOR; SOLAR-WIND; DISCONTINUITY; PLASMA AB One of the most important modes of planet/solar wind interaction are "foreshock transients" such as hot flow anomalies (HFAs). Here we present early observations by the NASA Mars Atmosphere and Volatile EvolutioN spacecraft, confirming their presence at Mars and for the first time at an unmagnetized planet revealing the underlying ion perturbations that drive the phenomenon, finding them to be weaker than at magnetized planets. Analysis revealed the HFA to be virtually microscopic: the smallest on record at similar to 2200 km across and commensurate with the local proton gyroradius, resulting in a much stronger perturbation in solar wind protons than alpha particles. As at Venus, despite being physically diminutive, the HFA is still large (0.66 R-M) when compared to the relative size of the induced magnetosphere. Given the associated order of magnitude decrease in solar wind dynamic pressure (411 pPa double right arrow 70 pPa), we find that HFAs at Mars have the potential to directly impact the topside ionosphere. We thus hypothesize that the loss of a planetary magnetic dynamo left Mars far more vulnerable to the pressure pulses resulting from HFAs and related foreshock transients. C1 [Collinson, Glyn; Grebowsky, Joseph; Connerney, Jack; Espley, Jared; DiBraccio, Gina] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Collinson, Glyn] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Halekas, Jasper] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Mitchell, David] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mazelle, Christian; Sauvaud, Jean-Andre; Fedorov, Andrei] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, Christian; Sauvaud, Jean-Andre; Fedorov, Andrei] Univ Toulouse 3, F-31062 Toulouse, France. [Jakosky, Bruce] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Collinson, G (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM glyn.a.collinson@nasa.gov OI connerney, jack/0000-0001-7478-6462; Halekas, Jasper/0000-0001-5258-6128 NR 40 TC 1 Z9 1 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9121 EP 9127 DI 10.1002/2015GL065079 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800041 ER PT J AU Collinson, G Mitchell, D Glocer, A Grebowsky, J Peterson, WK Connerney, J Andersson, L Espley, J Mazelle, C Sauvaud, JA Fedorov, A Ma, YJ Bougher, S Lillis, R Ergun, R Jakosky, B AF Collinson, Glyn Mitchell, David Glocer, Alex Grebowsky, Joseph Peterson, W. K. Connerney, Jack Andersson, Laila Espley, Jared Mazelle, Christian Sauvaud, Jean-Andre Fedorov, Andrei Ma, Yingjuan Bougher, Steven Lillis, Robert Ergun, Robert Jakosky, Bruce TI Electric Mars: The first directmeasurement of an upper limit for the Martian "polar wind" electric potential SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PHOTOELECTRON ENERGY PEAKS; GLOBAL SURVEYOR; MAGNETIC-FIELD; ASPERA-3; LOCATIONS; BOUNDARY; MISSION; EXPRESS; FLUXES; VENUS AB An important mechanism in the generation of polar wind outflow is the ambipolar electric potential which assists ions in overcoming gravity and is a key mechanism for Terrestrial ionospheric escape. At Mars, open field lines are not confined to the poles, and outflow of ionospheric electrons is observed far into the tail. It has thus been hypothesized that a similar electric potential may be present at Mars, contributing to global ionospheric loss. However, no direct measurements of this potential have been made. In this pilot study, we examine photoelectron spectra measured by the Solar Wind Electron Analyzer instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout to put an initial upper bound on the total potential drop in the ionosphere of Mars of Phi male(sic)+/- 2V, with the possibility of a further (sic)4.5 V potential drop above this in the magnetotail. If the total potential drop was close to the upper limit, then strong outflows of major ionospheric species (H+, O+, and O-2(+)) would be expected. However, if most of the potential drop is confined below the spacecraft, as expected by current theory, then such a potential would not be sufficient on its own to accelerate O-2(+) to escape velocities, but would be sufficient for lighter ions. However, any potential would contribute to atmospheric loss through the enhancement of Jeans escape. C1 [Collinson, Glyn; Glocer, Alex; Grebowsky, Joseph; Connerney, Jack; Espley, Jared] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Collinson, Glyn] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Mitchell, David; Lillis, Robert] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Peterson, W. K.; Andersson, Laila; Ergun, Robert; Jakosky, Bruce] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Mazelle, Christian; Sauvaud, Jean-Andre; Fedorov, Andrei] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, Christian; Sauvaud, Jean-Andre; Fedorov, Andrei] Univ Toulouse 3, F-31062 Toulouse, France. [Ma, Yingjuan] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Bougher, Steven] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Collinson, G (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM glyn.a.collinson@nasa.gov RI Peterson, WK/A-8706-2009; Lillis, Robert/A-3281-2008; Ma, Yingjuan/B-4895-2017; OI Peterson, WK/0000-0002-1513-6096; Lillis, Robert/0000-0003-0578-517X; Ma, Yingjuan/0000-0003-2584-7091; connerney, jack/0000-0001-7478-6462 NR 26 TC 3 Z9 3 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9128 EP 9134 DI 10.1002/2015GL065084 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800042 ER PT J AU Leblanc, F Modolo, R Curry, S Luhmann, J Lillis, R Chaufray, JY Hara, T McFadden, J Halekas, J Eparvier, F Larson, D Connerney, J Jakosky, B AF Leblanc, F. Modolo, R. Curry, S. Luhmann, J. Lillis, R. Chaufray, J. Y. Hara, T. McFadden, J. Halekas, J. Eparvier, F. Larson, D. Connerney, J. Jakosky, B. TI Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN ATMOSPHERE; O+; EXPRESS; MISSION; MAVEN AB In the absence of an intrinsic dipole magnetic field, Mars' O+ planetary ions are accelerated by the solar wind. Because of their large gyroradius, a population of these planetary ions can precipitate back into Mars' upper atmosphere with enough energy to eject neutrals into space via collision. This process, referred to as sputtering, may have been a dominant atmospheric loss process during earlier stages of our Sun. Yet until now, a limited number of observations have been possible; Analyzer of Space Plasmas and Energetic Atoms-3/Mars Express observed such a precipitation only during extreme conditions, suggesting that sputtering might be not as intense as theoretically predicted. Here we describe one example of precipitation of heavy ions during quiet solar conditions. Between November 2014 and April 2015, the average precipitating flux is significant and in agreement with predictions. From these measured precipitating fluxes, we estimate that a maximum of 1.0 x 10(24) O/s could have been lost due to sputtering. C1 [Leblanc, F.; Chaufray, J. Y.] Univ Paris 06, CNRS, LATMOS, Paris, France. [Modolo, R.] Univ Versailles St Quentin, LATMOS, Guyancourt, France. [Curry, S.; Luhmann, J.; Lillis, R.; Hara, T.; McFadden, J.; Larson, D.] SSL, Berkeley, CA USA. [Halekas, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Eparvier, F.; Jakosky, B.] LASP, Boulder, CO USA. [Connerney, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Leblanc, F (reprint author), Univ Paris 06, CNRS, LATMOS, Paris, France. EM francois.leblanc@latmos.ipsl.fr RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Halekas, Jasper/0000-0001-5258-6128 FU program "Systeme Solaire" of CNES, the French space administration; MAVEN project FX F.L., R.M., and J.Y.C. are indebted to the program "Systeme Solaire" of CNES, the French space administration for its financial support on MAVEN. All data used in this paper are archived and available in the Planetary Data System Archive. R.L., S.C., J.L., J.H., T.H., D.L., F.E., J.C., J.M., and B.J. were supported by the MAVEN project. NR 21 TC 9 Z9 9 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9135 EP 9141 DI 10.1002/2015GL066170 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800043 ER PT J AU Brain, DA McFadden, JP Halekas, JS Connerney, JEP Bougher, SW Curry, S Dong, CF Dong, Y Eparvier, F Fang, X Fortier, K Hara, T Harada, Y Jakosky, BM Lillis, RJ Livi, R Luhmann, JG Ma, Y Modolo, R Seki, K AF Brain, D. A. McFadden, J. P. Halekas, J. S. Connerney, J. E. P. Bougher, S. W. Curry, S. Dong, C. F. Dong, Y. Eparvier, F. Fang, X. Fortier, K. Hara, T. Harada, Y. Jakosky, B. M. Lillis, R. J. Livi, R. Luhmann, J. G. Ma, Y. Modolo, R. Seki, K. TI The spatial distribution of planetary ion fluxes near Mars observed by MAVEN SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND; MARTIAN IONOSPHERE; ESCAPE RATE; OUTFLOW; CLIMATE AB We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell similar to 1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of similar to 3 x 10(24) s(-1), accounting for the similar to 10% of ions that return toward the planet and assuming that the similar to 70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). C1 [Brain, D. A.; Dong, Y.; Eparvier, F.; Fang, X.; Fortier, K.; Jakosky, B. M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [McFadden, J. P.; Curry, S.; Hara, T.; Harada, Y.; Lillis, R. J.; Livi, R.; Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Connerney, J. E. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bougher, S. W.; Dong, C. F.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Ma, Y.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Modolo, R.] UVSQ LATMOS IPSL CNRS INSU, Guyancourt, France. [Seki, K.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. RP Brain, DA (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM david.brain@lasp.colorado.edu RI Dong, Chuanfei/E-6485-2010; Lillis, Robert/A-3281-2008; Fang, Xiaohua/C-2773-2008; Ma, Yingjuan/B-4895-2017 OI Halekas, Jasper/0000-0001-5258-6128; Dong, Chuanfei/0000-0002-8990-094X; Lillis, Robert/0000-0003-0578-517X; Fang, Xiaohua/0000-0002-6584-2837; Ma, Yingjuan/0000-0003-2584-7091 FU NASA through the Mars Exploration Program FX The MAVEN project is supported by NASA through the Mars Exploration Program, and MAVEN data are publicly available through the Planetary Data System. This research would not be possible without the diligent efforts of the spacecraft and instrument teams over many years. We further acknowledge useful conversations with E. Dubinin and M. Fraenz. NR 26 TC 21 Z9 21 U1 2 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9142 EP 9148 DI 10.1002/2015GL065293 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800044 ER PT J AU King, J Howell, S Derksen, C Rutter, N Toose, P Beckers, JF Haas, C Kurtz, N Richter-Menge, J AF King, Joshua Howell, Stephen Derksen, Chris Rutter, Nick Toose, Peter Beckers, Justin F. Haas, Christian Kurtz, Nathan Richter-Menge, Jacqueline TI Evaluation of Operation IceBridge quick-look snow depth estimates on sea ice SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THICKNESS RETRIEVAL; RADAR; CRYOSAT-2; FREEBOARD; BAND; IMPACT; SHEBA AB We evaluate Operation IceBridge (OIB) "quick-look" snow depth on sea ice retrievals using in situ measurements taken over immobile first-year ice (FYI) and multiyear ice (MYI) during March of 2014. Good agreement was found over undeformed FYI (-4.5 cm mean bias) with reduced agreement over deformed FYI (-6.6 cm mean bias). Over MYI, the mean bias was -5.7 cm, but 54% of retrievals were discarded by the OIB retrieval process as compared to only 10% over FYI. Footprint scale analysis revealed a root-mean-square error (RMSE) of 6.2 cm over undeformed FYI with RMSE of 10.5 cm and 17.5 cm in the more complex deformed FYI and MYI environments. Correlation analysis was used to demonstrate contrasting retrieval uncertainty associated with spatial aggregation and ice surface roughness. C1 [King, Joshua; Howell, Stephen; Derksen, Chris; Toose, Peter] Environm Canada, Climate Res Div, Toronto, ON, Canada. [Rutter, Nick] Northumbria Univ, Dept Geog, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. [Beckers, Justin F.; Haas, Christian] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada. [Haas, Christian] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 2R7, Canada. [Kurtz, Nathan] NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Lab, Greenbelt, MD 20771 USA. [Richter-Menge, Jacqueline] Engn Res & Dev Ctr, Cold Reg Res & Engn Lab, Hanover, NH USA. RP King, J (reprint author), Environm Canada, Climate Res Div, Toronto, ON, Canada. EM joshua.king@ec.gc.ca RI Rutter, Nick/F-6998-2014; Beckers, Justin/I-2806-2014; Haas, Christian/L-5279-2016 OI Rutter, Nick/0000-0002-5008-3575; Beckers, Justin/0000-0003-0751-3995; Haas, Christian/0000-0002-7674-3500 FU Canadian Space Agency through the Government Related Initiatives Program (GRIP); European Space Agency (ESA) through the CryoSat Validation Experiment (CryoVEx) program; Canada Research Chair program FX OIB data sets used in this letter are available from the NSIDC. QL estimates can be found at https://nsidc.org/data/docs/daac/icebridge/evaluation_products/sea-ice-f reeboard-snowdepth-thickness-quicklook-index.html, data sets: OIB_20140325_IDCSI2 and OIB_20140331_IDCSI2. OIB ATM and POS/AV instrument data are found at http://nsidc.org/data/icebridge/instr_data_summary.html, data sets: ILATM1B_20140325*, ILATM1B_20140331*, sbet_20140325, and sbet_20140331. FYI field measurements may be obtained from Environment Canada. MYI field measurements are available at https://earth.esa.int/web/guest/campaigns. RADARSAT-2 imagery used in this letter was made available from the CSA/PSTG and can be acquired for a fee through the National Earth Observation Data Framework web page (https://neodf.nrcan.gc.ca/neodf_cat3/). The FYI field campaign was funded by the Canadian Space Agency through the Government Related Initiatives Program (GRIP). The MYI field campaign was funded by the European Space Agency (ESA) through the CryoSat Validation Experiment (CryoVEx) program. We acknowledge additional support from the Canada Research Chair program. Thank you to the OIB flight and science teams for their efforts to coordinate data collection. Thank you to Bruce Elder and Chris Hiemstra for their contributions to the CryoVEx field campaign. NR 29 TC 0 Z9 0 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9302 EP 9310 DI 10.1002/2015GL066389 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800064 ER PT J AU Ye, HC Fetzer, EJ Wong, S Behrangi, A Yang, DQ Lambrigtson, BH AF Ye, Hengchun Fetzer, Eric J. Wong, Sun Behrangi, Ali Yang, Daqing Lambrigtson, Bjorn H. TI Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EXTREMES; TEMPERATURE; RAINFALL; MOISTURE; INDEXES; EVENTS; TRENDS AB Increasing daily precipitation intensity is strongly associated with increasing water vapor in the atmosphere over northern Eurasia based on this study of 35 years of daily precipitation, specific humidity, and air temperature observations at 152 stations. The apparently linear relationship is consistent across all four seasons at interannual and longer time scales, and holds after temperature variation have been controlled. The study further reveals that this relationship is accompanied by increases in precipitation totals from heavy events (above the 70th percentile) and decreases in light ones (below the 30th percentile). Results suggest that increased atmospheric water vapor is the direct link to more frequent intense events of precipitation and increased risk of flooding under a warming climate via increasing precipitation intensity. C1 [Ye, Hengchun] Calif State Univ Los Angeles, Dept Geosci & Environm, Los Angeles, CA 90032 USA. [Fetzer, Eric J.; Wong, Sun; Behrangi, Ali; Lambrigtson, Bjorn H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Yang, Daqing] Environm Canada, Natl Hydrol Res Ctr, Saskatoon, SK, Canada. RP Ye, HC (reprint author), Calif State Univ Los Angeles, Dept Geosci & Environm, Los Angeles, CA 90032 USA. EM hye2@calstatela.edu FU NSF [BCS-1060788]; National Aeronautics and Space Administration; NASA MIRO grant [NNX15AQ06A]; NASA JPL AIRS project; NASA MeaSUREs project; NASA Earth System Data Record Uncertainty Analysis project FX The first author is supported by NSF grant BCS-1060788. Some of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The first author and the JPL authors are supported by the NASA MIRO grant NNX15AQ06A, the NASA JPL AIRS project, the NASA MeaSUREs project, and the NASA Earth System Data Record Uncertainty Analysis project. We would like to thank two anonymous reviewers for their insightful comments that improved the quality of this paper. NR 47 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9404 EP 9410 DI 10.1002/2015GL066104 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800076 ER PT J AU Wang, T Wong, S Fetzer, EJ AF Wang, Tao Wong, Sun Fetzer, Eric J. TI Cloud regime evolution in the Indian monsoon intraseasonal oscillation: Connection to large-scale dynamical conditions and the atmospheric water budget SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MERRA REANALYSIS; CONVECTION; NORTHWARD; PARAMETERIZATION; ISCCP; MODIS; TRMM AB We examine the intraseasonal oscillation (ISO) of the Indian summer monsoon to establish the connections of cloud regimes to large-scale dynamical states defined by dynamical convergence and moisture advection. Over the Indian subcontinent, the developing phase toward ISO peaks (rainfall maximum) is associated with positive anomalies of moisture advection leading in 4-6 days to positive anomalies of dynamical convergence, triggering abrupt transitions from shallow cumulus to deep convections in 1-2 days. The decaying phase toward ISO troughs (rainfall minima) is associated with negative anomalies of moisture advection and decreasing dynamical convergence, accompanying opposite transitions in cloud regimes. Due to northward propagation of anomalies, processes over the Indian Ocean are similar but lead those over the subcontinent by similar to 10 days. During the transitions cirrus clouds always accompany but lag deep convective clouds by similar to 10 days. Over the equatorial Indian Ocean cirrus clouds are modulated by equatorial waves. C1 [Wang, Tao; Wong, Sun; Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Wang, T (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Tao.Wang@jpl.nasa.gov RI Wang, Tao/C-2381-2011 OI Wang, Tao/0000-0003-3430-8508 FU National Aeronautics and Space Administration; NASA Modeling, Analysis, and Prediction (MAP) [NNH12ZDA001-MAP]; NASA Making Earth System data records for Use in Research Environments (MEaSUREs) [NNH12ZDA001-MEASURES] FX We thank Xianan Jiang for many helpful discussions of the paper. We also thank Mathias Schreier at JPL for providing helps and scripts in downloading MODIS C5 data from GSFC LAADS WEB (ftp://ladsweb.nascom.nasa.gov/allData). The MERRA data are downloaded from GES DISC (http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl), and the GPCP 1DD data are downloaded from the webpage http://precip.gsfc.nasa.gov. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by NASA Modeling, Analysis, and Prediction (MAP, NNH12ZDA001-MAP) and NASA Making Earth System data records for Use in Research Environments (MEaSUREs, NNH12ZDA001-MEASURES) projects. NR 31 TC 3 Z9 3 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9465 EP 9472 DI 10.1002/2015GL066353 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800084 ER PT J AU Minschwaner, K Manney, GL Petropavlovskikh, I Torres, LA Lawrence, ZD Sutherland, B Thompson, AM Johnson, BJ Butterfield, Z Dubey, MK Froidevaux, L Lambert, A Read, WG Schwartz, MJ AF Minschwaner, K. Manney, G. L. Petropavlovskikh, I. Torres, L. A. Lawrence, Z. D. Sutherland, B. Thompson, A. M. Johnson, B. J. Butterfield, Z. Dubey, M. K. Froidevaux, L. Lambert, A. Read, W. G. Schwartz, M. J. TI Signature of a tropical Pacific cyclone in the composition of the upper troposphere over Socorro, NM SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DEEP CONVECTION; SURFACE OZONE; MONSOON ANTICYCLONE; LOWER STRATOSPHERE; TROPOPAUSE LAYER; ASIAN EMISSIONS; UNITED-STATES; WATER-VAPOR; TRANSPORT; CHEMISTRY AB We present a case study based on balloon-borne ozone measurements during the SouthEast American Consortium for Intensive Ozonesonde Network Study in August-September 2013. Data from Socorro, NM (34 degrees N, 107 degrees W) show a layer of anomalously low ozone in the upper troposphere (UT) during 8-14 August. Back trajectories, UT jet analyses, and data from the Microwave Limb Sounder (MLS) on the Aura satellite indicate that this feature originated from the marine boundary layer in the eastern/central tropical Pacific, where several disturbances and one hurricane (Henriette) formed within an active region of the Intertropical Convergence Zone in early August 2013. The hurricane and nearby convection pumped boundary layer air with low ozone (20-30 ppbv) into the UT. This outflow was advected to North America 3-5 days later by a strong subtropical jet, forming a tongue of low ozone observed in MLS fields and a corresponding layer of low ozone in Socorro vertical profiles. C1 [Minschwaner, K.; Manney, G. L.; Torres, L. A.; Lawrence, Z. D.; Sutherland, B.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Manney, G. L.] NW Res Associates Inc, Socorro, NM USA. [Petropavlovskikh, I.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Thompson, A. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Johnson, B. J.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. [Butterfield, Z.; Dubey, M. K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Froidevaux, L.; Lambert, A.; Read, W. G.; Schwartz, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Minschwaner, K (reprint author), New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. EM krm@nmt.edu RI Dubey, Manvendra/E-3949-2010; Schwartz, Michael/F-5172-2016; Thompson, Anne /C-3649-2014 OI Dubey, Manvendra/0000-0002-3492-790X; Schwartz, Michael/0000-0001-6169-5094; Thompson, Anne /0000-0002-7829-0920 FU NASA UARP; NASA Tropospheric Chemistry Program [NNX12AF05G]; National Aeronautics and Space Administration FX Data from SEACIONS can be obtained at http://croc.gsfc.nasa.gov/seacions. MLS v4.2 data are available from the NASA Goddard Space Flight Center Earth Sciences (GES) Data and Information Services Center. SEACIONS was supported by the NASA UARP (K.W. Jucks) and grants from the NASA Tropospheric Chemistry Program (J. Al-Saadi and A. Pszenny) to NOAA (B.J.J.), and to the Pennsylvania State University (A.M.T.) through grant NNX12AF05G. Special thanks to Patrick Cullis and Chance Sterling (CIRES at NOAA/GMD), Gary Morris (St. Edwards University), Michael Herman (New Mexico Tech), and to students who collected data at five SEACIONS sites. Thanks to GMAO for MERRA and other GEOS analyses, especially Krzysztof Wargan for providing the OMI/MLS assimilated fields. Critical support for the Socorro SEACIONS operations was provided by the New Mexico Tech Physics Department, the Langmuir Laboratory for Atmospheric Research, and Edward Gangemi (New Mexico Tech Research Division). Work at the Jet Propulsion Laboratory, California Institute of Technology was done under contract with the National Aeronautics and Space Administration. NR 50 TC 1 Z9 1 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 16 PY 2015 VL 42 IS 21 BP 9530 EP 9537 DI 10.1002/2015GL065824 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DB2KK UT WOS:000368336800093 ER PT J AU Tian, YD Peters-Lidard, CD Harrison, KW You, YL Ringerud, S Kumar, S Turk, FJ AF Tian, Yudong Peters-Lidard, Christa D. Harrison, Kenneth W. You, Yalei Ringerud, Sarah Kumar, Sujay Turk, F. Joseph TI An examination of methods for estimating land surface microwave emissivity SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MESOSCALE ETA-MODEL; SOIL-MOISTURE; PRINCIPAL COMPONENTS; SEMIEMPIRICAL MODEL; AMSR-E; RETRIEVAL; PRECIPITATION; SYSTEM; ASSIMILATION; ALGORITHMS AB Land surface emissivity is a critical variable for the passive microwave-based remote sensing of the land and atmosphere. Driven by the Global Precipitation Measurement mission, we implemented and evaluated a variety of approaches for quantitative estimation of land surface emissivity and its variability, within a well-defined common framework. These approaches fall into three classes: physical modeling, statistical modeling, and a hybrid of physical and statistical modeling. Every approach is subject to evaluation against retrieved emissivity over a large area in the Southern Great Plains for a period of 2 years. Physical modeling, based on two radiative transfer models coupled to a land surface modeling framework, produced reasonable estimates, with channel-and polarization-dependent errors. Calibration of these models with historical data substantially improved their performance at lower frequencies. The statistical method was tested with five different regression models, and each of them consistently outperformed physical models by about 50%. The best statistical model had an average error of 0.9-2.1%. These statistical models were slightly improved when empirical orthogonal function analysis was incorporated in the emissivity data. The hybrid approach produced errors between the uncalibrated and calibrated physical model errors. In addition to their predictive performance, other aspects of each approach's strengths and weaknesses are discussed. C1 [Tian, Yudong; Harrison, Kenneth W.; You, Yalei] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Ringerud, Sarah] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Kumar, Sujay] Sci Applicat Int Corp, Beltsville, MD USA. [Turk, F. Joseph] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Tian, YD (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM Yudong.Tian@nasa.gov RI Peters-Lidard, Christa/E-1429-2012; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; FU National Aeronautics and Space Administration [NNH09ZDA001N] FX We thank three anonymous reviewers for their reviews and helpful comments. This research is supported by the National Aeronautics and Space Administration Precipitation Science Program under solicitation NNH09ZDA001N (PI: C. D. Peters-Lidard) and is part of the GPM Land Surface Working Group activities organized by Ralph Ferraro, Christa Peters-Lidard, and F. Joe Turk. Computational support was provided by NASA Center for Climate Simulation. Helpful discussions with S. Joseph Munchak, Mehmet Kurum, Ed Kim, Alicia Joseph, Peggy O'Neil, and Scott Rheingrover are appreciated. All data for this paper are properly cited and referred to in the reference list [Aires et al., 2011; Hansen et al., 2000; Knowles et al., 2006; Ringerud et al., 2014; Ringerud et al., 2015; Yang et al., 2006] and Harrison et al. [2015]. NR 47 TC 2 Z9 2 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2015 VL 120 IS 21 BP 11114 EP 11128 DI 10.1002/2015JD023582 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5DV UT WOS:000367823600005 ER PT J AU Whaley, CH Strong, K Jones, DBA Walker, TW Jiang, Z Henze, DK Cooke, MA McLinden, CA Mittermeier, RL Pommier, M Fogal, PF AF Whaley, C. H. Strong, K. Jones, D. B. A. Walker, T. W. Jiang, Z. Henze, D. K. Cooke, M. A. McLinden, C. A. Mittermeier, R. L. Pommier, M. Fogal, P. F. TI Toronto area ozone: Long-term measurements and modeled sources of poor air quality events SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GROUND-LEVEL OZONE; NORTH-AMERICA; STRATOSPHERIC OZONE; TROPOSPHERIC OZONE; CLIMATE-CHANGE; NOX EMISSIONS; GLOBAL-MODEL; GEOS-CHEM; TRENDS; SENSITIVITY AB The University of Toronto Atmospheric Observatory and Environment Canada's Centre for Atmospheric Research Experiments each has over a decade of ground-based Fourier transform infrared (FTIR) spectroscopy measurements in southern Ontario. We present the Toronto area FTIR time series from 2002 to 2013 of two tropospheric trace gases-ozone and carbon monoxide-along with surface in situ measurements taken by government monitoring programs. We interpret their variability with the GEOS-Chem chemical transport model and determine the atmospheric conditions that cause pollution events in the time series. Our analysis includes a regionally tagged O-3 model of the 2004-2007 time period, which quantifies the geographical contributions to Toronto area O-3. The important emission types for 15 pollution events are then determined with a high-resolution adjoint model. Toronto O-3, during pollution events, is most sensitive to southern Ontario and U.S. fossil fuel NOx emissions and natural isoprene emissions. The sources of Toronto pollution events are found to be highly variable, and this is demonstrated in four case studies representing local, short-, middle-, and long-range transport scenarios. This suggests that continental-scale emission reductions could improve air quality in the Toronto region. We also find that abnormally high temperatures and high-pressure systems are common to all pollution events studied, suggesting that climate change may impact Toronto O-3. Finally, we quantitatively compare the sensitivity of the surface and column measurements to anthropogenic NOx emissions and show that they are remarkably similar. This work thus demonstrates the usefulness of FTIR measurements in an urban area to assess air quality. C1 [Whaley, C. H.; Strong, K.; Jones, D. B. A.; Walker, T. W.; Cooke, M. A.; Fogal, P. F.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Jiang, Z.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Henze, D. K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [McLinden, C. A.; Mittermeier, R. L.] Environm Canada, Sci & Technol Branch, Atmospher Sci Directorate, Air Qual Res Div, Toronto, ON, Canada. [Pommier, M.] Univ Versailles St Quentin, Univ Paris 06, Sorbonne Univ, CNRS INSU,LATMOS IPSL, Paris, France. RP Whaley, CH (reprint author), Univ Toronto, Dept Phys, Toronto, ON, Canada. EM cwhaley@atmosp.physics.utoronto.ca RI Strong, Kimberly/D-2563-2012; Chem, GEOS/C-5595-2014; Jones, Dylan/O-2475-2014; OI Jones, Dylan/0000-0002-1935-3725; Whaley, Cynthia/0000-0002-0028-1514 FU Natural Sciences and Engineering Research Council of Canada; Canadian Space Agency; Environment Canada FX Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada, the Canadian Space Agency, and Environment Canada. The TAO measurements have been supported in the past by the Canadian Foundation for Climate and Atmospheric Sciences, ABB Bomem, the Canada Foundation for Innovation, the Ontario Research and Development Challenge Fund, the Premier's Research Excellence Award, and the University of Toronto. We also wish to thank the many students, postdocs, and interns who have contributed to TAO data acquisition since 2001. The CARE DA8 was operated by Environment Canada. The MOPITT data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. TES data were obtained from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. GEOS-Chem is a community model, developed by its users and supported by the U.S. NASA Earth Science Division and the Canadian National Science and Engineering Research Council. Work on the GEOS-Chem adjoint was supported by the NASA Air Quality Applied Sciences Team. The data used in this paper can be found at the following: TAO: ftp://ftp.cpc.ncep. noaa.gov/ndacc/station/toronto; CARE: email: richard.mittermeier@ec.gc.ca; TES: http://avdc.gsfc.nasa.gov/index.php?site=635564035 & MOPITT: http://l0dup05.larc.nasa.gov/opendap/MOPITT/ or email: chris.mclinden@ec.gc.ca; and for Toronto overpasses NAPS: http://www.airqualityontario.com/history/. NR 67 TC 3 Z9 3 U1 9 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2015 VL 120 IS 21 BP 11368 EP 11390 DI 10.1002/2014JD022984 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DA5DV UT WOS:000367823600019 ER PT J AU Stephen, MA Krainak, MA Fahey, ME AF Stephen, Mark A. Krainak, Michael A. Fahey, Molly E. TI Lateral-transfer recirculating etalon spectrometer SO OPTICS EXPRESS LA English DT Article ID FABRY-PEROT SPECTROMETER AB We describe a Fabry-Perot etalon spectrometer with a novel light recirculation scheme to generate simultaneous parallel wavelength channels with no moving parts. This design uses very simple optics to recirculate light reflected from near normal incidence from the etalon at successively higher angles of incidence. The spectrometer has the full resolution of a Fabry-Perot with significantly improved photon efficiency in a compact, simple design with no moving parts. We present results from a conceptual prototype and a corresponding model. (C) 2015 Optical Society of America C1 [Stephen, Mark A.] NASA, Goddard Space Flight Ctr, Instrument Syst & Technol Div, Greenbelt, MD 20771 USA. [Krainak, Michael A.; Fahey, Molly E.] NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. RP Stephen, MA (reprint author), NASA, Goddard Space Flight Ctr, Instrument Syst & Technol Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM mark.a.stephen@nasa.gov NR 10 TC 1 Z9 1 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 16 PY 2015 VL 23 IS 23 BP 30020 EP 30027 DI 10.1364/OE.23.030020 PG 8 WC Optics SC Optics GA CY7TH UT WOS:000366611500069 PM 26698483 ER PT J AU Carr, JA Elshobaki, M Chaudhary, S AF Carr, John A. Elshobaki, Moneim Chaudhary, Sumit TI Deep defects and the attempt to escape frequency in organic photovoltaic materials SO APPLIED PHYSICS LETTERS LA English DT Article ID CAPACITANCE TECHNIQUES; HOLE TRANSPORT; SOLAR-CELLS; STATES; DISTRIBUTIONS; ADMITTANCE AB Trap states are well-known to plague organic photovoltaic devices and their characterization is essential for continued progress. This letter reports on both the deep trap profiles and kinetics of trap emission, studied through temperature dependent capacitance measurements. Three polymer based systems relevant to photovoltaics, namely, P3HT:PC60BM, PTB7:PC70BM, and PCDTBT:PC70BM were investigated. Each polymer showed a markedly different deep trap profile, varying in shape from a nearly constant density of states to a sharp Gaussian. In contrast, the frequency of trap emission was similar for each-ca. 10(8) - 10(9) Hz-indicating a universal value and similar trapping mechanisms despite the differences in energetic distribution. The latter result is important in the light of range of conflicting values reported, or higher value (10(12) Hz) typically borrowed from crystalline inorganic materials. (c) 2015 AIP Publishing LLC. C1 [Carr, John A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Elshobaki, Moneim; Chaudhary, Sumit] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Elshobaki, Moneim] Mansoura Univ, Dept Phys, Mansoura 35516, Egypt. [Chaudhary, Sumit] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Chaudhary, S (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM sumitc@iastate.edu OI Elshobaki, Moneim/0000-0003-2125-0394 FU U.S. National Science Foundation [ECCS-1055930]; Egyptian government [GM915] FX This work was supported by the U.S. National Science Foundation (ECCS-1055930). M.E. thanks Egyptian government for fellowship support (Contract No. GM915). NR 22 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2015 VL 107 IS 20 AR 203302 DI 10.1063/1.4936160 PG 5 WC Physics, Applied SC Physics GA CX4RT UT WOS:000365688700060 ER PT J AU Goodwin, TJ McCarthy, M Cohrs, RJ Kaufer, BB AF Goodwin, Thomas J. McCarthy, Maureen Cohrs, Randall J. Kaufer, Benedikt B. TI 3D tissue-like assemblies: A novel approach to investigate virus-cell interactions SO METHODS LA English DT Article DE 3D tissue culture systems; Tissue-like assemblies (TLA); Rotating-wall vessel bioreactor; Varicella-zoster virus; Latency ID VARICELLA-ZOSTER-VIRUS; ROTATING-WALL VESSEL; HUMAN-MELANOMA CELLS; SIMULATED MICROGRAVITY; 3-DIMENSIONAL CULTURE; MAMMALIAN-CELLS; SMALL-INTESTINE; CANCER-RESEARCH; IN-VITRO; GROWTH AB Virus-host cell interactions are most commonly analyzed in cells maintained in vitro as two-dimensional tissue cultures. However, these in vitro conditions vary quite drastically from the tissues that are commonly infected in vivo. Over the years, a number of systems have been developed that allow the establishment of three-dimensional (3D) tissue structures that have properties similar to their in vivo 3D counterparts. These 3D systems have numerous applications including drug testing, maintenance of large tissue explants, monitoring migration of human lymphocytes in tissues, analysis of human organ tissue development and investigation of virus-host interactions including viral latency. Here, we describe the establishment of tissue-like assemblies for human lung and neuronal tissue that we infected with a variety of viruses including the respiratory pathogens human parainfluenza virus type 3 (PIV3), respiratory syncytial virus (RSV) and SARS corona virus (SARS-CoV) as well as the human neurotropic herpesvirus, varicella-zoster virus (VZV). (C) 2015 Elsevier Inc. All rights reserved. C1 [Goodwin, Thomas J.; McCarthy, Maureen] NASA, Lyndon B Johnson Space Ctr, Dis Modeling Tissue Analogues Lab, Houston, TX 77058 USA. [Cohrs, Randall J.] Univ Colorado, Sch Med, Dept Neurol, Aurora, CO USA. [Cohrs, Randall J.] Univ Colorado, Sch Med, Dept Microbiol, Aurora, CO USA. [Kaufer, Benedikt B.] Free Univ Berlin, Inst Virol, Berlin, Germany. RP Goodwin, TJ (reprint author), NASA, Lyndon B Johnson Space Ctr, Dis Modeling Tissue Analogues Lab, 2101 NASA Pkwy, Houston, TX 77058 USA. EM thomas.j.goodwin@nasa.gov; Randall.Cohrs@ucdenver.edu; b.kaufer@fu-berlin.de FU NASA Human Research Program Grant/Rapid Operational Investigation; Public Health Service Grant from the National Institutes of Health (NIH) [AG032958, NS082228] FX This work was supported in part by the NASA Human Research Program Grant/Rapid Operational Investigation (T.J.G.) and Public Health Service Grant AG032958 and NS082228 (R.J.C.) from the National Institutes of Health (NIH). We acknowledge Mayra A. Nelman, Laurie Graff, Igor Trktinskiy and Nathan Bos for excellent technical assistance, and Ms. Millie Young for editorial assistance. NR 48 TC 3 Z9 3 U1 3 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD NOV 15 PY 2015 VL 90 BP 76 EP 84 DI 10.1016/j.ymeth.2015.05.010 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CX0HX UT WOS:000365378600011 PM 25986169 ER PT J AU Blaber, EA Finkelstein, H Dvorochkin, N Sato, KY Yousuf, R Burns, BP Globus, RK Almeida, EAC AF Blaber, Elizabeth A. Finkelstein, Hayley Dvorochkin, Natalya Sato, Kevin Y. Yousuf, Rukhsana Burns, Brendan P. Globus, Ruth K. Almeida, Eduardo A. C. TI Microgravity Reduces the Differentiation and Regenerative Potential of Embryonic Stem Cells SO STEM CELLS AND DEVELOPMENT LA English DT Article ID PROLONGED SPACE-FLIGHT; HUMAN SKELETAL-MUSCLE; IN-VITRO; INOSITOL TRISPHOSPHATE; GENE-EXPRESSION; IMMUNE-SYSTEM; SPACEFLIGHT; PATHWAY; BONE; NOTCH AB Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microgravity for 15 days inhibits mESC differentiation and expression of terminal germ layer lineage markers in EBs. Additionally, microgravity-unloaded EBs retained stem cell self-renewal markers, suggesting that mechanical loading at Earth's gravity is required for normal differentiation of mESCs. Finally, cells recovered from microgravity-unloaded EBs and then cultured at Earth's gravity showed greater stemness, differentiating more readily into contractile cardiomyocyte colonies. These results indicate that mechanical unloading of stem cells in microgravity inhibits their differentiation and preserves stemness, possibly providing a cellular mechanistic basis for the inhibition of tissue regeneration in space and in disuse conditions on earth. C1 [Blaber, Elizabeth A.; Finkelstein, Hayley; Dvorochkin, Natalya; Yousuf, Rukhsana; Globus, Ruth K.; Almeida, Eduardo A. C.] NASA, Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA. [Blaber, Elizabeth A.; Burns, Brendan P.] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW, Australia. [Sato, Kevin Y.] NASA, Ames Res Ctr, FILMSS Wyle, Space Biol, Moffett Field, CA 94035 USA. [Burns, Brendan P.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW, Australia. RP Almeida, EAC (reprint author), NASA, Ames Res Ctr, Space Biosci Div, Mail Stop 236-7, Moffett Field, CA 94035 USA. EM e.almeida@nasa.gov OI BURNS, BRENDAN/0000-0002-2962-2597 FU NASA Space Life and Physical Sciences Grant [NNH08ZTT003N]; Australian Postgraduate Award at University of New South Wales; Space Biology-funded NASA Postdoctoral Program Fellowship at NASA Ames Research Center FX This work was supported by NASA Space Life and Physical Sciences Grant NNH08ZTT003N to Eduardo Almeida. Elizabeth Blaber's work was supported by an Australian Postgraduate Award at University of New South Wales and a Space Biology-funded NASA Postdoctoral Program Fellowship at NASA Ames Research Center. NR 58 TC 9 Z9 9 U1 6 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1547-3287 EI 1557-8534 J9 STEM CELLS DEV JI Stem Cells Dev. PD NOV 15 PY 2015 VL 24 IS 22 BP 2605 EP 2621 DI 10.1089/scd.2015.0218 PG 17 WC Cell & Tissue Engineering; Hematology; Medicine, Research & Experimental; Transplantation SC Cell Biology; Hematology; Research & Experimental Medicine; Transplantation GA CV6SM UT WOS:000364400700001 PM 26414276 ER PT J AU Collier, MR Chornay, D Clemmons, J Keller, JW Klenzing, J Kujawski, J McLain, J Pfaff, R Rowland, D Zettergren, M AF Collier, Michael R. Chornay, D. Clemmons, J. Keller, J. W. Klenzing, J. Kujawski, J. McLain, J. Pfaff, R. Rowland, D. Zettergren, M. TI VISIONS remote observations of a spatially-structured filamentary source of energetic neutral atoms near the polar cap boundary during an auroral substorm SO ADVANCES IN SPACE RESEARCH LA English DT Article DE ENAs; VISIONS; Polar cap; Substorm ID TRANSVERSE ION-ACCELERATION; F-REGION; ELECTRIC-FIELDS; IONOSPHERE; OUTFLOW; PLASMA; MAGNETOSPHERE; ENERGIZATION; MECHANISMS; UPFLOWS AB We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 eV. Spectra with peaks around 100 eV are also observed in the Electrostatic Ion Analyzer (ETA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of km. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 km up to above 600 km or a larger source of energetic ions to the southwest. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Collier, Michael R.; Chornay, D.; Keller, J. W.; Klenzing, J.; McLain, J.; Pfaff, R.; Rowland, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Clemmons, J.] Aerosp Corp, El Segundo, CA 90245 USA. [Kujawski, J.] Siena Coll, Dept Phys, Loudonville, NY USA. [Zettergren, M.] Embry Riddle Aeronaut Univ, Daytona Beach, FL USA. RP Collier, MR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM michael.r.collier@nasa.gov RI Collier, Michael/I-4864-2013; Klenzing, Jeff/E-2406-2011; OI Collier, Michael/0000-0001-9658-6605; Klenzing, Jeff/0000-0001-8321-6074; Clemmons, James/0000-0002-5298-5222 FU NASA [NNX09AI51G]; Heliophysics Supporting Research Program [ITM14_2-0038]; Wallops Flight Facility (WFF) FX The VISIONS team thanks Wallops Flight Facility (WFF) for their support of the successful VISIONS sounding rocket launch. This work was supported in part under NASA Grant NNX09AI51G and in part under the Heliophysics Supporting Research Program Proposal Number ITM14_2-0038. NR 29 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 15 PY 2015 VL 56 IS 10 BP 2097 EP 2105 DI 10.1016/j.asr.2015.08.010 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CV4QP UT WOS:000364251900006 ER PT J AU Shumov, AE Novikov, LS Shaevich, SK Aleksandrov, NG Smirnova, TN Nikishin, EF Chernik, VN Petukhov, VP Voronina, EN Sedov, VV Salnikova, IA Babaevskiy, PG Kozlov, NA Deev, IS Startsev, OV Shindo, DJ Golden, JL Kravchenko, M AF Shumov, A. E. Novikov, L. S. Shaevich, S. K. Aleksandrov, N. G. Smirnova, T. N. Nikishin, E. F. Chernik, V. N. Petukhov, V. P. Voronina, E. N. Sedov, V. V. Salnikova, I. A. Babaevskiy, P. G. Kozlov, N. A. Deev, I. S. Startsev, O. V. Shindo, D. J. Golden, J. L. Kravchenko, M. TI Results of the Komplast experiment on the long-term exposure of materials specimens on the ISS surface SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Spacecraft materials; Space environment; In-flight experiment; Long-duration exposure AB The Komplast materials experiment was designed by Khrunichev State Research and Production Space Center together with Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University and other Russian scientific institutes, and has been carried out by Mission Control Moscow since 1998. The purpose of this experiment is to study the complex effect of the low Earth orbit environment on samples of various spacecraft materials. On November 20, 1998 the Komplast experiment began with the launch of the first International Space Station module Zarya, or Functional Cargo Block (FGB). Eight Komplast panels with samples of materials and sensors were installed on the outer surface of FGB module. Two of eight experiment panels were retrieved during Russian extravehicular activity in February 2011 after 12 years of space exposure and were subsequently returned to Earth by Space Shuttle "Discovery" on the STS-133/ULF-5 mission in March 2011. The article presents the results obtained from this unique long-duration experiment on board of the International Space Station. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Shumov, A. E.; Shaevich, S. K.; Aleksandrov, N. G.; Smirnova, T. N.; Nikishin, E. F.] Khrunichev State Res & Prod Space Ctr, Khrunichev, Russia. [Novikov, L. S.; Chernik, V. N.; Petukhov, V. P.; Voronina, E. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Sedov, V. V.; Salnikova, I. A.] Res Inst Elastomer Mat & Prod, Moscow, Russia. [Babaevskiy, P. G.; Kozlov, N. A.] Russian State Technol Univ, Moscow State Aviat Technol Inst, Moscow, Russia. [Deev, I. S.; Startsev, O. V.] All Russian Sci Res Inst Aviat Mat, Moscow, Russia. [Shindo, D. J.] NASA, Lyndon B Johnson Space Ctr, Mat & Proc Branch, Houston, TX 77058 USA. [Golden, J. L.; Kravchenko, M.] Boeing Res & Technol, Houston, TX USA. RP Novikov, LS (reprint author), Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. EM novikov@sinp.msu.ru RI Voronina, Ekaterina/B-5997-2012; Novikov, Lev/D-3895-2012 OI Novikov, Lev/0000-0001-7468-2735 NR 5 TC 0 Z9 0 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 15 PY 2015 VL 56 IS 10 BP 2188 EP 2195 DI 10.1016/j.asr.2015.08.011 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CV4QP UT WOS:000364251900014 ER PT J AU White, LM Bhartia, R Stucky, GD Kanik, I Russell, MJ AF White, Lauren M. Bhartia, Rohit Stucky, Galen D. Kanik, Isik Russell, Michael J. TI Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE mackinawite; greigite; hydrothermal; iron sulfide; origin of life; vent ID IRON SULFIDES; EARLY EVOLUTION; RAMAN-SPECTROSCOPY; TRANSFORMATIONS; MARS; ENCELADUS; PATHWAYS; FIXATION; ENZYMES; REACTOR AB One model for the emergence of life posits that ancient, low temperature, submarine alkaline hydrothermal vents, partly composed of iron-sulfides, were capable of catalyzing the synthesis of prebiotic organic molecules from CO2, H-2 and CH4. Specifically, hydrothermal mackinawite (FOS) and greigite ((FeFe2S4)-Fe-II-S-III) have been highlighted in previous studies as analogs of the active centers of hydrogenase, ferredoxin, acetyl coenzyme-A synthase and carbon monoxide dehydrogenase featured in the biochemistry of certain autotrophic prokaryotes that occupy the base of the evolutionary tree. Despite the proposed importance of iron sulfide minerals and clusters in the synthesis of abiotic organic molecules, the mechanisms for the formation of these sulfides from solution and their preservation under the anoxic and low temperature (below 100 degrees C) conditions expected in off-axis submarine alkaline vent systems is not well understood (Bourdoiseau et al., 2011; Rickard and Luther, 2007). To rectify this, single hydrothermal chimneys were precipitated using a unique apparatus to simulate growth at hydrothermal vents of moderate temperature under supposed Hadean ocean-bottom conditions. Iron sulfide phases were observed through Raman spectroscopy at growth temperatures ranging from 40 to 80 degrees C. Fe(III)-containing mackinawite is confirmed to be present with mackinawite and greigite, supporting an Fe-III-mackinawite intermediate mechanism for the transformation of mackinawite to greigite below 100 degrees C. Raman spectroscopy of the chimneys revealed a maximum yield of greigite at 75 degrees C. These results suggest abiotic production of catalytically active mackinawite and greigite are possible under early Earth hydrothermal conditions as well as on other wet, rocky worlds geochemically similar to the Earth. (C) 2015 Elsevier B.V. All rights reserved. C1 [White, Lauren M.; Bhartia, Rohit; Kanik, Isik; Russell, Michael J.] CALTECH, Jet Prop Lab, Planetary Chem & Astrobiol, Pasadena, CA 91109 USA. [White, Lauren M.; Stucky, Galen D.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [White, Lauren M.] CALTECH, Jet Prop Lab, Mission Concep Syst Dev, Pasadena, CA 91109 USA. [Stucky, Galen D.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP White, LM (reprint author), CALTECH, Jet Prop Lab, Mission Concep Syst Dev, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Lauren.Spencer@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA), United States, Harriet Jenkins Predoctoral Fellowship Program; NASA Astrobiology Institute [13NAI720024, NNA13AA92A]; NASA Astrobiology Science and Instrument Development [GURILA NNH10ZDA001N]; US Government FX We thank William Abbey and Richard Kidd for assistance in the laboratory. For discussions, we are grateful to Shawn McGlynn. For equipment use we are grateful to Mathieu Choukroun. L.W. was supported by the National Aeronautics and Space Administration (NASA), United States, Harriet Jenkins Predoctoral Fellowship Program. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and supported by the NASA Astrobiology Institute (Icy Worlds 13NAI720024 and Life Underground NNA13AA92A) and NASA Astrobiology Science and Instrument Development (GURILA NNH10ZDA001N). US Government sponsorship acknowledged. NR 53 TC 9 Z9 9 U1 11 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2015 VL 430 BP 105 EP 114 DI 10.1016/j.epsl.2015.08.013 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CT8ML UT WOS:000363070600011 ER PT J AU Jackson, WA Davila, AF Sears, DWG Coates, JD Mckay, CP Brundrett, M Estrada, N Bohlke, JK AF Jackson, W. Andrew Davila, Alfonso F. Sears, Derek W. G. Coates, John D. McKay, Christopher P. Brundrett, Maeghan Estrada, Nubia Boehlke, J. K. TI Widespread occurrence of (per)chlorate in the Solar System SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE chlorate; perchlorate; meteorite; chondrite; Murchinson; Fayetteville ID MARTIAN SOIL; ISOTOPIC COMPOSITION; NATURAL PERCHLORATE; DENITRIFIER METHOD; FRESH-WATER; NITRATE; ORIGIN; CHLORINE; METEORITES; REDUCTION AB Perchlorate (ClO4-) and chlorate (ClO3-) are ubiquitous on Earth and ClO4- has also been found on Mars. These species can play important roles in geochemical processes such as oxidation of organic matter and as biological electron acceptors, and are also indicators of important photochemical reactions involving oxyanions; on Mars they could be relevant for human habitability both in terms of in situ resource utilization and potential human health effects. For the first time, we extracted, detected and quantified ClO4- and ClO3- in extraterrestrial, non-planetary samples: regolith and rock samples from the Moon, and two chondrite meteorites (Murchison and Fayetteville). Lunar samples were collected by astronauts during the Apollo program, and meteorite samples were recovered immediately after their fall. This fact, together with the heterogeneous distribution of ClO4- and ClO3- within some of the samples, and their relative abundance with respect to other soluble species (e.g., NO3-) are consistent with an extraterrestrial origin of the oxychlorine species. Our results, combined with the previously reported widespread occurrence on Earth and Mars, indicate that ClO4- and ClO3- could be present throughout the Solar System. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jackson, W. Andrew; Brundrett, Maeghan; Estrada, Nubia] Texas Tech Univ, Civil & Environm Engn, Lubbock, TX 79409 USA. [Davila, Alfonso F.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Davila, Alfonso F.; Sears, Derek W. G.; McKay, Christopher P.] NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Coates, John D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Boehlke, J. K.] US Geol Survey, Reston, VA 20192 USA. [Sears, Derek W. G.] Ames Res Ctr, Bay Area Environm Res Inst, Mountain View, CA 94043 USA. RP Jackson, WA (reprint author), Texas Tech Univ, Civil & Environm Engn, Lubbock, TX 79409 USA. EM andrew.jackson@ttu.edu RI Jackson, William/B-8999-2009; OI Davila, Alfonso/0000-0002-0977-9909 FU NASA Astrobiology program [NNX12AD61G]; NASA Astrobiology Institute (NAI) [NNX15BB01A] FX We would like to acknowledge the CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) and the lunar sample curators at NASA Johnson Space Center for providing the Moon samples. We acknowledge the Smithsonian Institution for providing samples of the Murchison meteorite, and the University of Arkansas for providing samples of the Fayetteville meteorite. Janet Hannon and Andrew Schauer assisted with NO3- isotope analyses. David Stonestrom, Balaji Rao, Mark Claire, and an anonymous reviewer provided helpful reviews of the manuscript. AFD acknowledges funding from the NASA Astrobiology program (Grant NNX12AD61G), and the NASA Astrobiology Institute (NAI Grant NNX15BB01A to the SETI Institute). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 47 TC 12 Z9 12 U1 7 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2015 VL 430 BP 470 EP 476 DI 10.1016/j.epsl.2015.09.003 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CT8ML UT WOS:000363070600045 ER PT J AU Bagenal, F Sidrow, E Wilson, RJ Cassidy, TA Dols, V Crary, FJ Steffl, AJ Delamere, PA Kurth, WS Paterson, WR AF Bagenal, Fran Sidrow, Evan Wilson, Robert J. Cassidy, Timothy A. Dols, Vincent Crary, Frank J. Steffl, Andrew J. Delamere, Peter A. Kurth, William S. Paterson, William R. TI Plasma conditions at Europa's orbit SO ICARUS LA English DT Article DE Europa; Satellites, atmospheres; Jupiter, magnetosphere; Atmospheres, structure ID CASSINI UVIS OBSERVATIONS; RADIO ASTRONOMY OBSERVATIONS; NEUTRAL CLOUD THEORY; GALILEO SPACECRAFT; IO-TORUS; JOVIAN MAGNETOSPHERE; INNER MAGNETOSPHERE; WAVE OBSERVATIONS; JUPITERS MAGNETOSPHERE; AZIMUTHAL VARIABILITY AB With attention turned to Europa as a target for exploration, we focus on the space environment in which Europa is embedded. We review remote and in situ observations of plasma properties at Europa's orbit, between Io's dense, UV-emitting plasma torus and Jupiter's dynamic plasma sheet. Where observations are limited (e.g. in plasma composition), we supplement our analysis with models of the neutral and plasma populations from Io to Europa. We evaluate variations and uncertainties in plasma properties with radial distance, latitude, longitude and time. (C) 2015 Elsevier Inc. All rights reserved. C1 [Bagenal, Fran; Sidrow, Evan; Wilson, Robert J.; Cassidy, Timothy A.; Dols, Vincent; Crary, Frank J.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Steffl, Andrew J.] SW Res Inst, Boulder, CO 80302 USA. [Delamere, Peter A.] Univ Alaska, Fairbanks, AK 99775 USA. [Kurth, William S.] Univ Iowa, Iowa City, IA 52242 USA. [Paterson, William R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bagenal, F (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. RI Wilson, Rob/C-2689-2009; OI Wilson, Rob/0000-0001-9276-2368; Kurth, William/0000-0002-5471-6202 FU NASA's JDAP [NNX09AE03G]; NASA [NNN12AAO1C, 1492014] FX We thank Steve Bartlett for assistance with the graphics and Drake Ranquist for help with the text. Support for this study was provided in part by NASA's JDAP program as grant NNX09AE03G and NASA NNN12AAO1C to JPL with subaward 1492014 to LASP. The GO-J-PLS-3-RDR-FULLRES-V1.0 data set was obtained from the Planetary Data System (PDS) at http://pds.nasa.gov/. NR 123 TC 10 Z9 10 U1 3 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 1 EP 13 DI 10.1016/j.icarus.2015.07.036 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400001 ER PT J AU Williams, KE McKay, CP Heldmann, JL AF Williams, K. E. McKay, Christopher P. Heldmann, J. L. TI Modeling the effects of martian surface frost on ice table depth SO ICARUS LA English DT Article DE Mars, climate; Mars, surface; Ices ID MCMURDO DRY VALLEYS; VIKING LANDER-2 SITE; GROUND ICE; LIQUID WATER; MIDLATITUDE SNOWPACKS; BOUNDARY-LAYER; MARS; STABILITY; ANTARCTICA; PERMAFROST AB Ground ice has been observed in small fresh craters in the vicinity of the Viking 2 lander site (48 degrees N, 134 degrees E). To explain these observations, current models for ground ice invoke levels of atmospheric water of 20 precipitable micrometers - higher than observations. However, surface frost has been observed at the Viking 2 site and surface water frost and snow have been shown to have a stabilizing effect on Antarctic subsurface ice. A snow or frost cover provides a source of humidity that should reduce the water vapor gradient and hence retard the sublimation loss from subsurface ice. We have modeled this effect for the Viking 2 landing site with combined ground ice and surface frost models. Our model is driven by atmospheric output fields from the NASA Ames Mars General Circulation Model (MGCM). Our modeling results show that the inclusion of a thin seasonal frost layer, present for a duration similar to that observed by the Viking Lander 2, produces ice table depths that are significantly shallower than a model that omits surface frost. When a maximum frost albedo of 0.35 was permitted, seasonal frost is present in our model from Ls = 182 degrees to Ls = 16 degrees, resulting in an ice table depth of 64 cm - which is 24 cm shallower than the frost-free scenario. The computed ice table depth is only slightly sensitive to the assumed maximum frost albedo or thickness in the model. (C) 2015 Elsevier Inc. All rights reserved. C1 [Williams, K. E.] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. [McKay, Christopher P.; Heldmann, J. L.] NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. RP Williams, KE (reprint author), Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. FU NASA Mars Fundamental Research Program [NNX12AN90G] FX This study was supported by the NASA Mars Fundamental Research Program through Grant NNX12AN90G awarded to KEW. The authors also thank Jeffrey Hollingsworth and James Schaeffer of the NASA Ames MGCM group for MGCM support. This manuscript also benefitted from the comments of Aaron Zent and an anonymous reviewer. NR 51 TC 1 Z9 1 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 58 EP 65 DI 10.1016/j.icarus.2015.08.005 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400006 ER PT J AU Dalle Ore, CM Cruikshank, DP Mastrapa, RME Lewis, E White, OL AF Dalle Ore, Cristina M. Cruikshank, Dale P. Mastrapa, Rachel M. E. Lewis, Emma White, Oliver L. TI Impact craters: An ice study on Rhea SO ICARUS LA English DT Article DE Saturn, satellites; Ices, IR spectroscopy; Cratering ID OUTER SOLAR-SYSTEM; SATURNS E-RING; CRYSTALLINE H2O-ICE; CASSINI VIMS; OPTICAL-PROPERTIES; WATER ICE; MU-M; IRRADIATION; SATELLITES; CONSTANTS AB The goal of this project is to study the properties of H2O ice in the environment of the Saturn satellites and in particular to measure the relative amounts of crystalline and amorphous H2O ice in and around two craters on Rhea. The craters are remnants of cataclysmic events that, by raising the local temperature, melted the ice, which subsequently crystallized. Based on laboratory experiments it is expected that, when exposed to ion bombardment at the temperatures typical of the Saturn satellites, the crystalline structure of the ice will be broken, resulting in the disordered, amorphous phase. We therefore expect the ice in and around the craters to be partially crystalline and partially amorphous. We have designed a technique that estimates the relative amounts of crystalline and amorphous H2O ice based on measurements of the distortion of the 2-mu m spectral absorption band. The technique is best suited for planetary surfaces that are predominantly icy, but works also for surfaces slightly contaminated with other ices and non-ice components. We apply the tool to two areas around the Inktomi and the Obatala craters. The first is a young impact crater on the leading hemisphere of Rhea, the second is an older one on the trailing hemisphere. For each crater we obtain maps of the fraction of crystalline ice, which were overlain onto Imaging Science Subsystem (ISS) images of the satellite searching for correlations between crystallinity and geography. For both craters the largest fractions of crystalline ice are in the center, as would be intuitively expected since the 'ground zero' areas should be most affected by the effects of the impact. The overall distribution of the crystalline ice fraction maps the shape of the crater and, in the case of Inktomi, of the rays. The Inktomi crater ranges between a maximum fraction of 67% crystalline ice to a minimum of 39%. The Obatala crater varies between a maximum of 51% and a minimum of 33%. Based on simplifying assumptions and the knowledge that crystalline ice exposed to ion bombardment transforms into amorphous at a known rate, we estimate the age of the Obatala crater to be 450 Ma. (C) 2015 Elsevier Inc. All rights reserved. C1 [Dalle Ore, Cristina M.; Cruikshank, Dale P.; Mastrapa, Rachel M. E.; White, Oliver L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Dalle Ore, Cristina M.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Lewis, Emma] Swarthmore Coll, Swarthmore, PA 19081 USA. RP Dalle Ore, CM (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. EM Cristina.M.DalleOre@nasa.gov FU [NNX13AJ87A] FX CDO acknowledges support from Cooperative Agreement NNX13AJ87A. NR 41 TC 0 Z9 0 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 80 EP 90 DI 10.1016/j.icarus.2015.08.008 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400008 ER PT J AU Potter, RWK AF Potter, Ross W. K. TI Investigating the onset of multi-ring impact basin formation SO ICARUS LA English DT Editorial Material DE Impact processes; Cratering; Moon, surface; Moon, interior; Tectonics ID LARGE LUNAR CRATERS; PEAK-RING FORMATION; SCHRODINGER-BASIN; CHICXULUB CRATER; ORIENTALE BASIN; COMPLEX CRATER; MOON; STRENGTH; MODELS; ROCK AB Multi-ring basins represent some of the largest, oldest, rarest and, therefore, least understood impact crater structures. Various theories have been put forward to explain their formation; there is currently; however, no consensus. Here, numerical modeling is used to investigate the onset of multi-ring basin formation on the Moon using two thermal profiles suitable for the lunar basin-forming epoch. Various multi-ring basin formation hypotheses are discussed, compared, and evaluated against target deformation and strain distribution in the models, as well as geological and geophysical observations. The mechanism that most closely resembles the numerical models in terms of basin formation and structure, as well as observations, appears to be the ring tectonic theory, whereby ring formation is dependent on transient cavities penetrating entirely through the Moon's lithosphere into the asthenosphere below. The numerical models suggest that all lunar basins larger than Schrodinger (320 km diameter) should be capable of forming multiple rings, as their transient cavities penetrate into the asthenosphere for both thermal profiles. Additionally, the models demonstrate that the target's thermal profile starts to influence basin formation and structure when impact energy exceeds that of the Schrodinger event. (C) 2015 Elsevier Inc. All rights reserved. C1 [Potter, Ross W. K.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Potter, Ross W. K.] NASA, Solar Syst Explorat Res Virtual Inst, Washington, DC USA. RP Potter, RWK (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, Box 1846, Providence, RI 02912 USA. EM ross_potter@brown.edu NR 78 TC 3 Z9 3 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 91 EP 99 DI 10.1016/j.icarus.2015.08.009 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400009 ER PT J AU Kleinbohl, A Schofield, JT Kass, DM Abdou, WA McCleese, DJ AF Kleinboehl, Armin Schofield, John T. Kass, David M. Abdou, Wedad A. McCleese, Daniel J. TI No widespread dust in the middle atmosphere of Mars from Mars Climate Sounder observations SO ICARUS LA English DT Article DE Mars; Mars, atmosphere; Mars, climate; Infrared observations; Abundances, atmospheres ID MARTIAN ATMOSPHERE; VERTICAL STRUCTURE; RADIATIVE-TRANSFER; LAYERS AB It has been established that dust in the atmosphere of Mars is not distributed homogeneously in the vertical but exhibits layering in the lower atmosphere. Recently published results also suggest a dust maximum in the middle atmosphere that predominantly occurs at 50-60 km altitude on the daytime hemisphere. We use measurements from the Mars Climate Sounder to investigate the distribution of dust above similar to 40 km altitude. Our results do not support the existence of widespread dust in the middle atmosphere of Mars inferred from earlier observations. The average dust extinction does not exceed 10(-6) km(-1) at 463 cm(-1) above 50 km altitude in atmospheric conditions without large dust storms. (C) 2015 Elsevier Inc. All rights reserved. C1 [Kleinboehl, Armin; Schofield, John T.; Kass, David M.; Abdou, Wedad A.; McCleese, Daniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kleinbohl, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 23 TC 3 Z9 3 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 118 EP 121 DI 10.1016/j.icarus.2015.08.010 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400011 ER PT J AU Thompson, WT AF Thompson, W. T. TI Linear polarization measurements of Comet C/2011 W3 (Lovejoy) from STEREO SO ICARUS LA English DT Article DE Comets, dust; Comets, composition; Polarimetry ID SUN-GRAZING COMET; LIGHT-SCATTERING; SUNGRAZING COMETS; IMAGING POLARIMETRY; EXTREME-ULTRAVIOLET; AGGREGATE PARTICLES; OPTICAL-PROPERTIES; DUST PARTICLES; PHASE ANGLES; HALE-BOPP AB The spectacular Kreutz sungrazing comet C/2011 W3 (Lovejoy) was well observed by the coronagraphs aboard the Solar and Heliospheric Observatory (SOHO) and the twin Solar and Terrestrial Relations Observatory (STEREO) spacecraft during both the inbound and outbound passages about perihelion on 16 December 2011. The combination of the two STEREO viewpoints covers a large range of phase angles for which the polarization dependence can be measured. Extremely large polarization levels were measured for Comet Lovejoy, ranging from -15 +/- 3% in the negative branch at low phase angles, to as much as 58% or more in the positive branch. To the best of our knowledge, these high polarization levels are completely unprecedented. The negative branch extends to larger phase angles than usual, with the highest negative polarization occurring around 35 degrees, and the transition from negative to positive polarization occurring around 45-50 degrees. Stratification along the tail was also detected, with the degree of polarization increasing with greater distance from the nucleus. Although cometary dust grains are typically modeled as aggregates, we speculate based on results available in the literature that these observations can be best explained by nearly spherical or somewhat aspherical magnesium-rich silicate particles stratified by size, with size distributions characterized by effective size parameters ranging from x(eff) = 2-3 near the nucleus to x(eff) < 1 farther back in the tail. However, additional modeling would be needed to better understand the implications of these unusual polarization measurements. (C) 2015 Elsevier Inc. All rights reserved. C1 NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Greenbelt, MD 20771 USA. RP Thompson, WT (reprint author), NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Code 671, Greenbelt, MD 20771 USA. EM William.T.Thompson@nasa.gov FU NASA [NNG06EB68C] FX The author would like to thank Evgenij S. Zubko and Gorden Videen for their helpful suggestions about the possible causes for the negative polarization readings, and for sharing some preliminary model results, as well as their many pertinent comments on the text. Special thanks also go to the anonymous reviewers, whose suggestions were extremely helpful, especially regarding the reasons for the strong positive branch. This work was funded under NASA Contract NNG06EB68C. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut fur Sonnensystemforschung (Germany), Centre Spatiale de Liege (Belgium), Institut d'Optique Theorique et Appliquee (France), and Institut d'Astrophysique Spatiale (France). NR 55 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 122 EP 132 DI 10.1016/j.icarus.2015.08.018 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400012 ER PT J AU Kerber, L Forget, F Wordsworth, R AF Kerber, Laura Forget, Francois Wordsworth, Robin TI Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model SO ICARUS LA English DT Article DE Mars, climate; Volcanism; Atmospheres, evolution; Atmospheres, composition; Mars, atmosphere ID GENERAL-CIRCULATION MODEL; CLAY MINERAL FORMATION; EARLY MARS; OMEGA/MARS EXPRESS; AQUEOUS SEDIMENTATION; OPTICAL-CONSTANTS; MERIDIANI-PLANUM; SULFATE AEROSOLS; WARM; DEPOSITS AB Volcanic SO2 in the martian atmosphere has been invoked as a way to create a sustained or transient greenhouse during early martian history. Many modeling studies have been performed to test the feasibility of this hypothesis, resulting in a range of conclusions, from highly feasible to highly improbable. In this study we perform a wide range of simulations using the 3-D Laboratoire de Meteorologie Dynamique Generic Global Climate Model (GCM) in order to place earlier results into context and to explore the sensitivity of model outcomes to parameters such as SO2 mixing ratio, atmospheric H2O content, background atmospheric pressure, and aerosol size, abundance, and composition. We conclude that SO2 is incapable of creating a sustained greenhouse on early Mars, and that even in the absence of aerosols, local and daily temperatures rise above 273 K for only for limited periods with favorable background CO2 pressures. In the presence of even small amounts of aerosols, the surface is dramatically cooled for realistic aerosol sizes. Brief, mildly warm conditions require the co-occurrence of many improbable factors, while cooling is achieved for a wide range of model parameters. Instead of causing warming, sulfur in the martian atmosphere may have caused substantial cooling, leading to the end of clement climate conditions on early Mars. (C) 2013 Elsevier Inc. All rights reserved. C1 [Kerber, Laura; Forget, Francois] CNRS UPMC IPSL, Lab Meteorol Dynam, F-75252 Paris 05, France. [Wordsworth, Robin] Harvard, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Kerber, L (reprint author), Caltech Univ, Jet Prop Lab, Pasadena, CA 91125 USA. EM kerber@lmd.jussieu.fr FU CNRS; NASA PTM [NNX14AK33G] FX L. Kerber would like to acknowledge CNRS and NASA PTM Grant NNX14AK33G, which both provided funding for this work. NR 116 TC 5 Z9 5 U1 1 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 133 EP 148 DI 10.1016/j.icarus.2015.08.011 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400013 ER PT J AU Moses, JI Armstrong, ES Fletcher, LN Friedson, AJ Irwin, PGJ Sinclair, JA Hesman, BE AF Moses, Julianne I. Armstrong, Eleanor S. Fletcher, Leigh N. Friedson, A. James Irwin, Patrick G. J. Sinclair, James A. Hesman, Brigette E. TI Evolution of stratospheric chemistry in the Saturn storm beacon region SO ICARUS LA English DT Article DE Atmospheres, chemistry; Atmospheres, dynamics; Infrared observations; Photochemistry; Saturn, atmosphere ID COMPOSITE INFRARED SPECTROMETER; RATE-CONSTANT; THERMAL STRUCTURE; ATOMIC-HYDROGEN; CLOUD STRUCTURE; OUTER PLANETS; GIANT PLANETS; HIGH-PRESSURE; MERIDIONAL DISTRIBUTION; RADIATIVE-TRANSFER AB The giant northern-hemisphere storm that erupted on Saturn in December 2010 triggered significant changes in stratospheric temperatures and species abundances that persisted for more than a year after the original outburst. The stratospheric regions affected by the storm have been nicknamed "beacons" due to their prominent infrared-emission signatures (Fletcher, L.N. et al. [2011]. Science 332, 1413). The two beacon regions that were present initially merged in April 2011 to form a single, large, anticyclonic vortex (Fletcher, L.N. et al. [2012]. Icarus 221, 560). We model the expected photochemical evolution of the stratospheric constituents in the beacons from the initial storm onset through the merger and on out to March 2012. The results are compared with longitudinally resolved Cassini/CIRS spectra from May 2011. If we ignore potential changes due to vertical winds within the beacon, we find that C2H2, C2H6, and C3H8 remain unaffected by the increased stratospheric temperatures in the beacon, the abundance of the shorter-lived CH3C2H decreases, and the abundance of C2H4 increases significantly due to the elevated temperatures, the latter most notably in a secondary mixing-ratio peak located near mbar pressures. The C4H2 abundance in the model decreases by a factor of a few in the 0.01-10 mbar region but has a significant increase in the 10-30 mbar region due to evaporation of the previously condensed phase. The column abundances of C6H6 and H2O above 30 mbar also increase due to aerosol evaporation. Model-data comparisons show that models that consider temperature changes alone under-predict the abundance of C2Hx species by a factor of 2-7 in the beacon core in May 2011, suggesting that other processes not considered by the models, such as downwelling winds in the vortex, are affecting the species profiles. Additional calculations indicate that downwelling winds of order -10 cm s(-1) similar to 0.1 mbar need to be included in the photochemical models in order to explain the inferred C2Hx abundances in the beacon core, indicating that both strong subsiding winds and chemistry at elevated temperatures are affecting the vertical profiles of atmospheric constituents in the beacon. We (i) discuss the general chemical behavior of stratospheric species in the beacon region, (ii) demonstrate how the evolving beacon environment affects the species vertical profiles and emission characteristics (both with and without the presence of vertical winds), (iii) make predictions with respect to compositional changes that can be tested against Cassini and Herschel data, and higher-spectral-resolution ground-based observations of the beacon region, and (iv) discuss future measurements and modeling that could further our understanding of the dynamical origin, evolution, and chemical processing within these unexpected stratospheric vortices that were generated after the 2010 convective event. (C) 2015 Elsevier Inc. C1 [Moses, Julianne I.] Space Sci Inst, Boulder, CO 80301 USA. [Armstrong, Eleanor S.; Fletcher, Leigh N.; Irwin, Patrick G. J.] Univ Oxford, Dept Phys, Clarendon Lab, Atmospher Ocean & Planetary Phys, Oxford OX1 3PU, England. [Friedson, A. James; Sinclair, James A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hesman, Brigette E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Moses, JI (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. RI Fletcher, Leigh/D-6093-2011; Moses, Julianne/I-2151-2013; OI Fletcher, Leigh/0000-0001-5834-9588; Moses, Julianne/0000-0002-8837-0035; Irwin, Patrick/0000-0002-6772-384X FU National Aeronautics and Space Administration (NASA) through the Science Mission Directorate [NNX13AK93G]; Lunar and Planetary Institute's Summer Undergraduate Research Program; Royal Society Research Fellowship at the University of Oxford; NASA Cassini/CIRS project; NASA Planetary Astronomy (PAST) Program [NNX11AJ47G]; NASA Cassini Data Analysis Participating Scientists (CDAPS) Program [NNX12AC24G] FX This material is based on research supported by the National Aeronautics and Space Administration (NASA) under Grant NNX13AK93G, issued to the first author through the Science Mission Directorate from the now-defunct Outer Planet Research Program. E.S.A. also gratefully acknowledges support from the Lunar and Planetary Institute's Summer Undergraduate Research Program. L.N.F. was supported by a Royal Society Research Fellowship at the University of Oxford. B.E.H. was supported by the NASA Cassini/CIRS project, by the NASA Planetary Astronomy (PAST) Program Grant No. NNX11AJ47G, and the NASA Cassini Data Analysis Participating Scientists (CDAPS) Program Grant No. NNX12AC24G. We thank the two anonymous reviewers for useful comments and suggestions that improved the manuscript. NR 105 TC 4 Z9 4 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 15 PY 2015 VL 261 BP 149 EP 168 DI 10.1016/j.icarus.2015.08.012 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS9BZ UT WOS:000362385400014 ER PT J AU Sola, F Bhatt, R AF Sola, F. Bhatt, R. TI Mapping the local modulus of Sylramic silicon carbide fibers by nanoindentation SO MATERIALS LETTERS LA English DT Article DE Ceramics; Elastic properties; Electron microscopy; Fiber technology; Microstructure; Spectroscopy ID ELASTIC-MODULUS; THIN-FILM; MICROSCOPY; ELECTRON; HARDNESS AB Silicon carbide (SiC) fibers are an important component of SiC/SiC ceramic matrix composites (CMC). Service requirements for SiC/SiC CMC components in turbine engines are several hundreds of hours in pertinent combustion gas environments. This inflicts great challenges in terms of testing and in validating components under the required service hours. Modeling and computational methods are a cost-effective approach to explore CMC performance. However, there is still a need of experimental data on local variations in modulus that can be used to feed more realistic models. In this letter, the local modulus of Sylramic fibers is mapped by nanoindentation analysis. It is shown that while average modulus values of fibers maybe identical, its local modulus mapping are quite different. Published by Elsevier B.V. C1 [Sola, F.; Bhatt, R.] NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. [Bhatt, R.] Ohio Aerosp Inst, Cleveland, OH 44135 USA. RP Sola, F (reprint author), NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. EM francisco.sola-lopez@nasa.gov FU NASA FX This work was supported by the NASA Fundamental Aeronautics Program. The authors would like to acknowledge Ms. J. Buehler for polishing and Mr. T. McCue for electroplating work. NR 19 TC 0 Z9 0 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X EI 1873-4979 J9 MATER LETT JI Mater. Lett. PD NOV 15 PY 2015 VL 159 BP 395 EP 398 DI 10.1016/j.matlet.2015.07.025 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CT1ZY UT WOS:000362603000102 ER PT J AU Troxler, TG Barr, JG Fuentes, JD Engel, V Anderson, G Sanchez, C Lagomasino, D Price, R Davis, SE AF Troxler, Tiffany G. Barr, Jordan G. Fuentes, Jose D. Engel, Victor Anderson, Gordon Sanchez, Christopher Lagomasino, David Price, Rene Davis, Stephen E. TI Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE pCO(2); Pneumatophore; Course woody debris; Carbon; Budget; Peat ID COARSE WOODY DEBRIS; ORGANIC-CARBON; SPATIAL VARIATION; SOIL RESPIRATION; ESTUARINE WATERS; SOUTH FLORIDA; GAS-EXCHANGE; ECOSYSTEM; FORESTS; FLUX AB Carbon cycling in mangrove forests represents a significant portion of the coastal wetland carbon (C) budget across the latitudes of the tropics and subtropics. Previous research suggests fluctuations in tidal inundation, temperature and salinity can influence forest metabolism and C cycling. Carbon dioxide (CO2) from respiration that occurs from below the canopy is contributed from different components. In this study, we investigated variation in CO2 flux among different below-canopy components (soil, leaf litter, course woody debris, soil including pneumatophores, prop roots, and surface water) in a riverine mangrove forest of Shark River Slough estuary, Everglades National Park (Florida, USA). The range in CO2 flux from different components exceeded that measured among sites along the oligohaline-saline gradient. Black mangrove (Avicennia germinans) pneumatophores contributed the largest average CO2 flux. Over a narrow range of estuarine salinity (25-35 practical salinity units (PSU)), increased salinity resulted in lower CO2 flux to the atmosphere. Tidal inundation reduced soil CO2 flux overall but increased the partial pressure of CO2 (pCO(2)) observed in the overlying surface water upon flooding. Higher pCO(2) in surface water is then subject to tidally driven export, largely as HCO3. Integration and scaling of CO2 flux rates to forest scale allowed for improved understanding of the relative contribution of different below-canopy components to mangrove forest ecosystem respiration (ER). Summing component CO2 fluxes suggests a more significant contribution of below-canopy respiration to ER than previously considered. An understanding of below-canopy CO2 component fluxes and their contributions to ER can help to elucidate how C cycling will change with discrete disturbance events (e.g., hurricanes) and long-term change, including sea-level rise, and potential impact mangrove forests. As such, key controls on below-canopy ER must be taken into consideration when developing and modeling mangrove forest C budgets. (C) 2015 Elsevier B.V. All rights reserved. C1 [Troxler, Tiffany G.] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. [Barr, Jordan G.] Everglades Natl Pk, South Florida Nat Res Ctr, Homestead, FL 33034 USA. [Fuentes, Jose D.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Engel, Victor; Anderson, Gordon] US Geol Survey, Southeast Ecol Sci Ctr, Gainesville, FL 32606 USA. [Sanchez, Christopher] Univ Miami, Abbess Ctr Ecosyst Sci & Policy, Coral Gables, FL 33146 USA. [Lagomasino, David] NASA, Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD 20771 USA. [Price, Rene] Florida Int Univ, Dept Earth & Environm, Miami, FL 33199 USA. [Price, Rene] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. [Davis, Stephen E.] Everglades Fdn, Palmetto Bay, FL 33157 USA. RP Troxler, TG (reprint author), Florida Int Univ, Southeast Environm Res Ctr, OE 148,11200 SW 8th St, Miami, FL 33199 USA. EM troxlert@fiu.edu RI Lagomasino, David/P-8413-2015; OI Lagomasino, David/0000-0003-4008-5363; Barr, Jordan/0000-0002-6460-3463 FU National Park Service; Florida Coastal Everglades LTER through National Science Foundation [DEB-1237517, DBI-0620409]; Department of Energy, National Institute for Climate Change Research [DE-FC02-06ER64298] FX The authors gratefully acknowledge support from the National Park Service, Florida Coastal Everglades LTER through support from the National Science Foundation grants DEB-1237517 and DBI-0620409, and the Department of Energy, National Institute for Climate Change Research (Grant number DE-FC02-06ER64298). Field support was kindly provided by Rafael Travieso, Adam Hines, Olga Sanchez and Patrick Risko. We are also grateful to two anonymous reviewers and Barclay Shoemaker who provided valuable comments that improved the manuscript. This is contribution number 704 of the Southeast Environmental Research Center at Florida International University. NR 55 TC 6 Z9 6 U1 15 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 15 PY 2015 VL 213 BP 273 EP 282 DI 10.1016/j.agrformet.2014.12.012 PG 10 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CR3TG UT WOS:000361255400026 ER PT J AU Lagomasino, D Price, RM Whitman, D Melesse, A Oberbauer, SF AF Lagomasino, David Price, Rene M. Whitman, Dean Melesse, Assefa Oberbauer, Steven F. TI Spatial and temporal variability in spectral-based surface energy evapotranspiration measured from Landsat 5TM across two mangrove ecotones SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Everglades; Hydrology; Disturbance; Latent heat; Soil heat flux; Surface energy balance ID FLORIDA COASTAL EVERGLADES; SOIL HEAT-FLUX; NET PRIMARY PRODUCTIVITY; LEAF-AREA INDEX; SOUTH FLORIDA; NUTRIENT CONCENTRATIONS; VEGETATION INDEXES; NATIONAL-PARK; SENSIBLE HEAT; FRESH-WATER AB Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing can play a crucial role in identifying regional ET trends and surface energy changes after disturbances in isolated and inaccessible areas of coastal mangrove wetlands, like those found in Everglades National Park in southern Florida. Using a combination of long-term datasets acquired from the NASA Landsat 5TM satellite database and the Florida Coastal Everglades Long-Term Ecological Research project, the present study investigates how ET as well as radiation and other energy balance parameters in the Everglades mangrove ecotone have responded to multiple hurricane events and restoration projects over the past two decades. An energy balance model using satellite data was used to estimate latent heat (lambda E) in tall and scrub mangrove environments. An eddy-covariance tower and weather tower supplied long-term data of multiple environmental and. meteorological parameters that were used in calibrating and testing the modeled results from the Landsat images. Results identified significant differences in lambda E and soil heat flux measurements between the tall and scrub, and fringe and basin mangrove environments. The scrub mangrove site had the lowest lambda E rates, highest soil heat flux and lowest biophysical index (i.e., Fractional Vegetation Cover (FVC), Normalized Difference Vegetation Index (NDVI), and Soil-Adjusted Vegetation Index (SAVI) values. Mangrove damage and mortality associated with two strong hurricanes decreased PVC, NDVI, and SAVI, and increased soil heat flux at the tall mangrove site located in a basin-type environment. Recovery of the spectral characteristics, energy balance parameters and lambda E following hurricane disturbance was quicker in fringe mangroves than in basin mangroves. Latent heat fluxes (lambda E) were also relatively high after each storm and may have increased as a result of increasing vapor pressure deficits. Remote sensing of the surface energy balance and lambda E of mangrove forests can help our understanding of how these environments respond to disturbances to the landscape and the effect that these changes can have on the energy and water budget. Moreover, relationships between energy and water balance components developed for the coastal mangroves of southern Florida could be extrapolated to other mangrove systems in the Caribbean to measure changes caused by natural events and human modifications. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lagomasino, David; Price, Rene M.; Whitman, Dean; Melesse, Assefa] Florida Int Univ, Dept Earth & Environm, Miami, FL 33199 USA. [Lagomasino, David; Price, Rene M.] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. [Oberbauer, Steven F.] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA. RP Lagomasino, D (reprint author), NASA, Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD 20771 USA. EM david.lagomasino@nasa.gov RI Lagomasino, David/P-8413-2015; Melesse, Assefa/F-9931-2013 OI Lagomasino, David/0000-0003-4008-5363; Melesse, Assefa/0000-0003-4724-9367 FU National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program (FCE-LTER) [DBI-0620409, DEB-1237517]; National Aeronautics and Space Administration's (NASA) Water Science of Coupled Aquatic Processes in Ecosystems from Space (WaterSCAPES) University Research Center program [NNX-10AQ13A] FX This material was supported directly by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program (FCE-LTER) under Grant No. DBI-0620409 and DEB-1237517 and from the National Aeronautics and Space Administration's (NASA) Water Science of Coupled Aquatic Processes in Ecosystems from Space (WaterSCAPES) University Research Center program under Grant No. NNX-10AQ13A. NR 81 TC 2 Z9 2 U1 12 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 15 PY 2015 VL 213 BP 304 EP 316 DI 10.1016/j.agrformet.2014.11.017 PG 13 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CR3TG UT WOS:000361255400029 ER PT J AU Peng, TS Liu, YM Saxena, A Goebel, K AF Peng, Tishun Liu, Yongming Saxena, Abhinav Goebel, Kai TI In-situ fatigue life prognosis for composite laminates based on stiffness degradation SO COMPOSITE STRUCTURES LA English DT Article DE Composites; Bayesian inference; Fatigue; Stiffness; Prognosis; Structural health monitoring ID DAMAGE DEVELOPMENT; PREDICTION; SPECIMENS; STRENGTH; GROWTH; GRP AB In this paper, a real-time composite fatigue life prognosis framework is proposed. The proposed methodology combines Bayesian inference, piezoelectric sensor measurements, and a mechanical stiffness degradation model for in-situ fatigue life prediction. First, the composites stiffness degradation is introduced to account for the composites fatigue damage accumulation under cyclic loadings and a new growth rate-based stiffness degradation model is developed. Following this, the general Bayesian updating-based fatigue life prediction method is discussed. Several sources of uncertainties and the developed stiffness degradation model are included in the prognosis framework. Next, an in-situ composites fatigue testing with piezoelectric sensors is designed and performed to collected sensor signal and the global stiffness data. Signal processing techniques are implemented to extract damage diagnosis features. The detected stiffness degradation is integrated in the Bayesian inference framework for the remaining useful life (RUL) prediction. Prognosis performance on experimental data is validated using prognostics metric. Finally, some conclusions and future work are drawn based on the proposed study. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Peng, Tishun; Liu, Yongming] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Saxena, Abhinav] NASA, Ames Res Ctr, SGT, Moffett Field, CA 94035 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Liu, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM yongming.liu@asu.edu FU NASA through Global Engineering and Materials, Inc. (GEM) [NNX12CA86C] FX The research reported in this paper was partially supported by the NASA through Global Engineering and Materials, Inc. (GEM) under the project NNX12CA86C. The support is gratefully acknowledged. NR 43 TC 7 Z9 7 U1 0 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD NOV 15 PY 2015 VL 132 BP 155 EP 165 DI 10.1016/j.compstruct.2015.05.006 PG 11 WC Materials Science, Composites SC Materials Science GA CR3WI UT WOS:000361263400015 ER PT J AU Di Sciuva, M Gherlone, M Iurlaro, L Tessler, A AF Di Sciuva, Marco Gherlone, Marco Iurlaro, Luigi Tessler, Alexander TI A class of higher-order C-0 composite and sandwich beam elements based on the Refined Zigzag Theory SO COMPOSITE STRUCTURES LA English DT Article DE Refined Zigzag Theory; Variational principle; Composite and sandwich beam; Finite elements; Shear locking; Transverse shear stress ID SHEAR-DEFORMATION-THEORY; THICK LAMINATED BEAMS; PLATES; ROBUST AB Based on the Refined Zigzag Theory (RZT), a class of efficient higher-order C-0-continuous beam elements is formulated and numerically assessed. The attention is mainly on the choice of shape functions that allow for free shear locking effects in slender beams. For this purpose, interdependent/anisoparametric interpolations are adopted to approximate the four independent kinematic variables. To achieve simpler (with a reduced number of nodal dais) elements, a constraint condition on the axial variation of the effective transverse shear strain is adopted, which consists in reducing the polynomial degree of the shear strain measure (or, equivalently, the shear force), by one order. The issues investigated for the assessment are (i) shear locking, i.e., strategies for formulating shear-locking free C-0 refined zigzag beam elements, (ii) computational efficiency, and (iii) predictive capability and accuracy. Accuracy and predictive capabilities of the proposed class of higher-order beam elements are numerically assessed by analyzing cantilevered beams over a range of loading conditions, lamination sequences, heterogeneous material properties, and slenderness ratios. It is concluded that the constraint condition on the transverse shear strain gives rise to a remarkably accurate class of higher-order C-0 constrained refined zigzag beam elements, which offer the best compromise between computational efficiency and accuracy. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Di Sciuva, Marco; Gherlone, Marco; Iurlaro, Luigi] Politecn Torino, Dept Mech & Aerosp Engn, I-10129 Turin, Italy. [Tessler, Alexander] NASA Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. RP Di Sciuva, M (reprint author), Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy. EM marco.disciuva@polito.it; marco.gherlone@polito.it; luigi.iurlaro@polito.it; alexander.tessler-1@nasa.gov NR 23 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD NOV 15 PY 2015 VL 132 BP 784 EP 803 DI 10.1016/j.compstruct.2015.06.071 PG 20 WC Materials Science, Composites SC Materials Science GA CR3WI UT WOS:000361263400067 ER PT J AU Bedsole, RW Bogert, PB Tippur, HV AF Bedsole, Robert W. Bogert, Philip B. Tippur, Hareesh V. TI An experimental investigation of interlaminar and intralaminar dynamic fracture of CFRPs: Effect of matrix modification using carbon nanotubes SO COMPOSITE STRUCTURES LA English DT Article DE Dynamic fracture; Inter-/Intra-laminar fracture; Carbon fiber reinforced composites; Digital image correlation; Carbon nanotubes; Ultrasonic measurements ID ELASTIC-CONSTANTS; COMPOSITES; TOUGHNESS; CRACK; REINFORCEMENT; PROPAGATION AB In this work, mode-I dynamic interlaminar and intralaminar fracture behaviors of carbon fiber reinforced polymers (CFRPs) are studied. Thick unidirectional composites were fabricated and their fracture performance was characterized under quasi-static three-point bending and dynamic one-point impact loading conditions. Both crack initiation and growth characteristics under stress-wave dominant conditions were evaluated in the latter case. The optical methods of digital image correlation (DIC) and ultra-high speed photography were employed to monitor crack tip deformations around transiently growing cracks. All relevant elastic properties were measured ultrasonically in order to determine stress intensity factors (SIFs). Interlaminar fracture responses were compared to the intralaminar counterparts using specimens of identical dimensions from the same original composite plate. Carbon nanotubes (CNTs) were then added with the aim of improving interlaminar fracture properties. While CNTs did not lead to improvements in critical stress intensity factor (K-IC/K-I-ini(d)), they did lead to modest improvements in fracture toughness (G(IC)/GI-(d)(ini)) under both quasi-static (+34%) and dynamic (+16%) loading conditions with significant scatter observed in these measurements. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bedsole, Robert W.; Tippur, Hareesh V.] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. [Bogert, Philip B.] NASA LaRC, Struct Mech & Concepts, Hampton, VA 23681 USA. RP Tippur, HV (reprint author), Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. EM tippuhv@auburn.edu FU NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF) [NNX11AM80H] FX This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF #NNX11AM80H). Technical assistance of Geoffrey Thompson at Auburn University and Dr. James Ratcliffe at NASA Langley Research Center is greatly appreciated. Assistance of Drs. M. Hosur, A. Tcherbi-Narteh, Mr. M. Davis of Tuskegee University during processing of CNT-modified epoxy used in this work is also gratefully acknowledged. Special thanks to V2 Composites, Inc. and Momentive Specialty Chemicals, Inc. for providing unidirectional carbon fiber and epoxy, respectively, for this investigation. NR 30 TC 2 Z9 2 U1 3 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD NOV 15 PY 2015 VL 132 BP 1043 EP 1055 DI 10.1016/j.compstruct.2015.07.016 PG 13 WC Materials Science, Composites SC Materials Science GA CR3WI UT WOS:000361263400090 ER PT J AU Ouannes, K Lebbou, K Walsh, BM Poulain, M Alombert-Goget, G Guyot, Y AF Ouannes, K. Lebbou, K. Walsh, Brian-M. Poulain, M. Alombert-Goget, G. Guyot, Y. TI New Er3+ doped antimony oxide based glasses: Thermal analysis, structural and spectral properties SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Optical materials; Optical properties; Luminescence; Optical spectroscopy ID RARE-EARTH IONS; SPECTROSCOPIC PROPERTIES; OPTICAL-PROPERTIES; LOCAL-STRUCTURE; UP-CONVERSION; BOSON PEAK; ABSORPTION INTENSITIES; RAMAN-SCATTERING; LASER MATERIALS; CROSS-SECTION AB The novel oxide glass compositions based on Sb2O3 are elaborated and characterized, in the system (90-X)Sb2O3-10Na(2)O-XBi2O3 (SNB). We are interested in bismuth rates incorporated into the glass, its effect on the different physical properties that have been measured, and especially, in radiative and spectroscopic properties of erbium doped SNB glasses. Differential scanning calorimeter (DSC) measurements show an improvement of the stability factor, Delta T, of the glasses, which can indicate a reinforcement of the network. Both FTIR and Raman spectra have also been considered in terms of bismuth influence. As a function of composition, we have principally measured optical absorption, visible and infrared emission, and lifetime. The Judd-Ofelt parameters measured from the absorption spectra have been used to calculate the radiative lifetime (tau(r)) and the stimulated emission cross section. The spectroscopic quality factor chi = Omega(4)/Omega(6) = 0.73, low phonon energy of similar to 600-700 cm(-1), a reduced quenching effect, and a high quantum efficiency of 90% for the 1.53 mm measured emission, by pumping at 980 nm, are in favor of promising laser applications. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ouannes, K.] Univ Biskra, Fac Sci & Technol, Biskra 07000, Algeria. [Lebbou, K.; Alombert-Goget, G.; Guyot, Y.] Univ Lyon 1, CNRS, UMR5306, Inst Lumiere Mat, F-69622 Villeurbanne, France. [Walsh, Brian-M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Poulain, M.] Univ Rennes 1, UMR Verres & Ceram 6226, F-35042 Rennes, France. RP Lebbou, K (reprint author), Univ Lyon 1, CNRS, UMR5306, Inst Lumiere Mat, F-69622 Villeurbanne, France. EM kheirreddine.lebbou@univ-lyon1.fr RI Guyot, Yannick/B-5847-2014 NR 57 TC 2 Z9 2 U1 2 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 15 PY 2015 VL 649 BP 564 EP 572 DI 10.1016/j.jallcom.2015.07.113 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CR2KU UT WOS:000361159000076 ER PT J AU Hallis, LJ Huss, GR Nagashima, K Taylor, GJ Halldorsson, SA Hilion, DR Mottl, MJ Meech, KJ AF Hallis, Lydia J. Huss, Gary R. Nagashima, Kazuhide Taylor, G. Jeffrey Halldorsson, Saemundur A. Hilion, David R. Mottl, Michael J. Meech, Karen J. TI Evidence for primordial water in Earth's deep mantle SO SCIENCE LA English DT Article ID OXYGEN-ISOTOPE VARIATIONS; BAFFIN-BAY LAVAS; MELT INCLUSIONS; NOBLE-GASES; TERRESTRIAL PLANETS; HE-3/HE-4 RATIOS; DEPLETED MANTLE; MAGMA OCEAN; ICELAND; RESERVOIR AB The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth's oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth's original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (delta D more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth's interior that inherited its D/H ratio directly from the protosolar nebula. C1 [Hallis, Lydia J.; Huss, Gary R.; Taylor, G. Jeffrey; Meech, Karen J.] Univ Hawaii, NASA Astrobiol Inst, Inst Astron, Honolulu, HI 96822 USA. [Hallis, Lydia J.; Huss, Gary R.; Nagashima, Kazuhide; Taylor, G. Jeffrey] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Halldorsson, Saemundur A.; Hilion, David R.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Mottl, Michael J.] Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA. [Meech, Karen J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Hallis, LJ (reprint author), Univ Glasgow, Sch Geog & Earth Sci, Gregory Bldg, Glasgow G12 8QQ, Lanark, Scotland. EM lydia.hallis@glasgow.ac.uk FU National Aeronautics and Space Administration through NASA Astrobiology Institute through the Office of Space Science [NNA09-DA77A] FX This material is based on work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement no. NNA09-DA77A, issued through the Office of Space Science. We thank D. Francis for allocation of the Baffin Island picrite samples and K. Gronvold for invaluable help in the field in Iceland. The data reported in this paper are tabulated in the supplementary materials. L.J.H. prepared samples, collected and processed data, and was the primary author of this manuscript. G.R.H. and K.N. managed the ion-microprobe, perfected hydrogen- and oxygen-isotope analytical methods, and assisted with data processing. S.A.H. and D.R.H. collected the Icelandic samples and provided Icelandic geological background. G.J.T. assisted with the development of hydrogen-isotope analytical methods and provided solar system disk model chemistry information. K.J.M. initiated this study and provided solar system disk model chemistry information. All authors discussed the results and commented on the manuscript. Correspondence and requests for materials should be addressed to L. J. Hallis (lydia.hallis@glasgow.ac.uk). NR 40 TC 16 Z9 16 U1 12 U2 51 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2015 VL 350 IS 6262 BP 795 EP 797 DI 10.1126/science.aac4834 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CW3MS UT WOS:000364897000039 PM 26564850 ER PT J AU Ackermann, M Albert, A Baldini, L Ballet, J Barbiellini, G Barbieri, C Bastieri, D Bellazzini, R Bissaldi, E Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Cuoco, A Cutini, S D'Ammando, F de Palma, F Desiante, R Digel, SW Di Venere, L Drell, PS Favuzzi, C Fegan, SJ Ferrara, EC Franckowiak, A Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giordano, F Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hagiwara, K Harding, AK Hays, E Hewitt, JW Hill, AB Horan, D Johnson, TJ Knodiseder, J Kuss, M Larsson, S Latronico, L Lemoine-Goumard, M Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Maldera, S Manfreda, A Marshall, F Martin, P Mayer, M Mazziotta, MN Michelson, PF Mirabal, N Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naletto, G Nuss, E Ohsugi, T Orienti, M Orlando, E Paneque, D Pesce-Rollins, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Romani, RW Parkinson, PMS Schulz, A Sgro, C Siskind, EJ Smith, DA Spada, F Spandre, G Spinelli, P Suson, DJ Takahashi, H Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Uchiyama, Y Vianello, G Wood, KS Wood, M Zampieri, L AF Ackermann, M. Albert, A. Baldini, L. Ballet, J. Barbiellini, G. Barbieri, C. Bastieri, D. Bellazzini, R. Bissaldi, E. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Cuoco, A. Cutini, S. D'Ammando, F. de Palma, F. Desiante, R. Digel, S. W. Di Venere, L. Drell, P. S. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Franckowiak, A. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giordano, F. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hagiwara, K. Harding, A. K. Hays, E. Hewitt, J. W. Hill, A. B. Horan, D. Johnson, T. J. Knoediseder, J. Kuss, M. Larsson, S. Latronico, L. Lemoine-Goumard, M. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Maldera, S. Manfreda, A. Marshall, F. Martin, P. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mirabal, N. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naletto, G. Nuss, E. Ohsugi, T. Orienti, M. Orlando, E. Paneque, D. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Romani, R. W. Parkinson, P. M. Saz Schulz, A. Sgro, C. Siskind, E. J. Smith, D. A. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Takahashi, H. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Uchiyama, Y. Vianello, G. Wood, K. S. Wood, M. Zampieri, L. CA Fermi LAT Collaboration TI An extremely bright gamma-ray pulsar in the Large Magellanic Cloud SO SCIENCE LA English DT Article ID LARGE-AREA TELESCOPE; SUPERNOVA REMNANT; PSR B0540-69; LIGHT CURVES; GIANT PULSES; RADIO; FERMI; EMISSION; CRAB; RADIATION AB Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. C1 [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Albert, A.; Baldini, L.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Drell, P. S.; Franckowiak, A.; Godfrey, G.; Hill, A. B.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Drell, P. S.; Franckowiak, A.; Godfrey, G.; Hill, A. B.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.] CEA IRFU CNRS Univ Paris Diderot, Lab Astrophys Interact Multiechelles, Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Desiante, R.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Barbieri, C.] Univ Padua, Dept Phys & Astron, I-35122 Padua, Italy. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Cuoco, A.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Cuoco, A.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Marshall, F.; Mirabal, N.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, Palaiseau, France. [Caliandro, G. A.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.; Johnson, T. J.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.; Johnson, T. J.] Naval Res Lab, Washington, DC 20375 USA. [Cheung, C. C.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Space Sci Div, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00133 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [D'Ammando, F.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Palma, F.] Univ Telemat Pegaso Piazza Trieste & Trento, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Grondin, M. -H.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux 1, CNRS IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Guillemot, L.] Univ Orleans, CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans 02, France. [Guillemot, L.] CNRS INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Guiriec, S.; Mirabal, N.] NASA Postdoctoral Program, Idaho Falls, ID USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Hewitt, J. W.] Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Knoediseder, J.; Martin, P.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoediseder, J.; Martin, P.] Univ Toulouse 3, Observ Midi Pyrenees, IRAP, F-31062 Toulouse, France. [Larsson, S.; Li, L.] KTH Royal Inst Technol, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Larsson, S.; Li, L.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Estudis Espacials Catalunya, Inst Space Sci, E-08193 Barcelona, Spain. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Naletto, G.] Consiglio Nazl Ric Ist Foton & Nanotecnol UOS Pad, I-35131 Padua, Italy. [Naletto, G.] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Siskind, E. J.] NYCB Real Time Comp, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. INAF Astron Observ Padova, I-35122 Padua, Italy. RP Martin, P (reprint author), CNRS, IRAP, F-31028 Toulouse 4, France. EM lucas.guillemot@cnrs-orleans.fr; francis.e.marshall@nasa.gov; pierrick.martin@irap.omp.eu RI Morselli, Aldo/G-6769-2011; Reimer, Olaf/A-3117-2013; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015; Bonino, Raffaella/S-2367-2016; Naletto, Giampiero/S-6329-2016; Di Venere, Leonardo/C-7619-2017; OI Morselli, Aldo/0000-0002-7704-9553; Reimer, Olaf/0000-0001-6953-1385; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Bissaldi, Elisabetta/0000-0001-9935-8106; Torres, Diego/0000-0002-1522-9065; Funk, Stefan/0000-0002-2012-0080; Naletto, Giampiero/0000-0003-2007-3138; Di Venere, Leonardo/0000-0003-0703-824X; Hill, Adam/0000-0003-3470-4834 FU Italian Ministry of Education, University and Research (MIUR) [FIRB-2012-RBFR12PM1F] FX The Fermi-LAT Collaboration acknowledges support for LAT development, operation, and data analysis from NASA and the U.S. Department of Energy (DOE) (United States); Commissariat a l'Energie Atomique (CEA)-Institut de Recherche sur les lois Fondamentales de l'Univers (IRFU) and Institut National de Physique Nucleaire et de Physique des Particules/Centre National de la Recherche Scientifique (France); Agenzia Spaziale Italiana (ASI) and Istituto Nazionale di Fisica Nucleare (Italy); Ministry of Education, Culture, Sports, Science and Technology. KEK, and Japan Aerospace Exploration Agency (Japan); and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board (Sweden). Science analysis support in the operations phase from the Istituto Nazionale di Astrofisica (INAF) (Italy) and Centre National d'Etudes Spatiales (France) is also gratefully acknowledged. Fermi-LAT data and analysis tools are publicly available from the Fermi Science Support Center at http://fermi.gsfc.nasa.gov/ssc. M.R. was funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of Education, University and Research (MIUR). NR 38 TC 9 Z9 9 U1 0 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2015 VL 350 IS 6262 BP 801 EP 805 DI 10.1126/science.aac7400 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CW3MS UT WOS:000364897000041 ER PT J AU Salas, EC Bhartia, R Anderson, L Hug, WF Reid, RD Iturrino, G Edwards, KJ AF Salas, Everett C. Bhartia, Rohit Anderson, Louise Hug, William F. Reid, Ray D. Iturrino, Gerardo Edwards, Katrina J. TI In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE deep subsurface biosphere; microbial life; deep UV fluorescence; in situ life detection; North Pond; borehole ID LOW-BIOMASS; FLUID-FLOW; HEAT-FLOW; SEA-FLOOR; FLUORESCENCE; SUBSEAFLOOR; SUBSURFACE; TRANSPORT; SEDIMENT; BACTERIA AB The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. C1 [Salas, Everett C.; Bhartia, Rohit] CALTECH, Jet Prop Lab, Planetary Chem & Astrobiol, Pasadena, CA 91125 USA. [Salas, Everett C.; Hug, William F.; Reid, Ray D.] Photon Syst Inc, Covina, CA USA. [Anderson, Louise] Univ Leicester, Dept Geol, Leicester LE1 7RH, Leics, England. [Iturrino, Gerardo] Lamont Doherty Earth Observ, Marine Geol & Geophys, Palisades, NY USA. [Edwards, Katrina J.] Univ So Calif, Dept Biol Sci & Earth Sci, Los Angeles, CA USA. RP Bhartia, R (reprint author), CALTECH, Jet Prop Lab, Planetary Chem & Astrobiol, Pasadena, CA 91125 USA. EM rbhartia@jpl.nasa.gov FU National Science Foundation; Sloan Foundation; NASA Astrobiology Institute [13NAI720024, NNA13AA92A, 067]; NASA Astrobiology Science and Instrument Development [GURILA NNH10ZDA001N]; NSF Science and Technology Center for Dark Biosphere Investigations (C-DEBI) [0939564] FX This research used data provided by the Integrated Ocean Drilling Program (IODP). Funding for this work was provided by the National Science Foundation, Sloan Foundation, NASA Astrobiology Institute (Icy Worlds 13NAI720024 and Life Underground NNA13AA92A publication #067) and NASA Astrobiology Science and Instrument Development (GURILA NNH10ZDA001N). The authors would like to thank Wolfgang Bach, C. Geoff Wheat, Clayton Furman, Eric Meissner and Tania Lado-Insua for logistical and analytical support during the deployment of DEBI-t. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported by the NSF Science and Technology Center for Dark Biosphere Investigations (C-DEBI) (Award 0939564). Raw data is archived at the IODP-USIO Science Services website, administered by Texas A&M University. Copyright (c) 2015. All rights reserved. NR 43 TC 0 Z9 0 U1 5 U2 15 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD NOV 12 PY 2015 VL 6 AR 1260 DI 10.3389/fmicb.2015.01260 PG 8 WC Microbiology SC Microbiology GA CW9PW UT WOS:000365331700001 PM 26617595 ER PT J AU Brice, C Shenoy, R Kral, M Buchannan, K AF Brice, Craig Shenoy, Ravi Kral, Milo Buchannan, Karl TI Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Aluminum; Additive manufacturing; Characterization ID MG-AG ALLOYS; OMEGA-PHASE; COLD WORK; CU; AL-CU-MG-(AG); VAPORIZATION; MECHANISMS; STABILITY; EVOLUTION AB Additive manufacturing (AM) is an emerging technology capable of producing near net shape structures in a variety of materials directly from a computer model. Standard metallic alloys that were developed for cast or wrought processing have largely been adopted for AM feedstock. In many applications, these legacy alloys are quite acceptable. In the aluminum alloy family, however, there is a significant performance gap between the casting alloys currently being used in AM processes and the high strength/toughness capability available in certain wrought alloys. The precipitation hardenable alloys, most often used in high performance structures, present challenges for processing by AM. The near net shape nature of AM processes does not allow for mechanical work prior to the heat treatment that is often necessary to develop a uniform distribution of precipitates and give peak mechanical performance. This paper examines the aluminum (Al) alloy 2139, a composition that is strengthened by homogeneous precipitation of Omega (Al2Cu) plates and thus ideally suited for near net shape processes like AM. Transmission electron microscopy, microhardness, and tensile testing determined that, with proper processing conditions, Al 2139 can be additively manufactured and subsequently heat treated to strength levels comparable to those of peak aged wrought Al 2139. Published by Elsevier B.V. C1 [Brice, Craig] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Shenoy, Ravi] Northrop Grumman Corp Tech Serv, Hampton, VA 23681 USA. [Kral, Milo; Buchannan, Karl] Univ Canterbury, Christchurch 1, New Zealand. RP Brice, C (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM craig.a.brice@imco.com NR 35 TC 1 Z9 1 U1 14 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 11 PY 2015 VL 648 BP 9 EP 14 DI 10.1016/j.msea.2015.08.088 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CU8UX UT WOS:000363820700002 ER PT J AU Penny, SJ Brown, MJI Pimbblet, KA Cluver, ME Croton, DJ Owers, MS Lange, R Alpaslan, M Baldry, I Bland-Hawthorn, J Brough, S Driver, SP Holwerda, BW Hopkins, AM Jarrett, TH Jones, DH Kelvin, LS Lara-Lopez, MA Liske, J Lopez-Sanchez, AR Loveday, J Meyer, M Norberg, P Robotham, ASG Rodrigues, M AF Penny, S. J. Brown, M. J. I. Pimbblet, K. A. Cluver, M. E. Croton, D. J. Owers, M. S. Lange, R. Alpaslan, M. Baldry, I. Bland-Hawthorn, J. Brough, S. Driver, S. P. Holwerda, B. W. Hopkins, A. M. Jarrett, T. H. Jones, D. Heath Kelvin, L. S. Lara-Lopez, M. A. Liske, J. Lopez-Sanchez, A. R. Loveday, J. Meyer, M. Norberg, P. Robotham, A. S. G. Rodrigues, M. TI Galaxy And Mass Assembly (GAMA): the bright void galaxy population in the optical and mid-IR SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: general; infrared: galaxies ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; STAR-FORMATION HISTORIES; COLOR-MAGNITUDE RELATION; DARK-MATTER MODEL; DATA RELEASE 7; REDSHIFT SURVEY; STELLAR MASS; FORMATION RATES; RED SEQUENCE AB We examine the properties of galaxies in the Galaxies and Mass Assembly (GAMA) survey located in voids with radii > 10 h(-1) Mpc. Utilizing the GAMA equatorial survey, 592 void galaxies are identified out to z approximate to 0.1 brighter than M-r = -18.4, our magnitude completeness limit. Using the W-H alpha versus [N II]/H alpha (WHAN) line strength diagnostic diagram, we classify their spectra as star forming, AGN, or dominated by old stellar populations. For objects more massive than 5 x 10(9) M-circle dot, we identify a sample of 26 void galaxies with old stellar populations classed as passive and retired galaxies in the WHAN diagnostic diagram, else they lack any emission lines in their spectra. When matched to Wide-field Infrared Survey Explorer mid-IR photometry, these passive and retired galaxies exhibit a range of mid-IR colour, with a number of void galaxies exhibiting [4.6] - [12] colours inconsistent with completely quenched stellar populations, with a similar spread in colour seen for a randomly drawn non-void comparison sample. We hypothesize that a number of these galaxies host obscured star formation, else they are star forming outside of their central regions targeted for single-fibre spectroscopy. When matched to a randomly drawn sample of non-void galaxies, the void and non-void galaxies exhibit similar properties in terms of optical and mid-IR colour, morphology, and star formation activity, suggesting comparable mass assembly and quenching histories. A trend in mid-IR [4.6] - [12] colour is seen, such that both void and non-void galaxies with quenched/passive colours < 1.5 typically have masses higher than 10(10) M-circle dot, where internally driven processes play an increasingly important role in galaxy evolution. C1 [Penny, S. J.; Brown, M. J. I.; Pimbblet, K. A.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Penny, S. J.; Brown, M. J. I.; Pimbblet, K. A.] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Penny, S. J.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Pimbblet, K. A.] Univ Hull, Dept Math & Phys, Kingston Upon Hull HU6 7RX, Yorks, England. [Cluver, M. E.] Univ Western Cape, ZA-7535 Bellville, South Africa. [Croton, D. J.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Owers, M. S.; Hopkins, A. M.; Lopez-Sanchez, A. R.] Australian Astron Observ, N Ryde, NSW 1670, Australia. [Owers, M. S.; Jones, D. Heath; Lopez-Sanchez, A. R.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Lange, R.; Driver, S. P.; Meyer, M.; Robotham, A. S. G.] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia. [Alpaslan, M.] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Baldry, I.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Bland-Hawthorn, J.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2088, Australia. [Driver, S. P.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland. [Holwerda, B. W.] Leiden Univ, Sterrenwacht Leiden, NL-2333 CA Leiden, Netherlands. [Jarrett, T. H.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Kelvin, L. S.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Lara-Lopez, M. A.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Liske, J.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Norberg, P.] Univ Durham, ICC, Durham DH1 3LE, England. [Norberg, P.] Univ Durham, CEA, Dept Phys, Durham DH1 3LE, England. [Rodrigues, M.] Univ Paris Diderot, CNRS, Observ Paris, GEPI, F-92195 Meudon, France. RP Penny, SJ (reprint author), Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. OI Owers, Matt/0000-0002-2879-1663; Liske, Jochen/0000-0001-7542-2927; Alpaslan, Mehmet/0000-0003-0321-1033; Baldry, Ivan/0000-0003-0719-9385 FU Australian Research Council [FS110200047, FT100100280]; University of Portsmouth; Monash Research Accelerator Program (MRA); STFC (UK); ARC (Australia); AAO FX SJP acknowledges the support of an Australian Research Council Super Science Postdoctoral Fellowship grant FS110200047, and post-doctoral funding from the University of Portsmouth. MB acknowledges financial support from the Australian Research Council (FT100100280) and the Monash Research Accelerator Program (MRA). We thank the reviewer for their comments which have improved this paper. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the SDSS and the UKIRT Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is http://www.gama-survey.org/. NR 110 TC 6 Z9 6 U1 2 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 3519 EP 3539 DI 10.1093/mnras/stv1926 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600014 ER PT J AU Oates, SR Racusin, JL De Pasquale, M Page, MJ Castro-Tirado, AJ Gorosabel, J Smith, PJ Breeveld, AA Kuin, NPM AF Oates, S. R. Racusin, J. L. De Pasquale, M. Page, M. J. Castro-Tirado, A. J. Gorosabel, J. Smith, P. J. Breeveld, A. A. Kuin, N. P. M. TI Exploring the canonical behaviour of long gamma-ray bursts using an intrinsic multiwavelength afterglow correlation SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: general ID 1ST 2 YEARS; LIGHT CURVES; OPTICAL AFTERGLOWS; LINEAR-REGRESSION; COLUMN DENSITIES; SPECTRAL CATALOG; ALERT TELESCOPE; COMPLETE SAMPLE; CENTRAL ENGINE; HOST GALAXIES AB In this paper, we further investigate the relationship, reported by Oates et al., between the optical/UV afterglow luminosity (measured at restframe 200 s) and average afterglow decay rate (measured from restframe 200 s onwards) of long duration gamma-ray bursts (GRBs). We extend the analysis by examining the X-ray light curves, finding a consistent correlation. We therefore explore how the parameters of these correlations relate to the prompt emission phase and, using a Monte Carlo simulation, explore whether these correlations are consistent with predictions of the standard afterglow model. We find significant correlations between: log L-O,L- 200 s and log L-X,L- 200 (s); alpha(O,> 200) (s) and alpha(X,> 200) (s), consistent with simulations. The model also predicts relationships between log E-iso and log L-200 (s); however, while we find such relationships in the observed sample, the slope of the linear regression is shallower than that simulated and inconsistent at greater than or similar to 3 sigma. Simulations also do not agree with correlations observed between log L-200 (s) and alpha(>200) (s), or log E-iso and alpha(>200) (s). Overall, these observed correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of their detailed temporal behaviour. However, a basic afterglow model has difficulty explaining all the observed correlations. This leads us to briefly discuss alternative more complex models. C1 [Oates, S. R.; De Pasquale, M.; Page, M. J.; Smith, P. J.; Breeveld, A. A.; Kuin, N. P. M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Oates, S. R.; Castro-Tirado, A. J.; Gorosabel, J.] CSIC, Inst Astrofs Andalucia, E-18008 Granada, Spain. [Racusin, J. L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [De Pasquale, M.] Ist Astrofis Spaziale Fis Cosm, I-90146 Palermo, Italy. [Castro-Tirado, A. J.] Univ Malaga, ETS Ingenieros Ind, Unidad Asociada Dept Ingn Sistemas & Automat, E-29071 Malaga, Spain. [Gorosabel, J.] Univ Pais Vasco UPV EHU, Unidad Asociada Grp Ciencias Planetarias UPV EHU, CSIC, Dept Fis Aplicada 1,ETS,Ingn, E-48013 Bilbao, Spain. [Gorosabel, J.] Ikerbasque, Basque Fdn Sci, E-48008 Bilbao, Spain. RP Oates, SR (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM sro@iaa.es FU UK Space Agency; Spanish Ministry [AYA2012-39727-C03-01] FX We thank the referee for providing critical comments and suggestions that have helped to improve this paper. We also thank Amy Lien for providing Swift BAT parameters for GRB 071112C. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC) and the UK Swift Science Data Centre provided by NASA's Goddard Space Flight Center and the University of Leicester, UK, respectively. SRO, MDP, MJP, AAB, NPMK and PJS acknowledge the support of the UK Space Agency. SRO also acknowledges the support of the Spanish Ministry, Project Number AYA2012-39727-C03-01. NR 114 TC 1 Z9 1 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 4121 EP 4135 DI 10.1093/mnras/stv1956 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600057 ER PT J AU McDonald, I Zijlstra, AA Lagadec, E Sloan, GC Boyer, ML Matsuura, M Smith, RJ Smith, CL Yates, JA van Loon, JT Jones, OC Ramstedt, S Avison, A Justtanont, K Olofsson, H Blommaert, JADL Goldman, SR Groenewegen, MAT AF McDonald, I. Zijlstra, A. A. Lagadec, E. Sloan, G. C. Boyer, M. L. Matsuura, M. Smith, R. J. Smith, C. L. Yates, J. A. van Loon, J. Th. Jones, O. C. Ramstedt, S. Avison, A. Justtanont, K. Olofsson, H. Blommaert, J. A. D. L. Goldman, S. R. Groenewegen, M. A. T. TI ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: AGB and post-AGB; circumstellar matter; stars: mass-loss; stars: winds, outflows; globular clusters: individual: NGC 104; infrared: stars ID RED-GIANT-BRANCH; LONG-PERIOD VARIABLES; STELLAR MASS-LOSS; SMALL-MAGELLANIC-CLOUD; METAL-POOR GALAXIES; DUST PRODUCTION; OMEGA-CENTAURI; EVOLVED STARS; FUNDAMENTAL PARAMETERS; INTRACLUSTER MEDIUM AB Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be similar to 1.2-3.5x10(-7) M-circle dot yr(-1). We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars. C1 [McDonald, I.; Zijlstra, A. A.; Smith, R. J.; Smith, C. L.; Jones, O. C.; Avison, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Lagadec, E.; Sloan, G. C.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Lagadec, E.] Observ Cote dAzur, F-06304 Nice 4, France. [Boyer, M. L.] NASA, Goddard Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Matsuura, M.; Yates, J. A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Matsuura, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [van Loon, J. Th.; Goldman, S. R.] Keele Univ, Astrophys Grp, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Jones, O. C.] STScI, Baltimore, MD 21218 USA. [Ramstedt, S.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Justtanont, K.; Olofsson, H.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, SE-43992 Onsala, Sweden. [Blommaert, J. A. D. L.] Vrije Univ Brussel, Dept Phys & Astrophys, Astron & Astrophys Res Grp, B-1050 Brussels, Belgium. [Groenewegen, M. A. T.] Koninklijke Sterrenwacht Belgie, B-1180 Brussels, Belgium. RP McDonald, I (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM iain.mcdonald-2@manchester.ac.uk OI Smith, Christina/0000-0002-6219-8353; Jones, Olivia/0000-0003-4870-5547 FU NSF [1108645]; [O-092.F-9327(A)] FX This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory and the Onsala Space Observatory. The project identifier for these data is O-092.F-9327(A).; GS was supported by the NSF (Award 1108645, An ALMA Reconnaissance of Distant Dying Stars). NR 117 TC 2 Z9 2 U1 2 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 4324 EP 4336 DI 10.1093/mnras/stv1968 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600071 ER PT J AU Mauerhan, JC Williams, GG Leonard, DC Smith, PS Filippenko, AV Smith, N Hoffman, JL Huk, L Clubb, KI Silverman, JM Cenko, SB Milne, P Gal-Yam, A Ben-Ami, S AF Mauerhan, Jon C. Williams, G. Grant Leonard, Douglas C. Smith, Paul S. Filippenko, Alexei V. Smith, Nathan Hoffman, Jennifer L. Huk, Leah Clubb, Kelsey I. Silverman, Jeffrey M. Cenko, S. Bradley Milne, Peter Gal-Yam, Avishay Ben-Ami, Sagi TI Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; supernovae: individual: SN 2011dh ID HIGH-VELOCITY EJECTA; CORE-COLLAPSE; NI-56 EJECTA; CIRCUMSTELLAR ENVIRONMENT; SUPERGIANT PROGENITOR; WAVELENGTH DEPENDENCE; LINEAR-POLARIZATION; STRIPPED-ENVELOPE; BINARY PROGENITOR; IB SUPERNOVAE AB We present seven epochs of spectropolarimetry of the Type IIb supernova (SN IIb) 2011dh in M51, spanning 86 d of its evolution. The first epoch was obtained 9 d after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P approximate to 0.5 per cent through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H alpha and He I polarization peak after 30 d and exhibit position angles roughly aligned with the earlier continuum, while O I and Ca II appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other SNe IIb. C1 [Mauerhan, Jon C.; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Williams, G. Grant; Smith, Paul S.; Smith, Nathan; Milne, Peter] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Williams, G. Grant] MMT Observ, Tucson, AZ 85721 USA. [Leonard, Douglas C.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Hoffman, Jennifer L.; Huk, Leah] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gal-Yam, Avishay; Ben-Ami, Sagi] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. RP Mauerhan, JC (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM mauerhan@astro.berkeley.edu FU Richard & Rhoda Goldman Fund; TABASGO Foundation; NSF [AST-1210599, AST-1211916, AST-1009571, AST-1210311, AST-1210372]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1302771]; EU/FP7 via ERC [307260]; Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting; ISF; Minerva grant; ISF grant; Weizmann-UK 'making connections' programme; Kimmel award; ARCHES awards; Christopher R. Redlich Fund FX We thank the anonymous referee for their insightful commentary and helpful suggestions. We are grateful to the staffs at Lick, Palomar, and Steward Observatories for their excellent assistance, as well as J. Chuck Horst, Julienne Sumandal, and Chris Salvo for help with the Palomar observations. Hien Tran and Ryan Chornock supplied spectropolarimetric data on SN 1993J and SN 2008ax for our comparison. JCM acknowledges Dan Kasen and Paul Duffell at U.C. Berkeley for insightful discussions. AVF's group at U.C. Berkeley is supported by Gary & Cynthia Bengier, the Richard & Rhoda Goldman Fund, the Christopher R. Redlich Fund, and the TABASGO Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. Support was provided by NSF grants AST-1210599 (U. Arizona), AST-1211916 (U.C. Berkeley), AST-1009571 and AST-1210311 (SDSU), and AST-1210372 (U. Denver). JMS is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. AG-Y is supported by the EU/FP7 via ERC grant no. 307260, the Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK 'making connections' programme; and by Kimmel and ARCHES awards. NR 112 TC 6 Z9 6 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 4467 EP 4484 DI 10.1093/mnras/stv1944 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600080 ER PT J AU Drlica-Wagner, A Bechtol, K Rykoff, ES Luque, E Queiroz, A Mao, YY Wechsler, RH Simon, JD Santiago, B Yanny, B Balbinot, E Dodelson, S Neto, AF James, DJ Li, TS Maia, MAG Marshall, JL Pieres, A Stringer, K Walker, AR Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Bernstein, GM Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Kind, MC Carretero, J Crocce, M da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Finley, DA Flaugher, B Fosalba, P Frieman, J Gaztanaga, E Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Honscheid, K Kuehn, K Kuropatkin, N Lahav, O Martini, P Miquel, R Nord, B Ogando, R Plazas, AA Reil, K Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Tucker, D Vikram, V Wester, W Zhang, Y Zuntz, J AF Drlica-Wagner, A. Bechtol, K. Rykoff, E. S. Luque, E. Queiroz, A. Mao, Y. -Y. Wechsler, R. H. Simon, J. D. Santiago, B. Yanny, B. Balbinot, E. Dodelson, S. Neto, A. Fausti James, D. J. Li, T. S. Maia, M. A. G. Marshall, J. L. Pieres, A. Stringer, K. Walker, A. R. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Crocce, M. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gaztanaga, E. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. Kuehn, K. Kuropatkin, N. Lahav, O. Martini, P. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Tucker, D. Vikram, V. Wester, W. Zhang, Y. Zuntz, J. CA DES Collaboration TI EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; Local Group ID MILKY-WAY SATELLITE; DISTANCES PUBLICATION BIAS; DWARF SPHEROIDAL GALAXIES; TELESCOPE LENSING SURVEY; DIGITAL SKY SURVEY; LOCAL GROUP; GLOBULAR-CLUSTERS; STAR CLUSTER; URSA-MAJOR; SPECTROSCOPIC CONFIRMATION AB We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (M-V > -4.7mag) and span a range of physical sizes (17 pc < r(1/2) < 181 pc) and heliocentric distances (25 kpc < D-circle dot < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (mu greater than or similar to 27.5 mag arcsec(-2)). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10(-3)) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold similar to 100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%-30% of these would be spatially associated with the Magellanic Clouds. C1 [Drlica-Wagner, A.; Yanny, B.; Dodelson, S.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.; Wester, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bechtol, K.] Wisconsin IceCube Particle Astrophys Ctr WIPAC, Madison, WI 53703 USA. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rykoff, E. S.; Mao, Y. -Y.; Wechsler, R. H.; Burke, D. L.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rykoff, E. S.; Mao, Y. -Y.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Luque, E.; Queiroz, A.; Santiago, B.; Balbinot, E.; Neto, A. Fausti; Maia, M. A. G.; Pieres, A.; Rosell, A. Carnero; da Costa, L. N.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Mao, Y. -Y.; Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Simon, J. D.] Carnegie Observ, Pasadena, CA 91101 USA. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Dodelson, S.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [James, D. J.; Walker, A. R.; Abbott, T. M. C.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Li, T. S.; Marshall, J. L.; Stringer, K.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.; Stringer, K.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Maia, M. A. G.; Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. [Bernstein, G. M.; Eifler, T. F.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] Inst Astrophys, UMR 7095, CNRS, F-75014 Paris, France. [Bertin, E.] UPMC, Univ Paris 04, UMR 7095, Inst Astrophys, F-75014 Paris, France. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Fac Phys, Univ Sternwarte, D-81679 Munich, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Vikram, V.] Argonne Natl Lab, Lemont, IL 60439 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Drlica-Wagner, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM kadrlica@fnal.gov; keith.bechtol@icecube.wisc.edu RI Ogando, Ricardo/A-1747-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; Balbinot, Eduardo/E-8019-2015 OI Carrasco Kind, Matias/0000-0002-4802-3194; Mao, Yao-Yuan/0000-0002-1200-0820; Abdalla, Filipe/0000-0003-2063-4345; Tucker, Douglas/0000-0001-7211-5729; Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; Balbinot, Eduardo/0000-0002-1322-3153 FU European Research Council [ERC-StG-335936]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478] FX This work made use of computational resources at SLAC National Accelerator Laboratory and the University of Chicago Research Computing Center. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). We thank the anonymous referee for helpful suggestions. A.D.W. thanks Ellen Bechtol for her generous hospitality during the preparation of this manuscript. E.B. acknowledges financial support from the European Research Council (ERC-StG-335936, CLUSTERS).; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. NR 126 TC 56 Z9 56 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 109 DI 10.1088/0004-637X/813/2/109 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900029 ER PT J AU Dwek, E Staguhn, J Arendt, RG Kovacs, A Decarli, R Egami, E Michalowski, MJ Rawle, TD Toft, S Walter, F AF Dwek, Eli Staguhn, Johannes Arendt, Richard G. Kovacs, Attila Decarli, Roberto Egami, Eiichi Michalowski, Michal J. Rawle, Timothy D. Toft, Sune Walter, Fabian TI SUBMILLIMETER OBSERVATIONS OF CLASH 2882 AND THE EVOLUTION OF DUST IN THIS GALAXY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; galaxies: general; galaxies: individual ([PCB2012]2882); infrared: galaxies; submillimeter: galaxies ID SOLAR NEIGHBORHOOD; INTERSTELLAR DUST; HIGH-REDSHIFT; SUPERNOVA REMNANT; SDSS J1148+5251; EARLY UNIVERSE; STARS; DESTRUCTION; EMISSION; ORIGIN AB Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,(12) source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54 mu M--1(circle dot) yr(-1), and its dust mass is about 5 x 10(7)mu(-1) M-circle dot, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium. C1 [Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Staguhn, Johannes] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Arendt, Richard G.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Kovacs, Attila] CALTECH, Dept Astron, Pasadena, CA 90025 USA. [Kovacs, Attila] Univ Minnesota, Dept Astron, Minneapolis, MN 12345 USA. [Decarli, Roberto; Walter, Fabian] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Egami, Eiichi] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Michalowski, Michal J.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rawle, Timothy D.] ESAC, ESA, E-28691 Madrid, Spain. [Rawle, Timothy D.] ESA STScI, Baltimore, MD 21218 USA. [Toft, Sune] Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. RP Dwek, E (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM eli.dwek@nasa.gov RI Kovacs, Attila/C-1171-2010 OI Arendt, Richard/0000-0001-8403-8548; Kovacs, Attila/0000-0001-8991-9088 FU NASA [12-ADP12-0145, 13-ADAP13-0094, NAS 5-26555]; NSF ATI [1106284]; INSU/CNRS (France); MPG (Germany); IGN (Spain); ERC [648179]; HST Frontier Fields program FX This work was supported by NASA's 12-ADP12-0145 and 13-ADAP13-0094 research grants, and supported through NSF ATI grant 1106284. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). S.T. acknowledges support from the ERC Consolidator Grant funding scheme (project ConTExt, grant number. 648179). This work utilizes gravitational lensing models produced by PIs Bradac, Ebeling, Merten & Zitrin, Sharon, and Williams funded as part of the HST Frontier Fields program conducted by STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The lens models were obtained from the Mikulski Archive for Space Telescopes (MAST), https://archive.stsci.edu/prepds/frontier/lensmodels/. NR 34 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 119 DI 10.1088/0004-637X/813/2/119 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900039 ER PT J AU Lario, D Decker, RB Roelof, EC Vinas, AF AF Lario, D. Decker, R. B. Roelof, E. C. Vinas, A. -F. TI ENERGETIC PARTICLE PRESSURE AT INTERPLANETARY SHOCKS: STEREO-A OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; interplanetary medium; shock waves; Sun: particle emission ID RANKINE-HUGONIOT PROBLEM; SOLAR-WIND; TERMINATION SHOCK; COSMIC-RAYS; EVENTS; MISSION; PLASMA; SPACECRAFT; TELESCOPE; ULYSSES AB We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (>= 83 keV) protons (P-EP) is larger than the pressure exerted by the interplanetary magnetic field (P-B). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when P-EP exceeds P-B by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, P-EP also exceeds the pressure exerted by the solar wind thermal population (P-TH). Prolonged periods (> 12 hr) with both P-EP > P-B and P-EP > P-TH may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum PSUM = P-B + P-TH + P-EP are observed in the immediate upstream region of the shocks regardless of individual changes in P-EP, P-B, and P-TH, indicating a coupling between P-EP and the pressure of the background medium characterized by P-B and P-TH. The quasi-exponential increase of P-SUM implies a radial gradient partial derivative P-SUM/partial derivative r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions. C1 [Lario, D.; Decker, R. B.; Roelof, E. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Vinas, A. -F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Lario, D (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Lario, David/D-9318-2016 OI Lario, David/0000-0002-3176-8704 FU NASA [NNX11A083G, NNX15AD03G]; NASA under ACE [NNX10AT75G]; International Space Science Institute (ISSI) at Bern, Switzerland FX We acknowledge the STEREO Science Centers for providing the data used in this paper and the STEREO/IMPACT and STEREO/PLASTIC teams for providing these data. D. L. acknowledges the support from NASA under grants NNX11A083G and NNX15AD03G. E.C.R. and D. L. acknowledge NASA support under the ACE grant NNX10AT75G. D. L. acknowledges the International Space Science Institute (ISSI) at Bern, Switzerland, for their funding of the team "Exploration of the inner Heliosphere: what we have learned from Helios and what we want to study with Solar Orbiter," led by Dr. W. Droege, and the useful discussions with the team members. NR 35 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 85 DI 10.1088/0004-637X/813/2/85 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900005 ER PT J AU Longcope, DW Klimchuk, JA AF Longcope, D. W. Klimchuk, J. A. TI HOW GAS-DYNAMIC FLARE MODELS POWERED BY PETSCHEK RECONNECTION DIFFER FROM THOSE WITH AD HOC ENERGY SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: flares ID LOOP RADIATIVE HYDRODYNAMICS; FAST MAGNETIC RECONNECTION; THERMAL CONDUCTION FRONTS; X-RAY SOURCES; SOLAR-FLARES; CHROMOSPHERIC EVAPORATION; TRANSITION-REGION; CURRENT SHEET; PATCHY RECONNECTION; ATOMIC DATABASE AB Aspects of solar flare dynamics, such as chromospheric evaporation and flare light. curves, have long been studied using one-dimensional models of plasma dynamics inside a static flare loop, subjected to some energy input. While extremely successful at explaining the observed characteristics of flares, all such models so far have specified energy input ad hoc, rather than deriving it self-consistently. There is broad consensus that flares are powered by magnetic energy released through reconnection. Recent work has generalized Petschek's basic reconnection scenario, topological change followed by field line retraction and shock heating, to permit its inclusion in. a one-dimensional flare loop model. Here we compare the gas dynamics driven by retraction and shocking to those from more conventional static loop models energized by ad hoc source terms. We find significant differences during the first minute, when retraction leads to larger kinetic energies and produces higher densities at the loop top, while ad hoc heating tends to rarify the loop top. The loop-top density concentration is related to the slow magnetosonic shock, characteristic of Petschek's model, but persists beyond the retraction phase occurring in the outflow jet. This offers an explanation for observed loop-top sources of X-ray and EUV emission, with advantages over that provided by ad hoc heating scenarios. The cooling phases of the two models are, however, notably similar to one another, suggesting that observations at that stage will yield little information on the nature of energy input. C1 [Longcope, D. W.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Klimchuk, J. A.] NASA GSFC, Heliophys Div, Greenbelt, MD 20771 USA. RP Longcope, DW (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. FU NASA's Heliophysics Supporting Research program FX This work was supported by a grant from NASA's Heliophysics Supporting Research program. NR 90 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 131 DI 10.1088/0004-637X/813/2/131 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900051 ER PT J AU Ofman, L Knizhnik, K Kucera, T Schmieder, B AF Ofman, L. Knizhnik, K. Kucera, T. Schmieder, B. TI NONLINEAR MHD WAVES IN A PROMINENCE FOOT SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); Sun: filaments, prominences; waves ID SOLAR-WIND ACCELERATION; SLOW MAGNETOSONIC WAVES; MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC WAVES; CORONAL PLUMES; OSCILLATIONS; TRANSVERSE; FILAMENTS; MODES; SLAB AB We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca II emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of H alpha intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (delta I/I similar to delta n/n). The waves are evident as significant density fluctuations that vary with height. and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes. and wavelengths < 2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is similar to 20 km s(-1), in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure. C1 [Ofman, L.] Catholic Univ Amer, Washington, DC 20064 USA. [Ofman, L.; Knizhnik, K.; Kucera, T.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Knizhnik, K.] Johns Hopkins Univ, Baltimore, MD 21287 USA. [Schmieder, B.] Univ Paris Diderot, Univ Paris 06, Sorbonne Paris Cit, LESIA,Observ Paris,PSL Res Univ,CNRS,Sorbonne Uni, F-92195 Meudon, France. RP Ofman, L (reprint author), Tel Aviv Univ, Dept Geosci, IL-69978 Tel Aviv, Israel. OI Kucera, Therese/0000-0001-9632-447X; Ofman, Leon/0000-0003-0602-6693 FU NASA's LWS Program; NASA [NNG11PL10A 670.039]; NASA Earth and Space Science Fellowship Program FX T.K. and L.O. acknowledge support by NASA's LWS Program. L.O. would like to acknowledge support by NASA Cooperative Agreement grant NNG11PL10A 670.039. K.K. would like to acknowledge funding received through the NASA Earth and Space Science Fellowship Program. NR 39 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 124 DI 10.1088/0004-637X/813/2/124 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900044 ER PT J AU Pipin, VV Kosovichev, AG AF Pipin, V. V. Kosovichev, A. G. TI EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO SO ASTROPHYSICAL JOURNAL LA English DT Article DE dynamo; Sun: activity; Sun: magnetic fields ID CELL MERIDIONAL CIRCULATION; FLIP-FLOP PHENOMENON; MAGNETIC-FIELD; ACTIVE LONGITUDES; NONLINEAR DYNAMO; COOL STARS; HELICITY; ROTATION; CYCLES; SUN AB We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R-circle dot has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R-m. In the range of R-m = 10(4) - 10(6) the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear alpha-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of "active longitudes" with cyclic 180 degrees" flip-flop" changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process. C1 [Pipin, V. V.] Russian Acad Sci, Inst Solar Terr Phys, Moscow 117901, Russia. [Pipin, V. V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90065 USA. [Pipin, V. V.; Kosovichev, A. G.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Pipin, V. V.; Kosovichev, A. G.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Kosovichev, A. G.] New Jersey Inst Technol, Big Bear City, CA 92314 USA. RP Pipin, VV (reprint author), Russian Acad Sci, Inst Solar Terr Phys, Moscow 117901, Russia. OI Pipin, Valery/0000-0001-9884-1147 FU NASA [NNX09AJ85G, NNX14AB70]; RFBR [14-02-90424, 15-02-01407]; ISTP SB RAS [II.16.3.1] FX The work was partially supported by NASA grants NNX09AJ85G and NNX14AB70. G.V.P. thanks the support of RFBR under grants 14-02-90424, 15-02-01407 and the project II.16.3.1 of ISTP SB RAS. NR 57 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 134 DI 10.1088/0004-637X/813/2/134 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900054 ER PT J AU Zaqarashvili, TV Zhelyazkov, I Ofman, L AF Zaqarashvili, Teimuraz V. Zhelyazkov, Ivan Ofman, Leon TI STABILITY OF ROTATING MAGNETIZED JETS IN THE SOLAR ATMOSPHERE. I. KELVIN-HELMHOLTZ INSTABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: atmosphere; Sun: oscillations ID X-RAY JETS; CHROMOSPHERIC ANEMONE JETS; FLUX TUBES; VORTEX TUBES; SPICULES; SIMULATIONS; HINODE; CORONA; OSCILLATIONS; PROMINENCES AB Observations show various jets in the solar atmosphere with significant rotational motions, which may undergo instabilities leading to heat ambient plasma. We study the Kelvin-Helmholtz instability (KHI) of twisted and rotating jets caused by the velocity jumps near the jet surface. We derive a dispersion equation with appropriate boundary conditions for total pressure (including centrifugal force of tube rotation), which governs the dynamics of incompressible jets. Then, we obtain analytical instability criteria of KHI in various cases, which were verified by numerical solutions to the dispersion equation. We find that twisted and rotating jets are unstable to KHI when the kinetic energy of rotation is more than the magnetic energy of the twist. Our analysis shows that the azimuthal magnetic field of 1-5 G can stabilize observed rotations in spicule/macrospicules and X-ray/extreme-ultraviolet (EUV) jets. On the other hand, nontwisted jets are always unstable to KHI. In this case, the instability growth time is several seconds for spicule/macrospicules and a few minutes (or less) for EUV/X-ray jets. We also find that standing kink and torsional Alfven waves are always unstable near the antinodes, owing to the jump of azimuthal velocity at the surface, while the propagating waves are generally stable. Kelvin-Helmholtz (KH) vortices may lead to enhanced turbulence development and heating of surrounding plasma;. therefore, rotating jets may provide energy for chromospheric and coronal heating. C1 [Zaqarashvili, Teimuraz V.] Graz Univ, IGAM, Inst Phys, A-8010 Graz, Austria. [Zaqarashvili, Teimuraz V.] Ilia State Univ, Abastumani Astrophys Observ, GE-0162 Tbilisi, Rep of Georgia. [Zaqarashvili, Teimuraz V.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Zhelyazkov, Ivan] Univ Sofia, Fac Phys, BG-1164 Sofia, Bulgaria. [Ofman, Leon] Catholic Univ Amer, Washington, DC 20064 USA. [Ofman, Leon] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zaqarashvili, TV (reprint author), Graz Univ, IGAM, Inst Phys, Univ Pl 5, A-8010 Graz, Austria. EM teimuraz.zaqarashvili@uni-graz.at OI Ofman, Leon/0000-0003-0602-6693 FU Austrian "Fonds zur Forderung der Wissenschaftlichen Forschung" (FWF) [P26181-N27]; project-SOLSPANET [FP7-PEOPLE-2010-IRSES-269299]; Shota Rustaveli Foundation [DI/14/6-310/12]; Bulgarian Science Fund; Department of Science & Technology, Government of India Fund under Indo-Bulgarian bilateral project [CSTC/INDIA 01/7, /Int/ Bulgaria/P-2/12]; NASA [NNG11PL10A] FX The work of T.V.Z. was supported by the Austrian "Fonds zur Forderung der Wissenschaftlichen Forschung" (FWF) under project P26181-N27, by FP7-PEOPLE-2010-IRSES-269299 project-SOLSPANET, and by Shota Rustaveli Foundation grant DI/14/6-310/12. The work of I.Zh. was supported by the Bulgarian Science Fund and the Department of Science & Technology, Government of India Fund under Indo-Bulgarian bilateral project CSTC/INDIA 01/7, /Int/ Bulgaria/P-2/12. L.O. was supported by NASA Cooperative Agreement NNG11PL10A to CUA. NR 85 TC 8 Z9 8 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 123 DI 10.1088/0004-637X/813/2/123 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900043 ER PT J AU Ackermann, M Ajello, M Albert, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Gonzalez, JB Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bottacini, E Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Cavazzuti, E Cecchi, C Chekhtman, A Chiang, J Chiaro, G Ciprini, S Cohen-Tanugi, J Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Desiante, R Di Venere, L Dominguez, A Drell, PS Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fuhrmann, L Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Giglietto, N Giommi, P Giordano, F Giroletti, M Godfrey, G Green, D Grenier, IA Grove, JE Guiriec, S Harding, AK Hays, E Hewitt, JW Hill, AB Horan, D Jogler, T Johannesson, G Johnson, AS Kamae, T Kuss, M Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Magill, J Maldera, S Manfreda, A Max-Moerbeck, W Mayer, M Mazziotta, MN McEnery, JE Michelson, PF Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nuss, E Ohno, M Ohsugi, T Ojha, R Omodei, N Orlando, E Ormes, JF Paneque, D Pearson, TJ Perkins, JS Perri, M Pesce-Rollins, M Petrosian, V Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Readhead, A Reimer, A Reimer, O Schulz, A Sgro, C Siskind, EJ Spada, F Spandre, G Spinelli, P Suson, DJ Takahashi, H Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Troja, E Uchiyama, Y Vianello, G Wood, KS Wood, M Zimmer, S Berdyugin, A Corbet, RHD Hovatta, T Lindfors, E Nilsson, K Reinthal, R Sillanpaa, A Stamerra, A Takalo, LO Valtonen, MJ AF Ackermann, M. Ajello, M. Albert, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Gonzalez, J. Becerra Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bottacini, E. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Cavazzuti, E. Cecchi, C. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Di Venere, L. Dominguez, A. Drell, P. S. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fuhrmann, L. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Godfrey, G. Green, D. Grenier, I. A. Grove, J. E. Guiriec, S. Harding, A. K. Hays, E. Hewitt, J. W. Hill, A. B. Horan, D. Jogler, T. Johannesson, G. Johnson, A. S. Kamae, T. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Magill, J. Maldera, S. Manfreda, A. Max-Moerbeck, W. Mayer, M. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nuss, E. Ohno, M. Ohsugi, T. Ojha, R. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Pearson, T. J. Perkins, J. S. Perri, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Readhead, A. Reimer, A. Reimer, O. Schulz, A. Sgro, C. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Suson, D. J. Takahashi, H. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Vianello, G. Wood, K. S. Wood, M. Zimmer, S. Berdyugin, A. Corbet, R. H. D. Hovatta, T. Lindfors, E. Nilsson, K. Reinthal, R. Sillanpaa, A. Stamerra, A. Takalo, L. O. Valtonen, M. J. TI MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; BL Lacertae objects: general; BL Lacertae objects: individual (PG 1553+113); galaxies: jets; gamma rays: galaxies; gamma rays: general ID RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS; ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BLACK-HOLE BINARY; ACCRETION DISKS; HELICAL JETS; BL-LACERTAE; MISALIGNED ACCRETION; RADIO-SOURCES; FERMI-LAT AB We report for the first time a gamma-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the gamma-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/- 0.08 year period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in similar to 10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity. C1 [Ackermann, M.; Buehler, R.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Dominguez, A.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Focke, W. B.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Chiang, J.; Drell, P. S.; Focke, W. B.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Thayer, J. B.; Tibaldo, L.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Caputo, R.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Gonzalez, J. Becerra; Ferrara, E. C.; Green, D.; Guiriec, S.; Harding, A. K.; Hays, E.; McEnery, J. E.; Ojha, R.; Perkins, J. S.; Thompson, D. J.; Troja, E.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, J. Becerra; Green, D.; Magill, J.; McEnery, J. E.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra; Green, D.; Magill, J.; McEnery, J. E.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bellazzini, R.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS, IN2P3, Lab Universe & Particules Montpellier, F-34059 Montpellier, France. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.; Perri, M.] ASI Sci Data Ctr, I-00133 Rome, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Perri, M.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Conrad, J.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecnico Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Fuhrmann, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Ohno, M.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Grove, J. E.; Lovellette, M. N.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Hewitt, J. W.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Larsson, S.; Li, L.] KTH Royal Inst Technol, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain. [Lott, B.] Univ Bordeaux 1, IN2P3, CNRS, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Max-Moerbeck, W.] NRAO, Socorro, NM 87801 USA. [Max-Moerbeck, W.; Pearson, T. J.; Readhead, A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Murgia, S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaa, A.; Takalo, L. O.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Corbet, R. H. D.] CRESST, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Hovatta, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala, Finland. [Nilsson, K.; Valtonen, M. J.] Univ Turku, ESO FINCA, Finnish Ctr Astron, FI-21500 Piikkio, Finland. [Stamerra, A.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Stamerra, A.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM stefano.ciprini@asdc.asi.it; sara.cutini@asdc.asi.it; stefan@astro.su.se; David.J.Thompson@nasa.gov; stamerra@oato.inaf.it RI Morselli, Aldo/G-6769-2011; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Reimer, Olaf/A-3117-2013; Torres, Diego/O-9422-2016; Pearson, Timothy/N-2376-2015; Orlando, E/R-5594-2016; Bonino, Raffaella/S-2367-2016; Di Venere, Leonardo/C-7619-2017; OI Stamerra, Antonio/0000-0002-9430-5264; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Mazziotta, Mario Nicola/0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Hill, Adam/0000-0003-3470-4834; Dominguez, Alberto/0000-0002-3433-4610; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Bissaldi, Elisabetta/0000-0001-9935-8106; Reimer, Olaf/0000-0001-6953-1385; Torres, Diego/0000-0002-1522-9065; Pearson, Timothy/0000-0001-5213-6231; Di Venere, Leonardo/0000-0003-0703-824X; Giordano, Francesco/0000-0002-8651-2394; Ajello, Marco/0000-0002-6584-1703; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU INAF (Italy); CNES (France); Academy of Finland [127740]; Katzman Foundation; National Science Foundation; National Aeronautics and Space Administration [NNG05GF22G]; U.S. National Science Foundation [AST-0909182]; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; NASA-Fermi grant [NNX12A087G] FX We thank the anonymous referee for useful and constructive comments. We extend special thanks to Prof. C. Done of Durham University, UK, and Prof. R. W. Romani of Stanford University, USA, for useful comments during the course of this work. The Fermi-LAT Collaboration acknowledges support for LAT development, operation and data analysis from NASA and DOE (United States); CEA/Irfu and IN2P3/CNRS (France); ASI and INFN (Italy); MEXT, KEK, and JAXA (Japan); and the K.A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. The Tuorla blazar monitoring program has been partially supported by the Academy of Finland grant 127740. The KAIT telescope program is supported by Katzman Foundation and the National Science Foundation. The CSS survey is funded by the National Aeronautics and Space Administration under grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. The CRTS survey is supported by the U.S. National Science Foundation under grants AST-0909182. The OVRO 40 m program is supported in part by NASA grants NNX08AW31G and NNX11A043G and NSF grants AST-0808050 and AST-1109911. The MOJAVE program is supported under NASA-Fermi grant NNX12A087G. The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The NASA Swift gamma-ray burst explorer is a MIDEX Gamma Ray Burst mission led by NASA with participation of Italy and the UK. This research has made use of the Smithsonian/NASA's ADS bibliographic database. This research has made use of the NASA/IPAC NED database (JPL CalTech and NASA, USA). This research has made use of the archives and services of the ASI Science Data Center (ASDC), a facility of the Italian Space Agency (ASI Headquarters, Rome, Italy). This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASDC. This work is a product of the ASDC Fermi team developed in the frame of the INAF Senior Scientists project and the foreign visiting scientists program of ASDC. NR 63 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2015 VL 813 IS 2 AR L41 DI 10.1088/2041-8205/813/2/L41 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5KT UT WOS:000365035000019 ER PT J AU Biller, BA Vos, J Bonavita, M Buenzli, E Baxter, C Crossfield, IJM Allers, K Liu, MC Bonnefoy, M Deacon, N Brandner, W Schlieder, JE Dupuy, T Kopytova, T Manjavacas, E Allard, F Homeier, D Henning, T AF Biller, Beth A. Vos, Johanna Bonavita, Mariangela Buenzli, Esther Baxter, Claire Crossfield, Ian J. M. Allers, Katelyn Liu, Michael C. Bonnefoy, Mickael Deacon, Niall Brandner, Wolfgang Schlieder, Joshua E. Dupuy, Trent Kopytova, Taisiya Manjavacas, Elena Allard, France Homeier, Derek Henning, Thomas TI VARIABILITY IN A YOUNG, L/T TRANSITION PLANETARY-MASS OBJECT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; planets and satellites: atmospheres; planets and satellites: gaseous planets ID HUBBLE-SPACE-TELESCOPE; BETA-PICTORIS B; VERY-LOW-MASS; BROWN DWARFS; T DWARFS; AMPLITUDE VARIABILITY; EVOLVING WEATHER; CLOUD STRUCTURE; HR 8799; PATCHY AB As part of our ongoing NTT SoFI survey for variability in young free-floating planets and low-mass brown dwarfs, we detect significant variability in the young, free-floating planetary-mass object PSO J318.5-22, likely due to rotational modulation of inhomogeneous cloud cover. A member of the 23 +/- 3 Myr beta Pic moving group, PSO J318.5-22 has T-eff = 1160(-40)(+30) K and a mass estimate of 8.3 +/- 0.5 M-Jup for a 23 +/- 3 Myr age. PSO J318.5-22 is intermediate in mass between 51 Eri b and beta Pic b, the two known exoplanet companions in the beta Pic moving group. With variability amplitudes from 7% to 10% in J(S) at two separate epochs over 3-5 hr observations, we constrain the rotational period of this object to >5 hr. In K-S, we marginally detect a variability trend of up to 3% over a 3 hr observation. This is the first detection of weather on an extrasolar planetary-mass object. Among L dwarfs surveyed at high photometric precision (<3%), this is the highest amplitude variability detection. Given the low surface gravity of this object, the high amplitude preliminarily suggests that such objects may be more variable than their high-mass counterparts, although observations of a larger sample are necessary to confirm this. Measuring similar variability for directly imaged planetary companions is possible with instruments such as SPHERE and GPI and will provide important constraints on formation. Measuring variability at multiple wavelengths can help constrain cloud structure. C1 [Biller, Beth A.; Vos, Johanna; Bonavita, Mariangela; Baxter, Claire] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Biller, Beth A.; Buenzli, Esther; Brandner, Wolfgang; Kopytova, Taisiya; Henning, Thomas] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Crossfield, Ian J. M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Allers, Katelyn] Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA. [Liu, Michael C.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Bonnefoy, Mickael] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, Mickael] IPAG, CNRS, F-38000 Grenoble, France. [Deacon, Niall] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Schlieder, Joshua E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Dupuy, Trent] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Kopytova, Taisiya] Heidelberg Univ, Int Max Planck Res Sch Astron & Cosm Phys, IMPRS HD, Heidelberg, Germany. [Manjavacas, Elena] IAC, E-38205 Tenerife, Spain. [Allard, France] CRAL ENS, F-69364 Lyon 07, France. [Homeier, Derek] Heidelberg Univ, Zentrum Astron, Landessternwarte, D-69117 Heidelberg, Germany. RP Biller, BA (reprint author), Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. OI Buenzli, Esther/0000-0003-3306-1486; Baxter, Claire/0000-0003-3438-843X FU Swiss National Science Foundation (SNSF); STFC; European Research Council under the European Community's Seventh Framework Programme (FP7) [247060]; Collaborative Research Centre "The Milky Way System" of the German Research Foundation (DFG) [SFB 881, A4] FX E.B. was supported by the Swiss National Science Foundation (SNSF). We thank the anonymous referee for useful comments that helped improve the manuscript. This work was supported by a consolidated grant from STFC. D.H. acknowledges support from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060) and from the Collaborative Research Centre SFB 881 "The Milky Way System" (subproject A4) of the German Research Foundation (DFG). NR 33 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2015 VL 813 IS 2 AR L23 DI 10.1088/2041-8205/813/2/L23 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5KT UT WOS:000365035000001 ER PT J AU Kim, Y Im, M Jeon, Y Kim, M Choi, C Hong, J Hyun, M Jun, HD Karouzos, M Kim, D Kim, D Kim, JW Kim, JH Lee, SK Pak, S Park, WK Taak, YC Yoon, Y AF Kim, Yongjung Im, Myungshin Jeon, Yiseul Kim, Minjin Choi, Changsu Hong, Jueun Hyun, Minhee Jun, Hyunsung David Karouzos, Marios Kim, Dohyeong Kim, Duho Kim, Jae-Woo Kim, Ji Hoon Lee, Seong-Kook Pak, Soojong Park, Won-Kee Taak, Yoon Chan Yoon, Yongmin TI DISCOVERY OF A FAINT QUASAR AT z similar to 6 AND IMPLICATIONS FOR COSMIC REIONIZATION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; early universe; galaxies: high-redshift; quasars: emission lines; quasars: general ID DIGITAL SKY SURVEY; BLACK-HOLE MASSES; LUMINOSITY FUNCTION; Z-SIMILAR-TO-6 QUASARS; REDSHIFT; FIELD; GALAXIES; SPECTRA; SAMPLE; II. AB Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M-1450 > -24 mag) at z greater than or similar to 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z similar to 6 in a 12.5 deg(2) region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at similar to 8443 angstrom, with emission lines redshifted to z = 5.944 +/- 0.002 and rest-frame ultraviolet continuum magnitude M-1450 = -23.59 +/- 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z similar to 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M-1450 similar to 23 mag quasars at z similar to 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS. C1 [Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin] Seoul Natl Univ, CEOU, Seoul 151742, South Korea. [Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Karouzos, Marios; Kim, Dohyeong; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin] Seoul Natl Univ, Dept Phys & Astron, Astron Program, FPRD, Seoul 151742, South Korea. [Kim, Minjin; Park, Won-Kee] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Kim, Minjin] Univ Sci & Technol, Daejeon 305350, South Korea. [Jun, Hyunsung David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kim, Duho] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Kim, Ji Hoon] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Pak, Soojong] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi Do, South Korea. [Pak, Soojong] Kyung Hee Univ, Inst Nat Sci, Yongin 446701, Gyeonggi Do, South Korea. RP Kim, Y (reprint author), Seoul Natl Univ, CEOU, Bldg 45,1 Gwanak Ro, Seoul 151742, South Korea. EM yjkim@astro.snu.ac.kr; mim@astro.snu.ac.kr FU National Research Foundation of Korea (NRF) - Korea government (MSIP) [2008-0060544]; K-GMT Science Program of Korea Astronomy and Space Science Institute (KASI) [PID: gemini_KR-2015A-023]; NASA; University of Hawaii; University of Arizona; Lockheed Martin Advanced Technology Center; NASA Postdoctoral Program at the Jet Propulsion Laboratory; NRF-Fostering Core Leaders of Future Program - Korean government [2015-000714]; Global Ph.D. Fellowship Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2013H1A2A1033110] FX This work was supported by the National Research Foundation of Korea (NRF) grant No. 2008-0060544, funded by the Korea government (MSIP). This work was supported by K-GMT Science Program (PID: gemini_KR-2015A-023) of Korea Astronomy and Space Science Institute (KASI). Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The United Kingdom Infrared Telescope (UKIRT) is supported by NASA and operated under an agreement among the University of Hawaii, the University of Arizona, and Lockheed Martin Advanced Technology Center; operations are enabled through the cooperation of the Joint Astronomy Centre of the Science and Technology Facilities Council of the UK. Based on observations obtained at the Gemini Observatory acquired through the Gemini Science Archive and processed using the Gemini IRAF package, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). H.D. J. is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. D.K. acknowledges the fellowship support from the grant NRF-2015-Fostering Core Leaders of Future Program No. 2015-000714 funded by the Korean government. M.H. acknowledges support from the Global Ph.D. Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013H1A2A1033110). NR 33 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2015 VL 813 IS 2 AR L35 DI 10.1088/2041-8205/813/2/L35 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5KT UT WOS:000365035000013 ER PT J AU Seol, ML Han, JW Jeon, SB Meyyappan, M Choi, YK AF Seol, Myeong-Lok Han, Jin-Woo Jeon, Seung-Bae Meyyappan, M. Choi, Yang-Kyu TI Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting SO SCIENTIFIC REPORTS LA English DT Article ID PIEZOELECTRIC NANOGENERATORS; CONTACT ELECTRIFICATION; POWER; VIBRATION; SENSORS; WATER; ELECTRONICS; INDUCTION; PRESSURE; MOBILE AB A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 mu A, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running. C1 [Seol, Myeong-Lok; Jeon, Seung-Bae; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea. [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Choi, YK (reprint author), Korea Adv Inst Sci & Technol, Dept Elect Engn, 291 Daehak Ro, Taejon 305701, South Korea. EM ykchoi@ee.kaist.ac.kr OI Seol, Myeong-Lok/0000-0001-5724-2244 FU Center for Integrated Smart Sensors - Ministry of Science, ICT & Future Planning as Global Frontier Project [CISS-2011-0031848]; Open Innovation Lab Project from the National Nanofab Center (NNFC); EndRun Project FX This work was supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-2011-0031848). This work is also supported by Open Innovation Lab Project from the National Nanofab Center (NNFC) and the EndRun Project. NR 51 TC 7 Z9 7 U1 4 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 10 PY 2015 VL 5 AR 16409 DI 10.1038/srep16409 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV6MY UT WOS:000364385500001 PM 26553524 ER PT J AU Lane, SM Smith, CR Mitchell, J Balmer, BC Barry, KP McDonald, T Mori, CS Rosel, PE Rowles, TK Speakman, TR Townsend, FI Tumlin, MC Wells, RS Zolman, ES Schwacke, LH AF Lane, Suzanne M. Smith, Cynthia R. Mitchell, Jason Balmer, Brian C. Barry, Kevin P. McDonald, Trent Mori, Chiharu S. Rosel, Patricia E. Rowles, Teresa K. Speakman, Todd R. Townsend, Forrest I. Tumlin, Mandy C. Wells, Randall S. Zolman, Eric S. Schwacke, Lori H. TI Reproductive outcome and survival of common bottlenose dolphins sampled in Barataria Bay, Louisiana, USA, following the Deepwater Horizon oil spill SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE bottlenose dolphin; Tursiops truncatus; Deepwater Horizon; oil spill; reproductive outcome; survival ID GULF-OF-MEXICO; TURSIOPS-TRUNCATUS; IMPACTS; POPULATION; CONTEXT; COAST; MINK AB Common bottlenose dolphins (Tursiops truncatus) inhabit bays, sounds and estuaries across the Gulf of Mexico. Following the Deepwater Horizon oil spill, studies were initiated to assess potential effects on these ecologically important apex predators. A previous study reported disease conditions, including lung disease and impaired stress response, for 32 dolphins that were temporarily captured and given health assessments in Barataria Bay, Louisiana, USA. Ten of the sampled dolphins were determined to be pregnant, with expected due dates the following spring or summer. Here, we report findings after 47 months of follow-up monitoring of those sampled dolphins. Only 20% (95% CI: 2.50-55.6%) of the pregnant dolphins produced viable calves, as compared with a previously reported pregnancy success rate of 83% in a reference population. Fifty-seven per cent of pregnant females that did not successfully produce a calf had been previously diagnosed with moderate-severe lung disease. In addition, the estimated annual survival rate of the sampled cohort was low (86.8%, 95% CI: 80.0-92.7%) as compared with survival rates of 95.1% and 96.2% from two other previously studied bottlenose dolphin populations. Our findings confirm low reproductive success and high mortality in dolphins from a heavily oiled estuary when compared with other populations. Follow-up studies are needed to better understand the potential recovery of dolphins in Barataria Bay and, by extension, other Gulf coastal regions impacted by the spill. C1 [Lane, Suzanne M.; Balmer, Brian C.; Speakman, Todd R.; Zolman, Eric S.; Schwacke, Lori H.] NOAA, Natl Ctr Coastal Ocean Sci, Hollings Marine Lab, Charleston, SC 29406 USA. [Smith, Cynthia R.] Natl Marine Mammal Fdn, San Diego, CA USA. [Mitchell, Jason; McDonald, Trent] Western Ecosyst Technol Inc, Cheyenne, WY USA. [Balmer, Brian C.; Wells, Randall S.] Mote Marine Lab, Chicago Zool Soc, Sarasota, FL 34236 USA. [Barry, Kevin P.] NOAA, Natl Marine Fisheries Serv, Pascagoula, MS USA. [Mori, Chiharu S.] Ind Econ Inc, Cambridge, MA USA. [Rosel, Patricia E.] NOAA, Natl Marine Fisheries Serv, Lafayette, LA USA. [Rowles, Teresa K.] NOAA, Natl Marine Fisheries Serv, Off Protected Resources, Silver Spring, MD USA. [Townsend, Forrest I.] Bayside Hosp Anim, Ft Walton Beach, FL USA. [Tumlin, Mandy C.] Louisiana Dept Wildlife & Fisheries, Baton Rouge, LA USA. RP Schwacke, LH (reprint author), NOAA, Natl Ctr Coastal Ocean Sci, Hollings Marine Lab, Charleston, SC 29406 USA. EM lori.schwacke@noaa.gov NR 44 TC 8 Z9 8 U1 9 U2 47 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8452 EI 1471-2954 J9 P ROY SOC B-BIOL SCI JI Proc. R. Soc. B-Biol. Sci. PD NOV 7 PY 2015 VL 282 IS 1818 AR 20151944 DI 10.1098/rspb.2015.1944 PG 9 WC Biology; Ecology; Evolutionary Biology SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA CW2VC UT WOS:000364850200013 PM 26538595 ER PT J AU Jayasekara, C Premaratne, M Stockman, MI Gunapala, SD AF Jayasekara, Charith Premaratne, Malin Stockman, Mark I. Gunapala, Sarath D. TI Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MIE SCATTERING; WAVE-GUIDES; PLASMONICS; LASERS; NANO; NANOSPHERES; RESONATORS; METAMATERIALS; TRANSITIONS; NANOLASER AB We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing of ultracompact and ultrafast devices, nanoscopy and biomedical applications. (C) 2015 AIP Publishing LLC. C1 [Jayasekara, Charith; Premaratne, Malin] Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia. [Stockman, Mark I.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Jayasekara, C (reprint author), Monash Univ, Dept Elect & Comp Syst Engn, Adv Comp & Simulat Lab AxL, Clayton, Vic 3800, Australia. EM charith.jayasekara@monash.edu OI Jayasekara, Charith/0000-0001-6897-984X; Premaratne, Malin/0000-0002-2419-4431; Stockman, Mark/0000-0002-6996-0806 FU Monash Institute of Graduate Research (MIGR); Australian Research Council [DP140100883] FX The work of Charith Jayasekara was supported by Monash Institute of Graduate Research (MIGR). M. Premaratne, M. I. Stockman, and S. D. Gunapala gratefully acknowledge the financial support from the Australian Research Council Discovery Grant No. DP140100883. NR 63 TC 5 Z9 5 U1 7 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 7 PY 2015 VL 118 IS 17 AR 173101 DI 10.1063/1.4934859 PG 8 WC Physics, Applied SC Physics GA CV9CF UT WOS:000364584200001 ER PT J AU Bougher, S Jakosky, B Halekas, J Grebowsky, J Luhmann, J Mahaffy, P Connerney, J Eparvier, F Ergun, R Larson, D McFadden, J Mitchell, D Schneider, N Zurek, R Mazelle, C Andersson, L Andrews, D Baird, D Baker, DN Bell, JM Benna, M Brain, D Chaffin, M Chamberlin, P Chaufray, JY Clarke, J Collinson, G Combi, M Crary, F Cravens, T Crismani, M Curry, S Curtis, D Deighan, J Delory, G Dewey, R DiBraccio, G Dong, C Dong, Y Dunn, P Elrod, M England, S Eriksson, A Espley, J Evans, S Fang, X Fillingim, M Fortier, K Fowler, CM Fox, J Groller, H Guzewich, S Hara, T Harada, Y Holsclaw, G Jain, SK Jolitz, R Leblanc, F Lee, CO Lee, Y Lefevre, F Lillis, R Livi, R Lo, D Ma, Y Mayyasi, M McClintock, W McEnulty, T Modolo, R Montmessin, F Morooka, M Nagy, A Olsen, K Peterson, W Rahmati, A Ruhunusiri, S Russell, CT Sakai, S Sauvaud, JA Seki, K Steckiewicz, M Stevens, M Stewart, AIF Stiepen, A Stone, S Tenishev, V Thiemann, E Tolson, R Toublanc, D Vogt, M Weber, T Withers, P Woods, T Yelle, R AF Bougher, S. Jakosky, B. Halekas, J. Grebowsky, J. Luhmann, J. Mahaffy, P. Connerney, J. Eparvier, F. Ergun, R. Larson, D. McFadden, J. Mitchell, D. Schneider, N. Zurek, R. Mazelle, C. Andersson, L. Andrews, D. Baird, D. Baker, D. N. Bell, J. M. Benna, M. Brain, D. Chaffin, M. Chamberlin, P. Chaufray, J. -Y. Clarke, J. Collinson, G. Combi, M. Crary, F. Cravens, T. Crismani, M. Curry, S. Curtis, D. Deighan, J. Delory, G. Dewey, R. DiBraccio, G. Dong, C. Dong, Y. Dunn, P. Elrod, M. England, S. Eriksson, A. Espley, J. Evans, S. Fang, X. Fillingim, M. Fortier, K. Fowler, C. M. Fox, J. Groeller, H. Guzewich, S. Hara, T. Harada, Y. Holsclaw, G. Jain, S. K. Jolitz, R. Leblanc, F. Lee, C. O. Lee, Y. Lefevre, F. Lillis, R. Livi, R. Lo, D. Ma, Y. Mayyasi, M. McClintock, W. McEnulty, T. Modolo, R. Montmessin, F. Morooka, M. Nagy, A. Olsen, K. Peterson, W. Rahmati, A. Ruhunusiri, S. Russell, C. T. Sakai, S. Sauvaud, J. -A. Seki, K. Steckiewicz, M. Stevens, M. Stewart, A. I. F. Stiepen, A. Stone, S. Tenishev, V. Thiemann, E. Tolson, R. Toublanc, D. Vogt, M. Weber, T. Withers, P. Woods, T. Yelle, R. TI Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability SO SCIENCE LA English DT Article ID UPPER-ATMOSPHERE; MARTIAN ATMOSPHERE; MARS; VENUS AB The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to similar to 130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability. C1 [Bougher, S.; Combi, M.; Dong, C.; Lee, Y.; Nagy, A.; Olsen, K.; Tenishev, V.] Univ Michigan, CLaSP Dept, Ann Arbor, MI 48109 USA. [Jakosky, B.; Eparvier, F.; Ergun, R.; Schneider, N.; Andersson, L.; Baker, D. N.; Brain, D.; Chaffin, M.; Crary, F.; Crismani, M.; Deighan, J.; Dewey, R.; Dong, Y.; Fang, X.; Fortier, K.; Fowler, C. M.; Holsclaw, G.; Jain, S. K.; McClintock, W.; McEnulty, T.; Morooka, M.; Peterson, W.; Stewart, A. I. F.; Stiepen, A.; Thiemann, E.; Weber, T.; Woods, T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Halekas, J.; Ruhunusiri, S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Grebowsky, J.; Mahaffy, P.; Connerney, J.; Benna, M.; Chamberlin, P.; Collinson, G.; DiBraccio, G.; Elrod, M.; Espley, J.; Guzewich, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Luhmann, J.; Larson, D.; McFadden, J.; Mitchell, D.; Curry, S.; Curtis, D.; Delory, G.; Dunn, P.; England, S.; Fillingim, M.; Hara, T.; Harada, Y.; Jolitz, R.; Lee, C. O.; Lillis, R.; Livi, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Zurek, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mazelle, C.; Sauvaud, J. -A.; Steckiewicz, M.; Toublanc, D.] CNRS, Inst Rech Astrophys & Planetol, Toulouse, France. [Mazelle, C.; Sauvaud, J. -A.; Steckiewicz, M.; Toublanc, D.] Univ Paul Sabatier, Toulouse, France. [Andrews, D.; Eriksson, A.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Baird, D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bell, J. M.; Tolson, R.] Natl Inst Aerosp, Hampton, VA USA. [Chaufray, J. -Y.; Leblanc, F.; Lefevre, F.; Modolo, R.; Montmessin, F.] CNRS, Observat Spatiales, Milieux, Lab Atmospheres, Verrieres Le Buisson, France. [Clarke, J.; Mayyasi, M.; Vogt, M.; Withers, P.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Cravens, T.; Rahmati, A.; Sakai, S.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Fox, J.] Wright State Univ, Dept Phys, Fairborn, OH USA. [Groeller, H.; Lo, D.; Stone, S.; Yelle, R.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Ma, Y.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Seki, K.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Stevens, M.] Naval Res Lab, Washington, DC 20375 USA. RP Bougher, S (reprint author), Univ Michigan, CLaSP Dept, Ann Arbor, MI 48109 USA. EM bougher@umich.edu RI Lillis, Robert/A-3281-2008; Ma, Yingjuan/B-4895-2017; Stone, Shane/C-4662-2017; Vogt, Marissa/C-6237-2014; Peterson, WK/A-8706-2009; Fang, Xiaohua/C-2773-2008; Chamberlin, Phillip/C-9531-2012; Dong, Chuanfei/E-6485-2010; Combi, Michael/J-1697-2012; Clarke, John/C-8644-2013; Andrews, David/B-2591-2009; Benna, Mehdi/F-3489-2012 OI Lillis, Robert/0000-0003-0578-517X; Ma, Yingjuan/0000-0003-2584-7091; Stone, Shane/0000-0002-7290-2412; Vogt, Marissa/0000-0003-4885-8615; Sakai, Shotaro/0000-0001-9135-2076; Lee, Christina/0000-0002-1604-3326; Guzewich, Scott/0000-0003-1149-7385; Halekas, Jasper/0000-0001-5258-6128; SCHNEIDER, NICHOLAS/0000-0001-6720-5519; Peterson, WK/0000-0002-1513-6096; Fang, Xiaohua/0000-0002-6584-2837; Chamberlin, Phillip/0000-0003-4372-7405; Dong, Chuanfei/0000-0002-8990-094X; Combi, Michael/0000-0002-9805-0078; Andrews, David/0000-0002-7933-0322; FU Centre National d'Etudes Spatiales; Belgian American Educational Foundation; Rotary District [1630]; NASA Postdoctoral Program appointment at NASA Goddard Space Flight Center; NASA through the Mars Exploration Program FX The MAVEN Deep Dip 2 data sets reported in the paper are archived on the public version of the MAVEN Science Data Center (SDC) website, at the LASP url (https://lasp.colorado.edu/maven/sdc/public/) and on the Planetary Data System (PDS). Datacubes from three-dimensional model simulations reported in this paper are also available on the public MAVEN SDC website at https://lasp.colorado.edu/maven/sdc/public/pages/models.html. This work was partially supported by the Centre National d'Etudes Spatiales for the part based on observations with the SWEA instrument embarked on Maven. Part of this research was also carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). A. Stiepen was supported by the Belgian American Educational Foundation and the Rotary District 1630. G. DiBraccio was supported by a NASA Postdoctoral Program appointment at NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The MAVEN project is supported by NASA through the Mars Exploration Program. NR 39 TC 16 Z9 16 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 6 PY 2015 VL 350 IS 6261 AR aad0459 DI 10.1126/science.aad0459 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3MH UT WOS:000364162800004 PM 26542579 ER PT J AU Jakosky, BM Grebowsky, JM Luhmann, JG Connerney, J Eparvier, F Ergun, R Halekas, J Larson, D Mahaffy, P McFadden, J Mitchell, DF Schneider, N Zurek, R Bougher, S Brain, D Ma, YJ Mazelle, C Andersson, L Andrews, D Baird, D Baker, D Bell, JM Benna, M Chaffin, M Chamberlin, P Chaufray, YY Clarke, J Collinson, G Combi, M Crary, F Cravens, T Crismani, M Curry, S Curtis, D Deighan, J Delory, G Dewey, R DiBraccio, G Dong, C Dong, Y Dunn, P Elrod, M England, S Eriksson, A Espley, J Evans, S Fang, X Fillingim, M Fortier, K Fowler, CM Fox, J Groller, H Guzewich, S Hara, T Harada, Y Holsclaw, G Jain, SK Jolitz, R Leblanc, F Lee, CO Lee, Y Lefevre, F Lillis, R Livi, R Lo, D Mayyasi, M McClintock, W McEnulty, T Modolo, R Montmessin, F Morooka, M Nagy, A Olsen, K Peterson, W Rahmati, A Ruhunusiri, S Russell, CT Sakai, S Sauvaud, JA Seki, K Steckiewicz, M Stevens, M Stewart, AIF Stiepen, A Stone, S Tenishev, V Thiemann, E Tolson, R Toublanc, D Vogt, M Weber, T Withers, P Woods, T Yelle, R AF Jakosky, B. M. Grebowsky, J. M. Luhmann, J. G. Connerney, J. Eparvier, F. Ergun, R. Halekas, J. Larson, D. Mahaffy, P. McFadden, J. Mitchell, D. F. Schneider, N. Zurek, R. Bougher, S. Brain, D. Ma, Y. J. Mazelle, C. Andersson, L. Andrews, D. Baird, D. Baker, D. Bell, J. M. Benna, M. Chaffin, M. Chamberlin, P. Chaufray, Y. -Y. Clarke, J. Collinson, G. Combi, M. Crary, F. Cravens, T. Crismani, M. Curry, S. Curtis, D. Deighan, J. Delory, G. Dewey, R. DiBraccio, G. Dong, C. Dong, Y. Dunn, P. Elrod, M. England, S. Eriksson, A. Espley, J. Evans, S. Fang, X. Fillingim, M. Fortier, K. Fowler, C. M. Fox, J. Groeller, H. Guzewich, S. Hara, T. Harada, Y. Holsclaw, G. Jain, S. K. Jolitz, R. Leblanc, F. Lee, C. O. Lee, Y. Lefevre, F. Lillis, R. Livi, R. Lo, D. Mayyasi, M. McClintock, W. McEnulty, T. Modolo, R. Montmessin, F. Morooka, M. Nagy, A. Olsen, K. Peterson, W. Rahmati, A. Ruhunusiri, S. Russell, C. T. Sakai, S. Sauvaud, J. -A. Seki, K. Steckiewicz, M. Stevens, M. Stewart, A. I. F. Stiepen, A. Stone, S. Tenishev, V. Thiemann, E. Tolson, R. Toublanc, D. Vogt, M. Weber, T. Withers, P. Woods, T. Yelle, R. TI MAVEN observations of the response of Mars to an interplanetary coronal mass ejection SO SCIENCE LA English DT Article ID SOLAR-WIND INTERACTION; MAGNETIC-FLUX ROPES; ION ESCAPE RATE; GLOBAL SURVEYOR; VENUS; EXPRESS; ALPHA; FIELD AB Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere. C1 [Jakosky, B. M.; Eparvier, F.; Ergun, R.; Schneider, N.; Brain, D.; Andersson, L.; Baker, D.; Chaffin, M.; Crary, F.; Crismani, M.; Deighan, J.; Dewey, R.; Dong, Y.; Fang, X.; Fortier, K.; Fowler, C. M.; Holsclaw, G.; Jain, S. K.; McClintock, W.; McEnulty, T.; Morooka, M.; Peterson, W.; Stewart, A. I. F.; Stiepen, A.; Thiemann, E.; Weber, T.; Woods, T.] Univ Colorado, Boulder, CO 80309 USA. [Grebowsky, J. M.; Connerney, J.; Mahaffy, P.; Benna, M.; Chamberlin, P.; Collinson, G.; DiBraccio, G.; Elrod, M.; Espley, J.; Guzewich, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Luhmann, J. G.; Larson, D.; McFadden, J.; Mitchell, D. F.; Curry, S.; Curtis, D.; Delory, G.; Dunn, P.; England, S.; Fillingim, M.; Hara, T.; Harada, Y.; Jolitz, R.; Lee, C. O.; Lillis, R.; Livi, R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Halekas, J.; Ruhunusiri, S.] Univ Iowa, Iowa City, IA USA. [Zurek, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bougher, S.; Combi, M.; Dong, C.; Lee, Y.; Nagy, A.; Olsen, K.; Tenishev, V.] Univ Michigan, Ann Arbor, MI 48109 USA. [Ma, Y. J.; Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA USA. [Mazelle, C.; Sauvaud, J. -A.; Steckiewicz, M.; Toublanc, D.] CNRS, IRAP, Toulouse, France. [Mazelle, C.; Sauvaud, J. -A.; Steckiewicz, M.; Toublanc, D.] Univ Paul Sabatier, Toulouse, France. [Andrews, D.; Eriksson, A.] Swedish Inst Space Phys, Uppsala, Sweden. [Baird, D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Chaufray, Y. -Y.; Leblanc, F.; Lefevre, F.; Modolo, R.; Montmessin, F.] CNRS, Lab Atmospheres Milieux & Observat Spatiales, Paris, France. [Clarke, J.; Mayyasi, M.; Vogt, M.; Withers, P.] Boston Univ, Boston, MA 02215 USA. [Cravens, T.; Rahmati, A.; Sakai, S.] Univ Kansas, Lawrence, KS 66045 USA. [Evans, S.] Computat Phys Inc, Boulder, CO USA. [Fox, J.] Wright State Univ, Dayton, OH 45435 USA. [Groeller, H.; Lo, D.; Stone, S.; Yelle, R.] Univ Arizona, Tucson, AZ USA. [Seki, K.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Stevens, M.] Naval Res Lab, Washington, DC 20375 USA. [Tolson, R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Bell, J. M.] Natl Inst Aerosp, Hampton, VA USA. RP Jakosky, BM (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM bruce.jakosky@lasp.colorado.edu RI Fang, Xiaohua/C-2773-2008; Peterson, WK/A-8706-2009; Chamberlin, Phillip/C-9531-2012; Dong, Chuanfei/E-6485-2010; Combi, Michael/J-1697-2012; Clarke, John/C-8644-2013; Andrews, David/B-2591-2009; Benna, Mehdi/F-3489-2012; Lillis, Robert/A-3281-2008; Ma, Yingjuan/B-4895-2017; Stone, Shane/C-4662-2017; Vogt, Marissa/C-6237-2014; OI Halekas, Jasper/0000-0001-5258-6128; SCHNEIDER, NICHOLAS/0000-0001-6720-5519; Fang, Xiaohua/0000-0002-6584-2837; Peterson, WK/0000-0002-1513-6096; Chamberlin, Phillip/0000-0003-4372-7405; Dong, Chuanfei/0000-0002-8990-094X; Combi, Michael/0000-0002-9805-0078; Andrews, David/0000-0002-7933-0322; Lillis, Robert/0000-0003-0578-517X; Ma, Yingjuan/0000-0003-2584-7091; Stone, Shane/0000-0002-7290-2412; Vogt, Marissa/0000-0003-4885-8615; Sakai, Shotaro/0000-0001-9135-2076; Lee, Christina/0000-0002-1604-3326; Guzewich, Scott/0000-0003-1149-7385 FU NASA through the Mars Exploration Program; Belgian American Educational Foundation FX The results presented here represent the work of hundreds of scientists and engineers who designed, built, and operated the spacecraft and instruments and carried out the scientific analyses. We are indebted to them beyond words. The MAVEN mission has been funded by NASA through the Mars Exploration Program. Additional support was provided by CNES for the SWEA instrument and analysis, and by the Belgian American Educational Foundation. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. M. L. Mays and D. Odstrcil provided valuable analysis with the WSA-ENLIL+Cone model. Data from the MAVEN mission have been made available via the Planetary Data System (accessible via http://atmos.nmsu.edu/data_and_services/atmospheres_data/MAVEN/maven_mai n.html). NR 43 TC 26 Z9 26 U1 3 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 6 PY 2015 VL 350 IS 6261 AR aad0210 DI 10.1126/science.aad0210 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3MH UT WOS:000364162800001 PM 26542576 ER PT J AU Friedline, AW Zachariah, MM Middaugh, AN Garimella, R Vaishampayan, PA Rice, CV AF Friedline, Anthony W. Zachariah, Malcolm M. Middaugh, Amy N. Garimella, Ravindranath Vaishampayan, Parag A. Rice, Charles V. TI Sterilization Resistance of Bacterial Spores Explained with Water Chemistry SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID BACILLUS-SUBTILIS SPORES; ACID-SOLUBLE PROTEINS; SOLAR UV-RADIATION; HYDROGEN-PEROXIDE; CORE WATER; PUMILUS SAFR-032; DIPICOLINIC ACID; HEAT-RESISTANCE; H-2 NMR; DNA AB Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 degrees C, but an overall decrease in signal after heating to 100 degrees C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents. C1 [Friedline, Anthony W.; Zachariah, Malcolm M.; Middaugh, Amy N.; Garimella, Ravindranath; Rice, Charles V.] Univ Oklahoma, Stephenson Life Sci Res Ctr, Dept Chem & Biochem, Norman, OK 73019 USA. [Vaishampayan, Parag A.] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. RP Rice, CV (reprint author), Univ Oklahoma, Stephenson Life Sci Res Ctr, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA. EM rice@ou.edu FU National Institutes of Health [1R01GM090064-01]; NASA EPSCoR Research Infrastructure Development (RID) [NN07AL49A]; University of Oklahoma FX This work is supported by the National Institutes of Health (1R01GM090064-01), a NASA EPSCoR Research Infrastructure Development (RID) grant (NN07AL49A), and the University of Oklahoma. We express our gratitude to Dr. Kasthuri Venkateswaran, California Institute of Technology, Jet Propulsion Laboratory, NASA, for insights and helpful discussions. We also express our thanks to Dr. Parag Vaishampayan for providing stock cultures of the B. pumilus SAFR-032 for our experiments. NR 53 TC 3 Z9 3 U1 8 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 5 PY 2015 VL 119 IS 44 BP 14033 EP 14044 DI 10.1021/acs.jpcb.5b07437 PG 12 WC Chemistry, Physical SC Chemistry GA CV7EP UT WOS:000364435500010 PM 26435315 ER PT J AU Karmakar, B Venturelli, D Chirolli, L Giovannetti, V Fazio, R Roddaro, S Pfeiffer, LN West, KW Taddei, F Pellegrini, V AF Karmakar, Biswajit Venturelli, Davide Chirolli, Luca Giovannetti, Vittorio Fazio, Rosario Roddaro, Stefano Pfeiffer, Loren N. West, Ken W. Taddei, Fabio Pellegrini, Vittorio TI Nanoscale Mach-Zehnder interferometer with spin-resolved quantum Hall edge states SO PHYSICAL REVIEW B LA English DT Article AB We realize a nanoscale-area Mach-Zehnder interferometer with co-propagating quantum Hall spin-resolved edge states and demonstrate the persistence of gate-controlled quantum interference oscillations, as a function of an applied magnetic field, at relatively large temperatures. Arrays of top-gate magnetic nanofingers are used to induce a resonant charge transfer between the pair of spin-resolved edge states. To account for the pattern of oscillations measured as a function of magnetic field and gate voltage, we have developed a simple theoretical model which satisfactorily reproduces the data. C1 [Karmakar, Biswajit] Saha Inst Nucl Phys, Kolkata 700064, India. [Karmakar, Biswajit; Giovannetti, Vittorio; Fazio, Rosario] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy. [Karmakar, Biswajit; Giovannetti, Vittorio; Fazio, Rosario] CNR, Ist Nanosci, I-56126 Pisa, Italy. [Venturelli, Davide] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA. [Venturelli, Davide] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA. [Chirolli, Luca] IMDEA Nanosci, E-28049 Madrid, Spain. [Fazio, Rosario] Abdus Salaam Int Ctr Theoret Phys, I-34151 Trieste, Italy. [Roddaro, Stefano; Taddei, Fabio; Pellegrini, Vittorio] CNR, Ist Nanosci, NEST, I-56126 Pisa, Italy. [Roddaro, Stefano; Taddei, Fabio; Pellegrini, Vittorio] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Pfeiffer, Loren N.; West, Ken W.] Princeton Univ, Sch Engn & Appl Sci, Princeton, NJ 08544 USA. [Pellegrini, Vittorio] Ist Italiano Tecnol, Graphene Labs, I-16163 Genoa, Italy. RP Karmakar, B (reprint author), Saha Inst Nucl Phys, Kolkata 700064, India. RI Fazio, rosario/M-1742-2013; Taddei, Fabio/H-2245-2012; Chirolli, Luca/B-8706-2012; Roddaro, Stefano/C-6303-2008; OI Fazio, rosario/0000-0002-7793-179X; Taddei, Fabio/0000-0002-2482-6750; Chirolli, Luca/0000-0002-8439-9949; Roddaro, Stefano/0000-0002-4707-1434; GIOVANNETTI, VITTORIO/0000-0002-7636-9002 FU MIUR through FIRBIDEAS Project [RBID08B3FM]; MIUR through the PRIN project "Collective quantum phenomena: from strongly correlated systems to quantum simulators" FX This work has been supported by MIUR through FIRBIDEAS Project No. RBID08B3FM and through the PRIN project "Collective quantum phenomena: from strongly correlated systems to quantum simulators." NR 25 TC 2 Z9 2 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2015 VL 92 IS 19 AR 195303 DI 10.1103/PhysRevB.92.195303 PG 6 WC Physics, Condensed Matter SC Physics GA CV1KS UT WOS:000364016300005 ER PT J AU Williams, MW Hood, E Molotch, NP Caine, N Cowie, R Liu, FJ AF Williams, Mark W. Hood, Eran Molotch, Noah P. Caine, Nel Cowie, Rory Liu, Fengjing TI The 'teflon basin' myth: hydrology and hydrochemistry of a seasonally snow-covered catchment SO PLANT ECOLOGY & DIVERSITY LA English DT Review DE hydrological modelling; Green Lakes Valley; hydrochemistry; Niwot Ridge; hydrology; snow ID COLORADO FRONT RANGE; GREEN LAKES VALLEY; WESTERN UNITED-STATES; ATMOSPHERIC NITROGEN DEPOSITION; DISSOLVED ORGANIC-MATTER; HIGH-ELEVATION CATCHMENT; MIDLATITUDE ALPINE SITE; ROCKY-MOUNTAINS; CLIMATE-CHANGE; NIWOT RIDGE AB Background: Snow and ice melt provide sensitive indicators of climate change and serve as the primary source of stream flow in alpine basins. Aims: We synthesise the results of hydrological and hydrochemical studies during the period 1995-2014, building on a long history of earlier work focused on snow and water on Niwot Ridge and the adjacent Green Lakes Valley (GLV), which is part of the Niwot Ridge Long Term Ecological Research site (NWT LTER). Methods: These studies are discussed in the context of how snow, snowmelt and runoff reflect changing local climate. We review recent results of snow, snowmelt, hydrology and hydrochemistry from the plot to the basin scale, utilising new tools such as continuous global positioning system (GPS) measurements of snow depth, along with remotely-sensed measurements of snow-covered area and melt, combined with long-term measurements of snow properties, discharge and solute and isotopic content of water. Results and Conclusions: Surface-groundwater interactions are important components of water quantity and quality in alpine basins. Some or most snowmelt infiltrates underlying soils and bedrock, transporting soil and bedrock products to surface waters. Infiltrating snowmelt, along with increased melt of stored ice, increases the hydrologic connectivity between the terrestrial and aquatic systems. Alpine basins are being impacted by increases in atmospheric nitrogen deposition, which has caused changes in soil microbial processes such as nitrification. Nitrate, dissolved organic carbon and dissolved organic nitrogen are thus flushed from soils and talus to streams. Our long-term results show that alpine catchments, such as Green Lake 4 at NWT LTER+, have the greatest sensitivity and least resilience to climate warming, with any warming leading to increased water yields. C1 [Williams, Mark W.; Molotch, Noah P.; Caine, Nel; Cowie, Rory] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Williams, Mark W.; Molotch, Noah P.; Caine, Nel; Cowie, Rory] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Hood, Eran] Univ Alaska Southeast, Environm Sci & Geog Program, Juneau, AK USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Liu, Fengjing] Lincoln Univ, Dept Agr & Environm Sci, Jefferson City, MO USA. [Liu, Fengjing] Lincoln Univ, Cooperat Res Program, Jefferson City, MO USA. RP Williams, MW (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.; Williams, MW (reprint author), Univ Colorado, Dept Geog, Boulder, CO 80309 USA. EM markw.snobear@gmail.com RI Molotch, Noah/C-8576-2009 FU NSF [EAR 1124576, EAR 0934647]; NSF WSC programme FX Support for Mark W. Williams during the writing of this manuscript was from NSF Dust on Snow [EAR 1124576 and EAR 0934647] and NSF WSC programme. NR 148 TC 0 Z9 0 U1 5 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1755-0874 EI 1755-1668 J9 PLANT ECOL DIVERS JI Plant Ecol. Divers. PD NOV 2 PY 2015 VL 8 IS 5-6 SI SI BP 639 EP 661 DI 10.1080/17550874.2015.1123318 PG 23 WC Plant Sciences SC Plant Sciences GA DF9UP UT WOS:000371707500003 ER PT J AU Zhang, P Bounoua, L Thome, K Wolfe, R Imhoff, M AF Zhang, Ping Bounoua, Lahouari Thome, Kurtis Wolfe, Robert Imhoff, Marc TI Modeling Surface Climate in US Cities Using Simple Biosphere Model SiB2 SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article ID URBAN HEAT ISLANDS; UNITED-STATES; IMPERVIOUS SURFACE; TROPICAL CITY; MODIS; URBANIZATION; TEMPERATURE; PRODUCTS; COVER; CLASSIFICATION AB We combine Landsat-and the moderate-resolution imaging spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental United States (CONUS) surface climate. Using National Land Cover Database (NLCD) impervious surface area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled gross primary production (GPP) over the CONUS of 7.12 PgC (1 PgC = 10(15) g of carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP, with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger urban heat island (UHI) magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than in dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas. ResumeOn combine des produits bases sur Landsat et MODIS (Moderate Resolution Imaging Spectroradiometer) dans le modele Simple de la Biosphere (SiB2) pour evaluer les effets de l'urbanisation sur le climat en surface aux Etats Unis d'Amerique (EUA) a l'echelle continentale. Utilisant l'Aire des Surfaces Impervieuses (ASI) de la banque nationale des donnees de la couverture du sol (NLCD), on definit plus de 300 agglomerations urbaines et leurs zones peri-urbaines et rurales environnantes. La production primaire brute (GPP) modelisee par SiB2 sur les EUA de 7,12 PgC (1PgC = 1015 grammes de carbone) est comparable aux 6,29 PgC obtenus par MODIS. Au niveau des etats, le GPP de SiB2 est fortement correle avec celui de MODIS avec un coefficient de correlation de 0,94. Un gradient horizontal croissant de GPP est modelise depuis la zone urbaine vers la zone rurale avec, en moyenne, les zones rurales fixant 30% plus de GPP que les zones urbaines. Les villes construites dans les biomes forestiers forment des Ilots de Chaleur Urbains (ICU) plus importants que celles construites dans des biomes de vegetation courte avec faible biomasse. Les villes a climat mediterraneen ont un ICU plus fort en saison humide qu'en saison seche. Nos resultats montrent egalement que pour les zones urbaines construites dans les forets, 39% des precipitations sont evacuees par ruissellement de surface durant l'ete compare a 23% dans les zones rurales. C1 [Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. [Zhang, Ping; Imhoff, Marc] 5825 Univ Res Ct, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Zhang, Ping] Sci Syst Applicat Inc, Lanham, MD 20706 USA. [Wolfe, Robert] NASA, Goddard Space Flight Ctr, Terrestrial Informat Syst Lab, Greenbelt, MD 20771 USA. RP Zhang, P (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA. EM Ping.Zhang@nasa.gov RI Wolfe, Robert/E-1485-2012 OI Wolfe, Robert/0000-0002-0915-1855 FU NASA Interdisciplinary Research in Earth Science [NNH09ZDA001N-IDS] FX This work is funded by the NASA Interdisciplinary Research in Earth Science NNH09ZDA001N-IDS (2012). Garik Gutman, program manager. NR 45 TC 1 Z9 1 U1 3 U2 8 PU CANADIAN AERONAUTICS & SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 0703-8992 EI 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD NOV 2 PY 2015 VL 41 IS 6 BP 525 EP 535 DI 10.1080/07038992.2015.1110013 PG 11 WC Remote Sensing SC Remote Sensing GA DE1PD UT WOS:000370398000003 ER PT J AU Schwartz, RA Torre, G Massone, AM Piana, M AF Schwartz, R. A. Torre, G. Massone, A. M. Piana, M. TI DESAT: A Solar SoftWare tool for image de -saturation in the Atmospheric Image Assembly onboard the Solar Dynamics Observatory SO ASTRONOMY AND COMPUTING LA English DT Article DE SDO/AIA; Solar flares; Inverse diffraction ID RHESSI AB Saturation affects a significant rate of images recorded by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). This paper describes a computational method and a technological pipeline for the de-saturation of such images, based on several mathematical ingredients like Expectation Maximization, image correlation and interpolation. An analysis of the computational properties and demands of the pipeline, together with an assessment of its reliability are performed against a set of data recorded from the February 25 2014 flaring event. (C) 2015 Elsevier B.V. All rights reserved. C1 [Schwartz, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schwartz, R. A.] Catholic Univ Amer, Greenbelt, MD 20771 USA. [Torre, G.; Piana, M.] Univ Genoa, Dipartimento Matemat, Genoa, Italy. [Massone, A. M.; Piana, M.] CNR SPIN, Genoa, Italy. RP Piana, M (reprint author), Univ Genoa, Dipartimento Matemat, Genoa, Italy. EM michele.piana@unige.it RI piana, michele/H-9376-2015; OI Torre, Gabriele/0000-0003-1094-5166 NR 24 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD NOV PY 2015 VL 13 BP 117 EP 123 DI 10.1016/j.ascom.2015.10.006 PG 7 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA DE2MA UT WOS:000370460200012 ER PT J AU Seidt, JD Pereira, JM Gilat, A AF Seidt, Jeremy D. Pereira, J. Michael Gilat, Amos TI Influence of Fabrication Method on Tensile Response of Split Hopkinson Bar-Sized Specimens SO JOURNAL OF TESTING AND EVALUATION LA English DT Article DE dynamic tensile testing; surface roughness; failure strain; ultimate tensile stress ID SURFACE FINISH; FATIGUE; COMPRESSION; STRENGTH; BEHAVIOR AB The influence of the specimen fabrication method on results of tension experiments on miniature ductile metal samples was investigated. 2024-T351 aluminum specimens were fabricated using traditional machining methods (milling) to two surface roughness specifications and using electrical discharge machining (EDM). The recast layer was left on the EDM specimens. The surface roughness of all samples was documented. The influence of edge-breaking the samples (rounding the sharp edges) was also investigated. Tests were conducted at two nominal strain rates: 1.0 s(-1) using a servohydraulic load frame and 1000 s(-1) using a tension split Hopkinson bar (SHB) apparatus. Results showed that the fabrication method influenced both the ultimate tensile stress and the elongation at failure. For milled specimens, the ultimate tensile stress and elongation decreased with increasing surface roughness. EDM specimens had slightly lower ultimate stresses but ductility in line with finely milled samples. Ultimate stresses of milled specimens with broken edges were lower than those with unbroken edges. C1 [Seidt, Jeremy D.; Gilat, Amos] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Pereira, J. Michael] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Seidt, JD (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. FU USA Federal Aviation Administration (FAA) [2006G004] FX This work was funded by the USA Federal Aviation Administration (FAA) under Grant No. 2006G004. Thanks to Don Altobelli, Bill Emmerling and Chip Queitzsch for their support and involvement. Thanks also to Brad Lerch of NASA Glenn Research Center for the micrograph of the EDM recast layer and helpful comments on the manuscript. NR 19 TC 1 Z9 1 U1 3 U2 6 PU AMER SOC TESTING MATERIALS PI W CONSHOHOCKEN PA 100 BARR HARBOR DR, W CONSHOHOCKEN, PA 19428-2959 USA SN 0090-3973 EI 1945-7553 J9 J TEST EVAL JI J. Test. Eval. PD NOV PY 2015 VL 43 IS 6 DI 10.1520/JTE20140303 PG 11 WC Materials Science, Characterization & Testing SC Materials Science GA DC7JX UT WOS:000369397200031 ER PT J AU Mouteva, GO Czimczik, CI Fahrni, SM Wiggins, EB Rogers, BM Veraverbeke, S Xu, X Santos, GM Henderson, J Miller, CE Randerson, JT AF Mouteva, G. O. Czimczik, C. I. Fahrni, S. M. Wiggins, E. B. Rogers, B. M. Veraverbeke, S. Xu, X. Santos, G. M. Henderson, J. Miller, C. E. Randerson, J. T. TI Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID TROPICAL INDIAN AEROSOLS; SOURCE APPORTIONMENT; CLIMATE-CHANGE; ARCTIC SNOW; ELEMENTAL CARBON; INTERIOR ALASKA; FOREST-FIRES; ATMOSPHERIC AEROSOLS; RADIOCARBON ANALYSIS; NITROGEN EMISSIONS AB Black carbon (BC) aerosol emitted by boreal fires has the potential to accelerate losses of snow and ice in many areas of the Arctic, yet the importance of this source relative to fossil fuel BC emissions from lower latitudes remains uncertain. Here we present measurements of the isotopic composition of BC and organic carbon (OC) aerosols collected at two locations in interior Alaska during the summer of 2013, as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment. We isolated BC from fine air particulate matter (PM2.5) and measured its radiocarbon (Delta C-14) content with accelerator mass spectrometry. We show that fires were the dominant contributor to variability in carbonaceous aerosol mass in interior Alaska during the summer by comparing our measurements with satellite data, measurements from an aerosol network and predicted concentrations from a fire inventory coupled to an atmospheric transport model. The Delta C-14 of BC from boreal fires was 131 +/- 52 parts per thousand in the year 2013 when the Delta C-14 of atmospheric CO2 was 23 +/- 3 parts per thousand, corresponding to a mean fuel age of 20 years. Fire-emitted OC had a similar Delta C-14 (99 +/- 21 parts per thousand) as BC, but during background (low fire) periods OC (45 to 51 parts per thousand) was more positive than BC (-354 to -57 parts per thousand). We also analyzed the carbon and nitrogen elemental and stable isotopic composition of the PM2.5. Fire-emitted aerosol had an elevated carbon to nitrogen (C/N) ratio (29 +/- 2) and delta N-15 (16 +/- 4 parts per thousand). Aerosol Delta C-14 and delta C-13 measurements were consistent with a mean depth of burning in organic soil horizons of 20 cm (and a range of 8 to 47 cm). Our measurements of fire-emitted BC and PM2.5 composition constrain the end-member of boreal forest fire contributions to aerosol deposition in the Arctic and may ultimately reduce uncertainties related to the impact of a changing boreal fire regime on the climate system. C1 [Mouteva, G. O.; Czimczik, C. I.; Fahrni, S. M.; Wiggins, E. B.; Veraverbeke, S.; Xu, X.; Santos, G. M.; Randerson, J. T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Rogers, B. M.] Woods Hole Res Ctr, Falmouth, MA USA. [Henderson, J.] Atmospher & Environm Res Inc, Lexington, MA USA. [Miller, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Mouteva, GO (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. EM gmouteva@uci.edu RI Veraverbeke, Sander/H-2301-2012; OI Veraverbeke, Sander/0000-0003-1362-5125; Santos, Guaciara/0000-0003-1755-6390 FU National Aeronautics and Space Administration FX A portion of the research described in this paper was performed for the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), an Earth Ventures (EV-1) investigation, under contract with the National Aeronautics and Space Administration. This work was also supported by a generous gift from the Jenkins Family (to C.I.C.). We would like to thank Jamie Hollingsworth from the Bonanza Creek Long-Term Ecological Research (LTER) program and Alan Tonne from the University of Alaska Fairbanks Experiment Farm, who provided invaluable help in setting up the aerosol sampling stations for the campaign. We used data obtained from IMPROVE-a collaborative association of state, tribal, and federal agencies, and international partners (U.S. Environmental Protection Agency is the primary funding source, with contracting and research support from the National Park Service). We would also like to thank the colleagues from the University of California, Irvine, and the undergraduate students Nicolas Cuozzo and Ashley Braunthal who helped collect data as part of the NSF Research Experience for Undergraduate (REU) program. NR 143 TC 2 Z9 2 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV PY 2015 VL 29 IS 11 BP 1977 EP 2000 DI 10.1002/2015GB005247 PG 24 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA DC0LA UT WOS:000368907500008 ER PT J AU Sun, Y Fu, R Dickinson, R Joiner, J Frankenberg, C Gu, LH Xia, YL Fernando, N AF Sun, Ying Fu, Rong Dickinson, Robert Joiner, Joanna Frankenberg, Christian Gu, Lianhong Xia, Youlong Fernando, Nelun TI Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article; Proceedings Paper CT 2nd International Conference on Arctic Research Planning CY NOV 10-12, 2005 CL Copenhagen, DENMARK ID GREAT-PLAINS; WATER-STRESS; VEGETATION; PHOTOSYNTHESIS; INDEX; SPACE; SIMULATIONS; UNCERTAINTY; TEMPERATURE; NLDAS-2 AB This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring. C1 [Sun, Ying; Fu, Rong; Dickinson, Robert] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Gu, Lianhong] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Xia, Youlong] Natl Ctr Environm Predict, Environm Modeling Ctr, IM Syst Grp, College Pk, MD USA. [Fernando, Nelun] Texas Water Dev Board, Austin, TX USA. RP Sun, Y (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. EM suny@jsg.utexas.edu RI Sun, Ying/G-6611-2016; Gu, Lianhong/H-8241-2014; Frankenberg, Christian/A-2944-2013 OI Gu, Lianhong/0000-0001-5756-8738; Frankenberg, Christian/0000-0002-0546-5857 FU NASA [NNX13AN39G]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Program, Climate and Environmental Sciences Division; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank John Michael Wallace, Kingtse Mo, Ranga Myneni, and Kevin Bowman for helpful discussions, Yasuko Yoshida for providing SIF model products and Xitian Cai for clarification of NLDAS-2 soil moisture datasets. The support for this research came from NASA the Development and Testing of Potential Indicators for the National Climate Assessment Program (grant NNX13AN39G awarded to The University of Texas at Austin). L.Gu was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Program, Climate and Environmental Sciences Division. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The GOME-2 v26 level 3 SIF data are publicly available at http://avdc.gsfc.nasa.gov. The GOSAT SIF product is available in Frankenberg et al. [2011b]. The NLDAS-2 products and MODIS fPAR are obtained from http://ldas.gsfc.nasa.gov/nldas/ and https://lpdaac.usgs.gov/, respectively. NR 56 TC 4 Z9 4 U1 8 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV PY 2015 VL 120 IS 11 BP 2427 EP 2440 DI 10.1002/2015JG003150 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC0LM UT WOS:000368908700020 ER PT J AU Kraft-Bermuth, S Andrianov, V Bleile, A Echler, A Egelhof, P Grabitz, P Ilieva, S Kiselev, O Kilbourne, C McCammon, D Meier, JP Scholz, P AF Kraft-Bermuth, S. Andrianov, V. Bleile, A. Echler, A. Egelhof, P. Grabitz, P. Ilieva, S. Kiselev, O. Kilbourne, C. McCammon, D. Meier, J. P. Scholz, P. TI Precise determination of the 1s Lamb Shift in hydrogen-like heavy ions at the ESR storage ring using microcalorimeters SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 9th International Conference on Nuclear Physics at Storage Rings (STORI) CY SEP 29-OCT 03, 2014 CL Sankt Goar, GERMANY DE microcalorimeters for x-rays; tests of QED; high-precision x-ray spectroscopy ID LOW-TEMPERATURE DETECTORS; X-RAY SPECTROSCOPY; PHYSICS AB The precise determination of the energy of the Lyman alpha 1 and alpha 2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the precision of such experiments, the new detector concept of microcalorimeters, which detect the temperature change of an absorber after an incoming particle or photon has deposited its energy as heat, is now exploited. The microcalorimeters for x-rays used in these experiments consist of arrays of silicon thermometers and x-ray absorbers made of high-Z material. With such detectors, a relative energy resolution of about 1 per mille is obtained in the energy regime of 50-100 keV. Two successful measurement campaigns to determine the 1s Lamb Shift in Pb81+ and Au78+ have been completed: a prototype array has been applied successfully for the determination of the 1s Lamb Shift of Pb81+ at the ESR storage ring at GSI in a first test experiment. Based on the results of this test, a full array with 32 pixels has been equipped and has recently been applied to determine the 1s Lamb Shift in Au78+ ions. The energy of the Lyman-alpha 1 line agrees within error bars well with theoretical predictions. The obtained accuracy is already comparable to the best accuracy obtained with conventional germanium detectors for hydrogen-like uranium. C1 [Kraft-Bermuth, S.; Andrianov, V.; Echler, A.; Scholz, P.] Univ Giessen, D-35390 Giessen, Germany. [Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Ilieva, S.; Kiselev, O.; Meier, J. P.] GSI Helmholtz Ctr Heavy Ion Res, Darmstadt, Germany. [Andrianov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Echler, A.; Egelhof, P.; Grabitz, P.] Johannes Gutenberg Univ Mainz, D-55122 Mainz, Germany. [Kilbourne, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [McCammon, D.] Univ Wisconsin, Madison, WI 53706 USA. RP Kraft-Bermuth, S (reprint author), Univ Giessen, D-35390 Giessen, Germany. EM saskia.kraft-bermuth@iamp.physik.uni-giessen.de RI Kraft-Bermuth, Saskia/G-4007-2012 OI Kraft-Bermuth, Saskia/0000-0002-0864-7912 FU Emmy Noether Young Researchers Program of the German Research Council (DFG) FX We would like to thank K Eberhard and J Runke from the Institute of Nuclear Chemistry of the Johannes Gutenberg University for producing the 159Dy source. We also thank our co-experimentators from the FOCAL group for good cooperation during the measurements. This work is supported by the Emmy Noether Young Researchers Program of the German Research Council (DFG). NR 12 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD NOV PY 2015 VL T166 AR 014028 DI 10.1088/0031-8949/2015/T166/014028 PG 4 WC Physics, Multidisciplinary SC Physics GA DC0IY UT WOS:000368901600029 ER PT J AU Masuda, MM Stone, RP AF Masuda, Michele M. Stone, Robert P. TI Bayesian logistic mixed-effects modelling of transect data: relating red tree coral presence to habitat characteristics SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Bayesian methods; cold-water corals; generalized linear mixed model; Gulf of Alaska; logistic mixed-effects model; Primnoa ID SUITABLE HABITAT; SUITABILITY; ABUNDANCE; DISTRIBUTIONS; FISH AB The collection of continuous data on transects is a common practice in habitat and fishery stock assessments; however, the application of standard regression models that assume independence to serially correlated data is problematic. We show that generalized linear mixed models (GLMMs), i.e. generalized linear models for longitudinal data, that are normally used for studies performed over time can also be applied to other types of clustered or serially correlated data. We apply a specific GLMM for longitudinal data, a hierarchical Bayesian logistic mixed-effects model (BLMM), to a marine ecology dataset obtained from submersible video recordings of the seabed on transects at two sites in the Gulf of Alaska. The BLMM was effective in relating the presence of red tree corals (Primnoa pacifica; i.e. binary data) to habitat characteristics: the presence of red tree corals is highly associated with bedrock as the primary substrate (estimated odds ratio 9-19), high to very high seabed roughness (estimated odds ratio 3-5), and medium to high slope (estimated odds ratio 2-3). The covariate depth was less important at the sites. We also demonstrate and compare two methods of model checking: full and mixed posterior predictive assessments, the latter of which provided a more realistic assessment, and we calculate the variance partition coefficient for reporting the variation explained by multiple levels of the hierarchical model. C1 [Masuda, Michele M.; Stone, Robert P.] TSMRI, Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr,Auke Bay Labs, Juneau, AK 99801 USA. RP Masuda, MM (reprint author), TSMRI, Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr,Auke Bay Labs, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM michele.masuda@noaa.gov FU Habitat Conservation Division of NOAA's Alaska Regional Office FX We thank Delta Oceanographics and the captain and crew of the RV Velero IV for their assistance and support. The field project was funded by the Habitat Conservation Division of NOAA's Alaska Regional Office. Our thanks are extended to Mike Sigler and Mark Carls of the Alaska Fisheries Science Center, James Thorson of the Northwest Fisheries Science Center, and one anonymous reviewer for their insightful comments that improved the final version of the manuscript. Finally, we humbly acknowledge the esteemed statistician G.E.P. Box who at the age of 93 expressed in his memoir that statistics should be divided into two disciplines: one theoretical and one that could be called "Technometrics". He further stated that courses in technometrics should "...concentrate on problem solving using the statistical design and analysis of investigations and avoid specious assumptions such as the independence of sequential data" (Box, 2013). The findings and conclusions in this manuscript are those of the author(s) and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NR 51 TC 1 Z9 1 U1 5 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD NOV-DEC PY 2015 VL 72 IS 9 BP 2674 EP 2683 DI 10.1093/icesjms/fsv163 PG 10 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA DB1FF UT WOS:000368252700015 ER PT J AU Hartley, TT Trigeassou, JC Lorenzo, CF Maamri, N AF Hartley, Tom T. Trigeassou, Jean-Claude Lorenzo, Carl F. Maamri, Nezha TI Energy Storage and Loss in Fractional-Order Systems SO JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS LA English DT Article ID TRANSIENTS; EQUATIONS AB As fractional-order systems are becoming more widely accepted and their usage is increasing, it is important to understand their energy storage and loss properties. Fractional-order operators can be implemented using a distributed state representation, which has been shown to be equivalent to the Riemann-Liouville representation. In this paper, the distributed state for a fractional-order integrator is represented using an infinite resistor-capacitor network such that the energy storage and loss properties can be readily determined. This derivation is repeated for fractional-order derivatives using an infinite resistor-inductor network. An analytical example is included to verify the results for a half-order integrator. Approximation methods are included. C1 [Hartley, Tom T.] Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA. [Trigeassou, Jean-Claude] Univ Bordeaux 1, IMS LAPS, F-33405 Talence, France. [Lorenzo, Carl F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Maamri, Nezha] Univ Poitiers, LIAS ENSIP, F-86000 Poitiers, France. RP Hartley, TT (reprint author), Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA. EM thartley@uakron.edu; jean-claude.trigeassou@ims-bordeaux.fr; Carl.F.Lorenzo@nasa.gov; nezha.maamri@univ-poitiers.fr NR 31 TC 2 Z9 2 U1 1 U2 1 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1555-1423 EI 1555-1415 J9 J COMPUT NONLIN DYN JI J. Comput. Nonlinear Dyn. PD NOV PY 2015 VL 10 IS 6 AR 061006 DI 10.1115/1.4029511 PG 8 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA DB4UU UT WOS:000368509900007 ER PT J AU Zimmerman, MI Farrell, WM Poppe, AR AF Zimmerman, M. I. Farrell, W. M. Poppe, A. R. TI Kinetic simulations of kilometer-scale minimagnetosphere formation on the Moon SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CRUSTAL MAGNETIC-ANOMALIES; SOLAR-WIND INTERACTION; LUNAR-SURFACE; ELECTRIC POTENTIALS; PROSPECTOR; FIELDS; REGOLITH; REGIONS AB Kinetic simulations are used to examine the solar wind's interaction with a 3 km wide region of strong crustal dipole magnetization on the Moon. In contrast with recent hybrid and implicit particle-in-cell simulations of magnetic anomalies that have aimed to resolve electric fields over several tens of kilometers, kinetic simulations reveal a much smaller scale regime in which magnetically driven ion-electron separation can generate a kV potential difference over a height of less than 200m. The resulting electric field structure varies considerably between dawn and noon (when the solar wind flows, respectively, horizontally across the surface and vertically down from above) and is strong enough to reflect some ions back into space, consistent with spacecraft observations. Ion velocity and energy distributions are extracted near the surface and are used to derive maps of ion flux and impact energy, and the effects on sputtering and defect formation within the regolith are discussed. However, considerable uncertainty remains in how the surface ion flux evolves throughout a lunar day and how the plasma-surface-magnetic field interaction changes with respect to different magnetic topologies. C1 [Zimmerman, M. I.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Poppe, A. R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Zimmerman, MI (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. EM Michael.Zimmerman@jhuapl.edu RI Farrell, William/I-4865-2013 FU NASA Solar System Exploration Research Virtual Institute FX We gratefully acknowledge funding for this work from the NASA Solar System Exploration Research Virtual Institute. For access to the simulation data used in this work, please contact the lead author by e-mail. NR 59 TC 4 Z9 4 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV PY 2015 VL 120 IS 11 BP 1893 EP 1903 DI 10.1002/2015JE004865 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3TU UT WOS:000368435500009 ER PT J AU Thorpe, MT Rogers, AD Bristow, TF Pan, C AF Thorpe, Michael T. Rogers, A. Deanne Bristow, Thomas F. Pan, Cong TI Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 1. Application to sedimentary rocks SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CLAY MINERAL FORMATION; INFRARED-EMISSION; LABORATORY TECHNIQUE; SOUTHERN HIGHLANDS; MERIDIANI-PLANUM; EARLY MARS; DEPOSITS; SPECTRA; REFLECTANCE; SURFACES AB Thermal emission spectroscopy is used to determine the mineralogy of sandstone and mudstone rocks as part of an investigation of linear spectral mixing between sedimentary constituent phases. With widespread occurrences of sedimentary rocks on the surface of Mars, critical examination of the accuracy associated with quantitative models of mineral abundances derived from thermal emission spectra of sedimentary materials is necessary. Although thermal emission spectroscopy has been previously proven to be a viable technique to obtain quantitative mineralogy from igneous and metamorphic materials, sedimentary rocks, with natural variation of composition, compaction, and grain size, have yet to be examined. In this work, we present an analysis of the thermal emission spectral (similar to 270-1650 cm(-1)) characteristics of a suite of 13 sandstones and 14 mudstones. X-ray diffraction and traditional point counting procedures were all evaluated in comparison with thermal emission spectroscopy. Results from this work are consistent with previous thermal emission spectroscopy studies and indicate that bulk rock mineral abundances can be estimated within 11.2% for detrital grains (i.e., quartz and feldspars) and 14.8% for all other mineral phases present in both sandstones and mudstones, in comparison to common in situ techniques used for determining bulk rock composition. Clay-sized to fine silt-sized grained phase identification is less accurate, with differences from the known ranging from similar to 5 to 24% on average. Nevertheless, linear least squares modeling of thermal emission spectra is an advantageous technique for determining abundances of detrital grains and sedimentary matrix and for providing a rapid classification of clastic rocks. C1 [Thorpe, Michael T.; Rogers, A. Deanne; Pan, Cong] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Bristow, Thomas F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Thorpe, MT (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM michael.thorpe@stonybrook.edu RI Rogers, Deanne/I-9737-2016 OI Rogers, Deanne/0000-0002-4671-2551 FU NASA Mars Fundamental Research Program [NNX09AL22G] FX We are grateful for discussions and comments provided by Scott McLennan, Timothy Glotch, and Steven Jaret. The authors would like to thank Scott McLennan, Troy Rasbury, and Kevin Cannon for donating the samples used for this investigation. We acknowledge funding from the NASA Mars Fundamental Research Program grant NNX09AL22G to A.D.R. We appreciate thorough and useful reviews from Mikki Osterloo and an anonymous reviewer. Sources for the library spectra used in this work are described in Table 1. All sandstone and mudstone spectra measured for this paper will be made available at http://aram.ess.stonybrook.edu/drogers/upon acceptance of this manuscript. NR 83 TC 1 Z9 1 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV PY 2015 VL 120 IS 11 BP 1956 EP 1983 DI 10.1002/2015JE004863 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3TU UT WOS:000368435500012 ER PT J AU Natarajan, M Cianciolo, AD Fairlie, TD Richardson, MI McConnochie, TH AF Natarajan, Murali Cianciolo, Alicia Dwyer Fairlie, T. Duncan Richardson, Mark I. McConnochie, Timothy H. TI Sensitivity of simulated Martian atmospheric temperature to prescribed dust opacity distribution: Comparison of model results with reconstructed data from Mars Exploration Rover missions SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GENERAL-CIRCULATION; THERMAL TIDES; STORMS; CYCLE; ENTRY AB We use the Mars Weather Research and Forecasting (MarsWRF) general circulation model to simulate the atmospheric structure corresponding to the landing location and time of the Mars Exploration Rovers (MER) Spirit (A) and Opportunity (B) in 2004. The multiscale capability of MarsWRF facilitates high-resolution nested model runs centered near the landing site of each of the rovers. Dust opacity distributions based on measurements by Thermal Emission Spectrometer (TES) aboard the Mars Global Surveyor spacecraft, and those from an old version of the Mars Climate Database (MCD v3.1 released in 2001) are used to study the sensitivity of the model temperature profile to variations in the dust prescription. The reconstructed entry, descent, and landing (EDL) data from the rover missions are used for comparisons. We show that the model using dust opacity from TES limb and nadir data for the year of MER EDL, Mars Year 26 (MY26), yields temperature profiles in closer agreement with the reconstructed data than the prelaunch EDL simulations and models using other dust opacity specifications. The temperature at 100 Pa from the model (MY26) and the reconstruction are within 5 degrees K. These results highlight the role of vertical dust opacity distribution in determining the atmospheric thermal structure. Similar studies involving data from past missions and models will be useful in understanding the extent to which atmospheric variability is captured by the models and in developing realistic preflight characterization required for future lander missions to Mars. C1 [Natarajan, Murali; Cianciolo, Alicia Dwyer; Fairlie, T. Duncan] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Richardson, Mark I.] Ashima Res, Pasadena, CA USA. [McConnochie, Timothy H.] Univ Maryland, College Pk, MD 20742 USA. RP Natarajan, M (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Murali.Natarajan@nasa.gov; mcconnoc@astro.umd.edu FU Science Innovation Fund program; InSight Flight Dynamics Support project at NASA LaRC FX This work was supported by the Science Innovation Fund program and the InSight Flight Dynamics Support project at NASA LaRC. MER reconstruction data shown in this paper are available in the Mars archive page under PDS atmosphere node. TES limb data for dust opacity are available from Timothy McConnochie, coauthor of this study (mcconnoc@astro.umd.edu). Model results required to generate the figures can be obtained from the corresponding author. We wish to thank the reviewers for their comments and suggestions, which have helped improve this paper. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. NR 37 TC 0 Z9 0 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV PY 2015 VL 120 IS 11 BP 2002 EP 2019 DI 10.1002/2015JE004813 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3TU UT WOS:000368435500014 ER PT J AU Gopalswamy, N Yashiro, S Xie, H Akiyama, S Makela, P AF Gopalswamy, N. Yashiro, S. Xie, H. Akiyama, S. Maekelae, P. TI Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; GEOMAGNETIC STORMS; ENERGETIC PARTICLES; MAIN PHASE; WIND; POLARITY; FIELD; EXPANSION; BEHAVIOR; REGIONS AB We report on a study that compares the properties of magnetic clouds (MCs) during the first 73 months of solar cycles 23 and 24 in order to understand the weak geomagnetic activity in cycle 24. We find that the number of MCs did not decline in cycle 24, although the average sunspot number is known to have declined by similar to 40%. Despite the large number of MCs, their geoeffectiveness in cycle 24 was very low. The average Dst index in the sheath and cloud portions in cycle 24 was -33 nT and -23 nT, compared to -66 nT and -55 nT, respectively, in cycle 23. One of the key outcomes of this investigation is that the reduction in the strength of geomagnetic storms as measured by the Dst index is a direct consequence of the reduction in the factor VBz (the product of the MC speed and the out-of-the-ecliptic component of the MC magnetic field). The reduction in MC-to-ambient total pressure in cycle 24 is compensated for by the reduction in the mean MC speed, resulting in the constancy of the dimensionless expansion rate at 1 AU. However, the MC size in cycle 24 was significantly smaller, which can be traced to the anomalous expansion of coronal mass ejections near the Sun reported by Gopalswamy et al. (2014a). One of the consequences of the anomalous expansion seems to be the larger heliocentric distance where the pressure balance between the CME flux ropes and the ambient medium occurs in cycle 24. C1 [Gopalswamy, N.; Yashiro, S.; Xie, H.; Akiyama, S.; Maekelae, P.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [Yashiro, S.; Xie, H.; Akiyama, S.; Maekelae, P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. EM nat.gopalswamy@nasa.gov OI Gopalswamy, Nat/0000-0001-5894-9954 FU NASA Goddard Space Flight Center; NASA/LWS program; NSF [AGS-1358274]; NASA [NNX15AB70G, NNX15AB77G] FX We thank T. Nieves-Chinchilla (http://wind.nasa.gov/index_WI_ICME_list.htm) and I. G. Richardson (http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm) for making ICME lists available online. The parameters used in this paper were derived from the OMNI data available online at NASA Goddard Space Flight Center (http://omniweb.gsfc.nasa.gov). We thank R. Skoug for providing ACE data for three events (Bastille Day 2000 and Halloween 2003). The Dst index was obtained from the World Data Center, Kyoto, Japan ((http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html). The work of N.G., S.Y., S.A. was supported by NASA/LWS program. P.M. was partially supported by NSF grant AGS-1358274 and NASA grant NNX15AB77G. H.X. was partially supported by NASA grant NNX15AB70G. NR 83 TC 8 Z9 8 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2015 VL 120 IS 11 BP 9221 EP 9245 DI 10.1002/2015JA021446 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB1EZ UT WOS:000368252100001 ER PT J AU Bessho, N Chen, LJ Germaschewski, K Bhattacharjee, A AF Bessho, N. Chen, L. -J. Germaschewski, K. Bhattacharjee, A. TI Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ISLANDS AB Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (omega(pe)/Omega(e))(-2) and on the background plasma density as n(b)(-1/2). In the Earth's magnetotail, the parameter omega(pe)/Omega(e) similar to 9 and the background (lobe) density can be of the order of 0.01 cm(-3), and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions. C1 [Bessho, N.; Chen, L. -J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bessho, N.; Chen, L. -J.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Germaschewski, K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Bhattacharjee, A.] Princeton Univ, Ctr Heliophys, Princeton, NJ 08544 USA. [Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bessho, N (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM naoki.bessho@nasa.gov RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU Theory and Modeling Program of the Magnetospheric Multiscale mission at UNH - NSF [AGS-1338944, PHY-0903923, AGS-1202537, AGS-1056898]; NASA [NNX11AH03G, NNX13AK31G]; NASA at UMCP [AGS-1543598]; NSF MRI program [PHY-1229408] FX The work at NASA GSFC was supported by the Theory and Modeling Program of the Magnetospheric Multiscale mission at UNH supported in part by NSF grants AGS-1338944, PHY-0903923, AGS-1202537, and AGS-1056898 and NASA grants NNX11AH03G and NNX13AK31G, and at UMCP by AGS-1543598. We acknowledge the use of computer resources at the National Energy Research Scientific Computing Center, the use of Titan at Oak Ridge Leadership Computing Facility, and also the use of Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI program under grant PHY-1229408. The simulation data are available upon request from the authors. NR 27 TC 3 Z9 3 U1 3 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2015 VL 120 IS 11 BP 9355 EP 9367 DI 10.1002/2015JA021548 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB1EZ UT WOS:000368252100010 ER PT J AU Lynch, KA Hampton, DL Zettergren, M Bekkeng, TA Conde, M Fernandes, PA Horak, P Lessard, M Miceli, R Michell, R Moen, J Nicolls, M Powell, SP Samara, M AF Lynch, K. A. Hampton, D. L. Zettergren, M. Bekkeng, T. A. Conde, M. Fernandes, P. A. Horak, P. Lessard, M. Miceli, R. Michell, R. Moen, J. Nicolls, M. Powell, S. P. Samara, M. TI MICA sounding rocket observations of conductivity-gradient-generated auroral ionospheric responses: Small-scale structure with large-scale drivers SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ELECTRIC-FIELDS; ALFVEN WAVES; MODEL; ELECTRODYNAMICS; PARAMETERS; RESONATOR; EVOLUTION; FEEDBACK; DENSITY; CAVITY AB A detailed, in situ study of field-aligned current (FAC) structure in a transient, substorm expansion phase auroral arc is conducted using electric field, magnetometer, and electron density measurements from the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched from Poker Flat, AK. These data are supplemented with larger-scale, contextual measurements from a heterogeneous collection of ground-based instruments including the Poker Flat incoherent scatter radar and nearby scanning doppler imagers and filtered all-sky cameras. An electrostatic ionospheric modeling case study of this event is also constructed by using available data (neutral winds, electron precipitation, and electric fields) to constrain model initial and boundary conditions. MICA magnetometer data are converted into FAC measurements using a sheet current approximation and show an up-down current pair, with small-scale current density and Poynting flux structures in the downward current channel. Model results are able to roughly recreate only the large-scale features of the field-aligned currents, suggesting that observed small-scale structures may be due to ionospheric feedback processes not encapsulated by the electrostatic model. The model is also used to assess the contributions of various processes to total FAC and suggests that both conductance gradients and neutral dynamos may contribute significantly to FACs in a narrow region where the current transitions from upward to downward. Comparison of Poker Flat Incoherent Scatter Radar versus in situ electric field estimates illustrates the high sensitivity of FAC estimates to measurement resolution. C1 [Lynch, K. A.; Fernandes, P. A.; Horak, P.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Hampton, D. L.; Conde, M.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Bekkeng, T. A.] Embry Riddle Aeronaut Univ, Dept Engn, Daytona Beach, FL USA. [Bekkeng, T. A.; Moen, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Lessard, M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Miceli, R.; Powell, S. P.] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY USA. [Michell, R.; Samara, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Michell, R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nicolls, M.] SRI Int, Menlo Pk, CA 94025 USA. RP Lynch, KA (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM kal@dartmouth.edu OI Powell, Steven/0000-0002-8829-6752 FU NASA [NNX10AL18G, NNX10AL20G, NNX10AL16G]; Dartmouth College's Presidential Scholar and Senior Honors Thesis programs; NSF Career award [AGS-1255181]; ESA PRODEX [4200090335]; Research Council of Norway [208006] FX The MICA analysis is dedicated to the memory of Paul M Kintner, Jr. MICA analysis work at Dartmouth College was funded by NASA grant NNX10AL18G and by Dartmouth College's Presidential Scholar and Senior Honors Thesis programs. Work at ERAU was funded by NSF Career award AGS-1255181, at UAF/GI by NASA grant NNX10AL20G, and at Cornell by NASA grant NNX10AL16G. Work at UiO has been supported by the ESA PRODEX contract 4200090335 and the Research Council of Norway grant 208006. The MICA team thanks the engineering group at NASA Wallops and NSROC for their hard work and dedication to sounding rocket missions. The MICA project was aided by SRI/PFISR and by the UAF/GI staff at Poker Flat Research Range. The authors thank both reviewers for constructive and thoughtful reviews and wish to acknowledge useful conversations about the ionospheric Alfven resonator (IAR) with Robert Lysak. Data may be requested from the lead author. NR 60 TC 7 Z9 7 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2015 VL 120 IS 11 BP 9661 EP 9682 DI 10.1002/2014JA020860 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB1EZ UT WOS:000368252100029 ER PT J AU Khazanov, GV Tripathi, AK Sibeck, D Himwich, E Glocer, A Singhal, RP AF Khazanov, G. V. Tripathi, A. K. Sibeck, D. Himwich, E. Glocer, A. Singhal, R. P. TI Electron distribution function formation in regions of diffuse aurora SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CYCLOTRON HARMONIC INSTABILITY; PITCH-ANGLE DIFFUSION; WHISTLER-MODE WAVES; LOW-ENERGY ELECTRONS; SUPERTHERMAL ELECTRONS; PANCAKE DISTRIBUTIONS; TRANSPORT-EQUATION; STATISTICAL-MODEL; MAGNETOSPHERE; IONOSPHERE AB The precipitation of high-energy magnetospheric electrons (E similar to 600 eV-10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, similar to 700-800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 km) and the resultant population of secondary electrons and electrons cascading toward lower energies. In this paper, we present the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E < 600 eV) and its energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account, for the first time, the formation of the electron distribution function in the diffuse auroral region, beginning with the primary injection of plasma sheet electrons via both electrostatic electron cyclotron harmonic waves and whistler mode chorus waves to the loss cone, and including their subsequent multiple atmospheric reflections in the two magnetically conjugated ionospheres. It is demonstrated that magnetosphere-ionosphere coupling is key in forming the electron distribution function in the diffuse auroral region. C1 [Khazanov, G. V.; Sibeck, D.; Glocer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tripathi, A. K.; Singhal, R. P.] Banaras Hindu Univ, Indian Inst Technol, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Himwich, E.] Yale Univ, Dept Phys, New Haven, CT USA. RP Khazanov, GV (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM george.v.khazanov@nasa.gov FU NASA Van Allen Probes; NASA LWS Program; Indian Institute of Technology (Banaras Hindu University), India FX Funding support for this study was provided by NASA Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) Project, the NASA LWS Program, and by Indian Institute of Technology (Banaras Hindu University), India. The data for this paper are available from George V. Khazanov at george.v.khazanov@nasa.gov. NR 81 TC 5 Z9 5 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2015 VL 120 IS 11 BP 9891 EP 9915 DI 10.1002/2015JA021728 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB1EZ UT WOS:000368252100042 ER PT J AU Barge, LM Abedian, Y Doloboff, IJ Nunez, JE Russell, MJ Kidd, RD Kanik, I AF Barge, Laura M. Abedian, Yeghegis Doloboff, Ivria J. Nunez, Jessica E. Russell, Michael J. Kidd, Richard D. Kanik, Isik TI Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 105; Chemical Gardens; Hydrothermal Vents; Self-Assembly; Astrobiology; Origin of Life; Inorganic Membranes ID OF-LIFE EXPERIMENTS; PRECIPITATION TUBES; ORIGIN; GROWTH; REDUCTION; EVOLUTION; CHIMNEYS; REDOX; ONSET AB Here we report experimental simulations of hydrothermal chimney growth using injection chemical garden methods. The versatility of this type of experiment allows for testing of various proposed ocean /hydrothermal fluid chemistries that could have driven reactions toward the origin of life in environments on the early Earth, early Mars, or even other worlds such as the icy moons of the outer planets. We show experiments that include growth of chemical garden structures under anoxic conditions simulating the early Earth, inclusion of trace components of phosphates / organics in the injection solution to incorporate them into the structure, a switch of the injection solution to introduce a secondary precipitating anion, and the measurement of membrane potentials generated by chemical gardens. Using this method, self-assembling chemical garden structures were formed that mimic the natural chimneys precipitated at submarine hydrothermal springs, and these precipitates can be used successfully as flow-through reactors by feeding through multiple successive "hydrothermal" injections. C1 [Barge, Laura M.; Abedian, Yeghegis; Doloboff, Ivria J.; Nunez, Jessica E.; Russell, Michael J.; Kidd, Richard D.; Kanik, Isik] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. [Barge, Laura M.; Abedian, Yeghegis; Doloboff, Ivria J.; Russell, Michael J.; Kanik, Isik] NASA, Astrobiol Inst, Icy Worlds, England. [Barge, Laura M.; Nunez, Jessica E.] Blue Marble Space Inst Sci, Seattle, WA USA. [Nunez, Jessica E.] Citrus Coll, Glendora, CA USA. RP Barge, LM (reprint author), CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. EM Laura.M.Barge@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA Astrobiology Institute (Icy Worlds); NAI through the NASA Postdoctoral Program; NASA; US Department of Education PR/Award [P031C110019] FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge the support by the NASA Astrobiology Institute (Icy Worlds). L.M.B. is supported by the NAI through the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. J.E.N. was supported through a US Department of Education PR/Award #: P031C110019 administered through Citrus College. We acknowledge useful discussions with members of the NAI Thermodynamics, Disequilibrium, and Evolution Focus Group and the Blue Marble Space Institute of Science. NR 37 TC 0 Z9 0 U1 3 U2 14 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD NOV PY 2015 IS 105 AR e53015 DI 10.3791/53015 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DB5SM UT WOS:000368573900016 ER PT J AU Pulkkinen, A AF Pulkkinen, Antti TI Geomagnetically Induced Currents Modeling and Forecasting SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Editorial Material ID EXTREME GEOELECTRIC FIELDS; SOLAR C1 [Pulkkinen, Antti] NASA, Goddard Space Flight Ctr, Space Weather Res Ctr, Greenbelt, MD 20771 USA. RP Pulkkinen, A (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Res Ctr, Greenbelt, MD 20771 USA. EM antti.a.pulkkinen@nasa.gov NR 15 TC 3 Z9 3 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV PY 2015 VL 13 IS 11 BP 734 EP 736 DI 10.1002/2015SW001316 PG 3 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DB1HS UT WOS:000368259700003 ER PT J AU Pi, XQ AF Pi, Xiaoqing TI Ionospheric Effects on Spaceborne Synthetic Aperture Radar and a New Capability of Imaging the Ionosphere From Space SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID POLARIMETRIC SAR DATA; FARADAY-ROTATION; SCINTILLATION AB This article reviews research activities and results in a new field, where ionospheric effects on spaceborne synthetic aperture radar have been investigated and techniques of imaging the ionosphere using the same radar are also explored. The research was originally to minimize ionospheric-induced distortions and contaminations in Earth remote sensing observations. As a product, the radar-based high-resolution ionospheric imaging from a low Earth orbit satellite can also benefit studies of space weather effects on the ionospheric density distribution in essentially all latitude regions, which would provide useful information to studies of coupling of the magnetosphere, ionosphere, and thermosphere. C1 [Pi, Xiaoqing] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Pi, XQ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM xiaoqing.pi@jpl.nasa.gov NR 33 TC 2 Z9 2 U1 4 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV PY 2015 VL 13 IS 11 BP 737 EP 741 DI 10.1002/2015SW001281 PG 5 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DB1HS UT WOS:000368259700004 ER PT J AU Jacobs, M Chang, LC Pulkkinen, A Romano, M AF Jacobs, Matthew Chang, Lin-Ching Pulkkinen, Antti Romano, Michelangelo TI Automatic analysis of double coronal mass ejections from coronagraph images SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID ACTIVE CONTOURS; ARRIVAL TIMES; CONE MODEL; 1 AU; CMES; PROPAGATION; TRACKING; LASCO; EARTH; PREDICTIONS AB Coronal mass ejections (CMEs) can have major impacts on man-made technology and humans, both in space and on Earth. These impacts have created a high interest in the study of CMEs in an effort to detect and track events and forecast the CME arrival time to provide time for proper mitigation. A robust automatic real-time CME processing pipeline is greatly desired to avoid laborious and subjective manual processing. Automatic methods have been proposed to segment CMEs from coronagraph images and estimate CME parameters such as their heliocentric location and velocity. However, existing methods suffered from several shortcomings such as the use of hard thresholding and an inability to handle two or more CMEs occurring within the same coronagraph image. Double-CME analysis is a necessity for forecasting the many CME events that occur within short time frames. Robust forecasts for all CME events are required to fully understand space weather impacts. This paper presents a new method to segment CME masses and pattern recognition approaches to differentiate two CMEs in a single coronagraph image. The proposed method is validated on a data set of 30 halo CMEs, with results showing comparable ability in transient arrival time prediction accuracy and the new ability to automatically predict the arrival time of a double-CME event. The proposed method is the first automatic method to successfully calculate CME parameters from double-CME events, making this automatic method applicable to a wider range of CME events. C1 [Jacobs, Matthew; Chang, Lin-Ching] Catholic Univ Amer, Dept Elect Engn & Comp Sci, Washington, DC 20064 USA. [Pulkkinen, Antti] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Romano, Michelangelo] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Chang, LC (reprint author), Catholic Univ Amer, Dept Elect Engn & Comp Sci, Washington, DC 20064 USA. EM changl@cua.edu NR 49 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV PY 2015 VL 13 IS 11 BP 761 EP 777 DI 10.1002/2015SW001260 PG 17 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DB1HS UT WOS:000368259700007 ER PT J AU Cheng, J Adams, RJ Young, JC Khayat, MA AF Cheng, Jin Adams, Robert J. Young, John C. Khayat, Michael A. TI Augmented EFIE With Normally Constrained Magnetic Field and Static Charge Extraction SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Electric field integral equation (EFIE); low frequency; method of moments (MoM); multiscale; numerical stability ID INTEGRAL-EQUATION; ELECTRIC-FIELD; ELECTROMAGNETIC SCATTERING; MAXWELLS EQUATIONS; ARBITRARY SHAPE; FREQUENCY; SURFACES AB A new surface integral equation formulation for scattering from perfectly conducting objects is presented. The formulation is developed by adding a constraint on the normal component of the magnetic field to the augmented electric field integral equation (AEFIE) and extracting the static charge solution. The resulting AEFIEnH-S formulation is discretized using the method of moments with Rao-Wilton-Glisson (RWG) source functions and Buffa-Christiansen (BC) test functions. An iterative diagonal matrix scaling algorithm is used to improve the conditioning of the discrete system. Numerical examples demonstrate that the AEFIEnH-S is stable and accurate as the frequency is reduced for closed, open, and multiscale multiply connected geometries. The formulation relies only on diagonal preconditioning, it accurately models the near electric, near magnetic, and far fields, it does not require frequency scaling of the unknowns, and it does not incorporate any type of Helmholtz decomposition. C1 [Cheng, Jin; Adams, Robert J.; Young, John C.] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA. [Khayat, Michael A.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. RP Cheng, J (reprint author), Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA. EM jin.cheng@uky.edu; rjadams@uky.edu; john.c.young@uky.edu; michael.a.khayat@nasa.gov FU U.S. Office of Naval Research [N00014-11-1-0625]; NASA [NNX13AB12A-14-017] FX This work was supported in part by the U.S. Office of Naval Research under Grant N00014-11-1-0625 and in part by the NASA under Grant NNX13AB12A-14-017. NR 36 TC 1 Z9 1 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD NOV PY 2015 VL 63 IS 11 BP 4952 EP 4963 DI 10.1109/TAP.2015.2478936 PG 12 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DA3WI UT WOS:000367730500036 ER PT J AU Sha, J Jo, YH Yan, XH Liu, WT AF Sha, Jin Jo, Young-Heon Yan, Xiao-Hai Liu, W. T. TI The modulation of the seasonal cross-shelf sea level variation by the cold pool in the Middle Atlantic Bight SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID NEW-YORK BIGHT; CONTINENTAL-SHELF; CAPE-HATTERAS; RIVER PLUME; WATER; CIRCULATION; SLOPE; OCEAN; TOPEX/POSEIDON; CHLOROPHYLL AB This study explores the influence of the cold pool in the Middle Atlantic Bight (MAB) to cross-shelf sea surface slope by fitting an annual harmonic to temperature and salinity profiles from 1993 to 2012 and compares to the 20 year averaged altimetry sea level anomaly (SLA). The consistency within the bottom temperature, thermal steric height, total steric height, and altimetry observation validates that the cold pool induces a depressed sea level in the middle shelf overlapping with the dominant surface seasonal cycles. Temporally, the cold pool pattern is most apparent in July and August as a result of magnitude competition between the thermal and haline steric height. In addition, Ensemble Empirical Mode Decomposition (EEMD) is employed to reconstruct the altimetry SLA and reveals the middle-shelf depression pattern from single year's SLA data. The locations of the SLA depression from 1993 to 2012 agree with the cold pool locations identified from in situ measurements, suggesting a promising application of altimetry SLA in the cold pool study. Conclusively, this study reveals the modulation of the cross-shelf sea level variation by the cold pool, and contributes to the understanding of the sea level response to water masses on the continental shelf. C1 [Sha, Jin; Jo, Young-Heon; Yan, Xiao-Hai] Univ Delaware, Coll Earth Ocean & Environm, Newark, DE 19716 USA. [Yan, Xiao-Hai] Univ Delaware, Newark, DE USA. [Yan, Xiao-Hai] Xiamen Univ, Joint Inst Coastal Res & Management, Newark, DE USA. [Liu, W. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Yan, XH (reprint author), Univ Delaware, Coll Earth Ocean & Environm, Newark, DE 19716 USA. EM xiaohai@udel.edu FU China Scholarship Council; NOAA [Na14OAR4170087] FX The in situ measurements of CTD, PFL, XBT, and MBT can be obtained from World Ocean Database/NODC/NOAA (http://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html). The gridded SLA data are Ssalto/Duacs multimission altimeter products from AVISO/CNES (http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-produ cts/global/msla). This research benefitted from comments of Steven Lentz (WHOI). The authors also thank Autumn Kidwell for the proofreading. The first author, Jin Sha, is supported partially by the fellowship from China Scholarship Council. The research of this work is supported by the NOAA Sea grant (Na14OAR4170087). NR 42 TC 0 Z9 0 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD NOV PY 2015 VL 120 IS 11 BP 7182 EP 7194 DI 10.1002/2015JC011255 PG 13 WC Oceanography SC Oceanography GA DA3GZ UT WOS:000367686500004 ER PT J AU Liechty, DS AF Liechty, Derek S. TI Object-Oriented/Data-Oriented Design of a Direct Simulation MonteCarlo Algorithm SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID CARLO METHOD; VIBRATIONAL-RELAXATION; IONIZATION; PARTICLE; FLOWS; RATES; MODEL AB National Aeronautics and Space Administration has been investing in the development of a new code, the Multiphysics Algorithm with Particles, to incorporate recent developments in direct simulation MonteCarlo algorithms and improve physical realism, time to solution, and expand the range of usefulness of National Aeronautics and Space Administration direct simulation MonteCarlo codes (in both velocity space and altitude). The Multiphysics Algorithm with Particles is an object-oriented/data-oriented code written in C++. Object-oriented codes are likely the most flexible and efficient approach for the development of new algorithms and physics modules due to their inherent modularity. However, computational efficiency is an equally critical component of software design that must be considered, which is why data-oriented design becomes important. The focus of the development of the Multiphysics Algorithm with Particles thus far has been on the creation of efficient particle data structures, the inclusion of gas models, and the ability to dynamically adapt a simulation. Future work will focus on more efficient grid structures and parallel computing strategies. The new software is evaluated in the current study with regard to 1)software design and extensibility, 2)accuracy of solution, and 3)efficiency of solution. For each category, comparisons will be made against legacy software to identify the relative merits of each software package. For software design and extensibility, the details of the Software Engineering Plan for the Multiphysics Algorithm with Particles will be presented. For accuracy of solution, comparisons will be made to test cases from the literature. Speed comparisons are made between the Multiphysics Algorithm with Particles and the current production direct simulation MonteCarlo code at National Aeronautics and Space Administration, the direct simulation MonteCarlo Analysis Code, for both serial and parallel implementations. More importantly, though, are the automated grid, time step, and surface temperature adaptation algorithms included in the Multiphysics Algorithm with Particles. The user can now specify the simulation initial conditions and begin the solution one time, and the Multiphysics Algorithm with Particles automatically adapts the solution and determines when the final solution has been reached. C1 [Liechty, Derek S.] NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. RP Liechty, DS (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, 16 Victory St,MS 408A, Hampton, VA 23681 USA. FU NASA FX The present work was funded through the NASA Game Changing Development Program Entry Systems Modeling project, with Project Manager Michael Wright, Deputy Project Manager Monica Hughes, and Technical Area Lead Michael Barnhardt. NR 25 TC 1 Z9 1 U1 3 U2 5 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV PY 2015 VL 52 IS 6 BP 1521 EP 1529 DI 10.2514/1.A33177 PG 9 WC Engineering, Aerospace SC Engineering GA DA1YB UT WOS:000367590800001 ER PT J AU Guruswamy, GP AF Guruswamy, G. P. TI Fast Database Generation for Parachute Cluster Using Navier-Stokes Equations on Supercomputers SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID COMPUTATIONS AB A fast procedure to simulate the unsteady aerodynamic characteristics of a parachute cluster in the vicinity of a capsule is presented. This problem is modeled using a well-validated flow solver, which solves the Reynolds-averaged Navier-Stokes equations for steady and unsteady compressible/incompressible flows around general geometries using an overset grid approach. Results are validated using comparisons with classical theory and experiments. The fast generation of a large aerodynamic database is accomplished using the dual-level parallel protocol on a massively parallel supercomputer. Results are demonstrated by generating aerodynamic response surfaces for steady and unsteady cases. C1 [Guruswamy, G. P.] NASA, Ames Res Ctr, Adv Supercomp Div, Fundamental Modeling & Simulat Branch, Mountain View, CA 94035 USA. RP Guruswamy, GP (reprint author), NASA, Ames Res Ctr, Adv Supercomp Div, Fundamental Modeling & Simulat Branch, Mountain View, CA 94035 USA. FU NAS FX The author would like to thank Pieter Buning of NASA Langley Research Center and William Chan of NASA Ames Research Center for providing consultations in multibody motion capability associated with the OVERFLOW flow solver. Help with animation by Tim Sandstrom and parallel computing by Dennis Jespersen of the NASA Advanced Supercomputing (NAS) Division are appreciated. This work was supported under technology development activities of NAS. NR 17 TC 0 Z9 0 U1 2 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV PY 2015 VL 52 IS 6 BP 1542 EP 1550 DI 10.2514/1.A33360 PG 9 WC Engineering, Aerospace SC Engineering GA DA1YB UT WOS:000367590800003 ER PT J AU Spangelo, S Landau, D Johnson, S Arora, N Randolph, T AF Spangelo, Sara Landau, Damon Johnson, Shawn Arora, Nitin Randolph, Thomas TI Defining the Optimal Requirements for the Liquid Indium Microelectric Propulsion System SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID SOLAR ELECTRIC PROPULSION; MISSIONS; CUBESATS AB Recent technology advancements in microelectric propulsion will enable the next generation of small spacecraft to perform trajectory and attitude maneuvers with significant V requirements, provide thrust over long mission durations, and replace reaction wheels for attitude control. These advancements will open up the class of mission architectures achievable by small spacecraft to include formation flying, proximity operations, and precision pointing missions in both low Earth orbit and interplanetary destinations. The goal of this study is to establish the optimal performance parameters for future microelectric propulsion technology that are applicable to a broad range of flight demonstration platforms (for example, dedicated 3- to 12-unit CubeSats to evolved expendable launch vehicle secondary payload adaptor-class spacecraft) for a variety of applications, including low Earth orbit and Earth escape orbit transfers, travel to interplanetary destinations, hover and drag makeup missions, and performing reaction-wheel-free attitude control. An integrated systems-level model for propulsion, spacecraft (power, data, telecommunication, thermal management), and orbit and attitude maneuvers is developed to support solution space exploration. Microelectric propulsion system performance parameters are derived that maximize the performance capability subject to realistic system-level constraints in the context of upcoming mission opportunities where microelectric propulsion is enabling or advantageous relative to other technologies. C1 [Spangelo, Sara; Landau, Damon; Johnson, Shawn; Arora, Nitin; Randolph, Thomas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Spangelo, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 18 TC 1 Z9 1 U1 0 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV PY 2015 VL 52 IS 6 BP 1651 EP 1664 DI 10.2514/1.A33242 PG 14 WC Engineering, Aerospace SC Engineering GA DA1YB UT WOS:000367590800012 ER PT J AU Gustetic, JL Crusan, J Rader, S Ortega, S AF Gustetic, Jennifer L. Crusan, Jason Rader, Steve Ortega, Sam TI Outcome-driven open innovation at NASA SO SPACE POLICY LA English DT Editorial Material DE Open innovation; Prize competition; Challenge; Crowdsourcing; Space AB In an increasingly connected and networked world, the National Aeronautics and Space Administration (NASA) recognizes the value of the public as a strategic partner in addressing some of our most pressing challenges. The agency is working to more effectively harness the expertise, ingenuity, and creativity of individual members of the public by enabling, accelerating, and scaling the use of open innovation approaches including prizes, challenges, and crowdsourcing. As NASA's use of open innovation tools to solve a variety of types of problems and advance of number of outcomes continues to grow, challenge design is also becoming more sophisticated as our expertise and capacity (personnel, platforms, and partners) grows and develops. NASA has recently pivoted from talking about the benefits of challenge-driven approaches, to the outcomes these types of activities yield. Challenge design should be informed by desired outcomes that align with NASA's mission. This paper provides several case studies of NASA open innovation activities and maps the outcomes of those activities to a successful set of outcomes that challenges can help drive alongside traditional tools such as contracts, grants and partnerships. Published by Elsevier Ltd. C1 [Gustetic, Jennifer L.; Crusan, Jason] NASA Headquarters, Washington, DC 20546 USA. [Rader, Steve] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ortega, Sam] NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA. RP Gustetic, JL (reprint author), 300 E St SW, Washington, DC 20546 USA. EM jennifer.l.gustetic@nasa.gov; jason.crusan@nasa.gov; steven.n.rader@nasa.gov; sam.ortega@nasa.gov NR 4 TC 0 Z9 0 U1 5 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-9646 EI 1879-338X J9 SPACE POLICY JI Space Policy PD NOV PY 2015 VL 34 BP 11 EP 17 DI 10.1016/j.spacepol.2015.06.002 PG 7 WC International Relations; Social Sciences, Interdisciplinary SC International Relations; Social Sciences - Other Topics GA DA4KG UT WOS:000367768200003 ER PT J AU Brosnan, IG AF Brosnan, Ian G. TI An analysis of the relative success of applicants to the new STEM Presidential Management Fellowship and the NASA context SO SPACE POLICY LA English DT Article DE STEM; Presidential Management Fellowship; PMF; NASA ID PROGRAM AB In 2014, the U.S. Office of Personnel Management's Presidential Management Fellowship (PMF) Program initiated a pilot, PMF STEM, to bring recent graduates with advanced degrees in science, technology, engineering, and mathematics (STEM) fields into federal service. The NASA Office of Human Capital was closely engaged, and the pilot was a welcome new avenue for STEM hiring. Here, I ask how the Finalists in this new STEM program fared relative to traditional PMF finalists. I find that the rates at which traditional PMF and PMF STEM Finalists in the Class of 2014 received their first appointment offers were significantly different (p = 0.0315), and PMF STEM Finalists were initially offered appointments at higher rates than the PMF Finalists. However, this advantage disappeared over time, possibly because the remaining PMF STEM Finalists were not a good fit to the available STEM opportunities. When the appointment period for the Class of 2014 closed, 58% of PMF STEM Finalists and 72% of PMF Finalists had received appointment offers. Although a smaller proportion of PMF STEM Finalists received offers in 2014, their offer rate was consistent with the long-term average. I briefly discuss the NASA context for these results. Published by Elsevier Ltd. C1 [Brosnan, Ian G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Brosnan, IG (reprint author), NASA, Ames Res Ctr, MS 232-22, Moffett Field, CA 94035 USA. EM ian.g.brosnan@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-9646 EI 1879-338X J9 SPACE POLICY JI Space Policy PD NOV PY 2015 VL 34 BP 47 EP 49 DI 10.1016/j.spacepol.2015.09.001 PG 3 WC International Relations; Social Sciences, Interdisciplinary SC International Relations; Social Sciences - Other Topics GA DA4KG UT WOS:000367768200008 ER PT J AU Mankin, JS Viviroli, D Singh, D Hoekstra, AY Diffenbaugh, NS AF Mankin, Justin S. Viviroli, Daniel Singh, Deepti Hoekstra, Arjen Y. Diffenbaugh, Noah S. TI The potential for snow to supply human water demand in the present and future SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE snow; water resources; internal climate variability; human water demand; CMIP5; CESM large ensemble; climate impacts ID WESTERN NORTH-AMERICA; CLIMATE-CHANGE; ALBEDO FEEDBACK; WARMING CLIMATE; UNITED-STATES; CALIFORNIA; IMPACTS; MANAGEMENT; HYDROLOGY; TRENDS AB Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins-which together have a present population of similar to 2 billion people-are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of >300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions. C1 [Mankin, Justin S.] Stanford Univ, Emmett Interdisciplinary Program Environm & Resou, Stanford, CA 94305 USA. [Mankin, Justin S.; Singh, Deepti] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA. [Mankin, Justin S.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Mankin, Justin S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Viviroli, Daniel] Univ Zurich, Dept Geog, Zurich, Switzerland. [Singh, Deepti; Diffenbaugh, Noah S.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Hoekstra, Arjen Y.] Univ Twente, Dept Water Engn & Management, NL-7500 AE Enschede, Netherlands. [Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. RP Mankin, JS (reprint author), Stanford Univ, Emmett Interdisciplinary Program Environm & Resou, Stanford, CA 94305 USA. EM jsmankin@ldeo.columbia.edu; daniel.viviroli@geo.uzh.ch; singhd@stanford.edu; a.y.hoekstra@utwente.nl; diffenbaugh@stanford.edu RI Hoekstra, Arjen/B-4980-2008; Viviroli, Daniel/A-6720-2008 OI Hoekstra, Arjen/0000-0002-4769-5239; Viviroli, Daniel/0000-0002-1214-8657 FU Predoctoral Science Fellowship at the Center for International Security and Cooperation (CISAC) at Stanford University; NSF CAREER Award [0955283] FX The authors would like to thank the World Climate Research Program and Department of Energy's Program for Climate Model Diagnosis and Intercomparison for access to the CMIP5 simulations; NCAR's CESM1 (CAM5) Large Ensemble Community Project (LENS); Matthew Rodell and NASA's GES DISC for assistance with GLDAS data access and interpretation; and supercomputing resources provided by NSF/CISL/Yellowstone and Stanford CEES. Our work was supported by a Predoctoral Science Fellowship at the Center for International Security and Cooperation (CISAC) at Stanford University to JSM, and NSF CAREER Award 0955283 to NSD. NR 51 TC 6 Z9 6 U1 8 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD NOV PY 2015 VL 10 IS 11 AR 114016 DI 10.1088/1748-9326/10/11/114016 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CZ6ZO UT WOS:000367249900020 ER PT J AU Moore, AW Small, IJ Gutman, SI Bock, Y Dumas, JL Fang, P Haase, JS Jackson, ME Laber, JL AF Moore, Angelyn W. Small, Ivory J. Gutman, Seth I. Bock, Yehuda Dumas, John L. Fang, Peng Haase, Jennifer S. Jackson, Mark E. Laber, Jayme L. TI National Weather Service Forecasters Use GPS Precipitable Water Vapor for Enhanced Situational Awareness during the Southern California Summer Monsoon SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID NORTH-AMERICAN MONSOON; GULF-OF-CALIFORNIA; SOUTHWESTERN UNITED-STATES; SURGES; METEOROLOGY; RAINFALL; SYSTEM; ASSIMILATION; CLIMATOLOGY; MOUNTAINS AB During the North American Monsoon, low-to-midlevel moisture is transported in surges from the Gulf of California and Eastern Pacific Ocean into Mexico and the American Southwest. As rising levels of precipitable water interact with the mountainous terrain, severe thunderstorms can develop, resulting in flash floods that threaten life and property. The rapid evolution of these storms, coupled with the relative lack of upper-air and surface weather observations in the region, make them difficult to predict and monitor, and guidance from numerical weather prediction models can vary greatly under these conditions. Precipitable water vapor (PW) estimates derived from continuously operating ground-based GPS receivers have been available for some time from NOAA's GPS-Met program, but these observations have been of limited utility to operational forecasters in part due to poor spatial resolution. Under a NASA Advanced Information Systems Technology project, 37 real-time stations were added to NOAA's GPS-Met analysis providing 30-min PW estimates, reducing station spacing from approximately 150 km to 30 km in Southern California. An 18-22 July 2013 North American Monsoon event provided an opportunity to evaluate the utility of the additional upper-air moisture observations to enhance National Weather Service (NWS) forecaster situational awareness during the rapidly developing event. NWS forecasters used these additional data to detect rapid moisture increases at intervals between the available 1-6-h model updates and approximately twice-daily radiosonde observations, and these contributed tangibly to the issuance of timely flood watches and warnings in advance of flash floods, debris flows, and related road closures. C1 [Moore, Angelyn W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Small, Ivory J.] NOAA, Natl Weather Serv Forecast Off, San Diego, CA USA. [Gutman, Seth I.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Bock, Yehuda; Fang, Peng; Haase, Jennifer S.] Univ Calif San Diego, Scripps Inst Oceanog, Cecil H & Ida M Green Inst Geophys & Planetary Ph, La Jolla, CA 92093 USA. [Dumas, John L.; Jackson, Mark E.; Laber, Jayme L.] NOAA, Natl Weather Serv Forecast Off, Oxnard, CA USA. RP Moore, AW (reprint author), 4800 Oak Grove Dr MS 238-600, Pasadena, CA 91109 USA. EM Angelyn.W.Moore@jpl.nasa.gov FU NASA [AIST-11 NNX09AI67G]; National Science Foundation (NSF) [EAR-1400901] FX This research was funded by a NASA AIST-11 NNX09AI67G award to Scripps Institution of Oceanography, and by in-kind support from NOAA's Earth System Research Laboratory and the NOAA Weather Forecasting Offices in San Diego and Oxnard. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Maps were drawn with the Generic Mapping Tool and matplotlib. San Andreas fault map data are from P. Bird (doi:10.1029/2001GC000252). GPS RINEX data were provided by the NASA MEaSUREs Solid Earth Science ESDR System project through the SOPAC archive and by the UNAVCO Facility with support from the National Science Foundation (NSF) Grant No. EAR-1400901 and NASA under NSF Cooperative Agreement No. EAR-0735156. We thank the editor and three anonymous reviewers for suggestions that greatly improved the paper. NR 34 TC 7 Z9 7 U1 2 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD NOV PY 2015 VL 96 IS 11 BP 1867 EP 1877 DI 10.1175/BAMS-D-14-00095.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CZ3HB UT WOS:000366993900002 ER PT J AU Buchanan, GM Brink, AB Leidner, AK Rose, R Wegmann, M AF Buchanan, Graeme M. Brink, Andreas B. Leidner, Allison K. Rose, Robert Wegmann, Martin TI Advancing terrestrial conservation through remote sensing SO ECOLOGICAL INFORMATICS LA English DT Article DE Conservation; Remote sensing; Land cover change; Ecosystem services; Capacity building; Effectiveness ID BIODIVERSITY CONSERVATION AB Conservationists recognise that remote sensing can make a substantial contribution to their effort to monitor the environment to better understand and reduce the impact of anthropogenic activities. However, often it is perceived that the needs of the terrestrial conservation community are not being met by the remote sensing community. The first step to bridging this gap is the improved communication between both communities, and the compilation of a list of needs and best practises for conservation applications. Here we review five recent workshops that help to answer the broad question "What conservationists need and want from remote sensing". We identify recurring requests, and consider potential ways forward for the conservation and remote sensing communities to start to deliver data or tools to address these needs. (C) 2015 Elsevier B.V. All rights reserved. C1 [Buchanan, Graeme M.] Royal Soc Protect Birds, RSPB Ctr Conservat Sci, Edinburgh EH12 9DH, Midlothian, Scotland. [Brink, Andreas B.] Commiss European Communities, JRC, IES, Land Resource Management Unit, Ispra, Italy. [Leidner, Allison K.] Univ Space Res Assoc, NASA, Div Earth Sci, Washington, DC USA. [Wegmann, Martin] Univ Wurzburg, German Aerosp Ctr DLR, CEDS Biodivers German Remote Sensing Data Ctr, Wurzburg, Germany. [Wegmann, Martin] Univ Wurzburg, Dept Remote Sensing, Wurzburg, Germany. RP Buchanan, GM (reprint author), Royal Soc Protect Birds, RSPB Ctr Conservat Sci, Miller Bldg,2 Lochside View, Edinburgh EH12 9DH, Midlothian, Scotland. EM graeme.buchanan@rspb.org.uk OI Wegmann, Martin/0000-0003-0335-9601 NR 24 TC 0 Z9 0 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-9541 EI 1878-0512 J9 ECOL INFORM JI Ecol. Inform. PD NOV PY 2015 VL 30 SI SI BP 318 EP 321 DI 10.1016/j.ecoinf.2015.05.005 PG 4 WC Ecology SC Environmental Sciences & Ecology GA CZ1OY UT WOS:000366876400042 ER PT J AU Klinger, J Clark, SJ Coleman, M Gluyas, JG Kudryavtsev, VA Lincoln, DL Pal, S Paling, SM Spooner, NJC Telfer, S Thompson, LF Woodward, D AF Klinger, J. Clark, S. J. Coleman, M. Gluyas, J. G. Kudryavtsev, V. A. Lincoln, D. L. Pal, S. Paling, S. M. Spooner, N. J. C. Telfer, S. Thompson, L. F. Woodward, D. TI Simulation of muon radiography for monitoring CO2 stored in a geological reservoir SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Muon radiography; CCS; Carbon capture monitoring; Carbon capture; Cosmic-ray muons ID COSMIC-RAY MUONS; AQUIFERS; STORAGE; MUSIC AB Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to acquire the data. Simulations based on simplified models have previously shown that muon radiography could be automated to continuously monitor CO2 injection and migration, in addition to reducing the overall cost of monitoring. In this paper, we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon radiography. The stratigraphy in the vicinity of a nominal test facility is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m(2) is considered, at a vertical depth of 776 m below the seabed. We find that 1 year of constant CO2 injection leads to changes in the column density of less than or similar to 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Klinger, J.; Kudryavtsev, V. A.; Pal, S.; Spooner, N. J. C.; Telfer, S.; Thompson, L. F.; Woodward, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Clark, S. J.] Univ Durham, Dept Earth Sci, Durham DH1 3LE, England. [Coleman, M.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. [Gluyas, J. G.] Univ Durham, Durham Energy Inst, Durham DH1 3LE, England. [Lincoln, D. L.] Univ Sheffield, Dept Civil & Struct Engn, Sheffield S1 3JD, S Yorkshire, England. [Paling, S. M.] STFC Boulby Underground Sci Facil, Cleveland, Qld TS13 4UZ, Australia. RP Klinger, J (reprint author), Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. EM j.klinger@sheffield.ac.uk FU Department of Energy and Climate Change; Premier Oil plc.; Science and Technology Facilities Council (STFC, UK) [ST/K001841/1]; STFC [ST/L502492/1] FX This work was supported by the Department of Energy and Climate Change and Premier Oil plc. We would like to thank the Science and Technology Facilities Council (STFC, UK) for supporting this work (grant ST/K001841/1). The studentship of D. Woodward is funded by STFC (grant ST/L502492/1). The contribution of M. Coleman was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). We would like to acknowledge the continued support of Israel Chemicals Ltd UK at Boulby Mine and the team at the STFC Boulby Underground Laboratory. We thank ENI for providing data relating to the Hewett Fields complex in the North Sea. We also thank David Jacques and Tom Lynch, from the University of Leeds, for useful discussions. NR 36 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 644 EP 654 DI 10.1016/j.ijggc.2015.09.010 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400058 ER PT J AU Ojha, L Wilhelm, MB Murchie, SL McEwen, AS Wray, JJ Hanley, J Masse, M Chojnacki, M AF Ojha, Lujendra Wilhelm, Mary Beth Murchie, Scott L. McEwen, Alfred S. Wray, James J. Hanley, Jennifer Masse, Marion Chojnacki, Matt TI Spectral evidence for hydrated salts in recurring slope lineae on Mars SO NATURE GEOSCIENCE LA English DT Article ID REFLECTANCE SPECTRA; GALE CRATER; PERCHLORATE; BRINES; EVAPORATION; SITE AB Determining whether liquid water exists on the Martian surface is central to understanding the hydrologic cycle and potential for extant life on Mars. Recurring slope lineae, narrow streaks of low reflectance compared to the surrounding terrain, appear and grow incrementally in the downslope direction during warm seasons when temperatures reach about 250-300 K, a pattern consistent with the transient flow of a volatile species(1-3). Brine flows (or seeps) have been proposed to explain the formation of recurring slope lineae(1-3), yet no direct evidence for either liquid water or hydrated salts has been found(4). Here we analyse spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars instrument onboard the Mars Reconnaissance Orbiter from four different locations where recurring slope lineae are present. We find evidence for hydrated salts at all four locations in the seasons when recurring slope lineae are most extensive, which suggests that the source of hydration is recurring slope lineae activity. The hydrated salts most consistent with the spectral absorption features we detect are magnesium perchlorate, magnesium chlorate and sodium perchlorate. Our findings strongly support the hypothesis that recurring slope lineae form as a result of contemporary water activity on Mars. C1 [Ojha, Lujendra; Wilhelm, Mary Beth; Wray, James J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30308 USA. [Wilhelm, Mary Beth] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McEwen, Alfred S.; Chojnacki, Matt] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Hanley, Jennifer] Southwest Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Masse, Marion] Lab Planetol & Geodynam, F-44322 Nantes, France. RP Ojha, L (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30308 USA. EM luju@gatech.edu RI Wray, James/B-8457-2008; Murchie, Scott/E-8030-2015; Chojnacki, Matthew/A-4245-2013 OI Wray, James/0000-0001-5559-2179; Murchie, Scott/0000-0002-1616-8751; Chojnacki, Matthew/0000-0001-8497-8994 FU National Science Foundation Graduate Research Fellowship Program [DGE-1148903]; MDAP [NNX13AK01G] FX L.O. and M.B.W. are funded by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903. The research was further supported by MDAP Grant No. NNX13AK01G. All original data described in this paper are reported in the SOM and archived by NASA's Planetary Data System. We thank the MRO science and engineering team for returning such an incredible data set. The paper benefited from initial reviews by B. Schmidt and L. Liuzzo. NR 29 TC 70 Z9 73 U1 28 U2 70 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD NOV PY 2015 VL 8 IS 11 BP 829 EP + DI 10.1038/NGEO2546 PG 5 WC Geosciences, Multidisciplinary SC Geology GA CZ6GU UT WOS:000367200000012 ER PT J AU Fischer, PD Brown, ME Hand, KP AF Fischer, P. D. Brown, M. E. Hand, K. P. TI SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: composition; planets and satellites: individual (Europa); planets and satellites: surfaces ID SULFURIC-ACID HYDRATE; ICE SHELL; REFLECTANCE SPECTRA; SURFACE-COMPOSITION; WATER ICE; OCEAN; SALTS; ATMOSPHERE; ENCELADUS; ENERGY AB We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative. C1 [Fischer, P. D.; Brown, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hand, K. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Fischer, PD (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM pfischer@caltech.edu FU National Science Foundation [1313461]; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; internal Research and Technology Development program; W. M. Keck Foundation FX This research was supported by grant 1313461 from the National Science Foundation. K. P. H. acknowledges support from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded in part through the internal Research and Technology Development program. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 56 TC 5 Z9 5 U1 4 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 164 DI 10.1088/0004-6256/150/5/164 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500026 ER PT J AU Flaugher, B Diehl, HT Honscheid, K Abbott, TMC Alvarez, O Angstadt, R Annis, JT Antonik, M Ballester, O Beaufore, L Bernstein, GM Bernsteing, RA Bigelow, B Bonati, M Boprie, D Brooks, D Buckley-Geer, EJ Campa, J Cardiel-Sas, L Castander, FJ Castilla, J Cease, H Cela-Ruiz, JM Chappa, S Chi, E Cooper, C da Costa, LN Dede, E Derylo, G Depoy, DL de Vicente, J Doel, P Drlica-Wagner, A Eiting, J Elliott, AE Emes, J Estrada, J Neto, AF Finley, DA Flores, R Frieman, J Gerdes, D Gladders, MD Gregory, B Gutierrez, GR Hao, J Holland, SE Holm, S Huffman, D Jackson, C James, DJ Jonas, M Karcher, A Karliner, I Kent, S Kessler, R Kozlovsky, M Kron, RG Kubik, D Kuehn, K Kuhlmann, S Kuk, K Lahav, O Lathrop, A Lee, J Levi, ME Lewis, P Li, TS Mandrichenko, I Marshall, JL Martinez, G Merritt, KW Miquel, R Munoz, F Neilsen, EH Nichol, RC Nord, B Ogando, R Olsen, J Palaio, N Patton, K Peoples, J Plazas, AA Rauch, J Reil, K Rheault, JP Roe, NA Rogers, H Roodman, A Sanchez, E Scarpine, V Schindler, RH Schmidt, R Schmitt, R Schubnell, M Schultz, K Schurter, P Scott, L Serrano, S Shaw, TM Smith, RC Soares-Santos, M Stefanik, A Stuermer, W Suchyta, E Sypniewski, A Tarle, G Thaler, J Tighe, R Tran, C Tucker, D Walker, AR Wang, G Watson, M Weaverdyck, C Wester, W Woods, R Yanny, B AF Flaugher, B. Diehl, H. T. Honscheid, K. Abbott, T. M. C. Alvarez, O. Angstadt, R. Annis, J. T. Antonik, M. Ballester, O. Beaufore, L. Bernstein, G. M. Bernsteing, R. A. Bigelow, B. Bonati, M. Boprie, D. Brooks, D. Buckley-Geer, E. J. Campa, J. Cardiel-Sas, L. Castander, F. J. Castilla, J. Cease, H. Cela-Ruiz, J. M. Chappa, S. Chi, E. Cooper, C. da Costa, L. N. Dede, E. Derylo, G. DePoy, D. L. de Vicente, J. Doel, P. Drlica-Wagner, A. Eiting, J. Elliott, A. E. Emes, J. Estrada, J. Neto, A. Fausti Finley, D. A. Flores, R. Frieman, J. Gerdes, D. Gladders, M. D. Gregory, B. Gutierrez, G. R. Hao, J. Holland, S. E. Holm, S. Huffman, D. Jackson, C. James, D. J. Jonas, M. Karcher, A. Karliner, I. Kent, S. Kessler, R. Kozlovsky, M. Kron, R. G. Kubik, D. Kuehn, K. Kuhlmann, S. Kuk, K. Lahav, O. Lathrop, A. Lee, J. Levi, M. E. Lewis, P. Li, T. S. Mandrichenko, I. Marshall, J. L. Martinez, G. Merritt, K. W. Miquel, R. Munoz, F. Neilsen, E. H. Nichol, R. C. Nord, B. Ogando, R. Olsen, J. Palaio, N. Patton, K. Peoples, J. Plazas, A. A. Rauch, J. Reil, K. Rheault, J-P Roe, N. A. Rogers, H. Roodman, A. Sanchez, E. Scarpine, V. Schindler, R. H. Schmidt, R. Schmitt, R. Schubnell, M. Schultz, K. Schurter, P. Scott, L. Serrano, S. Shaw, T. M. Smith, R. C. Soares-Santos, M. Stefanik, A. Stuermer, W. Suchyta, E. Sypniewski, A. Tarle, G. Thaler, J. Tighe, R. Tran, C. Tucker, D. Walker, A. R. Wang, G. Watson, M. Weaverdyck, C. Wester, W. Woods, R. Yanny, B. CA DES Collaboration TI THE DARK ENERGY CAMERA SO ASTRONOMICAL JOURNAL LA English DT Article DE atlases; catalogs; cosmology: observations; instrumentation: detectors; instrumentation: photometers; surveys ID CHARGE-COUPLED-DEVICES; DATA RELEASE; TELESCOPE; SYSTEM; DECAM; CCDS AB The Dark Energy Camera is a new imager with a 2 degrees.2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration. and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 mu m thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15 mu m x 15 mu m pixels with a plate scale of 0 ''.263 pixel(-1). A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron. readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status. C1 [Flaugher, B.; Diehl, H. T.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Buckley-Geer, E. J.; Cease, H.; Chappa, S.; Chi, E.; Derylo, G.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flores, R.; Frieman, J.; Gutierrez, G. R.; Hao, J.; Holm, S.; Huffman, D.; Jackson, C.; Jonas, M.; Kent, S.; Kozlovsky, M.; Kubik, D.; Kuk, K.; Lathrop, A.; Mandrichenko, I.; Merritt, K. W.; Neilsen, E. H.; Nord, B.; Olsen, J.; Peoples, J.; Rauch, J.; Scarpine, V.; Schmitt, R.; Schultz, K.; Scott, L.; Shaw, T. M.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Tucker, D.; Watson, M.; Wester, W.; Woods, R.; Yanny, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Honscheid, K.; Patton, K.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Beaufore, L.; Eiting, J.; Elliott, A. E.; Patton, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Abbott, T. M. C.; Bonati, M.; Gregory, B.; James, D. J.; Munoz, F.; Schmidt, R.; Schurter, P.; Smith, R. C.; Tighe, R.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Antonik, M.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Ballester, O.; Cardiel-Sas, L.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bernstein, G. M.] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Bernsteing, R. A.] Carnegie Inst Washington Observ, Pasadena, CA 91101 USA. [Bigelow, B.; Boprie, D.; Cooper, C.; Dede, E.; Gerdes, D.; Schubnell, M.; Sypniewski, A.; Tarle, G.; Weaverdyck, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Campa, J.; Castilla, J.; Cela-Ruiz, J. M.; de Vicente, J.; Martinez, G.; Sanchez, E.] CIEMAT, E-28040 Madrid, Spain. [Castander, F. J.; Serrano, S.] Fac Ciencies, Campus UAB, IEEC CSIC, Inst Ciencies lEspai, E-08193 Barcelona, Spain. [da Costa, L. N.; Neto, A. Fausti; Ogando, R.] Lab Interinstituc eAstron LIneA, BR-20921400 Rio De Janeiro, Brazil. [da Costa, L. N.; Ogando, R.] Obser Nacl, BR-20921400 Rio De Janeiro, Brazil. [DePoy, D. L.; Li, T. S.; Marshall, J. L.; Palaio, N.; Rheault, J-P] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.; Palaio, N.; Rheault, J-P] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Emes, J.; Holland, S. E.; Karcher, A.; Lee, J.; Levi, M. E.; Roe, N. A.; Tran, C.; Wang, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Frieman, J.; Gladders, M. D.; Kessler, R.; Kron, R. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Kuhlmann, S.] Argonne Natl Lab, Lemont, IL 60439 USA. [Lewis, P.; Reil, K.; Rogers, H.; Roodman, A.; Schindler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, Barcelona E-08010, Spain. [Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Flaugher, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM diehl@fnal.gov RI Ogando, Ricardo/A-1747-2010; Sanchez, Eusebio/H-5228-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Cela Ruiz, Jose Manuel/0000-0002-5364-9466; Tucker, Douglas/0000-0001-7211-5729; Neilsen, Eric/0000-0002-7357-0317 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 73 TC 64 Z9 62 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 150 DI 10.1088/0004-6256/150/5/150 PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500012 ER PT J AU Goldstein, DA D'Andrea, CB Fischer, JA Foley, RJ Gupta, RR Kessler, R Kim, AG Nichol, RC Nugent, PE Papadopoulos, A Sako, M Smith, M Sullivan, M Thomas, RC Wester, W Wolf, RC Abdalla, FB Banerji, M Benoit-Levy, A Bertin, E Brooks, D Rosell, AC Castander, FJ da Costa, LN Covarrubias, R DePoy, DL Desai, S Diehl, HT Doel, P Eifler, TF Neto, AF Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, D Gruen, D Gruendl, RA James, D Kuehn, K Kuropatkin, N Lahav, O Li, TS Maia, MAG Makler, M March, M Marshall, JL Martini, P Merritt, KW Miquel, R Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Walker, AR AF Goldstein, D. A. D'Andrea, C. B. Fischer, J. A. Foley, R. J. Gupta, R. R. Kessler, R. Kim, A. G. Nichol, R. C. Nugent, P. E. Papadopoulos, A. Sako, M. Smith, M. Sullivan, M. Thomas, R. C. Wester, W. Wolf, R. C. Abdalla, F. B. Banerji, M. Benoit-Levy, A. Bertin, E. Brooks, D. Carnero Rosell, A. Castander, F. J. da Costa, L. N. Covarrubias, R. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Eifler, T. F. Fausti Neto, A. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. Gruen, D. Gruendl, R. A. James, D. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. Makler, M. March, M. Marshall, J. L. Martini, P. Merritt, K. W. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Walker, A. R. TI AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY (vol 150, 82, 2015) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Goldstein, D. A.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kim, A. G.; Nugent, P. E.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Andrea, C. B.; Nichol, R. C.; Papadopoulos, A.] Univ Portsmouth, Inst Cosmol & Gravitat, Burnaby, BC PO1 3FX, Canada. [Fischer, J. A.; Sako, M.; Wolf, R. C.; Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Foley, R. J.; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.; Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gupta, R. R.] Argonne Natl Lab, Lemont, IL 60439 USA. [Kessler, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Smith, M.; Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Wester, W.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Merritt, K. W.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bertin, E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] CNRS, UMR7095, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Castander, F. J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Covarrubias, R.; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gerdes, D.; Schubnell, M.; Tarle, G.; Walker, A. R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.] Univ Observ Munich, D-81679 Munich, Germany. [James, D.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290180 Rio De Janeiro, RJ, Brazil. [Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Romer, A. K.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sanchez, E.; Sevilla-Noarbe, I.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Goldstein, DA (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA. RI Sobreira, Flavia/F-4168-2015; Ogando, Ricardo/A-1747-2010; Fosalba Vela, Pablo/I-5515-2016 OI Sobreira, Flavia/0000-0002-7822-0658; Goldstein, Daniel/0000-0003-3461-8661; Ogando, Ricardo/0000-0003-2120-1154; FU Science and Technology Facilities Council [ST/H001581/1, ST/I000976/1, ST/L000652/1, ST/L006529/1, ST/M003574/1, ST/N001087/1] NR 1 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 165 DI 10.1088/0004-6256/150/5/165 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500027 ER PT J AU Harrison, TE Hamilton, RT AF Harrison, Thomas E. Hamilton, Ryan T. TI QUANTIFYING THE CARBON ABUNDANCES IN THE SECONDARY STARS OF SS CYGNI, RU PEGASI, AND GK PERSEI SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: stars; novae, cataclysmic variables; stars: individual (SS Cyg, RU Peg, GK Per) ID COMMON-ENVELOPE EVOLUTION; CATACLYSMIC VARIABLES; MODEL ATMOSPHERES; BINARY STARS; DWARF NOVAE; GIANT STARS; SPECTROSCOPY; MARCS; MASS; ANOMALIES AB We use a modified version of MOOG to generate large grids of synthetic spectra in an attempt to derive quantitative abundances for three CVs (GK Per, RU Peg, and SS Cyg) by comparing the models to moderate resolution (R similar to 25,000) K-band spectra obtained with NIRSPEC on Keck. For each of the three systems we find solar, or slightly sub-solar values for [Fe/H], but significant deficits of carbon: for SS Cyg we find [C/Fe] = -0.50, for RU Peg [C/Fe] = -0.75, and for GK Per [C/Fe] = -1.00. We show that it is possible to use lower resolution (R similar to 2000) spectra to quantify carbon deficits. We examine realistic veiling scenarios and find that emission from H I or CO cannot reproduce the observations. C1 [Harrison, Thomas E.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Hamilton, Ryan T.] NASA Ames Res Ctr, SOFIA Sci Ctr, Mountain View, CA 94043 USA. RP Harrison, TE (reprint author), WM Keck Observ, Kamuela, HI 96743 USA. EM tharriso@nmsu.edu; rthamilton@sofia.usra.edu FU NSF [AST-1209451] FX Both T. E. H. and R. T. H. were partially supported by a grant from the NSF (AST-1209451). We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. NR 49 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 142 DI 10.1088/0004-6256/150/5/142 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500004 ER PT J AU Teske, JK Everett, ME Hirsch, L Furlan, E Horch, EP Howell, SB Ciardi, DR Gonzales, E Crepp, JR AF Teske, Johanna K. Everett, Mark E. Hirsch, Lea Furlan, Elise Horch, Elliott P. Howell, Steve B. Ciardi, David R. Gonzales, Erica Crepp, Justin R. TI A COMPARISON OF SPECTROSCOPIC VERSUS IMAGING TECHNIQUES FOR DETECTING CLOSE COMPANIONS TO KEPLER OBJECTS OF INTEREST SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: general; planetary systems; techniques: high angular resolution; techniques: interferometric; techniques: photometric; techniques: spectroscopic ID TRANSITING CIRCUMBINARY PLANET; SOLAR-TYPE STARS; BINARY STARS; STELLAR BINARIES; DISK EVOLUTION; HOT JUPITERS; MULTIPLICITY; SYSTEM; CONSTRAINTS; CANDIDATES AB Kepler planet candidates require both spectroscopic and imaging follow-up observations to rule out false positives and detect blended stars. Traditionally, spectroscopy and high-resolution imaging have probed different host star companion parameter spaces, the former detecting tight binaries and the latter detecting wider bound companions as well as chance background stars. In this paper, we examine a sample of 11 Kepler host stars with companions detected by two techniques-near-infrared adaptive optics and/or optical speckle interferometry imaging, and a new spectroscopic deblending method. We compare the companion effective temperatures (T-eff) and flux ratios (F-B/F-A, where A is the primary and B is the companion) derived from each technique and find no cases where both companion parameters agree within 1 sigma errors. In 3/11 cases the companion T-eff values agree within 1s errors, and in 2/11 cases the companion F-B/F-A values agree within 1s errors. Examining each Kepler system individually considering multiple avenues (isochrone mapping, contrast curves, probability of being bound), we suggest two cases for which the techniques most likely agree in their companion detections (detect the same companion star). Overall, our results support the advantage that the spectroscopic deblending technique has for finding very close-in companions (theta less than or similar to 0 ''.02-0 05) that are not easily detectable with imaging. However, we also specifically show how high-contrast AO and speckle imaging observations detect companions at larger separations (theta >= 0 ''.02-0 ''.05) that are missed by the spectroscopic technique, provide additional information for characterizing the companion and its potential contamination (e.g., position angle, separation, magnitude differences), and cover a wider range of primary star effective temperatures. The investigation presented here illustrates the utility of combining the two techniques to reveal higher-order multiples in known planet-hosting systems. C1 [Teske, Johanna K.] Carnegie DTM, Washington, DC 20015 USA. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Hirsch, Lea] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Furlan, Elise; Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Horch, Elliott P.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Horch, Elliott P.] Lowell Observ, Flagstaff, AZ 86001 USA. [Howell, Steve B.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Gonzales, Erica; Crepp, Justin R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Teske, JK (reprint author), Carnegie DTM, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM jteske@carnegiescience.edu OI Ciardi, David/0000-0002-5741-3047; Furlan, Elise/0000-0001-9800-6248 FU NASA Science Mission directorate; NASA Agreement [NNX1-3AB60A]; W.M. Keck Foundation; Gemini administration FX The authors acknowledge the support of many people and programs that made this work possible. This paper includes data collected by the Kepler Mission. Funding for the mission is provided by the NASA Science Mission directorate. Most of the data presented here is made available to the community for download at the Kepler CFOP,15 a service of the NASA Exoplanet Archive. These data include imaging-based separations and Delta m values, tabulated sensitivity curves for each of the speckle observations, and KOI stellar parameters. M. E. Everett received support through NASA Agreement NNX1-3AB60A. The WIYN speckle imaging data presented here were based on observations at Kitt Peak National Observatory, National Optical Astronomy Observatory (NOAO 2010B-0241, 2011A-0130, 2013B-0115; PI: Howell), which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The Gemini speckle imaging observations were obtained as part of the programs GN-2013B-Q-87 and GN-2014B-Q-21 (PI: Howell) at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). We are very grateful for the excellent support of the Gemini administration and support staff who helped make the visiting instrument program possible and the DSSI observing run a great success. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. We thank the referee for their thoughtful comments and edits that improved the paper. Finally, the authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The authors are honored to be permitted to conduct observations on Iolkam Du'ag (Kitt Peak), a mountain within the Tohono O'odham Nation with particular significance to the Tohono O'odham. NR 48 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 144 DI 10.1088/0004-6256/150/5/144 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500006 ER PT J AU Wolk, SJ Gunther, HM Poppenhaeger, K Cody, AM Rebull, LM Forbrich, J Gutermuth, RA Hillenbrand, LA Plavchan, P Stauffer, JR Covey, KR Song, I AF Wolk, Scott J. Guenther, H. Moritz Poppenhaeger, Katja Cody, A. M. Rebull, L. M. Forbrich, J. Gutermuth, R. A. Hillenbrand, L. A. Plavchan, P. Stauffer, J. R. Covey, K. R. Song, Inseok TI YSOVAR: MID-INFRARED VARIABILITY AMONG YSOs IN THE STAR FORMATION REGION GGD12-15 SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: stars; stars: evolution; stars: formation; stars: pre-main sequence; stars: protostars; stars: variables: T Tauri, Herbig Ae/Be ID YOUNG STELLAR OBJECTS; MAIN-SEQUENCE STARS; T-TAURI STARS; INFRARED PHOTOMETRIC VARIABILITY; POINT-SOURCE IDENTIFICATION; SPITZER-SPACE-TELESCOPE; HERBIG-HARO OBJECTS; ARRAY CAMERA IRAC; H-II REGIONS; X-RAY AB We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5', which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5' are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs. C1 [Wolk, Scott J.; Guenther, H. Moritz; Poppenhaeger, Katja] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Guenther, H. Moritz] MIT Kavli Inst, Cambridge, MA 02139 USA. [Cody, A. M.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Cody, A. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Rebull, L. M.; Stauffer, J. R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Forbrich, J.] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria. [Gutermuth, R. A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Hillenbrand, L. A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Plavchan, P.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Covey, K. R.] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. RP Wolk, SJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM swolk@cfa.harvard.edu OI Gunther, Hans Moritz/0000-0003-4243-2840; Poppenhaeger, Katja/0000-0003-1231-2194; Wolk, Scott/0000-0002-0826-9261; Rebull, Luisa/0000-0001-6381-515X; Plavchan, Peter/0000-0002-8864-1667; Covey, Kevin/0000-0001-6914-7797 FU NASA; National Aeronautics and Space Administration; National Science Foundation; Spitzer [1490851]; NASA Exoplanet Science Institute; IPAC Visiting Graduate Fellowship program at Caltech/IPAC; NASA ADAP [NNX11AD14G, NNX13AF08G]; Caltech/JPL [1373081, 1424329, 1440160]; NASA [NAS8-03060] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). This research has made use of the SIMBAD database and the VizieR catalog access tool (Ochsenbein et al. 2000), both operated at CDS, Strasbourg, France, and of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. H.M.G. acknowledges Spitzer grant 1490851. K.P. was funded through the Sagan Fellowship program executed by the NASA Exoplanet Science Institute. H.Y.A.M. and P.P. acknowledge support by the IPAC Visiting Graduate Fellowship program at Caltech/IPAC. P.P. also acknowledges the JPL Research and Technology Development and Exoplanet Exploration programs. R.A.G. gratefully acknowledges funding support from NASA ADAP grants NNX11AD14G and NNX13AF08G and Caltech/JPL awards 1373081, 1424329, and 1440160 in support of Spitzer Space Telescope observing programs. S.J.W. was supported by NASA contract NAS8-03060. We thank Fabio Favata and David James for critical readings of this paper. NR 81 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 145 DI 10.1088/0004-6256/150/5/145 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500007 ER PT J AU Gjerlow, E Colombo, LPL Eriksen, HK Gorski, KM Gruppuso, A Jewell, JB Plaszczynski, S Wehus, IK AF Gjerlow, E. Colombo, L. P. L. Eriksen, H. K. Gorski, K. M. Gruppuso, A. Jewell, J. B. Plaszczynski, S. Wehus, I. K. TI OPTIMIZED LARGE-SCALE CMB LIKELIHOOD AND QUADRATIC MAXIMUM LIKELIHOOD POWER SPECTRUM ESTIMATION SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmic background radiation; cosmology: observations; methods: statistical ID PROBE WMAP OBSERVATIONS; RESOLUTION MAPS; DATA SETS; MICROWAVE; POLARIZATION; REANALYSIS AB We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at l <= 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006s. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for l <= 32, rendering low-l QML CMB power spectrum analysis fully tractable on a standard laptop. C1 [Gjerlow, E.; Eriksen, H. K.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letters Arts & Sci, Los Angeles, CA 90089 USA. [Colombo, L. P. L.; Gorski, K. M.; Jewell, J. B.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gruppuso, A.] INAF IASF Bologna, Bologna, Italy. [Gruppuso, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Plaszczynski, S.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. RP Gjerlow, E (reprint author), Univ Oslo, Inst Theoret Astrophys, POB 1029, NO-0315 Oslo, Norway. EM eirik.gjerlow@astro.uio.no RI Colombo, Loris/J-2415-2016 OI Colombo, Loris/0000-0003-4572-7732 FU ERC Starting Grant [StG2010-257080]; NASA FX We thank Antony Lewis for useful discussions. This project was supported by the ERC Starting Grant StG2010-257080. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) software and analysis package. NR 30 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2015 VL 221 IS 1 AR 5 DI 10.1088/0067-0049/221/1/5 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY7WS UT WOS:000366620600005 ER PT J AU Kartaltepe, JS Mozena, M Kocevski, D McIntosh, DH Lotz, J Bell, EF Faber, S Ferguson, H Koo, D Bassett, R Bernyk, M Blancato, K Bournaud, F Cassata, P Castellano, M Cheung, E Conselice, CJ Croton, D Dahlen, T De Mello, DF DeGroot, L Donley, J Guedes, J Grogin, N Hathi, N Hilton, M Hollon, B Koekemoer, A Liu, N Lucas, RA Martig, M McGrath, E McPartland, C Mobasher, B Morlock, A O'Leary, E Peth, M Pforr, J Pillepich, A Rosario, D Soto, E Straughn, A Telford, O Sunnquist, B Trump, J Weiner, B Wuyts, S AF Kartaltepe, Jeyhan S. Mozena, Mark Kocevski, Dale McIntosh, Daniel H. Lotz, Jennifer Bell, Eric F. Faber, Sandy Ferguson, Harry Koo, David Bassett, Robert Bernyk, Maksym Blancato, Kirsten Bournaud, Frederic Cassata, Paolo Castellano, Marco Cheung, Edmond Conselice, Christopher J. Croton, Darren Dahlen, Tomas De Mello, Duilia F. DeGroot, Laura Donley, Jennifer Guedes, Javiera Grogin, Norman Hathi, Nimish Hilton, Matt Hollon, Brett Koekemoer, Anton Liu, Nick Lucas, Ray A. Martig, Marie McGrath, Elizabeth McPartland, Conor Mobasher, Bahram Morlock, Alice O'Leary, Erin Peth, Mike Pforr, Janine Pillepich, Annalisa Rosario, David Soto, Emmaris Straughn, Amber Telford, Olivia Sunnquist, Ben Trump, Jonathan Weiner, Benjamin Wuyts, Stijn TI CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: high-redshift ID SIMILAR-TO 2; DIGITAL-SKY-SURVEY; SPACE-TELESCOPE OBSERVATIONS; EXTRAGALACTIC LEGACY SURVEY; STAR-FORMING GALAXIES; LESS-THAN 3; MASSIVE GALAXIES; HUBBLE SEQUENCE; MORPHOLOGICAL CLASSIFICATIONS; QUIESCENT GALAXIES AB We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed-GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sersic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band. C1 [Kartaltepe, Jeyhan S.] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA. [Kartaltepe, Jeyhan S.; Blancato, Kirsten; O'Leary, Erin; Pforr, Janine] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Mozena, Mark; Faber, Sandy; Koo, David; Cheung, Edmond] Univ Calif Santa Cruz, Univ Calif Observ Lick Observ, Santa Cruz, CA 95064 USA. [Kocevski, Dale] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [McIntosh, Daniel H.; Hollon, Brett] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Lotz, Jennifer; Ferguson, Harry; Grogin, Norman; Koekemoer, Anton] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bell, Eric F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bassett, Robert; Bernyk, Maksym; Croton, Darren; Martig, Marie] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Blancato, Kirsten] Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. [Bournaud, Frederic] Univ Paris Diderot, CE Saclay, CEA DSM Irfu CNRS, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Cassata, Paolo] Aix Marseille Univ, CNRS, LAM UMR 7326, F-13388 Marseille, France. [Castellano, Marco] IINAFOsserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Conselice, Christopher J.; Morlock, Alice] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [De Mello, Duilia F.; Soto, Emmaris] Catholic Univ Amer, Washington, DC 20064 USA. [DeGroot, Laura; Donley, Jennifer; Hathi, Nimish; Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Donley, Jennifer] Los Alamos Natl Lab, Los Alamos, NM USA. [Guedes, Javiera] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Hilton, Matt] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Liu, Nick] Pioneer High Sch, Ann Arbor, MI 48103 USA. [McGrath, Elizabeth] Colby Coll, Dept Phys & Astron, Waterville, ME 04901 USA. [McPartland, Conor] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [O'Leary, Erin] Macalester Coll, Dept Phys & Astron, St Paul, MN 55105 USA. [Peth, Mike] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pillepich, Annalisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rosario, David] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Straughn, Amber] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Telford, Olivia] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Trump, Jonathan] Penn State, State Coll, PA USA. [Weiner, Benjamin] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wuyts, Stijn] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Kartaltepe, JS (reprint author), Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA. EM jeyhan@astro.rit.edu RI Hathi, Nimish/J-7092-2014; OI Hathi, Nimish/0000-0001-6145-5090; Cheung, Edmond/0000-0001-8546-1428; Martig, Marie/0000-0001-5454-1492; Koekemoer, Anton/0000-0002-6610-2048; Bell, Eric/0000-0002-5564-9873 FU NASA through Hubble Fellowship - Space Telescope Science Institute [HST-HF-51292.01A]; NASA [NAS 5-26555, NAS5-26555]; NASA through a grant from the Space Telescope Science Institute [HST-GO-12060]; NOAO/KPNO Research Experiences for Undergraduates (REU) Program from the National Science Foundation Research Experiences for Undergraduates Program [AST-0754223, AST-1262829] FX Support for this work was provided by NASA through Hubble Fellowship grant # HST-HF-51292.01A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Support for Program number HST-GO-12060 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. O'Leary and Blancato were supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program with two grants from the National Science Foundation Research Experiences for Undergraduates Program (AST-0754223, AST-1262829). NR 72 TC 16 Z9 16 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2015 VL 221 IS 1 AR 11 DI 10.1088/0067-0049/221/1/11 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY7WS UT WOS:000366620600011 ER PT J AU Nagler, PC Fixsen, DJ Kogut, A Tucker, GS AF Nagler, Peter C. Fixsen, Dale J. Kogut, Alan Tucker, Gregory S. TI SYSTEMATIC EFFECTS IN POLARIZING FOURIER TRANSFORM SPECTROMETERS FOR COSMIC MICROWAVE BACKGROUND OBSERVATIONS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmic background radiation; cosmology: observations; instrumentation: polarimeters; instrumentation: spectrographs; techniques: polarimetric; techniques: spectroscopic ID GRAVITY-WAVES; SPECTROSCOPY; POLARIZATION; SPECTRUM; RADIATION AB The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherent to the FTS-emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects-and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal. C1 [Nagler, Peter C.; Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Nagler, Peter C.; Fixsen, Dale J.; Kogut, Alan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Nagler, PC (reprint author), Brown Univ, Dept Phys, Providence, RI 02912 USA. EM peter.c.nagler@nasa.gov NR 27 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2015 VL 221 IS 1 AR 21 DI 10.1088/0067-0049/221/1/21 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY7WS UT WOS:000366620600021 ER PT J AU Horner, AL Czabaj, MW Davidson, BD Ratcliffe, JG AF Horner, Allison L. Czabaj, Michael W. Davidson, Barry D. Ratcliffe, James G. TI Three-dimensional crack surface evolution in mode III delamination toughness tests SO ENGINEERING FRACTURE MECHANICS LA English DT Article; Proceedings Paper CT 7th ESIS TC4 Conference on the Fracture of Polymers, Composites and Adhesives CY SEP 14-18, 2014 CL Les Diablerets, SWITZERLAND SP ESIS TC4 DE Composites; Fractography; Fracture mechanics; Toughness testing; Crack growth ID I PLUS III; INTERLAMINAR FRACTURE; COMPOSITE-MATERIALS; FRONT INSTABILITY; BRITTLE SOLIDS; PART II; INITIATION; CRITERION; SHEAR; BEAM AB The three-dimensional evolution of a delamination and multiple coupled transverse cracks is studied in laminated tape composites using different mode III tests and specimens. All combinations produce 45 degrees transverse cracks that initiate at the delamination front prior to delamination advance. For unidirectional laminates, the transverse crack length is governed by thickness, whereas for multidirectional laminates the transverse crack length is controlled by the ply angle and stacking sequence. These and other details of laminate architecture are shown to dictate the crack surface evolution, and provide distinguishing characteristics between the different laminates tested as well as in comparison to homogenous materials. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Horner, Allison L.; Davidson, Barry D.] Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY 13244 USA. [Czabaj, Michael W.] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA. [Ratcliffe, James G.] NASA, Durabil Damage Tolerance & Reliabil Branch, Natl Inst Aerosp, Langley Res Ctr, Hampton, VA 23681 USA. RP Davidson, BD (reprint author), Syracuse Univ, Dept Mech & Aerosp Engn, 263 Link Hall, Syracuse, NY 13244 USA. EM aljohn08@syr.edu; m.czabaj@utah.edu; bddavids@syr.edu; james.g.ratcliffe@nasa.gov NR 33 TC 1 Z9 1 U1 2 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 EI 1873-7315 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD NOV PY 2015 VL 149 BP 313 EP 325 DI 10.1016/j.engfracmech.2015.07.013 PG 13 WC Mechanics SC Mechanics GA CY3KE UT WOS:000366307500024 ER PT J AU Peral, E Rodriguez, E Esteban-Fernandez, D AF Peral, Eva Rodriguez, Ernesto Esteban-Fernandez, Daniel TI Impact of Surface Waves on SWOT's Projected Ocean Accuracy SO REMOTE SENSING LA English DT Article DE SWOT; radar interferometry; ocean waves; significant wave height; Ka band ID SYNTHETIC-APERTURE RADAR; TRANSFORM; IMAGERY; SLOPE AB The Surface Water and Ocean Topography (SWOT) mission being considered by NASA has, as one of its main objectives, to measure ocean topography with centimeter scale accuracy over kilometer scale spatial resolution. This paper investigates the impact of ocean waves on SWOT's projected performance. Several effects will be examined: volumetric decorrelation, aliasing of ocean waves, backscattering modulation, and the so-called surfboard sampling. C1 [Peral, Eva; Rodriguez, Ernesto; Esteban-Fernandez, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Peral, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM eva.peral@jpl.nasa.gov; ernesto.rodriguez@jpl.nasa.gov; Daniel.Esteban-Fernandez@jpl.nasa.gov FU National Aeronautic and Space Administration; SWOT Project FX The authors are grateful to Bertrand Chapron and Fabrice Ardhuin for fruitful discussions on simulating the ocean waves and for providing the WAVEWATCH-III spectra used in this study. The research presented in the paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration. Support from SWOT Project is acknowledged. NR 32 TC 1 Z9 1 U1 1 U2 5 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2015 VL 7 IS 11 BP 14509 EP 14529 DI 10.3390/rs71114509 PG 21 WC Remote Sensing SC Remote Sensing GA CY1RL UT WOS:000366185200011 ER PT J AU Reager, JT Thomas, AC Sproles, EA Rodell, M Beaudoing, HK Li, BL Famiglietti, JS AF Reager, John T. Thomas, Alys C. Sproles, Eric A. Rodell, Matthew Beaudoing, Hiroko K. Li, Bailing Famiglietti, James S. TI Assimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential SO REMOTE SENSING LA English DT Article DE GRACE; gravity; flood; assimilation ID RIVER-BASIN; TIME; VARIABILITY; GRAVITY; BALANCE; SKILL AB We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA's Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of GRACE's coarse spatial resolution; and (3) state disaggregation of the vertically-integrated TWSA. We select the 2011 flood event in the Missouri river basin as a case study, and find that assimilation generally made the model wetter in the months preceding flood. We compare model outputs with observations from 14 USGS groundwater wells to assess improvements after assimilation. Finally, we examine disaggregated water storage information to improve the mechanistic understanding of event generation. Validation establishes that assimilation improved the model skill substantially, increasing regional groundwater anomaly correlation from 0.58 to 0.86. For the 2011 flood event in the Missouri river basin, results show that groundwater and snow water equivalent were contributors to pre-event flood potential, providing spatially-distributed early warning information. C1 [Reager, John T.; Famiglietti, James S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Thomas, Alys C.; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Sproles, Eric A.] Ctr Estudios Avanzados Zonas Aridas, La Serena Region De Coqu, Chile. [Rodell, Matthew; Beaudoing, Hiroko K.; Li, Bailing] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beaudoing, Hiroko K.; Li, Bailing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Reager, JT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM John.Reager@jpl.nasa.gov; alysthomas9@gmail.com; eric.sproles@gmail.com; matthew.rodell@nasa.gov; hiroko.kato-1@nasa.gov; bailing.li-1@nasa.gov; James.Famiglietti@jpl.nasa.gov RI Rodell, Matthew/E-4946-2012 OI Rodell, Matthew/0000-0003-0106-7437 FU NASA; NASA GRACE Science Team program; JPL Research and Technology Development Water Initiative FX This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology under contract with NASA. Funding sources include the NASA GRACE Science Team program and the JPL Research and Technology Development Water Initiative. NR 39 TC 1 Z9 1 U1 5 U2 15 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2015 VL 7 IS 11 BP 14663 EP 14679 DI 10.3390/rs71114663 PG 17 WC Remote Sensing SC Remote Sensing GA CY1RL UT WOS:000366185200018 ER PT J AU Lynn, KC Toro, KG Chan, DT Balakrishna, S Landman, D AF Lynn, Keith C. Toro, Kenneth G. Chan, David T. Balakrishna, Sundareswara Landman, Drew TI Enhancements to the National Transonic Facility Semispan Force Measurement System SO JOURNAL OF AIRCRAFT LA English DT Article AB Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility used high-pressure bellows to route air to the semispan model for evaluating aircraft circulation control testing techniques. The introduction of these bellows within the sidewall model support system impacted the performance of the sidewall mounted force measurement system. A capability has been developed to facilitate system-level calibrations that characterize the performance of the force measurement system under influence of static pressure tare and thermal effects. From the highest system-level perspective, the aerodynamic research being conducted using this system would benefit from a system-level calibration at conditions that most accurately simulate testlike operating conditions. Detail is given on the recent improvements and design modifications to improve performance and calibration of the system as well as recommendations for future improvements. Experimental data from recent testing using the force measurement system are presented, with the results supporting the necessity for future system enhancements to improve system performance. C1 [Lynn, Keith C.] NASA, Langley Res Ctr, Adv Measurements & Data Syst Branch, Hampton, VA 23681 USA. [Toro, Kenneth G.] NASA, Langley Res Ctr, Syst Engn & Engn Methods, Hampton, VA 23681 USA. [Chan, David T.] NASA, Langley Res Ctr, Configurat Aerodynam Branch, Hampton, VA 23681 USA. [Balakrishna, Sundareswara] NASA, Langley Res Ctr, Subson Transon Testing Branch, Hampton, VA 23681 USA. [Landman, Drew] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. RP Lynn, KC (reprint author), NASA, Langley Res Ctr, Adv Measurements & Data Syst Branch, Hampton, VA 23681 USA. FU National Force Measurement Technology Capability under the Aeronautics Test Program; Fixed Wing Project under the Fundamental Aeronautics Program FX This work has been supported and funded by the National Force Measurement Technology Capability under the Aeronautics Test Program and the Fixed Wing Project under the Fundamental Aeronautics Program. The authors would like to express their sincere appreciation to the individuals that have contributed to the many aspects of this project. In particular, the authors would like to recognize the following for the critical contributions: Greg Jones, William Milholen II, Scott Goodliff, Greg Gatlin, Jerald (Greg) Jones, Mark Cagle, and everyone at the NTF that continues to support the work described in this paper. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2015 VL 52 IS 6 BP 1736 EP 1755 DI 10.2514/1.C032942 PG 20 WC Engineering, Aerospace SC Engineering GA CY1IA UT WOS:000366158700002 ER PT J AU Guo, YP Thomas, RH AF Guo, Yueping Thomas, Russell H. TI System Noise Assessment of Hybrid Wing-Body Aircraft with Open-Rotor Propulsion SO JOURNAL OF AIRCRAFT LA English DT Article ID PREDICTION; FLOW; AEROFOIL; SOUND; INTERRUPTION; MODEL AB An aircraft system noise study is presented for the hybrid wing-body aircraft concept with open-rotor engines mounted on the upper surface of the airframe. The aircraft chosen for the study is of a size comparable to the Boeing 787 aircraft. It is shown that, for such a hybrid wing-body aircraft, the cumulative effective perceived noise level is about 24 dB below the current aircraft noise regulations of stage 4. Although this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations in the next decade or so, the design will likely meet stiff competition from aircraft with turbofan engines. The noise levels of the hybrid wing-body design are held up by the inherently high noise levels of the open-rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the hybrid wing-body design has high levels of noise from the main landing gear, due to their exposure to high-speed flow at the junction between the centerbody and outer wing. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise, but some of these technologies are only at the proof-of-concept stage. C1 [Guo, Yueping] Boeing Res & Technol, Huntington Beach, CA 92647 USA. [Thomas, Russell H.] NASA, Langley Res Ctr, Aeroacoust Branch, Hampton, VA 23681 USA. RP Guo, YP (reprint author), NEAT Consulting, 3830 Daisy Circle, Seal Beach, CA 90740 USA. FU NASA Environmentally Responsible Aviation Project (Fay Collier, Project Manager) FX The authors thank the NASA Environmentally Responsible Aviation Project (Fay Collier, Project Manager) for funding this research. NR 33 TC 0 Z9 0 U1 2 U2 4 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2015 VL 52 IS 6 BP 1767 EP 1779 DI 10.2514/1.C033048 PG 13 WC Engineering, Aerospace SC Engineering GA CY1IA UT WOS:000366158700004 ER PT J AU Zaal, PMT Schroeder, JA Chung, WW AF Zaal, Peter M. T. Schroeder, Jeffery A. Chung, William W. TI Transfer of Training on the Vertical Motion Simulator SO JOURNAL OF AIRCRAFT LA English DT Article AB This paper describes a quasi-transfer-of-training study in the NASA Ames Vertical Motion Simulator. Sixty-one general aviation pilots trained on four challenging commercial transport tasks under one of four different motion conditions: no motion, small hexapod, large hexapod, and Vertical Motion Simulator motion. Then, every pilot repeated the tasks in a check with Vertical Motion Simulator motion to determine if training with different motion conditions had an effect on task performance. New objective motion criteria guided the selection of the motion parameters for the small and large hexapod conditions. Considering results that were statistically significant, or marginally significant, the motion condition used in training affected 1) longitudinal and lateral touchdown position, 2) the number of secondary stall warnings in a stall recovery, 3) pilot ratings of motion utility and maximum load factor obtained in an overbanked upset recovery, and 4) pilot ratings of motion utility and pedal input reaction time in an engine-out-on-takeoff task. Because the training motion conditions revealed statistical differences on objective measures in all the tasks performed in the Vertical Motion Simulator motion check, with some in the direction not predicted, trainers should be cautious not to oversimplify the effects of platform motion. Evidence suggests that the new objective motion criteria may offer valid standardization benefits because increases in the training motion fidelity, as predicted by the two conditions covered by the criteria, resulted in expected trends in pilot ratings and objective performance measures. C1 [Zaal, Peter M. T.] San Jose State Univ, NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. [Schroeder, Jeffery A.] FAA, Flight Simulat Syst, Moffett Field, CA 94035 USA. [Chung, William W.] NASA, Sci Applicat Int Corp, Ames Res Ctr, Simulat Labs, Moffett Field, CA 94035 USA. RP Zaal, PMT (reprint author), San Jose State Univ, NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. EM peter.m.t.zaal@nasa.gov; jeffery.schroeder@faa.gov; william.w.chung@nasa.gov NR 23 TC 2 Z9 2 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2015 VL 52 IS 6 BP 1971 EP 1984 DI 10.2514/1.C033115 PG 14 WC Engineering, Aerospace SC Engineering GA CY1IA UT WOS:000366158700019 ER PT J AU Petrosky, BJ Lowe, KT Danehy, PM Wohl, CJ Tiemsin, PI AF Petrosky, B. J. Lowe, K. T. Danehy, P. M. Wohl, C. J. Tiemsin, P. I. TI Improvements in laser flare removal for particle image velocimetry using fluorescent dye-doped particles SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE particle image velocimetry; laser-induced fluorescence; Kiton Red; laser flare ID THERMOGRAPHIC PHOSPHORS; POLYSTYRENE MICROSPHERES; PIV MEASUREMENTS; 2-PHASE PIV; FLOW; VELOCITY; TEMPERATURE; THERMOMETRY; SPRAY; PLATE AB Laser flare, or scattering of laser light from a surface, can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in the flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following work presents fluorescent Kiton Red 620 (KR620)-doped polystyrene latex microspheres as a solution to this issue. The particles are small and narrowly distributed, with a mean diameter of 0.87 mu m and diameter distribution standard deviation of 0.30 mu m. Furthermore, the KR620 dye exhibits much lower toxicity than other common fluorescent dyes, and would be safe to use in large flow facilities. The fluorescent signal from the particles is measured on average to be 320 +/- 10 times weaker than the Mie scattering signal from the particles. This reduction in signal is counterbalanced by greatly enhanced contrast via optical rejection of the incident laser wavelength. Fluorescent PIV with these particles is shown to eliminate laser flare near surfaces, allowing for velocity measurements as close as 100 mu m to the surface. In one case, fluorescent PIV led to velocity vector validation rates more than 20 times that of the Mie scattering results in the boundary layer region of an angled surface. C1 [Petrosky, B. J.; Lowe, K. T.] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. [Danehy, P. M.; Wohl, C. J.; Tiemsin, P. I.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Petrosky, BJ (reprint author), Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. EM kelowe@vt.edu FU NASA ARMD Seedling Fund; National Institute of Aerospace Cooperative Agreement [NNL09AA00A] FX The authors acknowledge the support of the NASA ARMD Seedling Fund and National Institute of Aerospace Cooperative Agreement NNL09AA00A. NR 49 TC 0 Z9 0 U1 3 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD NOV PY 2015 VL 26 IS 11 AR 115303 DI 10.1088/0957-0233/26/11/115303 PG 13 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CY3ZU UT WOS:000366349200023 ER PT J AU Hu, RY Kass, DM Ehlmann, BL Yung, YL AF Hu, Renyu Kass, David M. Ehlmann, Bethany L. Yung, Yuk L. TI Tracing the fate of carbon and the atmospheric evolution of Mars SO NATURE COMMUNICATIONS LA English DT Article ID POLAR LAYERED DEPOSITS; PHOENIX LANDING SITE; MARTIAN ATMOSPHERE; DISSOCIATIVE RECOMBINATION; EXPERIMENTAL CONSTRAINTS; PHOTOCHEMICAL ESCAPE; CLIMATE HISTORY; ISOTOPE RATIOS; CO2; IDENTIFICATION AB The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon (C-13) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric C-13/C-12 and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure <1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time. C1 [Hu, Renyu; Kass, David M.; Ehlmann, Bethany L.; Yung, Yuk L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hu, Renyu; Ehlmann, Bethany L.; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Hu, RY (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM renyu.hu@jpl.nasa.gov FU NASA through Hubble Fellowship - Space Telescope Science Institute [51332]; NASA [NAS 5-26555] FX Support for this work was provided by NASA through Hubble Fellowship grant #51332 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 52 TC 12 Z9 13 U1 11 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 10003 DI 10.1038/ncomms10003 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4IY UT WOS:000366373000001 PM 26600077 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ de Donato, C de la Taille, C Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D Rios, JAMD Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Pernas, M. Ave Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. de Donato, C. de la Taille, C. de Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Alvarado, C. Gonzalez Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Carretero, J. Hernandez Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Rios, J. A. Morales de Los Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Cano, S. Perez Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Frias, M. D. Rodriguez Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Cano, G. Saez Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Cruz, L. Santiago Palomino, M. Sanz Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Lopez, H. H. Silva Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI The JEM-EUSO mission: An introduction SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Ultra-high energy cosmic rays; Neutrinos ID PROTOTYPE; SPACE AB The Extreme Universe Space Observatory on board the Japanese Experiment Module of the International Space Station, JEM-EUSO, is being designed to search from space ultra-high energy cosmic rays. These are charged particles with energies from a few 10(19) eV to beyond 10(20) eV, at the very end of the known cosmic ray energy spectrum. JEM-EUSO will also search for extreme energy neutrinos, photons, and exotic particles, providing a unique opportunity to explore largely unknown phenomena in our Universe. The mission, principally based on a wide field of view (60 degrees) near-UV telescope with a diameter of similar to 2.5 m, will monitor the earth's atmosphere at night, pioneering the observation from space of the ultraviolet tracks (290-430 nm) associated with giant extensive air showers produced by ultra-high energy primaries propagating in the earth's atmosphere. Observing from an orbital altitude of similar to 400 km, the mission is expected to reach an instantaneous geometrical aperture of A (g e o) a parts per thousand yen 2 x 10(5) km(2) sr with an estimated duty cycle of similar to 20 %. Such a geometrical aperture allows unprecedented exposures, significantly larger than can be obtained with ground-based experiments. In this paper we briefly review the history of space-based search for ultra-high energy cosmic rays. We then introduce the special issue of Experimental Astronomy devoted to the various aspects of such a challenging enterprise. We also summarise the activities of the on-going JEM-EUSO program. C1 [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Univ Sofia, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Observ Paris,IN2P3,CEA,APC,Irfu, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.; Weiler, T. J.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Santangelo, A.; Schanz, T.; Tenzer, C.] Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Isgro, F.; Scotti, V.; Valore, L.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; de Donato, C.; de Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [de Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Dell'Oro, A.; Di Martino, M.; Vallania, P.] Osservatorio Astrofis Torino, Ist Nazl Astrofis, Turin, Italy. [Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, N.; Inoue, S.; Nonaka, T.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Cruz, L. Santiago; Lopez, H. H. Silva; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Kudela, K.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Rios, J. A. Morales de Los] CSIC, Madrid, Spain. [Belenguer, T.; Alvarado, C. Gonzalez; Sabau, M. D.; Palomino, M. Sanz] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Rios, J. A. Morales de Los; Cano, S. Perez; Prieto, H.; Frias, M. D. Rodriguez; Cano, G. Saez] Univ Alcala de Henares, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Santangelo, A (reprint author), Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany. EM ebisu@postman.riken.jp; Piergiorgio.Picozza@roma2.infn.it; andrea.santangelo@uni-tuebingen.de RI marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010 OI Castellini, Guido/0000-0002-0177-0643; Flamini, Marta/0000-0002-5266-8809; Franceschi, Massimo Alberto/0000-0002-8222-7000; Vallania, Piero/0000-0001-9089-7875; Cellino, Alberto/0000-0002-6645-334X; Conti, Livio/0000-0003-2966-2000; Del Peral, Luis/0000-0003-2580-5668; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; Segreto, Alberto/0000-0001-7341-6603; Isgro, Francesco/0000-0001-9342-5291; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784 FU Basic Science Interdisciplinary Research Projects of RIKEN; JSPS KAKENHI [22340063, 23340081, 24244042]; Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation; Deutsches Zentrum fur Luft- und Raumfahrt; Helmholtz Alliance for Astroparticle Physics HAP - Initiative and Networking Fund of the Helmholtz Association (Germany); Slovak Academy of Sciences MVTS JEM-EUSO; VEGA Grant agency [2/0076/13]; MICINN [AYA200906037-E/ESP, AYA-ESP 2010 19082, AYA201129489-C0301, AYA201239115-C03 01, CSD200900064]; Comunidad de Madrid (CAM) [S2009/ ESP-1496]; French CNES IN2P3; NASA [NNX13AH55G, NNX13AH53G]; Russian Foundation for Basic Research Grant [13-02-12175-ofi-m]; European Space Agency (ESA) through the "EUSO" Topical Team Fund FX The work on JEM-EUSO and its pathfinders has been supported by the Basic Science Interdisciplinary Research Projects of RIKEN and JSPS KAKENHI Grant (22340063, 23340081, and 24244042), by the Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation, by the Deutsches Zentrum fur Luft- und Raumfahrt, by the Helmholtz Alliance for Astroparticle Physics HAP funded by the Initiative and Networking Fund of the Helmholtz Association (Germany), and by Slovak Academy of Sciences MVTS JEM-EUSO as well as VEGA Grant agency Project 2/0076/13. The Spanish Consortium involved in the JEM-EUSO Space Mission is funded by MICINN under Projects AYA200906037-E/ESP, AYA-ESP 2010 19082, AYA201129489-C0301, AYA201239115-C03 01, CSD200900064 (Consolider MULTIDARK) and by Comunidad de Madrid (CAM) under Project S2009/ ESP-1496. The EUSO Balloon has been supported by the French CNES and IN2P3. The US is supported by the NASA grants NNX13AH55G, NNX13AH53G. Russia is supported by the Russian Foundation for Basic Research Grant No 13-02-12175-ofi-m. Moreover, studies for JEM-EUSO have been partly funded by the European Space Agency (ESA) through the "EUSO" Topical Team Fund. NR 36 TC 2 Z9 2 U1 7 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 3 EP 17 DI 10.1007/s10686-015-9482-x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200002 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, J Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Saez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI The atmospheric monitoring system of the JEM-EUSO instrument SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Ultra high energy cosmic rays; Atmospheric monitoring; IR camera; LIDAR ID MISSION AB The JEM-EUSO telescope will detect Ultra-High Energy Cosmic Rays (UHECRs) from space, detecting the UV Fluorescence Light produced by Extensive Air Showers (EAS) induced by the interaction of the cosmic rays with the earth's atmosphere. The capability to reconstruct the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring (AM) system of JEM-EUSO will host a LIDAR, operating in the UV band, and an Infrared camera to monitor the cloud cover in the JEM-EUSO Field of View, in order to be sensitive to clouds with an optical depth tau a parts per thousand yen 0.15 and to measure the cloud top altitude with an accuracy of 500 m and an altitude resolution of 500 m. C1 [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Morales de los Rios, J. A.; Rodriguez Frias, M. D.] UAH, SPace & AStroparticle SPAS Grp, Madrid, Spain. [Wada, S.] RIKEN, Adv Sci Inst, Tokyo, Japan. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, CNRS, IN2P3, Observ Paris,APC,CEA,Irfu, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Valore, L.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.; Scotti, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Osservatorio Astrofis Torino, Ist Nazl Astrofis, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Marchi, A. Zuccaro] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Kudela, K.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hernandez Carretero, J.; Morales de los Rios, J. A.; Perez Cano, S.; Prieto, H.; Rodriguez Frias, M. D.; Saez Cano, G.] Univ Alcala de Henares, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versailles, France. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Toscano, S (reprint author), ISDC Data Ctr Astrophys, Versoix, Switzerland. EM josealberto.morales@uah.es; Andrii.Neronov@unige.ch; dolores.frias@uah.es; Simona.Toscano@unige.ch; swada@riken.jp RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; OI Cellino, Alberto/0000-0002-6645-334X; Del Peral, Luis/0000-0003-2580-5668; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; Modestino, Giuseppina/0000-0003-1556-3917 FU RIKEN; JSPS [22340063, 23340081, 24244042]; Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation; 'Helmholtz Alliance for Astroparticle Physics HAP' - Initiative and Networking Fund of the Helmholtz Association, Germany; Slovak Academy of Sciences MVTS JEM-EUSO; VEGA grant agency [2/0076/13]; MICINN [AYA2009- 06037-E/ESP, AYA-ESP 2010-19082, AYA2011-29489-C03-01, AYA2012-39115-C03-01, CSD2009-00064]; Comunidad de Madrid (CAM) [S2009/ESP-1496] FX This work was partially supported by Basic Science Interdisciplinary Research Projects of RIKEN and JSPS KAKENHI Grant (22340063, 23340081, and 24244042), by the Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation, by the 'Helmholtz Alliance for Astroparticle Physics HAP' funded by the Initiative and Networking Fund of the Helmholtz Association, Germany, and by Slovak Academy of Sciences MVTS JEM-EUSO as well as VEGA grant agency project 2/0076/13. The Spanish Consortium involved in the JEM-EUSO Space Mission is funded by MICINN under projects AYA2009- 06037-E/ESP, AYA-ESP 2010-19082, AYA2011-29489-C03-01, AYA2012-39115-C03-01, CSD2009-00064 (Consolider MULTIDARK) and by Comunidad de Madrid (CAM) under project S2009/ESP-1496. NR 15 TC 2 Z9 2 U1 6 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 45 EP 60 DI 10.1007/s10686-014-9378-1 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200004 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashini, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotovi, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Saez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashini, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotovi, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI The infrared camera onboard JEM-EUSO SO EXPERIMENTAL ASTRONOMY LA English DT Article DE JEM-EUSO; Space observatory; IR-camera; Ultra-High Energy Cosmic Rays (UHECR) ID LAND-SURFACE TEMPERATURE; CLOUD-TOP HEIGHTS; SPLIT-WINDOW MEASUREMENTS; RETRIEVAL; MODIS; MISR; ALGORITHMS; SEA AB The Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO) on board the International Space Station (ISS) is the first space-based mission worldwide in the field of Ultra High-Energy Cosmic Rays (UHECR). For UHECR experiments, the atmosphere is not only the showering calorimeter for the primary cosmic rays, it is an essential part of the readout system, as well. Moreover, the atmosphere must be calibrated and has to be considered as input for the analysis of the fluorescence signals. Therefore, the JEM-EUSO Space Observatory is implementing an Atmospheric Monitoring System (AMS) that will include an IR-Camera and a LIDAR. The AMS Infrared Camera is an infrared, wide FoV, imaging system designed to provide the cloud coverage along the JEM-EUSO track and the cloud top height to properly achieve the UHECR reconstruction in cloudy conditions. In this paper, an updated preliminary design status, the results from the calibration tests of the first prototype, the simulation of the instrument, and preliminary cloud top height retrieval algorithms are presented. C1 [Morales de los Rios, J. A.; Rodriguez Frias, M. D.] Univ Alcala de Henares, SPace & AStroparticle Grp, Alcala De Henares 28871, Spain. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Univ Sofia, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Observ Paris,IN2P3,APC,CEA,Irfu, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Osservatorio Astrofis Torino, Ist Nazl Astrofis, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, D.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Marchi, A. Zuccaro] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashini, I. V.; Zotovi, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hernandez Carretero, J.; Morales de los Rios, J. A.; Perez Cano, S.; Prieto, H.; Rodriguez Frias, M. D.; Saez Cano, G.] Univ Alcala de Henares, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP de los Rios, JAM (reprint author), Univ Alcala de Henares, SPace & AStroparticle Grp, Ctra Madrid Barcelona Km 33-6, Alcala De Henares 28871, Spain. EM josealberto.morales@uah.es; dolores.frias@uah.es RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015 OI Cellino, Alberto/0000-0002-6645-334X; Del Peral, Luis/0000-0003-2580-5668; Modestino, Giuseppina/0000-0003-1556-3917; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257 FU Spanish Government MICINN MINECO [AYA2009-06037-E/AYA, AYA-ESP 2010-19082, AYA-ESP 2011-29489-C03, AYA-ESP 2012-39115-C03, CSD2009-00064]; Comunidad de Madrid [S2009/ESP-1496]; Instituto de Astrofisica de Canarias (IAC) FX This work is supported by the Spanish Government MICINN & MINECO under the Space Program: projects AYA2009-06037-E/AYA, AYA-ESP 2010-19082, AYA-ESP 2011-29489-C03, AYA-ESP 2012-39115-C03, CSD2009-00064 (Consolider MULTIDARK) and by Comunidad de Madrid under project S2009/ESP-1496. M. D. Rodriguez Frias deeply acknowledge Instituto de Astrofisica de Canarias (IAC) the grant under the "Excelence Severo Ochoa Program" to perform a mid-term visit at this institute (Tenerife, Canary Islands). NR 41 TC 2 Z9 2 U1 6 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 61 EP 89 DI 10.1007/s10686-014-9402-5 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200005 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ de Donato, C de la Taille, C de Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Rodriguez, MD Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. de Donato, C. de la Taille, C. de Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Cano, S. Perez Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez, M. D. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Cano, G. Saez Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI Calibration aspects of the JEM-EUSO mission SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Air-Shower fluorescence telescope; JEM-EUSO; Calibration; Space-Based experiment ID EXTENSIVE AIR-SHOWERS; COSMIC-RAY; RADIATION AB The JEM-EUSO telescope will be, after calibration, a very accurate instrument which yields the number of received photons from the number of measured photo-electrons. The project is in phase A (demonstration of the concept) including already operating prototype instruments, i.e. many parts of the instrument have been constructed and tested. Calibration is a crucial part of the instrument and its use. The focal surface (FS) of the JEM-EUSO telescope will consist of about 5000 photo-multiplier tubes (PMTs), which have to be well calibrated to reach the required accuracy in reconstructing the air-shower parameters. The optics system consists of 3 plastic Fresnel (double-sided) lenses of 2.5 m diameter. The aim of the calibration system is to measure the efficiencies (transmittances) of the optics and absolute efficiencies of the entire focal surface detector. The system consists of 3 main components: (i) Pre-flight calibration devices on ground, where the efficiency and gain of the PMTs will be measured absolutely and also the transmittance of the optics will be. (ii) On-board relative calibration system applying two methods: a) operating during the day when the JEM-EUSO lid will be closed with small light sources on board. b) operating during the night, together with data taking: the monitoring of the background rate over identical sites. (iii) Absolute in-flight calibration, again, applying two methods: a) measurement of the moon light, reflected on high altitude, high albedo clouds. b) measurements of calibrated flashes and tracks produced by the Global Light System (GLS). Some details of each calibration method will be described in this paper. C1 [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, CNRS, IN2P3, APC,CEA Irfu,Obs Paris,Sorbonne Paris Cite, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Tenzer, C.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. Ist Nazl Fis Nuc, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.] Ist Astrofis Spaziale & Fis Cosm Palermo, INAF, Palermo, Italy. [Casolino, M.; de Donato, C.; de Santis, C.; De Simone, N.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bertaina, M.; Cassardo, C.; Cremonini, R.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Ist Nazl Astrofis, Osservatorio Astrofisico Torino, Turin, Italy. [Anzalone, A.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. Univ Napoli Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, D.; Suzuki, M.; Yano, H.] Inst Space & Aeronaut Sci, JAXA, Sagamihara, Kanagawa, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Marchi, A. Zuccaro] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] Cent Res Inst Machine Bldg, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Kudela, K.; Pastircak, B.; Putis, M.] Inst Expt Phys, Kosice, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecnica Aeroespacial, Madrid, Spain. [Ave Pernas, M.; Hernandez Carretero, J.; Morales de los Rios, J. A.; Cano, S. Perez; Prieto, H.; Rodriguez Frias, M. D.; Cano, G. Saez] Univ Alcala de Henares, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, TX USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, George C Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Haungs, A (reprint author), Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. EM philippe.gorodetzky@cern.ch; andreas.haungs@kit.edu; sakaki@sci.osaka-cu.ac.jp; lwiencke@mines.edu RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; OI Vallania, Piero/0000-0001-9089-7875; Cellino, Alberto/0000-0002-6645-334X; Del Peral, Luis/0000-0003-2580-5668; Maccarone, Maria Concetta/0000-0001-8722-0361; Isgro, Francesco/0000-0001-9342-5291; Flamini, Marta/0000-0002-5266-8809; Monaco, Alfonso/0000-0002-5968-8642; Picozza, Piergiorgio/0000-0002-7986-3321; Franceschi, Massimo Alberto/0000-0002-8222-7000; Piraino, Santina/0000-0003-0122-6899; Modestino, Giuseppina/0000-0003-1556-3917; Dell'Oro, Aldo/0000-0003-1561-9685; Anzalone, Anna/0000-0003-1849-198X; Bellotti, Roberto/0000-0003-3198-2708; Segreto, Alberto/0000-0001-7341-6603; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; casolino, marco/0000-0001-6067-5104; Masciantonio, Giuseppe/0000-0002-8911-1561 FU Helmholtz Alliance for Astroparticle Physics, Germany; NASA [NNX13AH55G, NNX13AH53G] FX This work is partially supported by Helmholtz Alliance for Astroparticle Physics, Germany, and by NASA grants NNX13AH55G, NNX13AH53G. NR 21 TC 0 Z9 0 U1 5 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 91 EP 116 DI 10.1007/s10686-015-9453-2 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200006 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csoma, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fern'andez-G'omez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgr'o, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H L'opez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los R'ios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orlea'nski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Pr'evot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodr'iguez, I Fr'ias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczy'nski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H S'anchez, S Santangelo, A Cr'uz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G L'opez, HHS Sledd, J Slomi'nska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Vald'es-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csoma, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fern'andez-G'omez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonz'alez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hern'andez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgr'o, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. L'opez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los R'ios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orlea'nski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Pr'evot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodr'iguez, I. Rodr'iguez Fr'ias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczy'nski, M. Sabau, M. D. S'aez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. S'anchez, S. Santangelo, A. Santiago Cr'uz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva L'opez, H. H. Sledd, J. Slomi'nska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Vald'es-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. CA JEM-EUSO Collaboration TI Performances of JEM-EUSO: angular reconstruction (vol 30, pg 153, 2015) SO EXPERIMENTAL ASTRONOMY LA English DT Correction C1 [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Guzman, A.; Mernik, T.] Inst fur Astron & Astrophys Tubingen, D-72076 Tubingen, Germany. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, LAL, CNRS, IN2P3, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Pr'evot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, CNRS, IN2P3, APC,CEA,Irfu,Sorbonne Paris Cite,Obs Paris, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Tibolla, O.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr, Tubingen, Germany. [Mannheim, K.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgr'o, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Napoli Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Dell'Oro, A.; Di Martino, M.; Vallania, P.] Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Cellino, A.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgr'o, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Hiroshima, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cr'uz, L.; Silva L'opez, H. H.; Supanitsky, D.; Trillaud, F.; Vald'es-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczy'nski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orlea'nski, P.; Rothkaehl, H.; Slomi'nska, K.] Polish Acad Sci, Space Res Ctr, CBK, PL-01237 Warsaw, Poland. [Harlov, B.; Saprykin, O.] Cent Res Inst Machine Bldg, TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Kudela, K.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los R'ios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonz'alez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hern'andez Carretero, J.; Morales de los R'ios, J. A.; Perez Cano, S.; Prieto, H.; Rodr'iguez Fr'ias, M. D.; S'aez Cano, G.] Univ Alcala UAH, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fern'andez-G'omez, I.; L'opez, F.; Rodr'iguez, I.; S'anchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csoma, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Guzman, A (reprint author), Inst fur Astron & Astrophys Tubingen, Sand 1, D-72076 Tubingen, Germany. EM sveta.biktemerova@gmail.com; guzman@astro.uni-tuebingen.de; mernik@astro.uni-tuebingen.de RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Briz, Susana/G-7732-2015 OI De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Briz, Susana/0000-0001-5963-3257 NR 1 TC 3 Z9 3 U1 6 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 179 EP 181 DI 10.1007/s10686-014-9420-3 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200010 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JA Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de Los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Saez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. CA JEM-EUSO Collaboration TI Performances of JEM-EUSO: energy and X (max) reconstruction SO EXPERIMENTAL ASTRONOMY LA English DT Article DE JEM-EUSO; Energy reconstruction; X-max reconstruction ID EXTENSIVE AIR-SHOWERS; MISSION AB The Extreme Universe Space Observatory (EUSO) on-board the Japanese Experimental Module (JEM) of the International Space Station aims at the detection of ultra high energy cosmic rays from space. The mission consists of a UV telescope which will detect the fluorescence light emitted by cosmic ray showers in the atmosphere. The mission, currently developed by a large international collaboration, is designed to be launched within this decade. In this article, we present the reconstruction of the energy of the observed events and we also address the X (max) reconstruction. After discussing the algorithms developed for the energy and X (max) reconstruction, we present several estimates of the energy resolution, as a function of the incident angle, and energy of the event. Similarly, estimates of the X (max) resolution for various conditions are presented. C1 [Fenu, F.; Santangelo, A.] Kepler Ctr Astro & Particle Phys IAAT, D-72076 Tubingen, Germany. [Fenu, F.] RIKEN, Computat Astrophys Lab, ASI, Wako, Saitama, Japan. [Fenu, F.] Univ Turin, I-10126 Turin, Italy. [Fenu, F.] Univ Alcala De Henares, Space Astroparticle Grp SPAS, Alcala De Henares, Spain. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, APC,IN2P3,CEA,Irfu,Obs Paris, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Campana, D.; Guarino, F.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Napoli Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.] Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.; Vallania, P.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci, Space Res Ctr, CBK, PL-01237 Warsaw, Poland. [Harlov, B.; Saprykin, O.] Cent Res Inst Machine Bldg, TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Kudela, K.; Kusenko, A.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de Los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hernandez Carretero, J.; Morales de Los Rios, J. A.; Perez Cano, S.; Prieto, H.; Rodriguez Frias, M. D.; Saez Cano, G.] Univ Alcala UAH, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, George C Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Fenu, F (reprint author), Kepler Ctr Astro & Particle Phys IAAT, Sand 1, D-72076 Tubingen, Germany. EM francesco.fenu@gmail.com RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015 OI Modestino, Giuseppina/0000-0003-1556-3917; Cellino, Alberto/0000-0002-6645-334X; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257 FU IPA program of RIKEN (Japan); Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation FX We wish to thank the RIKEN Integrated Cluster of Clusters facility for the computer resources used for the calculations. We wish to thank the IPA program of RIKEN (Japan) for its support. This work has been partially supported by the Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation. We also wish to thank the original ESAF developers for their work. NR 21 TC 0 Z9 0 U1 4 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 183 EP 214 DI 10.1007/s10686-014-9427-9 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200011 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgr'o, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, AD Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgr'o, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Saez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, A. D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Zuccaro Marchi, A. CA JEM-EUSO Collaboration TI Ultra high energy photons and neutrinos with JEM-EUSO (vol 40, pg 215, 2015) SO EXPERIMENTAL ASTRONOMY LA English DT Correction C1 Consejo Nacl Invest Cient & Tecn, UBA, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr, Tubingen, Germany. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, APC,IN2P3,CEA,Irfu,Obs Paris, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgr'o, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Napoli Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, C.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; De Simone, N.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgr'o, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Sato, H.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Zuccaro Marchi, A.] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, A. D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.; von Ballmoos, P.] Polish Acad Sci, Space Res Ctr, CBK, PL-01237 Warsaw, Poland. [Biktemerova, S.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] Cent Res Inst Machine Bldg, TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Gonchar, M.; Kudela, K.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hernandez Carretero, J.; Morales de los Rios, J. A.; Perez Cano, S.; Prieto, H.; Rodriguez Frias, M. D.; Saez Cano, G.] Univ Alcala UAH, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, George C Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Supanitsky, AD (reprint author), Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. EM guzman@astro.uni-tuebingen.de; gmtanco@nucleares.unam.mx; dalesupa@gmail.com RI Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012 OI Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885 NR 1 TC 0 Z9 0 U1 5 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 235 EP 237 DI 10.1007/s10686-015-9470-1 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200013 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galiciaga, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Saez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galiciaga, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI Science of atmospheric phenomena with JEM-EUSO SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Transient Luminous Events; Elves; Sprites; Jets - Atmospheric phenomena ID TRANSIENT LUMINOUS EVENTS; SATELLITE AB The main goal of the JEM-EUSO experiment is the study of Ultra High Energy Cosmic Rays (UHECR, 10(19)-10(21) e V), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where some part of Transient Luminous Events (TLEs) emission also appears. This work discusses the possibility of using the JEM-EUSO Telescope to get new scientific results on TLEs. The high time resolution of this instrument allows to observe the evolution of TLEs with great precision just at the moment of their origin. The paper consists of four parts: review of the present knowledge on the TLE, presentation of the results of the simulations of the TLE images in the JEM-EUSO telescope, results of the Russian experiment Tatiana-2 and discussion of the possible progress achievable in this field with JEM-EUSO as well as possible cooperation with other space projects devoted to the study of TLE - TARANIS and ASIM. In atmospheric physics, the study of TLEs became one of the main physical subjects of interest after their discovery in 1989. In the years 1992 - 1994 detection was performed from satellite, aircraft and space shuttle and recently from the International Space Station. These events have short duration (milliseconds) and small scales (km to tens of km) and appear at altitudes 50 - 100 km. Their nature is still not clear and each new experimental data can be useful for a better understanding of these mysterious phenomena. C1 [Garipov, G.; Klimov, P. A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, APC,IN2P3,CEA,Irfu,Obs Paris, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Napoli Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Marchi, A. Zuccaro] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galiciaga, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci, Space Res Ctr, CBK, PL-01237 Warsaw, Poland. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] Cent Res Inst Machine Bldg, TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Bobik, P.; Kudela, K.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hernandez Carretero, J.; Morales de los Rios, J. A.; Perez Cano, S.; Prieto, H.; Rodriguez Frias, M. D.; Saez Cano, G.] Univ Alcala UAH, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, George C Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Slominska, K (reprint author), Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. EM jblecki@cbk.waw.pl; garipov@eas.sinp.msu.ru; pavel.klimov@gmail.com; kslomin@fuw.edu.pl RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; OI Bellotti, Roberto/0000-0003-3198-2708; Vallania, Piero/0000-0001-9089-7875; Cellino, Alberto/0000-0002-6645-334X; Del Peral, Luis/0000-0003-2580-5668; casolino, marco/0000-0001-6067-5104; Segreto, Alberto/0000-0001-7341-6603; Maccarone, Maria Concetta/0000-0001-8722-0361; Flamini, Marta/0000-0002-5266-8809; Monaco, Alfonso/0000-0002-5968-8642; Picozza, Piergiorgio/0000-0002-7986-3321; Franceschi, Massimo Alberto/0000-0002-8222-7000; Modestino, Giuseppina/0000-0003-1556-3917; Dell'Oro, Aldo/0000-0003-1561-9685; Anzalone, Anna/0000-0003-1849-198X; Isgro, Francesco/0000-0001-9342-5291; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; Masciantonio, Giuseppe/0000-0002-8911-1561; Piraino, Santina/0000-0003-0122-6899 FU MNiSW [N307065834]; NCN [2014/13/B/ST10/01285]; Russian Foundation for Basic Research [12-05-31025-mol-a] FX This work is supported partially by the grant MNiSW N307065834 and grant NCN 2014/13/B/ST10/01285 and grant of Russian Foundation for Basic Research No. 12-05-31025-mol-a. Authors wish to thank all involved in the preparation and the reviewing process of this paper. NR 16 TC 1 Z9 1 U1 3 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 239 EP 251 DI 10.1007/s10686-014-9431-0 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200014 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchari, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itowen, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Odarczyk, ZW Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchari, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itowen, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Perez Cano, S. Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Saez Cano, G. Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Odarczyk, Z. Wl Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI The EUSO-Balloon pathfinder SO EXPERIMENTAL ASTRONOMY LA English DT Article DE UHECR; Air-fluorescence; JEM-EUSO; Balloon experiment AB EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km(2) ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight. C1 Inst Rech Astrophys & Planetol, Toulouse, France. [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Univ Sofia, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Sofia, Sofia, Bulgaria. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Tenzer, C.] Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Modestino, G.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Osservatorio Astrofis Torino, Ist Nazl Astrofis, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Dept Phys, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itowen, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Marchi, A. Zuccaro] RIKEN, Adv Sci Inst, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Odarczyk, Z. Wl] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland. [Biktemerova, S.; Gonchari, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Morales de los Rios, J. A.; Perez Cano, S.; Prieto, H.; Rodriguez Frias, M. D.; Saez Cano, G.] Univ Alcala de Henares, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP von Ballmoos, P (reprint author), Univ Toulouse, CNRS, IRAP, Toulouse, France. EM pvb@irap.omp.eu RI marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010 OI Vallania, Piero/0000-0001-9089-7875; Cellino, Alberto/0000-0002-6645-334X; Del Peral, Luis/0000-0003-2580-5668; casolino, marco/0000-0001-6067-5104; Masciantonio, Giuseppe/0000-0002-8911-1561; Segreto, Alberto/0000-0001-7341-6603; Isgro, Francesco/0000-0001-9342-5291; Flamini, Marta/0000-0002-5266-8809; Monaco, Alfonso/0000-0002-5968-8642; Picozza, Piergiorgio/0000-0002-7986-3321; Franceschi, Massimo Alberto/0000-0002-8222-7000; Piraino, Santina/0000-0003-0122-6899; Anzalone, Anna/0000-0003-1849-198X; Bellotti, Roberto/0000-0003-3198-2708; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; Modestino, Giuseppina/0000-0003-1556-3917; Dell'Oro, Aldo/0000-0003-1561-9685; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784 FU French Space Agency; Basic Science Interdisciplinary Research Projects of RIKEN; Basic Science Interdisciplinary Research Projects of JSPS; KAKENHI Grant [22340063, 23340081, 24244042]; Italian Ministry of Foreign Affairs and International Cooperation; 'Helmholtz Alliance for Astroparticle Physics HAP' - Initiative and Networking Fund of Helmholtz Association, Germany; Slovak Academy of Sciences MVTS JEM-EUSO; VEGA grant agency [2/0076/13]; MICINN [AYA2009- 06037-E/ESP, AYA-ESP 2010-19082, AYA2011-29489-C03- 01, AYA2012-39115-C03-01, CSD2009-00064]; Comunidad de Madrid (CAM) [S2009/ESP-1496] FX The authors acknowledge strong support from the French Space Agency CNES who provided-besides funding-the leadership that made this achievement possible in a very short time. We are indebted to the balloon division of CNES for a perfect launch, smooth flight operation and flawless telemetry. The Canadian Space Agency has provided outstanding facilities at the Timmins Stratospheric Balloon Base, and a quick and careful recovery of the instrument. We would like to thank our laboratories and the entire JEM-EUSO collaboration for their strong and undivided support all along this project.; This work was partially supported by Basic Science Interdisciplinary Research Projects of RIKEN and JSPS KAKENHI Grant (22340063, 23340081, and 24244042), by the Italian Ministry of Foreign Affairs and International Cooperation by the 'Helmholtz Alliance for Astroparticle Physics HAP' funded by the Initiative and Networking Fund of the Helmholtz Association, Germany, and by Slovak Academy of Sciences MVTS JEM-EUSO as well as VEGA grant agency project 2/0076/13. The Spanish consortium involved in the JEM-EUSO Space Mission is funded by MICINN under projects AYA2009- 06037-E/ESP, AYA-ESP 2010-19082, AYA2011-29489-C03- 01, AYA2012-39115-C03-01, CSD2009-00064 (Consolider MULTIDARK) and by Comunidad de Madrid (CAM) under project S2009/ESP-1496. NR 30 TC 1 Z9 1 U1 3 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 281 EP 299 DI 10.1007/s10686-015-9467-9 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200016 ER PT J AU Adams, JH Ahmad, S Albert, JN Allard, D Anchordoqui, L Andreev, V Anzalone, A Arai, Y Asano, K Pernas, MA Baragatti, P Barrillon, P Batsch, T Bayer, J Bechini, R Belenguer, T Bellotti, R Belov, K Berlind, AA Bertaina, M Biermann, PL Biktemerova, S Blaksley, C Blanc, N Blecki, J Blin-Bondil, S Blumer, J Bobik, P Bogomilov, M Bonamente, M Briggs, MS Briz, S Bruno, A Cafagna, F Campana, D Capdevielle, JN Caruso, R Casolino, M Cassardo, C Castellini, G Catalano, C Catalano, O Cellino, A Chikawa, M Christl, MJ Cline, D Connaughton, V Conti, L Cordero, G Crawford, HJ Cremonini, R Csorna, S Dagoret-Campagne, S de Castro, AJ De Donato, C de la Taille, C De Santis, C del Peral, L Dell'Oro, A De Simone, N Di Martino, M Distratis, G Dulucq, F Dupieux, M Ebersoldt, A Ebisuzaki, T Engel, R Falk, S Fang, K Fenu, F Fernandez-Gomez, I Ferrarese, S Finco, D Flamini, M Fornaro, C Franceschi, A Fujimoto, J Fukushima, M Galeotti, P Garipov, G Geary, J Gelmini, G Giraudo, G Gonchar, M Alvarado, CG Gorodetzky, P Guarino, F Guzman, A Hachisu, Y Harlov, B Haungs, A Carretero, JH Higashide, K Ikeda, D Ikeda, H Inoue, N Inoue, S Insolia, A Isgro, F Itow, Y Joven, E Judd, EG Jung, A Kajino, F Kajino, T Kaneko, I Karadzhov, Y Karczmarczyk, J Karus, M Katahira, K Kawai, K Kawasaki, Y Keilhauer, B Khrenov, BA Kim, JS Kim, SW Kim, SW Kleifges, M Klimov, PA Kolev, D Kreykenbohm, I Kudela, K Kurihara, Y Kusenko, A Kuznetsov, E Lacombe, M Lachaud, C Lee, J Licandro, J Lim, H Lopez, F Maccarone, MC Mannheim, K Maravilla, D Marcelli, L Marini, A Martinez, O Masciantonio, G Mase, K Matev, R Medina-Tanco, G Mernik, T Miyamoto, H Miyazaki, Y Mizumoto, Y Modestino, G Monaco, A Monnier-Ragaigne, D de los Rios, JAM Moretto, C Morozenko, VS Mot, B Murakami, T Nagano, M Nagata, M Nagataki, S Nakamura, T Napolitano, T Naumov, D Nava, R Neronov, A Nomoto, K Nonaka, T Ogawa, T Ogio, S Ohmori, H Olinto, AV Orleanski, P Osteria, G Panasyuk, MI Parizot, E Park, IH Park, HW Pastircak, B Patzak, T Paul, T Pennypacker, C Cano, SP Peter, T Picozza, P Pierog, T Piotrowski, LW Piraino, S Plebaniak, Z Pollini, A Prat, P Prevot, G Prieto, H Putis, M Reardon, P Reyes, M Ricci, M Rodriguez, I Frias, MDR Ronga, F Roth, M Rothkaehl, H Roudil, G Rusinov, I Rybczynski, M Sabau, MD Cano, GS Sagawa, H Saito, A Sakaki, N Sakata, M Salazar, H Sanchez, S Santangelo, A Cruz, LS Palomino, MS Saprykin, O Sarazin, F Sato, H Sato, M Schanz, T Schieler, H Scotti, V Segreto, A Selmane, S Semikoz, D Serra, M Sharakin, S Shibata, T Shimizu, HM Shinozaki, K Shirahama, T Siemieniec-Ozieblo, G Lopez, HHS Sledd, J Slominska, K Sobey, A Sugiyama, T Supanitsky, D Suzuki, M Szabelska, B Szabelski, J Tajima, F Tajima, N Tajima, T Takahashi, Y Takami, H Takeda, M Takizawa, Y Tenzer, C Tibolla, O Tkachev, L Tokuno, H Tomida, T Tone, N Toscano, S Trillaud, F Tsenov, R Tsunesada, Y Tsuno, K Tymieniecka, T Uchihori, Y Unger, M Vaduvescu, O Valdes-Galicia, JF Vallania, P Valore, L Vankova, G Vigorito, C Villasenor, L von Ballmoos, P Wada, S Watanabe, J Watanabe, S Watts, J Weber, M Weiler, TJ Wibig, T Wiencke, L Wille, M Wilms, J Wlodarczyk, Z Yamamoto, T Yamamoto, Y Yang, J Yano, H Yashin, IV Yonetoku, D Yoshida, K Yoshida, S Young, R Zotov, MY Marchi, AZ AF Adams, J. H., Jr. Ahmad, S. Albert, J. -N. Allard, D. Anchordoqui, L. Andreev, V. Anzalone, A. Arai, Y. Asano, K. Ave Pernas, M. Baragatti, P. Barrillon, P. Batsch, T. Bayer, J. Bechini, R. Belenguer, T. Bellotti, R. Belov, K. Berlind, A. A. Bertaina, M. Biermann, P. L. Biktemerova, S. Blaksley, C. Blanc, N. Blecki, J. Blin-Bondil, S. Bluemer, J. Bobik, P. Bogomilov, M. Bonamente, M. Briggs, M. S. Briz, S. Bruno, A. Cafagna, F. Campana, D. Capdevielle, J-N. Caruso, R. Casolino, M. Cassardo, C. Castellini, G. Catalano, C. Catalano, O. Cellino, A. Chikawa, M. Christl, M. J. Cline, D. Connaughton, V. Conti, L. Cordero, G. Crawford, H. J. Cremonini, R. Csorna, S. Dagoret-Campagne, S. de Castro, A. J. De Donato, C. de la Taille, C. De Santis, C. del Peral, L. Dell'Oro, A. De Simone, N. Di Martino, M. Distratis, G. Dulucq, F. Dupieux, M. Ebersoldt, A. Ebisuzaki, T. Engel, R. Falk, S. Fang, K. Fenu, F. Fernandez-Gomez, I. Ferrarese, S. Finco, D. Flamini, M. Fornaro, C. Franceschi, A. Fujimoto, J. Fukushima, M. Galeotti, P. Garipov, G. Geary, J. Gelmini, G. Giraudo, G. Gonchar, M. Gonzalez Alvarado, C. Gorodetzky, P. Guarino, F. Guzman, A. Hachisu, Y. Harlov, B. Haungs, A. Hernandez Carretero, J. Higashide, K. Ikeda, D. Ikeda, H. Inoue, N. Inoue, S. Insolia, A. Isgro, F. Itow, Y. Joven, E. Judd, E. G. Jung, A. Kajino, F. Kajino, T. Kaneko, I. Karadzhov, Y. Karczmarczyk, J. Karus, M. Katahira, K. Kawai, K. Kawasaki, Y. Keilhauer, B. Khrenov, B. A. Kim, Jeong-Sook Kim, Soon-Wook Kim, Sug-Whan Kleifges, M. Klimov, P. A. Kolev, D. Kreykenbohm, I. Kudela, K. Kurihara, Y. Kusenko, A. Kuznetsov, E. Lacombe, M. Lachaud, C. Lee, J. Licandro, J. Lim, H. Lopez, F. Maccarone, M. C. Mannheim, K. Maravilla, D. Marcelli, L. Marini, A. Martinez, O. Masciantonio, G. Mase, K. Matev, R. Medina-Tanco, G. Mernik, T. Miyamoto, H. Miyazaki, Y. Mizumoto, Y. Modestino, G. Monaco, A. Monnier-Ragaigne, D. Morales de los Rios, J. A. Moretto, C. Morozenko, V. S. Mot, B. Murakami, T. Nagano, M. Nagata, M. Nagataki, S. Nakamura, T. Napolitano, T. Naumov, D. Nava, R. Neronov, A. Nomoto, K. Nonaka, T. Ogawa, T. Ogio, S. Ohmori, H. Olinto, A. V. Orleanski, P. Osteria, G. Panasyuk, M. I. Parizot, E. Park, I. H. Park, H. W. Pastircak, B. Patzak, T. Paul, T. Pennypacker, C. Cano, S. Perez Peter, T. Picozza, P. Pierog, T. Piotrowski, L. W. Piraino, S. Plebaniak, Z. Pollini, A. Prat, P. Prevot, G. Prieto, H. Putis, M. Reardon, P. Reyes, M. Ricci, M. Rodriguez, I. Rodriguez Frias, M. D. Ronga, F. Roth, M. Rothkaehl, H. Roudil, G. Rusinov, I. Rybczynski, M. Sabau, M. D. Cano, G. Saez Sagawa, H. Saito, A. Sakaki, N. Sakata, M. Salazar, H. Sanchez, S. Santangelo, A. Santiago Cruz, L. Sanz Palomino, M. Saprykin, O. Sarazin, F. Sato, H. Sato, M. Schanz, T. Schieler, H. Scotti, V. Segreto, A. Selmane, S. Semikoz, D. Serra, M. Sharakin, S. Shibata, T. Shimizu, H. M. Shinozaki, K. Shirahama, T. Siemieniec-Ozieblo, G. Silva Lopez, H. H. Sledd, J. Slominska, K. Sobey, A. Sugiyama, T. Supanitsky, D. Suzuki, M. Szabelska, B. Szabelski, J. Tajima, F. Tajima, N. Tajima, T. Takahashi, Y. Takami, H. Takeda, M. Takizawa, Y. Tenzer, C. Tibolla, O. Tkachev, L. Tokuno, H. Tomida, T. Tone, N. Toscano, S. Trillaud, F. Tsenov, R. Tsunesada, Y. Tsuno, K. Tymieniecka, T. Uchihori, Y. Unger, M. Vaduvescu, O. Valdes-Galicia, J. F. Vallania, P. Valore, L. Vankova, G. Vigorito, C. Villasenor, L. von Ballmoos, P. Wada, S. Watanabe, J. Watanabe, S. Watts, J., Jr. Weber, M. Weiler, T. J. Wibig, T. Wiencke, L. Wille, M. Wilms, J. Wlodarczyk, Z. Yamamoto, T. Yamamoto, Y. Yang, J. Yano, H. Yashin, I. V. Yonetoku, D. Yoshida, K. Yoshida, S. Young, R. Zotov, M. Yu. Marchi, A. Zuccaro CA JEM-EUSO Collaboration TI Space experiment TUS on board the Lomonosov satellite as pathfinder of JEM-EUSO SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Air-shower fluorescence telescope; JEM-EUSO; Pathfinder ID DETECTOR AB Space-based detectors for the study of extreme energy cosmic rays (EECR) are being prepared as a promising new method for detecting highest energy cosmic rays. A pioneering space device - the "tracking ultraviolet set-up" (TUS) - is in the last stage of its construction and testing. The TUS detector will collect preliminary data on EECR in the conditions of a space environment, which will be extremely useful for planning the major JEM-EUSO detector operation. C1 [Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Matev, R.; Rusinov, I.; Tsenov, R.; Vankova, G.] Univ Sofia, Sofia, Bulgaria. [Albert, J. -N.; Barrillon, P.; Dagoret-Campagne, S.; Miyamoto, H.; Monnier-Ragaigne, D.; Moretto, C.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Ahmad, S.; Blin-Bondil, S.; de la Taille, C.; Dulucq, F.] Ecole Polytech, CNRS, IN2P3, Omega, F-91128 Palaiseau, France. [Allard, D.; Blaksley, C.; Capdevielle, J-N.; Gorodetzky, P.; Lachaud, C.; Parizot, E.; Patzak, T.; Prat, P.; Prevot, G.; Selmane, S.; Semikoz, D.] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, Observ Paris,IN2P3,CEA,Irfu,APC, Paris, France. [Catalano, C.; Dupieux, M.; Lacombe, M.; Mot, B.; Roudil, G.; von Ballmoos, P.] Univ Toulouse, CNRS, IRAP, Toulouse, France. [Kreykenbohm, I.; Wille, M.; Wilms, J.] Univ Erlangen Nurnberg, ECAP, Nurnberg, Germany. [Biermann, P. L.; Bluemer, J.; Ebersoldt, A.; Engel, R.; Falk, S.; Haungs, A.; Karus, M.; Keilhauer, B.; Kleifges, M.; Pierog, T.; Roth, M.; Sakaki, N.; Schieler, H.; Unger, M.; Weber, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Tajima, T.] Univ Munich, Munich, Germany. [Bayer, J.; Distratis, G.; Fenu, F.; Guzman, A.; Mernik, T.; Piraino, S.; Santangelo, A.; Schanz, T.; Shinozaki, K.; Tenzer, C.] Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany. [Mannheim, K.; Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany. [Bellotti, R.; Bruno, A.; Cafagna, F.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Bellotti, R.; Monaco, A.] Univ Bari Aldo Moro, Bari, Italy. [Bellotti, R.; Monaco, A.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Caruso, R.; Insolia, A.; Modestino, G.] Univ Catania, Dipartimento Fis & Astron, I-95124 Catania, Italy. [Castellini, G.] CNR, Ist Fis Applicata Nello Carrara, Florence, Italy. [Franceschi, A.; Marini, A.; Napolitano, T.; Ricci, M.; Ronga, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Campana, D.; Guarino, F.; Isgro, F.; Osteria, G.; Scotti, V.; Valore, L.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guarino, F.; Scotti, V.; Valore, L.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Anzalone, A.; Catalano, O.; Maccarone, M. C.; Piraino, S.; Segreto, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Masciantonio, G.; Picozza, P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [De Santis, C.; Marcelli, L.; Masciantonio, G.; Picozza, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bertaina, M.; Cassardo, C.; Cellino, A.; Dell'Oro, A.; Di Martino, M.; Ferrarese, S.; Galeotti, P.; Giraudo, G.; Vallania, P.; Vigorito, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bechini, R.; Bertaina, M.; Cassardo, C.; Cremonini, R.; Ferrarese, S.; Galeotti, P.; Vigorito, C.] Univ Turin, Dipartimento Fis, I-10124 Turin, Italy. [Cellino, A.; Dell'Oro, A.; Di Martino, M.; Vallania, P.] Osservatorio Astrofis Torino, Ist Nazl Astrofis, Turin, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; Insolia, A.; Maccarone, M. C.; Segreto, A.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Baragatti, P.; Conti, L.; Finco, D.; Flamini, M.; Fornaro, C.] UTIU, Dipartimento Ingn, Rome, Italy. [Isgro, F.] Univ Naples Federico II, DIETI, Naples, Italy. [Mase, K.; Yoshida, S.] Chiba Univ, Chiba, Japan. [Uchihori, Y.] Natl Inst Radiol Sci, Chiba 260, Japan. [Miyazaki, Y.; Nagano, M.] Fukui Univ Technol, Fukui, Japan. [Chikawa, M.] Kinki Univ, Higashiosaka, Osaka 577, Japan. [Tajima, F.] Hiroshima Univ, Hiroshima, Japan. [Murakami, T.; Yonetoku, D.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Fukushima, M.; Ikeda, D.; Inoue, S.; Nonaka, T.; Sagawa, H.; Takeda, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Nagata, M.] Kobe Univ, Kobe, Hyogo 657, Japan. [Kajino, F.; Sakata, M.; Sato, H.; Yamamoto, T.; Yamamoto, Y.; Yoshida, K.] Konan Univ, Kobe, Hyogo, Japan. [Nakamura, T.; Saito, A.] Kyoto Univ, Kyoto, Japan. [Nagataki, S.] Kyoto Univ, Yukawa Inst, Kyoto, Japan. [Kajino, T.; Mizumoto, Y.; Watanabe, J.] Natl Astron Observ, Mitaka, Tokyo 181, Japan. [Shimizu, H. M.; Sugiyama, T.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Itow, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ogio, S.] Osaka City Univ, Grad Sch Sci, Osaka, Japan. [Ikeda, H.; Suzuki, M.; Yano, H.] Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 229, Japan. [Shibata, T.] Aoyama Gakuin Univ, Sagamihara, Kanagawa, Japan. [Higashide, K.; Inoue, N.; Shirahama, T.] Saitama Univ, Saitama 3388570, Japan. [Sato, M.; Takahashi, Y.; Watanabe, S.] Hokkaido Univ, Sapporo, Hokkaido, Japan. [Asano, K.; Tokuno, H.; Tsunesada, Y.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 152, Japan. [Nomoto, K.] Univ Tokyo, Tokyo, Japan. [Arai, Y.; Fujimoto, J.; Kurihara, Y.; Takami, H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Casolino, M.; Ebisuzaki, T.; Hachisu, Y.; Higashide, K.; Kaneko, I.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Ogawa, T.; Ohmori, H.; Picozza, P.; Piotrowski, L. W.; Shinozaki, K.; Tajima, N.; Takizawa, Y.; Tomida, T.; Tone, N.; Tsuno, K.; Wada, S.; Marchi, A. Zuccaro] RIKEN, Wako, Saitama, Japan. [Kim, Jeong-Sook; Kim, Soon-Wook] Korea Astron & Space Sci Inst KASI, Taejon, South Korea. [Jung, A.; Yang, J.] Ewha Womans Univ, Seoul, South Korea. [Lee, J.; Lim, H.; Park, I. H.; Park, H. W.] Sungkyunkwan Univ, Seoul, South Korea. [Kim, Sug-Whan] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea. [Cordero, G.; Maravilla, D.; Medina-Tanco, G.; Nava, R.; Santiago Cruz, L.; Silva Lopez, H. H.; Supanitsky, D.; Trillaud, F.; Valdes-Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Martinez, O.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Rybczynski, M.; Wlodarczyk, Z.] Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland. [Siemieniec-Ozieblo, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Batsch, T.; Karczmarczyk, J.; Plebaniak, Z.; Szabelska, B.; Szabelski, J.; Tymieniecka, T.; Wibig, T.] Natl Ctr Nucl Res, Lodz, Poland. [Blecki, J.; Orleanski, P.; Rothkaehl, H.; Slominska, K.] Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland. [Biktemerova, S.; Gonchar, M.; Naumov, D.; Tkachev, L.] Joint Inst Nucl Res, Dubna, Russia. [Harlov, B.; Saprykin, O.] TsNIIMash, Korolev, Russia. [Garipov, G.; Khrenov, B. A.; Klimov, P. A.; Morozenko, V. S.; Panasyuk, M. I.; Sharakin, S.; Yashin, I. V.; Zotov, M. Yu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. [Bobik, P.; Kudela, K.; Pastircak, B.; Putis, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Morales de los Rios, J. A.] CSIC, Madrid, Spain. [Belenguer, T.; Gonzalez Alvarado, C.; Sabau, M. D.; Sanz Palomino, M.] Inst Nacl Tecn Aeroespacial, Madrid, Spain. [Ave Pernas, M.; del Peral, L.; Hernandez Carretero, J.; Morales de los Rios, J. A.; Cano, S. Perez; Prieto, H.; Rodriguez Frias, M. D.; Cano, G. Saez] Univ Alcala de Henares, Madrid, Spain. [Briz, S.; de Castro, A. J.; Fernandez-Gomez, I.; Lopez, F.; Rodriguez, I.; Sanchez, S.] Univ Carlos III Madrid, E-28903 Getafe, Spain. [Joven, E.; Licandro, J.; Reyes, M.; Serra, M.; Vaduvescu, O.] Inst Astrofis Canarias, Tenerife, Spain. [Blanc, N.; Pollini, A.] Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland. [Neronov, A.; Toscano, S.] ISDC Data Ctr Astrophys, Versoix, Switzerland. [Peter, T.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Crawford, H. J.; Judd, E. G.; Pennypacker, C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fang, K.; Olinto, A. V.] Univ Chicago, Chicago, IL 60637 USA. [Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Adams, J. H., Jr.; Bonamente, M.; Briggs, M. S.; Connaughton, V.; Geary, J.; Kuznetsov, E.; Reardon, P.; Watts, J., Jr.] Univ Alabama, Huntsville, AL USA. [Andreev, V.; Belov, K.; Cline, D.; Gelmini, G.; Kusenko, A.] Univ Calif Los Angeles, Los Angeles, CA USA. [Anchordoqui, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Christl, M. J.; Sledd, J.; Sobey, A.; Young, R.] NASA, Marshall Space Flight Ctr, New York, NY USA. [Berlind, A. A.; Csorna, S.; Weiler, T. J.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Panasyuk, MI (reprint author), Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 117234, Russia. EM ebisu@postman.riken.go.jp; bkhrenov@yandex.ru; pavel.klimov@gmail.com; panasyuk@sinp.msu.ru RI De Santis, Cristian/C-1210-2011; Wilms, Joern/C-8116-2013; Klimov, Pavel/E-2783-2012; De Donato, Cinzia/J-9132-2015; Cafagna, Francesco/A-9299-2010; marcelli, laura/K-8860-2016; Guarino, Fausto/I-3166-2012; Rodriguez Frias, Maria /A-7608-2015; Briz, Susana/G-7732-2015; OI Isgro, Francesco/0000-0001-9342-5291; Vallania, Piero/0000-0001-9089-7875; Cellino, Alberto/0000-0002-6645-334X; Del Peral, Luis/0000-0003-2580-5668; De Santis, Cristian/0000-0002-7280-2446; Wilms, Joern/0000-0003-2065-5410; Klimov, Pavel/0000-0001-9815-6123; De Donato, Cinzia/0000-0002-9725-1281; Cafagna, Francesco/0000-0002-7450-4784; marcelli, laura/0000-0002-3180-1228; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Briz, Susana/0000-0001-5963-3257; Franceschi, Massimo Alberto/0000-0002-8222-7000; Flamini, Marta/0000-0002-5266-8809; Segreto, Alberto/0000-0001-7341-6603 FU Russian Foundation for Basic Research [13-02-12175 ofi-m] FX This work is supported partially by the grant of Russian Foundation for Basic Research No. 13-02-12175 ofi-m. NR 12 TC 1 Z9 1 U1 4 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD NOV PY 2015 VL 40 IS 1 SI SI BP 315 EP 326 DI 10.1007/s10686-015-9465-y PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8WN UT WOS:000365280200018 ER PT J AU Henderson, B Wernet, M AF Henderson, Brenda Wernet, Mark TI Acoustics and flow field of slotted air-injection nozzles SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID JET NOISE-REDUCTION; MICROJETS AB Experiments investigating the noise and flow-field characteristics of dual-stream jets with Iluidic injectors were performed. Air was delivered to the core stream of a bypass-ratio-five nozzle system via slots in the core-nozzle trailing edge. For dual-subsonic-stream jets, up to 3 dB noise reduction was achieved in the peak-jet-noise direction with an injection total pressure roughly equal to 1.5 times that of the core stream and an injection-to-core mass-flow ratio equal to 2.5%. Particle Image Velocimetry (PIN) studies showed fluidic injection reduced turbulent-kinetic-energy levels downstream of the pylon. Flow asymmetries introduced by the pylon were shown to impact streamwise development of vorticity generated by the injectors which limited the ability of the injectors to enhance jet mixing. For dual-transonic-stream jets, fluidic injection significantly reduced broadband-shock-associated noise but had limited impact on turbulent mixing noise. For single-supersonic-stream jets, fluidic injection reduced broadband-shock-associated noise and turbulent mixing noise over a range of frequencies in the peak-jet-noise direction. C1 [Henderson, Brenda; Wernet, Mark] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Henderson, B (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM brenda.s.henderson@nasa.gov FU Subsonic Fixed Wing and Supersonics Projects in NASA's Fundamental Aeronautics Program FX The authors acknowledge the diligent and resourceful efforts of Dr. Randy Locke and Dr. Adam Wroblewski in the acquisition of the cross-stream PIV data. The authors also thank the staffs of the Jet Noise Laboratory and the AeroAcoustic Propulsion Laboratory. The fluidic-injection nozzles were designed in cooperation with Goodrich Aerostructures. The authors thank Alan Douglas and Harry Haskin for leading the mechanical design. The work was funded by the Subsonic Fixed Wing and Supersonics Projects in NASA's Fundamental Aeronautics Program. NR 34 TC 0 Z9 0 U1 3 U2 6 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 1475-472X J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD NOV PY 2015 VL 14 IS 7 BP 917 EP 945 PG 29 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA CX0UV UT WOS:000365413500004 ER PT J AU Ramamurti, R Corrigan, A Liu, JH Kailasanath, K Henderson, B AF Ramamurti, Ravi Corrigan, Andrew Liu, Junhui Kailasanath, Kazhikathra Henderson, Brenda TI Jet noise simulations for complex nozzle geometries SO INTERNATIONAL JOURNAL OF AEROACOUSTICS LA English DT Article ID FLUX-CORRECTED TRANSPORT; ALGORITHMS; FCT AB The jet flow from a complex engine nozzle system with multiple jet streams is computed using large eddy simulations. The effects of the fan flow, the impact of installation effects created by the addition of a pylon, and the influence of the core-fluidic injection on the resulting flow field and the acoustic radiation are studied. The potential core length reduces slightly with the introduction of the fan flow and further reduces with the introduction of the fluidic injection nozzle geometry. Computations of fluidic-injection nozzle configurations are validated with experimental data. The agreement in the farfield spectra along the sideline and in the peak propagation directions is good for both the baseline nozzle and the fluidic-injection nozzle configurations. The centerline velocity and the turbulent kinetic energy distribution along the nozzle symmetry plane are in good agreement with the experiments. The parametric study varying the pressure ratio shows that as the injection pressure ratio is increased the jet core moves towards the pylon. For a fluidic injection pressure ratio of 4.0, a reduction of 2.0dB - 2.5dB is observed with respect to the baseline nozzle with a pylon. Fluidic injection is found to produce two sets of counter rotating vortices, one along the nozzle lip line and the second penetrating the nozzle core flow. The potential reason for the noise reduction is investigated from the changes in the turbulence intensity and the convective velocity in the shear layer. It is shown that the turbulence intensity is reduced and the convective velocity at the end of the potential core remains nearly constant for all injection pressure ratios studied. C1 [Ramamurti, Ravi; Corrigan, Andrew; Liu, Junhui; Kailasanath, Kazhikathra] Naval Res Lab, Washington, DC 20375 USA. [Henderson, Brenda] NASA, Glenn Res Ctr, Cleveland, OH 44315 USA. RP Ramamurti, R (reprint author), Naval Res Lab, Washington, DC 20375 USA. EM ravi.ramamurti@nrl.navy.mil FU ONR through the Jet Noise Reduction Project under the NIHL Program; NRL 6.1 Computational Physics Task Area; NRL center; ARL center; ERDC DoD HPC center FX This work was supported in part by ONR through the Jet Noise Reduction Project under the NIHL Program and the NRL 6.1 Computational Physics Task Area. This work was supported in part by a challenge grant of HPC time at NRL, ARL and ERDC DoD HPC centers. NR 30 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1475-472X EI 2048-4003 J9 INT J AEROACOUST JI Int. J. Aeroacoust. PD NOV PY 2015 VL 14 IS 7 BP 947 EP 975 PG 29 WC Acoustics; Engineering, Aerospace; Mechanics SC Acoustics; Engineering; Mechanics GA CX0UV UT WOS:000365413500005 ER PT J AU Kharangate, CR O'Neill, LE Mudawar, I Hasan, MM Nahra, HK Balasubramaniam, R Hall, NR Macner, AM Mackey, JR AF Kharangate, Chirag R. O'Neill, Lucas E. Mudawar, Issam Hasan, Mohammad M. Nahra, Henry K. Balasubramaniam, Ramaswamy Hall, Nancy R. Macner, Ashley M. Mackey, Jeffrey R. TI Flow boiling and critical heat flux in horizontal channel with one-sided and double-sided heating SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Flow boiling; Critical heat flux; Gravity effects ID COOLING SCHEME; MICROGRAVITY; INLET; JET; CHF; ORIENTATION; BEHAVIOR; LIQUID; MODEL AB This study explores flow boiling of FC-72 along a 5-mm high by 2.5-mm wide rectangular channel that is fitted with top and bottom heating walls. By activating one wall at a time, the opposing influences of gravity are examined for inlet velocities from 0.11 to 2.02 m/s. Results for top wall and bottom wall heating are then compared to those for double-sided heating. For top wall heating, high speed video imaging proves gravity effects are dominant at low velocities, accumulating vapor along the heated wall and resulting in low critical heat flux (CHF) values. For bottom wall heating, buoyancy aids in vapor removal and liquid replenishment of the heated wall, resulting in higher CHF values. Higher velocities result in fairly similar interfacial behavior for top wall and bottom wall heating, and double-sided heating exhibiting greater symmetry between interfacial behaviors along the opposite walls. Overall, CHF values for all three configurations converge to one another above 1.5 m/s. This convergence is clearly the result of high inertia negating the influence of gravity. It is shown that interfacial instability theory provides an effective means for assessing the influence of velocity on CHF for top wall versus bottom wall heating. For top wall heating, a stable interface at low velocities causes vapor accumulation against the top wall resulting in very low CHF. Instability theory shows that top wall heating becomes unstable above 1.03 m/s, allowing liquid contact with the wall and improved wall cooling. For bottom wall heating, the interface is always unstable and favorable for liquid contact. Instability theory also shows that inertia dwarfs gravity around 1.5 m/s, where critical wavelengths for top wall and bottom wall heating converge. Convergence of the CHF values for top wall and bottom wall heating also occurred at a similar value. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kharangate, Chirag R.; O'Neill, Lucas E.; Mudawar, Issam] Purdue Univ, Sch Mech Engn, BTPFL, W Lafayette, IN 47907 USA. [Hasan, Mohammad M.; Nahra, Henry K.; Balasubramaniam, Ramaswamy; Hall, Nancy R.; Macner, Ashley M.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Mackey, Jeffrey R.] Vantage Partners, Brookpark, OH 44142 USA. RP Mudawar, I (reprint author), Purdue Univ, Sch Mech Engn, BTPFL, 585 Purdue Mall, W Lafayette, IN 47907 USA. EM mudawar@ecn.purdue.edu FU National Aeronautics and Space Administration (NASA) [NNX13AB01G]; NASA Office of the Chief Technologist's Space Technology Research Fellowship [NNX11AM81H] FX The authors are grateful for the support of this project by the National Aeronautics and Space Administration (NASA) under grant no. NNX13AB01G. Support was also provided by the NASA Office of the Chief Technologist's Space Technology Research Fellowship grant no. NNX11AM81H. The authors thank David F. Chao, James D. Wagner, Rochelle I. May, Daniel M. Houser and Bruce J. Frankenfield of the NASA Glenn Research Center for their technical assistance. NR 28 TC 5 Z9 5 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD NOV PY 2015 VL 90 BP 323 EP 338 DI 10.1016/j.ijheatmasstransfer.2015.06.073 PG 16 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CX0BH UT WOS:000365361400033 ER PT J AU Lachaud, J van Eekelen, T Scoggins, JB Magin, TE Mansour, NN AF Lachaud, Jean van Eekelen, Tom Scoggins, James B. Magin, Thierry E. Mansour, Nagi N. TI Detailed chemical equilibrium model for porous ablative materials SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Porous media; Equilibrium chemistry; Ablation; Pyrolysis; Atmospheric entry ID COMPOSITES AB Ablative materials are used in thermal protection systems for atmospheric re-entry vehicle heat shields. A detailed chemical equilibrium heat and mass transport model for porous ablators is presented for the first time. The governing equations are volume-averaged forms of the conservation equations for gas density, gas elements, solid mass, gas momentum, and total energy. The element (gas) fluxes are coupled at the surface of the material with an inlet/outlet boundary condition, allowing modeling either atmospheric gases entering the porous material by forced convection or pyrolysis gases exiting the material. The model is implemented in the Porous material Analysis Toolbox based on OpenFOAM (PATO). The thermodynamics and chemistry library Mutation++ is used as a third party library to compute equilibrium compositions, gas properties, and solve the state-of-the-art boundary layer approximation to provide the ablation rate and the element mass fractions at the surface of the material. The model is applied to the detailed analysis of boundary layer and pyrolysis gas flows within a porous carbon/phenolic ablator characterized in a state-of-the-art arc-jet test. The selected configuration consists of an iso-flux ellipsoid-cylinder sample submitted to a 2.5 MW/m(2) heat flux with a decreasing pressure gradient from the stagnation point to the cylinder's side. During the first tenths of a second of the test, boundary layer gases percolate through the sample. Then, as the sample heats up, the internal pressure increases inside the sample due to pyrolysis gas production. The resulting pressure gradient blocks the boundary layer gases and leads to a pyrolysis gas flow that separates into two streams: one going towards the upper surface, and one going towards the lower pressure side under the shoulder of the sample. We show that the temperature profile is modified when using the detailed mass transport model. The sample's sub-shoulder zone is significantly cooled down while a temperature increase is observed in-depth. Implementing the model of this study in space agency codes will allow improving ground-test analyses and help provide more accurate material properties for design. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Lachaud, Jean] Univ Calif Santa Cruz, Silicon Valley Initiat, Moffett Field, CA 95064 USA. [van Eekelen, Tom] Samtech, Liege, Belgium. [Scoggins, James B.; Magin, Thierry E.] von Karman Inst Fluid Dynam, Rhode St Genese, Belgium. [Mansour, Nagi N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lachaud, J (reprint author), Univ Calif Santa Cruz, Silicon Valley Initiat, Moffett Field, CA 95064 USA. EM jean.lachaud@gadz.org RI Magin, Thierry/A-7533-2016; OI Magin, Thierry/0000-0002-4376-1518; Lachaud, Jean/0000-0001-7397-1025 FU NASA's Fundamental Aeronautic Program Hypersonics NRA Grant [NNX12AG47A]; Space Technology Research Grants Program; European Research Council Starting Grant [259354] FX Research of J.L. was originally funded by NASA's Fundamental Aeronautic Program Hypersonics NRA Grant NNX12AG47A, it is currently supported by the Space Technology Research Grants Program. Research of J.B.S. and T.E.M. is sponsored by the European Research Council Starting Grant #259354. NR 34 TC 4 Z9 4 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD NOV PY 2015 VL 90 BP 1034 EP 1045 DI 10.1016/j.ijheatmasstransfer.2015.05.106 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CX0BH UT WOS:000365361400101 ER PT J AU Short, DA Meneghini, R Emory, AE Schwaller, MR AF Short, David A. Meneghini, Robert Emory, Amber E. Schwaller, Mathew R. TI Reduction of Nonuniform Beamfilling Effects by Multiple Constraints: A Simulation Study SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID TRMM PRECIPITATION RADAR; PATH-INTEGRATED ATTENUATION; SURFACE REFERENCE TECHNIQUE; RAIN-PROFILING ALGORITHM AB A spaceborne precipitation radar samples the vertical structure of precipitating hydrometeors from the top down. The viewing geometry and operating frequency result in certain limitations and opportunities. Among the limitations is attenuation of the radar signal that can cause the measured radar reflectivity factor to be substantially less than the desired quantity, the true radar reflectivity factor. Another error source is the spatial variability in precipitation rates that occurs at scales smaller than the sensor field of view (FOV), giving rise to the nonuniform beamfilling (NUBF) effect. The opportunities arise when the radar return from the surface can be used to obtain constraints on the path-integrated attenuation (PIA) for use in hybrid attenuation correction algorithms. The surface return can also provide some information on the degree of NUBF at off-nadir viewing angles. In this paper ground-based radar data are used to simulate spaceborne radar data at nadir and off-nadir viewing angles at Ku band and Ka band and to test attenuation correction algorithms in the presence of nonuniform beamfilling. The cross-FOV gradient in PIA is found to be an important characteristic for describing the performance of attenuation correction algorithms. C1 [Short, David A.] Sci Syst & Applicat Inc, Lanham, MD USA. [Short, David A.; Meneghini, Robert; Emory, Amber E.; Schwaller, Mathew R.] NASA GSFC, Greenbelt, MD USA. RP Short, DA (reprint author), NASA, GSFC, SSAI, Code 612,Greenbelt Rd, Greenbelt, MD 20771 USA. EM david.a.short@nasa.gov RI Measurement, Global/C-4698-2015 FU GPM project office FX The support of the GPM project office is gratefully acknowledged. NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2015 VL 32 IS 11 BP 2114 EP 2124 DI 10.1175/JTECH-D-15-0021.1 PG 11 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA CX3MO UT WOS:000365603300009 ER PT J AU Liewer, P Panasenco, O Vourlidas, A Colaninno, R AF Liewer, Paulett Panasenco, Olga Vourlidas, Angelos Colaninno, Robin TI Observations and Analysis of the Non-Radial Propagation of Coronal Mass Ejections Near the Sun SO SOLAR PHYSICS LA English DT Article DE Corona mass ejections; Corona; Space weather ID MAGNETIC-FIELD; SOLAR SOURCE; 1 AU; DEFLECTION; EARTH; STREAMERS; STEREO; RECONSTRUCTION; ARRIVAL AB The trajectories of coronal mass ejection (CME) are often observed to deviate from radial propagation from the source while within the coronagraph field of view (). To better understand nonradial propagation within the corona, we first analyze the trajectories of five CMEs for which both the source and 3D trajectory (latitude, longitude, and velocity) can be well determined from solar imaging observations, primarily using observations from the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. Next we analyze the cause of any nonradial propagation using a potential field source surface (PFSS) model to determine the direction of the magnetic pressure forces exerted on the CME at various heights in the corona. In two cases, we find that the CME deviation from radial propagation primarily occurs before it reaches the coronagraph field of view (below 1.5 solar radii). Based on the observations and the magnetic pressure forces calculated from the PFSS model, we conclude that for these cases the deviation is the result of strong active-region fields causing an initial asymmetric expansion of the CME that gives rise to the apparent rapid deflection and nonradial propagation from the source. Within the limitations of the PFSS model, the magnetic fields for all five cases appear to guide the CMEs out of the corona through the weak-field region around the heliospheric current sheet even when the current sheet is inclined and warped. C1 [Liewer, Paulett] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Panasenco, Olga] Adv Heliophys, Pasadena, CA 91106 USA. [Vourlidas, Angelos] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Colaninno, Robin] US Navy, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Liewer, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Paulett.Liewer@jpl.nasa.gov RI Vourlidas, Angelos/C-8231-2009 OI Vourlidas, Angelos/0000-0002-8164-5948 FU NASA [S-136361-Y]; Jet Propulsion Laboratory; internal JHU/APL funds FX We would like to thank R.A. Howard, N. Sheeley, M. Velli and V. Pizzo for useful discussions on various aspects of this research. We also thank the referee for very useful comments that have improved the article. The work of PCL was conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. The work of OP was supported by a subcontract from the Jet Propulsion Laboratory. The work of AV and RC was supported by NASA contract S-136361-Y to the Naval Research Laboratory. AV is also supported by internal JHU/APL funds. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA) Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut fur Sonnensystemforschung (Germany), Centre Spatiale de Liege (Belgium), Institut d'Optique Theorique et Appliquee (France), Institut d'Astrophysique Spatiale (France). NR 45 TC 4 Z9 4 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD NOV PY 2015 VL 290 IS 11 BP 3343 EP 3364 DI 10.1007/s11207-015-0794-9 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7KL UT WOS:000365880500016 ER PT J AU Miesch, M Matthaeus, W Brandenburg, A Petrosyan, A Pouquet, A Cambon, C Jenko, F Uzdensky, D Stone, J Tobias, S Toomre, J Velli, M AF Miesch, Mark Matthaeus, William Brandenburg, Axel Petrosyan, Arakel Pouquet, Annick Cambon, Claude Jenko, Frank Uzdensky, Dmitri Stone, James Tobias, Steve Toomre, Juri Velli, Marco TI Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics SO SPACE SCIENCE REVIEWS LA English DT Review DE Turbulence; Magnetohydrodynamics; Simulation ID EFFECTIVE MAGNETIC PRESSURE; TEST-PARTICLE-ACCELERATION; HIGH REYNOLDS-NUMBER; SOLAR-WIND; HYDROMAGNETIC TURBULENCE; ISOTROPIC TURBULENCE; WAVE TURBULENCE; 3-DIMENSIONAL MAGNETOHYDRODYNAMICS; MAGNETOROTATIONAL INSTABILITY; REDUCED MAGNETOHYDRODYNAMICS AB We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions. C1 [Miesch, Mark] HAO NCAR, Boulder, CO 80301 USA. [Matthaeus, William] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Brandenburg, Axel] KTH Royal Inst Tech, NORDITA, S-10691 Stockholm, Sweden. [Brandenburg, Axel] Stockholm Univ, S-10691 Stockholm, Sweden. [Petrosyan, Arakel] Russian Acad Sci, Space Res Inst, Moscow, Russia. [Petrosyan, Arakel] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Pouquet, Annick] NCAR, Boulder, CO 80307 USA. [Pouquet, Annick] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Cambon, Claude] Ecole Cent Lyon, Lab Mecan Fluides & Acoust, F-69134 Ecully, France. [Jenko, Frank] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Uzdensky, Dmitri] Univ Colorado, Dept Phys, CIPS, Boulder, CO 80309 USA. [Stone, James] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Tobias, Steve] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England. [Toomre, Juri] Univ Colorado, JILA, Boulder, CO 80309 USA. [Toomre, Juri] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Miesch, M (reprint author), HAO NCAR, 3080 Ctr Green Dr, Boulder, CO 80301 USA. EM miesch@ucar.edu; whm@udel.edu; brandenb@nordita.org; a.petrosy@iki.rssi.ru; pouquet@ucar.edu; claude.cambon@ec-lyon.fr; jenko@physics.ucla.edu; Uzdensky@colorado.edu; jstone@astro.princeton.edu; jtoomre@lcd.colorado.edu; mvelli@jpl.nasa.gov RI Brandenburg, Axel/I-6668-2013; OI Brandenburg, Axel/0000-0002-7304-021X; Tobias, Steven/0000-0003-0205-7716 FU Russian Foundation for Basic Research [14-29-06065]; Russian Academy of Science Presidium [9]; Swedish Research Council [621-2011-5076, 2012-5797]; Research Council of Norway under the FRINATEK [231444]; National Science Foundation FX We thank the reviewer Wolfram Schmidt and also Hideyuki Hotta for constructive comments that have improved the content and presentation of the paper. The work of A. Petrosyan was supported by the Russian Foundation for Basic Research (14-29-06065) and Program #9 of the Russian Academy of Science Presidium "Experimental and Theoretical Studies of Solar System objects and stellar planetary systems". A. Brandenburg gratefully acknowledges support from the Swedish Research Council grants No. 621-2011-5076 and 2012-5797 and the Research Council of Norway under the FRINATEK grant No. 231444. NCAR is sponsored by the National Science Foundation. NR 267 TC 5 Z9 5 U1 2 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2015 VL 194 IS 1-4 BP 97 EP 137 DI 10.1007/s11214-015-0190-7 PG 41 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX2FM UT WOS:000365511500002 ER PT J AU Sears, DWG AF Sears, D. W. G. TI The Explored Asteroids: Science and Exploration in the Space Age SO SPACE SCIENCE REVIEWS LA English DT Review DE Missions; Asteroids; Active asteroids; Comet nuclei; Annefrank; Braille; Ceres; Eros; Gaspra; Ida; Datyl; Itokawa; Lutetia; Mathilde; Steins; Toutatis; Vesta AB Interest in asteroids is currently high in view of their scientific importance, the impact hazard, and the in situ resource opportunities they offer. They are also a case study of the intimate relationship between science and exploration. A detailed review of the twelve asteroids that have been visited by eight robotic spacecraft is presented here. While the twelve explored asteroids have many features in common, like their heavily cratered and regolith covered surfaces, they are a remarkably diverse group. Some have low-eccentricity orbits in the main belt, while some are potentially hazardous objects. They range from dwarf planets to primary planetesimals to fragments of larger precursor objects to tiny shards. One has a moon. Their surface compositions range from basaltic to various chondrite-like compositions. Here their properties are reviewed and what was confirmed and what was newly learned is discussed, and additionally the explored asteroids are compared with comets and meteorites. Several topics are developed. These topics are the internal structure of asteroids, water distribution in the inner solar system and its role in shaping surfaces, and the meteoritic links. It is suggested, that asteroid-scale grooves, ridges, and catenas on several explored asteroids argue against these asteroids having rubble pile interiors, i.e. interiors made when impact fragments reaccumulate. The only body for which this is not true is the tiny Itokawa and it is argued that this asteroid is a regolith breccia. The discovery of water on Vesta, fluidization textures on comets and possibly Eros, and the relatively large number of active asteroids inside the purported snowline, suggests that significant subsurface water may be present on asteroids in the inner solar system and may partly account for their low densities. The explored asteroids have also confirmed the linkage of the HED meteorites with Vesta and Itokawa with the ordinary chondrite meteorites, Eros is somewhat problematical. So while diversity, and the range of sizes, histories, and surface compositions, is the hall mark of the explored asteroids, the number of explored asteroids is small compared with the diversity of material expected on the basis of asteroid astronomy and meteorite geochemistry. The exploration of the solar system's asteroids has only just begun. C1 [Sears, D. W. G.] NASA, Ames Res Ctr, Bay Area Environm Inst, Space Sci & Astrobiol Div MS 245 3, Mountain View, CA 94035 USA. RP Sears, DWG (reprint author), NASA, Ames Res Ctr, Bay Area Environm Inst, Space Sci & Astrobiol Div MS 245 3, Mountain View, CA 94035 USA. EM derek.sears@nasa.gov FU NASA Ames Research Center; Jen's SSERVI project (FINESSE) FX The author is grateful to Chris McKay and Jennifer Heldmann, NASA Ames Research Center, for their support and encouragement and to Jen's SSERVI project (FINESSE) for financial support. He is also grateful to Robin Roggio and her colleagues at the University of Arkansas for essential help with the literature, to to Philip J. Stooke, University of Western Ontario, for help with maps of Eros and Vesta, to Maria Zuber, Massachusetts Institute of Technology, for supplying Fig. 8, and to those persons who maintain the on-line databases he has frequently referred to (JPL's asteroid databas-http://ssd.jpl.nasa.gov/sbdb.cgi-the USGS/IAU's database of maps and names-http://planetarynames.wr.usgs.gov/Page/Images-and the SAO/NASA Astrophysical Data System-http://adsabs.harvard.edu/abstract_service.html). Finally, the author thanks Hazel Sears, Chris Russell, Rick Binzel, and Carle Pieters for very constructive comments, and Hazel for proofing this article. Nevertheless, the errors that remain are entirely the author's and any corrections would be appreciated. NR 414 TC 0 Z9 0 U1 9 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2015 VL 194 IS 1-4 BP 139 EP 235 DI 10.1007/s11214-015-0202-7 PG 97 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX2FM UT WOS:000365511500003 ER PT J AU Biver, N Hofstadter, M Gulkis, S Bockelee-Morvan, D Choukroun, M Lellouch, F Schloerb, FP Rezac, L Ip, WH Jarchow, C Hartogh, P Lee, S von Allmen, P Crovisier, J Leyrat, C Encrenaz, P AF Biver, N. Hofstadter, M. Gulkis, S. Bockelee-Morvan, D. Choukroun, M. Lellouch, F. Schloerb, F. P. Rezac, L. Ip, W. H. Jarchow, C. Hartogh, P. Lee, S. von Allmen, P. Crovisier, J. Leyrat, C. Encrenaz, P. TI Distribution of water around the nucleus of comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 67P/Churyumov-Gerasimenko; radio lines: planetary systems; submillimeter: planetary systems; comets: general ID GARRADD; ODIN AB The Microwave Instrument on the Rosetta Orbiter (MIRO) has been observing the coma of comet 67P/ Churyumov-Gerasimenko almost continuously since June 2014 at wavelengths near 0.53 mm. We present here a map of the water column density in the inner coma (within 3 km from nucleus center) when the comet was at 3.4 AU from the Sun. Based on the analysis of the (H2O)-O-16 and (H2O)-O-18 (110-101) lines, we find that the column density can vary by two orders of magnitude in this region. The highest column density is observed in a narrow region on the dayside, close to the neck and north pole rotation axis of the nucleus, while the lowest column density is seen against the nightside of the nucleus where outgassing seems to be very low. We estimate that the outgassing pattern can be represented by a Gaussian distribution in a solid angle with FWHM approximate to 80 degrees. C1 [Biver, N.; Bockelee-Morvan, D.; Lellouch, F.; Crovisier, J.; Leyrat, C.] Univ Paris Diderot, LESIA, Observ Paris, CNRS,UPMC, F-92195 Meudon, France. [Hofstadter, M.; Gulkis, S.; Choukroun, M.; Lee, S.; von Allmen, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schloerb, F. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Rezac, L.; Jarchow, C.; Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Ip, W. H.] Natl Cent Univ, Taoyuan 32001, Taiwan. [Encrenaz, P.] UPMC, CNRS, LERMA, Observ Paris,PSL Res Univ, F-75014 Paris, France. RP Biver, N (reprint author), Univ Paris Diderot, LESIA, Observ Paris, CNRS,UPMC, 5 Pl Jules Jansscn, F-92195 Meudon, France. EM nicolas.biver@obspm.fr RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU National Aeronautics and Space Administration; Deutsches Zentrum fur Luft- und Raumfarht and Max-Planck-Gesellschaft; CNES; CNRS/Institut des Sciences de l'Univers; Taiwanese National Science Counsel [NSC 101-2111-M-008-016] FX The authors acknowledge support from their institutions and funding sources. A part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A part of the research was carried out at the Max-Planck-Institut fur Sonnensystemforschung with financial support from Deutsches Zentrum fur Luft- und Raumfarht and Max-Planck-Gesellschaft. Parts of the research were carried out by LESIA and LERMA, Observatoire de Paris, with financial support from CNES and CNRS/Institut des Sciences de l'Univers. A part of the research was carried out at the National Central University with funding from the Taiwanese National Science Counsel grant NSC 101-2111-M-008-016. A part of the research was carried out at the University of Massachusetts, Amherst, USA. We thank Y. Anderson, T. Koch, R. Nowicki, L. Pan and the late Lucas Kamp for their efforts in scheduling, operations, and support of the MIRO instrument. NR 16 TC 12 Z9 12 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A3 DI 10.1051/0004-6361/201526094 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200054 ER PT J AU Broiles, TW Burch, JL Clark, G Koenders, C Behar, E Goldstein, R Fuselier, SA Mandt, KE Mokashi, P Samara, M AF Broiles, T. W. Burch, J. L. Clark, G. Koenders, C. Behar, E. Goldstein, R. Fuselier, S. A. Mandt, K. E. Mokashi, P. Samara, M. TI Rosetta observations of solar wind interaction with the comet 67P/Churyumov-Gerasimenko SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE solar wind; comets: general; plasmas; Sun: magnetic fields; methods: observational; methods: data analysis ID HALLEY; ION; MODELS; PICKUP; SPACE; WEAK; IES AB Context. The Rosetta spacecraft arrived at the comet 67P/Churyumov-Gerasimenko on August 6, 2014, which has made it possible to perform the first study of the solar wind interacting with the coma of a weakly outgassing comet. Aims. It is shown that the solar wind experiences large deflections (>45 degrees) in the weak coma. The average ion velocity slows from the mass loading of newborn cometary ions, which also slows the interplanetary magnetic field (IMF) relative to the solar wind ions and subsequently creates a Lorentz force in the frame of the solar wind. The Lorentz force in the solar wind frame accelerates ions in the opposite direction of cometary pickup ion flow, and is necessary to conserve momentum. Methods. Data from the Ion and Electron Sensor are studied over several intervals of interest when significant solar wind deflection was observed. The deflections for protons and for He++ were compared with the flow of cometary pickup ions using the instrument's frame of reference. We then fit the data with a three-dimensional Maxwellian, and rotated the flow vectors into the Comet Sun Equatorial coordinate system, and compared the flow to the spacecraft's position and to the local IMF conditions. Results. Our observations show that the solar wind may be deflected in excess of 45 degrees from the anti-sunward direction. Furthermore, the deflections change direction on a variable timescale. Solar wind protons are consistently more deflected than the He++. The deflections are not ordered by the spacecraft's position relative to the comet, but large changes in deflection are related to changes in the orthogonal IMF components. C1 [Broiles, T. W.; Burch, J. L.; Goldstein, R.; Fuselier, S. A.; Mandt, K. E.; Mokashi, P.] Southwest Res Inst SwRI, Space Sci & Engn Div, San Antonio, TX 78238 USA. [Clark, G.; Samara, M.] NASA, Goddard Space Flight Ctr, Heliophys Div, Greenbelt, MD 20771 USA. [Clark, G.] Catholic Univ Amer, Dept Phys & Astron, Washington, DC 20064 USA. [Koenders, C.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Behar, E.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Behar, E.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, S-98128 Kiruna, Sweden. [Fuselier, S. A.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. RP Broiles, TW (reprint author), Southwest Res Inst SwRI, Space Sci & Engn Div, 6220 Culebra Rd, San Antonio, TX 78238 USA. EM tbroiles@swri.edu OI Broiles, Thomas/0000-0001-6910-2724; Mandt, Kathleen/0000-0001-8397-3315 FU US National Aeronautics and Space Administration [1345493]; Jet Propulsion Laboratory, California Institute of Technology; German Ministerium fur Wirtschaft und Energie; Deutsches Zentrum fur Luft- und Raumfahrt [50QP 1401]; CNRS; CNES; Observatoire de Paris; Imperial College London; UK Science and Technology Facilities Council; Universite Paul Sabatier, Toulouse FX The work on IES was supported, in part, by the US National Aeronautics and Space Administration through contract #1345493 with the Jet Propulsion Laboratory, California Institute of Technology. We thank the teams at Imperial College London and ESA who have been responsible for the operation of IES. The work on RPC-MAG was financially supported by the German Ministerium fur Wirtschaft und Energie and the Deutsches Zentrum fur Luft- und Raumfahrt under contract 50QP 1401. We acknowledge the staff of CDDP and IC for the use of AMDA and the RPC Quicklook database (provided by a collaboration between the Centre de Donnees de la Physique des Plasmas, supported by CNRS, CNES, Observatoire de Paris and Universite Paul Sabatier, Toulouse and Imperial College London, supported by the UK Science and Technology Facilities Council). NR 29 TC 17 Z9 17 U1 1 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A21 DI 10.1051/0004-6361/201526046 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200049 ER PT J AU Choukroun, M Keihm, S Schloerb, FP Gulkis, S Lellouch, E Leyrat, C von Allmen, P Biver, N Bockelee-Morvan, D Crovisier, J Encrenaz, P Hartogh, P Hofstadter, M Ip, WH Jarchow, C Janssen, M Lee, S Rezac, L Beaudin, G Gaskell, B Jorda, L Keller, HU Sierks, H AF Choukroun, M. Keihm, S. Schloerb, F. P. Gulkis, S. Lellouch, E. Leyrat, C. von Allmen, P. Biver, N. Bockelee-Morvan, D. Crovisier, J. Encrenaz, P. Hartogh, P. Hofstadter, M. Ip, W. -H. Jarchow, C. Janssen, M. Lee, S. Rezac, L. Beaudin, G. Gaskell, B. Jorda, L. Keller, H. U. Sierks, H. TI Dark side of comet 67P/Churyumov-Gerasimenko in Aug.-Oct. 2014 MIRO/Rosetta continuum observations of polar night in the southern regions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: general; comets: individual: 67P/Churyumov-Gerasimenko; radio continuum: planetary systems ID MILLIMETER; ICE; PERMITTIVITY; INSTRUMENT; MISSION; MIRO AB The high obliquity (similar to 50 degrees) of comet 67P/Churyumov-Gerasimenko (67P) is responsible for a long-lasting winter polar night in the southern regions of the nucleus. We report observations made with the submillimeter and millimeter continuum channels of the Microwave Instrument onboard the Rosetta Orbiter (MIRO) of the thermal emission from these regions during the period August-October 2014. Before these observations, the southern polar regions had been in darkness for approximately five years. Subsurface temperatures in the range 25 50 K are measured. Thermal model calculations of the nucleus near-surface temperatures carried out over the orbit of 67P, coupled with radiative transfer calculations of the MIRO channels brightness temperatures, suggest that these regions have a thermal inertia within the range 10-60 Jm(-2) K-1 s(-0.5). Such low thermal inertia values are consistent with a highly porous, loose, regolith-like surface. These values are similar to those derived elsewhere on the nucleus. A large difference in the brightness temperatures measured by the two MIRO continuum channels is tentatively attributed to dielectric properties that differ significantly from the sunlit side, within the first few tens of centimeters. This is suggestive of the presence of ice(s) within the MIRO depths of investigation in the southern polar regions. These regions started to receive sunlight in May of 2015, and refinements of the shape model in these regions, as well as continuing MIRO observations of 67P, will allow refining these results and reveal the thermal properties and potential ice content of the southern regions in more detail. C1 [Choukroun, M.; Keihm, S.; Schloerb, F. P.; Gulkis, S.; von Allmen, P.; Hofstadter, M.; Janssen, M.; Lee, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schloerb, F. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Lellouch, E.; Leyrat, C.; Biver, N.; Bockelee-Morvan, D.; Crovisier, J.] Univ Paris Diderot, CNRS, UPMC, LESIA,Observ Paris, F-92195 Meudon, France. [Encrenaz, P.; Beaudin, G.] UPMC, CNRS, LERMA, Observ Paris,PSL Res Univ, F-75014 Paris, France. [Ip, W. -H.] Natl Cent Univ, Taoyuan 32001, Taiwan. [Hartogh, P.; Jarchow, C.; Rezac, L.; Sierks, H.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Gaskell, B.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Jorda, L.] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Keller, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. RP Choukroun, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mathieu.choukroun@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU National Aeronautics and Space Administration (NASA); Deutsches Zentrum fur Luft- und Raumfahrt; Max-Planck-Gesellschaft; CNES; CNRS/Institut des Sciences de l'Univers; Taiwanese National Science Counsel [NSC 101-2111-M-008-016]; US Rosetta Project FX Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration (NASA). Part of the research was carried out at the Max-Planck-Institut fur Sonnensystemforschung with financial support from Deutsches Zentrum fur Luft- und Raumfahrt and Max-Planck-Gesellschaft. Parts of the research were carried out by LESIA and LERMA, Observatoire de Paris, with financial support from CNES and CNRS/Institut des Sciences de l'Univers. Part of the research was carried out at the National Central University with funding from the Taiwanese National Science Counsel grant NSC 101-2111-M-008-016. Part of the research was carried out at the University of Massachusetts, Amherst, USA. Support from ESA's Rosetta Mission Operations Control center and ESA's Rosetta Science Ground Segment, for preparation and implementation of the observations, and communication of the acquired data, is gratefully acknowledged. The authors thank the ESA/Rosetta/SGS team for permission to use output from their 3D tool (CC BY-SA IGO 3.0). We thank Y. Anderson, T. Koch, R. Nowicki, L. Pan and the late Lucas Kamp for their efforts in scheduling, operations, and support of the MIRO instrument. Financial support from the US Rosetta Project and government sponsorship are acknowledged. NR 20 TC 10 Z9 10 U1 6 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A28 DI 10.1051/0004-6361/201526181 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200065 ER PT J AU Clark, G Broiles, TW Burch, JL Collinson, GA Cravens, T Frahm, RA Goldstein, J Goldstein, R Mandt, K Mokashi, P Samara, M Pollock, CJ AF Clark, G. Broiles, T. W. Burch, J. L. Collinson, G. A. Cravens, T. Frahm, R. A. Goldstein, J. Goldstein, R. Mandt, K. Mokashi, P. Samara, M. Pollock, C. J. TI Suprathermal electron environment of comet 67P/Churyumov-Gerasimenko: Observations from the Rosetta Ion and Electron Sensor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 67P/Churyumov-Gerasimenko; plasmas; solar wind ID BOW SHOCK; VELOCITY DISTRIBUTIONS; GIACOBINI-ZINNER; PLASMA; HALLEY; PICKUP; IES AB Context. The Rosetta spacecraft is currently escorting comet 67P/Churyumov-Gerasimenko until its perihelion approach at 1.2 AU. This mission has provided unprecedented views into the interaction of the solar wind and the comet as a function of heliocentric distance. Aims. We study the interaction of the solar wind and comet at large heliocentric distances (>2 AU) using data from the Rosetta Plasma Consortium Ion and Electron Sensor (RPC-IES). From this we gain insight into the suprathermal electron distribution, which plays an important role in electron-neutral chemistry and dust grain charging. Methods. Electron velocity distribution functions observed by IES fit to functions used to previously characterize the suprathermal electrons at comets and interplanetary shocks. We used the fitting results and searched for trends as a function of cometocentric and heliocentric distance. Results. We find that interaction of the solar wind with this comet is highly turbulent and stronger than expected based on historical studies, especially for this weakly outgassing comet. The presence of highly dynamical suprathermal electrons is consistent with observations of comets (e.g., Giacobinni-Zinner, Grigg-Skjellerup) near 1 AU with higher outgassing rates. However, comet 67P/Churyumov-Gerasimenko is much farther from the Sun and appears to lack an upstream bow shock. Conclusions. The mass loading process, which likely is the cause of these processes, plays a stronger role at large distances from the Sun than previously expected. We discuss the possible mechanisms that most likely are responsible for this acceleration: heating by waves generated by the pick-up ion instability, and the admixture of cometary photoelectrons. C1 [Clark, G.; Collinson, G. A.] Catholic Univ Amer, Washington, DC 20064 USA. [Clark, G.; Collinson, G. A.; Samara, M.; Pollock, C. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Broiles, T. W.; Burch, J. L.; Frahm, R. A.; Goldstein, J.; Goldstein, R.; Mandt, K.; Mokashi, P.] Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78249 USA. [Cravens, T.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Goldstein, J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. RP Clark, G (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM george.clark@jhuapl.edu OI Broiles, Thomas/0000-0001-6910-2724; Mandt, Kathleen/0000-0001-8397-3315 FU US National Aeronautics and Space Administration [1345493]; Jet Propulsion Laboratory, California Institute of Technology FX We would like to thank the teams at ESA, Imperial College London, and the Rosetta Plasma Consortium for making this work possible. A special thank you also to Chelsea Clark, John Dorelli, Anders Erikkson, Adolfo F.- Vinas, Dan Gershman, Shrey Mittal, Bradley Trantham, and Martin Volwerk. This work was supported, in part, by the US National Aeronautics and Space Administration through contract #1345493 with the Jet Propulsion Laboratory, California Institute of Technology. The data for this work will be published to ESA's PSA archive and/or NASA's PDS Small Bodies Node. NR 24 TC 12 Z9 12 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A24 DI 10.1051/0004-6361/201526351 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200082 ER PT J AU Della Corte, V Rotundi, A Fulle, M Gruen, E Weissman, P Sordini, R Ferrari, M Ivanovski, S Lucarelli, F Accolla, M Zakharov, V Epifani, EM Lopez-Moreno, JJ Rodriguez, J Colangeli, L Palumbo, P Bussoletti, E Crifo, JF Esposito, F Green, SF Lamy, PL McDonnell, JAM Mennella, V Molina, A Morales, R Moreno, F Ortiz, JL Palomba, E Perrin, JM Rietmeijer, FJM Rodrigo, R Zarnecki, JC Cosi, M Giovane, F Gustafson, B Herranz, ML Jeronimo, JM Leese, MR Lopez-Jimenez, AC Altobelli, N AF Della Corte, V. Rotundi, A. Fulle, M. Gruen, E. Weissman, P. Sordini, R. Ferrari, M. Ivanovski, S. Lucarelli, F. Accolla, M. Zakharov, V. Epifani, E. Mazzotta Lopez-Moreno, J. J. Rodriguez, J. Colangeli, L. Palumbo, P. Bussoletti, E. Crifo, J. F. Esposito, F. Green, S. F. Lamy, P. L. McDonnell, J. A. M. Mennella, V. Molina, A. Morales, R. Moreno, F. Ortiz, J. L. Palomba, E. Perrin, J. M. Rietmeijer, F. J. M. Rodrigo, R. Zarnecki, J. C. Cosi, M. Giovane, F. Gustafson, B. Herranz, M. L. Jeronimo, J. M. Leese, M. R. Lopez-Jimenez, A. C. Altobelli, N. TI GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 67P/Churyumov-Gerasimenko; methods: data analysis; space vehicles: instruments; comets: general; instrumentation: detectors ID ROSETTA MISSION; ICE; PERFORMANCES; INSTRUMENT; PARTICLES; BALANCES; STARDUST; P/HALLEY; ONBOARD; DESIGN AB Context. During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta monitored the 67P coma dust environment for the entire period. Aims. We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods. We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribution of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results. GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet's neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10-1 to 10-7 kg, ranged from 0.3 to 12.2 m s(-1). The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The integrated dust mass flux collected from the Sun direction, that is, particles reflected by solar radiation pressure, was three times higher than the flux coming directly from the comet nucleus. The awakening 67P comet shows a strong dust flux anisotropy, confirming what was suggested by on-ground dust coma observations performed in 2008. C1 [Della Corte, V.; Rotundi, A.; Sordini, R.; Ferrari, M.; Ivanovski, S.; Palumbo, P.; Palomba, E.] Natl Inst AstroPhys INAF, Inst Space Astrophys & Planetol, I-00133 Rome, Italy. [Rotundi, A.; Lucarelli, F.; Palumbo, P.; Bussoletti, E.] Univ Napoli Parthenope, Dipartimento Sci & Tecnol, I-80143 Naples, Italy. [Fulle, M.] INAF, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gruen, E.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Weissman, P.] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA. [Accolla, M.] INAF, Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Zakharov, V.] Univ Paris Diderot, Univ Paris 06, Observ Paris, LESIA,CNRS, F-92195 Meudon, France. [Epifani, E. Mazzotta; Esposito, F.; Mennella, V.] INAF, Osservatorio Astron Capodimonte, I-80133 Naples, Italy. [Epifani, E. Mazzotta] INAF, Osservatorio Astron Roma, Rome, Italy. [Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Moreno, F.; Ortiz, J. L.; Herranz, M. L.; Jeronimo, J. M.; Lopez-Jimenez, A. C.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Colangeli, L.] European Space Res & Technol Ctr ESTEC, ESA, NL-2201 AZ Noordwijk, Netherlands. [Crifo, J. F.; Perrin, J. M.] Univ Versailles St Quentin En Yvelines, Inst Pierre Simon Laplace, CNRS, Lab Atmospheres,Milieux,Observat Spatiales, F-78280 Guyancourt, France. [Green, S. F.; McDonnell, J. A. M.; Leese, M. R.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Lamy, P. L.] CNRS, UMR 7326, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Lamy, P. L.] Aix Marseille Univ, F-13388 Marseille 13, France. [McDonnell, J. A. M.] Univ Kent, Canterbury CT2 7NZ, Kent, England. [McDonnell, J. A. M.] UnispaceKent, Canterbury CT2 8EF, Kent, England. [Molina, A.] Univ Granada, Fac Ciencias, Dept Fis Aplicada, E-18071 Granada, Spain. [Perrin, J. M.] Observ Haute Provence OSU Pytheas UMS 2244 CNRS A, F-04870 St Michel lObservatoire, France. [Rietmeijer, F. J. M.] 1 Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Rodrigo, R.] Ctr Astrobiol INTA CSIC, Madrid 28691, Spain. [Rodrigo, R.; Zarnecki, J. C.] Int Space Sci Inst, CH-3012 Bern, Switzerland. [Cosi, M.] Selex ES, I-50013 Florence, Italy. [Giovane, F.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Gustafson, B.] Univ Florida, Gainesville, FL 32611 USA. [Altobelli, N.] ESA ESAC, Madrid 28692, Spain. RP Della Corte, V (reprint author), Natl Inst AstroPhys INAF, Inst Space Astrophys & Planetol, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM vincenzo.dellacorte@iaps.inaf.it RI Lopez Jimenez, Antonio C./L-4738-2014; Green, Simon/C-7408-2009; OI Lopez Jimenez, Antonio C./0000-0002-6297-0681; Della Corte, Vincenzo/0000-0001-6461-5803; Esposito, Francesca/0000-0001-9962-1648; Ferrari, Marco/0000-0002-7447-6146; Mazzotta Epifani, Elena/0000-0003-1412-0946; fulle, marco/0000-0001-8435-5287; /0000-0002-2242-6147; Palomba, Ernesto/0000-0002-9101-6774; Moreno, Fernando/0000-0003-0670-356X FU Agenzia Spaziale Italiana; Spanish Ministry of Education and Science Ministerio de Educacion y Ciencias (MEC); Italian Space Agency (ASI) within the ASI-INAF [I/032/05/0, I/024/12/0] FX GIADA was built by a consortium led by the Universita degli Studi di Napoli "Parthenope" and INAF - Osservatorio Astronomico di Capodimonte, in collaboration with the Instituto de Astrofisica de Andalucia, Selex-ES, FI, and SENER. GIADA is currently managed and operated by the Istituto di Astrofisica e Planetologia Spaziali-INAF, Italy. GIADA was funded and managed by the Agenzia Spaziale Italiana, with the support of the Spanish Ministry of Education and Science Ministerio de Educacion y Ciencias (MEC). GIADA was developed from a Principal Investigator proposal from the University of Kent; science and technology contributions were provided by CISAS, Italy; Laboratoire d'Astrophysique Spatiale, France, and institutions from the UK, Italy, France, Germany, and the USA. Science support was provided by NASA through the US Rosetta Project managed by the Jet Propulsion Laboratory/ California Institute of Technology. We would like to thank A. Coradini for her contribution as a GIADA Co-Investigator. GIADA calibrated data will be available through ESA's Planetary Science Archive (PSA) website (www.rssd.esa.int/index.php?project=PSA&page=index). All data presented here are available on request before archival in the PSA. This research was supported by the Italian Space Agency (ASI) within the ASI-INAF agreements I/032/05/0 and I/024/12/0. The authors are grateful to the anonymous reviewers for very constructive suggestions that contributed to improve our paper. NR 38 TC 14 Z9 14 U1 2 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A13 DI 10.1051/00(4-6361/201526208 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200069 ER PT J AU Lee, S von Allmen, P Allen, M Beaudin, G Biver, N Bockelee-Morvan, D Choukroun, M Crovisier, J Encrenaz, P Frerking, M Gulkis, S Hartogh, P Hofstadter, M Ip, WH Janssen, M Jarchow, C Keihm, S Lellouch, E Leyrat, C Rezac, L Schloerb, FP Spilker, T Gaskell, B Jorda, L Keller, HU Sierks, H AF Lee, S. von Allmen, P. Allen, M. Beaudin, G. Biver, N. Bockelee-Morvan, D. Choukroun, M. Crovisier, J. Encrenaz, P. Frerking, M. Gulkis, S. Hartogh, P. Hofstadter, M. Ip, W. -H. Janssen, M. Jarchow, Ch. Keihm, S. Lellouch, E. Leyrat, C. Rezac, L. Schloerb, F. P. Spilker, Th. Gaskell, B. Jorda, L. Keller, H. U. Sierks, H. TI Spatial and diurnal variation of water outgassing on comet 67P/Churyumov-Gerasimenko observed from Rosetta/MIRO in August 2014 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 67P/Churyumov-Gerasimenko; solid state: volatile; radiation mechanisms: thermal ID C/2001 Q4 NEAT; RADIATIVE-TRANSFER; EXCITATION AB Aims. We present the spatial and diurnal variation of water outgassing on comet 67P/Churyumov-Gerasimenko using the (H2O)-O-16 rotational transition line at 556.936 GHz observed from Rosetta/MIRO in August 2014. Methods. The water line was analyzed with a non-LTE radiative transfer model and an optimal estimation method to retrieve the (H2O)-O-16 outgassing intensity, expansion velocity, and gas kinetic temperature. On August 7-9, 2014 and August 18-19, 2014, MIRO performed long steady nadir-pointing observations of the nucleus while it was rotating around its spin axis. The ground track of the MIRO beam during the observation was mostly on the northern hemisphere of comet 67P, covering its three distinct parts: the so-called head, body, and neck areas. Results. The MIRO spectral observation data show that the water-outgassing intensity varies by a factor of 30, from 0.1 x 1025 molecules s(-1) sr l to 3.0 x 10(25) molecules s(-1) sr, the terminal gas expansion velocity varies by 0.17 km s(-1) from 0.61 km s(-1) to 0.78 km s(-1), and the terminal gas temperature varies by 27 K from 47 K to 74 K. The retrieved coma parameters are co-registered with local environment variables such as the subsurface temperatures, measured in the MIRO continuum bands, the local solar time, illumination condition, and beam location on nucleus. The spatial variation of the outgassing activity is very noticeable, and the largest outgassing activity in August 2014 occurs near the neck region of the nucleus. The outgassing activity in the neck region is also found to be correlated with the local solar hour, which is related to the local illumination condition. C1 [Lee, S.; von Allmen, P.; Allen, M.; Choukroun, M.; Encrenaz, P.; Frerking, M.; Gulkis, S.; Hofstadter, M.; Janssen, M.; Keihm, S.; Spilker, Th.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beaudin, G.] UPMC, CNRS, UMR 8112, LERMA,Observ Paris,PSL Res Univ, F-75014 Paris, France. [Biver, N.; Bockelee-Morvan, D.; Crovisier, J.; Lellouch, E.; Leyrat, C.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Hartogh, P.; Jarchow, Ch.; Rezac, L.; Sierks, H.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Ip, W. -H.] Natl Cent Univ, Jhongli 300, Taiwan. [Schloerb, F. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Gaskell, B.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Jorda, L.] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Keller, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. RP Lee, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Seungwon.Lee@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU DLR; MPG; CNES; CNRS/INSU; [NSC 101-2111-M-008-016] FX The authors acknowledge support from their institutions and funding sources. A part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A part of the research was carried out at the Max-Planck-Institut fur Sonnensystemforschung with financial support from [DLR and MPG]. Parts of the research were carried out by LESIA and LERMA, Observatoire de Paris, with financial support from CNES and CNRS/INSU. A part of the research was carried out at the National Central University with funding from grant NSC 101-2111-M-008-016. A part of the research was carried out at the University of Massachusetts, Amherst, USA. We acknowledge personnel at ESA's European Space Operations Center (ESOC) in Darmstadt, Germany and at ESA and NASA/JPL tracking stations for their professional work in communication with and directing the Rosetta spacecraft, thereby making this mission possible. We acknowledge the excellent support provided by the Rosetta teams at the European Space AS, page 10 of ID Operations Center (ESOC) in Germany, and the European Space Astronomy Center (ESAC) in Spain. The authors thank Holger Sierks and the OSIRIS team for permission to use the SHAP2 shape model for analysis purposes. We thank Nicolas Thomas and his group at the University of Bern, Switzerland for providing the map of the nineteen regions on the nucleus of 67P defined in Thomas et al. (2015). NR 22 TC 14 Z9 14 U1 1 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A5 DI 10.1051/0004-6361/201526155 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200061 ER PT J AU Ruane, GJ Huby, E Absil, O Mawet, D Delacroix, C Carlomagno, B Swartzlander, GA AF Ruane, G. J. Huby, E. Absil, O. Mawet, D. Delacroix, C. Carlomagno, B. Swartzlander, G. A., Jr. TI Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: high angular resolution; planets and satellites: detection ID GROUND-BASED TELESCOPES; LABORATORY DEMONSTRATION; ARBITRARY APERTURES; 1ST LIGHT; PUPIL; PLATE AB Context. The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. Aims. We introduce a phase-only Lyot-plane optic to the vortex coronagraph, which offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described. Methods. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane, thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Results. Numerically, we achieve a contrast on the order of 10(-6) for a companion with angular displacement as small as 4 lambda/D with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or an optimized pupil plane phase element alone. C1 [Ruane, G. J.; Huby, E.; Absil, O.; Carlomagno, B.] Univ Liege, Dept Astrophys Geophys & Oceanog, B-4000 Liege, Belgium. [Ruane, G. J.; Swartzlander, G. A., Jr.] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA. [Mawet, D.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Delacroix, C.] Univ Lyon 1, CNRS, Observ Lyon, CRAL,UMR 5574, F-69230 St Genis Laval, France. [Mawet, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ruane, GJ (reprint author), Univ Liege, Dept Astrophys Geophys & Oceanog, Allee 6 Aout 17, B-4000 Liege, Belgium. EM gjr8334@rit.edu OI Swartzlander, Grover/0000-0003-3513-2225; Ruane, Garreth/0000-0003-4769-1665; Delacroix, Christian/0000-0003-0150-4430 FU Wallonie-Bruxelles International's (Belgium); US National Science Foundation [ECCS-1309517]; European Research Council under the European Union (ERC) [337569]; French Community of Belgium through an ARC FX This work has benefited from fruitful discussions with Prof. Jean Surdej (Universite de Liege, Belgium) and Prof. Matt Kenworthy (Leiden Observatory, Netherlands) as well as computing assistance from Carlos Gomez Gonzalez (Universite de Liege, Belgium). G.J.R. was supported by Wallonie-Bruxelles International's (Belgium) Scholarship for Excellence and the US National Science Foundation under Grant No. ECCS-1309517. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (ERC Grant Agreement No. 337569) and from the French Community of Belgium through an ARC grant for Concerted Research Action. NR 38 TC 2 Z9 2 U1 1 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A81 DI 10.1051/0004-6361/201526561 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200105 ER PT J AU Schloerb, FP Keihm, S von Allmen, P Choukroun, M Lellouch, E Leyrat, C Beaudin, G Biver, N Bockelee-Morvan, D Crovisier, J Encrenaz, P Gaske, R Gulkis, S Hartogh, P Hofstadter, M Ip, WH Janssen, M Jarchow, C Jorda, L Keller, HU Lee, S Rezac, L Sierks, H AF Schloerb, F. Peter Keihm, Stephen von Allmen, Paul Choukroun, Mathieu Lellouch, Emmanuel Leyrat, Cedric Beaudin, Gerard Biver, Nicolas Bockelee-Morvan, Dominique Crovisier, Jacques Encrenaz, Pierre Gaske, Robert Gulkis, Samuel Hartogh, Paul Hofstadter, Mark Ip, Wing-Huen Janssen, Michael Jarchow, Christopher Jorda, Laurent Keller, Horst Uwe Lee, Seungwon Rezac, Ladislav Sierks, Holger TI MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: general; comets: individual: 67P/Churyumov-Gerasimenko; radio continuum: planetary systems ID COMET 67P/CHURYUMOV-GERASIMENKO; EVOLUTION; FLUX; DENSITY; MANTLE; MODEL AB Observations of the nucleus of 67P/Churyumov-Gerasimenko in the millimeter-wave continuum have been obtained by the Microwave Instrument for the Rosetta Orbiter (MIRO). We present data obtained at wavelengths of 0.5 mm and 1.6 mm during September 2014 when the nucleus was at heliocentric distances between 3.45 and 3.27 AU. The data are fit to simple models of the nucleus thermal emission in order to characterize the observed behavior and make quantitative estimates of important physical parameters, including thermal inertia and absorption properties at the MIRO wavelengths. MIRO brightness temperatures on the irregular surface of 67P are strongly affected by the local solar illumination conditions, and there is a strong latitudinal dependence of the mean brightness temperature as a result of the seasonal orientation of the comet's rotation axis with respect to the Sun. The MIRO emission exhibits strong diurnal variations, which indicate that it arises from within the thermally varying layer in the upper centimeters of the surface. The data are quantitatively consistent with very low thermal inertia values, between 10-30 JK(-1) m(-2) s(-1/2), with the 0.5 mm emission arising from 1 cm beneath the surface and the 1.6 mm emission from a depth of 4 cm. Although the data are generally consistent with simple, homogeneous models, it is difficult to match all of its features, suggesting that there may be some vertical structure within the upper few centimeters of the surface. The MIRO brightness temperatures at high northern latitudes are consistent with sublimation of ice playing an important role in setting the temperatures of these regions where, based on observations of gas and dust production, ice is known to be sublimating. C1 [Schloerb, F. Peter] Univ Massachusetts, Amherst, MA 01003 USA. [Schloerb, F. Peter; Keihm, Stephen; von Allmen, Paul; Choukroun, Mathieu; Gulkis, Samuel; Hofstadter, Mark; Janssen, Michael; Lee, Seungwon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lellouch, Emmanuel; Leyrat, Cedric; Biver, Nicolas; Bockelee-Morvan, Dominique; Crovisier, Jacques] Univ Paris Diderot, UPMC, CNRS, LESIA Observ Paris, F-92195 Meudon, France. [Beaudin, Gerard; Encrenaz, Pierre] UPMC, CNRS, UMR 8112, LERMA,Observ Paris,PSL Res Univ, F-75014 Paris, France. [Hartogh, Paul; Jarchow, Christopher; Rezac, Ladislav; Sierks, Holger] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Gaske, Robert] Planetary Sci Inst, Tucson, AZ 85719 USA. [Ip, Wing-Huen] Natl Cent Univ, Taoyuan 32001, Taiwan. [Jorda, Laurent] Aix Marseille Univ, CNRS, UMR 7326, Lab Astrophys Marseille, F-13388 Marseille, France. [Keller, Horst Uwe] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Keller, Horst Uwe] Deutsch Zentrum Luft & Raumfahrt, Inst Planetenforsch, D-12489 Berlin, Germany. RP Schloerb, FP (reprint author), Univ Massachusetts, 619 Lederle Grad Res Tower, Amherst, MA 01003 USA. EM schloerb@astro.umass.edu RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU National Aeronautics and Space Administration (NASA); Deutsches Zentrum fur Luft- und Raumfarht; Max-Planck Gesellschaft; CNES; CNRS/Institut des Sciences de l'Univers; Taiwanese National Science Counsel [NSC 101-2111-M-008-016] FX The authors acknowledge support from their institutions and funding sources. A part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration (NASA). Government sponsorship acknowledged. A part of the research was carried out at the Max-Planck Institut fur Sonnensystemforschung with financial support from Deutsches Zentrum fur Luft- und Raumfarht and Max-Planck Gesellschaft. Parts of the research were carried out by LESIA and LERMA, Observatoire de Paris, with financial support from CNES and CNRS/Institut des Sciences de l'Univers. A part of the research was carried out at the National Central University with funding from the Taiwanese National Science Counsel grant NSC 101-2111-M-008-016. A part of the research was carried out at the University of Massachusetts, Amherst, USA. The MIRO team acknowledges the OSIRIS team for providing pre-publication data and helpful discussions to support this analysis. Support from ESA's Rosetta Mission Operations Control center and ESA's Rosetta Science Ground Segment, for preparation and implementation of the observations, and communication of the acquired data, is gratefully acknowledged. We thank Y. Anderson, T. Koch, R. Nowicki, L. Pan and the late Dr. Lucas Kamp for their efforts in scheduling, operations, and support of the MIRO instrument. NR 27 TC 14 Z9 14 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A29 DI 10.1051/0004-6361/201526152 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200060 ER PT J AU Tiwari, SK van Noort, M Solanki, SK Lagg, A AF Tiwari, Sanjiv K. van Noort, Michiel Solanki, Sami K. Lagg, Andreas TI Depth-dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: magnetic fields; Sun: photosphere; sunspots ID PENUMBRAL FINE-STRUCTURE; MAGNETIC-FIELD STRENGTH; EVERSHED FLOW; UMBRAL DOTS; 3-DIMENSIONAL STRUCTURE; STOKES PROFILES; INFRARED LINES; DYNAMICAL PROPERTIES; VECTOR MAGNETOGRAMS; SPATIAL-RESOLUTION AB Context. For the past two decades, the three-dimensional structure of sunspots has been studied extensively. A recent improvement in the Stokes inversion technique prompts us to revisit the depth-dependent properties of sunspots. Aims. In the present work, we aim to investigate the global depth-dependent thermal, velocity, and magnetic properties of a sunspot, as well as the interconnection between various local properties. Methods. We analysed high-quality Stokes profiles of the disk-centred, regular, leading sunspot of NOAA AR 10933, acquired by the Solar Optical Telescope/Spectropolarimeter (SOT/SP) on board the Elinode spacecraft. To obtain depth-dependent stratification of the physical parameters, we used the recently developed, spatially coupled version of the SPINOR inversion code. Results. First, we study the azimuthally averaged physical parameters of the sunspot. We find that the vertical temperature gradient in the lower- to mid-photosphere is at its weakest in the umbra, while it is considerably stronger in the penumbra, and stronger still in the spot's surroundings. The azimuthally averaged field becomes more horizontal with radial distance from the centre of the spot, but more vertical with height. At continuum optical depth unity, the line-of-sight velocity shows an average upflow of 300 ms(-1) in the inner penumbra and an average downflow of 1300 ms(-1) in the outer penumbra. The downflow continues outside the visible penumbral boundary. The sunspot shows, at most, a moderate negative twist of <5 degrees at log(r) = 0, which increases with height. The sunspot umbra and the spines of the penumbra show considerable similarity with regard to their physical properties, albeit with some quantitative differences (weaker, somewhat more horizontal fields in spines, commensurate with their location being further away from the sunspot's core). The temperature shows a general anti-correlation with the field strength, with the exception of the heads of penumbral filaments, where a weak positive correlation is found. The dependence of the physical parameters on each other over the full sunspot shows a qualitative similarity to that of a standard penumbral filament and its surrounding spines. Conclusions. The large-scale variation in the physical parameters of a sunspot at various optical depths is presented. Our results suggest that the spines in the penumbra are basically the outward extension of the umbra. The spines and the penumbral filaments, together, are the basic elements that form a sunspot peniunbra. C1 [Tiwari, Sanjiv K.; van Noort, Michiel; Solanki, Sami K.; Lagg, Andreas] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Tiwari, Sanjiv K.] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Solanki, Sami K.] Kyung Hee Univ, Sch Space Res, Gyeonggi 446701, South Korea. RP Tiwari, SK (reprint author), Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. EM tiwari@mps.mpg.de; vannoort@mps.mpg.de; solanki@mps.mpg.de; lagg@mps.mpg.de FU JAXA; NAOJ (Japan); STFC (UK); NASA (USA); ESA; NSC (Norway); BK21 Plus Program through the National Research Foundation (NRF) - Ministry of Education of Korea FX We would like to thank the referee for constructive comments. S.K.T. would like to thank Ron Moore, Allen Gary, David Hathaway, and Mitzi Adams for their useful comments and/or discussion on this work. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STEC (UK), as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organised at ISAS/JAXA. This team mainly consists of scientists from institutes in partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA (USA), ESA, and NSC (Norway). This work has been partially supported by the BK21 Plus Program through the National Research Foundation (NRF), funded by the Ministry of Education of Korea. S.K.T. is supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This research has made extensive use of NASA's Astrophysics Data System (ADS). NR 133 TC 9 Z9 9 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A119 DI 10.1051/0004-6362526224 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200073 ER PT J AU Vignali, C Iwasawa, K Comastri, A Gilli, R Lanzuisi, G Ranalli, P Cappelluti, N Mainieri, V Georgantopoulos, I Carrera, FJ Fritz, J Brusa, M Brandt, WN Bauer, FE Fiore, F Tombesi, F AF Vignali, C. Iwasawa, K. Comastri, A. Gilli, R. Lanzuisi, G. Ranalli, P. Cappelluti, N. Mainieri, V. Georgantopoulos, I. Carrera, F. J. Fritz, J. Brusa, M. Brandt, W. N. Bauer, F. E. Fiore, F. Tombesi, F. TI The XMM deep survey in the CDF-S IX. An X-ray outflow in a luminous obscured quasar at z approximate to 1.6 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: nuclei; quasars: general; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; ULTRA-FAST OUTFLOWS; FIELD-SOUTH SURVEY; MASSIVE MOLECULAR OUTFLOWS; SUPERMASSIVE BLACK-HOLE; ACCRETION DISC OUTFLOWS; HIGHLY IONIZED OUTFLOWS; SHELL ABSORPTION-LINES; STAR-FORMING GALAXIES; MS SOURCE CATALOGS AB In active galactic nuclei (AGN)-galaxy co-evolution models. AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v greater than or similar to 0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep KAM-Newton and Chandra spectral data of an obscured (N-H approximate to 2 x 10(23) cm(-2)), intrinsically luminous (L2-10 (kev) approximate to 4 x 10(44) erg s(-1)) quasar (named PID352) at z approximate to 1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E approximate to 2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of 0.14(-0.06)(+0.02)c, as derived from photoionization models. The mass outflow rate - similar to 2 M-circle dot yr(-1) - is similar to the source accretion rate, and the derived mechanical energy rate is similar to 9.5 x 10(44) erg s(-1), corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy. C1 [Vignali, C.; Lanzuisi, G.; Brusa, M.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, I-40127 Bologna, Italy. [Vignali, C.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Cappelluti, N.; Brusa, M.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Iwasawa, K.] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Iwasawa, K.] Univ Barcelona, ICC, IEEC, E-08028 Barcelona, Spain. [Ranalli, P.; Georgantopoulos, I.] Natl Observ Athens, Space Applicat & Remote Sensing, Inst Astron & Astrophys, Athens 15236, Greece. [Mainieri, V.] European So Observ, D-85748 Garching, Germany. [Mainieri, V.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Carrera, F. J.] CSIC UC, Inst Fis Cantabria, Santander 39005, Spain. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Fritz, J.] Univ Nacl Autonoma Mexico, IRAf, Mexico City 58089, DF, Mexico. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, Eberly Coll Sci, University Pk, PA 16802 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 306 22, Chile. [Bauer, F. E.] MAS, Millennium Inst Astrophys, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Fiore, F.] Osserv Astron Roma, INAF, I-00040 Rome, Italy. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tombesi, F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Vignali, C (reprint author), Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM cristian.vignali@unibo.it RI Ranalli, Piero/K-6363-2013; Vignali, Cristian/J-4974-2012; Georgantopoulos, Ioannis/L-3687-2013; Brandt, William/N-2844-2015; gilli, roberto/P-1110-2015 OI Ranalli, Piero/0000-0003-3956-755X; Vignali, Cristian/0000-0002-8853-9611; Brandt, William/0000-0002-0167-2453; gilli, roberto/0000-0001-8121-6177 FU PRIN-INAF; Spanish MINECO [AYA2013-47447-C3-2-P]; ICCUB (Unidad de Excelencia "Maria de Maeztu") [MDM-2014-0369]; FP7 Career Integration Grant "eEASy" [CIG 321913]; Spanish Ministerio de Economia y Competitividad [AYA2012-31447]; Chandra X-ray Center [G04-15130A]; NASA ADP grant [NNX10AC99G]; CONICYT-Chile [Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009] FX The authors thank the referee for detailed and thoughtful comments and suggestions. Financial contribution from "PRIN-INAF 2011" and "PRIN-INAF 2012" is acknowledged. K.I. acknowledges support by the Spanish MINECO under grant AYA2013-47447-C3-2-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia "Maria de Maeztu"). G.L. and M.B. acknowledge support from the FP7 Career Integration Grant "eEASy" ("SMBH evolution through cosmic time: from current surveys to eROSITA-Euclid AGN Synergies", CIG 321913). F.J.C. acknowledges Financial support from the Spanish Ministerio de Economia y Competitividad under project AYA2012-31447. W.N.B. thanks support from Chandra X-ray Center grant G04-15130A and NASA ADP grant NNX10AC99G. F.E.B. acknowledges support from CONICYT-Chile (Basal-CATA PFB-06/2007, FONDECYT 1141218, "EMBIGGEN" Anillo ACT1101) and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. C.V. thanks P. Ciliegi, D. Dallacasa and E. Middelberg for information on radio data, and M. Cappi, G. Chartas, A. Feltre, P. Grandi, E. Lusso, G. Ponti, L. Pozzetti, E. Rovilos, P. Severgnini, F. Vito, and G. Zamorani for useful discussions. NR 124 TC 3 Z9 3 U1 1 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2015 VL 583 AR A141 DI 10.1051/0004-6361/201525852 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW5YC UT WOS:000365072200029 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, T Abernathy, MR Acernese, F Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, V Affeldt, C Agathos, M Agatsuma, K Aggarwal, N Aguiar, OD Ain, A Ajith, P Alemic, A Allen, B Allocca, A Amariutei, D Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, C Areeda, JS Ast, S Aston, SM Astone, P Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, PT Baldaccini, F Ballardin, G Ballmer, SW Barayoga, JC Barbet, M Barclay, S Barish, BC Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Bartlett, J Barton, MA Bartos, I Bassiri, R Basti, A Batch, JC Bauer, TS Baune, C Bavigadda, V Behnke, B Bejger, M Belczynski, C Bell, AS Bell, C Benacquista, M Bergman, J Bergmann, G Berry, CPL Bersanetti, D Bertolini, A Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Biscans, S Bitossi, M Biwer, C Bizouard, MA Blackburn, JK Blackburn, L Blair, CD Blair, D Bloemen, S Bock, O Bodiya, TP Boer, M Bogaert, G Bojtos, P Bond, C Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Brooks, AF Brown, DA Brown, DD Brown, NM Buchman, S Buikema, A Bulik, T Bulten, HJ Buonanno, A Buskulic, D Buy, C Cadonati, L Cagnoli, G Bustillo, JC Calloni, E Camp, JB Cannon, KC Cao, J Capano, CD Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chassande-Mottin, E Chen, Y Chincarini, A Chiummo, A Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chua, S Chung, S Ciani, G Clara, F Clark, JA Cleva, F Coccia, E Cohadon, PF Colla, A Collette, C Colombini, M Cominsky, L Constancio, M Conte, A Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Coulon, JP Countryman, S Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, TD Cripe, J Crowder, SG Cumming, A Cunningham, L Cuoco, E Cutler, C Dahl, K Dal Canton, T Damjanic, M Danilishin, SL D'Antonio, S Danzmann, K Dartez, L Dattilo, V Dave, I Daveloza, H Davier, M Davies, GS Daw, EJ Day, R Debra, D Debreczeni, G Degallaix, J De Laurentis, M Deleglise, S Del Pozzo, W Denker, T Dent, T Dereli, H Dergachev, V De Rosa, R DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, M Di Fiore, L Di Lieto, A Di Palma, I Di Virgilio, A Dojcinoski, G Dolique, V Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Drago, M Driggers, JC Du, Z Ducrot, M Dwyer, S Eberle, T Edo, T Edwards, M Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Essick, R Etzel, T Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, X Fang, Q Farinon, S Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferrante, I Ferreira, EC Ferrini, F Fidecaro, F Fiori, I Fisher, RP Flaminio, R Fournier, JD Franco, S Frasca, S Frasconi, F Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fuentes-Tapia, S Fulda, P Fyffe, M Gair, JR Gammaitoni, L Gaonkar, S Garufi, F Gatto, A Gehrels, N Gemme, G Gendre, B Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giardina, KD Giazotto, A Gleason, J Goetz, E Goetz, R Gondan, L Gonzalez, G Gordon, N Gorodetsky, ML Gossan, S Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Groot, P Grote, H Grunewald, S Guidi, GM Guido, CJ Guo, X Gushwa, K Gustafson, EK Gustafson, R Hacker, J Hall, ED Hammond, G Hanke, M Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harms, J Harry, GM Harry, IW Hart, M Hartman, MT Haster, CJ Haughian, K Heidmann, A Heintze, M Heinzel, G Heitmann, H Hello, P Hemming, G Hendry, M Heng, IS Heptonstall, AW Heurs, M Hewitson, M Hild, S Hoak, D Hodge, KA Hofman, D Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, E Howell, EJ Hu, YM Huerta, E Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, C Isogai, T Iyer, BR Izumi, K Jacobson, M Jang, H Jaranowski, P Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Jonker, RJG Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasprzack, M Katsavounidis, E Katzman, W Kaufer, H Kaufer, S Kaur, T Kawabe, K Kawazoe, F Kefelian, F Keiser, GM Keitel, D Kelley, DB Kells, W Keppel, DG Key, JS Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, J Koehlenbeck, S Kokeyama, K Kondrashov, V Korobko, M Korth, WZ Kowalska, I Kozak, DB Kringel, V Krishnan, B Krolak, A Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Kutynia, A Landry, M Lantz, B Larson, S Lasky, PD Lazzarini, A Lazzaro, C Lazzaro, C Le, J Leaci, P Leavey, S Lebigot, E Lebigot, EO Lee, CH Lee, HK Lee, HM Leonardi, M Leong, JR Leroy, N Letendre, N Levin, Y Levine, B Lewis, J Li, TGF Libbrecht, K Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Logue, J Lombardi, AL Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Lubinski, MJ Lueck, H Lundgren, AP Lynch, R Ma, Y Macarthur, J MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Na-Sandoval, FM Magee, R Mageswaran, M Maglione, C Mailand, K Majorana, E Maksimovic, I Malvezzi, V Man, N Mandel, I Mandic, V Mangano, V Mangano, V Mansell, GL Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Martelli, F Martellini, L Martin, IW Martin, RM Martynov, D Marx, JN Mason, K Masserot, A Massinger, TJ Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J Mclin, K McWilliams, S Meacher, D Meadors, GD Meidam, J Meinders, M Melatos, A Mendell, G Mercer, RA Meshkov, S Messenger, C Meyers, PM Mezzani, F Miao, H Michel, C Middleton, H Mikhailov, EE Milano, L Miller, A Miller, J Millhouse, M Minenkov, Y Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Moggi, A Mohan, M Mohanty, SD Mohapatra, SRP Moore, B Moraru, D Moreno, G Morriss, SR Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Munch, J Murphy, D Murray, PG Mytidis, A Nagy, MF Nardecchia, I Nash, T Naticchioni, L Nayak, RK Necula, V Nedkova, K Nelemans, G Neri, I Neri, M Newton, G Nguyen, T Nielsen, AB Nissanke, S Nitz, AH Nocera, F Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oppermann, P Oram, R O'Reilly, B Ortega, W O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, C Pai, A Pai, S Palashov, O Palomba, C Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Paoletti, F Papa, MA Paris, H Pasqualetti, A Passaquieti, R Passuello, D Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Pichot, M Piergiovanni, F Pierro, V Pillant, G Pinard, L Pinto, IM Pitkin, M Poeld, J Poggiani, R Post, A Poteomkin, A Powell, J Prasad, J Predoi, V Premachandra, S Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Puerrer, M Qin, J Quetschke, V Quintero, E Quiroga, G Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Raja, S Rajalakshmi, G Rakhmanov, M Ramirez, K Rapagnani, P Raymond, V Razzano, M Re, V Reed, CM Regimbau, T Rei, L Reid, S Reitze, DH Reula, O Ricci, F Riles, K Robertson, NA Robie, R Robinet, F Rocchi, A Rolland, L Rollins, JG Roma, V Romano, R Romanov, G Romie, JH Rosinska, D Rowan, S Ruediger, A Ruggi, P Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sandberg, V Sanders, JR Sannibale, V Santiago-Prieto, I Sassolas, B Sathyaprakash, BS Saulson, PR Savage, R Sawadsky, A Scheuer, J Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sentenac, D Sequino, V Sergeev, A Serna, G Sevigny, A Shaddock, DA Shah, S Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siellez, K Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, L Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Son, EJ Sorazu, B Souradeep, T Staley, A Stebbins, J Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, S Stone, R Strain, KA Straniero, N Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sutton, PJ Swinkels, B Szczepanczyk, M Szeifert, G Tacca, M Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Tellez, G Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, V Tomlinson, C Tonelli, M Torres, CV Torrie, CI Travasso, F Traylor, G Tse, M Tshilumba, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Vajente, G Valdes, G Vallisneri, M Van Bakel, N Van Beuzekom, M Van den Brand, JFJ Van den Broeck, C Van der Sluys, MV Van Heijningen, J Van Veggel, AA Vass, S Vasuth, M Vaulin, R Vecchio, A Vedovato, G Veitch, J Veitch, J Veitch, PJ Venkateswara, K Verkindt, D Vetrano, F Vicere, A Vincent-Finley, R Vinet, JY Vitale, S Vo, T Vocca, H Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, L Wade, M Walker, M Wallace, L Walsh, S Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Wei, LW Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT White, DJ Whiting, BF Wilkinson, C Williams, L Williams, R Williamson, AR Willis, JL Willke, B Wimmer, M Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Xie, S Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yang, Q Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, S Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. Abernathy, M. R. Acernese, F. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Alemic, A. Allen, B. Allocca, A. Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. Areeda, J. S. Ast, S. Aston, S. M. Astone, P. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. T. Baldaccini, F. Ballardin, G. Ballmer, S. W. Barayoga, J. C. Barbet, M. Barclay, S. Barish, B. C. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Basti, A. Batch, J. C. Bauer, Th. S. Baune, C. Bavigadda, V. Behnke, B. Bejger, M. Belczynski, C. Bell, A. S. Bell, C. Benacquista, M. Bergman, J. Bergmann, G. Berry, C. P. L. Bersanetti, D. Bertolini, A. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Biscans, S. Bitossi, M. Biwer, C. Bizouard, M. A. Blackburn, J. K. Blackburn, L. Blair, C. D. Blair, D. Bloemen, S. Bock, O. Bodiya, T. P. Boer, M. Bogaert, G. Bojtos, P. Bond, C. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, Sukanta Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchman, S. Buikema, A. Bulik, T. Bulten, H. J. Buonanno, A. Buskulic, D. Buy, C. Cadonati, L. Cagnoli, G. Bustillo, J. Calderon Calloni, E. Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chassande-Mottin, E. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chua, S. Chung, S. Ciani, G. Clara, F. Clark, J. A. Cleva, F. Coccia, E. Cohadon, P. -F. Colla, A. Collette, C. Colombini, M. Cominsky, L. Constancio, M., Jr. Conte, A. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Coulon, J-P Countryman, S. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. D. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cuoco, E. Cutler, C. Dahl, K. Dal Canton, T. Damjanic, M. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dartez, L. Dattilo, V. Dave, I. Daveloza, H. Davier, M. Davies, G. S. Daw, E. J. Day, R. Debra, D. Debreczeni, G. Degallaix, J. De laurentis, M. Deleglise, S. Del Pozzo, W. Denker, T. Dent, T. Dereli, H. Dergachev, V. De Rosa, R. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. Di Fiore, L. Di Lieto, A. Di Palma, I. Di Virgilio, A. Dojcinoski, G. Dolique, V. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Drago, M. Driggers, J. C. Du, Z. Ducrot, M. Dwyer, S. Eberle, T. Edo, T. Edwards, M. Edwards, M. Effler, A. Eggenstein, H-B Ehrens, P. Eichholz, J. Eikenberry, S. S. Essick, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, X. Fang, Q. Farinon, S. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferrante, I. Ferreira, E. C. Ferrini, F. Fidecaro, F. Fiori, I. Fisher, R. P. Flaminio, R. Fournier, J-D Franco, S. Frasca, S. Frasconi, F. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fuentes-Tapia, S. Fulda, P. Fyffe, M. Gair, J. R. Gammaitoni, L. Gaonkar, S. Garufi, F. Gatto, A. Gehrels, N. Gemme, G. Gendre, B. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giardina, K. D. Giazotto, A. Gleason, J. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gordon, N. Gorodetsky, M. L. Gossan, S. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Groot, P. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. J. Guo, X. Gushwa, K. Gustafson, E. K. Gustafson, R. Hacker, J. Hall, E. D. Hammond, G. Hanke, M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harms, J. Harry, G. M. Harry, I. W. Hart, M. Hartman, M. T. Haster, C-J. Haughian, K. Heidmann, A. Heintze, M. Heinzel, G. Heitmann, H. Hello, P. Hemming, G. Hendry, M. Heng, I. S. Heptonstall, A. W. Heurs, M. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Hofman, D. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. Howell, E. J. Hu, Y. M. Huerta, E. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. Jang, H. Jaranowski, P. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Jonker, R. J. G. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasprzack, M. Katsavounidis, E. Katzman, W. Kaufer, H. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Kefelian, F. Keiser, G. M. Keitel, D. Kelley, D. B. Kells, W. Keppel, D. G. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y-M King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. Koehlenbeck, S. Kokeyama, K. Kondrashov, V. Korobko, M. Korth, W. Z. Kowalska, I. Kozak, D. B. Kringel, V. Krishnan, B. Krolak, A. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Kutynia, A. Landry, M. Lantz, B. Larson, S. Lasky, P. D. Lazzarini, A. Lazzaro, C. Lazzaro, C. Le, J. Leaci, P. Leavey, S. Lebigot, E. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Leonardi, M. Leong, J. R. Leroy, N. Letendre, N. Levin, Y. Levine, B. Lewis, J. Li, T. G. F. Libbrecht, K. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Logue, J. Lombardi, A. L. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Lubinski, M. J. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Macarthur, J. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Na-Sandoval, F. Magana Magee, R. Mageswaran, M. Maglione, C. Mailand, K. Majorana, E. Maksimovic, I. Malvezzi, V. Man, N. Mandel, I. Mandic, V. Mangano, V. Mangano, V. Mansell, G. L. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Martelli, F. Martellini, L. Martin, I. W. Martin, R. M. Martynov, D. Marx, J. N. Mason, K. Masserot, A. Massinger, T. J. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. Mclin, K. McWilliams, S. Meacher, D. Meadors, G. D. Meidam, J. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyers, P. M. Mezzani, F. Miao, H. Michel, C. Middleton, H. Mikhailov, E. E. Milano, L. Miller, A. Miller, J. Millhouse, M. Minenkov, Y. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Moggi, A. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moore, B. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nagy, M. F. Nardecchia, I. Nash, T. Naticchioni, L. Nayak, R. K. Necula, V. Nedkova, K. Nelemans, G. Neri, I. Neri, M. Newton, G. Nguyen, T. Nielsen, A. B. Nissanke, S. Nitz, A. H. Nocera, F. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. Pai, A. Pai, S. Palashov, O. Palomba, C. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Paoletti, F. Papa, M. A. Paris, H. Pasqualetti, A. Passaquieti, R. Passuello, D. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Pichot, M. Piergiovanni, F. Pierro, V. Pillant, G. Pinard, L. Pinto, I. M. Pitkin, M. Poeld, J. Poggiani, R. Post, A. Poteomkin, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Puerrer, M. Qin, J. Quetschke, V. Quintero, E. Quiroga, G. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Raja, S. Rajalakshmi, G. Rakhmanov, M. Ramirez, K. Rapagnani, P. Raymond, V. Razzano, M. Re, V. Reed, C. M. Regimbau, T. Rei, L. Reid, S. Reitze, D. H. Reula, O. Ricci, F. Riles, K. Robertson, N. A. Robie, R. Robinet, F. Rocchi, A. Rolland, L. Rollins, J. G. Roma, V. Romano, R. Romanov, G. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sandberg, V. Sanders, J. R. Sannibale, V. Santiago-Prieto, I. Sassolas, B. Sathyaprakash, B. S. Saulson, P. R. Savage, R. Sawadsky, A. Scheuer, J. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sentenac, D. Sequino, V. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shah, S. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siellez, K. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Son, E. J. Sorazu, B. Souradeep, T. Staley, A. Stebbins, J. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. Stone, R. Strain, K. A. Straniero, N. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sutton, P. J. Swinkels, B. Szczepanczyk, M. Szeifert, G. Tacca, M. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Tellez, G. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, V. Tomlinson, C. Tonelli, M. Torres, C. V. Torrie, C. I. Travasso, F. Traylor, G. Tse, M. Tshilumba, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Vajente, G. Valdes, G. Vallisneri, M. Van Bakel, N. Van Beuzekom, M. Van den Brand, J. F. J. Van den Broeck, C. Van der Sluys, M. V. Van Heijningen, J. Van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vecchio, A. Vedovato, G. Veitch, J. Veitch, J. Veitch, P. J. Venkateswara, K. Verkindt, D. Vetrano, F. Vicere, A. Vincent-Finley, R. Vinet, J-Y Vitale, S. Vo, T. Vocca, H. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Wei, L-W Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. White, D. J. Whiting, B. F. Wilkinson, C. Williams, L. Williams, R. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Xie, S. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yang, Q. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J-P Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. Zweizig, J. TI SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; ISM: supernova remnants; stars: neutron ID SPIN-DOWN LIMIT; X-RAY SOURCE; GALACTIC SUPERNOVA; NEUTRON-STAR; RELATIVISTIC STARS; RX J1713.7-3946; EMISSION; PULSAR; RADIATION; CHANDRA AB We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target ' s parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering. -statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 x 10(-25) on intrinsic strain, 2 x 10(-7) on fiducial ellipticity, and 4 x 10(-5) on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Mageswaran, M.; Mailand, K.; Maros, E.; Martynov, D.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Osthelder, C.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Quintero, E.; Raymond, V.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sannibale, V.; Schmidt, P.; Shao, Z.; Singer, A.; Singer, L.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Taylor, R.; Thirugnanasambandam, M. P.; Thrane, E.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De laurentis, M.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Romano, R.] Complesso Univ Monte St Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ackley, K.; Amariutei, D.; Barbet, M.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Hartman, M. T.; Heintze, M.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M. J.; Doravari, S.; Evans, T.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Sathyaprakash, B. S.; Schmidt, P.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.; Bonnand, R.; Buskulic, D.; Ducrot, M.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Addesso, P.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80100 Naples, Italy. [Adya, V.; Affeldt, C.; Baune, C.; Bergmann, G.; Born, M.; Brinkmann, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Denker, T.; Dooley, K. L.; Eberle, T.; Fricke, T. T.; Gossler, S.; Grote, H.; Hanke, M.; Heinzel, G.; Heurs, M.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Koehlenbeck, S.; Korobko, M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lueck, H.; Mossavi, K.; Mow-Lowry, C. M.; Oppermann, P.; Pal-Singh, A.; Poeld, J.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schuette, D.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Was, M.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Wimmer, M.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Expt Grp, D-30167 Hannover, Germany. [Agathos, M.; Agatsuma, K.; Bauer, Th. S.; Bertolini, A.; Bloemen, S.; Bulten, H. J.; Ghosh, S.; Jonker, R. J. G.; Meidam, J.; Nelemans, G.; Rabeling, D. S.; Shah, S.; Van Bakel, N.; Van Beuzekom, M.; Van den Brand, J. F. J.; Van den Broeck, C.; Van der Sluys, M. V.; Van Heijningen, J.; Veitch, J.] Nikhef, NL-1098 XG Amsterdam, Netherlands. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Buikema, A.; Donovan, F.; Essick, R.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Wipf, C. C.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S.; Mitra, S.; Prasad, J.; Souradeep, T.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Mishra, C.] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India. [Alemic, A.; Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, C.; Kelley, D. B.; Kumar, P.; Na-Sandoval, F. Magana; Massinger, T. J.; Nitz, A. H.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Allen, B.; Aulbert, C.; Bock, O.; Dal Canton, T.; Dent, T.; Eggenstein, H-B; Fehrmann, H.; Goetz, E.; Indik, N.; Keitel, D.; Keppel, D. G.; Krishnan, B.; Lough, J.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Nielsen, A. B.; Post, A.; Prix, R.; Salemi, F.; Shaltev, M.; Wette, K.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Data Anal Grp, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Brady, P. R.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Huynh, M.; Kline, J.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, L.; Wade, M.; Walsh, S.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA. [Allocca, A.] Univ Siena, I-53100 Siena, Italy. [Allocca, A.; Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Bradaschia, C.; Cella, G.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Moggi, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Razzano, M.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Arceneaux, C.; Cavaglia, M.; Kandhasamy, S.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J.; Islas, G.; Lockett, V.; Padilla, C.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ast, S.; Aufmuth, P.; Danzmann, K.; Kaufer, H.; Kaufer, S.; Krueger, C.; Lueck, H.; Meinders, M.; Sawadsky, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Aylott, B. E.; Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Haster, C-J.; Mandel, I.; Miao, H.; Middleton, H.; Sidery, T. L.; Stevenson, S.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Babak, S.; Behnke, B.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Baldaccini, F.; Gammaitoni, L.; Neri, I.; Travasso, F.; Vocca, H.] Univ Perugia, I-06123 Perugia, Italy. [Baldaccini, F.; Colombini, M.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Ballardin, G.; Bavigadda, V.; Bitossi, M.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Hemming, G.; Kasprzack, M.; Mantovani, M.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Pillant, G.; Prijatelj, M.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Pisa, Italy. [Barclay, S.; Barr, B.; Bell, A. S.; Bell, C.; Craig, K.; Cumming, A.; Cunningham, L.; Davies, G. S.; Douglas, R.; Fan, X.; Gordon, N.; Graef, C.; Grant, A.; Hammond, G.; Hart, M.; Haughian, K.; Hendry, M.; Heng, I. S.; Hild, S.; Hough, J.; Houston, E.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Torrie, C. I.; Van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Ain, A.; Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Clara, F.; Cook, D.; Dwyer, S.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Pele, A.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vo, T.; Vorvick, C.; Warner, J.; Weaver, B.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barsuglia, M.; Buy, C.; Chassande-Mottin, E.; Gatto, A.; Lebigot, E.; Tacca, M.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,AstroParticule & Cosmol,CNRS,IN2P3,CEA Irfu, F-75205 Paris 13, France. [Bartos, I.; Countryman, S.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Bassiri, R.; Buchman, S.; Debra, D.; Fejer, M. M.; Keiser, G. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Markosyan, A.; Paris, H.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA. [Basti, A.; Bonelli, L.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Razzano, M.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Belczynski, C.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Benacquista, M.; Creighton, T. D.; Dartez, L.; Daveloza, H.; Diaz, M.; Fuentes-Tapia, S.; Key, J. S.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Ramirez, K.; Stone, R.; Tellez, G.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Bersanetti, D.; Neri, M.] Univ Genoa, I-16146 Genoa, Italy. [Bersanetti, D.; Chincarini, A.; Farinon, S.; Gemme, G.; Neri, M.; Rei, L.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhandare, R.; Dave, I.; Pai, S.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Kasprzack, M.; Leroy, N.; Robinet, F.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Blackburn, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, C. D.; Blair, D.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bloemen, S.; Ghosh, S.; Groot, P.; Nelemans, G.; Shah, S.; Van der Sluys, M. V.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J-D; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Pichot, M.; Regimbau, T.; Siellez, K.; Vinet, J-Y; Wei, L-W] Univ Nice Sophia Antipolis, ARTEMIS, CNRS, F-06304 Nice, France. [Boer, M.; Bogaert, G.; Brillet, A.; Cleva, F.; Coulon, J-P; Dereli, H.; Fournier, J-D; Gendre, B.; Heitmann, H.; Kefelian, F.; Man, N.; Martellini, L.; Meacher, D.; Pichot, M.; Regimbau, T.; Siellez, K.; Vinet, J-Y; Wei, L-W] Observ Cote Azur, F-06304 Nice, France. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.; Szeifert, G.] MTA Eotvos Univ, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35402 Rennes, France. [Bose, Sukanta; Magee, R.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Branchesi, M.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Branchesi, M.; Guidi, G. M.; Harms, J.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Brau, J. E.; Frey, R.; Hardwick, T.; Quitzow-James, R.; Roma, V.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Chua, S.; Cohadon, P. -F.; Deleglise, S.; Heidmann, A.] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France. [Bulten, H. J.; Rabeling, D. S.; Van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Capano, C. D.; Cho, M.; Shawhan, P.; Taracchini, A.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Hoak, D.; Lazzaro, C.; Lombardi, A. L.; McIver, J.; Nedkova, K.; Zuraw, S.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Cagnoli, G.; Degallaix, J.; Dolique, V.; Flaminio, R.; Granata, M.; Hofman, D.; Michel, C.; Pinard, L.; Sassolas, B.; Straniero, N.] Univ Lyon, CNRS, IN2P3, LMA, F-69622 Lyon, France. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma de Mallorca, Spain. [Calloni, E.; De laurentis, M.; De Rosa, R.; Garufi, F.; Milano, L.] Complesso Univ Monte St Angelo, Univ Naples Federico II, I-80126 Naples, Italy. [Cannon, K. C.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.; Yang, Q.; Zhang, Fan] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cesarini, E.; D'Antonio, S.; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Nardecchia, I.; Re, V.; Rocchi, A.; Sequino, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Chao, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Cutler, C.; Gossan, S.; Nissanke, S.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y-M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; McClelland, D. E.; Nguyen, T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M.] Carleton Coll, Northfield, MN 55057 USA. [Coccia, E.; Fafone, V.; Malvezzi, V.; Nardecchia, I.; Re, V.; Sequino, V.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Lorenzini, M.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Colla, A.; Conte, A.; Frasca, S.; Mangano, V.; Mezzani, F.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Collette, C.; Tshilumba, D.; Xie, S.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.; Mclin, K.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Daw, E. J.; Edo, T.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Nagy, M. F.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, H-1121 Budapest, Hungary. [Dojcinoski, G.; Favata, M.; Moore, B.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Maglione, C.; Ortega, W.; Quiroga, G.; Reula, O.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Drago, M.; Leonardi, M.; Prodi, G. A.] Univ Trento, I-38123 Povo, Trento, Italy. [Drago, M.; Leonardi, M.; Prodi, G. A.] Trento Inst Fundamental Phys & Applicat, INFN, I-38123 Povo, Trento, Italy. [Farr, B.; Kalogera, V.; Larson, S.; Le, J.; Littenberg, T. B.; Scheuer, J.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Gair, J. R.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tapai, M.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Hughey, B.; Szczepanczyk, M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hanna, C.; Idrisy, A.; Inta, R.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E.; McWilliams, S.] W Virginia Univ, Morgantown, WV 26506 USA. [Iyer, B. R.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Jaranowski, P.] Univ Bialystok, PL-15424 Bialystok, Poland. [Jawahar, S.; Lockerbie, N. A.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Haris, K.; Mazumder, N.; Pai, A.; Saleem, M.] IISER TVM, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Poteomkin, A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.; Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Krolak, A.; Kutynia, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Kumar, A.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Lasky, P. D.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Lazzaro, C.; Vedovato, G.; Zendri, J-P] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Levin, Y.; Premachandra, S.; Thrane, E.] Monash Univ, Clayton, Vic 3800, Australia. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Marchesoni, F.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [McGuire, S. C.; Vincent-Finley, R.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Vincent-Finley, R.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Miller, A.; Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, SP, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [Ogin, G. H.] Whitman Coll, Walla Walla, WA 9936 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Daejeon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rajalakshmi, G.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Schnabel, R.] Univ Hamburg, D-22761 Hamburg, Germany. [Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gemme, Gianluca/C-7233-2008; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Graef, Christian/J-3167-2015; Danilishin, Stefan/K-7262-2012; Strain, Kenneth/D-5236-2011; Miao, Haixing/O-1300-2013; Howell, Eric/H-5072-2014; M, Manjunath/N-4000-2014; Gammaitoni, Luca/B-5375-2009; Rocchi, Alessio/O-9499-2015; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Heidmann, Antoine/G-4295-2016; Bell, Angus/E-7312-2011; Iyer, Bala R./E-2894-2012; Nelemans, Gijs/D-3177-2012; Ott, Christian/G-2651-2011; Tacca, Matteo/J-1599-2015; Leonardi, Matteo/G-9694-2015; Marchesoni, Fabio/A-1920-2008; Neri, Igor/F-1482-2010; Zhu, Xingjiang/E-1501-2016; Frasconi, Franco/K-1068-2016; Vicere, Andrea/J-1742-2012; Sigg, Daniel/I-4308-2015; Groot, Paul/K-4391-2016; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; De Laurentis, Martina/L-3022-2016; Pinto, Innocenzo/L-3520-2016; Vecchio, Alberto/F-8310-2015; Ferrante, Isidoro/F-1017-2012; Garufi, Fabio/K-3263-2015; McClelland, David/E-6765-2010; Losurdo, Giovanni/K-1241-2014; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo, Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Costa, Cesar/G-7588-2012; Steinlechner, Sebastian/D-5781-2013; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Ward, Robert/I-8032-2014; OI Martelli, Filippo/0000-0003-3761-8616; Gemme, Gianluca/0000-0002-1127-7406; prodi, giovanni/0000-0001-5256-915X; Graef, Christian/0000-0002-4535-2603; Danilishin, Stefan/0000-0001-7758-7493; Strain, Kenneth/0000-0002-2066-5355; Miao, Haixing/0000-0003-4101-9958; Howell, Eric/0000-0001-7891-2817; M, Manjunath/0000-0001-8710-0730; Gammaitoni, Luca/0000-0002-4972-7062; Rocchi, Alessio/0000-0002-1382-9016; Gorodetsky, Michael/0000-0002-5159-2742; Heidmann, Antoine/0000-0002-0784-5175; Bell, Angus/0000-0003-1523-0821; Iyer, Bala R./0000-0002-4141-5179; Nelemans, Gijs/0000-0002-0752-2974; Ott, Christian/0000-0003-4993-2055; Tacca, Matteo/0000-0003-1353-0441; Marchesoni, Fabio/0000-0001-9240-6793; Neri, Igor/0000-0002-9047-9822; Zhu, Xingjiang/0000-0001-7049-6468; Frasconi, Franco/0000-0003-4204-6587; Vicere, Andrea/0000-0003-0624-6231; Sigg, Daniel/0000-0003-4606-6526; Groot, Paul/0000-0002-4488-726X; Lazzaro, Claudia/0000-0001-5993-3372; De Laurentis, Martina/0000-0002-3815-4078; Vecchio, Alberto/0000-0002-6254-1617; Ferrante, Isidoro/0000-0002-0083-7228; Garufi, Fabio/0000-0003-1391-6168; McClelland, David/0000-0001-6210-5842; Losurdo, Giovanni/0000-0003-0452-746X; Travasso, Flavio/0000-0002-4653-6156; Punturo, Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Steinlechner, Sebastian/0000-0003-4710-8548; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Berry, Christopher/0000-0003-3870-7215; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Gendre, Bruce/0000-0002-9077-2025; Allen, Bruce/0000-0003-4285-6256; Granata, Massimo/0000-0003-3275-1186; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Collette, Christophe/0000-0002-4430-3703; Coccia, Eugenio/0000-0002-6669-5787; Addesso, Paolo/0000-0003-0895-184X; Naticchioni, Luca/0000-0003-2918-0730; Scott, Jamie/0000-0001-6701-6515; Swinkels, Bas/0000-0002-3066-3601; Ward, Robert/0000-0001-5503-5241; Dolique, Vincent/0000-0001-5644-9905; O'Shaughnessy, Richard/0000-0001-5832-8517; Vedovato, Gabriele/0000-0001-7226-1320; Boschi, Valerio/0000-0001-8665-2293; Gatto, Alberto/0000-0001-9090-983X FU United States National Science Foundation (NSF); Science and Technology Facilities Council (STFC) of the United Kingdom; Max-Planck-Society (MPS); State of Niedersachsen/Germany; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Department of Science and Technology, India; Science & Engineering Research Board (SERB), India; Ministry of Human Resource Development, India; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter - Netherlands Organization for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS Programme of Foundation for Polish Science; European Union; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Hungarian Scientific Research Fund (OTKA); Lyon Institute of Origins (LIO); National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Brazilian Ministry of Science, Technology, and Innovation; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; NSF; STFC; MPS; INFN; CNRS FX The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French Centre National de la Recherche Scientifique (CNRS) for the construction and operation of the Virgo detector. The authors also gratefully acknowledge research support from these agencies as well as by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educaci, Cultura i Universitats of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organization for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This paper has been designated LIGO document number LIGO-P1400182. NR 82 TC 12 Z9 12 U1 7 U2 62 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 39 DI 10.1088/0004-637X/813/1/39 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100039 ER PT J AU Arzoumanian, Z Brazier, A Burke-Spolaor, S Chamberlin, S Chatterjee, S Christy, B Cordes, JM Cornish, N Crowter, K Demorest, PB Dolch, T Ellis, JA Ferdman, RD Fonseca, E Garver-Daniels, N Gonzalez, ME Jenet, FA Jones, G Jones, ML Kaspi, VM Koop, M Lam, MT Lazio, TJW Levin, L Lommen, AN Lorimer, DR Luo, J Lynch, RS Madison, D McLaughlin, MA McWilliams, ST Nice, DJ Palliyagurui, N Pennucce, TT Ransom, SM Siemens, X Stairs, IH Stinebring, DR Stovall, K Swiggum, JK Vallisneri, M van Haasteren, R Wang, Y Zhu, WW AF Arzoumanian, Zaven Brazier, Adam Burke-Spolaor, Sarah Chamberlin, Sydney Chatterjee, Shami Christy, Brian Cordes, James M. Cornish, Neil Crowter, Kathryn Demorest, Paul B. Dolch, Timothy Ellis, Justin A. Ferdman, Robert D. Fonseca, Emmanuel Garver-Daniels, Nathan Gonzalez, Marjorie E. Jenet, Fredrick A. Jones, Glenn Jones, Megan L. Kaspi, Victoria M. Koop, Michael Lam, Michael T. Lazio, T. Joseph W. Levin, Lina Lommen, Andrea N. Lorimer, Duncan R. Luo, Jing Lynch, Ryan S. Madison, Dustin McLaughlin, Maura A. McWilliams, Sean T. Nice, David J. Palliyagurui, Nipuni Pennucce, Timothy T. Ransom, Scott M. Siemens, Xavier Stairs, Ingrid H. Stinebring, Daniel R. Stovall, Kevin Swiggum, Joseph K. Vallisneri, Michele van Haasteren, Rutger Wang, Yan Zhu, Weiwei CA NANOGrav Collaboration TI THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; methods: data analysis; pulsars: general ID BLACK-HOLE BINARIES; GRAVITATIONAL-WAVES; TIMING ARRAY; RELATIVISTIC GRAVITY; INTERSTELLAR PLASMA; RADIO PULSARS; PRECISION; LIMITS; SYSTEMS; TESTS AB We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. In conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or "red," timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals. C1 [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Arzoumanian, Zaven] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Brazier, Adam; Chatterjee, Shami; Cordes, James M.; Dolch, Timothy; Lam, Michael T.; Madison, Dustin] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Burke-Spolaor, Sarah; Demorest, Paul B.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Chamberlin, Sydney; Siemens, Xavier] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53201 USA. [Christy, Brian; Lommen, Andrea N.] Franklin & Marshall Coll, Dept Phys & Astron, Lancaster, PA 17604 USA. [Christy, Brian] Notre Dame Maryland Univ, Dept Math Comp Sci & Phys, Baltimore, MD 21210 USA. [Cornish, Neil] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Crowter, Kathryn; Fonseca, Emmanuel; Gonzalez, Marjorie E.; Stairs, Ingrid H.; Zhu, Weiwei] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Dolch, Timothy] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA. [Ellis, Justin A.; Lazio, T. Joseph W.; Vallisneri, Michele; van Haasteren, Rutger] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ferdman, Robert D.; Kaspi, Victoria M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Garver-Daniels, Nathan; Jones, Megan L.; Levin, Lina; Lorimer, Duncan R.; McLaughlin, Maura A.; McWilliams, Sean T.; Palliyagurui, Nipuni; Swiggum, Joseph K.] W Virginia Univ, Dept Phys, Morgantown, WV 26505 USA. [Gonzalez, Marjorie E.] Vancouver Coastal Hlth Author, Dept Nucl Med, Vancouver, BC V5Z 1M9, Canada. [Jenet, Fredrick A.; Luo, Jing; Wang, Yan] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Jones, Glenn] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Koop, Michael] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Levin, Lina] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Lynch, Ryan S.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Nice, David J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Pennucce, Timothy T.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Ransom, Scott M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Stinebring, Daniel R.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. [Stovall, Kevin] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Wang, Yan] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei Province, Peoples R China. [Zhu, Weiwei] Max Planck Inst Radioastron, D-53121 Bonn, Germany. RP Arzoumanian, Z (reprint author), NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 662, Greenbelt, MD 20771 USA. EM pdemores@nrao.edu OI Ransom, Scott/0000-0001-5799-9714; Nice, David/0000-0002-6709-2566 FU National Science Foundation (NSF) PIRE program [0968296]; NSF Physics Frontier Center [1430284]; NSERC Discovery Grant and Discovery Accelerator Supplement; Canadian Institute for Advanced Research; National Aeronautics and Space Administration; NSF [0923409]; NASA through Einstein Fellowship [PF4-150120, PF3-140116]; National Science Foundation of China [11503007] FX The NANOGrav project receives support from National Science Foundation (NSF) PIRE program award number 0968296 and NSF Physics Frontier Center award number 1430284. NANOGrav research at UBC is supported by an NSERC Discovery Grant and Discovery Accelerator Supplement and the Canadian Institute for Advanced Research. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. T.T.P. is a student at the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the NSF (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association. Some computational work was performed on the Nemo cluster at UWM supported by NSF grant No. 0923409. J.A.E. and R.v.H. acknowledge support by NASA through Einstein Fellowship grants PF4-150120 and PF3-140116, respectively. Y.W. is supported by the National Science Foundation of China under grant No. 11503007. NR 58 TC 28 Z9 29 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 65 DI 10.1088/0004-637X/813/1/65 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100065 ER PT J AU Dahle, H Gladders, MD Sharon, K Bayliss, MB Rigby, JR AF Dahle, H. Gladders, M. D. Sharon, K. Bayliss, M. B. Rigby, J. R. TI TIME DELAY MEASUREMENTS FOR THE CLUSTER-LENSED SEXTUPLE QUASAR SDSS J2222+2745 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; gravitational lensing: strong; quasars: individual (SDSS J2222+2745) ID IMAGE SEPARATION; GALAXIES; J1004+4112; J1029+2623; MASSES AB We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be tau(AB) = 47.7 +/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of tau(CA) = 722 +/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. C1 [Dahle, H.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Gladders, M. D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gladders, M. D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sharon, K.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bayliss, M. B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bayliss, M. B.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Rigby, J. R.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Dahle, H (reprint author), Univ Oslo, Inst Theoret Astrophys, POB 1029, NO-0315 Oslo, Norway. EM hdahle@astro.uio.no FU Research Council of Norway; NSF [AST-1009012] FX H.D. acknowledges support from the Research Council of Norway. M.B.B. acknowledges support from the NSF through grant AST-1009012. We acknowledge use of the new Gemini Fast Turnaround Program and the Fast-Track Service mode at NOT, which both provided important data for this paper. We thank the staffs of NOT and Gemini for their flexibility in supporting the execution of our monitoring campaign. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 24 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 67 DI 10.1088/0004-637X/813/1/67 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100067 ER PT J AU Doschek, GA Warren, HP Dennis, BR Reep, JW Caspi, A AF Doschek, G. A. Warren, H. P. Dennis, B. R. Reep, J. W. Caspi, A. TI FLARE FOOTPOINT REGIONS AND A SURGE OBSERVED BY HINODE/EIS, RHESSI, AND SDO/AIA SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: UV radiation; Sun: X-rays, gamma rays ID ULTRAVIOLET IMAGING SPECTROMETER; SOLAR-SPECTROSCOPIC-IMAGER; CHROMOSPHERIC EVAPORATION; MAGNETIC RECONNECTION; ELECTRON ACCELERATION; X-RAYS; EMISSION; PLASMA; RESOLUTION; SPECTRA AB The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for an M3.7 flare observed on 2011 September 25 at N12 E33 in active region 11302. The flare was observed in spectral lines of O VI, Fe X, Fe XII, Fe XIV, Fe XV, Fe XVI, Fe XVII, Fe XXIII, and Fe XXIV. The EIS observations were made coincident with hard X-ray bursts observed by RHESSI. Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena were observed, including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe XXIII and Fe XXIV lines were observed with Doppler speeds greater than 500 km s(-1). For ions such as Fe XV both evaporative outflows (similar to 200 km s(-1)) and downflows (similar to 30-50 km s(-1)) were observed. Nonthermal motions from 120 to 300 km s(-1) were measured in flare lines. In the surge, Doppler speeds are found from about 0 to over 250 km s(-1) in lines from ions such as Fe XIV. The nonthermal motions could be due to multiple sources slightly Doppler-shifted from each other or turbulence in the evaporating plasma. We estimate the energetics of the hard X-ray burst and obtain a total flare energy in accelerated electrons of >= 7 x 10(28) erg. This is a lower limit because only an upper limit can be determined for the low-energy cutoff to the electron spectrum. We find that detailed modeling of this event would require a multithreaded model owing to its complexity. C1 [Doschek, G. A.; Warren, H. P.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dennis, B. R.] NASA, Solar Phys Lab, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reep, J. W.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Caspi, A.] Southwest Res Inst, Boulder, CO 80302 USA. RP Doschek, GA (reprint author), Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. OI Caspi, Amir/0000-0001-8702-8273 FU JAXA; NAOJ; STFC; NASA; ESA (European Space Agency); NSC (Norwegian Space Center); NASA Hinode program; ONR/NRL 6.1 basic research funds; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX11AQ54H]; NASA [NNX12AH48G] FX Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, and NASA (USA) and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the postlaunch operation is provided by JAXA and NAOJ, STFC, NASA, ESA (European Space Agency), and NSC (Norwegian Space Center). We are grateful to the Hinode team for all their efforts in the design, build, and operation of the mission.; G.A.D. and H.P.W. acknowledge support from the NASA Hinode program and from ONR/NRL 6.1 basic research funds. J.W.R. was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant NNX11AQ54H). A.C. was supported by NASA grant NNX12AH48G. We would like to especially acknowledge and thank the referee for a careful and detailed reading of the manuscript, whose comments and suggestions have considerably improved the original version of this paper. NR 39 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 32 DI 10.1088/0004-637X/813/1/32 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100032 ER PT J AU Lonsdale, CJ Lacy, M Kimball, AE Blain, A Whittle, M Wilkes, B Stern, D Condon, J Kim, M Assef, RJ Tsai, CW Efstathiou, A Jones, S Eisenhardt, P Bridge, C Wu, J Lonsdale, CJ Jones, K Jarrett, T Smith, R AF Lonsdale, Carol J. Lacy, M. Kimball, A. E. Blain, A. Whittle, M. Wilkes, B. Stern, D. Condon, J. Kim, M. Assef, R. J. Tsai, C. -W. Efstathiou, A. Jones, S. Eisenhardt, P. Bridge, C. Wu, J. Lonsdale, Colin J. Jones, K. Jarrett, T. Smith, R. TI RADIO JET FEEDBACK AND STAR FORMATION IN HEAVILY OBSCURED, HYPERLUMINOUS QUASARS AT REDSHIFTS similar to 0.5-3. I. ALMA OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: evolution; galaxies: jets; quasars: general; radio continuum: galaxies; submillimeter: galaxies ID ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; MOLECULAR-HYDROGEN EMISSION; INTEGRAL-FIELD SPECTROSCOPY; SUPERMASSIVE BLACK-HOLES; COMPACT STEEP-SPECTRUM; LINE REGION; HOST GALAXIES; FOLLOW-UP; X-RAY AB We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 mu m (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7 < log(L-bol/L-circle dot) < 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 mu m, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7 < log P-3.0 GHz/W Hz(-1)) < 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(M-BH/M-circle dot) < 10.2. The rest-frame 1-5 mu m spectral energy distributions are very similar to the "Hot DOGs" (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (M-ISM/M-circle dot) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M-circle dot yr(-1), depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst. C1 [Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Condon, J.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Kimball, A. E.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Blain, A.; Jones, S.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Whittle, M.; Jones, K.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Wilkes, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, D.; Tsai, C. -W.; Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kim, M.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Kim, M.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Assef, R. J.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Santiago, Chile. [Assef, R. J.] NASA Postdoctoral Program NPP, San Jose, CA USA. [Efstathiou, A.] European Univ Cyprus, Sch Sci, CY-1516 Nicosia, Cyprus. [Bridge, C.] CALTECH, Pasadena, CA 91125 USA. [Wu, J.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Lonsdale, Colin J.] MIT, Haystack Observ, Westford, MA 01886 USA. [Jarrett, T.] Univ Cape Town, Dept Astron, ZA-7925 Cape Town, South Africa. [Smith, R.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. RP Lonsdale, CJ (reprint author), Natl Radio Astron Observ, Edgemont Rd, Charlottesville, VA 22903 USA. EM clonsdal@nrao.edu FU National Aeronautics and Space Administration; National Science Foundation [AST 90-15755]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; Gemini-CONICYT [32120009] FX This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00397. S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work is based on observations made with the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under funding from the National Science Foundation, contract AST 90-15755. This paper uses data from SDSS (DR 8). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. RJA was supported by Gemini-CONICYT grant number 32120009. We thank the anonymous referee for comments that helped improve the paper. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 128 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 45 DI 10.1088/0004-637X/813/1/45 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100045 ER PT J AU Masters, D Capak, P Stern, D Ilbert, O Salvato, M Schmidt, S Longo, G Rhodes, J Paltani, S Mobasher, B Hoekstra, H Hildebrandt, H Coupon, J Steinhardt, C Speagle, J Faisst, A Kalinich, A Brodwin, M Brescia, M Cavuoti, S AF Masters, Daniel Capak, Peter Stern, Daniel Ilbert, Olivier Salvato, Mara Schmidt, Samuel Longo, Giuseppe Rhodes, Jason Paltani, Stephane Mobasher, Bahram Hoekstra, Henk Hildebrandt, Hendrik Coupon, Jean Steinhardt, Charles Speagle, Josh Faisst, Andreas Kalinich, Adam Brodwin, Mark Brescia, Massimo Cavuoti, Stefano TI MAPPING THE GALAXY COLOR-REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark energy; dark matter; galaxies: distances and redshifts; large-scale structure of universe; methods: statistical ID SELF-ORGANIZING MAPS; WEAK-LENSING TOMOGRAPHY; SPECTRAL ENERGY-DISTRIBUTIONS; SPECTROSCOPIC REDSHIFTS; CROSS-CORRELATIONS; DEEP SURVEY; CLASSIFICATION; FIELD; PROSPECTS; EVOLUTION AB Calibrating the photometric redshifts of greater than or similar to 10(9) galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where-in galaxy color space-redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the colorred-shift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST. C1 [Masters, Daniel; Steinhardt, Charles; Faisst, Andreas] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Capak, Peter] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Stern, Daniel; Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ilbert, Olivier] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Salvato, Mara] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Schmidt, Samuel] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Longo, Giuseppe] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy. [Rhodes, Jason] Univ Tokyo, Kavli Inst Phys & Math Universe, Chiba 2778582, Japan. [Paltani, Stephane; Coupon, Jean] Univ Geneva, Dept Astron, CH-1290 Versoix, Switzerland. [Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Hoekstra, Henk] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Hildebrandt, Hendrik] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Speagle, Josh] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Kalinich, Adam] MIT, Cambridge, MA 02139 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Brescia, Massimo; Cavuoti, Stefano] INAF, Astron Observ Capodimonte, I-80131 Naples, Italy. RP Masters, D (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RI Cavuoti, Stefano/B-4650-2017; OI Cavuoti, Stefano/0000-0002-3787-4196; Brescia, Massimo/0000-0001-9506-5680 FU NASA ROSES grant [12-EUCLID12-0004]; JPL; DFG Emmy Noether grant [Hi 1495/2-1]; Department of Energy [DESC0009999]; European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program [185.A-0791] FX We thank the anonymous referee for constructive comments that significantly improved this work. We thank Dr. Ranga Ram Chary, Dr. Ciro Donalek, and Dr. Mattias Carrasco-Kind for useful discussions. D.M., P.C., D.S., and J.R., acknowledge support by NASA ROSES grant 12-EUCLID12-0004. J.R. is supported by JPL, run by Caltech for NASA. H.Ho. is supported by the DFG Emmy Noether grant Hi 1495/2-1. S.S. was supported by Department of Energy grant DESC0009999. Data from the VUDS survey are based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. This work is based in part on data products made available at the CESAM data center, Laboratoire d'Astrophysique de Marseille. NR 52 TC 10 Z9 10 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 53 DI 10.1088/0004-637X/813/1/53 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100053 ER PT J AU Mirocha, J Harker, GJA Burns, JO AF Mirocha, Jordan Harker, Geraint J. A. Burns, Jack O. TI INTERPRETING THE GLOBAL 21-cm SIGNAL FROM HIGH REDSHIFTS. II. PARAMETER ESTIMATION FOR MODELS OF GALAXY FORMATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark ages, reionization, first stars; diffuse radiation; early universe; methods: statistical ID X-RAY BINARIES; STAR-FORMING GALAXIES; ULTRAVIOLET LUMINOSITY FUNCTION; HUBBLE-SPACE-TELESCOPE; PRE-REIONIZATION ERA; CM POWER SPECTRUM; INTERGALACTIC MEDIUM; COSMOLOGICAL REIONIZATION; PAPER-64 CONSTRAINTS; EARLIEST GALAXIES AB Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic data set, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hr of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Ly alpha, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to similar to 0.1 dex in each dimension) so long as all three spectral features expected to occur between 40 less than or similar to nu/MHz less than or similar to 120 are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts z greater than or similar to 15, (ii) extend z less than or similar to 4 upper limits on the normalization of the X-ray luminosity star formation rate (L-X-SFR) relation out to z similar to 20, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at z similar to 12. Though our approach is general, the importance of a broadband measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from similar to 40 to 120 MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side. C1 [Mirocha, Jordan; Burns, Jack O.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Mirocha, Jordan; Burns, Jack O.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Harker, Geraint J. A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Burns, Jack O.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mirocha, J (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90024 USA. EM mirocha@astro.ucla.edu FU NASA Earth and Space Science Fellowship program [NNX14AN79H]; European Union [327999]; LUNAR consortium - NASA Lunar Science Institute [NNA09DB30A]; Directors Office at the NASA Ames Research Center [NNX15AD20A]; National Science Foundation [CNS-0821794]; University of Colorado Boulder FX The authors would like to thank Abhi Datta and Brian Crosby for useful conversations, and the anonymous referee for many insightful comments that helped improve this paper. J.M. acknowledges support through the NASA Earth and Space Science Fellowship program, grant number NNX14AN79H. G.J.A.H is supported through the People Program (Marie Curie Actions) of the European Union's Seventh Framework Program (FP7/2007-2013) under REA grant agreement no. 327999. The authors also wish to acknowledge funding through the LUNAR consortium, which was funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the moon, and additional support provided by the Directors Office at the NASA Ames Research Center (grant number NNX15AD20A). This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research. NR 81 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 11 DI 10.1088/0004-637X/813/1/11 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100011 ER PT J AU Perez, LM Chandler, CJ Isella, A Carpenter, JM Andrews, SM Calvet, N Corder, SA Deller, AT Dullemond, CP Greaves, JS Harris, RJ Henning, T Kwon, W Lazio, J Linz, H Mundy, LG Ricci, L Sargent, AI Storm, S Tazzari, M Testi, L Wilner, DJ AF Perez, Laura M. Chandler, Claire J. Isella, Andrea Carpenter, John M. Andrews, Sean M. Calvet, Nuria Corder, Stuartt A. Deller, Adam T. Dullemond, Cornelis P. Greaves, Jane S. Harris, Robert J. Henning, Thomas Kwon, Woojin Lazio, Joseph Linz, Hendrik Mundy, Lee G. Ricci, Luca Sargent, Anneila I. Storm, Shaye Tazzari, Marco Testi, Leonardo Wilner, David J. TI GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25 SO ASTROPHYSICAL JOURNAL LA English DT Article DE protoplanetary disks; radio continuum: planetary systems; stars: formation; stars: individual (CY Tau, DoAr 25) ID ANGULAR RESOLUTION OBSERVATIONS; PROTOPLANETARY ACCRETION DISKS; SPECTRAL ENERGY-DISTRIBUTIONS; ROSSBY-WAVE INSTABILITY; MILLIMETER WAVELENGTHS; OPTICAL-CONSTANTS; SIZE DISTRIBUTION; PLANET FORMATION; FORMING REGION; DUST PARTICLES AB We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at lambda = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at lambda = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, beta, is consistent with the observed dust emission in both disks, with low-beta in the inner disk and high-beta in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (a(max)), we constrain radial variations of a(max) in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our a(max)(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions. C1 [Perez, Laura M.; Chandler, Claire J.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Isella, Andrea] Rice Univ, Houston, TX 77005 USA. [Carpenter, John M.; Sargent, Anneila I.] CALTECH, Pasadena, CA 91125 USA. [Andrews, Sean M.; Ricci, Luca; Wilner, David J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Calvet, Nuria] Univ Michigan, Ann Arbor, MI 48109 USA. [Corder, Stuartt A.] Joint ALMA Observ, Santiago, Chile. [Deller, Adam T.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Dullemond, Cornelis P.] Heidelberg Univ, Ctr Astron, Heidelberg, Germany. [Greaves, Jane S.] Univ St Andrews, Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Harris, Robert J.] Univ Illinois, Urbana, IL 61801 USA. [Henning, Thomas; Linz, Hendrik] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kwon, Woojin] Korea Astron & Space Sci Inst, Daejeon 34055, South Korea. [Lazio, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Mundy, Lee G.; Storm, Shaye] Univ Maryland, College Pk, MD 20742 USA. [Tazzari, Marco; Testi, Leonardo] European So Observ, D-85748 Garching, Germany. [Testi, Leonardo] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. RP Perez, LM (reprint author), Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. OI Tazzari, Marco/0000-0003-3590-5814; Dullemond, Cornelis/0000-0002-7078-5910; Deller, Adam/0000-0001-9434-3837 FU Smithsonian Institution; Academia Sinica; National Aeronautics and Space Administration FX We thank the referee for valuable comments. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. The SMA is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, funded by the Smithsonian Institution and Academia Sinica. Part of this research was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National Aeronautics and Space Administration. NR 82 TC 11 Z9 11 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 41 DI 10.1088/0004-637X/813/1/41 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100041 ER PT J AU Wiktorowicz, SJ Nofi, LA Jontof-Hutter, D Kopparla, P Laughlin, GP Hermis, N Yung, YL Swain, MR AF Wiktorowicz, Sloane J. Nofi, Larissa A. Jontof-Hutter, Daniel Kopparla, Pushkar Laughlin, Gregory P. Hermis, Ninos Yung, Yuk L. Swain, Mark R. TI A GROUND-BASED ALBEDO UPPER LIMIT FOR HD 189733b FROM POLARIMETRY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; planetary systems; planets and satellites: atmospheres; planets and satellites: individual (HD 189733b); polarization; techniques: polarimetric ID HUBBLE-SPACE-TELESCOPE; LINEAR-POLARIZATION; EXTRASOLAR PLANET; TRANSMISSION SPECTROSCOPY; CIRCULAR-POLARIZATION; AGGREGATE PARTICLES; ATMOSPHERIC HAZE; SCATTERED-LIGHT; HOT JUPITER; STARS AB We present 50 nights of polarimetric observations of HD 189733 in the B band using the POLISH2 aperture-integrated polarimeter at the Lick Observatory Shane 3-m telescope. This instrument, commissioned in 2011, is designed to search for Rayleigh scattering from short-period exoplanets due to the polarized nature of scattered light. Since these planets are spatially unresolvable from their host stars, the relative contribution of the planet-to-total system polarization is expected to vary with an amplitude of the order of 10 parts per million (ppm) over the course of the orbit. Non-zero and also variable at the 10 ppm level, the inherent polarization of the Lick 3-m telescope limits the accuracy of our measurements and currently inhibits conclusive detection of scattered light from this exoplanet. However, the amplitude of observed variability conservatively sets a 99.7% confidence upper limit to the planet-induced polarization of the system of 60 ppm in the B band, which is consistent with a previous upper limit from the POLISH instrument at the Palomar Observatory 5-m telescope. A physically motivated Rayleigh scattering model, which includes the depolarizing effects of multiple scattering, is used to conservatively set a 99.7% confidence upper limit to the geometric albedo of HD 189733b of A(g) < 0.40. This value is consistent with the value A(g) = 0.226 +/- 0.091 derived from occultation observations with Hubble Space Telescope STIS, but it is inconsistent with the large A(g) = 0.61 +/- 0.12 albedo reported by Berdyugina et al. C1 [Wiktorowicz, Sloane J.; Nofi, Larissa A.; Laughlin, Gregory P.; Hermis, Ninos] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Wiktorowicz, Sloane J.] Aerosp Corp, Remote Sensing Dept, El Segundo, CA 90245 USA. [Nofi, Larissa A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Jontof-Hutter, Daniel] Penn State Univ, Dept Astron, Davey Lab, University Pk, PA 16802 USA. [Jontof-Hutter, Daniel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kopparla, Pushkar; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Swain, Mark R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wiktorowicz, SJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM sloane.j.wiktorowicz@aero.org OI Wiktorowicz, Sloane/0000-0003-4483-5037 FU California Institute of Technology (Caltech); NASA through the Sagan Fellowship Program; NASA Origins of Solar Systems program [NNX13AF63G]; NAI Virtual Planetary Laboratory grant from the University of Washington FX We would like to acknowledge the tireless efforts of the Lick Observatory staff. This work was performed (in part) under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. S.J.W. and L.A.N. acknowledge support from the NASA Origins of Solar Systems program through grant NNX13AF63G. P.K. and Y.L.Y. acknowledge support from an NAI Virtual Planetary Laboratory grant from the University of Washington to the Jet Propulsion Laboratory and California Institute of Technology. Research at Lick Observatory is partially supported by a generous gift from Google. NR 49 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 48 DI 10.1088/0004-637X/813/1/48 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100048 ER PT J AU Zheng, YH Kuznetsova, MM Pulkkinen, AA Maddox, MM Mays, ML AF Zheng, Yihua Kuznetsova, Maria M. Pulkkinen, Antti A. Maddox, Marlo M. Mays, Mona Leila TI Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Forecasting; space weather; spacecraft charging ID CORONAL MASS EJECTIONS; RING CURRENT; PLASMA SHEET; SOLAR-WIND; RADIATION BELT; CONE MODEL; SATELLITE; PRECIPITATION; OPERATIONS; MORPHOLOGY AB The Space Weather Research Center (http://swrc.gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated SpaceWeather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed. C1 [Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zheng, YH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM yihua.zheng@nasa.gov; maria.m.kuznetsova@nasa.gov; antti.a.pulkkinen@nasa.gov; marlo.m.maddox@nasa.gov; m.leila.mays@nasa.gov FU National Aeronautics and Space Administration; Directorate for Biological Sciences FX This work was supported in part by the National Aeronautics and Space Administration and in part by the Directorate for Biological Sciences. NR 47 TC 0 Z9 0 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD NOV PY 2015 VL 43 IS 11 BP 3925 EP 3932 DI 10.1109/TPS.2015.2479575 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CW3EW UT WOS:000364875800020 ER PT J AU Dekany, J Christensen, J Dennison, JR Jensen, AE Wilson, G Schneider, T Bowers, CW Meloy, R AF Dekany, Justin Christensen, Justin Dennison, John Robert Jensen, Amberly Evans Wilson, Gregory Schneider, Todd Bowers, Charles W. Meloy, Robert TI Variations in Cathodoluminescent Intensity of Spacecraft Materials Exposed to Energetic Electron Bombardment SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Cathodoluminescence; electron flux; light emission; materials testing; space environment effects AB Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative physics-based model has been developed to predict the intensity of the total glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for more than 20 types of dielectric and composite materials based on this model, which spans more than three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions. C1 [Dekany, Justin; Christensen, Justin; Dennison, John Robert; Jensen, Amberly Evans; Wilson, Gregory] Utah State Univ, Dept Phys, Mat Phys Grp, Logan, UT 84322 USA. [Schneider, Todd] NASA, Marshall Space Flight Ctr, Environm Effects Branch, Huntsville, AL 35812 USA. [Bowers, Charles W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meloy, Robert] ASRC Fed Space & Def Inc, Greenbelt, MD 20707 USA. RP Dekany, J (reprint author), Utah State Univ, Dept Phys, Mat Phys Grp, Logan, UT 84322 USA. EM jdekany.phyx@gmail.com; j.christensen@aggiemail.usu.edu; jr.dennison@usu.edu; amb.eva@aggiemail.usu.edu; gregdwilson@gmail.com; todd.schneider@nasa.gov; charles.w.bowers@nasa.gov; robert.m.meloy@nasa.gov OI Dennison, JR/0000-0002-5504-3353 FU National Aeronautics and Space Administration (NASA) Goddard Space Flight Center; Air Force Research Laboratory through a National Research Council Senior Research Fellowship; NASA Space Technology Research Fellowship FX This work was supported by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center. The work of J. R. Dennison was supported by the Air Force Research Laboratory through a National Research Council Senior Research Fellowship. The work of A. E. Jensen was supported by a NASA Space Technology Research Fellowship. NR 23 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD NOV PY 2015 VL 43 IS 11 BP 3948 EP 3954 DI 10.1109/TPS.2015.2480086 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CW3EW UT WOS:000364875800023 ER PT J AU Chahat, N Reck, TJ Jung-Kubiak, C Nguyen, T Sauleau, R Chattopadhyay, G AF Chahat, Nacer Reck, Theodore J. Jung-Kubiak, Cecile Tinh Nguyen Sauleau, Ronan Chattopadhyay, Goutam TI 1.9-THz Multiflare Angle Horn Optimization for Space Instruments SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Antenna; body of revolution finite-difference time-domain (BoR-FDTD); BoR-MoM; genetic algorithm; horn antenna; measurement; submillimeter waves; terahertz (THz) ID GENETIC ALGORITHM; CONICAL HORNS; DESIGN; FDTD AB A multiflare angle horn is optimized with an in-house software using Body of Revolution finite-difference time-domain solver (BoR-FDTD) combined with a genetic algorithm (GA). This antenna is optimized to demonstrate low cross polarization, low side-lobe level, good return loss, and excellent beam circularity over the 1700-2100-GHz frequency range. A prototype with a directivity of 31.7 dBi and a cross-polarization level below -22 dBi was measured at 1.9 THz with excellent agreement with calculation. C1 [Chahat, Nacer; Reck, Theodore J.; Jung-Kubiak, Cecile; Chattopadhyay, Goutam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tinh Nguyen; Sauleau, Ronan] Univ Rennes 1, UMR CNRS 6164, IETR, F-35042 Rennes, France. RP Chahat, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM nacer.e.chahat@jpl.nasa.gov FU National Aeronautics and Space Administration; Direction Generale de l'Armement (DGA) FX This work was supported in part by the National Aeronautics and Space Administration and the Direction Generale de l'Armement (DGA). NR 16 TC 6 Z9 6 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD NOV PY 2015 VL 5 IS 6 BP 914 EP 921 DI 10.1109/TTHZ.2015.2487781 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA CW9FJ UT WOS:000365303800007 ER PT J AU Naud, CM Kahn, BH AF Naud, Catherine M. Kahn, Brian H. TI Thermodynamic Phase and Ice Cloud Properties in Northern Hemisphere Winter Extratropical Cyclones Observed by Aqua AIRS SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Clouds; Extratropical cyclones; Cloud microphysics; Storm environments ID MIDLATITUDE CYCLONES; CIRCULATION SYSTEMS; AEROSOL IMPACTS; FRONTAL CLOUDS; SOUTHERN-OCEAN; SATELLITE DATA; PRECIPITATION; WARM; MODEL; GCM AB Ice cloud properties in Northern Hemisphere winter extratropical cyclones are examined using the Atmospheric Infrared Sounder (AIRS), version 6, cloud products. The cloud thermodynamic phase product indicates that warm frontal clouds are dominated by ice, liquid-phase clouds occur outside of the warm frontal region, and supercooled or mixed-phase clouds are found in the southwestern quadrant of the cyclones. Stratiform ice clouds populate the warm frontal region and portions of the cold sector while convective ice clouds populate southeastern portions of the warm front and the southeastern quadrant. Total cloud cover is smaller in land cyclones than in ocean cyclones, especially in the southwestern quadrant and the warm frontal region. Ice cloud cover is less over land in the warm frontal region, because land cyclones are generally weaker and drier than ocean cyclones. The impact of cyclone average precipitable water (PW) and the magnitude of 850-hPa vertical ascent (850) on the thermodynamic phase, occurrence of stratiform or convective ice cloud, ice particle effective diameter, optical thickness, and cloud-top temperature are discussed. When comparing land and ocean cyclones with similar PW and (850), ice cloud coverage is found to be greater over land. Convective ice cloud occurs more often and is deeper over land. Supercooled cloud appears to persist to colder temperatures over ocean than over land, especially in the warm frontal region. These results suggest that, over land, ice cloud formation in warm fronts is possibly more efficient because of a greater aerosol amount from local or regional sources. C1 [Naud, Catherine M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Kahn, Brian H.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA USA. RP Naud, CM (reprint author), Columbia Univ, Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. EM cn2140@columbia.edu FU NASA Science of Terra and Aqua Grant [NNX11AH22G]; NASA CloudSat Science team recompete Grant [NNX13AQ33G]; NASA Science of Terra and Aqua program Grant [NNN13D455T]; AIRS Project at JPL FX The NASA MAP Climatology of Midlatitude Storminess database can be obtained at http://gcss-dime.giss.nasa.gov/mcms. The authors thank Mike Bauer for providing the ERA-Interim-based cyclone tracks. The MERRA files were obtained from the Goddard Earth Sciences Data and Information Services Center. The AIRS, version 6, datasets were processed by and obtained from the Goddard Earth Services Data and Information Services Center (http://daac.gsfc.nasa.gov/) and the AIRS Project Science and Computing Facility at the Jet Propulsion Laboratory (JPL). CMN was supported by the NASA Science of Terra and Aqua Grant NNX11AH22G and NASA CloudSat Science team recompete Grant NNX13AQ33G. BHK was supported by the NASA Science of Terra and Aqua program Grant NNN13D455T and the AIRS Project at JPL. A portion of this research was carried out at the JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged. NR 50 TC 2 Z9 2 U1 2 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2015 VL 54 IS 11 BP 2283 EP 2303 DI 10.1175/JAMC-D-15-0045.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CX1VZ UT WOS:000365485000001 ER PT J AU Jensen-Clem, R Muirhead, PS Bottom, M Wallace, JK Vasisht, G Johnson, JA AF Jensen-Clem, Rebecca Muirhead, Philip S. Bottom, Michael Wallace, J. Kent Vasisht, Gautam Johnson, John Asher TI Attaining Doppler Precision of 10 cm s(-1) with a Lock-in Amplified Spectrometer SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID EXTERNALLY DISPERSED INTERFEROMETER; STELLAR RADIAL-VELOCITIES; LASER FREQUENCY COMBS; ADAPTIVE OPTICS; SUPER-EARTHS; SPECTROGRAPH; MASS; PLANETS; TELESCOPE; STARS AB We explore the radial velocity performance benefits of coupling starlight to a fast-scanning interferometer and a fast-readout spectrometer with zero readout noise. By rapidly scanning an interferometer, we can decouple wavelength calibration errors from precise radial velocity measurements, exploiting the advantages of lock-in amplification. In a Bayesian framework, we investigate the correlation between wavelength calibration errors and resulting radial velocity errors. We construct an end-to-end simulation of this approach to address the feasibility of achieving 10 cm s(-1) radial velocity precision on a typical Sun-like star using existing, 5 m-class telescopes. We find that such a precision can be reached in a single night, opening up possibilities for ground-based detections of Earth-Sun analog systems. C1 [Jensen-Clem, Rebecca; Bottom, Michael] CALTECH, Pasadena, CA 91101 USA. [Muirhead, Philip S.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Wallace, J. Kent; Vasisht, Gautam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Johnson, John Asher] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Jensen-Clem, R (reprint author), CALTECH, Pasadena, CA 91101 USA. RI Muirhead, Philip/H-2273-2014 OI Muirhead, Philip/0000-0002-0638-8822 FU National Science Foundation Graduate Research Fellowship [DGE-1144469]; Hubble Fellowship Program; NASA through Hubble Fellowship - STScI [HST-HF-51326.01-A, NAS 5-26555]; Directors Research and Development Fund; California Institute of Technology/Jet Propulsion Laboratory; National Space Technology Research Fellowship; David and Lucile Packard Foundation; Alfred P. Sloan Foundation; Caltech-JPL President and Director's fund FX This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469. P. S. M. acknowledges support for his work from the Hubble Fellowship Program, provided by NASA through Hubble Fellowship grant HST-HF-51326.01-A, awarded by the STScI, which is operated by the AURA, Inc., for NASA, under contract NAS 5-26555. P. S. M, G. V., and J. K. W. were supported by the Directors Research and Development Fund and the California Institute of Technology/Jet Propulsion Laboratory. M. B. is supported by a National Space Technology Research Fellowship. J. A. J. is supported by generous grants from the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation. We would like to thank Lynne Hillenbrand for useful discussions. J. K. W. and G. V. are supported by the Caltech-JPL President and Director's fund. NR 34 TC 2 Z9 2 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD NOV PY 2015 VL 127 IS 957 BP 1105 EP 1112 DI 10.1086/683796 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW2IC UT WOS:000364814000002 ER PT J AU Angerhausen, D DeLarme, E Morse, JA AF Angerhausen, Daniel DeLarme, Em Morse, Jon A. TI A Comprehensive Study of Kepler Phase Curves and Secondary Eclipses: Temperatures and Albedos of Confirmed Kepler Giant Planets SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID SUN-LIKE STAR; MASSIVE HOT JUPITER; EARTH-SIZED PLANET; LIGHT CURVES; HABITABLE ZONE; SOPHIE VELOCIMETRY; ATMOSPHERIC CHARACTERIZATION; TRANSITING PLANET; TIMING VARIATIONS; ERROR-CORRECTION AB We present a comprehensive study of phase curves and secondary eclipses in the Kepler data set using all data from 16 quarters that were available in 2013-2014. Our sample consists of 20 confirmed planets with R-p > 4 R-e, P < 10 d, V-mag < 15. Here we derive their temperatures and albedos, with an eye toward constraining models for the formation and evolution of such planets. Where there was overlap our results confirm parameters derived by previous studies, whereas we present new results for Kepler 1b-8b, 12b-15b, 17b, 40b, 41b, 43b, 44b, 76b, 77b, and 412b derived in a consistent manner. We also present light-curve analyses for Kepler 91b and Kepler 74b, which both show extra dimmings at times other than from the expected primary and secondary eclipses. Corrected for thermal emission, we find most of the massive planets from our sample to be low in albedo (< 0.1) with a few having higher albedo (> 0.1). C1 [Angerhausen, Daniel; DeLarme, Em; Morse, Jon A.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Angerhausen, Daniel] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeLarme, Em] Univ Cent Florida, Planetary Sci Grp, Dept Phys, Orlando, FL 32816 USA. [Morse, Jon A.] BoldlyGo Inst, New York, NY 10018 USA. RP Angerhausen, D (reprint author), Rensselaer Polytech Inst, 110 Eighth St, Troy, NY 12180 USA. FU NASA Postdoctoral Program at Goddard Space Flight Center FX This research was supported by internal funds at the Rensselaer Polytechnic Institute. DA's research was also supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 85 TC 9 Z9 9 U1 3 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD NOV PY 2015 VL 127 IS 957 BP 1113 EP 1130 DI 10.1086/683797 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW2IC UT WOS:000364814000003 ER PT J AU Rauscher, BJ AF Rauscher, Bernard J. TI Teledyne H1RG, H2RG, and H4RG Noise Generator SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article AB This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including: (1) white "read noise"; (2) residual bias drifts; (3) pink 1/f noise; (4) alternating column noise; and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4. The source code is freely available for download from http://jwst.nasa.gov/publications.html. C1 [Rauscher, Bernard J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rauscher, BJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Bernard.J.Rauscher@nasa.gov FU NASA as part of JWST Project FX This work was supported by NASA as part of the JWST Project. NG would not have been possible without many invaluable contributions from the NIRSpec Detector Subsystem Team at Goddard, the JWST ISIM team, and the ESA NIRSpec Team. With regard strictly to minimizing and understanding the as-built system noise, Yiting Wen and Markus Loose played the lead roles in tuning the system for peak performance. More than anybody else, Harvey Moseley realized that understanding the noise in detail would allow us to develop better tools for removing it. Dale Fixsen provided the mathematical tools to do so, and Rick Arendt implemented them. I wish to thank Brent Mott for his superb technical management of the NIRSpec Detector Subsystem throughout the challenging integration and test campaign, and also Donna Wilson for taking ownership of the SIDECAR ASIC and mastering the practicalities of making it work for JWST. Ray Wright routinely performed above and beyond the call of duty by learning Python at about the same time as I did and developing tools for analyzing JWST telemetry that greatly facilitated understanding what causes the noise. Pierre Ferruit of ESA provided many helpful comments on both the source code and manuscript. Chaz Shapiro of NASA JPL steered me toward better ways of handling several challenges in the Python implementation. I wish to thank the referee for providing many helpful comments, on both the text and source code. A great many other people contributed important things, but I will stop here lest this acknowledgment become so long that nobody reads it. NR 6 TC 1 Z9 1 U1 1 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD NOV PY 2015 VL 127 IS 957 BP 1144 EP 1151 DI 10.1086/684082 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW2IC UT WOS:000364814000005 ER PT J AU Joachimi, B Cacciato, M Kitching, TD Leonard, A Mandelbaum, R Schafer, BM Sifon, C Hoekstra, H Kiessling, A Kirk, D Rassat, A AF Joachimi, Benjamin Cacciato, Marcello Kitching, Thomas D. Leonard, Adrienne Mandelbaum, Rachel Schaefer, Bjoern Malte Sifon, Cristobal Hoekstra, Henk Kiessling, Alina Kirk, Donnacha Rassat, Anais TI Galaxy Alignments: An Overview SO SPACE SCIENCE REVIEWS LA English DT Review DE Galaxies: evolution; Galaxies: haloes; Galaxies: interactions; Large-scale structure of Universe; Gravitational lensing: weak ID DARK-MATTER HALOES; LARGE-SCALE STRUCTURE; WEAK-LENSING SURVEYS; DIGITAL-SKY-SURVEY; N-BODY SIMULATIONS; INTRINSIC ELLIPTICITY CORRELATION; MASSIVEBLACK-II SIMULATION; GALACTIC ANGULAR MOMENTA; LUMINOUS RED GALAXIES; TIDAL-TORQUE THEORY AB The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade. C1 [Joachimi, Benjamin; Leonard, Adrienne; Kirk, Donnacha] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Cacciato, Marcello; Sifon, Cristobal; Hoekstra, Henk] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Kitching, Thomas D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Schaefer, Bjoern Malte] Heidelberg Univ, Astron Recheninst, Zentrum Astron, D-69120 Heidelberg, Germany. [Kiessling, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rassat, Anais] EPFL, Observ Sauverny, Lab Astrophys LASTRO, CH-1290 Versoix, Switzerland. RP Joachimi, B (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM b.joachimi@ucl.ac.uk RI Mandelbaum, Rachel/N-8955-2014; EPFL, Physics/O-6514-2016; OI Mandelbaum, Rachel/0000-0003-2271-1527; Leonard, Adrienne/0000-0002-5976-0405; Kiessling, Alina/0000-0002-2590-1273; Sifon, Cristobal/0000-0002-8149-1352; Rassat, Anais/0000-0002-5476-6461 FU International Space Science Institute Bern; STFC Ernest Rutherford Fellowship [ST/J004421/1]; Netherlands organisation for Scientific Research (NWO) Vidi grant [639.042.814]; Royal Society URF; European Union Seventh Framework Programme [624151]; NASA ROSES [12-EUCLID12-0004, 13-ATP13-0019]; European Research Council under FP7 [279396]; JPL FX We acknowledge the support of the International Space Science Institute Bern for two workshops at which this work was conceived. We thank E. Brunnstrom for an investigation into alignments in Palomar Sky Survey catalogues, and our referee, J. Blazek, for many helpful comments and stimulating discussions. We are grateful to B. Binggeli, C. Heymans, S. Singh, A. Slosar, A. Tenneti, and I. Trujillo for sharing their data.; BJ acknowledges support by an STFC Ernest Rutherford Fellowship, grant reference ST/J004421/1. MC was supported by the Netherlands organisation for Scientific Research (NWO) Vidi grant 639.042.814. TDK is supported by a Royal Society URF. AL acknowledges the support of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 624151. RM acknowledges the support of NASA ROSES 12-EUCLID12-0004. CS and HH acknowledge support from the European Research Council under FP7 grant number 279396. AK was supported in part by JPL, run under a contract by Caltech for NASA. AK was also supported in part by NASA ROSES 13-ATP13-0019 and NASA ROSES 12-EUCLID12-0004. NR 300 TC 23 Z9 23 U1 2 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2015 VL 193 IS 1-4 BP 1 EP 65 DI 10.1007/s11214-015-0177-4 PG 65 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8TK UT WOS:000365272000001 ER PT J AU Kiessling, A Cacciato, M Joachimi, B Kirk, D Kitching, TD Leonard, A Mandelbaum, R Schafer, BM Sifon, C Brown, ML Rassat, A AF Kiessling, Alina Cacciato, Marcello Joachimi, Benjamin Kirk, Donnacha Kitching, Thomas D. Leonard, Adrienne Mandelbaum, Rachel Schaefer, Bjorn Malte Sifon, Cristobal Brown, Michael L. Rassat, Anais TI Galaxy Alignments: Theory, Modelling & Simulations SO SPACE SCIENCE REVIEWS LA English DT Review DE Galaxies: evolution; Galaxies: haloes; Galaxies: interactions; Large-scale structure of Universe; Gravitational lensing: weak ID DARK-MATTER HALOES; LARGE-SCALE STRUCTURE; WEAK-LENSING MEASUREMENTS; N-BODY SIMULATIONS; DIGITAL SKY SURVEY; MASSIVEBLACK-II SIMULATION; INTRINSIC ELLIPTICITY CORRELATIONS; ANGULAR-MOMENTUM DISTRIBUTION; LUMINOUS RED GALAXIES; COSMIC-WEB AB The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both -body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work. C1 [Kiessling, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cacciato, Marcello; Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Joachimi, Benjamin; Kirk, Donnacha; Leonard, Adrienne] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Kitching, Thomas D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Schaefer, Bjorn Malte] Heidelberg Univ, Astronom Recheninst, Zentrum Astron, D-69120 Heidelberg, Germany. [Brown, Michael L.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Rassat, Anais] EPFL, Observ Sauverny, Lab Astrophys LASTRO, CH-1290 Versoix, Switzerland. RP Kiessling, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alina.A.Kiessling@jpl.nasa.gov RI Mandelbaum, Rachel/N-8955-2014; EPFL, Physics/O-6514-2016; OI Mandelbaum, Rachel/0000-0003-2271-1527; Leonard, Adrienne/0000-0002-5976-0405; Kiessling, Alina/0000-0002-2590-1273; Rassat, Anais/0000-0002-5476-6461; Sifon, Cristobal/0000-0002-8149-1352 FU International Space Science Institute Bern; JPL; NASA ROSES [13-ATP13-0019, 12-EUCLID12-0004]; Netherlands organisation for Scientific Research (NWO) Vidi grant [639.042.814]; STFC Ernest Rutherford Fellowship [ST/J004421/1]; Royal Society URF; European Union Seventh Framework Programme [624151]; European Research Council under FP7 [279396]; European Research Council (EC FP7) [280127]; STFC Advanced/Halliday fellowship [ST/I005129/1] FX We acknowledge the support of the International Space Science Institute Bern for two workshops at which this work was conceived. We would like to thank Henk Hoekstra for very useful discussions and for his comments on drafts of this work. We would also like to thank the anonymous referee for their careful reading and detailed suggestions that helped to improve the clarity of this review. We are grateful to J. Blazek, S. Singh and M. Velliscig for sharing their data and figures. We would also like to thank the participants of the Lorentz workshop: Extracting information from weak lensing: Small scales = Big problem, for their useful discussions and insights.; A. Kiessling was supported in part by JPL, run under a contract by Caltech for NASA. A. Kiessling was also supported in part by NASA ROSES 13-ATP13-0019 and NASA ROSES 12-EUCLID12-0004. M. Cacciato was supported by the Netherlands organisation for Scientific Research (NWO) Vidi grant 639.042.814. B. Joachimi acknowledges support by an STFC Ernest Rutherford Fellowship, grant reference ST/J004421/1. T.D. Kitching is supported by a Royal Society URF. A. Leonard acknowledges the support of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 624151. R. Mandelbaum acknowledges the support of NASA ROSES 12-EUCLID12-0004. C. Sifon acknowledges support from the European Research Council under FP7 grant number 279396. M.L. Brown is supported by the European Research Council (EC FP7 grant number 280127) and by a STFC Advanced/Halliday fellowship (grant number ST/I005129/1). NR 203 TC 17 Z9 17 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2015 VL 193 IS 1-4 BP 67 EP 136 DI 10.1007/s11214-015-0203-6 PG 70 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8TK UT WOS:000365272000002 ER PT J AU Kiessling, A Cacciato, M Joachimi, B Kirk, D Kitching, TD Leonard, A Mandelbaum, R Schafer, BM Sifon, C Brown, ML Rassat, A AF Kiessling, Alina Cacciato, Marcello Joachimi, Benjamin Kirk, Donnacha Kitching, Thomas D. Leonard, Adrienne Mandelbaum, Rachel Schaefer, Bjorn Malte Sifon, Cristobal Brown, Michael L. Rassat, Anais TI Galaxy Alignments: Theory, Modelling & Simulations (vol 193, pg 67, 2015) SO SPACE SCIENCE REVIEWS LA English DT Correction C1 [Kiessling, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cacciato, Marcello; Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Joachimi, Benjamin; Kirk, Donnacha; Leonard, Adrienne] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Kitching, Thomas D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Schaefer, Bjorn Malte] Heidelberg Univ, Astronom Recheninst, Zentrum Astron, D-69120 Heidelberg, Germany. [Brown, Michael L.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Rassat, Anais] EPFL, Lab Astrophys LASTRO, Observ Sauverny, CH-1290 Versoix, Switzerland. RP Kiessling, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alina.A.Kiessling@jpl.nasa.gov RI Mandelbaum, Rachel/N-8955-2014 OI Mandelbaum, Rachel/0000-0003-2271-1527 NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2015 VL 193 IS 1-4 BP 137 EP 137 DI 10.1007/s11214-015-0222-3 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8TK UT WOS:000365272000003 ER PT J AU Kirk, D Brown, ML Hoekstra, H Joachimi, B Kitching, TD Mandelbaum, R Sifon, C Cacciato, M Choi, A Kiessling, A Leonard, A Rassat, A Schafer, BM AF Kirk, Donnacha Brown, Michael L. Hoekstra, Henk Joachimi, Benjamin Kitching, Thomas D. Mandelbaum, Rachel Sifon, Cristobal Cacciato, Marcello Choi, Ami Kiessling, Alina Leonard, Adrienne Rassat, Anais Schaefer, Bjorn Malte TI Galaxy Alignments: Observations and Impact on Cosmology SO SPACE SCIENCE REVIEWS LA English DT Review DE Galaxies: evolution; Galaxies: haloes; Galaxies: interactions; Large-scale structure of Universe; Gravitational lensing: weak ID WEAK-LENSING SURVEYS; LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; DARK-MATTER HALOES; QUASAR POLARIZATION VECTORS; INTRINSIC ELLIPTICITY CORRELATION; CHARGE-TRANSFER INEFFICIENCY; GALACTIC ANGULAR-MOMENTUM; HUBBLE-SPACE-TELESCOPE; COSMIC SHEAR AB Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments. C1 [Kirk, Donnacha; Joachimi, Benjamin; Leonard, Adrienne] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Brown, Michael L.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Hoekstra, Henk; Sifon, Cristobal; Cacciato, Marcello] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Kitching, Thomas D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Mandelbaum, Rachel] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Choi, Ami] Univ Edinburgh, Scottish Univ Phys Alliance, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kiessling, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rassat, Anais] EPFL, Lab Astrophys LASTRO, Observ Sauverny, CH-1290 Versoix, Switzerland. [Schaefer, Bjorn Malte] Heidelberg Univ, Astron Recheninst, Zentrum Astron, D-69120 Heidelberg, Germany. RP Kirk, D (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM drgk@star.ucl.ac.uk RI Mandelbaum, Rachel/N-8955-2014; OI Mandelbaum, Rachel/0000-0003-2271-1527; Kiessling, Alina/0000-0002-2590-1273; Leonard, Adrienne/0000-0002-5976-0405; Sifon, Cristobal/0000-0002-8149-1352; Rassat, Anais/0000-0002-5476-6461 FU International Space Science Institute Bern; European Research Council (EC FP7) [280127, 240185]; STFC Advanced/Halliday fellowship [ST/I005129/1]; European Research Council under FP7 [279396]; STFC Ernest Rutherford Fellowship [ST/J004421/1]; Royal Society URF; NASA ROSES [12-EUCLID12-0004, 13-ATP13-0019]; Netherlands organisation for Scientific Research (NWO) Vidi grant [639.042.814]; JPL; European Union Seventh Framework Programme [624151] FX We acknowledge the support of the International Space Science Institute Bern for two workshops at which this work was conceived. We thank J. Blazek for stimulating discussions.; MLB is supported by the European Research Council (EC FP7 grant number 280127) and by a STFC Advanced/Halliday fellowship (grant number ST/I005129/1).; HH, CS and MC acknowledge support from the European Research Council under FP7 grant number 279396.; BJ acknowledges support by an STFC Ernest Rutherford Fellowship, grant reference ST/J004421/1.; TDK is supported by a Royal Society URF.; RM acknowledges the support of NASA ROSES 12-EUCLID12-0004.; MC was supported by the Netherlands organisation for Scientific Research (NWO) Vidi grant 639.042.814.; AC acknowledges support from the European Research Council under the EC FP7 grant number 240185.; AK was supported in part by JPL, run under a contract by Caltech for NASA. AK was also supported in part by NASA ROSES 13-ATP13-0019 and NASA ROSES 12-EUCLID12-0004.; AL acknowledges the support of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 624151. NR 276 TC 21 Z9 21 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2015 VL 193 IS 1-4 BP 139 EP 211 DI 10.1007/s11214-015-0213-4 PG 73 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8TK UT WOS:000365272000004 ER PT J AU Thompson, DR Flannery, DT Lanka, R Allwood, AC Bue, BD Clark, BC Elam, WT Estlin, TA Hodyss, RP Hurowitz, JA Liu, Y Wade, LA AF Thompson, David R. Flannery, David T. Lanka, Ravi Allwood, Abigail C. Bue, Brian D. Clark, Benton C. Elam, W. Timothy Estlin, Tara A. Hodyss, Robert P. Hurowitz, Joel A. Liu, Yang Wade, Lawrence A. TI Automating X-ray Fluorescence Analysis for Rapid Astrobiology Surveys SO ASTROBIOLOGY LA English DT Article DE Dimensionality reduction; Planetary science; Visualization ID DIMENSIONALITY REDUCTION AB A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. Key Words: Dimensionality reductionPlanetary scienceVisualization. Astrobiology 15, 961-976. C1 [Thompson, David R.; Flannery, David T.; Lanka, Ravi; Allwood, Abigail C.; Bue, Brian D.; Estlin, Tara A.; Hodyss, Robert P.; Liu, Yang; Wade, Lawrence A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thompson, David R.] CALTECH, Jet Prop Lab, Imaging Spect, Pasadena, CA 91109 USA. [Flannery, David T.; Allwood, Abigail C.] CALTECH, Jet Prop Lab, Planetary Chem & Astrobiol, Pasadena, CA 91109 USA. [Lanka, Ravi; Bue, Brian D.; Estlin, Tara A.] CALTECH, Jet Prop Lab, Machine Learning & Instrument Auton, Pasadena, CA 91109 USA. [Clark, Benton C.] Space Sci Inst, Boulder, CO USA. [Elam, W. Timothy] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. [Hodyss, Robert P.] CALTECH, Jet Prop Lab, Planetary Ices, Pasadena, CA 91109 USA. [Hurowitz, Joel A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Liu, Yang] CALTECH, Jet Prop Lab, Geophys & Planetary Geosci, Pasadena, CA 91109 USA. [Wade, Lawrence A.] CALTECH, Jet Prop Lab, Instrument Syst Engn, Pasadena, CA 91109 USA. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 306-463, Pasadena, CA 91109 USA. EM David.R.Thompson@jpl.nasa.gov FU AMMOS, the Advanced Multimission Operations System of the National Aeronautics and Space Administration FX This research was performed at the Jet Propulsion Laboratory, California Institute of Technology. It was supported by a technology development grant from AMMOS, the Advanced Multimission Operations System of the National Aeronautics and Space Administration. We acknowledge the invaluable counsel of the PIXL instrument and science teams. We thank Tomoyo Okomura for providing the Shionoha sample. NR 27 TC 1 Z9 1 U1 4 U2 8 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD NOV 1 PY 2015 VL 15 IS 11 BP 961 EP 976 DI 10.1089/ast.2015.1349 PG 16 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA CW1ZK UT WOS:000364790500003 PM 26575217 ER PT J AU Charnay, B Meadows, V Misra, A Leconte, J Arney, G AF Charnay, B. Meadows, V. Misra, A. Leconte, J. Arney, G. TI 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: individual (GJ1214b) ID GJ 1214B; TRANSMISSION SPECTROSCOPY; EXOPLANET; CHEMISTRY; PLANETS; HUBBLE AB The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4-0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 mu m, and that such clouds should be optically thin at wavelengths > 3 mu m. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near-and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near-to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds. C1 [Charnay, B.; Meadows, V.; Misra, A.; Arney, G.] Univ Washington, Dept Astron, Seattle, WA 98125 USA. [Charnay, B.; Meadows, V.; Misra, A.; Arney, G.] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98125 USA. [Leconte, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Leconte, J.] Univ Toronto Scarborough, Dept Phys & Environm Sci, Ctr Planetary Sci, Toronto, ON M1C 1A4, Canada. RP Charnay, B (reprint author), Univ Washington, Dept Astron, Seattle, WA 98125 USA. EM bcharnay@uw.edu FU NASA [NNA13AA93A] FX B.C. acknowledges support from an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Affiliated Universities. This work was performed as part of the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported by NASA under Cooperative Agreement No. NNA13AA93A. NR 21 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2015 VL 813 IS 1 AR L1 DI 10.1088/2041-8205/813/1/L1 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7WG UT WOS:000364486200001 ER PT J AU Kashlinsky, A Arendt, RG Atrio-Barandela, F Helgason, K AF Kashlinsky, A. Arendt, R. G. Atrio-Barandela, F. Helgason, K. TI LYMAN-TOMOGRAPHY OF COSMIC INFRARED BACKGROUND FLUCTUATIONS WITH EUCLID: PROBING EMISSIONS AND BARYONIC ACOUSTIC OSCILLATIONS AT z greater than or similar to 10 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic background radiation; cosmological parameters; cosmology: miscellaneous; dark ages, reionization, first stars; early universe; large-scale structure of universe ID SURVEY. SURVEY DESIGN; IRAC SOURCE COUNTS; PRE-REIONIZATION; GALAXIES; PHOTOMETRY; IMAGES; MODEL AB The Euclid space mission, designed to probe evolution of the Dark Energy (DE), will map a large area of the sky at three adjacent near-IR filters, Y, J, and H. This coverage will also enable mapping source-subtracted cosmic infrared background (CIB) fluctuations with unprecedented accuracy on sub-degree angular scales. Here, we propose methodology, using the Lyman-break tomography applied to the Euclid-based CIB maps, to accurately isolate the history of CIB emissions as a function of redshift from 10 less than or similar to z less than or similar to 20 and to identify the baryonic acoustic oscillations (BAOs) at those epochs. To identify the BAO signature, we would assemble individual CIB maps over conservatively large contiguous areas of greater than or similar to 400 deg(2). The method can isolate the CIB spatial spectrum by z to sub-percent statistical accuracy. We illustrate this with a specific model of CIB production at high z normalized to reproduce the measured Spitzer-based CIB fluctuation. We show that even if the latter contains only a small component from high-z sources, the amplitude of that component can be accurately isolated with the methodology proposed here and the BAO signatures at z greater than or similar to 10 are recovered well from the CIB fluctuation spatial spectrum. Probing the BAO at those redshifts will be an important test of the underlying cosmological paradigm and would narrow the overall uncertainties on the evolution of cosmological parameters, including the DE. Similar methodology is applicable to the planned WFIRST mission, where we show that a possible fourth near-IR channel at >= 2 mu m would be beneficial. C1 [Kashlinsky, A.; Arendt, R. G.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kashlinsky, A.] SSAI, Lanham, MD 20770 USA. [Arendt, R. G.] UMBC, Baltimore, MD 21250 USA. [Atrio-Barandela, F.] Univ Salamanca, Dept Theoret Phys, E-37008 Salamanca, Spain. [Helgason, K.] MPA, D-85748 Garching, Germany. RP Kashlinsky, A (reprint author), NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Alexander.Kashlinsky@nasa.gov RI Atrio-Barandela, Fernando/A-7379-2017 OI Atrio-Barandela, Fernando/0000-0002-2130-2513 FU Ministerio de Educacion y Ciencia [FIS2012-30926]; EU's 7th Framework Programme (FP7-PEOPLE-IFF); [NASA/12-EUCLID11-0003] FX We thank Jason Rhodes for comments, Alexander Vassilkov for discussion of statistical treatment, and NASA/12-EUCLID11-0003 "LIBRAE: Looking at Infrared Background Radiation Anisotropies with Euclid" for support. F.A.B. acknowledges the Ministerio de Educacion y Ciencia project FIS2012-30926 and K.H. the EU's 7th Framework Programme (FP7-PEOPLE-2013-IFF). NR 20 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2015 VL 813 IS 1 AR L12 DI 10.1088/2041-8205/813/1/L12 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7WG UT WOS:000364486200012 ER PT J AU Kasting, JF Chen, H Kopparapu, RK AF Kasting, James F. Chen, Howard Kopparapu, Ravi K. TI STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; planets and satellites: atmospheres; planets and satellites: terrestrial planets ID EVOLUTION; CLIMATES; VENUS AB A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models. C1 [Kasting, James F.; Kopparapu, Ravi K.] Penn State Univ, Dept Geosci, State Coll, PA 16801 USA. [Kasting, James F.; Kopparapu, Ravi K.] NASA, Astrobiol Inst, Virtual Planetary Lab, New York, NY USA. [Kasting, James F.; Kopparapu, Ravi K.] Penn State Astrobiol Res Ctr, University Pk, PA 16802 USA. [Kasting, James F.; Kopparapu, Ravi K.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Chen, Howard] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Chen, Howard] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Kopparapu, Ravi K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kasting, JF (reprint author), Penn State Univ, Dept Geosci, State Coll, PA 16801 USA. EM jfk4@psu.edu; hwchen@bu.edu FU Undergraduate Research Opportunities Program (UROP) at Boston University; NASA's Emerging Worlds and Exobiology programs FX H.C. thanks the Undergraduate Research Opportunities Program (UROP) at Boston University for primarily funding the research while in residence at Penn State University in State College in the summer of 2015. J.F.K. and R.K. thank NASA's Emerging Worlds and Exobiology programs for their financial support. NR 8 TC 1 Z9 1 U1 6 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2015 VL 813 IS 1 AR L3 DI 10.1088/2041-8205/813/1/L3 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7WG UT WOS:000364486200003 ER PT J AU Schwadron, NA Richardson, JD Burlaga, LF McComas, DJ Moebius, E AF Schwadron, N. A. Richardson, J. D. Burlaga, L. F. McComas, D. J. Moebius, E. TI TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: magnetic fields; local interstellar matter ID BOUNDARY-EXPLORER RIBBON; GALACTIC COSMIC-RAYS; IN-SITU OBSERVATIONS; VOYAGER 1; TERMINATION SHOCK; ULYSSES/GAS-INSTRUMENT; DAYSIDE MAGNETOPAUSE; KINETIC-PARAMETERS; NEUTRAL HYDROGEN; FLOW PARAMETERS AB Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere's global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane-the so-called B-V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B-V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7-2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40 degrees off from the IBEX ribbon center and the B-V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7-2.7 keV) and the B-V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field. C1 [Schwadron, N. A.; Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA. [Schwadron, N. A.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Richardson, J. D.] MIT, Cambridge, MA 02139 USA. [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. RP Schwadron, NA (reprint author), Univ New Hampshire, Durham, NH 03824 USA. OI Moebius, Eberhard/0000-0002-2745-6978 FU Interstellar Boundary Explorer mission as a part of NASAs Explorer Program; NASA SRT Grant [NNG06GD55G]; Sun-2-Ice (NSF) project [AGS1135432]; Voyager project; NASA [NNG14PN24Pa] FX We are very grateful to the many individuals who have made the the Voyager, SOHO, and IBEX projects possible. This work is supported by the Interstellar Boundary Explorer mission as a part of NASAs Explorer Program and partially by NASA SR&T Grant NNG06GD55G. N.A.S. was also supported by the Sun-2-Ice (NSF grant number AGS1135432) project. J.R. and L.B. were supported by the Voyager project and L.B. was supported by NASA contract NNG14PN24Pa. NR 58 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2015 VL 813 IS 1 AR L20 DI 10.1088/2041-8205/813/1/L20 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7WG UT WOS:000364486200020 ER PT J AU Anderson, T AF Anderson, Talea TI Physics: A Short History from Quintessence to Quarks. SO LIBRARY JOURNAL LA English DT Book Review C1 [Anderson, Talea] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Anderson, T (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD NOV 1 PY 2015 VL 140 IS 18 BP 111 EP 111 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CV2UW UT WOS:000364113700210 ER PT J AU Generazio, ER AF Generazio, E. R. TI Electric Potential and Electric Held Imaging with Applications SO MATERIALS EVALUATION LA English DT Article DE nondestructive evaluation; nondestructive testing; electric potential; electric field; charge distribution; triboelectric; electrostatic discharge AB The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for "illuminating" volumes to be inspected with EH. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasi-static generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging. C1 NASA, Hampton, VA 23681 USA. RP Generazio, ER (reprint author), NASA, Hampton, VA 23681 USA. NR 12 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD NOV PY 2015 VL 73 IS 11 BP 1479 EP 1489 PG 11 WC Materials Science, Characterization & Testing SC Materials Science GA CV5ZJ UT WOS:000364349700007 ER PT J AU Arbabi, A Horie, Y Bagheri, M Faraon, A AF Arbabi, Amir Horie, Yu Bagheri, Mahmood Faraon, Andrei TI Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission SO NATURE NANOTECHNOLOGY LA English DT Article ID VECTOR BEAMS; LENSES; GENERATION; REFLECTORS; GRATINGS; ELEMENTS AB Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design(1,2). Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurface have been realized(3-6), but with either low transmission efficiencies or limited control over polarization and phase. Here, we show a metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase plates, wave plates, polarizers, beamsplitters, as well as polarization-switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform. C1 [Arbabi, Amir; Horie, Yu; Faraon, Andrei] CALTECH, TJ Watson Lab Appl Phys, Pasadena, CA 91125 USA. [Bagheri, Mahmood] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Faraon, A (reprint author), CALTECH, TJ Watson Lab Appl Phys, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM faraon@caltech.edu FU Caltech/JPL President and Director Fund (PDF); Defense Advanced Research Projects Agency (DARPA); Department of Energy (DOE) [DE-SC0001293]; Japan Student Services Organization (JASSO) fellowship FX This work was supported by the Caltech/JPL President and Director Fund (PDF) and the Defense Advanced Research Projects Agency (DARPA). Y.H. was supported as part of the Department of Energy (DOE) 'Light-Material Interactions in Energy Conversion' Energy Frontier Research Centre under grant no. DE-SC0001293 and a Japan Student Services Organization (JASSO) fellowship. Device nanofabrication was performed at the Kavli Nanoscience Institute at Caltech. The authors thank D. Fattal and C. Santori for discussions. NR 34 TC 121 Z9 122 U1 55 U2 140 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2015 VL 10 IS 11 BP 937 EP U190 DI 10.1038/NNANO.2015.186 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CV8IY UT WOS:000364528300009 PM 26322944 ER PT J AU Angster, S Fielding, EJ Wesnousky, S Pierce, I Chamlagain, D Gautam, D Upreti, BN Kumahara, Y Nakata, T AF Angster, Stephen Fielding, Eric J. Wesnousky, Steven Pierce, Ian Chamlagain, Deepak Gautam, Dipendra Upreti, Bishal Nath Kumahara, Yasuhiro Nakata, Takashi TI Field Reconnaissance after the 25 April 2015 M 7.8 Gorkha Earthquake SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID INDUSTRIAL MASONRY CHIMNEYS; DISPLACEMENT; TECTONICS; FOLDS AB Fault scarps and uplifted terraces in young alluvium are frequent occurrences along the trace of the northerly dipping Himalayan frontal thrust (HFT). Generally, it was expected that the 25 April 2015 M 7.8 Gorkha earthquake of Nepal would produce fresh scarps along the fault trace. Contrary to expectation, Interferometric Synthetic Aperture Radar and aftershock studies soon indicated the rupture of the HFT was confined to the subsurface, terminating on the order of 50 km north of the trace of the HFT. We undertook a field survey along the trace of the HFT and along faults and lineaments within the Kathmandu Valley eight days after the earthquake. Our field survey confirmed the lack of surface rupture along the HFT and the mapped faults and lineaments in Kathmandu Valley. The only significant ground deformation we observed was limited to an similar to 1-km-long northeast-trending fracture set in the district of Kausaltar within Kathmandu. This feature is interpreted not to be the result of tectonic displacement, but rather a localized extension along a ridge. Our survey also shows the ubiquitous presence of fallen chimneys of brick kilns along the HFT and within the Kathmandu Valley. Measurements of a small subset of fallen chimneys across the region suggest a degree of systematic fall direction of the chimneys when subdivided geographically. Online Material: Color versions of Figures 3 and 4; additional photographs of the Kausaltar fracture. C1 [Angster, Stephen; Wesnousky, Steven; Pierce, Ian] Univ Nevada, Ctr Neotecton Studies, Reno, NV 89557 USA. [Fielding, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Chamlagain, Deepak] Tribhuvan Univ, Dept Geol, Kathmandu 44618, Nepal. [Gautam, Dipendra] Ctr Disaster & Climate Change Studies, Kathmandu, Nepal. [Upreti, Bishal Nath] NAST, Khumaltar, Lalitpur, Nepal. [Kumahara, Yasuhiro] Hiroshima Univ, Grad Sch Educ, Higashihiroshima 7398524, Japan. [Nakata, Takashi] Hiroshima Univ, Dept Geog, Higashihiroshima 7398526, Japan. RP Angster, S (reprint author), Univ Nevada, Ctr Neotecton Studies, MS169,1664 North Virginia St, Reno, NV 89557 USA. EM sangster@nevada.unr.edu RI Fielding, Eric/A-1288-2007; Gautam, Dipendra/I-5801-2015 OI Fielding, Eric/0000-0002-6648-8067; Gautam, Dipendra/0000-0003-3657-1596 FU University of Nevada, Reno (UNR) Mackay Earth Sciences and Engineering Department; National Science Foundation (NSF) [EAR-1345036]; JAXA RA4 project [P1372]; National Aeronautics and Space Administration (NASA) Earth Surface and Interior focus area FX Thanks go to the University of Nevada, Reno (UNR) Mackay Earth Sciences and Engineering Department and Graham Kent for funding Pierce and Angster to travel to the epicentral area. The research was supported in part by National Science Foundation (NSF) Grant EAR-1345036. Original Advanced Land Observation Satellite 2 (ALOS-2) data is copyrighted (2015) by Japanese Aerospace Exploration Agency (JAXA) and was provided under JAXA RA4 project P1372. Part of this research was supported by the National Aeronautics and Space Administration (NASA) Earth Surface and Interior focus area and performed at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. We thank Cunren Liang for processing the ALOS-2 wide-swath interferogram and Susan Owen of the Advanced Rapid Imaging and Analysis (ARIA) project for processing the Global Positioning System (GPS) offsets. Raw GPS data were provided by Jean-Phillipe Avouac with the help of UNAVCO and the Nepal Department of Mines and Geology. We also thank Susan Hough, Roger Bilham, and an anonymous reviewer for reviews and comments that were critical for preparing this manuscript. NR 19 TC 10 Z9 10 U1 2 U2 10 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 EI 1938-2057 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD NOV-DEC PY 2015 VL 86 IS 6 BP 1506 EP 1513 DI 10.1785/0220150135 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CV9MA UT WOS:000364610100003 ER PT J AU Yun, SH Hudnut, K Owen, S Webb, F Simons, M Sacco, P Gurrola, E Manipon, G Liang, C Fielding, E Milillo, P Hua, H Coletta, A AF Yun, Sang-Ho Hudnut, Kenneth Owen, Susan Webb, Frank Simons, Mark Sacco, Patrizia Gurrola, Eric Manipon, Gerald Liang, Cunren Fielding, Eric Milillo, Pietro Hua, Hook Coletta, Alessandro TI Rapid Damage Mapping for the 2015 M-w 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO-SkyMed and ALOS-2 Satellites SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID HAITI AB The 25 April 2015 M-w 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency's COSMO-SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency's Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after the main-shock. We used these radar observations and rapidly produced damage proxy maps (DPMs) derived from temporal changes in Interferometric SAR coherence. Our DPMs were qualitatively validated through comparison with independent damage analyses by the National Geospatial-Intelligence Agency and the United Nations Institute for Training and Research's United Nations Operational Satellite Applications Programme, and based on our own visual inspection of DigitalGlobe's World-View optical pre- versus postevent imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork. C1 [Yun, Sang-Ho; Owen, Susan; Webb, Frank; Gurrola, Eric; Manipon, Gerald; Liang, Cunren; Fielding, Eric; Milillo, Pietro; Hua, Hook] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hudnut, Kenneth] US Geol Survey, Pasadena, CA 91106 USA. [Simons, Mark] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Sacco, Patrizia; Coletta, Alessandro] Italian Space Agcy, I-00133 Rome, Italy. [Milillo, Pietro] Univ Basilicata, I-85100 Potenza, Italy. RP Yun, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shyun@jpl.nasa.gov RI Fielding, Eric/A-1288-2007; Hudnut, Kenneth/B-1945-2009; OI Fielding, Eric/0000-0002-6648-8067; Hudnut, Kenneth/0000-0002-3168-4797; Milillo, Pietro/0000-0002-1171-3976; Simons, Mark/0000-0003-1412-6395 FU National Aeronautics and Space Administration Applied Sciences/Disasters Program; National Aeronautics and Space Administration Advanced Information Systems Technology (AIST) Program FX The COSMO-SkyMed data were made available for disaster response by the Italian Space Agency (ASI). The Advanced Land Observing Satellite-2 (ALOS-2) radar data were made available by the Japan Aerospace Exploration Agency (TAXA) through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The Global Urban Footprint was provided by German Aerospace Center (DLR) for disaster response. We thank Matthew Gamm and his team with the National Geospatial-Intelligence Agency (NGA), Thomas Esch with DLR, Keiko Saito with the World Bank, Shay Har-Noy, and Andrew Steele with DigitalGlobe, David Saeger with Office of Foreign Disaster Assistance (OFDA)/United States Agency for International Development (USAID), Mir Matin, and Deo Raj Gurung with the International Centre for Integrated Mountain Development (ICIMOD), Jon Pedder with Esri, and Mike Rubel with Planet Labs for supportive coordination and analysis for response. Constructive comments from Susan Hough, Gerald Bawden, and two anonymous reviewers improved the article. This research was supported by the National Aeronautics and Space Administration Applied Sciences/Disasters Program and Advanced Information Systems Technology (AIST) Program, and performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology. NR 23 TC 6 Z9 6 U1 2 U2 16 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 EI 1938-2057 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD NOV-DEC PY 2015 VL 86 IS 6 BP 1549 EP 1556 DI 10.1785/0220150152 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CV9MA UT WOS:000364610100008 ER PT J AU Pail, R Bingham, R Braitenberg, C Dobslaw, H Eicker, A Guntner, A Horwath, M Ivins, E Longuevergne, L Panet, I Wouters, B AF Pail, Roland Bingham, Rory Braitenberg, Carla Dobslaw, Henryk Eicker, Annette Guentner, Andreas Horwath, Martin Ivins, Eric Longuevergne, Laurent Panet, Isabelle Wouters, Bert CA IUGG Expert Panel TI Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society SO SURVEYS IN GEOPHYSICS LA English DT Review DE Mass transport; Earth system science; Satellite gravimetry; Sustained observation; Climate change ID SEA-LEVEL RISE; OCEAN CIRCULATION; GRACE DATA; GROUNDWATER DEPLETION; RECONCILED ESTIMATE; CLIMATE EXPERIMENT; GRAVITY RECOVERY; MODEL; ACCELERATION; ASSIMILATION AB Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth's gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations. C1 [Pail, Roland] Tech Univ Munich, Inst Astron & Phys Geodesy, D-80333 Munich, Germany. [Bingham, Rory; Wouters, Bert] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol, Avon, England. [Braitenberg, Carla] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy. [Dobslaw, Henryk; Guentner, Andreas] Deutsch Geoforschungszentrum GFZ, D-14473 Potsdam, Germany. [Eicker, Annette] Univ Bonn, Inst Geodesy & Geoinformat, D-53115 Bonn, Germany. [Horwath, Martin] Tech Univ Dresden, Inst Planetare Geodasie, D-01069 Dresden, Germany. [Ivins, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Longuevergne, Laurent] Univ Rennes 1, UMR 6118, Geosci Rennes, F-35042 Rennes, France. [Panet, Isabelle] Inst Geog Natl, Lab Rech Geodesie, F-77455 Marne La Vallee 2, France. [Wouters, Bert] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Pail, R (reprint author), Tech Univ Munich, Inst Astron & Phys Geodesy, Arcisstr 21, D-80333 Munich, Germany. EM roland.pail@tum.de RI Guntner, Andreas/C-9892-2011; Eicker, Annette/B-6076-2014; Pail, Roland/H-5621-2011; Longuevergne, Laurent /F-4641-2010; OI Guntner, Andreas/0000-0001-6233-8478; Eicker, Annette/0000-0002-9087-1445; Longuevergne, Laurent /0000-0003-3169-743X; Wouters, Bert/0000-0002-1086-2435; Braitenberg, Carla/0000-0001-7277-816X NR 52 TC 2 Z9 2 U1 3 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-3298 EI 1573-0956 J9 SURV GEOPHYS JI Surv. Geophys. PD NOV PY 2015 VL 36 IS 6 BP 743 EP 772 DI 10.1007/s10712-015-9348-9 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CV9WS UT WOS:000364639200001 ER PT J AU Work, TM Dagenais, J Balazs, GH Schettle, N Ackermann, M AF Work, T. M. Dagenais, J. Balazs, G. H. Schettle, N. Ackermann, M. TI Dynamics of Virus Shedding and In Situ Confirmation of Chelonid Herpesvirus 5 in Hawaiian Green Turtles With Fibropapillomatosis SO VETERINARY PATHOLOGY LA English DT Article DE fibropapillomatosis; green turtle; herpesvirus; shedding; histopathology ID CUTANEOUS FIBROPAPILLOMAS; MAREKS-DISEASE; SEA-TURTLES; MYDAS; PATHOLOGY; FLORIDA; CANCER; HUMAN-HERPESVIRUS-8; LOCALIZATION; ASSOCIATION AB Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5. C1 [Work, T. M.; Dagenais, J.] US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, Honolulu, HI 96850 USA. [Balazs, G. H.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI USA. [Schettle, N.; Ackermann, M.] Univ Zurich, Inst Virol, CH-8006 Zurich, Switzerland. RP Work, TM (reprint author), US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, POB 50187, Honolulu, HI 96850 USA. EM thierry_work@usgs.gov FU Wyss Charitable Endowment FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Mathias Ackermann's contribution to this research was supported by the Wyss Charitable Endowment. NR 43 TC 5 Z9 5 U1 6 U2 26 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0300-9858 EI 1544-2217 J9 VET PATHOL JI Vet. Pathol. PD NOV PY 2015 VL 52 IS 6 BP 1195 EP 1201 DI 10.1177/0300985814560236 PG 7 WC Pathology; Veterinary Sciences SC Pathology; Veterinary Sciences GA CW1FF UT WOS:000364734300030 PM 25445320 ER PT J AU Jung, SN You, YH Dhadwal, MK Riemenschneider, J Hagerty, BP AF Jung, Sung N. You, Young H. Dhadwal, Manoj K. Riemenschneider, Johannes Hagerty, Brandon P. TI Study on Blade Property Measurement and Its Influence on Air/Structural Loads SO AIAA JOURNAL LA English DT Article ID VALIDATION; ROTOR AB In this study, the structural properties of Second Higher-Harmonic Aeroacoustic Rotor Test blades are determined using state-of-the-art test techniques. The measurement includes bending and torsion stiffnesses, section geometric offsets, and mass and inertia properties. Several Second Higher-Harmonic Aeroacoustic Rotor Test blades, including the original instrumented blade used for the wind-tunnel test campaign in 2001, as stated by Yu etal. (The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) InputsThe Joint German/French/Dutch/US Project, Proceedings of the 58th American Helicopter Society (AHS) Annual Forum, American Helicopter Soc., Montreal, June2002) are used for the activity. A finite element-based cross-section analysis combined with an x-ray computer tomography technique is employed for the cases where no mechanical measurement is available or attempted. The resulting structural properties are correlated against the earlier estimated values, which have extensively been used in the literature for the validation of the Second Higher-Harmonic Aeroacoustic Rotor Test rotor. A substantial deviation is observed between the present measurement and the earlier property result. The comprehensive rotor dynamics analysis is performed to quantify the impact of the measured blade properties on the aeromechanics behavior of the rotor. The location of the center of gravity is demonstrated to be the most influential factor affecting the deviation and the sensitivity of the aeroelastic response of the rotor. C1 [Jung, Sung N.; You, Young H.; Dhadwal, Manoj K.] Konkuk Univ, Dept Aerosp Informat Engn, Seoul 143701, South Korea. [Riemenschneider, Johannes] German Aerosp Ctr, DLR, Inst Composite Struct & Adapt Syst, D-38108 Braunschweig, Germany. [Hagerty, Brandon P.] NASA, Ames Res Ctr, Aeromech Branch, Moffett Field, CA 94035 USA. RP Jung, SN (reprint author), Konkuk Univ, Dept Aerosp Informat Engn, Seoul 143701, South Korea. EM snjung@konkuk.ac.kr RI Dhadwal, Manoj Kumar/J-5487-2014 OI Dhadwal, Manoj Kumar/0000-0002-3307-1871 FU Basic Science Research Program through the National Research Foundation of Korea - Ministry of Education [2014R1A1A2057311]; HUMS OFP Software Development Program [HUMS-OFP-20140109-5] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2014R1A1A2057311). The work has been supported by HUMS OFP Software Development Program (HUMS-OFP-20140109-5). The authors would like to acknowledge William Warmbrodt and Wayne Johnson (NASA Ames Research Center); Joon Lim and Thomas Maier (U.S. Army Aviation Development Directorate); and B.G. van der Wall, Ralf Keimer, and Martin Schulz (DLR, German Aerospace Center) for their valuable comments and support on this work. The contribution of Young W. Kim and Ju H. Kim (Konkuk Univiversity) for running the Ksec2d software is also acknowledged. We thank the Second Higher-Harmonic Aeroacoustic Rotor Test team for the data. NR 17 TC 0 Z9 0 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD NOV PY 2015 VL 53 IS 11 BP 3221 EP 3232 DI 10.2514/1.J053686 PG 12 WC Engineering, Aerospace SC Engineering GA CV4KE UT WOS:000364234900006 ER PT J AU Harris, RE Collins, EM Luke, EA Sescu, A Strutzenberg, LL West, JS AF Harris, Robert E. Collins, Eric M. Luke, Edward A. Sescu, Adrian Strutzenberg, Louise L. West, Jeffrey S. TI Hybrid Discontinuous Galerkin and Finite Volume Method for Launch Environment Acoustics Prediction SO AIAA JOURNAL LA English DT Article ID COMPUTATIONAL AEROACOUSTICS; EULER EQUATIONS; SIMULATIONS; FLOW; DISCRETIZATIONS; IMPLEMENTATION; ALGORITHMS; SOUND AB Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground structures. Currently employed predictive capabilities to model the complex turbulent plume physics are too dissipative to accurately resolve the propagation of acoustic waves throughout the launch environment. Higher fidelity liftoff acoustic analysis tools to design mitigation measures are critically needed to optimize launch pads for the Space Launch System and commercial launch vehicles. To this end, a new coupled two-field simulation capability has been developed to enable accurate prediction of liftoff acoustic physics. Established unstructured computational fluid dynamics algorithms are used for simulation of acoustic generation physics and a high-order-accurate discontinuous Galerkin nonlinear Euler solver is employed to accurately propagate acoustic waves across large distances. An innovative hybrid computational fluid dynamics/computational aeroacoustics coupling method is used to transmit the computational fluid dynamics-predicted acoustic field to the computational aeroacoustics domain for accurate propagation throughout the launch environment. Implementation of the coupling procedure is described in detail, and results are presented that demonstrate the accuracy of the capability for aeroacoustics predictions. Additionally, the merits of the approach are evaluated for acoustic propagation using a notional Space Launch System environment in which rocket plumes are represented by transient acoustic sources. C1 [Harris, Robert E.] CFD Res Corp, Aerosp & Def Div, Huntsville, AL 35806 USA. [Collins, Eric M.] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Luke, Edward A.] Mississippi State Univ, Dept Comp Sci, Mississippi State, MS 39762 USA. [Sescu, Adrian] Mississippi State Univ, Dept Aerosp Engn, Mississippi State, MS 39762 USA. [Strutzenberg, Louise L.; West, Jeffrey S.] NASA, George C Marshall Space Flight Ctr, AST Fluid Mech, Huntsville, AL 35812 USA. RP Harris, RE (reprint author), CFD Res Corp, Aerosp & Def Div, 701 McMillian Way, Huntsville, AL 35806 USA. EM robert.harris@cfdrc.com; emc@cavs.msstate.edu; luke@cse.msstate.edu; sescu@ae.msstate.edu; louise.s@nasa.gov; jeffrey.s.west@nasa.gov FU NASA Marshall Space Flight Center under the Small Business Technology Transfer research program [NNX13CM28P] FX This research was supported by the NASA Marshall Space Flight Center under the Small Business Technology Transfer research program (Contract NNX13CM28P). The authors would like to thank Peter Liever and Brandon Williams of CFD Research Corporation, and Gabriel Putnam of All Points Logistics, for providing valuable feedback and guidance during the execution of this project. NR 31 TC 2 Z9 2 U1 0 U2 5 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD NOV PY 2015 VL 53 IS 11 BP 3430 EP 3447 DI 10.2514/1.J053877 PG 18 WC Engineering, Aerospace SC Engineering GA CV4KE UT WOS:000364234900023 ER PT J AU Arvedsen, SK Eiken, O Kolegard, R Petersen, LG Norsk, P Damgaard, M AF Arvedsen, Sine K. Eiken, Ola Kolegard, Roger Petersen, Lonnie G. Norsk, Peter Damgaard, Morten TI Body height and arterial pressure in seated and supine young males during+2 G centrifugation SO AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY LA English DT Article DE cardiovascular system; hydrostatic pressure; body height; human centrifuge ID ANTIORTHOSTATIC POSTURE CHANGE; HUMAN SINUS NODE; CARDIAC-OUTPUT; BLOOD-PRESSURE; HEART-RATE; ACCELERATION TOLERANCE; PARABOLIC FLIGHTS; ATRIAL DISTENSION; HUMANS; REFLEX AB It is known that arterial pressure correlates positively with body height in males, and it has been suggested that this is due to the increasing vertical hydrostatic gradient from the heart to the carotid baroreceptors. Therefore, we tested the hypothesis that a higher gravito-inertial stress induced by the use of a human centrifuge would increase mean arterial pressure (MAP) more in tall than in short males in the seated position. In short (162-171 cm; n = 8) and tall (194-203 cm; n = 10) healthy males (18-41 yr), brachial arterial pressure, heart rate (HR), and cardiac output were measured during +2G centrifugation, while they were seated upright with the legs kept horizontal (+2G(z)). In a separate experiment, the same measurements were done with the subjects supine (+2G(x)). During +2G(z) MAP increased in the short (22 +/- 2 mmHg, P < 0.0001) and tall (23 +/- 2 mmHg, P < 0.0001) males, with no significant difference between the groups. HR increased more (P < 0.05) in the tall than in the short group (14 +/- 2 vs. 7 +/- 2 bpm). Stroke volume (SV) decreased in the short group (26 +/- 4 ml, P = 0.001) and more so in the tall group (39 +/- 5 ml, P < 0.0001; short vs. tall, P = 0.047). During +2G(x), systolic arterial pressure increased (P < 0.001) and SV (P = 0.012) decreased in the tall group only. In conclusion, during +2G(z), MAP increased in both short and tall males, with no difference between the groups. However, in the tall group, HR increased more during +2G(z), which could be caused by a larger hydrostatic pressure gradient from heart to head, leading to greater inhibition of the carotid baroreceptors. C1 [Arvedsen, Sine K.; Petersen, Lonnie G.; Norsk, Peter; Damgaard, Morten] Univ Copenhagen, Fac Hlth Sci, Dept Biomed Sci, DK-2200 Copenhagen, Denmark. [Eiken, Ola; Kolegard, Roger] Royal Inst Technol, Swedish Aerosp Physiol Ctr, Dept Environm Physiol, Stockholm, Sweden. [Norsk, Peter] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Norsk, Peter] NASA, Lyndon B Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA. [Damgaard, Morten] Univ Copenhagen, Hvidovre Hosp, Dept Clin Physiol & Nucl Med, Ctr Funct Imaging & Res, DK-2650 Hvidovre, Denmark. RP Arvedsen, SK (reprint author), Univ Copenhagen, Fac Hlth Sci, Dept Biomed Sci, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark. EM sine.arvedsen@gmail.com FU European Space Agency, ESA [ESA-CORA-GBF-2010-300] FX The study was funded by the European Space Agency, ESA (grant/contract no. ESA-CORA-GBF-2010-300). NR 31 TC 0 Z9 0 U1 3 U2 4 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6119 EI 1522-1490 J9 AM J PHYSIOL-REG I JI Am. J. Physiol.-Regul. Integr. Comp. Physiol. PD NOV 1 PY 2015 VL 309 IS 9 BP R1172 EP R1177 DI 10.1152/ajpregu.00524.2014 PG 6 WC Physiology SC Physiology GA CV5OI UT WOS:000364320000018 PM 26290109 ER PT J AU Strewe, C Crucian, BE Sams, CF Feuerecker, B Stowe, RP Chouker, A Feuerecker, M AF Strewe, C. Crucian, B. E. Sams, C. F. Feuerecker, B. Stowe, R. P. Chouker, A. Feuerecker, M. TI Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO) SO BRAIN BEHAVIOR AND IMMUNITY LA English DT Article DE Spaceflight; Immune dysfunction; Hyperbaric hyperoxia; Confinement; NEEMO ID POLYMORPHONUCLEAR LEUKOCYTES; ADHESION MOLECULES; L-SELECTIN; PARABOLIC FLIGHT; OXYGEN TREATMENT; STRESS-RESPONSE; GM-CSF; EXPRESSION; SEPSIS; CELLS AB Background: Spaceflight is associated with immune dysregulation which is considered as risk factor for the performance of exploration-class missions. Among the consequences of confinement and other environmental factors of living in hostile environments, the role of different oxygen concentrations is of importance as either low (e.g. as considered for lunar or Martian habitats) or high (e.g. during extravehicular activities) can trigger immune dysfunction. The aim of this study was to investigate the impact of increased oxygen availability - generated through hyperbaricity - on innate immune functions in the course of a 14 days NEEMO mission. Methods: 6 male subjects were included into a 14 days undersea deployment at the Aquarius station (Key Largo, FL, USA). The underwater habitat is located at an operating depth of 47 ft. The 2.5 times higher atmospheric pressure in the habitat leads to hyperoxia. The collection of biological samples occurred 6 days before (L-6), at day 7 (MD7) and 11/13 (MD11/13) during the mission, and 90 days thereafter (R). Blood analyses included differential blood cell count, ex vivo innate immune activation status and inhibitory competences of granulocytes. Results: The absolute leukocyte count showed an increase during deployment as well as the granulocyte and monocyte count. Lymphocyte count was decreased on MD7. The assessments of native adhesion molecules on granulocytes (CD11b, CD62L) indicated a highly significant cellular activation (L-6 vs. MD7/MD13) during mission. In contrast, granulocytes were more sensitive towards anti-inflammatory stimuli (adenosine) on MD13. Conclusion: Living in the NEEMO habitat for 14 days induced significant immune alterations as seen by an activation of adhesion molecules and vice versa higher sensitivity towards inhibition. This investigation under hyperbaric hyperoxia is important especially for Astronauts' immune competence during extravehicular activities when exposed to similar conditions. (C) 2015 Elsevier Inc. All rights reserved. C1 [Strewe, C.; Feuerecker, B.; Chouker, A.; Feuerecker, M.] Univ Munich, Dept Anaesthesiol, Res Grp Stress & Immunol, D-81377 Munich, Germany. [Crucian, B. E.; Sams, C. F.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Feuerecker, B.] Tech Univ Munich, Dept Nucl Med, D-80290 Munich, Germany. [Stowe, R. P.] Microgen Labs, La Marque, TX 77568 USA. RP Feuerecker, M (reprint author), Univ Munich, Dept Anaesthesiol, Stress & Immunol Lab A Chouker, Marchioninistr 15, D-81377 Munich, Germany. EM matthias.feuerecker@med.uni-muenchen.de FU German National Space Program [50WB0719/WB0919]; ESA, NASA FX This investigation has been supported by the ESA, NASA, the German National Space Program (DLR, 50WB0719/WB0919) and by the NEEMO crews, surface operators (B. Todd) and organizer who all supported the study with high professionalism and great enthusiasm. We are indebted to Pam Baskins for scheduling, crew interface and support of training and sample collection and to H. Quiriarte (NASA), M. Horl and S. Matzel (LMU) for the on-site support and analyses. NR 35 TC 1 Z9 1 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0889-1591 EI 1090-2139 J9 BRAIN BEHAV IMMUN JI Brain Behav. Immun. PD NOV PY 2015 VL 50 BP 52 EP 57 DI 10.1016/j.bbi.2015.06.017 PG 6 WC Immunology; Neurosciences SC Immunology; Neurosciences & Neurology GA CV4UK UT WOS:000364261800008 PM 26116982 ER PT J AU Volkov, DL Landerer, FW AF Volkov, Denis L. Landerer, Felix W. TI Internal and external forcing of sea level variability in the Black Sea SO CLIMATE DYNAMICS LA English DT Article ID FRESH-WATER DISCHARGE; MEDITERRANEAN SEA; NORTH-ATLANTIC; ALTIMETER DATA; SURFACE; COMPUTATIONS; REANALYSIS; STRAIT; OCEAN; EARTH AB The variability of sea level in the Black Sea is forced by a combination of internal and external processes of atmospheric, oceanic, and terrestrial origin. We use a combination of satellite altimetry and gravity, tide gauge, river discharge, and atmospheric re-analysis data to provide a comprehensive up-to-date analysis of sea level variability in the Black Sea and to quantify the role of different environmental factors that force the variability. The Black Sea is part of a large-scale climatic system that includes the Mediterranean and the North Atlantic. The seasonal sea level budget shows similar contributions of fresh water fluxes (precipitation, evaporation, and river discharge) and the Black Sea outflow, while the impact of the net surface heat flux is smaller although not negligible. We find that the nonseasonal sea level time series in the Black and Aegean seas are significantly correlated, the latter leading by 1 month. This lag is attributed to the adjustment of sea level in the Black Sea to externally forced changes of sea level in the Aegean Sea and to the impact of river discharge. The nonseasonal sea level budget in the Black Sea is dominated by precipitation and evaporation over the sea itself, but external processes such as river discharge and changes in the outflow can also cause some large synoptic-scale sea level anomalies. Sea level is strongly coupled to terrestrial water storage over the Black Sea drainage basin, which is modulated by the North Atlantic Oscillation (NAO). We show that during the low/high NAO southwesterly/northeasterly winds near the Strait of Gibraltar and southerly/northerly winds over the Aegean Sea are able to dynamically increase/decrease sea level in the Mediterranean and Black seas, respectively. C1 [Volkov, Denis L.] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL USA. [Volkov, Denis L.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Volkov, DL (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, 4301 Rickenbacker Causeway, Miami, FL 33149 USA. EM denis.volkov@noaa.gov RI Volkov, Denis/A-6079-2011; OI Volkov, Denis/0000-0002-9290-0502; Landerer, Felix/0000-0003-2678-095X FU NASA MEaSUREs Program; NASA Ocean Surface Topography Science Team program [NNX13AO73G] FX The satellite altimetry SLA data were produced by Ssalto/Duacs and distributed by Aviso (www.aviso.oceanobs.com) with support from CNES. GRACE land data (available at http://grace.jpl.nasa.gov) and supported by the NASA MEaSUREs Program. We thank the Global Runoff Data Centre for kindly providing us the Danube discharge time series. The authors thank Sang-Ki Lee, Elizabeth Johns, and an anonymous reviewer for valuable comments on the initial version of the manuscript. This research was funded by the NASA Ocean Surface Topography Science Team program (Grant Number NNX13AO73G) and carried out at NOAA Atlantic Oceanographic and Meteorological Laboratory and Jet Propulsion Laboratory, California Institute of Technology. NR 34 TC 3 Z9 3 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD NOV PY 2015 VL 45 IS 9-10 BP 2633 EP 2646 DI 10.1007/s00382-015-2498-0 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CV0PE UT WOS:000363952100023 ER PT J AU Cavosie, AJ Erickson, TM Timms, NE Reddy, SM Talavera, C Montalvo, SD Pincus, MR Gibbon, RJ Moser, D AF Cavosie, Aaron J. Erickson, Timmons M. Timms, Nicholas E. Reddy, Steven M. Talavera, Cristina Montalvo, Stephanie D. Pincus, Maya R. Gibbon, Ryan J. Moser, Desmond TI A terrestrial perspective on using ex situ shocked zircons to date lunar impacts SO GEOLOGY LA English DT Article ID U-PB; SOUTH-AFRICA; VREDEFORT DOME; PLANAR MICROSTRUCTURES; VAAL RIVER; METAMORPHISM; AGE; SYSTEMATICS; MINERALS; HISTORY AB Deformed lunar zircons yielding U-Pb ages from 4333 Ma to 1407 Ma have been interpreted as dating discrete impacts on the Moon. However, the cause of age resetting in lunar zircons is equivocal; as ex situ grains in breccias, they lack lithologic context and most do not contain microstructures diagnostic of shock that are found in terrestrial zircons. Detrital shocked zircons provide a terrestrial analog to ex situ lunar grains, for both identifying diagnostic shock evidence and also evaluating the feasibility of dating impacts with ex situ zircons. Electron backscatter diffraction and sensitive high-resolution ion microprobe U-Pb analysis of zircons eroded from the ca. 2020 Ma Vredefort impact structure (South Africa) show that complete impact-age resetting did not occur in microstructural domains characterized by microtwins, planar fractures, and low-angle boundaries, which record ages from 2890 Ma to 2645 Ma. An impact age of 1975 +/- 39 Ma was detected in neoblasts within a granular zircon that also contains shock microtwins, which link neoblast formation to the impact. However, we show that granular texture can form during regional metamorphism, and thus is not unique to impact environments. These results demonstrate that dating an impact with ex situ shocked zircon requires identifying diagnostic shock evidence to establish impact provenance, and then targeting specific age-reset microstructures. With the recognition that zircon can deform plastically in both impact and magmatic environments, age-resetting in lunar zircons that lack diagnostic shock deformation may record magmatic processes rather than discrete impacts. Identifying shock microstructures that record complete age resetting for geochronological analysis is thus crucial for constructing accurate zircon-based impact chronologies for the Moon, Earth, or other planetary bodies. C1 [Cavosie, Aaron J.; Erickson, Timmons M.; Timms, Nicholas E.; Reddy, Steven M.] Curtin Univ, TIGeR Inst Geosci Res, Dept Appl Geol, Perth, WA 6102, Australia. [Cavosie, Aaron J.] Univ Wisconsin, NASA, Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. [Cavosie, Aaron J.; Montalvo, Stephanie D.; Pincus, Maya R.] Univ Puerto Rico, Dept Geol, Mayaguez, PR 00681 USA. [Talavera, Cristina] Curtin Univ, Dept Phys Astron & Med Radiat Sci, Perth, WA 6102, Australia. [Gibbon, Ryan J.] Univ New Brunswick, Dept Anthropol, Fredericton, NB E3B 5A3, Canada. [Moser, Desmond] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. RP Cavosie, AJ (reprint author), Curtin Univ, TIGeR Inst Geosci Res, Dept Appl Geol, Perth, WA 6102, Australia. OI Talavera, Cristina/0000-0002-4429-7905; Erickson, Timmons/0000-0003-4520-7294; Reddy, Steven/0000-0002-4726-5714 FU National Science Foundation [EAR-1145118]; NASA Astrobiology program FX B. Hess, C. Johnson, W. Reimold, J. Valley, and J. Wooden provided assistance and access to facilities. R. Gibson, E. Kovaleva, and M. Wielicki provided thoughtful reviews. Support was provided by the National Science Foundation (grant EAR-1145118), the NASA Astrobiology program, and the SHRIMP and Microscopy and Microanalysis facilities at Curtin University, Australia. NR 34 TC 12 Z9 12 U1 0 U2 4 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD NOV PY 2015 VL 43 IS 11 BP 999 EP 1002 DI 10.1130/G37059.1 PG 4 WC Geology SC Geology GA CV1ZW UT WOS:000364057700018 ER PT J AU Neigh, CSR McCorkel, J Middleton, EM AF Neigh, Christopher S. R. McCorkel, Joel Middleton, Elizabeth M. TI Quantifying Libya-4 Surface Reflectance Heterogeneity With WorldView-1, 2 and EO-1 Hyperion SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Digital terrain model (DTM); EO-1 Hyperion; land surface imaging (LSI); Libya-4; pseudoinvariant calibration site (PICS); surface reflectance; WorldView ID INVARIANT CALIBRATION SITES; CROSS-CALIBRATION; ABSOLUTE CALIBRATION; TERRA MODIS; SATELLITES; ETM+ AB The land surface imaging (LSI) virtual constellation approach promotes the concept of increasing Earth observations from multiple but disparate satellites. We evaluated this through spectral and spatial domains, by comparing surface reflectance from 30-m Hyperion and 2-m resolution WorldView-2 (WV-2) data in the Libya-4 pseudoinvariant calibration site. We convolved and resampled Hyperion to WV-2 bands using both cubic convolution and nearest neighbor (NN) interpolation. Additionally, WV-2 and WV-1 same-date imagery were processed as a cross-track stereo pair to generate a digital terrain model to evaluate the effects from large (>70 m) linear dunes. Agreement was moderate to low on dune peaks between WV-2 and Hyperion (R-2 < 0.4) but higher in areas of lower elevation and slope (R-2 > 0.6). Our results provide a satellite sensor intercomparison protocol for an LSI virtual constellation at high spatial resolution, which should start with geolocation of pixels, followed by NN interpolation to avoid tall dunes that enhance surface reflectance differences across this internationally utilized site. C1 [Neigh, Christopher S. R.; McCorkel, Joel; Middleton, Elizabeth M.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RP Neigh, CSR (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RI McCorkel, Joel/D-4454-2012; OI McCorkel, Joel/0000-0003-2853-2036; Neigh, Christopher/0000-0002-5322-6340 NR 28 TC 1 Z9 1 U1 3 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD NOV PY 2015 VL 12 IS 11 BP 2277 EP 2281 DI 10.1109/LGRS.2015.2468174 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CV4DG UT WOS:000364215500020 ER PT J AU Holzmann, GJ AF Holzmann, Gerard J. TI Out of Bounds SO IEEE SOFTWARE LA English DT Editorial Material C1 Jet Prop Lab, Developing Stronger Methods Software Anal Code Re, Pasadena, CA 91109 USA. RP Holzmann, GJ (reprint author), Jet Prop Lab, Developing Stronger Methods Software Anal Code Re, Pasadena, CA 91109 USA. EM gholzmann@acm.org NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0740-7459 EI 1937-4194 J9 IEEE SOFTWARE JI IEEE Softw. PD NOV-DEC PY 2015 VL 32 IS 6 BP 24 EP 26 PG 3 WC Computer Science, Software Engineering SC Computer Science GA CV1VY UT WOS:000364047400007 ER PT J AU Namerikawa, T Okubo, N Sato, R Okawa, Y Ono, M AF Namerikawa, Toru Okubo, Norio Sato, Ryutaro Okawa, Yoshihiro Ono, Masahiro TI Real-Time Pricing Mechanism for Electricity Market With Built-In Incentive for Participation SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Dual decomposition; game theory; real-time pricing; smart grids AB This paper proposes a game-theoretic approach to design a distributed real-time electricity pricing mechanism. Our approach is novel in that it guarantees individual rationality, meaning that it provides suppliers and consumers with a guaranteed incentive to participate in the real-time pricing market. Such an incentive is devised by offering a time-varying, situation-dependent subsidy that guarantees that a supplier/consumer profits by switching from a fixed-price contract to the real-time pricing contract. Although we assume that suppliers and consumers decide supply and demand quantities in a fully distributed manner to maximize their own profit, the proposed mechanism guarantees under moderate conditions that the market converges through an iterative process to a Nash equilibrium that maximizes social welfare. Furthermore, in order to guarantee safe operation of an electrical grid, our pricing mechanism increases stability of load frequency control, and at the same time, achieves supply-demand equilibrium by explicitly taking into account an equality constraint through dual decomposition method. We empirically demonstrate by simulations the individual rationality of the proposed mechanism as well as the convergence to supply-demand equilibrium. C1 [Namerikawa, Toru; Okawa, Yoshihiro] Keio Univ, Dept Syst Design Engn, Yokohama, Kanagawa 2238522, Japan. [Okubo, Norio] Azbil Corp, Tokyo 1006419, Japan. [Sato, Ryutaro] Kubota Corp, Osaka 5568601, Japan. [Ono, Masahiro] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Namerikawa, T (reprint author), Keio Univ, Dept Syst Design Engn, Yokohama, Kanagawa 2238522, Japan. EM namerikawa@sd.keio.ac.jp; ono@jpl.nasa.gov OI Namerikawa, Toru/0000-0001-9907-4234 FU Japan Science and Technology Agency through the Core Research for Evolutional Science and Technology Program; Jet Propulsion Laboratory, California Institute of Technology, through U.S. Government FX This work was supported in part by the Japan Science and Technology Agency through the Core Research for Evolutional Science and Technology Program, and in part by the Jet Propulsion Laboratory, California Institute of Technology, through U.S. Government. NR 25 TC 7 Z9 7 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2015 VL 6 IS 6 BP 2714 EP 2724 DI 10.1109/TSG.2015.2447154 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA CV1TF UT WOS:000364040300014 ER PT J AU Sudbrack, CK Beckett, DL MacKay, RA AF Sudbrack, Chantal K. Beckett, Devon L. MacKay, Rebecca A. TI Effect of Surface Preparation on the 815 degrees C Oxidation of Single-Crystal Nickel-Based Superalloys SO JOM LA English DT Article ID DEGREES C; ALLOYS; BEHAVIOR; AIR AB A primary application for single-crystal superalloys has been jet engine turbine blades, where operation temperatures reach well above 1000 degrees C. The NASA Glenn Research Center is considering use of single-crystal alloys for future, lower temperature application in the rims of jet engine turbine disks. Mechanical and environmental properties required for potential disk rim operation at 815 degrees C are being examined, including the oxidation and corrosion behavior, where there is little documentation at intermediate temperatures. In this study, single-crystal superalloys, LDS-1101+Hf and CMSX-4+Y, were prepared with different surface finishes and compared after isothermal and cyclic oxidation exposures. Surface finish has a clear effect on oxide formation at 815A degrees C. Machined low-stress ground surfaces after exposure for 440 h produce thin Al2O3 external scales, which is consistent with higher temperature oxidation, whereas polished surfaces with a mirror finish yield much thicker NiO external scales with subscale of Cr2O3-spinel-Al2O3, which may offer less reliable oxidation resistance. Additional experiments separate the roles of cold-work, localized deformation, and the extent of polishing and surface roughness on oxide formation. C1 [Sudbrack, Chantal K.; MacKay, Rebecca A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Beckett, Devon L.] Drexel Univ, Philadelphia, PA 19104 USA. [Beckett, Devon L.] Marine Corps Air Stn, NAVAIR Fleet Readiness Ctr East, Cherry Point, NC 28533 USA. RP Sudbrack, CK (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM chantal.k.sudbrack@nasa.gov FU NASA's Advanced Air Transport Technology; Fixed Wing projects under Fundamental Aeronautics program FX The authors wish to acknowledge Drs. James Smialek and Timothy Gabb for useful discussions and review of this manuscript, Dr. Richard Rogers of NASA Glenn Research Center for the x-ray measurements, Mr. Jesse Bierer formerly of NASA Glenn Research Center for assistance with cyclic oxidation exposures, Dr. David Hovis formerly of Case Western Reserve University for assistance with fluorescence spectroscopy, Mrs. Joy Buehler of NASA Glenn Research Center for the metallographic preparation, and Mr. Jonathan Yu formerly of Stanford University for SEM imaging of select conditions. This work was supported by NASA's Advanced Air Transport Technology and Fixed Wing projects under the Fundamental Aeronautics program. NR 27 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2015 VL 67 IS 11 BP 2589 EP 2598 DI 10.1007/s11837-015-1639-6 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA CV0JG UT WOS:000363936400013 ER PT J AU Lopez, RE Gonzalez, WD Vasylinnas, V Richardson, IG Cid, C Echer, E Reeves, GD Brandt, PC AF Lopez, R. E. Gonzalez, W. D. Vasylinnas, V. Richardson, I. G. Cid, C. Echer, E. Reeves, G. D. Brandt, P. C. TI Decrease in SYM-H during a storm main phase without evidence of a ring current injection SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Magnetic storms; Ring current; Substorm particle injections; Polar cap flux ID TAIL CURRENT CONTRIBUTION; CORONAL MASS EJECTIONS; SOLAR-CYCLE 23; GEOMAGNETIC STORMS; MAGNETIC STORMS; POLAR-CAP; MHD SIMULATIONS; GROWTH-PHASE; FIELD; DST AB Changes in the Dst index, or the similarly constructed high-resolution SYM-H index, are thought to indicate changes in the total energy content of the ring current. However, this is not always the case. In this paper we examine an intense (SYM-H similar to -435 nT) magnetic storm that occurred on March 31, 2001. The arrival at Earth of strongly southward IMF produced an immediate negative response in the SYM-H index. While energetic particle and magnetometer data from geosynchronous orbit and inner magnetosphere energetic neutral atom imaging indicate that two substorm injections took place during the main phase, there was about one hour when the SYM-H decreased more than 200 nT with no evidence in the data for ring current enhancement. Instead the near-Earth magnetotail exhibited a growth phase indicative of a strong, growing cross-tail current, with the large substorm expansion phase and the associated injection of energetic particles coming significantly later. Data from the DMSP spacecraft demonstrate that the polar cap flux grew rapidly in response to the strongly southward IMF. We present observations showing that the decrease in SYM-H occurred when polar cap flux was increasing and there was no evidence of injection into the ring current. Our findings strongly support the relationship between Dst and the polar cap flux proposed by theoretical studies that determined that the tail current system could be a significant contributor to Dst (C) 2015 Elsevier Ltd. All rights reserved. C1 [Lopez, R. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Gonzalez, W. D.; Echer, E.] INPE, Sao Jose Dos Campos, Brazil. [Vasylinnas, V.] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Richardson, I. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cid, C.] Univ Alcala de Henares, Dept Fis & Matemat, Space Res Grp Space Weather, E-28871 Alcala De Henares, Spain. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Brandt, P. C.] Johns Hopkins Appl Phys Lab, Laurel, MD USA. RP Lopez, RE (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM relopez@uta.edu RI Brandt, Pontus/N-1218-2016; OI Brandt, Pontus/0000-0002-4644-0306; CID, CONSUELO/0000-0002-2863-3745; Richardson, Ian/0000-0002-3855-3634; Reeves, Geoffrey/0000-0002-7985-8098; Lopez, Ramon/0000-0001-5881-1365 FU CISM - STC Program of the National Science Foundation [ATM-0120950]; NASA [NNX09AI63G]; NSF [ATM-0900920, AGS1303646]; Brazilian CNPq agency [301233/2011-0, 303329/2011-4]; FAPESP [2012/066734]; Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain [PN-AYA2009-08662]; Junta de Comunidades de Castilla-La Mancha of Spain [PPII10-0183-7802] FX This paper is based upon work supported by CISM, which is funded by the STC Program of the National Science Foundation under agreement ATM-0120950, NASA grant NNX09AI63G, NSF grants ATM-0900920 and AGS1303646, Brazilian CNPq agency contract numbers 301233/2011-0 and 303329/2011-4, FAPESP agency contract number 2012/066734, grant PN-AYA2009-08662 from the Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain, and grant PPII10-0183-7802 from the Junta de Comunidades de Castilla-La Mancha of Spain. We acknowledge use of NASA/GSFC Space Physics Data Facility OMNIWeb and CDAWeb service, and OMNI data. We thank Los Alamos National Laboratory for providing the geosynchronous particle data. The DMSP particle detectors were designed by Dave Hardy of AFRL, and the data and plots were obtained from JHU/APL. The results presented in this paper rely on data collected at magnetic observatories. We thank the national institutes that support them and INTERMAGNET for promoting high standards of magnetic observatory practice (www.intermagnet.org). This work was initially discussed during the Brazil 9 Workshop on Magnetic Storms held at the Universidad de Alcala, Alcala, Spain in October, 2011. NR 56 TC 2 Z9 2 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD NOV PY 2015 VL 134 BP 118 EP 129 DI 10.1016/j.jastp.2015.09.016 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CV4SV UT WOS:000364257700012 ER PT J AU Rodell, M Beaudoing, HK L'Ecuyer, TS Olson, WS Famiglietti, JS Houser, PR Adler, R Bosilovich, MG Clayson, CA Chambers, D Clark, E Fetzer, EJ Gao, X Gu, G Hilburn, K Huffman, GJ Lettenmaier, DP Liu, WT Robertson, FR Schlosser, CA Sheffield, J Wood, EF AF Rodell, M. Beaudoing, H. K. L'Ecuyer, T. S. Olson, W. S. Famiglietti, J. S. Houser, P. R. Adler, R. Bosilovich, M. G. Clayson, C. A. Chambers, D. Clark, E. Fetzer, E. J. Gao, X. Gu, G. Hilburn, K. Huffman, G. J. Lettenmaier, D. P. Liu, W. T. Robertson, F. R. Schlosser, C. A. Sheffield, J. Wood, E. F. TI The Observed State of the Water Cycle in the Early Twenty-First Century SO JOURNAL OF CLIMATE LA English DT Review DE Physical Meteorology and Climatology; Water budget; Observational techniques and algorithms; Remote sensing; Mathematical and statistical techniques; Numerical analysis; modeling ID ATMOSPHERIC INFRARED SOUNDER; CLIMATOLOGY PROJECT GPCP; DATA ASSIMILATION SYSTEM; MICROWAVE SCANNING RADIOMETER; TIME-VARIABLE GRAVITY; LAND-SURFACE; GLOBAL PRECIPITATION; HYDROLOGICAL CYCLE; TROPICAL RAINFALL; ENERGY-BALANCE AB This study quantifies mean annual and monthly fluxes of Earth's water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting. C1 [Rodell, M.; Beaudoing, H. K.; Olson, W. S.; Bosilovich, M. G.; Gu, G.; Huffman, G. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beaudoing, H. K.; Adler, R.; Gu, G.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [L'Ecuyer, T. S.; Liu, W. T.] Univ Wisconsin, Madison, WI USA. [Olson, W. S.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Famiglietti, J. S.; Fetzer, E. J.] NASA, Jet Prop Lab, Pasadena, CA USA. [Houser, P. R.] George Mason Univ, Fairfax, VA 22030 USA. [Clayson, C. A.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Chambers, D.] Univ S Florida, St Petersburg, FL 33701 USA. [Clark, E.; Lettenmaier, D. P.] Univ Washington, Seattle, WA 98195 USA. [Gao, X.; Schlosser, C. A.] MIT, Cambridge, MA 02139 USA. [Hilburn, K.] Remote Sensing Syst, Santa Rosa, CA USA. [Robertson, F. R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Sheffield, J.; Wood, E. F.] Princeton Univ, Princeton, NJ 08544 USA. RP Rodell, M (reprint author), NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Code 617,Bldg 33,Room G227, Greenbelt, MD 20771 USA. EM matthew.rodell@nasa.gov RI Rodell, Matthew/E-4946-2012; L'Ecuyer, Tristan/E-5607-2012; Huffman, George/F-4494-2014; Bosilovich, Michael/F-8175-2012 OI Rodell, Matthew/0000-0003-0106-7437; L'Ecuyer, Tristan/0000-0002-7584-4836; Huffman, George/0000-0003-3858-8308; FU NASA's Energy and Water Cycle Study (NEWS) program FX This research was funded by multiple grants from NASA's Energy and Water Cycle Study (NEWS) program. We appreciate the thorough and constructive reviews provided by Kevin Trenberth, Balazs Fekete, and an anonymous reviewer, which greatly improved the manuscript. We also thank John Fasullo for providing annual-mean continental fluxes from Trenberth and Fasullo (2013) and Jared Entin, Debbie Belvedere, and Bob Schiffer for their assistance and encouragement. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 156 TC 21 Z9 21 U1 10 U2 60 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2015 VL 28 IS 21 BP 8289 EP 8318 DI 10.1175/JCLI-D-14-00555.1 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU8BN UT WOS:000363766200001 ER PT J AU L'Ecuyer, TS Beaudoing, HK Rodell, M Olson, W Lin, B Kato, S Clayson, CA Wood, E Sheffield, J Adler, R Huffman, G Bosilovich, M Gu, G Robertson, F Houser, PR Chambers, D Famiglietti, JS Fetzer, E Liu, WT Gao, X Schlosser, CA Clark, E Lettenmaier, DP Hilburn, K AF L'Ecuyer, Tristan S. Beaudoing, H. K. Rodell, M. Olson, W. Lin, B. Kato, S. Clayson, C. A. Wood, E. Sheffield, J. Adler, R. Huffman, G. Bosilovich, M. Gu, G. Robertson, F. Houser, P. R. Chambers, D. Famiglietti, J. S. Fetzer, E. Liu, W. T. Gao, X. Schlosser, C. A. Clark, E. Lettenmaier, D. P. Hilburn, K. TI The Observed State of the Energy Budget in the Early Twenty-First Century SO JOURNAL OF CLIMATE LA English DT Review DE Climatology; Energy budget; balance; Heat budgets; fluxes; Radiative fluxes; Surface fluxes; Satellite observations ID GENERAL-CIRCULATION MODEL; DATA ASSIMILATION SYSTEM; AIR-SEA FLUXES; CLIMATOLOGY PROJECT GPCP; LAND-SURFACE MODEL; GLOBAL PRECIPITATION; RADIATION BUDGET; DOUBLE ITCZ; PART II; SATELLITE-OBSERVATIONS AB New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth's surface exceed corresponding turbulent heat fluxes by 13-24 W m(-2). The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m(-2) of atmospheric longwave cooling is balanced by 74 W m(-2) of shortwave absorption and 106 W m(-2) of latent and sensible heat release. At the surface, 106 W m(-2) of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m(-2), consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented. C1 [L'Ecuyer, Tristan S.] Univ Wisconsin, Madison, WI 53574 USA. [Beaudoing, H. K.; Rodell, M.; Huffman, G.; Bosilovich, M.; Gu, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beaudoing, H. K.; Adler, R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Olson, W.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Lin, B.; Kato, S.] NASA, Langley Res Ctr, Norfolk, VA USA. [Clayson, C. A.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Wood, E.; Sheffield, J.] Princeton Univ, Princeton, NJ 08544 USA. [Robertson, F.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Houser, P. R.] George Mason Univ, Fairfax, VA 22030 USA. [Chambers, D.] Univ S Florida, St Petersburg, FL 33701 USA. [Famiglietti, J. S.; Fetzer, E.; Liu, W. T.] NASA, Jet Prop Lab, Pasadena, CA USA. [Gao, X.; Schlosser, C. A.] MIT, Cambridge, MA 02139 USA. [Clark, E.; Lettenmaier, D. P.] Univ Washington, Seattle, WA 98195 USA. [Hilburn, K.] Remote Sensing Syst, Santa Rosa, CA USA. RP L'Ecuyer, TS (reprint author), Univ Wisconsin, 1225 W Dayton St, Madison, WI 53574 USA. EM tristan@aos.wisc.edu RI Rodell, Matthew/E-4946-2012; L'Ecuyer, Tristan/E-5607-2012; Huffman, George/F-4494-2014; Bosilovich, Michael/F-8175-2012 OI Rodell, Matthew/0000-0003-0106-7437; L'Ecuyer, Tristan/0000-0002-7584-4836; Huffman, George/0000-0003-3858-8308; FU NEWS program FX This study is the result of a collaboration of multiple investigators each supported by the NEWS program. The goal of NEWS is to foster large collaborative research activities that cross traditional disciplinary boundaries to improve understanding and prediction of the global energy and water cycles. All data generated in the course of this work can be accessed through GES DISC (2015). This dataset summarizes the original observationally based estimates of all component fluxes for each continent and ocean basin on monthly and annual scales as well as means over all oceans, means over all continents, and the global mean. A companion dataset provides optimized versions of all component fluxes in the same format. GEWEX SRB data were obtained from the NASA Langley Research Center Atmospheric Science Data Center NASA/GEWEX SRB Project (GEWEX 2007). The C3M product (edition B1) was obtained from the Atmospheric Science Data Center (ASDC 2012). ISCCP D2 data were obtained from the International Satellite Cloud Climatology Project maintained by the ISCCP research group at the NASA Goddard Institute for Space Studies in New York, New York (ISCCP 2007). 2B-FLXHR-lidar data were obtained through the CloudSat Data Processing Center (DPC 2011). The GPCP combined precipitation data were provided by the NASA Goddard Space Flight Center's Laboratory for Atmospheres (GPCP 2009), which develops and computes the dataset as a contribution to the GEWEX Global Precipitation Climatology Project. MERRA data used in this study have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center (GMAO 2013). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 142 TC 14 Z9 14 U1 11 U2 42 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2015 VL 28 IS 21 BP 8319 EP 8346 DI 10.1175/JCLI-D-14-00556.1 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU8BN UT WOS:000363766200002 ER PT J AU Lentati, L Taylor, SR Mingarelli, CMF Sesana, A Sanidas, SA Vecchio, A Caballero, RN Lee, KJ van Haasteren, R Babak, S Bassa, CG Brem, P Burgay, M Champion, DJ Cognard, I Desvignes, G Gair, JR Guillemot, L Hessels, JWT Janssen, GH Karuppusamy, R Kramer, M Lassus, A Lazarus, P Liu, K Oslowski, S Perrodin, D Petiteau, A Possenti, A Purver, MB Rosado, PA Smits, R Stappers, B Theureau, G Tiburzi, C Verbiest, JPW AF Lentati, L. Taylor, S. R. Mingarelli, C. M. F. Sesana, A. Sanidas, S. A. Vecchio, A. Caballero, R. N. Lee, K. J. van Haasteren, R. Babak, S. Bassa, C. G. Brem, P. Burgay, M. Champion, D. J. Cognard, I. Desvignes, G. Gair, J. R. Guillemot, L. Hessels, J. W. T. Janssen, G. H. Karuppusamy, R. Kramer, M. Lassus, A. Lazarus, P. Liu, K. Oslowski, S. Perrodin, D. Petiteau, A. Possenti, A. Purver, M. B. Rosado, P. A. Smits, R. Stappers, B. Theureau, G. Tiburzi, C. Verbiest, J. P. W. TI European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational waves; methods: data analysis; pulsars: general ID BLACK-HOLE BINARIES; MILLISECOND PULSARS; COSMIC STRINGS; HIERARCHICAL-MODELS; INFINITE STRINGS; GALAXY FORMATION; BRANE INFLATION; RADIATION; PRECISION; EVOLUTION AB We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar system ephemeris errors, obtaining a robust 95 per cent upper limit on the dimensionless strain amplitude A of the background of A < 3.0 x 10(-15) at a reference frequency of 1 yr(-1) and a spectral index of 13/3, corresponding to a background from inspiralling supermassive black hole binaries, constraining the GW energy density to Omega(gw)(f)h(2) < 1.1 x 10(-9) at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of similar to 5 x 10(-9) Hz. Finally, we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95 per cent upper limits on the string tension, G mu/c(2), characterizing a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit G mu/c(2) < 1.3x10(-7), identical to that set by the Planck Collaboration, when combining Planck and high-l cosmic microwave background data from other experiments. For a stochastic relic background, we set a limit of Omega(relic)(gw)(f)h(2) < 1.2 x 10(-9), a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array. C1 [Lentati, L.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Taylor, S. R.; Gair, J. R.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Taylor, S. R.; van Haasteren, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mingarelli, C. M. F.] CALTECH, TAPIR Theoret Astrophys, Pasadena, CA 91125 USA. [Mingarelli, C. M. F.; Caballero, R. N.; Lee, K. J.; Champion, D. J.; Desvignes, G.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Oslowski, S.; Verbiest, J. P. W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Mingarelli, C. M. F.; Sesana, A.; Vecchio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Sesana, A.; Babak, S.; Brem, P.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Sanidas, S. A.; Hessels, J. W. T.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Sanidas, S. A.; Bassa, C. G.; Janssen, G. H.; Kramer, M.; Purver, M. B.; Stappers, B.] Univ Manchester, Ctr Astrophys, Jodrell Bank, Manchester M13 9PL, Lancs, England. [Lee, K. J.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Bassa, C. G.; Hessels, J. W. T.; Janssen, G. H.; Smits, R.] Netherlands Inst Radio Astron, ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Burgay, M.; Perrodin, D.; Possenti, A.; Tiburzi, C.] INAF Osservatorio Astron Cagliari, I-09047 Selargius, Italy. [Cognard, I.; Guillemot, L.; Theureau, G.] Univ Orleans, CNRS, LPC2E, F-45071 Orleans, France. [Cognard, I.; Guillemot, L.; Theureau, G.] CNRS INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Lassus, A.] Univ Paris 07, APC UFR Phys, F-75205 Paris 13, France. [Oslowski, S.; Verbiest, J. P. W.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Rosado, P. A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Rosado, P. A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, NH, Germany. [Theureau, G.] Univ Paris Diderot, CNRS INSU, Observ Paris, Lab Univers & Theories LUTh, F-92190 Meudon, France. [Tiburzi, C.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy. RP Lentati, L (reprint author), Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. EM ltl21@cam.ac.uk RI Perrodin, Delphine/L-1916-2016; Vecchio, Alberto/F-8310-2015; Sesana, Alberto/Q-9826-2016; OI Perrodin, Delphine/0000-0002-1806-2483; Vecchio, Alberto/0000-0002-6254-1617; Sesana, Alberto/0000-0003-4961-1606; Burgay, Marta/0000-0002-8265-4344; Taylor, Stephen/0000-0003-0264-1453; Oslowski, Stefan/0000-0003-0289-0732 FU European Research Council to implement the Large European Array for Pulsars (LEAP); 'Programme National de Cosmologie and Galaxies' (PNCG) of CNRS/INSU, France; STFC in the UK; Netherlands Foundation for Scientific Research NWO; Higher Education Funding Council for England; Science and Technology Facilities Council; NSF under MRI-R2 award [PHY-0960291]; Sherman Fairchild Foundation; Junior Research Fellowship at Trinity Hall College, Cambridge University; NASA Postdoctoral Program at the Jet Propulsion Laboratory; NASA; Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme; Royal Society; NWO Vidi fellowship (PI JWTH); International Max Planck Research School Bonn/Cologne and the Bonn-Cologne Graduate School; National Natural Science Foundation of China [11373011]; NASA Einstein Fellowship [PF3-140116]; NWO Vidi fellowship; ERC Starting Grant 'DRAG-NET' [337062]; International Max Planck Research School Bonn/Cologne; European Research Council for the ERC Synergy Grant BlackHoleCam [610058]; Alexander von Humboldt Foundation FX The EPTA is a collaboration between European institutes namely ASTRON (NL), INAF/Osservatorio di Cagliari (IT), Max-Planck-Institut fr Radioastronomie (GER), Nanay/Paris Observatory (FRA), the University of Manchester (UK), the University of Birmingham (UK), the University of Cambridge (UK) and the University of Bielefeld (GER), with the aim to provide high-precision pulsar timing to work towards the direct detection of low-frequency GWs. An Advanced Grant of the European Research Council to implement the Large European Array for Pulsars (LEAP) also provides funding.; Part of this work is based on observations with the 100-m telescope of the Max-Planck-Institut fur Radioastronomie (MPIfR) at Effelsberg. The Nancay radio Observatory is operated by the Paris Observatory, associated with the French Centre National de la Recherche Scientifique (CNRS). We acknowledge financial support from 'Programme National de Cosmologie and Galaxies' (PNCG) of CNRS/INSU, France. Pulsar research at the Jodrell Bank Centre for Astrophysics and the observations using the Lovell Telescope is supported by a consolidated grant from the STFC in the UK. We thank A. G. Lyne and C. A. Jordan for carrying out the pulsar observations at JBCA. The Westerbork Synthesis Radio Telescope is operated by the Netherlands Institute for Radio Astronomy (ASTRON) with support from The Netherlands Foundation for Scientific Research NWO.; This research was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council, and the Zwicky computer cluster at Caltech is supported by the NSF under MRI-R2 award no. PHY-0960291 and by the Sherman Fairchild Foundation.; LL was supported by a Junior Research Fellowship at Trinity Hall College, Cambridge University. ST was supported by appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. CMFM was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme and would like to thank Paul Lasky for useful discussions. AS and JG are supported by the Royal Society. SAS would like to thank Richard Battye for various discussions and comments regarding the cosmic string section in this paper, and acknowledges funding from an NWO Vidi fellowship (PI JWTH). RNC acknowledges the support of the International Max Planck Research School Bonn/Cologne and the Bonn-Cologne Graduate School. KJL is supported by the National Natural Science Foundation of China (Grant no. 11373011). RvH is supported by NASA Einstein Fellowship grant PF3-140116. JWTH acknowledges funding from an NWO Vidi fellowship and ERC Starting Grant 'DRAG-NET' (337062). PL acknowledges the support of the International Max Planck Research School Bonn/Cologne. KL acknowledges the financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam under contract no. 610058. SO is supported by the Alexander von Humboldt Foundation. NR 111 TC 53 Z9 53 U1 2 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2015 VL 453 IS 3 BP 2576 EP 2598 DI 10.1093/mnras/stv1538 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6NL UT WOS:000363649000031 ER PT J AU Bernardini, F de Martino, D Mukai, K Israel, G Falanga, M Ramsay, G Masetti, N AF Bernardini, F. de Martino, D. Mukai, K. Israel, G. Falanga, M. Ramsay, G. Masetti, N. TI Swift J0525.6+2416 and IGR J04571+4527: two new hard X-ray-selected magnetic cataclysmic variables identified with XMM-Newton SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE novae, cataclysmic variables; white dwarfs; X-rays: individual: Swift J0525.6+2416 (1RXS J052523.2+241331, as WISE J052522.84+24133333.6); X-rays: individual: IGR J04571+4527 (1RXS J045707.4+452751, as Swift J0457.1+4528) ID STATIONARY RADIATION HYDRODYNAMICS; PHOTON IMAGING CAMERA; OPTICAL SPECTROSCOPY; WHITE-DWARF; INTERMEDIATE POLARS; LUMINOSITY FUNCTION; INTERSTELLAR-MEDIUM; INTEGRAL OBJECTS; LIMITING WINDOW; ACCRETION FLOWS AB IGR J04571+4527 and Swift J0525.6+2416 are two hard X-ray sources detected in the Swift/BAT and INTEGRAL/IBIS surveys. They were proposed to be magnetic cataclysmic variables of the intermediate polar (IP) type, based on optical spectroscopy. IGR J04571+4527 also showed a 1218 s optical periodicity, suggestive of the rotational period of a white dwarf, further pointing towards an IP classification. We here present detailed X-ray (0.3-10 keV) timing and spectral analysis performed with XMM-Newton, complemented with hard X-ray coverage (15-70 keV) from Swift/BAT. These are the first high-S/N observations in the soft X-ray domain for both sources, allowing us to identify the white dwarf X-ray spin period of Swift J0525.6+2416 (226.28 s), and IGR J04571+4527 (1222.6 s). A model consisting of multitemperature optically thin emission with complex absorption adequately fits the broad-band spectrum of both sources. We estimate a white dwarf mass of about 1.1 and 1.0 M-circle dot for IGR J04571+4527 and Swift J0525.6+2416, respectively. The above characteristics allow us to unambiguously classify both sources as IPs, confirming the high incidence of this subclass among hard X-ray emitting cataclysmic variables. C1 [Bernardini, F.] NYU Abu Dhabi, Abu Dhabi 129188, U Arab Emirates. [Bernardini, F.; de Martino, D.] INAF, Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Israel, G.] INAF, Osservatorio Astron Roma, I-00040 Rome, Italy. [Falanga, M.] Int Space Sci Inst, CH-3012 Bern, Switzerland. [Falanga, M.] Int Space Sci Inst Beijing, Beijing 100190, Peoples R China. [Ramsay, G.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Masetti, N.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Masetti, N.] Univ Andres Bello, Dept Ciencias Fis, Santiago, Chile. RP Bernardini, F (reprint author), NYU Abu Dhabi, Abu Dhabi 129188, U Arab Emirates. EM bernardini@nyu.edu OI Israel, GianLuca/0000-0001-5480-6438; Bernardini, Federico/0000-0001-5326-2010; de Martino, Domitilla/0000-0002-5069-4202 FU ESA; NASA; National Science Fundation; ASI INAF [I/037/12/0] FX This work is based on observations obtained with XMM-Newton an ESA science mission directly funded by ESA Member States, with Swift, a National Aeronautics and Space Administration (NASA) science mission with Italian participation. This publication also makes use of data products from the Two Micron All Sky Survey (2MASS), which is a joint project of the University of Massacusetts and the Infrared Processing and Analysis Center (California Institute of Technology), funded by NASA and National Science Fundation. It also makes use of data products from the WISE, which is a joint project of the University of California, Los Angeles and the Jet Propulsion Laboratory/California Institute of Technology, funded by the NASA.; We acknowledge financial support from ASI INAF I/037/12/0. NR 47 TC 2 Z9 2 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2015 VL 453 IS 3 BP 3100 EP 3106 DI 10.1093/mnras/stv1673 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6NL UT WOS:000363649000067 ER PT J AU Petit, V Cohen, DH Wade, GA Naze, Y Owocki, SP Sundqvist, JO Ud-Doula, A Fullerton, A Leutenegger, M Gagne, M AF Petit, V. Cohen, D. H. Wade, G. A. Naze, Y. Owocki, S. P. Sundqvist, J. O. Ud-Doula, A. Fullerton, A. Leutenegger, M. Gagne, M. TI X-ray emission from the giant magnetosphere of the magnetic O-type star NGC 1624-2 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: early-type; stars: individual: NGC 1624-2; stars: magnetic field; stars: massive; stars: winds, outflows; X-rays: stars ID THETA(1) ORIONIS-C; DRIVEN STELLAR WINDS; MASSIVE STARS; DYNAMICAL SIMULATIONS; FIELD; SPECTROSCOPY; CONFINEMENT; ABSORPTION; HD-191612; ROTATION AB We observed NGC 1624-2, the O-type star with the largest known magnetic field (B-p similar to 20 kG), in X-rays with the Advanced CCD Imaging Spectrometer (ACIS-S) camera on-board the Chandra X-ray Observatory. Our two observations were obtained at the minimum and maximum of the periodic H alpha emission cycle, corresponding to the rotational phases where the magnetic field is the closest to equator-on and pole-on, respectively. With these observations, we aim to characterize the star's magnetosphere via the X-ray emission produced by magnetically confined wind shocks. Our main findings are as follows. (i) The observed spectrum of NGC 1624-2 is hard, similar to the magnetic O-type star theta(1) Ori C, with only a few photons detected below 0.8 keV. The emergent X-ray flux is 30 per cent lower at the H alpha minimum phase. (ii) Our modelling indicated that this seemingly hard spectrum is in fact a consequence of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a large amount of local absorption (similar to 1-3x 10(22) cm(-2)). This combination is necessary to reproduce both the prominent Mg and Si spectral features, and the lack of flux at low energies. NGC 1624-2 is intrinsically luminous in X-rays (log L-X(cm) similar to 33.4) but 70-95 per cent of the X-ray emission produced by magnetically confined wind shocks is absorbed before it escapes the magnetosphere (log L-X(ISMcor) similar to 32.5). (iii) The high X-ray luminosity, its variation with stellar rotation, and its large attenuation are all consistent with a large dynamical magnetosphere with magnetically confined wind shocks. C1 [Petit, V.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32904 USA. [Cohen, D. H.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Wade, G. A.] Royal Mil Coll Canada, Dept Phys, Kingston, ON K7K 7B4, Canada. [Naze, Y.] Univ Liege, GAPHE, B-4000 Liege, Belgium. [Owocki, S. P.; Sundqvist, J. O.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Ud-Doula, A.] Penn State Worthington Scranton, Dunmore, PA 18512 USA. [Fullerton, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Leutenegger, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leutenegger, M.] CRESST, Baltimore, MD 21250 USA. [Leutenegger, M.] Univ Maryland, Baltimore, MD 21250 USA. [Gagne, M.] W Chester Univ, Dept Geol & Astron, W Chester, PA 19383 USA. RP Petit, V (reprint author), Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32904 USA. EM vpetit@fit.edu OI Petit, Veronique/0000-0002-5633-7548; Naze, Yael/0000-0003-4071-9346 FU NASA through Chandra Award [G03-14017C]; NASA [NAS8-03060]; SAO Chandra grants [TM4-15001B, G03-14017B, AR2-13001A]; Natural Science and Engineering Research Council of Canada (NSERC); Fonds National de la Recherche Scientifique (Belgium); PRODEX XMM; ARC; federation Wallonia-Brussels; NASA ATP [NNX11AC40G, NNX12AC72G]; SAO Chandra [TM3-14001A]; SAO Chandra grant [TM4-15001A]; NASA through Space Telescope Science Institute [HST-GO-13629.008-A] FX Support for this work was provided by NASA through Chandra Award G03-14017C issued to the Florida Institute of Technology by the Chandra X-ray Observatory Center which is operated by the Smithsonian Astrophysical Observatory for and behalf of NASA under contract NAS8-03060. DHC acknowledges support from SAO Chandra grants TM4-15001B, G03-14017B, and AR2-13001A. GAW acknowledges Discovery Grant support from the Natural Science and Engineering Research Council of Canada (NSERC). YN acknowledges support from the Fonds National de la Recherche Scientifique (Belgium), the PRODEX XMM contract and ARC grant for concerted research action financed by the federation Wallonia-Brussels. SPO acknowledges NASA ATP grant NNX11AC40G and NNX12AC72G. JOS acknowledges support from SAO Chandra grant TM3-14001A. AuD acknowledges support from SAO Chandra grant TM4-15001A, and NASA ATP grant NNX12AC72G. AuD also acknowledges support for Program number HST-GO-13629.008-A provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. MRG acknowledges support from SAO Chandra grants AR3-14001A. The authors thank the referee for useful comments and suggestions, and acknowledge help from and discussion with N. Walborn, R. Townsend, R. H. Barba, G. Rauw, J. Maiz Apellaniz, and A. Pellerin. NR 39 TC 4 Z9 4 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2015 VL 453 IS 3 BP 3288 EP 3299 DI 10.1093/mnras/stv1741 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6NL UT WOS:000363649000084 ER PT J AU Brix, H Menemenlis, D Hill, C Dutkiewicz, S Jahn, O Wang, D Bowman, K Zhang, H AF Brix, H. Menemenlis, D. Hill, C. Dutkiewicz, S. Jahn, O. Wang, D. Bowman, K. Zhang, H. TI Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model SO OCEAN MODELLING LA English DT Article DE Carbon Monitoring System; Ocean biogeochemical circular ion model; Green's Functii; Data assimilation ID ATMOSPHERIC CO2; ANTHROPOGENIC CO2; INTERANNUAL VARIABILITY; DATA ASSIMILATION; CARBON-DIOXIDE; TIME-SERIES; WIND-SPEED; CLIMATE; SINKS; SYSTEM AB The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full depth, eddying, global ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO(2)) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting: initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas exchange parameter differs by only 3% from the baseline value and has little impact ( 0.1%) on the cost function. The particulate inorganic to organic carbon ratio was increased more than threefold and reduced the cost function by 22% relative to the baseline integration, indicating a significant influence of biology on air-sea gas exchange. The largest contribution to cost reduction (35%) comes from the adjustment of initial conditions. In addition to reducing biases relative to observations, the adjusted simulation exhibits smaller model drift than the baseline. We estimate drift by integrating the model with repeated 2009 atmospheric forcing for seven years and find a volume-weighted drift reduction of, for example, 12.5% for nitrate and 30% for oxygen in the top 300 in. Although there remain several regions with large model-data discrepancies, for example, overly strong carbon uptake in the Southern Ocean, the adjusted simulation is a first step towards a more accurate representation of the ocean carbon cycle at high spatial and temporal resolution. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Brix, H.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Menemenlis, D.; Bowman, K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.] MIT, Cambridge, MA 02139 USA. [Wang, D.] Northeastern Univ, Dept Civil & Environm Engn, Sustainabil & Data Sci Lab, Boston, MA 02115 USA. [Zhang, H.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Brix, H (reprint author), Helmholtz Zentrum Geesthacht, Inst Coastal Res, Geesthacht, Germany. EM hbrix@ucla.edu OI Brix, Holger/0000-0003-4229-6164; Jahn, Oliver/0000-0002-0130-5186 FU NASA FX We wish to thank Watson Gregg for providing data from his NOBM runs and Corinne Le Quere for making available her method to calculate DIC initial conditions corrected for the anthropogenic component. We also wish to express our sincere gratitude to the reviewers and editors of Ocean Modelling. Their input has helped to improve this manuscript substantially. This work was funded by the NASA CMS Flux Project and made use of NASA High-End Computing (HEC) resources. NR 86 TC 2 Z9 2 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD NOV PY 2015 VL 95 BP 1 EP 14 DI 10.1016/j.ocemod.2015.07.008 PG 14 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA CU9HR UT WOS:000363856000001 ER PT J AU Luhmann, JG Ma, YJ Brain, DA Ulusen, D Lillis, RJ Halekas, JS Espley, JR AF Luhmann, J. G. Ma, Y. -J. Brain, D. A. Ulusen, D. Lillis, R. J. Halekas, J. S. Espley, J. R. TI Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements SO PLANETARY AND SPACE SCIENCE LA English DT Article ID SPHERICAL HARMONIC MODEL; IONOSPHERE; VENUS AB The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within similar to 110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Luhmann, J. G.; Lillis, R. J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ma, Y. -J.] Univ Calif Los Angeles, IGPP, Los Angeles, CA USA. [Brain, D. A.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Ulusen, D.] TUBITAK, Ankara, Turkey. [Halekas, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Espley, J. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Luhmann, JG (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM jgluhman@ssl.berkeley.edu RI Lillis, Robert/A-3281-2008; Ma, Yingjuan/B-4895-2017; OI Lillis, Robert/0000-0003-0578-517X; Ma, Yingjuan/0000-0003-2584-7091; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX11AI86G] FX This work was supported in part by NASA Grant NNX11AI86G to SSL, University of California, Berkeley, from the Mars Data Analysis Program (MDAP). The authors are grateful for the efforts of the MGS magnetometer team (led by M. Acuna, PI) toward producing and providing the data used here, and to those who designed, built and operated the MGS mission. We are also grateful to those at the SPRL, University of Michigan who developed the BATS-R-US code for MHD simulations of space plasma interactions. NR 20 TC 2 Z9 2 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2015 VL 117 BP 15 EP 23 DI 10.1016/j.pss.2015.05.004 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4SS UT WOS:000364257400002 ER PT J AU Sears, DWG Tornabene, LL Osinski, GR Hughes, SS Heldmann, JL AF Sears, D. W. G. Tornabene, L. L. Osinski, G. R. Hughes, S. S. Heldmann, J. L. TI Formation of the "ponds" on asteroid (433) Eros by fluidization SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Eros; Ponds; Vesta; Phreatic craters; Fluidization; Craters ID SUEVITE REVISITED-OBSERVATIONS; ORDINARY CHONDRITES; RIES CRATER; SILICATE FRACTIONATION; SIZE-DISTRIBUTIONS; WATER-VAPOR; 9P/TEMPEL 1; ICE; METEORITES; 433-EROS AB The "ponds" on asteroid (433) Eros are fine-grained deposits approximating flat (quasi-equipotential) surfaces with respect to local topographic depressions (e.g., craters) in spacecraft images. These ponds are discussed in the context of laboratory simulation experiments, crater-related ponded and pitted deposits observed on Mars and Vesta, terrestrial phreatic craters, and degassing features associated with eroded impact craters on Earth. While the details of formation of these features on Mars, Vesta and the Earth are thought to be different, they all include mechanisms that require the interactions between surface materials and volatiles (e.g., water vapor). Indeed, analogous features similar to the Eros ponds can be reproduced in the laboratory by the release of vapor (ice sublimation, water evaporation, or N-2) through an unconsolidated regolith (independent of regolith composition). Eros is widely thought to be dry, but the discovery of exogenic water on Vesta, and recent arguments that subsurface water might be present in the inner asteroid belt suggest that endogenic water might also be present and serve as a source of the gases produced in the ponds. The amount of water required is comparable to the amount of water observed in little-metamorphosed ordinary chondrites (a few wt%). The primary morphologic characteristics of the Eros ponds can be explained in this model. The heat source for degassing could have been solar heating following transfer from a main belt orbit to a near Earth orbit. Although other hypotheses (e.g., electrostatic levitation, seismic shaking, and comminution of boulders) can account for most of the features of the ponds, recent observations regarding the role of volatiles on planetary surfaces, our laboratory experiments, and fluidization deposits on active comets suggests that degassing is a reasonable hypothesis to be considered and further tested for explaining the Eros ponds, and similar features on other bodies. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sears, D. W. G.; Heldmann, J. L.] NASA, Ames Res Ctr, Planetary Syst Branch MS245 3, Mountain View, CA 94035 USA. [Sears, D. W. G.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Mountain View, CA 94035 USA. [Tornabene, L. L.; Osinski, G. R.] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. [Tornabene, L. L.; Osinski, G. R.] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON N6A 5B7, Canada. [Osinski, G. R.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 5B7, Canada. [Hughes, S. S.] Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. RP Sears, DWG (reprint author), NASA, Ames Res Ctr, Bay Area Environm Res Inst, Space Sci & Astrobiol Div MS245 3, Mountain View, CA 94035 USA. FU University of Arkansas; W.M. Keck Foundation; National Science Foundation; National Aeronautics and Space Administration; NASA [13-SSERVI13-0018] FX We are grateful to M. S. Kareev, P. H. Benoit, J. D. Haseltine, M. A. Franzen, J. Hanley, and J. Thompson, then at the Keck Lab, for help with the experimental portions of this work and for discussions, and Steve Saunders for his help in securing equipment and for many years of advice, friendship, and encouragement. We are also grateful to James H. Roberts, Johns Hopkins University, Applied Physics Laboratory, for a very helpful review. Certain portions of this work were performed in the Keck Laboratory for Space Simulation, Arkansas Center for Space and Planetary Science, University of Arkansas, which is supported by the University of Arkansas, the W.M. Keck Foundation, the National Science Foundation, and the National Aeronautics and Space Administration. Support to prepare the present paper was provided by a grant from the NASA (Grant no. 13-SSERVI13-0018) Solar System Exploration Research Virtual Institute to the FINESSE team (Field Investigations to Enable Solar System Science and Exploration), Jennifer Heldmann, PI. NR 94 TC 1 Z9 1 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2015 VL 117 BP 106 EP 118 DI 10.1016/j.pss.2015.05.011 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4SS UT WOS:000364257400010 ER PT J AU Grima, C Blankenship, DD Schroeder, DM AF Grima, Cyril Blankenship, Donald D. Schroeder, Dustin M. TI Radar signal propagation through the ionosphere of Europa SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Radar; Europa; Ionosphere; Ice ID MARTIAN IONOSPHERE; MARS IONOSPHERE; ATMOSPHERE; SURFACE; ATTENUATION; ANTARCTICA; CALLISTO; LAYER; TORUS; SHELL AB We review the current state of knowledge of the Europan plasma environment, its effects on radio wave propagation, and its impact on the performance and design of future radar sounders for the exploration of Europa's ice crust. The Europan ionosphere is produced in two independently-rotating hemispheres by photo-ionization of the neutral exosphere and interaction with the Io plasma torus, respectively. This combination is responsible for temporal and longitudinal ionospheric heterogeneities not well constrained by observations. When Europa's ionosphere is active, the maximum cut-off frequency is 1 MHz at the surface. The main impacts on radar signal propagation are dispersive phase shift and Faraday rotation, both a function of the total electron content (up to 4 x 10(15) m(-2)) and the Jovian magnetic field strength at Europa (similar to 420 nT). The severity of these impacts decrease with increasing center frequency and increase with altitude, latitude, and bandwidth. The 9 MHz channels on the Radar for Icy Moons Exploration (RIME) and proposed Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) will be sensitive to the Europan ionosphere. For these or similar radar sounders, the ionospheric signal distortion from dispersive phase shift can be corrected with existing techniques, which would also enable the estimation of the total electron content below the spacecraft. At 9 MHz, the Faraday fading is not expected to exceed 6 dB under the worst conditions. At lower frequencies, any active or passive radio probing of the ice shell exploration would be limited to frequencies above 1-8 MHz (depending on survey configuration) below which Faraday rotation angle would lead to signal fading and detection ambiguity. Radar instruments could be sensitive to neutrals and electrons added in the exosphere from any plume activity if present. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Grima, Cyril; Blankenship, Donald D.] Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA. [Schroeder, Dustin M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Grima, C (reprint author), Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA. EM cyril.grima@gmail.com; blank@ig.utexas.edu; dustin.m.schroeder@jpl.nasa.gov OI Grima, Cyril/0000-0001-7135-3055 FU University of Texas Institute for Geophysics (UTIG) Postodoctoral Fellowship Program; G. Unger Vetlesen Foundation; NASA [13-ICEE13-00018] FX Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Grima acknowledges the support of the University of Texas Institute for Geophysics (UTIG) Postodoctoral Fellowship Program, the G. Unger Vetlesen Foundation and NASA Grant 13-ICEE13-00018 to the Jet Propulsion Laboratory. NR 43 TC 4 Z9 4 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2015 VL 117 BP 421 EP 428 DI 10.1016/j.pss.2015.08.017 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4SS UT WOS:000364257400035 ER PT J AU Engelhardt, IAD Wahlund, JE Andrews, DJ Eriksson, AI Ye, S Kurth, WS Gurnett, DA Morooka, MW Farrell, WM Dougherty, MK AF Engelhardt, I. A. D. Wahlund, J. -E. Andrews, D. J. Eriksson, A. I. Ye, S. Kurth, W. S. Gurnett, D. A. Morooka, M. W. Farrell, W. M. Dougherty, M. K. TI Plasma regions, charged dust and field-aligned currents near Enceladus SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Enceladus; Langmuir probe; Plasma; Charged dust; MAG; RPWS ID ION DENSITIES; E-RING; WAVE INSTRUMENT; MAGNETIC-FIELD; SATURNS PLASMA; CASSINI RADIO; SOUTH-POLE; PARTICLES; PICKUP; MAGNETOMETER AB We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Engelhardt, I. A. D.; Wahlund, J. -E.; Andrews, D. J.; Eriksson, A. I.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden. [Engelhardt, I. A. D.] Uppsala Univ, Dept Phys & Astron, Space & Plasma Phys, SE-75120 Uppsala, Sweden. [Ye, S.; Kurth, W. S.; Gurnett, D. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Morooka, M. W.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. RP Engelhardt, IAD (reprint author), Swedish Inst Space Phys, Box 537, SE-75121 Uppsala, Sweden. EM Ilka.Engelhardt@irfu.se; Jan-Erik.Wahlund@irfu.se RI Andrews, David/B-2591-2009; Farrell, William/I-4865-2013; OI Andrews, David/0000-0002-7933-0322; Kurth, William/0000-0002-5471-6202 FU Swedish National Space Board (SNSB) [171/12, 162/14]; NASA [1415150]; Jet Propulsion Laboratory FX I.A.D.E. and D.J.A. were supported by the Swedish National Space Board (SNSB, Dnr 171/12 and 162/14, respectively). SNSB supports the RPWS/LP instrument onboard Cassini. The research at University of Iowa was supported by NASA through contract 1415150 with the Jet Propulsion Laboratory (S.Y., W.S.K., D.A.G.). NR 57 TC 2 Z9 2 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD NOV PY 2015 VL 117 BP 453 EP 469 DI 10.1016/j.pss.2015.09.010 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4SS UT WOS:000364257400039 ER PT J AU Alexandrov, MD Cairns, B Wasilewski, AP Ackerman, AS McGill, MJ Yorks, JE Hlavka, DL Platnick, SE Arnold, GT van Diedenhoven, B Chowdhary, J Ottaviani, M Knobelspiesse, KD AF Alexandrov, Mikhail D. Cairns, Brian Wasilewski, Andrzej P. Ackerman, Andrew S. McGill, Matthew J. Yorks, John E. Hlavka, Dennis L. Platnick, Steven E. Arnold, G. Thomas van Diedenhoven, Bastiaan Chowdhary, Jacek Ottaviani, Matteo Knobelspiesse, Kirk D. TI Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX) SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Clouds and fog; Electromagnetic scattering; Polarization; Mie theory; Rainbow; Optical particle characterization; Remote sensing ID RESEARCH SCANNING POLARIMETER; LARGE-EDDY SIMULATION; RADIATION-FOG; PART II; RETRIEVALS; INSTRUMENT; CALIFORNIA; AEROSOLS; FRACTION; RADIUS AB We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website. (C) 2015 Elsevier Inc. All rights reserved. C1 [Alexandrov, Mikhail D.; Chowdhary, Jacek] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzej P.; Ackerman, Andrew S.; van Diedenhoven, Bastiaan; Chowdhary, Jacek; Ottaviani, Matteo] NASA Goddard Inst Space Studies, New York, NY 10025 USA. [Wasilewski, Andrzej P.] Trinnovim LLC, New York, NY 10025 USA. [Yorks, John E.; Hlavka, Dennis L.; Arnold, G. Thomas] Sci Syst & Applicat Inc, Lanham, MD USA. [McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Ottaviani, Matteo] CUNY City Coll, Dept Elect Engn NOAA CREST, New York, NY 10031 USA. [Knobelspiesse, Kirk D.] NASA Ames Res Ctr, Moffett Field, CA USA. RP Alexandrov, MD (reprint author), NASA Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mda14@columbia.edu RI Platnick, Steven/J-9982-2014; Knobelspiesse, Kirk/S-5902-2016; OI Platnick, Steven/0000-0003-3964-3567; Knobelspiesse, Kirk/0000-0001-5986-1751; van Diedenhoven, Bastiaan/0000-0001-5622-8619; Hlavka, Dennis/0000-0002-2976-7243; Cairns, Brian/0000-0002-1980-1022 FU NASA Radiation Sciences Program; NASA Earth Science Division FX This research was funded by the NASA Radiation Sciences Program managed by Hal Maring. This work was also funded by the NASA Earth Science Division as part of the pre-formulation study for the Aerosol, Cloud, and ocean Ecosystem (ACE) Mission. We would like to thank David O'C Starr, Richard Ferrare and Jens Redeman for providing the leadership needed to get the best possible observations from the available flight hours. The NASA ER-2 pilots, crew and management were immensely supportive and we thank them for all the help they so generously provided. NR 45 TC 3 Z9 4 U1 3 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2015 VL 169 BP 20 EP 36 DI 10.1016/j.rse.2015.07.029 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CU8TB UT WOS:000363815900002 ER PT J AU Jo, MJ Jung, HS Won, JS Lundgren, P AF Jo, Min-Jeong Jung, Hyung-Sup Won, Joong-Sun Lundgren, Paul TI Measurement of three-dimensional surface deformation by Cosmo-SkyMed X-band radar interferometry: Application to the March 2011 Kamoamoa fissure eruption, Kilauea Volcano, Hawai'i SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE SAR interferometry; MAI; 3D surface deformation; Kilauea Volcano; Kamoamoa fissure eruption; Spheroid model; Yang model; Magma source model ID MULTIPLE-APERTURE INTERFEROMETRY; SAR INTERFEROMETRY; EARTHQUAKE; SPACE; INSAR; MODEL AB Three-dimensional (3D) surface deformation is retrieved for the March 6-10,2011 (UTC dates), Kamoamoa fissure eruption along the East Rift Zone of Kilauea Volcano, Hawai'i, through the integration of multi-temporal synthetic aperture radar (SAR) interferometry (InSAR) and multiple-aperture interferometry (MAI) measurements from the COSMO-SkyMed X-band SAR. The measurement accuracies of 1) the individual and multi-stacked MAI interferograms and 2) the 3D deformation, which is measured from COSMO-SkyMed data, are assessed using continuous GPS stations. The root-mean-square (RMS) errors of individual MAI interferograms for descending and ascending data are 2.97 +/- 0.6 cm and 320 +/- 0.62 cm, respectively. The MAI interferograms stacked from multi-temporal observations can produce better results by emphasizing surface deformation signals, with the RMS errors of 1.06 and 124cm for descending and ascending data, respectively. The empirical equations for measurement uncertainties are determined with respect to interferometric coherence for individual and stacked MAI interferograms. An assessment of the 3D components of deformation was performed as well, and RMS errors of 0.75, 0.83, and 0.68 cm were estimated in the east, north, and up directions. A performance test of magma source model parameter estimations was carried out by using the InSAR and 3D measurements. From the 3D deformation field, we found that the magma chamber source at the Kilauea caldera should be modeled by the spheroid source rather than the simple point source. The performance comparison between the InSAR and 3D modeled results showed that the 3D deformation field allows for precise model parameter estimation. (C) 2015 Elsevier Inc. All rights reserved. C1 [Jo, Min-Jeong; Won, Joong-Sun] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Jung, Hyung-Sup] Univ Seoul, Dept Geoinformat, Seoul, South Korea. [Lundgren, Paul] CA Inst Technol, Jet Prop Lab, Pasadena, CA USA. RP Jung, HS (reprint author), Univ Seoul, Dept Geoinformat, Seoul, South Korea. EM hsjung@uos.ac.kr OI Jung, Hyung-Sup/0000-0003-2335-8438 FU Korea Meteorological Administration Research and Development Program [KMIPA2015-3071]; MSIP (Ministry of Science, ICT & Future Planning); NRF (National Research Foundation of Korea) under the Space Core Technology Development Program [2013M1A3A3A02042314] FX This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-3071, and also supported by the MSIP (Ministry of Science, ICT & Future Planning) and NRF (National Research Foundation of Korea) under the Space Core Technology Development Program (project id: 2013M1A3A3A02042314). The COSMO-SkyMed data were provided courtesy of the Hawai'i Supersite and Italian Space Agency (ASI). We appreciate the GPS data processing from Asta Miklius of U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO), and UH Mauoa, and Stanford university for operating the GPS network on Kilauea. And we specially appreciate the crucial review and comments from Michael Poland of USGS Cascades Volcano Observatory (CVO). NR 32 TC 2 Z9 2 U1 3 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2015 VL 169 BP 176 EP 191 DI 10.1016/j.rse.2015.08.003 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CU8TB UT WOS:000363815900013 ER PT J AU Kar, J Vaughan, MA Liu, Z Omar, AH Trepte, CR Tackett, J Fairlie, TD Kowch, R AF Kar, J. Vaughan, M. A. Liu, Z. Omar, A. H. Trepte, C. R. Tackett, J. Fairlie, T. D. Kowch, R. TI Detection of pollution outflow from Mexico City using CALIPSO lidar measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE CALIPSO lidar measurements; Mexico City aerosol; Regional scale pollution outflow ID MAJOR POPULATION CENTERS; MILAGRO FIELD CAMPAIGN; INITIAL ASSESSMENT; AIR-QUALITY; TRANSPORT; CLOUD; TRANSFORMATION; PERFORMANCE; MEGACITIES; ALGORITHM AB We present the evidence of regional scale outflow of particulate pollution from Mexico City using measurements from the space borne CALIPSO lidar. The vertically resolved results are presented for winter months when the large scale biomass burning from nearby areas is minimized, and the aerosol loading is dominated by anthropogenic outflow from the city. The particulate depolarization ratio in the outflowing plume has high values and reflects the influence of mixing of the urban pollution with the ubiquitous dust around the city. This is consistent with the results from previous field campaigns in the city and leads to polluted dust being the dominant aerosol subtype as identified by the CALIPSO algorithm. A first order estimate of the mass flux on two episodes using the aerosol extinction profiles from CALIPSO indicates outflow of several hundred tons per day. (C) 2015 Elsevier Inc. All rights reserved. C1 [Kar, J.; Liu, Z.; Tackett, J.; Kowch, R.] Sci Syst & Applicat Inc, Hampton, VA USA. [Kar, J.; Vaughan, M. A.; Liu, Z.; Omar, A. H.; Trepte, C. R.; Tackett, J.; Fairlie, T. D.; Kowch, R.] NASA Langley Res Ctr, Hampton, VA USA. RP Kar, J (reprint author), Sci Syst & Applicat Inc SSAI, NASA LaRC, Hampton, VA 23681 USA. EM jayanta.kar@nasa.gov RI Omar, Ali/D-7102-2017 OI Omar, Ali/0000-0003-1871-9235 NR 38 TC 0 Z9 0 U1 1 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2015 VL 169 BP 205 EP 211 DI 10.1016/j.rse.2015.08.009 PG 7 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CU8TB UT WOS:000363815900015 ER PT J AU Claverie, M Vermote, EF Franch, B Masek, JG AF Claverie, Martin Vermote, Eric F. Franch, Belen Masek, Jeffrey G. TI Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Validation; Surface reflectance; BRDF; Landsat; MODIS ID SURFACE REFLECTANCE PRODUCTS; PLUS ATMOSPHERIC CORRECTION; RADIATIVE-TRANSFER CODE; BIDIRECTIONAL REFLECTANCE; MODIS DATA; CROSS-CALIBRATION; VECTOR VERSION; SATELLITE DATA; GLOBAL-SCALE; TIME-SERIES AB Maintaining consistent datasets of Surface Reflectance (SR) is an important challenge to ensure long-term quality of Climate Data Records. The Landsat 5 and 7 archives offer a unique data source to monitor globally the land surface at high spatial resolution. The Landsat-5 TM and Landsat-7 ETM + SR products, derived from the on-demand processing Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), require periodic evaluation to check the data consistency. Two evaluation approaches are presented in this paper. The first approach used the Aerosol Robotic Network (AERONET) data set for the period 2000 to 2013 over 489 sites with 3600 Landsat-5 TM and Landsat-7 ETM + scenes selected. For each scene, 10 x 10 km subsets of LEDAPS-derived Landsat SR and AERONET-derived SR are compared. The latter are computed using Landsat top of atmosphere reflectance, AERONET measurements of atmospheric parameters, and the 6S radiative transfer model. Second, we introduce a methodology to cross-compare Landsat data and MODIS data acquired on the same day. The analysis is based on 4000 random Landsat scenes globally distributed from 2000 to 2013. This method includes: (i) a surface anisotropy adjustment, based on the VJB Bidirectional Reflectance Distribution Function (BRDF) method, to adjust Terra and Aqua MODIS data to Landsat 5 and 7 sun-view geometry, (ii) a spectral adjustment based on an artificial neural network trained with the PROSAIL vegetation radiative transfer model, to adjust MODIS data to TM and ETM+ spectral responses. The overall results of both approaches show a good match in over 80% of the scenes, i.e. the TM and ETM + SR uncertainty remained within the SR specification, defined as 0.05 x SR + 0.005. The worst results are found in the blue band used in LEDAPS to adjust the Aerosol Optical Thickness (AOT). The MODIS-Landsat SR cross-comparison confirms the utility of a BRDF adjustment method to decrease the scattering between Landsat sensors and MODIS sensors (Terra and Aqua). The spectral adjustment removes part of the biases related to spectral response differences. Global analysis is used to identify AOT retrieval issues over specific scenes, mostly over bright surfaces. From 2000 to 2013, no significant temporal variation of the performance is detected, which enhanced the consistency of LEDAPS-derived surface reflectance data set. (C) 2015 Elsevier Inc. All rights reserved. C1 [Claverie, Martin; Franch, Belen] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Claverie, Martin; Vermote, Eric F.; Franch, Belen; Masek, Jeffrey G.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Claverie, M (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. EM martin.claverie@nasa.gov RI Masek, Jeffrey/D-7673-2012 NR 57 TC 4 Z9 4 U1 4 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV PY 2015 VL 169 BP 390 EP 403 DI 10.1016/j.rse.2015.08.030 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CU8TB UT WOS:000363815900030 ER PT J AU Stepanyan, V Krishnakumar, K AF Stepanyan, Vahram Krishnakumar, Kalmanje TI State and Output Feedback Certainty Equivalence M-MRAC for Systems with Unmatched Uncertainties SO ASIAN JOURNAL OF CONTROL LA English DT Article DE Adaptive control; unmatched uncertainties; certainty equivalence; guaranteed transient bounds; disturbance rejection ID NONLINEAR-SYSTEMS; BACKSTEPPING CONTROL; SLIDING MODES; DESIGN AB The paper presents a certainty equivalence indirect adaptive control design method for parametric strict feedback nonlinear systems of any relative degree with unmatched uncertainties in state and output feedback settings. The approach is based on the parameter identification (estimation) model, which is completely separated from the control design and is capable of producing parameter estimates as fast as the computing power allows. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. C1 [Stepanyan, Vahram] Univ Calif Santa Cruz, Univ Affiliated Res Ctr, Moffett Field, CA 94035 USA. [Krishnakumar, Kalmanje] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. RP Stepanyan, V (reprint author), Univ Calif Santa Cruz, Univ Affiliated Res Ctr, Moffett Field, CA 94035 USA. EM vahram.stepanyan@nasa.gov; kalmanje.krishnakumar@nasa.gov NR 21 TC 0 Z9 0 U1 1 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1561-8625 EI 1934-6093 J9 ASIAN J CONTROL JI Asian J. Control PD NOV PY 2015 VL 17 IS 6 BP 2041 EP 2054 DI 10.1002/asjc.1099 PG 14 WC Automation & Control Systems SC Automation & Control Systems GA CU8ME UT WOS:000363796100001 ER PT J AU Artieda, O Davila, A Wierzchos, J Buhler, P Rodriguez-Ochoa, R Pueyo, J Ascaso, C AF Artieda, Octavio Davila, Alfonso Wierzchos, Jacek Buhler, Peter Rodriguez-Ochoa, Rafael Pueyo, Juan Ascaso, Carmen TI Surface evolution of salt-encrusted playas under extreme and continued dryness SO EARTH SURFACE PROCESSES AND LANDFORMS LA English DT Article DE salar evolution; Atacama desert; halite; aridity; salt polygons ID ATACAMA DESERT; HYPERARID CORE; MICROBIAL COMMUNITIES; NORTHERN CHILE; HALITE; EVAPORITES; FEATURES; ARIDITY; BASIN; MORPHOLOGY AB Miocene continental saltpans are scattered in the Central Valley of the Atacama Desert, one of the driest regions on Earth. These evaporitic deposits are hydrologically inactive, and are detached from groundwater brines or aquifers. The surface of the saltpans, also known as salars, comprises desiccation polygons, commonly with nodular salt structures along their sides. The morphology and bulk mineralogy of salt polygons differs between and within salars, and the shape and internal structure of salt nodules varies between different polygon types. Based on field observation, and mineralogy and crystallography data, we generated a conceptual model for the genesis and evolution of these surface features, whereby rare rainfall events are responsible for the transformation of desiccation salt polygons and the initial formation of salt nodules along polygon borders. In addition, frequent, but less intense, deliquescence events further drive the evolution of salt nodules, resulting in a characteristic internal structure that includes laminations, and changes in porosity and crystal morphologies. As a result, and despite the extreme dryness, the surfaces of fossil salars are dynamic on timescales of several years to decades, in response to daily cycles in atmospheric moisture, and also to rare and meager rainfall events. We propose that fossil salars in the Atacama Desert represent an end stage in the evolution of evaporitic deposits under extreme and prolonged dryness. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Artieda, Octavio] Univ Extremadura, Plasencia 10600, Spain. [Davila, Alfonso] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wierzchos, Jacek; Ascaso, Carmen] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain. [Buhler, Peter] CALTECH, Pasadena, CA 91125 USA. [Rodriguez-Ochoa, Rafael] Univ Lleida, Dept Medi Ambient & Ciencies Sol, Lleida 25198, Spain. [Pueyo, Juan] Univ Barcelona, Fac Geol, Barcelona 08071, Spain. RP Artieda, O (reprint author), Univ Extremadura, Plasencia 10600, Spain. EM oartieda@unex.es OI Buhler, Peter/0000-0002-5247-7148 FU Spanish Ministry of Science and Innovation [CGL2010-16004, CGL2013-42509]; NASA Astrobiology program [NNX12AD61G]; Thomas J. Watson Foundation FX Technical support was provided by SAIUEX (Universidad de Extremadura) for the XRD analyses and scanning electron microscopy study. This work was funded by grant CGL2010-16004 and CGL2013-42509 from the Spanish Ministry of Science and Innovation. A.F.D., O.A. and J.W. were supported by Grant NNX12AD61G of the NASA Astrobiology program. P.B. was supported by the Thomas J. Watson Foundation. The authors also thank Charlotte Schreiber and an anonymous referee for their critical and constructive reviews. NR 44 TC 2 Z9 2 U1 5 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0197-9337 EI 1096-9837 J9 EARTH SURF PROC LAND JI Earth Surf. Process. Landf. PD NOV PY 2015 VL 40 IS 14 BP 1939 EP 1950 DI 10.1002/esp.3771 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CU7FN UT WOS:000363702200007 ER PT J AU Kaul, CM Teixeira, J Suzuki, K AF Kaul, Colleen M. Teixeira, Joao Suzuki, Kentaroh TI Sensitivities in Large-Eddy Simulations of Mixed-Phase Arctic Stratocumulus Clouds Using a Simple Microphysics Approach SO MONTHLY WEATHER REVIEW LA English DT Article DE Geographic location; entity; Arctic; Atm; Ocean Structure; Phenomena; Clouds; Microscale processes; variability; Stratiform clouds; Models and modeling; Large eddy simulations ID BOUNDARY-LAYER; LIQUID WATER; PART I; RESOLVING SIMULATIONS; MIDLATITUDE CYCLONES; MICROSCALE STRUCTURE; EXPLICIT FORECASTS; STRATIFORM CLOUDS; FRONTAL RAINBANDS; SIZE DISTRIBUTION AB Arctic mixed-phase stratocumulus clouds are maintained by feedbacks between microphysical and dynamical phenomena, but the details of these interactions are incompletely understood. Although large-eddy simulations are a promising means of elucidating microphysics-turbulence relationships, the use of sophisticated microphysical schemes complicates analysis of their results. Here, the ability of a simplified one-moment scheme to capture basic features of this cloud type is investigated through simulations based on Mixed-Phase Arctic Cloud Experiment (MPACE), SHEBA/FIRE-ACE, and Indirect and Semi-Direct Aerosol Campaign (ISDAC) intercomparison studies. The results of the simple scheme show reasonable agreement with liquid and ice water path predictions reported by models using schemes of similar or greater complexity. Additional tests are performed to evaluate the sensitivity of the results to three main parameters of the scheme: the snow and ice size distribution intercept parameters and the exponent appearing in the temperature-dependent phase-partition function, which is used to diagnose cloud condensate amounts. Sensitivities of the SHEBA and ISDAC cases, both of which have low surface heat fluxes and low precipitation rates, tend to be similar, while the MPACE case, with higher surface fluxes and precipitation rates, shows somewhat different trends. Results of all three cases are found to be sensitive to the snow size distribution intercept parameter, but this quantity can be adequately estimated using a recently developed diagnostic expression based on observations of Arctic clouds. C1 [Kaul, Colleen M.; Teixeira, Joao] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kaul, Colleen M.] Swiss Fed Inst Technol, Zurich, Switzerland. [Suzuki, Kentaroh] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan. RP Kaul, CM (reprint author), Swiss Fed Inst Technol Zurich, Inst Geol, Soneggstr 5, CH-8092 Zurich, Switzerland. EM colleen.kaul@erdw.ethz.ch RI Suzuki, Kentaroh/C-3624-2011 NR 84 TC 0 Z9 0 U1 3 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2015 VL 143 IS 11 BP 4393 EP 4421 DI 10.1175/MWR-D-14-00319.1 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU7DQ UT WOS:000363696800006 ER PT J AU Munsell, EB Sippel, JA Braun, SA Weng, YH Zhang, FQ AF Munsell, Erin B. Sippel, Jason A. Braun, Scott A. Weng, Yonghui Zhang, Fuqing TI Dynamics and Predictability of Hurricane Nadine (2012) Evaluated through Convection-Permitting Ensemble Analysis and Forecasts SO MONTHLY WEATHER REVIEW LA English DT Article DE Circulation; Dynamics; Hurricanes; Forecasting; Numerical weather prediction; forecasting; Models and modeling; Data assimilation; Ensembles ID PREDICTION SCHEME SHIPS; UPPER OCEAN RESPONSE; VERTICAL WIND SHEAR; TROPICAL CYCLONES; MAXIMUM INTENSITY; PRECIPITATION; SIMULATION; ATLANTIC; SYSTEM; MAPS AB The governing dynamics and uncertainties of an ensemble simulation of Hurricane Nadine (2012) are assessed through the use of a regional-scale convection-permitting analysis and forecast system based on the Weather Research and Forecasting (WRF) Model and an ensemble Kalman filter (EnKF). For this case, the data that are utilized were collected during the 2012 phase of the National Aeronautics and Space Administration's (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment. The majority of the tracks of this ensemble were successful, correctly predicting Nadine's turn toward the southwest ahead of an approaching midlatitude trough, though 10 members forecasted Nadine to be carried eastward by the trough. Ensemble composite and sensitivity analyses reveal the track divergence to be caused by differences in the environmental steering flow that resulted from uncertainties associated with the position and subsequent strength of a midlatitude trough.Despite the general success of the ensemble track forecasts, the intensity forecasts indicated that Nadine would strengthen, which did not happen. A sensitivity experiment performed with the inclusion of sea surface temperature (SST) updates significantly reduced the intensity errors associated with the simulation. This weakening occurred as a result of cooling of the SST field in the vicinity of Nadine, which led to weaker surface sensible and latent heat fluxes at the air-sea interface. A comparison of environmental variables, including relative humidity, temperature, and shear yielded no obvious differences between the WRF-EnKF simulations and the HS3 observations. However, an initial intensity bias in which the WRF-EnKF vortices are stronger than the observed vortex appears to be the most likely cause of the final intensity errors. C1 [Munsell, Erin B.; Weng, Yonghui; Zhang, Fuqing] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Sippel, Jason A.] IM Syst Grp, Rockville, MD USA. [Sippel, Jason A.] NOAA, Environm Modeling Ctr, College Pk, MD USA. [Braun, Scott A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Zhang, FQ (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM fzhang@psu.edu RI Zhang, Fuqing/E-6522-2010 OI Zhang, Fuqing/0000-0003-4860-9985 FU NASA New Investigator Program [NNX12AJ79G]; NOAA Hurricane Forecast and Improvement Program; Office of Naval Research [N000140910526]; National Science Foundation [AGS-1305798]; NASA's Hurricane and Severe Storm Sentinel (HS3) investigation under NASA's Earth Venture Program FX This work is supported by the NASA New Investigator Program (Grant NNX12AJ79G), the NOAA Hurricane Forecast and Improvement Program, the Office of Naval Research (Grant N000140910526), and National Science Foundation (Grant AGS-1305798), and was performed while JS was under the employment of Morgan State University through the GESTAR agreement with NASA and funded from NASA's Hurricane and Severe Storm Sentinel (HS3) investigation under NASA's Earth Venture Program. Computing was performed at NOAA and the Texas Advanced Computing Center (TACC). NR 46 TC 5 Z9 5 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2015 VL 143 IS 11 BP 4514 EP 4532 DI 10.1175/MWR-D-14-00358.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU7DQ UT WOS:000363696800012 ER PT J AU Bhutani, A Mahler, T Zwick, T Bechter, J Schmid, M Waldschmidt, C Ponchak, G AF Bhutani, Akanksha Mahler, Tobias Zwick, Thomas Bechter, Jonathan Schmid, Martin Waldschmidt, Christian Ponchak, George TI The 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility SO IEEE MICROWAVE MAGAZINE LA English DT Editorial Material C1 [Bhutani, Akanksha; Mahler, Tobias; Zwick, Thomas] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Bechter, Jonathan; Schmid, Martin; Waldschmidt, Christian] Univ Ulm, D-89069 Ulm, Germany. [Ponchak, George] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Bhutani, A (reprint author), Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. EM akanksha.bhutani@kit.edu; tobias.mahler@kit.edu; thomas.zwick@kit.edu; jonathan.bechter@uni-ulm.de; martin.schmid@uni-ulm.de; christian.waldschmidt@uni-ulm.de; george.ponchak@ieee.org NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1527-3342 EI 1557-9581 J9 IEEE MICROW MAG JI IEEE Microw. Mag. PD NOV PY 2015 VL 16 IS 10 BP 82 EP 83 DI 10.1109/MMM.2015.2465716 PG 2 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA CU0VG UT WOS:000363236400007 ER PT J AU Petkov, MP Jones, SM Tsapin, A Anderson, MS AF Petkov, Mihail P. Jones, Steven M. Tsapin, Alexandre Anderson, Mark S. TI Intrinsic surface areas and bond site concentrations of silica aerogels of different densities SO JOURNAL OF SUPERCRITICAL FLUIDS LA English DT Article DE Silica aerogel; Chiorosilane; Adsorption; Surface area ID SPECTROSCOPY AB Silica aerogels were investigated to determine the relationship of density, surface area, and the concentration of molecular absorption bonding sites. Aerogel surface areas were measured, by Brunauer Emmett Teller (BET), for densities ranging from 35 mg/cm(3) to 200 mg/cm(3). Chlorosilanes were chosen as the test adsorbates for this study, as they do not physisorb in multiple layers on the mesoporous silica surface. Trimethylchlorosilane (TMCS) was selected as the primary adsorbate because of its high vapor pressure at ambient conditions. Aerogel samples were exposed to TMCS vapors until saturation. Complete infiltration was verified by Raman spectroscopy of a cross-sectioned sample. The total amount of adsorbate at saturation was determined through the weight gain using a microbalance. The cumulative TMCS surface area at saturation, calculated from the footprint of the TMCS molecule and the total number of molecules derived from the weight gain, is significantly smaller than the intrinsic surface area measured by BET. This implies that chemisorption, and not physisorption, governs the saturation phenomenon. This hypothesis was verified with chlorosilanes with larger molecules phenyldimethylchlorosilane and diphenylmethylchlorosilane. The gained weight per unit volume in the silica aerogels scaled as the molecular mass of the radicals, bonded to the silica network, and did not scale as the footprint area of the different chlorosilane molecules. This work provides fundamental information for understanding the capabilities of aerogels to collect and concentrate organic molecules for subsequent spectroscopic analysis. (C) 2015 Elsevier B.V. All rights reserved. C1 [Petkov, Mihail P.; Jones, Steven M.; Anderson, Mark S.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [Tsapin, Alexandre] Univ Calif Riverside, Riverside, CA 92521 USA. RP Petkov, MP (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mihail.p.petkov@jpl.nasa.gov NR 13 TC 1 Z9 1 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0896-8446 EI 1872-8162 J9 J SUPERCRIT FLUID JI J. Supercrit. Fluids PD NOV-DEC PY 2015 VL 106 SI SI BP 100 EP 104 DI 10.1016/j.supflu.2015.08.015 PG 5 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA CU2IZ UT WOS:000363348500015 ER PT J AU Lang, C Sharma, A Doostan, A Maute, K AF Lang, Christapher Sharma, Ashesh Doostan, Alireza Maute, Kurt TI Heaviside enriched extended stochastic FEM for problems with uncertain material interfaces SO COMPUTATIONAL MECHANICS LA English DT Article DE X-SFEM; Level set method; Heaviside enrichment; Polynomial chaos; Uncertainty quantification ID FINITE-ELEMENT-METHOD; SET TOPOLOGY OPTIMIZATION; BOUNDARY-CONDITIONS; POLYNOMIAL CHAOS; DIFFERENTIAL-EQUATIONS; SIMULATION; INCLUSIONS; XFEM AB This paper is concerned with the modeling of heterogeneous materials with uncertain inclusion geometry. The eXtended stochastic finite element method (X-SFEM) is a recently proposed approach for modeling stochastic partial differential equations defined on random domains. The X-SFEM combines the deterministic eXtended finite element method (XFEM) with a polynomial chaos expansion (PCE) in the stochastic domain. The X-SFEM has been studied for random inclusion problems with a -continuous solution at the inclusion interface. This work proposes a new formulation of the X-SFEM using the Heaviside enrichment for modeling problems with either continuous or discontinuous solutions at the uncertain inclusion interface. The Heaviside enrichment formulation employs multiple enrichment levels for each material subdomain which allows more complex inclusion geometry to be accurately modeled. A PCE is applied in the stochastic domain, and a random level set function implicitly defines the uncertain interface geometry. The Heaviside enrichment leads to a discontinuous solution in the spatial and stochastic domains. Adjusting the support of the stochastic approximation according to the active stochastic subdomain for each degree of freedom is proposed. Numerical examples for heat diffusion and linear elasticity are studied to illustrate convergence and accuracy of the scheme under spatial and stochastic refinements. In addition to problems with discontinuous solutions, the Heaviside enrichment is applicable to problems with -continuous solutions by enforcing continuity at the interface. A higher convergence rate is achieved using the proposed Heaviside enriched X-SFEM for -continuous problems when compared to using a -continuous enrichment. C1 [Lang, Christapher] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23665 USA. [Sharma, Ashesh; Doostan, Alireza; Maute, Kurt] Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. RP Doostan, A (reprint author), Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. EM doostan@colorado.edu FU NASA Fundamental Aeronautics Program Fixed Wing Project; National Science Foundation [CMMI-1201207, CMMI-1454601]; U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research [DE-SC0006402] FX The first author acknowledges the support of the NASA Fundamental Aeronautics Program Fixed Wing Project, and the second, third, and fourth author acknowledges the support of the National Science Foundation under Grant CMMI-1201207. The third author acknowledges the support of the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, under Award Number DE-SC0006402 and the National Science Foundation under Grant CMMI-1454601. The opinions and conclusions presented are those of the authors and do not necessarily reflect the views of the sponsoring organizations. NR 25 TC 3 Z9 3 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-7675 EI 1432-0924 J9 COMPUT MECH JI Comput. Mech. PD NOV PY 2015 VL 56 IS 5 BP 753 EP 767 DI 10.1007/s00466-015-1199-1 PG 15 WC Mathematics, Interdisciplinary Applications; Mechanics SC Mathematics; Mechanics GA CT7WZ UT WOS:000363027000002 ER PT J AU Wisner, B Cabal, M Vanniamparambil, PA Hochhalter, J Leser, WP Kontsos, A AF Wisner, B. Cabal, M. Vanniamparambil, P. A. Hochhalter, J. Leser, W. P. Kontsos, A. TI In Situ Microscopic Investigation to Validate Acoustic Emission Monitoring SO EXPERIMENTAL MECHANICS LA English DT Article DE In-situ; SEM; Acoustic emission; Damage precursors; Fracture ID FATIGUE-CRACK GROWTH; DIGITAL IMAGE CORRELATION; AEROSPACE ALUMINUM-ALLOY; AE SOURCE LOCATION; MAGNESIUM ALLOY; DAMAGE; PROPAGATION; 2024-T3; MICROSTRUCTURE; PLASTICITY AB A novel experimental mechanics technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is discussed to investigate microstructure-sensitive mechanical behavior and damage of metals and to validate AE related information. Validation for the use of AE method was obtained by using aluminum alloy sharp notch specimens with different geometries tested inside the microscope and compared to results obtained outside the microscope, as well as to previously published data on similar investigations at the laboratory specimen scale. Additionally, load data were correlated with both AE information and microscopic observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The reported AE results are in excellent agreement with similar findings at the mesoscale, while they are further correlated with in situ and post mortem observations of microstructural damage processes. C1 [Wisner, B.; Cabal, M.; Vanniamparambil, P. A.; Kontsos, A.] Drexel Univ, Dept Mech Engn & Mech, Theoret & Appl Mech Grp, Philadelphia, PA 19104 USA. [Hochhalter, J.; Leser, W. P.] NASA, Langley Res Ctr, Durabil Reliabil & Damage Tolerance Brach, Hampton, VA 23665 USA. RP Kontsos, A (reprint author), Drexel Univ, Dept Mech Engn & Mech, Theoret & Appl Mech Grp, Philadelphia, PA 19104 USA. EM akontsos@coe.drexel.edu FU Office of Naval Research under the Young Investigator Program [N00014-14-1-0571] FX A. Kontsos would like to acknowledge the financial support received by the Office of Naval Research under the Young Investigator Program, Award #N00014-14-1-0571. He also acknowledges the technical support received under the National Aeronautics and Space Administration Space Act Agreement, No. SAA1-19439 with Langley Research Center. NR 64 TC 4 Z9 4 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD NOV PY 2015 VL 55 IS 9 BP 1705 EP 1715 DI 10.1007/s11340-015-0074-5 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA CT6ZN UT WOS:000362962700009 ER PT J AU Klugel, T Hoppner, K Falk, R Kuhmstedt, E Plotz, C Reinhold, A Rulke, A Wojdziak, R Balss, U Diedrich, E Eineder, M Henniger, H Metzig, R Steigenberger, P Gisinger, C Schuh, H Bohm, J Ojha, R Kadler, M Humbert, A Braun, M Sun, J AF Kluegel, Thomas Hoeppner, Kathrin Falk, Reinhard Kuehmstedt, Elke Ploetz, Christian Reinhold, Andreas Ruelke, Axel Wojdziak, Reiner Balss, Ulrich Diedrich, Erhard Eineder, Michael Henniger, Hennes Metzig, Robert Steigenberger, Peter Gisinger, Christoph Schuh, Harald Boehm, Johannes Ojha, Roopesh Kadler, Matthias Humbert, Angelika Braun, Matthias Sun, Jing TI Earth and space observation at the German Antarctic Receiving Station O'Higgins SO POLAR RECORD LA English DT Article ID CELESTIAL REFERENCE FRAME; LEVEL RANGING ACCURACY; WILKINS ICE SHELF; TERRASAR-X; SOUTHERN-HEMISPHERE; VLBI; GEODESY; GRACE AB The German Antarctic Receiving Station (GARS) O'Higgins at the northern tip of the Antarctic Peninsula is a dual purpose facility for earth observation and has existed for more than 20 years. It serves as a satellite ground station for payload data downlink and telecommanding of remote sensing satellites as well as a geodetic observatory for global reference systems and global change. Both applications use the same 9 m diameter radio antenna. Major outcomes of this usage are summarised in this paper. The satellite ground station O'Higgins (OHG) is part of the global ground station network of the German Remote Sensing Data Centre (DFD) operated by the German Aerospace Centre (DLR). It was established in 1991 to provide remote sensing data downlink support within the missions of the European Remote Sensing Satellites ERS-1 and ERS-2. These missions provided valuable insights into the changes of the Antarctic ice shield. Especially after the failure of the on-board data recorder, OHG became an essential downlink station for ERS-2 real-time data transmission. Since 2010, OHG is manned during the entire year, specifically to support the TanDEM-X mission. OHG is a main dump station for payload data, monitoring and telecommanding of the German TerraSAR-X and TanDEM-X satellites. For space geodesy and astrometry the radio antenna O'Higgins significantly improves coverage over the southern hemisphere and plays an essential role within the global Very Long Baseline Interferometry (VLBI) network. In particular the determination of the Earth Orientation Parameters (EOP) and the sky coverage of the International Celestial Reference Frame (ICRF) benefit from the location at a high southern latitude. Further, the resolution of VLBI images of active galactic nuclei (AGN), cosmic radio sources defining the ICRF, improves significantly when O'Higgins is included in the network. The various geodetic instrumentation and the long time series at O'Higgins allow a reliable determination of crustal motions. VLBI station velocities, continuous GNSS measurements and campaignwise absolute gravity measurements consistently document a vertical rate of about 5 mm/a. This crustal uplift is interpreted as an elastic rebound due to ice loss as a consequence of the ice shelf disintegration in the Prince Gustav Channel in the late 1990s. The outstanding location on the Antarctic continent and its year-around operation make GARS O'Higgins in future increasingly attractive for polar orbiting satellite missions and a vitally important station for the global VLBI network. Future plans call for the development of an observatory for environmentally relevant research. That means that the portfolio of the station will be expanded including the expansion of the infrastructure and the construction and operation of new scientific instruments suitable for long-term measurements and satellite ground truthing. C1 [Kluegel, Thomas; Falk, Reinhard; Kuehmstedt, Elke; Ploetz, Christian; Reinhold, Andreas; Ruelke, Axel; Wojdziak, Reiner] Fed Agcy Cartog & Geodesy, D-60598 Frankfurt, Germany. [Hoeppner, Kathrin; Balss, Ulrich; Diedrich, Erhard; Eineder, Michael; Henniger, Hennes; Metzig, Robert; Steigenberger, Peter] German Aerosp Ctr, D-82234 Wessling, Germany. [Gisinger, Christoph] Tech Univ Munich, Inst Astron & Phys Geodasie, D-80290 Munich, Germany. [Schuh, Harald] Deutsch GeoForschungsZentrum, D-14473 Potsdam, Germany. [Boehm, Johannes] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria. [Ojha, Roopesh] NASA, Greenbelt, MD 20771 USA. [Kadler, Matthias] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Humbert, Angelika] Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany. [Braun, Matthias] Univ Erlangen Nurnberg, Inst Geog, D-91023 Erlangen, Germany. [Sun, Jing] Shanghai Astron Observ, Shanghai 200030, Peoples R China. RP Klugel, T (reprint author), Fed Agcy Cartog & Geodesy, Richard Strauss Allee 11, D-60598 Frankfurt, Germany. EM kluegel@fs.wettzell.de RI Steigenberger, Peter/E-7500-2011; Braun, Matthias/A-4968-2009; Braun, Matthias/S-4693-2016; Bohm, Johannes/H-9161-2013 OI Steigenberger, Peter/0000-0003-1905-6699; Braun, Matthias/0000-0001-5169-1567; Braun, Matthias/0000-0001-5169-1567; Bohm, Johannes/0000-0002-1208-5473 NR 44 TC 1 Z9 1 U1 1 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0032-2474 EI 1475-3057 J9 POLAR REC JI POLAR REC. PD NOV PY 2015 VL 51 IS 6 BP 590 EP 610 DI 10.1017/S0032247414000540 PG 21 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA CT7XB UT WOS:000363027200002 ER PT J AU Rozas, LP Minello, TJ AF Rozas, Lawrence P. Minello, Thomas J. TI Small-Scale Nekton Density and Growth Patterns Across a Saltmarsh Landscape in Barataria Bay, Louisiana SO ESTUARIES AND COASTS LA English DT Article DE Marsh edge; Fishery habitat; Spartina marsh; Growth experiment ID GULF-OF-MEXICO; SHRIMP FARFANTEPENAEUS-AZTECUS; BROWN SHRIMP; GALVESTON BAY; DECAPOD CRUSTACEANS; LITOPENAEUS-SETIFERUS; CALLINECTES-SAPIDUS; NURSERY HABITATS; COASTAL WETLANDS; EDGE FISHES AB Nekton on the northern Gulf of Mexico depend on estuarine nursery areas, but patterns of habitat use and the underlying processes that drive these patterns are not fully understood. We examined small-scale (1-50 m) patterns of habitat use in Barataria Bay by collecting nekton samples between 2002 and 2006 with a 1-m(2) drop sampler. Habitat-specific densities were estimated for six habitat types at various distances from the shoreline in marsh (Marsh1M = 1 m and Marsh3M = 3 m) and over shallow nonvegetated bottom, SNB (SNB1M = 1 m, SNB5M = 5 m, SNB20M = 20 m, and SNB50M = 50 m). Habitat-specific growth rates also were estimated for brown shrimp Farfantepenaeus aztecus caged in SNB1M, SNB5M, and SNB20M. Nekton density patterns in Barataria Bay appeared to be clearly different from the Galveston Bay model, which predicts nekton distribution patterns relative to the marsh shoreline. Although densities in Barataria Bay were significantly higher in samples near the marsh shoreline (Marsh1M or SNB1M) for brown shrimp, blue crab, and white shrimp, highest mean densities were not always present in marsh edge vegetation. In addition, densities of brown shrimp and white shrimp in Barataria Bay declined much more steeply with distance into the marsh than in the model. Daily growth rates (1.0-1.2 mm TL day(-1), 68-89 mg day(-1)) for brown shrimp were similar among SNB habitat types. Our results suggest that SNB in Barataria Bay may be relatively more important as habitat for fishery species than previously assumed. C1 [Rozas, Lawrence P.] NOAA, Natl Marine Fisheries Serv, SEFSC, Estuarine Habitats & Coastal Fisheries Ctr, Lafayette, LA 70506 USA. [Minello, Thomas J.] NOAA, Natl Marine Fisheries Serv, SEFSC, Galveston, TX 77551 USA. RP Rozas, LP (reprint author), NOAA, Natl Marine Fisheries Serv, SEFSC, Estuarine Habitats & Coastal Fisheries Ctr, 646 Cajundome Blvd, Lafayette, LA 70506 USA. EM Lawrence.Rozas@noaa.gov FU Louisiana Coastal Wetlands Conservation and Restoration Task Force; NOAA Restoration Center; NOAA Fisheries Service Southeast Fisheries Science Center FX This research was conducted through the NOAA Fisheries Service Southeast Fisheries Science Center by personnel from the Fishery Ecology Branch (FEB) located at the Galveston Laboratory and the Estuarine Habitats and Coastal Fisheries Center in Lafayette, Louisiana. The assistance of everyone in the FEB was essential for the successful completion of this project. In particular, we thank Jason Breeding, Harley Clinton, Molly Dillender, Jim Ditty, Jennifer Doerr, Chris Fontenot, John Foret, Engi Guy, Ebony Henderson, Shawn Hillen, Joni Kernan, Kirk Kilfoyle, Mark London, Carolyn Martin, Joy Merino, Suraida Nanez-James, Cherie O'Brien, Lori Ortega, Matt Prine, Brian Riley, Juan Salas, Bubba Taylor, Katie Turner, and Elizabeth Wilson for helping to collect and process samples. Philip Caldwell produced Fig. 1. University of New Orleans students John Anderson, Danny Bond, and Sarah Fearnley also helped collect nekton samples. Ken Able provided review comments that improved the original manuscript. We thank Denise Reed for the help in securing support for nekton sampling in Area A. The Port of Fourchon (Ted Falgout, Executive Director) kindly provided access to location C. We acknowledge the Louisiana Coastal Wetlands Conservation and Restoration Task Force, NOAA Restoration Center, and NOAA Fisheries Service Southeast Fisheries Science Center for funding this research project. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the NOAA Fisheries Service. NR 65 TC 1 Z9 1 U1 5 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD NOV PY 2015 VL 38 IS 6 BP 2000 EP 2018 DI 10.1007/s12237-015-9945-3 PG 19 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA CT1SE UT WOS:000362580300015 ER PT J AU Lawrence, KJ Benner, LAM Brozovic, M Ostro, SJ Jao, JS Giorgini, JD Slade, MA Jurgens, RF AF Lawrence, Kenneth J. Benner, Lance A. M. Brozovic, Marina Ostro, Steven J. Jao, Joseph S. Giorgini, Jon D. Slade, Martin A. Jurgens, Raymond F. TI Goldstone radar imaging of near-Earth Asteroid 2003 MS2 SO ICARUS LA English DT Article DE Radar observations; Asteroids, rotation; Asteroids, surfaces ID ITOKAWA; MODEL AB We report radar observations of near-Earth Asteroid (NEA) 2003 MS2 with Goldstone (8560 MHz, 3.5 cm) on June 28, 29, and July 4, 2003, shortly after the asteroid's discovery. Delay-Doppler images with resolutions as fine as 19 m/pixel reveal an unusually angular object with pronounced facets. The longest sequence of images was obtained on July 4 when the asteroid rotated similar to 140 deg in 2.7 h. During this interval, bandwidths varied by a factor of similar to 1.5 and indicate that 2003 MS2 is an elongated object. The rotation and bandwidth variations evident in the radar images are consistent with the 7 h rotation period and the 0.7 magnitude lightcurve amplitude reported by Muinonen et al. (Muinonen, K. et al. [2007]. Spins, shapes, and orbits for near-Earth objects by Nordic NEON. In: Milani, A., Valsecchi, G.B., Vokrouhlicky, D. (Eds.), Near Earth Objects, our Celestial Neighbors: Opportunity and Risk. Cambridge University Press, Cambridge, pp. 309-320). If we adopt the 7 h period, then the maximum and minimum bandwidths place lower bounds on the pole-on dimensions of (0.33 x 0.19) km/cos delta, where delta is the unknown subradar latitude. The radar and photometric observations by Muinonen et al. constrain the pole directions to (lambda, beta) = (20 +/- 20 deg, 0 +/- 40 deg) and (200 +/- 20 deg, 0 +/- 40 deg). The circular polarization ratio of 0.31 +/- 0.02 is comparable to that of 25143 Itokawa, suggesting a similar degree of near-surface roughness at decimeter spatial scales. (C) 2015 Published by Elsevier Inc. C1 [Lawrence, Kenneth J.; Benner, Lance A. M.; Brozovic, Marina; Ostro, Steven J.; Jao, Joseph S.; Giorgini, Jon D.; Slade, Martin A.; Jurgens, Raymond F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lawrence, KJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 183-501, Pasadena, CA 91109 USA. EM Kenneth.J.Lawrence@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); NASA under the Science Mission Directorate Research and Analysis Programs FX We thank the technical and support staff of Goldstone for their assistance with the observations. Comments by reviewers Patrick Taylor and Chris Magri significantly improved this paper. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The material presented represents work supported by NASA under the Science Mission Directorate Research and Analysis Programs. NR 19 TC 0 Z9 0 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2015 VL 260 BP 1 EP 6 DI 10.1016/j.icarus.2015.06.001 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS5YZ UT WOS:000362155500001 ER PT J AU Orton, GS Fletcher, LN Encrenaz, T Leyrat, C Roe, HG Fujiyoshi, T Pantin, E AF Orton, Glenn S. Fletcher, Leigh N. Encrenaz, Therese Leyrat, Cedric Roe, Henry G. Fujiyoshi, Takuya Pantin, Eric TI Thermal imaging of Uranus: Upper-tropospheric temperatures one season after Voyager SO ICARUS LA English DT Article DE Uranus; Uranus, atmosphere; Jovian planets; Atmospheres, structure ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; OUTER PLANETS; MIDINFRARED SPECTROSCOPY; OCCULTATION MEASUREMENTS; CLOUD STRUCTURE; SPECTROMETER; STRATOSPHERE; ATMOSPHERE; DYNAMICS; PAIRS AB We report on 18-25 um thermal imaging of Uranus that took place between 2003 and 2011, a time span roughly one season after the thermal maps made by the Voyager-2 IRIS experiment in 1986. We re-derived meridional variations of temperature and para-H-2 fraction from the Voyager experiment and compared these with the thermal images, which are sensitive to temperatures in the upper troposphere of Uranus around the 70-400 mbar atmospheric pressure range. The thermal images display a maximum of 3 K of equivalent temperature changes across the disk, and they are consistent with the temperature distribution measured by the Voyager IRIS experiment. This implies that there has been no detectable change of the meridional distribution of upper-tropospheric/lower-stratospheric temperatures over a season. This is inconsistent with seasonally dependent radiative-convective-dynamical models and full global climate models that predict some variability with season if the effective temperature is meridionally constant. We posit that the effective temperature of Uranus could be meridionally variable, with the additional possibility that even the small temperature variations predicted by the GCMs are overestimated. (C) 2015 Elsevier Inc. All rights reserved. C1 [Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fletcher, Leigh N.] Univ Oxford, Atmospher Ocean & Planetary Phys, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Encrenaz, Therese; Leyrat, Cedric] Observ Paris, LEISA, F-92195 Meudon, France. [Roe, Henry G.] Lowell Observ, Flagstaff, AZ 86001 USA. [Fujiyoshi, Takuya] Natl Astron Observ Japan, Subaru Telescope, Natl Inst Nat Sci, Hilo, HI 96720 USA. [Pantin, Eric] Ctr Etud Atom, F-91109 Gif Sur Yvette, France. RP Orton, GS (reprint author), CALTECH, Jet Prop Lab, MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Fletcher, Leigh/D-6093-2011 OI Fletcher, Leigh/0000-0001-5834-9588 FU NASA from its Planetary Astronomy program; Royal Society Research Fellowship; W.M. Keck Foundation; Subaru Telescope [S08B-031, S11B-024] FX Support for this work was provided by NASA from its Planetary Astronomy program through an award issued by the Jet Propulsion Laboratory, California Institute of Technology. L. Fletcher acknowledges support from the Royal Society Research Fellowship. We gratefully acknowledge the work of Men Marutyan, who assisted in the reduction of the 2008 Subaru COMICS data during the course of her Student Independent Research Internship at JPL, while a student at the Glendale Community College, together with the help of M. Line and P. Yanamandra Fisher to expedite other observations during that observing run. J. Sinclair provided helpful comments prior to submission. Some of the data presented herein were obtained in program 2003A-C14LSN at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. These results are also based, in part, on data acquired with the VISIR instrument on the ESO Telescopes at the La Silla Paranal Observatory under programme IDs 077C-0571(A) and 083.C-0162(A). These results are also based, in part, on data from programs S08B-031 and S11B-024 at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. NR 28 TC 2 Z9 2 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2015 VL 260 BP 94 EP 102 DI 10.1016/j.icarus.2015.07.004 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS5YZ UT WOS:000362155500007 ER PT J AU Sinclair, JA Irwin, PGJ Calcutt, SB Wilson, EL AF Sinclair, J. A. Irwin, P. G. J. Calcutt, S. B. Wilson, E. L. TI On the detectability of trace chemical species in the martian atmosphere using gas correlation filter radiometry SO ICARUS LA English DT Article DE Infrared observations; Instrumentation; Mars, atmosphere; Radiative transfer; Astrobiology ID MARS EXPRESS MISSION; RADIATIVE-TRANSFER; THERMAL EMISSION; WATER-VAPOR; HOT-SPOTS; METHANE; SURFACE; SCATTERING; RETRIEVAL; HYDROGEN AB The martian atmosphere is host to many trace gases including water (H2O) and its isotopologues, methane (CH4) and potentially sulphur dioxide (SO2), nitrous oxide (N2O) and further organic compounds, which would serve as indirect tracers of geological, chemical and biological processes on Mars. With exception of the recent detection of CH4 by Curiosity, previous detections of these species have been unsuccessful or considered tentative due to the low concentrations of these species in the atmosphere (similar to 10(-9) partial pressures), limited spectral resolving power and/or signal-to-noise and the challenge of discriminating between telluric and martian features when observing from the Earth. In this study, we present radiative transfer simulations of an alternative method for detection of trace gas species - the gas correlation radiometry method. Two potential observing scenarios were explored where a gas correlation filter radiometer (GCFR) instrument: (1) performs nadir and/or limb sounding of the martian atmosphere in the thermal infrared (200-2000 cm(-1) from an orbiting spacecraft or (2) performs solar occultation measurements in the near-infrared (2000-5000 cm(-1)) from a lander on the martian surface. In both scenarios, simulations of a narrowband filter radiometer (without gas correlation) were also generated to serve as a comparison. From a spacecraft, we find that a gas correlation filter radiometer, in comparison to a filter radiometer (FR), offers a greater discrimination between temperature and dust, a greater discrimination between H2O and HDO, and would allow detection of N2O and CH3OH at concentrations of similar to 10 ppbv and similar to 2 ppbv, respectively, which are lower than previously-derived upper limits. However, the lowest retrievable concentration of SO2 (approximately 2 ppbv) is comparable with previous upper limits and CH4 is only detectable at concentrations of approximately 10 ppbv, which is an order of magnitude higher than the concentration recently measured by Curiosity. From a lander in low dust conditions, both a filter radiometer and gas correlation filter radiometer would provide measurement of H2O and HDO, which allows the D/H ratio in H2O to be determined. Detection of N2O, CH4, SO2, C2H2, C2H6 at concentrations lower than previously-derived upper limits would be possible using a gas correlation filer radiometer in low dust conditions. However, either radiometer would be unable to detect these trace gases in high dust conditions, with the exception of H2O. (C) 2015 Elsevier Inc. All rights reserved. C1 [Sinclair, J. A.; Irwin, P. G. J.; Calcutt, S. B.] Univ Oxford, Clarendon Lab, Atmospher Ocean & Planetary Phys, Oxford OX1 3PU, England. [Sinclair, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wilson, E. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sinclair, JA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM james.sinclair@jpl.nasa.gov OI Calcutt, Simon/0000-0002-0102-3170; Irwin, Patrick/0000-0002-6772-384X FU STFC (Science & Technology Facilities Council); ExoMars grant at the University of Oxford; NASA; NASA Planetary Instrument Definition and Development Program; NASA Goddard Space Flight Center Internal Research and Development program FX We are thankful to the STFC (Science & Technology Facilities Council) for funding Sinclair through the STEP (Studentship Enhancement Programme) award and ExoMars grant at the University of Oxford where the majority of the research presented in this paper was conducted. We also thank the NASA Postdoctoral Program for funding Sinclair as an affiliate at the Jet Propulsion Laboratory where the final editing and submission of this paper was completed. We also acknowledge the NASA Planetary Instrument Definition and Development Program and the NASA Goddard Space Flight Center Internal Research and Development program for funding Wilson. NR 60 TC 1 Z9 1 U1 5 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2015 VL 260 BP 103 EP 127 DI 10.1016/j.icarus.2015.07.005 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS5YZ UT WOS:000362155500008 ER PT J AU Morishima, R AF Morishima, Ryuji TI A particle-based hybrid code for planet formation SO ICARUS LA English DT Article DE Accretion; Planetary formation; Planetary rings; Planets, migration; Origin, Solar System ID N-BODY SIMULATIONS; SOLAR GRAVITATIONAL-FIELD; GAS GIANT PLANETS; TERRESTRIAL PLANETS; OLIGARCHIC GROWTH; COLLISIONAL EVOLUTION; RUNAWAY GROWTH; ACCRETIONAL EVOLUTION; NUMERICAL-SIMULATION; DYNAMICAL EVOLUTION AB We introduce a new particle-based hybrid code for planetary accretion. The code uses an N-body routine for interactions with planetary embryos while it can handle a large number of planetesimals using a super-particle approximation, in which a large number of small planetesimals are represented by a small number of tracers. Tracer-tracer interactions are handled by a statistical routine which uses the phase-averaged stirring and collision rates. We compare hybrid simulations with analytic predictions and pure N-body simulations for various problems in detail and find good agreements for all cases. The computational load on the portion of the statistical routine is comparable to or less than that for the N-body routine. The present code includes an option of hit-and-run bouncing but not fragmentation, which remains for future work. (C) 2015 Elsevier Inc. All rights reserved. C1 [Morishima, Ryuji] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Morishima, Ryuji] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Morishima, R (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM Ryuji.Morishima@jpl.nasa.gov FU NASA FX We are grateful to the reviewers for their many valuable comments, which greatly improved the manuscript. We also thank Satoshi Inaba for kindly giving us his simulation data. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. Simulations were performed using JPL supercomputers, Aurora and Halo. NR 84 TC 1 Z9 1 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2015 VL 260 BP 368 EP 395 DI 10.1016/j.icarus.2015.07.030 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS5YZ UT WOS:000362155500027 ER PT J AU Yin, A Pappalardo, RT AF Yin, An Pappalardo, Robert T. TI Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn's moon Enceladus SO ICARUS LA English DT Article DE Enceladus; Ices, mechanical properties; Geological processes ID STRIKE-SLIP FAULTS; ALTYN-TAGH FAULT; EAST-WEST EXTENSION; ANGLE NORMAL FAULTS; CONTINENTAL DEFORMATION; TIBETAN PLATEAU; TIDAL STRESSES; ICE SHELL; ORIGIN; SYSTEM AB Despite a decade of intense research the mechanical origin of the tiger-stripe fractures (TSF) and their geologic relationship to the hosting South Polar Terrain (SPT) of Enceladus remain poorly understood. Here we show via systematic photo-geological mapping that the semi-squared SPT is bounded by right-slip, left-slip, extensional, and contractional zones on its four edges. Discrete deformation along the edges in turn accommodates translation of the SPT as a single sheet with its transport direction parallel to the regional topographic gradient. This parallel relationship implies that the gradient of gravitational potential energy drove the SPT motion. In map view, internal deformation of the SPT is expressed by distributed right-slip shear parallel to the SPT transport direction. The broad right-slip shear across the whole SPT was facilitated by left-slip bookshelf faulting along the parallel TSF. We suggest that the flowlike tectonics, to the first approximation across the SPT on Enceladus, is best explained by the occurrence of a transient thermal event, which allowed the release of gravitational potential energy via lateral viscous flow within the thermally weakened ice shell. (C) 2015 Elsevier Inc. All rights reserved. C1 [Yin, An] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yin, A (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. EM yin@ess.ucla.edu; Robert.Pappalardo@jpl.nasa.gov FU National Aeronautics and Space Administration; Tectonics Program of the U.S. National Science Foundation FX We thank Paul Schenk for making the digital topographic data available and Jennifer Scully for generating the color displays of the topographic data. We thank Paul Halfenstein for his constructive review. His pioneering work and thought-provoking models for the tectonic development of Enceladus were the foundation and motivation for the work presented in this study. We are also very grateful for a superb review by Amanda Nahm, which led to clarification and significant improvement of the original manuscript. Work by RTP was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. AY's work on the mechanics and kinematics of strike-slip faults was supported by a grant from the Tectonics Program of the U.S. National Science Foundation. NR 102 TC 5 Z9 5 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2015 VL 260 BP 409 EP 439 DI 10.1016/j.icarus.2015.07.017 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS5YZ UT WOS:000362155500029 ER PT J AU Kahre, MA Hollingsworth, JL Haberle, RM Wilson, RJ AF Kahre, M. A. Hollingsworth, J. L. Haberle, R. M. Wilson, R. J. TI Coupling the Mars dust and water cycles: The importance of radiative-dynamic feedbacks during northern hemisphere summer SO ICARUS LA English DT Article DE Mars; Mars, climate; Atmospheres, dynamics ID GENERAL-CIRCULATION MODEL; ICE CLOUDS; MARTIAN ATMOSPHERE; TEMPERATURE; VARIABILITY; SIMULATIONS AB Mars Global Climate Model (MGCM) simulations are carried out with and without cloud radiative forcing to investigate feedbacks between the dust and water cycles that contribute to the middle-atmosphere polar warming during northern hemisphere summer. Compared to the simulation without clouds, the simulation with clouds produces stronger polar warming, which is in better agreement with observations. The enhanced polar warming in the presence of cloud formation is caused by a radiative-dynamic feedback between a strengthened circulation due to cloud radiative effects, vertical dust transport, and further circulation intensification. Published by Elsevier Inc. C1 [Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wilson, R. J.] Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. RP Kahre, MA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. FU NASA's Planetary Atmospheres Program FX NASA's Planetary Atmospheres Program funded this work. We thank Jean-Baptiste Madeleine and an anonymous reviewer for their insightful comments and suggestions, which helped improve this manuscript. NR 25 TC 2 Z9 2 U1 4 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV 1 PY 2015 VL 260 BP 477 EP 480 DI 10.1016/j.icarus.2014.07.017 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CS5YZ UT WOS:000362155500033 ER PT J AU Masek, JG Hayes, DJ Hughes, MJ Healey, SP Turner, DP AF Masek, Jeffrey G. Hayes, Daniel J. Hughes, M. Joseph Healey, Sean P. Turner, David P. TI The role of remote sensing in process-scaling studies of managed forest ecosystems SO FOREST ECOLOGY AND MANAGEMENT LA English DT Review DE Remote sensing; Forest ecology; Scaling ID NET PRIMARY PRODUCTION; LANDSAT TIME-SERIES; PHOTOCHEMICAL REFLECTANCE INDEX; NEAREST-NEIGHBOR IMPUTATION; LIGHT-USE EFFICIENCY; CARBON-CYCLE; BIOMASS ESTIMATION; GLOBAL VEGETATION; SATELLITE DATA; FIRE SEVERITY AB Sustaining forest resources requires a better understanding of forest ecosystem processes, and how management decisions and climate change may affect these processes in the future. While plot and inventory data provide our most detailed information on forest carbon, energy, and water cycling, applying this understanding to broader spatial and temporal domains requires scaling approaches. Remote sensing provides a powerful resource for "upscaling" process understanding to regional and continental domains. The increased range of available remote sensing modalities, including interferometric radar, lidar, and hyperspectral imagery, allows the retrieval of a broad range of forest attributes. This paper reviews the application of remote sensing for upscaling forest attributes from the plot scale to regional domains, with particular emphasis on how remote sensing products can support parameterization and validation of ecosystem process models. We focus on four key ecological attributes of forests: composition, structure, productivity and evapotranspiration, and disturbance dynamics. For each attribute, we discuss relevant remote sensing technologies, provide examples of their application, and critically evaluate both strengths and challenges associated with their use. Published by Elsevier B.V. C1 [Masek, Jeffrey G.] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Hayes, Daniel J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hayes, Daniel J.; Hughes, M. Joseph] Univ Tenn, Dept Ecol & Evolutionary Biol, Knoxville, TN USA. [Healey, Sean P.] US Forest Serv, USDA, Rocky Mt Res Stn, Ogden, UT USA. [Turner, David P.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. RP Masek, JG (reprint author), NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20770 USA. EM Jeffrey.G.Masek@nasa.gov RI Masek, Jeffrey/D-7673-2012 FU NASA; US Forest Service FX This work was supported by the NASA Terrestrial Ecosystems program and the US Forest Service. Dr. Bruce Cook (NASA GSFC) is thanked for providing the G-LiHT lidar example. The authors thank two anonymous reviewers and the editors for their constructive comments on the original version of the manuscript. NR 208 TC 13 Z9 13 U1 18 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 EI 1872-7042 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD NOV 1 PY 2015 VL 355 SI SI BP 109 EP 123 DI 10.1016/j.foreco.2015.05.032 PG 15 WC Forestry SC Forestry GA CS1YL UT WOS:000361864700012 ER PT J AU Mazaheri, A Nishikawa, H AF Mazaheri, Alireza Nishikawa, Hiroaki TI Improved second-order hyperbolic residual-distribution scheme and its extension to third-order on arbitrary triangular grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Higher-order; SUPG; Fluctuation splitting; Finite volume; Navier-Stokes; Quadratic reconstruction; Hermite polynomial; High-order integration ID 1ST-ORDER SYSTEM APPROACH; FINITE-VOLUME SCHEMES; ADVECTION-DIFFUSION; DISCRETIZATION; COMPUTATIONS; EQUATIONS; 1ST; 2ND AB In this paper, we construct second-and third-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the accuracy of the second-order hyperbolic schemes in [J. Comput. Phys. 227 (2007) 315-352] and [J. Comput. Phys. 229 (2010) 3989-4016] can be greatly improved by requiring the scheme to preserve exact quadratic solutions. The improved second-order scheme can be easily extended to a third-order scheme by further requiring the exactness for cubic solutions. These schemes are constructed based on the SUPG methodology formulated in the framework of the residual-distribution method, and thus can be considered as economical and powerful alternatives to high-order finite-element methods. For both second-and third-order schemes, we construct a fully implicit solver by the exact residual Jacobian of the proposed second-order scheme, and demonstrate rapid convergence, typically with no more than 10-15 Newton iterations (and about 200-800 linear relaxations per Newton iteration), to reduce the residuals by ten orders of magnitude. We also demonstrate that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids even for a curved boundary problem, without introducing curved elements. A quadratic reconstruction of the curved boundary normals and a high-order integration technique on curved boundaries are also provided in details. Published by Elsevier Inc. C1 [Mazaheri, Alireza] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Nishikawa, Hiroaki] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Mazaheri, A (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM ali.r.mazaheri@nasa.gov RI Nishikawa, Hiroaki/M-1247-2016; OI Nishikawa, Hiroaki/0000-0003-4472-5313; Mazaheri, Alireza/0000-0003-1128-6705 FU Center Chief Technology Office of NASA Langley Research Center through the Center Innovation Fund (CIF) project; U.S. Army Research Office [W911NF-12-1-0154] FX The authors would like to thank the Center Chief Technology Office of NASA Langley Research Center for their support through the Center Innovation Fund (CIF) project. The second author was also partially supported by the U.S. Army Research Office under the Contract/Grant number W911NF-12-1-0154. The authors would also like to thank the anonymous reviewers for their constructive comments. NR 35 TC 5 Z9 5 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 1 PY 2015 VL 300 BP 455 EP 491 DI 10.1016/j.jcp.2015.07.054 PG 37 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CR8AJ UT WOS:000361573200024 ER PT J AU Gupta, PK Oswald, FB Zaretsky, EV AF Gupta, Pradeep K. Oswald, Fred B. Zaretsky, Erwin V. TI Comparison of Models for Ball Bearing Dynamic Capacity and Life SO TRIBOLOGY TRANSACTIONS LA English DT Article DE Rolling-element Bearing; Bearing Life Prediction; Rolling-element Fatigue ID PREDICTION MODEL; FATIGUE LIMIT AB Generalized formulations for dynamic capacity and life of ball bearings, based on the models introduced by Lundberg and Palmgren and Zaretsky, have been developed and implemented in the bearing dynamics computer code ADORE. Unlike the original Lundberg-Palmgren dynamic capacity equation, where the elastic properties are part of the life constant, the generalized formulations permit variation of elastic properties of the interacting materials. The newly updated Lundberg-Palmgren model allows prediction of life as a function of elastic properties. For elastic properties similar to those of AISI 52100 bearing steel, both the original and updated Lundberg-Palmgren models provide identical results. A comparison between the Lundberg-Palmgren and the Zaretsky models shows that at relatively light loads the Zaretsky model predicts a much higher life than the Lundberg-Palmgren model. As the load increases, the Zaretsky model provides a much faster drop-off in life. This is because the Zaretsky model is much more sensitive to load than the Lundberg-Palmgren model. The generalized implementation, where all model parameters can be varied, provides an effective tool for future model validation and enhancement in bearing life prediction capabilities. C1 [Gupta, Pradeep K.] PKG Inc, Clifton Pk, NY 12065 USA. [Oswald, Fred B.; Zaretsky, Erwin V.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Gupta, PK (reprint author), PKG Inc, Clifton Pk, NY 12065 USA. FU PKG Inc. FX The work presented herein was supported by an internal research and development initiative at PKG Inc. NR 40 TC 0 Z9 0 U1 2 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1040-2004 EI 1547-397X J9 TRIBOL T JI Tribol. Trans. PD NOV-DEC PY 2015 VL 58 IS 6 BP 1039 EP 1053 DI 10.1080/10402004.2015.1038860 PG 15 WC Engineering, Mechanical SC Engineering GA CQ5SS UT WOS:000360666600008 ER PT J AU Downes, RD Hao, A Park, JG Su, YF Liang, R Jensen, BD Siochi, EJ Wise, KE AF Downes, Rebekah D. Hao, Ayou Park, Jin Gyu Su, Yi-Feng Liang, Richard Jensen, Benjamin D. Siochi, Emilie J. Wise, Kristopher E. TI Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes SO CARBON LA English DT Article ID SINGLE-WALL; FIBERS; COMPOSITES; NANOCOMPOSITES; PERFORMANCE; COLLAPSE AB While the mechanical properties of highly aligned carbon nanotube (CNT) thin films and their nanocomposites have been widely studied, the load transfer mechanisms and failure modes of aligned CNT composites have not been sufficiently explored and understood. In this research, super-aligned CNT thin films with a measured alignment fraction of up to 0.93 are fabricated by mechanical stretching. High concentration (50-60 wt% CNT) CNT reinforced bismaleimide (CNT/BMI) nanocomposites are fabricated from the aligned network to study mechanical properties and microstructures. Atomic resolution transmission electron microscopy (TEM) analysis reveal unusual CNT crystal packing and permit the observation of interesting structural features of the CNTs and their assemblages, including collapse, flattened packing, preferred stacking, folding and twisting phenomena, as well as CNT pullouts from bundles and the resin matrix. The large surface-to-surface contact areas between aligned and flattened nanotubes, driven by van der Waals interactions, give rise to a high density packing of the flattened CNTs in the nanocomposite, resembling a graphitic material. Molecular dynamics (MD) simulations are performed to model the packing structure and understand the dependence of density on the relative content of flattened nanotube and void space. The modeling results support the conclusions drawn from the experimental observations. Published by Elsevier Ltd. C1 [Downes, Rebekah D.; Hao, Ayou; Park, Jin Gyu; Su, Yi-Feng; Liang, Richard] Florida State Univ, FAMU FSU Coll Engn, Dept Ind & Mfg Engn, HPMI, Tallahassee, FL 32310 USA. [Jensen, Benjamin D.; Siochi, Emilie J.; Wise, Kristopher E.] NASA Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA USA. RP Downes, RD (reprint author), Florida State Univ, FAMU FSU Coll Engn, Dept Ind & Mfg Engn, HPMI, Tallahassee, FL 32310 USA. EM rd11g@my.fsu.edu RI hao, ayou/L-1727-2015; Park, Jin Gyu/A-5823-2008; Jensen, Benjamin/B-1297-2013 OI Jensen, Benjamin/0000-0002-7982-0663 FU AFOSR; Florida State University Research Foundation; National High Magnetic Field Laboratory; National Science Foundation [DMR-1157490]; State of Florida; Florida State University; Cytec Engineered Materials FX This project is supported by AFOSR. The sponsorship and oversight of this program by Dr. Joycelyn Harrison from AFOSR is greatly appreciated. Cytec Engineered Materials is also thanked for their funding and partnership.; The TEM facility at FSU is funded and supported by the Florida State University Research Foundation, and the National High Magnetic Field Laboratory, which was supported in part by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and Florida State University. NR 42 TC 6 Z9 6 U1 3 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD NOV PY 2015 VL 93 BP 953 EP 966 DI 10.1016/j.carbon.2015.06.012 PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CQ0ND UT WOS:000360292100097 ER PT J AU Lei, N Wang, ZP Xiong, XX AF Lei, Ning Wang, Zhipeng Xiong, Xiaoxiong TI On-Orbit Radiometric Calibration of Suomi NPP VIIRS Reflective Solar Bands Through Observations of a Sunlit Solar Diffuser Panel SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Error standard deviation; radiometric calibration; reflective solar bands (RSBs); remote sensing; solar diffuser (SD); Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS); top-of-the-atmosphere (TOA) reflectance ID PERFORMANCE AB The on-orbit radiometric calibration of the reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite is carried out primarily through observations of a fully illuminated solar diffuser (SD) panel. Accurate knowledge of the solar spectral radiance scattered from the SD is available. The sensor aperture spectral radiance is assumed to be a quadratic polynomial function of a VIIRS detector's background-subtracted response in digital number. The coefficients of the polynomial were initially determined prelaunch. Once on orbit, we assume that these coefficients change uniformly by a common calibration factor, which is referred to as the F-factor. The known solar spectral radiance scattered from a fully illuminated SD allows for the determination of these F-factors. We describe the methodology and the associated algorithms used in the calculation of the RSB F-factors. Our results show that the F-factors change over time, with the largest change occurring at a wavelength of 862 nm (with a value of about 1.55 on day 950 after the satellite launch, relative to its value at the beginning of the launch). In addition, we estimate the relative error standard deviations of the computed top-of-the-atmosphere reflectance at the detector pixel level. On day 950 of the mission, the relative error standard deviations are all less or equal to 0.016, except for the M11 band (band central wavelength of 2257 nm), which has a relative error standard deviation of about 0.049 due to a very low signal-to-noise ratio. C1 [Lei, Ning; Wang, Zhipeng] Sigma Space Corp, VIIRS Characterizat Support Team, Lanham, MD 20706 USA. [Lei, Ning] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Lei, N (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM ning.lei@ssaihq.com OI Wang, Zhipeng/0000-0002-9108-9009 NR 30 TC 9 Z9 9 U1 3 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD NOV PY 2015 VL 53 IS 11 BP 5983 EP 5990 DI 10.1109/TGRS.2015.2430814 PG 8 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CP0BP UT WOS:000359541100015 ER PT J AU Bretschger, O Carpenter, K Phan, T Suzuki, S Ishii, S Grossi-Soyster, E Flynn, M Hogan, J AF Bretschger, Orianna Carpenter, Kayla Phan, Tony Suzuki, Shino Ishii, Shun'ichi Grossi-Soyster, Elysse Flynn, Michael Hogan, John TI Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community SO BIORESOURCE TECHNOLOGY LA English DT Article DE Electromethanogenesis; Bioelectrochemical systems; Microbial community dynamics ID EXTRACELLULAR ELECTRON-TRANSFER; FUEL-CELLS; HYDROGEN; REDUCTION; ELECTROSYNTHESIS; BACTERIA; ARCHAEA; CULTURE; OXYGEN; PCR AB The functional and taxonomic microbial dynamics of duplicate electricity-consuming methanogenic communities were observed over a 6 months period to characterize the reproducibility, stability and recovery of electromethanogenic consortia. The highest rate of methanogenesis was 0.72 mg-CH4/L/day, which occurred during the third month of enrichment when multiple methanogenic phylotypes and associated Desulfovibrionaceae phylotypes were present in the electrode-associated microbial community. Results also suggest that electromethanogenic microbial communities are very sensitive to electron donor-limiting open-circuit conditions. A 45 min exposure to open-circuit conditions induced an 87% drop in volumetric methane production rates. Methanogenic performance recovered after 4 months to a maximum value of 0.30 mg-CH4/L/day under set potential operation (-700 mV vs Ag/AgCl); however, current consumption and biomass production was variable over time. Long-term functional and taxonomic analyses from experimental replicates provide new knowledge toward understanding how to enrich electromethanogenic communities and operate bioelectrochemical systems for stable and reproducible performance. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bretschger, Orianna; Carpenter, Kayla; Phan, Tony; Suzuki, Shino; Ishii, Shun'ichi] J Craig Venter Inst, La Jolla, CA 92037 USA. [Suzuki, Shino; Ishii, Shun'ichi] Japan Agcy Marine Earth Sci & Technol, Kochi, Japan. [Grossi-Soyster, Elysse; Hogan, John] UC Santa Cruz, Univ Affiliated Res Ctr, Moffett Field, CA USA. [Grossi-Soyster, Elysse] Stanford Univ, Stanford, CA 94305 USA. [Grossi-Soyster, Elysse; Flynn, Michael] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bretschger, O (reprint author), J Craig Venter Inst, La Jolla, CA 92037 USA. EM obretschger@jcvi.org FU NASA ARC [NNX12AG92A, NNX13AI31A]; Roddenberry Foundation FX This work was supported by NASA ARC (Contract Nos. NNX12AG92A and NNX13AI31A) and the Roddenberry Foundation. NR 33 TC 0 Z9 0 U1 7 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2015 VL 195 BP 254 EP 264 DI 10.1016/j.biortech.2015.06.129 PG 11 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CO8TL UT WOS:000359444600035 PM 26178785 ER PT J AU Zhang, K Kimball, JS Nemani, RR Running, SW Hong, Y Gourley, JJ Yu, ZB AF Zhang, Ke Kimball, John S. Nemani, Ramakrishna R. Running, Steven W. Hong, Yang Gourley, Jonathan J. Yu, Zhongbo TI Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration SO SCIENTIFIC REPORTS LA English DT Article ID EL-NINO; FOREST; TRENDS; EVAPORATION; INCREASE; CARBON; PRECIPITATION; TEMPERATURE; SENSITIVITY; SIMULATION AB Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth's climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982-2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr(-2) (P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year; P < 0.001) and rising atmosphere moisture demand (0.75 mm yr(-2); P = 0.016). Our results indicate that reduced ET growth between 1998 and 2008 was an episodic phenomenon, with subsequent recovery of the ET growth rate after 2008. Terrestrial precipitation also shows a positive trend of 0.66 mm yr(-2) (P = 0.08) over the same period consistent with expected water cycle intensification, but this trend is lower than coincident increases in evaporative demand and ET, implying a possibility of cumulative water supply constraint to ET. Continuation of these trends will likely exacerbate regional drought-induced disturbances, especially during regional dry climate phases associated with strong El Nino events. C1 [Zhang, Ke] Univ Oklahoma, Cooperat Inst Mesosacle Meteorol Studies, Norman, OK 73072 USA. [Zhang, Ke; Hong, Yang] Univ Oklahoma, Hydrometeorol & Remote Sensing HyDROS Lab, Norman, OK 73072 USA. [Zhang, Ke; Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73072 USA. [Zhang, Ke; Yu, Zhongbo] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China. [Kimball, John S.; Running, Steven W.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gourley, Jonathan J.] NOAA, Natl Severe Storms Lab, Norman, OK 73072 USA. [Hong, Yang] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. RP Zhang, K (reprint author), Univ Oklahoma, Cooperat Inst Mesosacle Meteorol Studies, 120 David L Boren Blvd, Norman, OK 73072 USA. EM kezhang@ou.edu RI Gourley, Jonathan/C-7929-2016; Zhang, Ke/B-3227-2012; Hong, Yang/D-5132-2009 OI Gourley, Jonathan/0000-0001-7363-3755; Zhang, Ke/0000-0001-5288-9372; Hong, Yang/0000-0001-8720-242X FU Disaster Relief Appropriations Act [P.L. 113-2]; NOAA research grant [NA14OAR4830100]; USGS South Central Climate Science Center at the University of Oklahoma [G13AC00386]; "Thousand Young Talents" Program in China; NASA Earth Science program [NNX15AB59G, NNX11AD46G] FX This work was supported by the Disaster Relief Appropriations Act of 2013 (P.L. 113-2), which funded NOAA research grant NA14OAR4830100, the USGS South Central Climate Science Center at the University of Oklahoma through Grant #G13AC00386, the "Thousand Young Talents" Program in China, and grants (NNX15AB59G and NNX11AD46G) from the NASA Earth Science program. NR 47 TC 23 Z9 25 U1 9 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 30 PY 2015 VL 5 AR 15956 DI 10.1038/srep15956 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CU7YH UT WOS:000363757300001 PM 26514110 ER PT J AU Loikith, PC Neelin, JD AF Loikith, Paul C. Neelin, J. David TI Short-tailed temperature distributions over North America and implications for future changes in extremes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE temperature distributions; temperature extremes; short-tailed distributions ID PRECIPITATION EXTREMES; ENSEMBLE; CLIMATE; MODEL; 20TH-CENTURY; PATTERNS; INDEXES; LAND AB Some regions of North America exhibit nonnormal temperature distributions. Shorter-than-Gaussian warm tails are a special subset of these cases, with potentially meaningful implications for future changes in extreme warm temperatures under anthropogenic global warming. Locations exhibiting shorter-than-Gaussian warm tails would experience a greater increase in extreme warm temperature exceedances than a location with a Gaussian or long warm-side tail under a simple uniform warm shift in the distribution. Here we identify regions exhibiting such behavior over North America and demonstrate the effect of a simple warm shift on changes in extreme warm temperature exceedances. Some locations exceed the 95th percentile of the original distribution by greater than 40% of the time after this uniform shift. While the manner in which distributions change under global warming may be more complex than a simple shift, these results provide an observational baseline for climate model evaluation. C1 [Loikith, Paul C.] Portland State Univ, Dept Geog, Portland, OR 97207 USA. [Loikith, Paul C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Neelin, J. David] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. RP Loikith, PC (reprint author), Portland State Univ, Dept Geog, Portland, OR 97207 USA. EM ploikith@pdx.edu FU NSF [AGS-1102838/AGS-1540518]; NOAA [NA14OAR4310274]; NASA [NCA 11-NCA11-0028] FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and part was funded by NSF AGS-1102838/AGS-1540518, NOAA NA14OAR4310274 (J.D.N.), and NASA NCA 11-NCA11-0028 (P.C.L.). Temperature data were obtained at 10.5065/D6PR7SZF. We thank Joyce Meyerson for computational and graphical assistance. NR 39 TC 3 Z9 3 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2015 VL 42 IS 20 BP 8577 EP 8585 DI 10.1002/2015GL065602 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CW1WL UT WOS:000364782500040 ER PT J AU Hurwitz, MM Fleming, EL Newman, PA Li, F Mlawer, E Cady-Pereira, K Bailey, R AF Hurwitz, Margaret M. Fleming, Eric L. Newman, Paul A. Li, Feng Mlawer, Eli Cady-Pereira, Karen Bailey, Roshelle TI Ozone depletion by hydrofluorocarbons SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID STRATOSPHERIC OZONE; MODEL; HFC-23; EMISSIONS; SCENARIOS; IMPACT; CHF3 AB Atmospheric concentrations of hydrofluorocarbons (HFCs) are projected to increase considerably in the coming decades. Chemistry climate model simulations forced by current projections show that HFCs will impact the global atmosphere increasingly through 2050. As strong radiative forcers, HFCs increase tropospheric and stratospheric temperatures, thereby enhancing ozone-destroying catalytic cycles and modifying the atmospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Simulations with the NASA Goddard Space Flight Center 2-D model show that HFC-125 is the most important contributor to HFC-related atmospheric change in 2050; its effects are comparable to the combined impacts of HFC-23, HFC-32, HFC-134a, and HFC-143a. Incorporating the interactions between chemistry, radiation, and dynamics, ozone depletion potentials (ODPs) for HFCs range from 0.39x10(-3) to 30.0x10(-3), approximately 100 times larger than previous ODP estimates which were based solely on chemical effects. C1 [Hurwitz, Margaret M.; Bailey, Roshelle] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Bailey, Roshelle] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fleming, Eric L.] Sci Syst & Applicat Inc, Lanham, MD USA. [Li, Feng] Univ Space Res Assoc, GESTAR, Columbia, MD USA. [Mlawer, Eli; Cady-Pereira, Karen] Atmospher & Environm Res Inc, Lexington, MA USA. RP Hurwitz, MM (reprint author), Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. EM margaret.m.hurwitz@nasa.gov FU NASA ACMAP program FX The authors thank A. Douglass, C. Jackman, Q. Liang, R. Stolarski, and two anonymous reviewers for their helpful suggestions. The authors acknowledge funding from the NASA ACMAP program. The NASA GSFC 2-D model output will be made available upon request. NR 25 TC 2 Z9 2 U1 7 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2015 VL 42 IS 20 BP 8686 EP 8692 DI 10.1002/2015GL065856 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CW1WL UT WOS:000364782500052 ER PT J AU Lin, MY Horowitz, LW Cooper, OR Tarasick, D Conley, S Iraci, LT Johnson, B Leblanc, T Petropavlovskikh, I Yates, EL AF Lin, Meiyun Horowitz, Larry W. Cooper, Owen R. Tarasick, David Conley, Stephen Iraci, Laura T. Johnson, Bryan Leblanc, Thierry Petropavlovskikh, Irina Yates, Emma L. TI Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LONG-TERM CHANGES; ASIAN EMISSIONS; UNITED-STATES; SURFACE OZONE; AIR-QUALITY; STRATOSPHERE; VARIABILITY; SATELLITE; TRENDS; SPACE AB We present a 20year time series of in situ free tropospheric ozone observations above western North America during springtime and interpret results using hindcast simulations (1980-2014) conducted with the Geophysical Fluid Dynamics Laboratory global chemistry-climate model (GFDL AM3). Revisiting the analysis of Cooper et al. (2010), we show that sampling biases can substantially influence calculated trends. AM3 cosampled in space and time with observations reproduces the observed ozone trend (0.65 +/- 0.32 ppbvyr(-1)) over 1995-2008 (in simulations either with or without time-varying emissions), whereas AM3 "true median" with continuous temporal and spatial sampling indicates an insignificant trend (0.25 +/- 0.32 ppbvyr(-1)). Extending this analysis to 1995-2014, we find a weaker ozone trend of 0.31 +/- 0.21 ppbvyr(-1) from observations and 0.36 +/- 0.18 ppbvyr(-1) from AM3 "true median." Rising Asian emissions and global methane contribute to this increase. While interannual variability complicates the attribution of ozone trends, multidecadal hindcasts can aid in the estimation of robust confidence limits for trends based on sparse observational records. C1 [Lin, Meiyun] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Lin, Meiyun; Horowitz, Larry W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Cooper, Owen R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Cooper, Owen R.; Johnson, Bryan; Petropavlovskikh, Irina] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Tarasick, David] Environm Canada, Expt Studies Res Div, Meteorol Serv Canada, Toronto, ON, Canada. [Conley, Stephen] Sci Aviat, Roseville, CA USA. [Iraci, Laura T.; Yates, Emma L.] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. [Leblanc, Thierry] CALTECH, Jet Prop Lab, Wrightwood, CA USA. RP Lin, MY (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. EM Meiyun.Lin@noaa.gov RI Cooper, Owen/H-4875-2013; Horowitz, Larry/D-8048-2014; Manager, CSD Publications/B-2789-2015; OI Horowitz, Larry/0000-0002-5886-3314; Tarasick, David/0000-0001-9869-0692; Lin, Meiyun/0000-0003-3852-3491 FU NASA Atmospheric Composition-Aura Science Team [NNH13ZDA001N-AURAST]; NASA Ames Research Center [H211] FX This work is supported by funding from NASA Atmospheric Composition-Aura Science Team (NNH13ZDA001N-AURAST) to M. Lin and O.R. Cooper. We acknowledge the NOAA/GMD/CCGG Aircraft Project (PI: Colm Sweeney) and support of NASA Ames Research Center partnered with H211 L. L. C. (Alpha Jet Atmospheric eXperiment) for their role in collecting ozone samples. We are grateful to V. Naik, F. Paulot, and D.D. Parrish for reviewing an earlier version of the paper. Model simulations are archived at GFDL and are available to the public upon request to M. Lin. NR 50 TC 14 Z9 14 U1 6 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2015 VL 42 IS 20 BP 8719 EP 8728 DI 10.1002/2015GL065311 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CW1WL UT WOS:000364782500056 ER PT J AU Zhai, CX Jiang, JH Su, H AF Zhai, Chengxing Jiang, Jonathan H. Su, Hui TI Long-term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MODEL SIMULATIONS; FEEDBACK; SPREAD; CMIP5; ATMOSPHERE AB The large spread of model equilibrium climate sensitivity (ECS) is mainly caused by the differences in the simulated marine boundary layer cloud (MBLC) radiative feedback. We examine the variations of MBLC fraction in response to the changes of sea surface temperature (SST) at seasonal and centennial time scales for 27 climate models that participated in the Coupled Model Intercomparison Project phase 3 and phase 5. We find that the intermodel spread in the seasonal variation of MBLC fraction with SST is strongly correlated with the intermodel spread in the centennial MBLC fraction change per degree of SST warming and that both are well correlated with ECS. Seven models that are consistent with the observed seasonal variation of MBLC fraction with SST at a rate -1.28 +/- 0.56%/K all have ECS higher than the multimodel mean of 3.3 K yielding an ensemble-mean ECS of 3.9 K and a standard deviation of 0.4 K. C1 [Zhai, Chengxing; Jiang, Jonathan H.; Su, Hui] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Zhai, CX (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM chengxing.zhai@jpl.nasa.gov FU ROSES NDOA program; MAP program; NEWS program FX We thank Mark Zelinka and Joel Norris for their useful discussions and the two anonymous reviewers for their constructive suggestions to improve the manuscript. This work is conducted at JPL/Caltech under a contract with NASA, supported by the ROSES NDOA, MAP, and NEWS programs. The model data are downloaded from the ESGF (http://esgf.organdftp://ftp-esg.ucllnl.org). We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison and the WGCM, for their roles in making available the WCRP CMIP3/CMIP5 multimodel data set. Support of this data set is provided by the Office of Science, U.S. DOE. The merged CloudSat radar and CALIPSO lidar data (RL-GEOPROF-LIDAR, version R04) are downloaded from http://www.cloudsat.cira.colostate.edu/data-products/, and the monthly mean SST measured by AMSR-E is obtained from the Obs4MIPs project (https://www.earthsystemcog.org/projects/obs4mips/) hosted on the ESFG. The ERA-Interim global reanalysis vertical velocity data are downloaded from the ECMWF data server via http://www.ecmwf.int/en/research/climate-reanalysis/era-interim. NR 37 TC 4 Z9 4 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 28 PY 2015 VL 42 IS 20 BP 8729 EP 8737 DI 10.1002/2015GL065911 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CW1WL UT WOS:000364782500057 ER PT J AU Monk, JD Bucholz, EW Boghozian, T Deshpande, S Schieber, J Bauschlicher, CW Lawson, JW AF Monk, Joshua D. Bucholz, Eric W. Boghozian, Tane Deshpande, Shantanu Schieber, Jay Bauschlicher, Charles W., Jr. Lawson, John W. TI Computational and Experimental Study of Phenolic Resins: Thermal-Mechanical Properties and the Role of Hydrogen Bonding SO MACROMOLECULES LA English DT Article ID CROSS-LINKED EPOXY; NONEQUILIBRIUM MOLECULAR-DYNAMICS; FORCED RAYLEIGH-SCATTERING; X-RAY-SCATTERING; TRANSPORT-COEFFICIENTS; FORMALDEHYDE RESIN; ELASTIC-CONSTANTS; THERMOSET POLYMER; NUCLEIC-ACIDS; RESOL-TYPE AB Molecular dynamics simulations and experimental measurements were used to investigate the thermal and mechanical properties of cross-linked phenolic resins as a function of the degree of cross-linking, the chain motif (ortho-ortho versus ortho-para), and the chain length. The chain motif influenced the type (interchain or intrachain) as well as the amount of hydrogen bonding. Ortho-ortho chains favored internal hydrogen bonding whereas ortho-para favored hydrogen bonding between chains. Un-cross-linked ortho para systems formed percolating 3D networks of hydrogen bonds, behaving effectively as "hydrogen gels". This resulted in differing thermal and mechanical properties for these systems. As cross-linking increased, the chain motif, chain length, and hydrogen bonding networks became less important. Elastic moduli, thermal conductivity, and glass transition temperatures were characterized as a function of cross-linking and temperature. Both our own experimental data and literature values were used to validate our simulation results. C1 [Monk, Joshua D.; Boghozian, Tane] NASA, ERC Inc, Thermal Protect Mat Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bauschlicher, Charles W., Jr.] NASA, Entry Syst & Technol Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bucholz, Eric W.; Lawson, John W.] NASA, Thermal Protect Mat Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Deshpande, Shantanu; Schieber, Jay] IIT, Ctr Mol Study Condensed Soft Matter, Dept Chem & Biol Engn, Dept Phys, Chicago, IL 60616 USA. RP Lawson, JW (reprint author), NASA, Thermal Protect Mat Branch, Ames Res Ctr, Mail Stop 234, Moffett Field, CA 94035 USA. EM John.W.Lawson@nasa.gov FU ESM project of the NASA Space Technology Mission Directorate (NASA Ames); NSF [DMR-706582, CBET-1336442 (IIT)] FX We acknowledge Justin Haskins for a critical reading of the manuscript and for productive discussions. This work was funded by the ESM project of the NASA Space Technology Mission Directorate (NASA Ames) and received financial assistance from NSF DMR-706582 and NSF CBET-1336442 (IIT). NR 92 TC 5 Z9 5 U1 7 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD OCT 27 PY 2015 VL 48 IS 20 BP 7670 EP 7680 DI 10.1021/acs.macromol.5b01183 PG 11 WC Polymer Science SC Polymer Science GA CV0CD UT WOS:000363914000032 ER PT J AU Lehnert, H Stone, RP AF Lehnert, Helmut Stone, Robert P. TI New species of sponges (Porifera, Demospongiae) from the Aleutian Islands and Gulf of Alaska SO ZOOTAXA LA English DT Article DE taxonomy; new species; Aleutian Islands; Gulf of Alaska; Alaska; Porifera; Poecilosclerida; Axinellida; Dictyoceratida ID SP-NOV PORIFERA; USA; ASTROPHORIDA; CORAL AB Ten new species of demosponges, assigned to the orders Poecilosclerida, Axinellida and Dictyoceratida, discovered in the Gulf of Alaska and along the Aleutian Island Archipelago are described and compared to relevant congeners. Poecilosclerida include Cornulum globosum n. sp., Megaciella lobata n. sp., M. triangulata n. sp., Artemisina clavata n. sp., A. flabellata n. sp., Coelosphaera (Histodermion) kigushimkada n. sp., Stelodoryx mucosa n. sp. and S. siphofuscus n. sp. Axinellida is represented by Raspailia (Hymeraphiopsis) fruticosa n. sp. and Dictyoceratida is represented by Dysidea kenkriegeri n. sp. The genus Cornulum is modified to allow for smooth tylotes. We report several noteworthy biogeographical observations. We describe only the third species within the subgenus Histodermion and the first from the Indo-Pacific Region. Additionally, the subgenus Hymerhaphiopsis was previously represented by only a single species from Antarctica. We also report the first record of a dictyoceratid species from Alaska. The new collections further highlight the richness of the sponge fauna from the region, particularly for the Poecilosclerida. C1 [Lehnert, Helmut] GeoBioctr LMU Munchen, D-80333 Munich, Germany. [Stone, Robert P.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Lehnert, H (reprint author), Eichenstr 14, D-86507 Oberottmarshausen, Germany. EM Lehnert@spongetaxonomics.de FU Alaska Fisheries Science Center FX We thank Brian Knoth, Ned Laman, Jay Orr, Dave Somerton, Jim Stark and the crews of the FV Alaska Provider and the FV Ocean Explorer for collecting the specimens. We thank Michele Masuda for providing Figure 1. Thanks to the Zoologische Staatssammlung, Munchen, for providing access to the scanning electron microscope, especially thanks to Enrico Schwabe for help operating the SEM. Helmut Lehnert was supported by a contract from the Alaska Fisheries Science Center. Two anonymous reviewers contributed with constructive suggestions to improve this article. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. NR 70 TC 2 Z9 2 U1 0 U2 4 PU MAGNOLIA PRESS PI AUCKLAND PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND SN 1175-5326 EI 1175-5334 J9 ZOOTAXA JI Zootaxa PD OCT 27 PY 2015 VL 4033 IS 4 BP 451 EP 483 PG 33 WC Zoology SC Zoology GA CU7ED UT WOS:000363698300001 PM 26624419 ER PT J AU Checinska, A Probst, AJ Vaishampayan, P White, JR Kumar, D Stepanov, VG Fox, GE Nilsson, HR Pierson, DL Perry, J Venkateswaran, K AF Checinska, Aleksandra Probst, Alexander J. Vaishampayan, Parag White, James R. Kumar, Deepika Stepanov, Victor G. Fox, George E. Nilsson, Henrik R. Pierson, Duane L. Perry, Jay Venkateswaran, Kasthuri TI Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities SO MICROBIOME LA English DT Article DE International Space Station; Air; Surface; Microbiome; Closed habitat; Cleanroom; Propidium monoazide ID INDUSTRIAL CLEAN ROOMS; PROPIONIBACTERIUM-ACNES; PROPIDIUM MONOAZIDE; BACTERIAL; FUNGI; CONTAMINATION; DIVERSITY; IDENTIFICATION; ENVIRONMENTS; COMMUNITIES AB Background: The International Space Station (ISS) is a unique built environment due to the effects of microgravity, space radiation, elevated carbon dioxide levels, and especially continuous human habitation. Understanding the composition of the ISS microbial community will facilitate further development of safety and maintenance practices. The primary goal of this study was to characterize the viable microbiome of the ISS-built environment. A second objective was to determine if the built environments of Earth-based cleanrooms associated with space exploration are an appropriate model of the ISS environment. Results: Samples collected from the ISS and two cleanrooms at the Jet Propulsion Laboratory (JPL, Pasadena, CA) were analyzed by traditional cultivation, adenosine triphosphate (ATP), and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assays to estimate viable microbial populations. The 16S rRNA gene Illumina iTag sequencing was used to elucidate microbial diversity and explore differences between ISS and cleanroom microbiomes. Statistical analyses showed that members of the phyla Actinobacteria, Firmicutes, and Proteobacteria were dominant in the samples examined but varied in abundance. Actinobacteria were predominant in the ISS samples whereas Proteobacteria, least abundant in the ISS, dominated in the cleanroom samples. The viable bacterial populations seen by PMA treatment were greatly decreased. However, the treatment did not appear to have an effect on the bacterial composition (diversity) associated with each sampling site. Conclusions: The results of this study provide strong evidence that specific human skin-associated microorganisms make a substantial contribution to the ISS microbiome, which is not the case in Earth-based cleanrooms. For example, Corynebacterium and Propionibacterium (Actinobacteria) but not Staphylococcus (Firmicutes) species are dominant on the ISS in terms of viable and total bacterial community composition. The results obtained will facilitate future studies to determine how stable the ISS environment is over time. The present results also demonstrate the value of measuring viable cell diversity and population size at any sampling site. This information can be used to identify sites that can be targeted for more stringent cleaning. Finally, the results will allow comparisons with other built sites and facilitate future improvements on the ISS that will ensure astronaut health. C1 [Checinska, Aleksandra; Vaishampayan, Parag; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [Probst, Alexander J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [White, James R.] Resphera Biosci, Baltimore, MD USA. [Kumar, Deepika; Stepanov, Victor G.; Fox, George E.] Univ Houston, Dept Biol & Biochem, Houston, TX USA. [Nilsson, Henrik R.] Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden. [Pierson, Duane L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Perry, Jay] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89-2 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov RI Probst, Alexander/K-2813-2016; OI Nilsson, Henrik/0000-0002-8052-0107 FU Space Biology grant [19-12829-26, NNH12ZTT001N, NNN13D111T]; California Institute of Technology. Government FX Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This research was funded by a 2012 Space Biology NNH12ZTT001N grant no. 19-12829-26 under Task Order NNN13D111T award to K. Venkateswaran, (C) 2015 California Institute of Technology. Government sponsorship acknowledged. NR 81 TC 9 Z9 10 U1 3 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD OCT 27 PY 2015 VL 3 AR 50 DI 10.1186/s40168-015-0116-3 PG 18 WC Microbiology SC Microbiology GA CU2QT UT WOS:000363369000001 PM 26502721 ER PT J AU Tuinenburg, OA Risi, C Lacour, JL Schneider, M Wiegele, A Worden, J Kurita, N Duvel, JP Deutscher, N Bony, S Coheur, PF Clerbaux, C AF Tuinenburg, O. A. Risi, C. Lacour, J. L. Schneider, M. Wiegele, A. Worden, J. Kurita, N. Duvel, J. P. Deutscher, N. Bony, S. Coheur, P. F. Clerbaux, C. TI Moist processes during MJO events as diagnosed from water isotopic measurements from the IASI satellite SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB This study aims to investigate some characteristics of the moist processes of the Madden-Julian oscillation (MJO), by making use of joint HDO (or delta D) and H2O vapor measurements. The MJO is the main intraseasonal mode of the tropical climate but is hard to properly simulate in global atmospheric models. The joint use of delta D-H2O diagnostics yields additional information compared to sole humidity measurements. We use midtropospheric Infrared Atmospheric Sounding Interferometer (IASI) satellite delta D and H2O measurements to determine the mean MJO humidity and delta D evolution. Moreover, by making use of high temporal resolution data, we determine the variability in this evolution during about eight MJO events from 2010 to 2012 (including those monitored during the DYNAMO (the Dynamics of the MJO), CINDY (Cooperative Indian Ocean Experiment in Y2011) campaign). These data have a higher spatiotemporal coverage than previous delta D measurements, enabling the sampling of individual MJO events. IASI measurements over the Indian Ocean confirm earlier findings that the moistening before the precipitation peak of an MJO event is due to water vapor slightly enriched in HDO. There is then a HDO depletion around the precipitation peak that also corresponds to the moister environment. Most interevent variability determined in the current study occurs 5 to 10 days after the MJO event. In 75% of the events, humidity decreases while the atmosphere remains depleted. In a quarter of the events, humidity increases simultaneously with an increase in delta D. After this, the advection of relatively dry and enriched air brings back the state to the mean. Over the maritime continent, delta D-H2O cycles are more variable on time scales shorter than the MJO and the interevent variability is larger than over the Indian Ocean. The sequence of moistening and drying processes as revealed by the q-delta D cycles can be used as a benchmark to evaluate the representation of moist processes in models. This is done here by comparing observations to simulations of the isotope enabled LMDZ (Laboratoire de Meteorologie Dynamique Zoom) global climate model nudged with reanalysis wind fields. These simulations also give information to investigate possible physical origins of the observed q-delta D cycles. C1 [Tuinenburg, O. A.; Risi, C.; Bony, S.] UPMC, CNRS, Lab Meteorol Dynam, IPSL, Paris, France. [Lacour, J. L.; Coheur, P. F.; Clerbaux, C.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Spect Atmosphere, Brussels, Belgium. [Schneider, M.; Wiegele, A.] Karlsruhe Inst Technol, Karlsruhe, Germany. [Worden, J.] NASA JPL, Pasadena, CA USA. [Kurita, N.] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan. [Duvel, J. P.] CNRS, ENS, Lab Meteorol Dynam, Paris, France. [Deutscher, N.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Clerbaux, C.] Univ Versailles St Quentin, UPMC Pierre & Marie Curie Univ, CNRS INSU, LATMOS IPSL Paris, Versailles, France. RP Tuinenburg, OA (reprint author), UPMC, CNRS, Lab Meteorol Dynam, IPSL, Paris, France. EM Obbe.Tuinenburg@lmd.jussieu.fr RI Kurita, Naoyuki/C-6120-2014; clerbaux, cathy/I-5478-2013; Schneider, Matthias/B-1441-2013; OI Lacour, Jean-Lionel/0000-0003-3642-7439 FU European Research Council under the European Community/ERC [256961] FX All data for this paper are properly cited and referred to in the reference list. The GCM (LMDZ) simulations and tendencies are available from the authors upon request. The KIT IASI retrievals are made in the framework of the project MUSICA, which is funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 256961. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. LMDZ simulations were performed at IDRIS under the allocation 0292 by GENCI. The authors thank the Editor and reviewers for their suggestions to improve the manuscript. NR 50 TC 1 Z9 1 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2015 VL 120 IS 20 BP 10619 EP 10636 DI 10.1002/2015JD023461 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WP UT WOS:000209847000003 ER PT J AU Wu, LT Li, JLF Pi, CJ Yu, JY Chen, JP AF Wu, Longtao Li, J. L. F. Pi, Chia-Jung Yu, Jia-Yuh Chen, Jen-Ping TI An observationally based evaluation of WRF seasonal simulations over the Central and Eastern Pacific SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB This study uses multiple satellite data sets to evaluate seasonal simulations of the Weather Research and Forecasting (WRF) model over Central and Eastern Pacific. Experiments with five different convective parameterizations all show reasonably good performance for precipitation simulations. However, large discrepancies exist in the model-simulated ice clouds compared to CloudSat observations. Underestimations of ice clouds, mainly snow and graupel, are present in the Intertropical Convergence Zone (ITCZ) in all the experiments compared to CloudSat. In the ITCZ, all the experiments show a systematic overestimation of outgoing longwave radiation at the top of the atmosphere and downward shortwave radiation at the surface, along with biased cloud cooling in the middle and upper troposphere and biased cloud warming in the lower troposphere. Vertical motion is enhanced in the ITCZ compared to reanalysis. A weaker low-level circulation over the midlatitude oceans is evidenced in all simulations with an eastward overextension of the South Pacific Convergence Zone and overestimated moisture over the Southern Hemisphere oceans when compared to Special Sensor Microwave/Imager observations. Sensitivity experiment demonstrates that doubling the radiative effect of snow can reduce high biases in vertical motion within the ITCZ and improve the large-scale circulation and moisture over the midlatitude oceans. C1 [Wu, Longtao; Li, J. L. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Pi, Chia-Jung; Chen, Jen-Ping] Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan. [Yu, Jia-Yuh] Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan. RP Wu, LT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM longtao.wu@jpl.nasa.gov OI Chen, Jen-Ping/0000-0003-4188-6189 FU Jet Propulsion Laboratory, California Institute of Technology [NNH12ZDA001N-CCST] FX We thank the editors and four reviewers for giving very insightful and helpful comments and suggestions. We thank Brian Kahn at JPL for his helpful comments. The contribution by J.L.L. and L.W. to this study were carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under contracts of ATMOS COMP 2013 (NNH12ZDA001N-CCST) and NDOA with the National Aeronautics and Space Administration (NASA). The radiation data include CERES measurements of EBAF can be get from http://ceres.larc.nasa.gov/order_data.php. QuikSCAT data are produced by Remote Sensing Systems and sponsored by the NASA Ocean Vector Winds Science Team. Data are available at www.remss.com. The dynamical fields such as vertical velocity (Omega) are from the European Centre for Medium-Range Forecasts (ECMWF) Interim reanalysis [ECI: Dee and Uppala, 2009; http://data-portal.ecmwf.int/data/d/interim_daily/]. NR 59 TC 0 Z9 0 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2015 VL 120 IS 20 BP 10664 EP 10680 DI 10.1002/2015JD023561 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WP UT WOS:000209847000006 ER PT J AU Brindley, H Osipov, S Bantges, R Smirnov, A Banks, J Levy, R Prakash, PJ Stenchikov, G AF Brindley, H. Osipov, S. Bantges, R. Smirnov, A. Banks, J. Levy, R. Prakash, P. Jish Stenchikov, G. TI An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of Wm(-2), shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120Wm(-2) at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation. C1 [Brindley, H.; Bantges, R.; Banks, J.] Imperial Coll London, Space & Atmospher Phys Grp, London, England. [Brindley, H.; Bantges, R.] Imperial Coll London, NERC Natl Ctr Earth Observat, London, England. [Osipov, S.; Prakash, P. Jish; Stenchikov, G.] King Abdullah Univ Sci & Technol, Phys Sci & Engn, Thuwal, Saudi Arabia. [Smirnov, A.] Sigma Space Corp, Lanham, MD USA. [Levy, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Brindley, H (reprint author), Imperial Coll London, Space & Atmospher Phys Grp, London, England. EM h.brindley@imperial.ac.uk RI Levy, Robert/M-7764-2013; Smirnov, Alexander/C-2121-2009; OI Levy, Robert/0000-0002-8933-5303; Smirnov, Alexander/0000-0002-8208-1304; Stenchikov, Georgiy Lvovich/0000-0001-9033-4925 FU Red Sea exploration program; KAUST [CRG-1-2012-STE-IMP]; UK National Centre for Earth Observation FX The authors would like to thank Al Suwailem for help in organizing the routine aerosol ship observations at KAUST and De La Torre and Papadopoulos for help in conducting the first series of sun photometer observations. R/V Aegaeo was operated by the Hellenic Centre for Marine Research (HCMR), Greece, with the set of cruises described in this paper being organized by the King Abdullah University of Science and Technology (KAUST) in cooperation with the Woods Hole Oceanographic Institution, USA, under the auspices of the Red Sea exploration program. The research reported in this publication was principally supported by KAUST. In particular, for computer time, the resources of the KAUST Supercomputing Laboratory were used. Helen Brindley and Jamie Banks are partially supported by research grant KAUST CRG-1-2012-STE-IMP. Richard Bantges is supported by the UK National Centre for Earth Observation. The ship-based cruise data are available from the AERONET Maritime Aerosol Network at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html. MODIS L5.1 data were obtained from the NASA GFSC Level 1 and Atmosphere Archive and Distribution System at http://ladsweb.nascom.nasa.gov/index.html. GERB data and SEVIRI AOD retrievals can be obtained from the British Atmospheric Data Centre (BADC) at http://catalogue.ceda.ac.uk/uuid/d8a5e58e59eb31620082dc4fd10158e2. NR 75 TC 5 Z9 5 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2015 VL 120 IS 20 BP 10862 EP 10878 DI 10.1002/2015JD023282 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WP UT WOS:000209847000017 ER PT J AU Kuai, L Worden, JR Campbell, JE Kulawik, SS Li, KF Lee, M Weidner, RJ Montzka, SA Moore, FL Berry, JA Baker, I Denning, AS Bian, HS Bowman, KW Liu, JJ Yung, YL AF Kuai, Le Worden, John R. Campbell, J. Elliott Kulawik, Susan S. Li, King-Fai Lee, Meemong Weidner, Richard J. Montzka, Stephen A. Moore, Fred L. Berry, Joe A. Baker, Ian Denning, A. Scott Bian, Huisheng Bowman, Kevin W. Liu, Junjie Yung, Yuk L. TI Estimate of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric Emission Spectrometer observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB Quantifying the carbonyl sulfide (OCS) land/ocean fluxes contributes to the understanding of both the sulfur and carbon cycles. The primary sources and sinks of OCS are very likely in a steady state because there is no significant observed trend or interannual variability in atmospheric OCS measurements. However, the magnitude and spatial distribution of the dominant ocean source are highly uncertain due to the lack of observations. In particular, estimates of the oceanic fluxes range from approximately 280 Gg S yr(-1) to greater than 800 Gg S yr(-1), with the larger flux needed to balance a similarly sized terrestrial sink that is inferred from NOAA continental sites. Here we estimate summer tropical oceanic fluxes of OCS in 2006 using a linear flux inversion algorithm and new OCS data acquired by the Aura Tropospheric Emissions Spectrometer (TES). Modeled OCS concentrations based on these updated fluxes are consistent with HIAPER Pole-to-Pole Observations during 4th airborne campaign and improve significantly over the a priori model concentrations. The TES tropical ocean estimate of 70 +/- 16Gg S in June, when extrapolated over the whole year (about 840 +/- 192 Gg S yr(-1)), supports the hypothesis proposed by Berry et al. (2013) that the ocean flux is in the higher range of approximately 800 Gg S yr(-1). C1 [Kuai, Le] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Worden, John R.; Lee, Meemong; Weidner, Richard J.; Bowman, Kevin W.; Liu, Junjie] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Campbell, J. Elliott] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA. [Kulawik, Susan S.] NASA Ames, BAER Inst, Mountain View, CA USA. [Li, King-Fai] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA. [Montzka, Stephen A.; Moore, Fred L.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Berry, Joe A.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Baker, Ian; Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Bian, Huisheng] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bian, Huisheng] Univ Maryland, JCET, Baltimore, MD 21201 USA. [Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Kuai, L (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM kl@gps.caltech.edu OI Montzka, Stephen/0000-0002-9396-0400; Li, King-Fai/0000-0003-0150-2910 FU UCAR Jack Eddy Fellowship; NASA [NNX14AR40G, NNX13AK34G]; NSF [ATM-0628575, ATM-0628519, ATM-0628388]; National Center for Atmospheric Research (NCAR); NSF FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. King-Fai Li was supported in part by the UCAR Jack Eddy Fellowship and by the NASA grant (NNX14AR40G) to the University of Washington. Yuk L. Yung acknowledged support by NASA grant (NNX13AK34G) to Caltech. The authors would like to acknowledge Randy Kawa for the help with the OH flux data and also thank Steve Wofsy, Elliot Atlas, Benjamin R. Miller, Fred Moore, James Elkins, and all other HIPPO, NOAA team members (the pilots, mechanics, technicians, and scientific crew) for making the HIPPO and NOAA data available. HIPPO was supported by NSF grants ATM-0628575, ATM-0628519, and ATM-0628388 and by the National Center for Atmospheric Research (NCAR). NCAR is supported by the NSF. The data used in this paper are archived at Jet Propulsion Laboratory and are available from the authors upon request (kl@gps.caltech.edu). NR 27 TC 7 Z9 7 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2015 VL 120 IS 20 BP 11012 EP 11023 DI 10.1002/2015JD023493 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WP UT WOS:000209847000027 ER PT J AU Duncan, BW Schmalzer, PA Breininger, DR Stolen, ED AF Duncan, Brean W. Schmalzer, Paul A. Breininger, David R. Stolen, Eric D. TI Comparing fuels reduction and patch mosaic fire regimes for reducing fire spread potential: A spatial modeling approach SO ECOLOGICAL MODELLING LA English DT Article DE Fire modeling; Fire management; Fire hazard; FARSITE; Patch mosaic burning; Fuels reduction ID EAST-CENTRAL FLORIDA; SOUTH-WEST TASMANIA; PRESCRIBED FIRE; BOREAL FOREST; NATIONAL-PARK; BIODIVERSITY CONSERVATION; BURNING STRATEGIES; HAZARD REDUCTION; SCRUB-JAYS; LONG-TERM AB Reduction of fire hazard is becoming increasingly important in managed landscapes globally. Fuels reduction prescribed burn treatments are the most common form of reducing fire hazard on landscapes around the world but often result in homogenized fuel age structures and habitats. Alternatively, the size of unplanned fires, and hence fire hazard, can be reduced by controlling the size and patterning of fuels treatments in a patch mosaic arrangement on landscapes. Patch mosaic burning is being implemented globally as a means to increase heterogeneity to mimic natural fire regime results. Funding for prescribed fire programs is often justified primarily on hazardous fuels reduction with secondary consideration given for ecological effectiveness, which can be increased by particular fire mosaic patterns in some systems. The question we address is: Which of two prescribed fire treatment regimes, fuels reduction or patch mosaic burning, reduces fire hazard most effectively? We address the question using computer simulation modeling on synthetic landscapes representing both fire regime treatments. Treatment scale was important. Among fuel reduction treatments, large blocks burned less area than small blocks. For the mosaic treatments, small blocks reduced fire size the most (out of all treatments) and had the least variance in area burned. It is possible to reduce fire hazard and to provide heterogeneous age fuels structure on the landscape, simultaneously benefiting humans and many native fire-dependent species requiring mosaic habitat patterns. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Duncan, Brean W.; Schmalzer, Paul A.; Breininger, David R.; Stolen, Eric D.] NASA, Kennedy Space Ctr, Ecol Program, InoMed Hlth Applicat, Kennedy Space Ctr, FL 32899 USA. RP Duncan, BW (reprint author), NASA, Kennedy Space Ctr, Ecol Program, InoMed Hlth Applicat, Mail Code IHA-300, Kennedy Space Ctr, FL 32899 USA. EM brean.w.duncan@nasa.gov OI Schmalzer, Paul/0000-0003-2214-0074 FU NASA [NNK08OQ01C] FX This study was conducted under NASA contract NNK08OQ01C. We thank Denise Thaller and Lynne Phillips at NASA for their support. Thanks to Tammy Foster and MINWR personnel, especially Fire Action Team members, for their help. NR 82 TC 0 Z9 0 U1 5 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD OCT 24 PY 2015 VL 314 BP 90 EP 99 DI 10.1016/j.ecolmodel.2015.07.013 PG 10 WC Ecology SC Environmental Sciences & Ecology GA CS1XL UT WOS:000361862100009 ER PT J AU McGlynn, SE Chadwick, GL Kempes, CP Orphan, VJ AF McGlynn, Shawn E. Chadwick, Grayson L. Kempes, Christopher P. Orphan, Victoria J. TI Single cell activity reveals direct electron transfer in methanotrophic consortia SO NATURE LA English DT Article ID SULFATE-REDUCING BACTERIA; MARINE METHANE OXIDATION; ANAEROBIC OXIDATION; MICROBIAL CONSORTIUM; SPATIAL STRUCTURE; ANME-2 ARCHAEA; BIOFILMS; MODEL; CYTOCHROMES; CONSTRAINTS AB Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. C1 [McGlynn, Shawn E.; Chadwick, Grayson L.; Orphan, Victoria J.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Kempes, Christopher P.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Kempes, Christopher P.] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA. [Kempes, Christopher P.] SETI Inst, Mountain View, CA 94034 USA. RP Orphan, VJ (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM vorphan@gps.caltech.edu RI Orphan, Victoria/K-1002-2014 OI Chadwick, Grayson/0000-0003-0700-9350; Orphan, Victoria/0000-0002-5374-6178 FU US Department of Energy, Office of Science, Office of Biological Environmental Research [DE-SC0004949, DE-SC0010574]; Gordon and Betty Moore foundation Marine Microbiology Initiative [3780]; DOE-BER [DE-SC0003940]; Agouron Geobiology Option post-doctoral fellowship in the Division of Geological and Planetary Sciences at Caltech; NASA Astrobiology Institute [NNA13AA92A] FX We are grateful for the use of the facilities of the Beckman Resource Center for Transmission Electron Microscopy at Caltech (BRCem) and advice provided by A. McDowall, our collaborators T. Deerinck and M. Ellisman from the National Center for Microscopy and Imaging Research (NCMIR), C. Miele (UGA) and M. El-Naggar at USC. Metagenomic binning of ANME-2b was conducted by C. Skennerton and M. Haroonin collaboration with G. Tyson and M. Imelfort (University of Queensland). This work was supported by the US Department of Energy, Office of Science, Office of Biological Environmental Research under award numbers (DE-SC0004949 and DE-SC0010574) and a grant from the Gordon and Betty Moore foundation Marine Microbiology Initiative (grant number 3780). V.J.O. is supported by a DOE-BER early career grant (DE-SC0003940). S.E.M. acknowledges support from an Agouron Geobiology Option post-doctoral fellowship in the Division of Geological and Planetary Sciences at Caltech and C.P.K. was supported by the NASA Astrobiology Institute (award number NNA13AA92A). This is NAI-Life Underground Publication 049. NR 41 TC 42 Z9 42 U1 29 U2 139 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 22 PY 2015 VL 526 IS 7574 BP 531 EP U146 DI 10.1038/nature15512 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV1NX UT WOS:000364026100041 PM 26375009 ER PT J AU Miller, JM Kaastra, JS Miller, MC Reynolds, MT Brown, G Cenko, SB Drake, JJ Gezari, S Guillochon, J Gultekin, K Irwin, J Levan, A Maitra, D Maksym, WP Mushotzky, R O'Brien, P Paerels, F de Plaa, J Ramirez-Ruiz, E Strohmayer, T Tanvir, N AF Miller, Jon M. Kaastra, Jelle S. Miller, M. Coleman Reynolds, Mark T. Brown, Gregory Cenko, S. Bradley Drake, Jeremy J. Gezari, Suvi Guillochon, James Gultekin, Kayhan Irwin, Jimmy Levan, Andrew Maitra, Dipankar Maksym, W. Peter Mushotzky, Richard O'Brien, Paul Paerels, Frits de Plaa, Jelle Ramirez-Ruiz, Enrico Strohmayer, Tod Tanvir, Nial TI Flows of X-ray gas reveal the disruption of a star by a massive black hole SO NATURE LA English DT Article ID TIDAL DISRUPTION; EVENTS; GALAXY; CALIBRATION; TELESCOPE; OUTBURST; MISSION; WINDS AB Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray(1-4) and optical/ultraviolet(5,6) flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate(6,7). Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory(8) and more recent numerical simulations(7,9-14). C1 [Miller, Jon M.; Reynolds, Mark T.; Gultekin, Kayhan] Univ Michigan, Dept Astron, Ann Arbor, MI 48103 USA. [Kaastra, Jelle S.; de Plaa, Jelle] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Kaastra, Jelle S.] Univ Utrecht, Dept Phys & Astron, NL-3508 TA Utrecht, Netherlands. [Kaastra, Jelle S.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Miller, M. Coleman; Gezari, Suvi; Mushotzky, Richard] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brown, Gregory; Levan, Andrew] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Cenko, S. Bradley; Strohmayer, Tod] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Drake, Jeremy J.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Guillochon, James] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA. [Irwin, Jimmy; Maksym, W. Peter] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Maitra, Dipankar] Wheaton Coll, Dept Phys & Astron, Norton, MA 02766 USA. [O'Brien, Paul; Tanvir, Nial] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Paerels, Frits] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Paerels, Frits] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Miller, JM (reprint author), Univ Michigan, Dept Astron, 1085 South Univ Ave, Ann Arbor, MI 48103 USA. EM jonmm@umich.edu OI Maksym, Walter/0000-0002-2203-7889; Guillochon, James/0000-0002-9809-8215; Gultekin, Kayhan/0000-0002-1146-0198 FU NASA [NAS8-03060]; Netherlands Organization for Scientific Research (NWO); University of Alabama Research Stimulation Program FX We thank Chandra Director B. Wilkes and the Chandra team for accepting our request for Director's Discretionary Time, XMM-Newton Director N. Schartel and the XMM-Newton team for executing our approved target-of-opportunity program, and Swift Director N. Gehrels and the Swift team for monitoring this important source. J.M.M. is supported by NASA funding, through Chandra and XMM-Newton guest observer programs. The SRON Netherlands Institute for Space Research is supported by The Netherlands Organization for Scientific Research (NWO). J.J.D. was supported by NASA contract NAS8-03060 to the Chandra X-ray Center. W.P.M. is grateful for support by the University of Alabama Research Stimulation Program. NR 37 TC 21 Z9 21 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 22 PY 2015 VL 526 IS 7574 BP 542 EP U173 DI 10.1038/nature15708 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV1NX UT WOS:000364026100043 PM 26490619 ER PT J AU Vanderburg, A Johnson, JA Rappaport, S Bieryla, A Irwin, J Lewis, JA Kipping, D Brown, WR Dufour, P Ciardi, DR Angus, R Schaefer, L Latham, DW Charbonneau, D Beichman, C Eastman, J McCrady, N Wittenmyer, RA Wright, JT AF Vanderburg, Andrew Johnson, John Asher Rappaport, Saul Bieryla, Allyson Irwin, Jonathan Lewis, John Arban Kipping, David Brown, Warren R. Dufour, Patrick Ciardi, David R. Angus, Ruth Schaefer, Laura Latham, David W. Charbonneau, David Beichman, Charles Eastman, Jason McCrady, Nate Wittenmyer, Robert A. Wright, Jason T. TI A disintegrating minor planet transiting a white dwarf SO NATURE LA English DT Article ID EXCESS INFRARED RADIATION; DEBRIS DISKS; DUSTY DISK; FREQUENCY; SYSTEMS; GD-362; CANDIDATE; ACCRETION; ASTEROIDS; DIFFUSION AB Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres(1,2), even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished) (3-5). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System(6,7). This fact, together with the existence of warm, dusty debris disks(8-13) surrounding about four per cent of white dwarfs(14-16), suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars(17). The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System(1). However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf-WD 1145+017-being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets. C1 [Vanderburg, Andrew; Johnson, John Asher; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R.; Angus, Ruth; Schaefer, Laura; Latham, David W.; Charbonneau, David; Eastman, Jason] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rappaport, Saul] MIT, Dept Phys, Cambridge, MA 02139 USA. [Rappaport, Saul] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Kipping, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Dufour, Patrick] Univ Montreal, Dept Phys, Inst Rech Exoplanetes, Montreal, PQ H3C 3J7, Canada. [Ciardi, David R.; Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Angus, Ruth] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [McCrady, Nate] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Wittenmyer, Robert A.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Wittenmyer, Robert A.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Wright, Jason T.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Wright, Jason T.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. RP Vanderburg, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM avanderburg@cfa.harvard.edu OI Lewis, John/0000-0001-5199-3522; Wright, Jason/0000-0001-6160-5888; Schaefer, Laura/0000-0003-2915-5025; Ciardi, David/0000-0002-5741-3047 FU National Science Foundation Graduate Research Fellowship [DGE 1144152]; David and Lucile Packard Foundation; Alfred P. Sloan Foundation; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; David and Lucile Packard Fellowship for Science and Engineering; National Science Foundation [AST-0807690, AST-1109468, AST-1004488]; John Templeton Foundation FX We thank B. Croll, D. Veras, M. Holman, R. Loomis, J. Becker, K. Deck, H. Schlichting, H. Lin, A. Loeb, and D. Osip for discussions and assistance. We thank C. Allinson, S. Dillet, D. Frostig, A. Johnson, D. Hellstrom, S. Johnson, B. Peak, and T. Reneau for conducting MINERVA observations. We thank M. Wyatt for suggesting how to present Supplementary Fig. 8. A.V. is supported by a National Science Foundation Graduate Research Fellowship (grant DGE 1144152). J. A. J. is supported by grants from the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation. The Center for Exoplanets and Habitable Worlds is supported by Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. The MEarth Team acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering (to D. C.), the National Science Foundation under grants AST-0807690, AST-1109468, and AST-1004488 (Alan T. Waterman Award), and a grant from the John Templeton Foundation. The opinions expressed here are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. This research has made use of NASA's Astrophysics Data System, the SIMBAD database and VizieR catalog access tool operated at the Centre de Donnees astronomiques de Strasbourg, France. Some of the data presented here were obtained from the Mikulski Archive for Space Telescopes (MAST). This paper includes data from the Kepler/K2 mission, the Wide-field Infrared Survey Explorer, the MMT Observatory, the Sloan Digital Sky Survey (SDSS-III), the National Geographic Society Palomar Observatory Sky Atlas (POSS-I) and the W.M. Keck Observatory. MINERVA is made possible by contributions from its collaborating institutions and Mt Cuba Astronomical Foundation, the David and Lucile Packard Foundation, the National Aeronautics and Space Administration, and the Australian Research Council. We acknowledge the cultural significance of the summit of Maunakea within the indigenous Hawai'ian community. We are grateful for the opportunity to conduct observations from this mountain. NR 30 TC 47 Z9 47 U1 3 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 22 PY 2015 VL 526 IS 7574 BP 546 EP 549 DI 10.1038/nature15527 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV1NX UT WOS:000364026100044 PM 26490620 ER PT J AU Lakshminarayan, VK Duraisamy, K AF Lakshminarayan, Vinod K. Duraisamy, Karthik TI Adjoint-based estimation and control of spatial, temporal and stochastic approximation errors in unsteady flow simulations SO COMPUTERS & FLUIDS LA English DT Article DE Error estimation; Discrete adjoints; Uncertainty quantification; Vertical axis wind turbine ID COMPUTATIONAL FLUID-DYNAMICS; UNCERTAINTY QUANTIFICATION; PARALLEL COMPUTERS; GRID ADAPTATION; MESH ADAPTATION; FORMULATION; QUADRATURE; PHYSICS AB The ability to estimate various sources of numerical error and to adaptively control them is a powerful tool in quantifying uncertainty in predictive simulations. This work attempts to develop reliable estimates of numerical errors resulting from spatial, temporal and stochastic approximations of fluid dynamic equations using a discrete adjoint approach. Each source of error is isolated and the accuracy of the error estimation is verified. When applied to unsteady flow simulations of vertical axis wind turbines (VAWT), the procedure demonstrates good recovery of discretization errors to provide accurate estimate of the objective functional. The framework is then applied to a VAWT simulation with inherent stochasticity and is confirmed to effectively estimate errors in computing statistical quantities of interest. The ability to use these stochastic error estimates as a basis for adaptive sampling is also presented. Predictive science is typically constrained by finite computational resources and this work demonstrates the viability of adjoint-based approaches to budget available computational resources to effectively pursue uncertainty quantification. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Lakshminarayan, Vinod K.] NASA, Sci & Technol Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Duraisamy, Karthik] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. RP Lakshminarayan, VK (reprint author), NASA, Sci & Technol Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. EM vinod.k.lakshminarayan.ctr@mail.mil; kdur@umich.edu FU DoE grant [DE-FG02-10ER26026] FX The first author was supported in part by DoE grant DE-FG02-10ER26026. The authors are thankful to Dr. Praveen Chandrashekar for his help with stochastic collocation and Prof. Juan Alonso for fruitful discussions on the topic. NR 35 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD OCT 22 PY 2015 VL 121 BP 180 EP 191 DI 10.1016/j.compfluid.2015.08.020 PG 12 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA CT2JO UT WOS:000362628000015 ER PT J AU Hogan, MT Edge, AC Geach, JE Grainge, KJB Hlavacek-Larrondo, J Hovatta, T Karim, A McNamara, BR Rumsey, C Russell, HR Salome, P Aller, HD Aller, MF Benford, DJ Fabian, AC Readhead, ACS Sadler, EM Saunders, RDE AF Hogan, M. T. Edge, A. C. Geach, J. E. Grainge, K. J. B. Hlavacek-Larrondo, J. Hovatta, T. Karim, A. McNamara, B. R. Rumsey, C. Russell, H. R. Salome, P. Aller, H. D. Aller, M. F. Benford, D. J. Fabian, A. C. Readhead, A. C. S. Sadler, E. M. Saunders, R. D. E. TI High radio-frequency properties and variability of brightest cluster galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: clusters: general; galaxies: jets; radio continuum: galaxies ID ACTIVE GALACTIC NUCLEI; ADVECTION-DOMINATED ACCRETION; SPECTRUM RADIO-SOURCES; HIGH-FREQUENCY PEAKERS; COOLING-FLOW CLUSTERS; LONG-TERM VARIABILITY; NORTH ECLIPTIC POLE; RAY-EMITTING GAS; ALL-SKY SURVEY; X-RAY AB We consider the high radio-frequency (15-353 GHz) properties and variability of 35 brightest cluster galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing us to relate our results to the general population. We find that >= 6.0 per cent of our parent sample (>= 15.1 per cent if only cool-core clusters are considered) contain a radio source at 150 GHz of at least 3 mJy (approximate to 1x10(23) W Hz(-1) at our median redshift of z approximate to 0.13). Furthermore, >= 3.4 per cent of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to >= 8.5 per cent if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week-month) time-scales although we see variations greater than 20 per cent at 150 GHz over six-month time frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year-decade time-scale) variability, with average annual amplitude variations greater than 1 per cent at 15 GHz being commonplace. There is a weak trend towards higher variability as the peak of the GPS-like component occurs at higher frequency. We demonstrate the complexity that is seen in the radio spectra of BCGs and discuss the potentially significant implications of these high-peaking components for Sunyaev-Zel 'dovich cluster searches. C1 [Hogan, M. T.; Edge, A. C.] Univ Durham, Dept Phys, Ctr Extragalact Astron, Durham DH1 3LE, England. [Hogan, M. T.; McNamara, B. R.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Hogan, M. T.; McNamara, B. R.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Geach, J. E.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Grainge, K. J. B.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Manchester M13 9PL, Lancs, England. [Hlavacek-Larrondo, J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Hlavacek-Larrondo, J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA USA. [Hlavacek-Larrondo, J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Hovatta, T.; Readhead, A. C. S.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hovatta, T.] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Karim, A.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Rumsey, C.; Saunders, R. D. E.] Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Russell, H. R.; Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Salome, P.] Observ Paris, LERMA, F-75014 Paris, France. [Aller, H. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Benford, D. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Sadler, E. M.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. RP Hogan, MT (reprint author), Univ Durham, Dept Phys, Ctr Extragalact Astron, Durham DH1 3LE, England. EM m4hogan@uwaterloo.ca RI Benford, Dominic/D-4760-2012; OI Benford, Dominic/0000-0002-9884-4206; Edge, Alastair/0000-0002-3398-6916; Sadler, Elaine/0000-0002-1136-2555 FU Science and Technologies Funding Council (STFC) [ST/I505656/1]; STFC [ST/I001573/1]; ERC; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; University of Michigan; National Science Foundation [AST-0607523]; Canada Foundation for Innovation; European Commission [283393] FX We thank the anonymous referee for useful comments and suggestions that have greatly improved this work. MTH acknowledges the support of the Science and Technologies Funding Council (STFC) through studentship number ST/I505656/1. ACE acknowledges support from STFC grant ST/I001573/1. CR acknowledges the support of STFC. ACF and HRR acknowledge support from ERC Advanced Grant Feedback. We wish to thank the staff of the OVRO for allowing us access to data from their monitoring campaign and additional data for the sources they kindly added to the observing schedule. We would also like to thank the observatory staff at the MRAO (AMI), IRAM-30 m (GISMO), CARMA, the JCMT (SCUBA-2) and the GISMO team for their help in preparing and obtaining data. The OVRO 40-m monitoring programme is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. This research has made use of data from the UMRAO which has been supported by the University of Michigan and by a series of grants from the National Science Foundation, most recently AST-0607523. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada and (until 2013 March 31) the Netherlands Organization for Scientific Research. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. Support for CARMA construction was derived from the states of California, Illinois and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the University of Chicago, the Associates of the California Institute of Technology and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. The research leading to the IRAM-30 m results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement number 283393 (RadioNet3). This research work has used the TIFR GMRT Sky Survey (http://tgss.ncra.tifr.res.in) data products. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research used data from the NRAO archive. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 151 TC 6 Z9 6 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2015 VL 453 IS 2 BP 1223 EP 1240 DI 10.1093/mnras/stv1518 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4GQ UT WOS:000363486000005 ER PT J AU Graham, MJ Djorgovski, SG Stern, D Drake, AJ Mahabal, AA Donalek, C Glikman, E Larson, S Christensen, E AF Graham, Matthew J. Djorgovski, S. G. Stern, Daniel Drake, Andrew J. Mahabal, Ashish A. Donalek, Ciro Glikman, Eilat Larson, Steve Christensen, Eric TI A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; techniques: photometric; surveys; quasars: general; quasars: supermassive black holes ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; DAMPED RANDOM-WALK; QUASI-PERIODIC OSCILLATIONS; SURVEY SPECTROSCOPIC SAMPLE; LENS-THIRRING PRECESSION; BL LACERTAE OBJECTS; SDSS STRIPE 82; CIRCUMBINARY DISKS; ACCRETION DISKS AB Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2-year periodic signal in the quasar PG 1302-102, we present a novel analysis of the optical variability of 243 500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion discs or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational-wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution. C1 [Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Mahabal, Ashish A.; Donalek, Ciro] CALTECH, Pasadena, CA 91125 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Glikman, Eilat] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Larson, Steve; Christensen, Eric] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Graham, MJ (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM mjg@caltech.edu FU NSF [AST-0909182, IIS-1118041, AST-1313422]; W. M. Keck Institute for Space Studies; NASA; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX This work was supported in part by the NSF grants AST-0909182, IIS-1118041 and AST-1313422, and by the W. M. Keck Institute for Space Studies. The work of DS was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. NR 94 TC 20 Z9 20 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2015 VL 453 IS 2 BP 1562 EP 1576 DI 10.1093/mnras/stv1726 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4GQ UT WOS:000363486000031 ER PT J AU de Souza, RS Hilbe, JM Buelens, B Riggs, JD Cameron, E Ishida, EEO Chies-Santos, AL Killedar, M AF de Souza, R. S. Hilbe, J. M. Buelens, B. Riggs, J. D. Cameron, E. Ishida, E. E. O. Chies-Santos, A. L. Killedar, M. TI The overlooked potential of generalized linear models in astronomy - III. Bayesian negative binomial regression and globular cluster populations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; globular clusters: general ID SUPERMASSIVE BLACK-HOLES; SCALING RELATIONS; GALAXY CLUSTERS; MASS; SELECTION; SYSTEMS; LASSO AB In this paper, the third in a series illustrating the power of generalized linear models (GLMs) for the astronomical community, we elucidate the potential of the class of GLMs which handles count data. The size of a galaxy's globular cluster (GC) population (NGC) is a prolonged puzzle in the astronomical literature. It falls in the category of count data analysis, yet it is usually modelled as if it were a continuous response variable. We have developed a Bayesian negative binomial regression model to study the connection between NGC and the following galaxy properties: central black hole mass, dynamical bulge mass, bulge velocity dispersion and absolute visual magnitude. The methodology introduced herein naturally accounts for heteroscedasticity, intrinsic scatter, errors in measurements in both axes (either discrete or continuous) and allows modelling the population of GCs on their natural scale as a non-negative integer variable. Prediction intervals of 99 per cent around the trend for expected NGC comfortably envelope the data, notably including the Milky Way, which has hitherto been considered a problematic outlier. Finally, we demonstrate how random intercept models can incorporate information of each particular galaxy morphological type. Bayesian variable selection methodology allows for automatically identifying galaxy types with different productions of GCs, suggesting that on average S0 galaxies have a GC population 35 per cent smaller than other types with similar brightness. C1 [de Souza, R. S.] MTA Eotvos Univ, EIRSA Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Hilbe, J. M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, J. M.] Jet Prop Lab, Pasadena, CA 91109 USA. [Buelens, B.] Flemish Astron Soc, B-3600 Genk, Belgium. [Riggs, J. D.] Northwestern Univ, Evanston, IL 60208 USA. [Cameron, E.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England. [Ishida, E. E. O.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Chies-Santos, A. L.] Univ Fed Rio Grande do Sul, Inst Fis, Dept Astron, BR-90040060 Porto Alegre, RS, Brazil. [Chies-Santos, A. L.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, SP, Brazil. [Killedar, M.] Univ Sternwarte Munchen, D-81679 Munich, Germany. RP de Souza, RS (reprint author), MTA Eotvos Univ, EIRSA Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. EM rafael.2706@gmail.com; j.m.hilbe@gmail.com RI de Souza, Rafael/C-8615-2013 OI Ishida, Emille/0000-0002-0406-076X; de Souza, Rafael/0000-0001-7207-4584 FU Brazilian agency CAPES [9229-13-2]; CNPq, BJT-A fellowship [400857/2014-6]; DFG [DO 1310/4-1] FX We thank Johannes Buchner for careful revision and constructive comments. The IAA Cosmostatistics Initiative (COIN)13 is a non-profit organization whose aim is to nourish the synergy between astrophysics, cosmology, statistics and machine learning communities. EEOI is partially supported by the Brazilian agency CAPES (grant number 9229-13-2). ALC-S acknowledges funding from a CNPq, BJT-A fellowship (400857/2014-6). MK acknowledges support by the DFG project DO 1310/4-1. This work was written on the collaborative OVERLEAF platform,14 and made use of the GITHUB15 repository web-based hosting service and GIT version control software. Work on this paper has substantially benefited from using the collaborative website AWOB (http://awob.mpg.de) developed and maintained by the Max-Planck Institute for Astrophysics and the Max-Planck Digital Library. The bibliographic research was possible thanks to the tools offered by the NASA Astrophysical Data Systems. NR 41 TC 2 Z9 2 U1 2 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2015 VL 453 IS 2 BP 1928 EP 1940 DI 10.1093/mnras/stv1825 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4GQ UT WOS:000363486000059 ER PT J AU Nunez, PD de Souza, AD AF Nunez, Paul D. de Souza, A. Domiciano TI Capabilities of future intensity interferometers for observing fast-rotating stars: imaging with two- and three-telescope correlations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instrumentation: interferometers; techniques: high angular resolution; techniques: image processing; stars: imaging; stars: massive; stars: rotation ID CHERENKOV TELESCOPE ARRAY; ALPHA CEPHEI AB Future large arrays of telescopes, used as intensity interferometers, can be used to image the surfaces of stars with unprecedented angular resolution. Fast-rotating, hot stars are particularly attractive targets for intensity interferometry since shorter (blue) wavelength observations do not pose additional challenges. Starting from realistic surface brightness simulations of fast-rotating stars, we discuss the capabilities of future intensity interferometers for imaging effects such as gravity darkening and rotational deformation. We find that two-telescope intensity correlation data allow reasonably good imaging of these phenomena, but can be improved with additional higher order (e. g. three-telescope) correlation data, which contain some Fourier phase information. C1 [Nunez, Paul D.] Coll France, F-75005 Paris, France. [Nunez, Paul D.; de Souza, A. Domiciano] Univ Cote Azur, Observ Cote Azur, CNRS, Lab Lagrange,Bd Observ, F-06304 Nice 4, France. RP Nunez, PD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM nunez.paul@gmail.com NR 28 TC 2 Z9 2 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 21 PY 2015 VL 453 IS 2 BP 1999 EP 2005 DI 10.1093/mnras/stv1719 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4GQ UT WOS:000363486000065 ER PT J AU Gonzalez, AH Decker, B Brodwin, M Eisenhardt, PRM Marrone, DP Stanford, SA Stern, D Wylezalek, D Aldering, G Abdulla, Z Boone, K Carlstrom, J Fagrelius, P Gettings, DP Greer, CH Hayden, B Leitch, EM Lin, YT Mantz, AB Muchovej, S Perlmutter, S Zeimann, GR AF Gonzalez, Anthony H. Decker, Bandon Brodwin, Mark Eisenhardt, Peter R. M. Marrone, Daniel P. Stanford, S. A. Stern, Daniel Wylezalek, Dominika Aldering, Greg Abdulla, Zubair Boone, Kyle Carlstrom, John Fagrelius, Parker Gettings, Daniel P. Greer, Christopher H. Hayden, Brian Leitch, Erik M. Lin, Yen-Ting Mantz, Adam B. Muchovej, Stephen Perlmutter, Saul Zeimann, Gregory R. TI THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY: MOO J1142+1527, A 10(15) M-circle dot GALAXY CLUSTER AT z=1.19 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: clusters: individual (MOO J1142+1527); galaxies: clusters: intracluster medium ID LESS-THAN 3.2; SPT-SZ SURVEY; SIMILAR-TO 1; SPECTROSCOPIC CONFIRMATION; COSMOLOGICAL PARAMETERS; SKY SURVEY; 1ST; CONSTRAINTS; SAMPLE; TELESCOPE AB We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at z = 1.19, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev-Zel'dovich (SZ) decrement at 13.2 sigma. The SZ data imply a mass of M-200m = (1.1 +/- 0.2) x 10(15) M-circle dot, making MOO J1142+1527 the most massive galaxy cluster known at z > 1.15 and the second most massive cluster known at z > 1. For a standard Lambda CDM cosmology it is further expected to be one of the similar to 5 most massive clusters expected to exist at z >= 1.19 over the entire sky. Our ongoing Spitzer program targeting similar to 1750 additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky. C1 [Gonzalez, Anthony H.; Gettings, Daniel P.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Decker, Bandon; Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Marrone, Daniel P.; Greer, Christopher H.] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Wylezalek, Dominika] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Aldering, Greg; Boone, Kyle; Fagrelius, Parker; Hayden, Brian; Perlmutter, Saul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Abdulla, Zubair; Carlstrom, John; Leitch, Erik M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Abdulla, Zubair; Carlstrom, John; Leitch, Erik M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Boone, Kyle; Fagrelius, Parker; Perlmutter, Saul] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hayden, Brian] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Mantz, Adam B.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Mantz, Adam B.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Muchovej, Stephen] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Muchovej, Stephen] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Gonzalez, AH (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA. FU NASA [90177]; ADAP grant [NNX12AE15G]; NASA Exoplanet Science Institute [1461527, 1486927]; U. S. Department of Energy [W-7405-ENG-48]; Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; James S. McDonnell Foundation; Associates of the California Institute of Technology; University of Chicago; states of California, Illinois, and Maryland; National Science Foundation; NSF [AST-1140019]; CARMA partner universities; [PHY-0114422] FX We thank the anonymous referee for comments that improved the quality of this paper. Support for this research was provided by NASA through Spitzer GO program 90177, ADAP grant NNX12AE15G, and NASA Exoplanet Science Institute grants 1461527 and 1486927. The work by SAS at LLNL was performed under the auspices of the U. S. Department of Energy under Contract No. W-7405-ENG-48.; Support for CARMA construction was derived from the Gordon and Betty Moore Foundation; the Kenneth T. and Eileen L. Norris Foundation; the James S. McDonnell Foundation; the Associates of the California Institute of Technology; the University of Chicago; the states of California, Illinois, and Maryland; and the National Science Foundation. CARMA development and operations were supported by NSF under a cooperative agreement and by the CARMA partner universities; the work at Chicago was supported by NSF grant AST-1140019. Additional support was provided by PHY-0114422. This publication makes use of data products from the Wide-field Infrared Survey Explorer, a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work is based in part on data obtained at the W. M. Keck and Gemini Observatories. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 42 TC 0 Z9 0 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 20 PY 2015 VL 812 IS 2 AR L40 DI 10.1088/2041-8205/812/2/L40 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7WC UT WOS:000364485600023 ER PT J AU Tran, A Williams, BJ Petre, R Ressler, SM Reynolds, SP AF Aaron Tran Williams, Brian J. Petre, Robert Ressler, Sean M. Reynolds, Stephen P. TI ENERGY DEPENDENCE OF SYNCHROTRON X-RAY RIMS IN TYCHO'S SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: individual objects (Tycho's SNR); ISM: magnetic fields; ISM: supernova remnants; shock waves; X-rays: ISM ID MAGNETIC-FIELD AMPLIFICATION; DIFFUSIVE SHOCK ACCELERATION; PULSAR ROTATION MEASURES; LARGE-SCALE STRUCTURE; PARTICLE-ACCELERATION; CASSIOPEIA-A; SN 1006; EMISSION; SHELL; ELECTRONS AB Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths similar to 1%-5% of remnant radius and magnetic field strengths similar to 50-400 mu G assuming Bohm diffusion. X-ray rim widths are similar to 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields greater than or similar to 20 mu G, affirming the necessity of magnetic field amplification beyond simple compression. C1 [Aaron Tran; Williams, Brian J.; Petre, Robert] NASA GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Aaron Tran] CRESST Univ Maryland, College Pk, MD 20742 USA. [Williams, Brian J.] CRESST Univ Space Res Assoc, N Andover, MA USA. [Ressler, Sean M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Tran, A (reprint author), NASA GSFC, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. OI Williams, Brian/0000-0003-2063-381X NR 55 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 101 DI 10.1088/0004-637X/812/2/101 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600013 ER PT J AU Ackermann, M Ajello, M Albert, A Atwood, WB Baldini, L Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bissaldi, E Bloom, ED Bonino, R Bottacini, E Brandt, TJ Bregeon, J Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Chiaro, G Ciprini, S Cohen-Tanugi, J Conrad, J Cutini, S D'Ammando, F de Angelis, A De Palma, F Desiante, R Digel, SW Di Venere, L Drell, PS Favuzzi, C Fegan, SJ Focke, WB Franckowiak, A Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Grenier, A Guiriec, S Gustafsson, M Hewitt, JW Hill, AB Horan, D Jeltema, TE Jogler, T Johnson, AS Kuss, M Larsson, S Latronico, L Li, J Li, L Longo, F Loparco, F Lovellette, MN Lubrano, P Maldera, S Malyshev, D Manfreda, A Mayer, M Mazziotta, MN Michelson, PF Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nuss, E Ohsugi, T Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Petrosian, V Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Sanchez-Conde, M Schulz, A Sgro, C Siskind, EJ Spada, F Spandre, G Spinelli, P Storm, E Tajima, H Takahashi, H Thayer, JB Torres, DF Tosti, G Troja, E Vianello, G Wood, KS Wood, M Zaharijas, G Zimmer, S Pinzke, A AF Ackermann, M. Ajello, M. Albert, A. Atwood, W. B. Baldini, L. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bissaldi, E. Bloom, E. D. Bonino, R. Bottacini, E. Brandt, T. J. Bregeon, J. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Chiaro, G. Ciprini, S. Cohen-Tanugi, J. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Desiante, R. Digel, S. W. Di Venere, L. Drell, P. S. Favuzzi, C. Fegan, S. J. Focke, W. B. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Grenier, A. Guiriec, S. Gustafsson, M. Hewitt, J. W. Hill, A. B. Horan, D. Jeltema, T. E. Jogler, T. Johnson, A. S. Kuss, M. Larsson, S. Latronico, L. Li, J. Li, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Maldera, S. Malyshev, D. Manfreda, A. Mayer, M. Mazziotta, M. N. Michelson, P. F. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nuss, E. Ohsugi, T. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Petrosian, V. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Sanchez-Conde, M. Schulz, A. Sgro, C. Siskind, E. J. Spada, F. Spandre, G. Spinelli, P. Storm, E. Tajima, H. Takahashi, H. Thayer, J. B. Torres, D. F. Tosti, G. Troja, E. Vianello, G. Wood, K. S. Wood, M. Zaharijas, G. Zimmer, S. Pinzke, A. CA Fermi-LAT Collaboration TI SEARCH FOR EXTENDED GAMMA-RAY EMISSION FROM THE VIRGO GALAXY CLUSTER WITH FERMI-LAT SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (Virgo); gamma-rays: galaxies: clusters; gamma-rays: general ID LARGE-AREA TELESCOPE; DARK-MATTER ANNIHILATION; COMA CLUSTER; COSMIC-RAYS; RADIO; SPECTRUM; HALOES; MODEL; SIMULATIONS; CONSTRAINTS AB Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of gamma-ray telescopes. Here we use three years of Fermi-Large Area Telescope data, which are the most suitable for searching for very extended emission in the vicinity of the nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3 degrees that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into b (b) over bar, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for m(DM) <= 100 GeV. In a more optimistic scenario, we exclude similar to 3 x 10(-26)cm(3)s(-1) for m(DM)less than or similar to 40 GeV for the same channel. Finally, we derive upper limits on the gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than similar to 6%. C1 [Ackermann, M.; Buehler, R.; Jogler, T.; Mayer, M.; Schulz, A.] Deutsch Elekt Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Albert, A.; Baldini, L.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Digel, S. W.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Vianello, G.; Wood, M.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Albert, A.; Baldini, L.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Digel, S. W.; Drell, P. S.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Malyshev, D.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Caputo, R.; Jeltema, T. E.; Storm, E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.; Jeltema, T. E.; Storm, E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.; Zaharijas, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bechtol, K.; Jogler, T.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bellazzini, R.; Kuss, M.; Manfreda, A.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bonino, R.; Desiante, R.; Latronico, L.; Maldera, S.] Ist Nazl Fis Nucl, Sez Torin, I-10125 Turin, Italy. [Bonino, R.] Univ Turin, Dipartimento Fis Gen Amadeo Avogadro, I-10125 Turin, Italy. [Brandt, T. J.; Guiriec, S.; Perkins, J. S.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bregeon, J.; Cohen-Tanugi, J.; Nuss, E.; Piron, F.] Univ Montpellier, Lab Univers & Particules Montpellier, CNRS, IN2P3, F-34059 Montpellier, France. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Casandjian, J. M.; Grenier, A.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, CNRS,CEA IRFU,Lab AIM, F-91191 Gif Sur Yvette, France. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.] ASI Sci Data Ctr, I-100133 Rome, Italy. [Cecchi, C.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cecchi, C.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-106123 Perugia, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Chekhtman, A.] Naval Res Lab, Washington, DC 20375 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Conrad, J.; Sanchez-Conde, M.; Zimmer, S.; Pinzke, A.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Li, L.; Sanchez-Conde, M.; Zimmer, S.; Pinzke, A.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Palma, F.] Univ Telemat Pegaso, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Dipartimento Fis M Merlin Univ, I-70126 Bari, Italy. [Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Fukazawa, Y.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Funk, S.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gomez-Vargas, G. A.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Gustafsson, M.] Univ Gottingen, Inst Theoret Phys, Fac Phys, D-37077 Gottingen, Germany. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore 21250, MD USA. [Hewitt, J. W.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore 21250, MD USA. [Hewitt, J. W.] CRESST, Greenbelt, MD 20771 USA. [Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Larsson, S.; Li, L.] KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain. [Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Murgia, S.] Univ Calif Irvine, Ctr Cosmol Phys & Astron Dept, Irvine, CA 92697 USA. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzano, M.] Italian Minist Educ Univ & Res MIUR, Rome, Italy. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Computing Inc, Lattingtown 11560, NY USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Zaharijas, G.] Univ Nova Gorica, Lab Astroparticle Phys, SI-5000 Nova Gorica, Slovenia. [Pinzke, A.] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Ackermann, M (reprint author), Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. EM jogler@slac.stanford.edu; zimmer@fysik.su.se; apinzke@dark-cosmology.dk RI Morselli, Aldo/G-6769-2011; Reimer, Olaf/A-3117-2013; giglietto, nicola/I-8951-2012; Bonino, Raffaella/S-2367-2016; Di Venere, Leonardo/C-7619-2017; Moskalenko, Igor/A-1301-2007; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015 OI Zaharijas, Gabrijela/0000-0001-8484-7791; SPINELLI, Paolo/0000-0001-6688-8864; Zimmer, Stephan/0000-0002-5735-0082; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; Mazziotta, Mario Nicola/0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Morselli, Aldo/0000-0002-7704-9553; Reimer, Olaf/0000-0001-6953-1385; giglietto, nicola/0000-0002-9021-2888; Di Venere, Leonardo/0000-0003-0703-824X; Hill, Adam/0000-0003-3470-4834; Giordano, Francesco/0000-0002-8651-2394; Sgro', Carmelo/0000-0001-5676-6214; Moskalenko, Igor/0000-0001-6141-458X; Bissaldi, Elisabetta/0000-0001-9935-8106; Torres, Diego/0000-0002-1522-9065; Funk, Stefan/0000-0002-2012-0080 FU Swedish Research Council; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX A.P. is grateful to the Swedish Research Council for financial support.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 87 TC 11 Z9 11 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 159 DI 10.1088/0004-637X/812/2/159 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600071 ER PT J AU Ade, PAR Aikin, RW Amiri, M Barkats, D Benton, SJ Bischoff, CA Bock, JJ Bonetti, JA Brevik, JA Buder, I Bullock, E Chattopadhyay, G Davis, G Day, PK Dowell, CD Duband, L Filippini, JP Fliescher, S Golwala, SR Halpern, M Hasselfield, M Hildebrandt, SR Hilton, GC Hristov, V Hui, H Irwin, KD Jones, WC Karkare, KS Kaufman, JP Keating, BG Kefeli, S Kernasovskiy, SA Kovac, JM Kuo, CL Leduc, HG Leitch, EM Llombart, N Lueker, M Mason, P Megerian, K Moncelsi, L Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Orlando, A Pryke, C Rahlin, AS Reintsema, CD Richter, S Runyan, MC Schwarz, R Sheehy, CD Staniszewski, ZK Sudiwala, RV Teply, GP Tolan, JE Trangsrud, A Tucker, RS Turner, AD Vieregg, AG Weber, A Wiebe, DV Wilson, P Wong, CL Yoon, KW Zmuidzinas, J AF Ade, P. A. R. Aikin, R. W. Amiri, M. Barkats, D. Benton, S. J. Bischoff, C. A. Bock, J. J. Bonetti, J. A. Brevik, J. A. Buder, I. Bullock, E. Chattopadhyay, G. Davis, G. Day, P. K. Dowell, C. D. Duband, L. Filippini, J. P. Fliescher, S. Golwala, S. R. Halpern, M. Hasselfield, M. Hildebrandt, S. R. Hilton, G. C. Hristov, V. Hui, H. Irwin, K. D. Jones, W. C. Karkare, K. S. Kaufman, J. P. Keating, B. G. Kefeli, S. Kernasovskiy, S. A. Kovac, J. M. Kuo, C. L. Leduc, H. G. Leitch, E. M. Llombart, N. Lueker, M. Mason, P. Megerian, K. Moncelsi, L. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Orlando, A. Pryke, C. Rahlin, A. S. Reintsema, C. D. Richter, S. Runyan, M. C. Schwarz, R. Sheehy, C. D. Staniszewski, Z. K. Sudiwala, R. V. Teply, G. P. Tolan, J. E. Trangsrud, A. Tucker, R. S. Turner, A. D. Vieregg, A. G. Weber, A. Wiebe, D. V. Wilson, P. Wong, C. L. Yoon, K. W. Zmuidzinas, J. CA Bicep2 Collaboration Keck Array Collaboration Spider Collaboration TI ANTENNA-COUPLED TES BOLOMETERS USED IN BICEP2, Keck Array, AND SPIDER SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; instrumentation: detectors; instrumentation: polarimeters; methods: laboratory: solid state; techniques: polarimetric ID THERMAL CONDUCTANCE; QUANTUM; MILLIMETER; NOISE AB We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typically similar to 0.5%, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET similar to 300 mu K-CMB root s. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of similar to 9 mu K-CMB root s, as measured directly from CMB maps in the 2013 season. Similar arrays have recently flown in the SPIDER instrument, and development of this technology is ongoing. C1 [Ade, P. A. R.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hristov, V.; Hui, H.; Kefeli, S.; Lueker, M.; Mason, P.; Moncelsi, L.; O'Brient, R.; Runyan, M. C.; Staniszewski, Z. K.; Teply, G. P.; Trangsrud, A.; Tucker, R. S.; Zmuidzinas, J.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Amiri, M.; Davis, G.; Halpern, M.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Barkats, D.] ESO, Joint ALMA Observ, Santiago, Chile. [Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Bischoff, C. A.; Buder, I.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bock, J. J.; Bonetti, J. A.; Chattopadhyay, G.; Day, P. K.; Dowell, C. D.; Hildebrandt, S. R.; Leduc, H. G.; Llombart, N.; Megerian, K.; Nguyen, H. T.; O'Brient, R.; Runyan, M. C.; Trangsrud, A.; Turner, A. D.; Weber, A.; Wilson, P.; Zmuidzinas, J.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bullock, E.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Duband, L.] Univ Grenoble Alpes, CEA INAC SBT, F-38000 Grenoble, France. [Filippini, J. P.] Univ Illinois, Dept Phys, Champaign, IL 61820 USA. [Fliescher, S.; Pryke, C.; Schwarz, R.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Hasselfield, M.; Jones, W. C.; Orlando, A.; Rahlin, A. S.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Hilton, G. C.; Irwin, K. D.; Kuo, C. L.; Reintsema, C. D.] Natl Inst Stand & Technol, Boulder 80305, CO USA. [Irwin, K. D.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Irwin, K. D.; Ogburn, R. W.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Kaufman, J. P.; Keating, B. G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Leitch, E. M.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM rogero@caltech.edu OI Orlando, Angiola/0000-0001-8004-5054; Bischoff, Colin/0000-0001-9185-6514; Barkats, Denis/0000-0002-8971-1954; Karkare, Kirit/0000-0002-5215-6993 FU JPL Research and Technology Development Fund; NASA [06-ARPA206-0040, 10-SAT10-0017]; Gordon and Betty Moore Foundation at Caltech; Canada Foundation for Innovation grant; W. M. Keck Foundation; US National Science Foundation [ANT-0742818, ANT-1044978, ANT-0742592, ANT-1110087] FX The development of antenna-coupled detector technology was supported by the JPL Research and Technology Development Fund and grants 06-ARPA206-0040 and 10-SAT10-0017 from the NASA APRA and SAT programs. The development and testing of focal planes were supported by the Gordon and Betty Moore Foundation at Caltech. Readout electronics were supported by a Canada Foundation for Innovation grant to UBC. The receiver development was supported in part by a grant from the W. M. Keck Foundation. BICEP2 was supported by the US National Science Foundation under grants ANT-0742818 and ANT-1044978 (Caltech/Harvard) and ANT-0742592 and ANT-1110087 (Chicago/Minnesota). Some computations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University. We thank Warren Holmes and Matthew Kenyon for discussions on thermal conductivity. Tireless administrative support was provided by Irene Coyle and Kathy Deniston. NR 41 TC 5 Z9 5 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 176 DI 10.1088/0004-637X/812/2/176 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600088 ER PT J AU Bachelet, E Bramich, DM Han, C Greenhill, J Street, RA Gould, A D'Ago, G AlSubai, K Dominik, M Jaimes, RF Horne, K Hundertmark, M Kains, N Snodgrass, C Steele, IA Tsapras, Y Albrow, MD Batista, V Beaulieu, JP Bennett, DP Brillant, S Caldwell, JAR Cassan, A Cole, A Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Hill, K Marquette, JB Menzies, J Pere, C Ranc, C Wambsganss, J Warren, D De Almeida, LA Choi, JY DePoy, DL Dong, S Hung, LW Hwang, KH Jablonski, F Jung, YK Kaspi, S Klein, N Lee, CU Maoz, D Munoz, JA Nataf, D Park, H Pogge, RW Polishook, D Shin, IG Shporer, A Yee, JC Abe, F Bhattacharya, A Bond, IA Botzler, CS Freeman, M Fukui, A Itow, Y Koshimoto, N Ling, CH Masuda, K Matsubara, Y Muraki, Y Ohnishi, K Philpott, LC Rattenbury, N Saito, T Sullivan, DJ Sumi, T Suzuki, D Tristram, PJ Yonehara, A Bozza, V Novati, SC Ciceri, S Galianni, P Gu, SH Harpsoe, K Hinse, TC Jorgensen, UG Juncher, D Korhonen, H Mancini, L Melchiorre, C Popovas, A Postiglione, A Rabus, M Rahvar, S Schmidt, RW Scarpetta, G Skottfelt, J Southworth, J Stabile, A Surdej, J Wang, XB Wertz, O AF Bachelet, E. Bramich, D. M. Han, C. Greenhill, J. Street, R. A. Gould, A. D'Ago, G. AlSubai, K. Dominik, M. Jaimes, R. Figuera Horne, K. Hundertmark, M. Kains, N. Snodgrass, C. Steele, I. A. Tsapras, Y. Albrow, M. D. Batista, V. Beaulieu, J. -P. Bennett, D. P. Brillant, S. Caldwell, J. A. R. Cassan, A. Cole, A. Coutures, C. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Hill, K. Marquette, J. -B. Menzies, J. Pere, C. Ranc, C. Wambsganss, J. Warren, D. De Almeida, L. Andrade Choi, J. -Y. DePoy, D. L. Dong, S. Hung, L. -W. Hwang, K. -H. Jablonski, F. Jung, Y. K. Kaspi, S. Klein, N. Lee, C. -U. Maoz, D. Munoz, J. A. Nataf, D. Park, H. Pogge, R. W. Polishook, D. Shin, I. -G. Shporer, A. Yee, J. C. Abe, F. Bhattacharya, A. Bond, I. A. Botzler, C. S. Freeman, M. Fukui, A. Itow, Y. Koshimoto, N. Ling, C. H. Masuda, K. Matsubara, Y. Muraki, Y. Ohnishi, K. Philpott, L. C. Rattenbury, N. Saito, To Sullivan, D. J. Sumi, T. Suzuki, D. Tristram, P. J. Yonehara, A. Bozza, V. Novati, S. Calchi Ciceri, S. Galianni, P. Gu, S. -H. Harpsoe, K. Hinse, T. C. Jorgensen, U. G. Juncher, D. Korhonen, H. Mancini, L. Melchiorre, C. Popovas, A. Postiglione, A. Rabus, M. Rahvar, S. Schmidt, R. W. Scarpetta, G. Skottfelt, J. Southworth, John Stabile, An Surdej, J. Wang, X. -B. Wertz, O. CA RoboNET Collaboration PLANET Collaboration FUN Collaboration MOA Collaboration MiNDSTEp Collaboration TI RED NOISE VERSUS PLANETARY INTERPRETATIONS IN THE MICROLENSING EVENT OGLE-2013-BLG-446 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems; techniques: photometric ID GRAVITATIONAL LENSING EXPERIMENT; DIFFERENCE IMAGE-ANALYSIS; GALACTIC BULGE; EARTH-MASS; EXTRASOLAR PLANETS; LIGHT CURVES; FOLLOW-UP; OGLE-III; PARALLAX; PHOTOMETRY AB For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing data sets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (A(max) similar to 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (similar to 3M(circle plus)) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favor the planetary interpretation when systematic errors are taken into account. C1 [Bachelet, E.; Bramich, D. M.; AlSubai, K.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Han, C.; Choi, J. -Y.; Hwang, K. -H.; Jung, Y. K.; Park, H.; Shin, I. -G.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Greenhill, J.; Cole, A.; Dieters, S.; Hill, K.; Warren, D.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Street, R. A.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Gould, A.; Batista, V.; Dong, S.; Hung, L. -W.; Nataf, D.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [D'Ago, G.; Bozza, V.; Novati, S. Calchi; Melchiorre, C.; Scarpetta, G.; Stabile, An] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano Sa, Italy. [D'Ago, G.; Bozza, V.; Melchiorre, C.; Scarpetta, G.; Stabile, An] Ist Nazl Fis Nucl, Sezione Napoli, I-80125 Naples, Italy. [Dominik, M.; Jaimes, R. Figuera; Horne, K.; Hundertmark, M.; Galianni, P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Jaimes, R. Figuera; Kains, N.] European Southern Observ, D-85748 Garching, Germany. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [Snodgrass, C.] Open Univ, Dept Phys Sci, Planetary & Space Sci, Milton Keynes MK7 6AA, Bucks, England. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Batista, V.; Beaulieu, J. -P.; Cassan, A.; Coutures, C.; Marquette, J. -B.; Pere, C.; Ranc, C.] UPMC, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Brillant, S.] European So Observ, Santiago, Chile. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, A-1040 Vienna, Austria. [Fouque, P.] Univ Toulouse, CNRS, IRAP, F-31400 Toulouse, France. [Fouque, P.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Wambsganss, J.; Schmidt, R. W.] Univ Heidelberg ZAH, Zentrum Astron, ARI, D-69120 Heidelberg, Germany. [De Almeida, L. Andrade; Jablonski, F.; Munoz, J. A.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Kaspi, S.; Klein, N.; Maoz, D.; Polishook, D.] Tel Aviv Univ, Sch Phys & Astron & Wise Observ, IL-69978 Tel Aviv, Israel. [Lee, C. -U.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Shporer, A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Shporer, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Bhattacharya, A.; Koshimoto, N.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Ling, C. H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Botzler, C. S.; Freeman, M.] Natl Astron Observ Japan, Okayama Astrophys Observ, Asakuchi, Okayama 7190232, Japan. [Fukui, A.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Ohnishi, K.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Philpott, L. C.; Rattenbury, N.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Saito, To; Tristram, P. J.] Mt John Univ Observ, Lake Tekapo 8770, New Zealand. [Sullivan, D. J.; Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan. [Sumi, T.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Suzuki, D.] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand. [Novati, S. Calchi] CALTECH, NASA, Exoplanet Sci Inst, MS 100 22, Pasadena, CA 91125 USA. [Novati, S. Calchi; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare Sa, Italy. [Ciceri, S.; Mancini, L.; Rabus, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Gu, S. -H.; Wang, X. -B.] Chinese Acad Sci, Yunnan Observatories, Kunming 650011, Peoples R China. [Gu, S. -H.; Wang, X. -B.] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Kunming 650011, Peoples R China. [Harpsoe, K.; Jorgensen, U. G.; Juncher, D.; Korhonen, H.; Popovas, A.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Kobenhavn O, Denmark. [Harpsoe, K.; Jorgensen, U. G.; Juncher, D.; Korhonen, H.; Popovas, A.; Skottfelt, J.] Univ Copenhagen, Nat Hist Museum, Ctr Star & Planet Format, DK-1350 Kobenhavn K, Denmark. [Hinse, T. C.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Korhonen, H.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikkio, Finland. [Postiglione, A.] Univ Roma Tre, Dipartimento Fis E Amaldi, I-00149 Rome, Italy. [Postiglione, A.] Ist Nazl Fis Nucl, Sezione Roma, Rome, Italy. [Rabus, M.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 7820436, Chile. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Southworth, John] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Surdej, J.; Wertz, O.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. RP Bachelet, E (reprint author), Qatar Fdn, Qatar Environm & Energy Res Inst, POB 5825, Doha, Qatar. EM bennett@nd.edu; abe@stelab.nagoya-u.ac.jp; i.a.bond@massey.ac.nz; c.botzler@auckland.ac.nz; itow@stelab.nagoya-u.ac.jp; c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp; sumi@ess.sci.osaka-u.ac.jp RI Ranc, Clement/B-1958-2016; Korhonen, Heidi/E-3065-2016; Almeida, L./G-7188-2012; D'Ago, Giuseppe/N-8318-2016; OI Ranc, Clement/0000-0003-2388-4534; Stabile, Antonio/0000-0003-4227-650X; Street, Rachel/0000-0001-6279-0552; Korhonen, Heidi/0000-0003-0529-1161; D'Ago, Giuseppe/0000-0001-9697-7331; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855; Snodgrass, Colin/0000-0001-9328-2905 FU NPRP from the Qatar National Research Fund [X-019-1-006]; JSPS [JSPS23103002, JSPS24253004, JSPS26247023]; NSF [AST-1009621, AST-1211875]; NASA [NNX12AF54G, NNX13AF64G]; Marsden Fund of the Royal Society of New Zealand [MAU1104]; Danish Natural Science Research Council; Center of Excellence Centre for Star and Planet Formation (StarPlan) - The Danish National Research Foundation; Qatar National Research Fund (QNRF) [NPRP 09-476-1-078]; European Union Seventh Framework Programme (FP7) [268421]; Creative Research Initiative Program of National Research Foundation of Korea [2009-0081561]; National Natural Science Foundation of China [10873031, 11473066]; Korea Research Council of Fundamental Science & Technology (KRCF) via the KRCF Young Scientist Research Fellowship Programme; KASI [2013-9-400-00]; European Commission under the Marie Curie IEF Programme in FP7; FONDECYT postdoctoral fellowship [3120097]; Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe; Qatar Foundation for Education, Science and Community Development; [JSPS25103508]; [23340064] FX The authors would like to thank the anonymous referee for the usefull comments. This publication was made possible by the NPRP grant # X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors thank the OGLE collaboration for the access of the optimized photometry. This work makes use of observations from the LCOGT network. This research has made use of the LCOGT Archive, which is operated by the California Institute of Technology, under contract with the Las Cumbres Observatory. This research has made much use of NASA's Astrophysics Data System. This research made use of the SIMBAD database, the VizieR catalog access tool, and the cross-match service provide d by CDS, Strasbourg, France. T.S. acknowledges the financial support from the JSPS, JSPS23103002, JSPS24253004 and JSPS26247023. The M.O.A. project is supported by the grant JSPS25103508 and 23340064. D.P.B. acknowledges support from NSF grants AST-1009621 and AST-1211875, as well as NASA grants NNX12AF54G and NNX13AF64G. Work by I.A.B. and P.Y. was supported by the Marsden Fund of the Royal Society of New Zealand, contract no. MAU1104. The operation of the Danish 1.54 m telescope is financed by a grant to UGJ from the Danish Natural Science Research Council. We also acknowledge support from the Center of Excellence Centre for Star and Planet Formation (StarPlan) funded by The Danish National Research Foundation. The MiNDSTEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search; Dominik et al. 2008, AN 329, 248). K.A.A., M.D., K.H., M.H., C.S., R.A.S., and Y.T. are thankful to Qatar National Research Fund (QNRF), member of Qatar Foundation, for support by grant NPRP 09-476-1-078. C.S. has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 268421. Work by C.H. was supported by the Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. S.H.G. and X.B.W. would like to thank the financial support from National Natural Science Foundation of China through grants Nos. 10873031 and 11473066. T.C.H. acknowledges support from the Korea Research Council of Fundamental Science & Technology (KRCF) via the KRCF Young Scientist Research Fellowship Programme and for financial support from KASI travel grant number 2013-9-400-00. H.K. acknowledges the support from the European Commission under the Marie Curie IEF Programme in FP7. M.R. acknowledges support from FONDECYT postdoctoral fellowship No. 3120097. O.W. (FNRS research fellow) and J. Surdej acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe. The HPC (and/or scientific visualization) resources and services used in this work were provided by the IT Research Computing group in Texas A&M University at Qatar. IT Research Computing is funded by the Qatar Foundation for Education, Science and Community Development (http://www.qf.org.qa). NR 60 TC 2 Z9 2 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 136 DI 10.1088/0004-637X/812/2/136 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600048 ER PT J AU Bauer, FE Arevalo, P Walton, DJ Koss, MJ Puccetti, S Gandhi, P Stern, D Alexander, DM Balokovic, M Boggs, SE Brandt, WN Brightman, M Christensen, FE Comastri, A Craig, WW Del Moro, A Hailey, CJ Harrison, FA Hickox, R Luo, B Markwardt, CB Marinucci, A Matt, G Rigby, JR Rivers, E Saez, C Treister, E Urry, CM Zhang, WW AF Bauer, Franz E. Arevalo, Patricia Walton, Dominic J. Koss, Michael J. Puccetti, Simonetta Gandhi, Poshak Stern, Daniel Alexander, David M. Balokovic, Mislav Boggs, Steve E. Brandt, William N. Brightman, Murray Christensen, Finn E. Comastri, Andrea Craig, William W. Del Moro, Agnese Hailey, Charles J. Harrison, Fiona A. Hickox, Ryan Luo, Bin Markwardt, Craig B. Marinucci, Andrea Matt, Giorgio Rigby, Jane R. Rivers, Elizabeth Saez, Cristian Treister, Ezequiel Urry, C. Megan Zhang, William W. TI NuSTAR SPECTROSCOPY OF MULTI-COMPONENT X-RAY REFLECTION FROM NGC 1068 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 1068); X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; NARROW-LINE REGION; SEYFERT 2 GALAXIES; XMM-NEWTON; BROAD-BAND; IONIZED-GAS; MOLECULAR CLOUDS; BLACK-HOLES; REVERBERATION MEASUREMENTS; RESOLVED SPECTROSCOPY AB We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmitted nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N-H) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of N-H of 1.4 x 10(23), 5.0 x 10(24), and 10(25) cm(-2)) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N-H component provides the bulk of the flux to the Compton hump, while the lower N-H component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that approximate to 30% of the neutral Fe K alpha line flux arises from >2 '' (approximate to 140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component arises from regions well outside a parsec-scale torus. These results likely have ramifications for the interpretation of Compton-thick spectra from observations with poorer signal-to-noise and/or more distant objects. C1 [Bauer, Franz E.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millenium Inst Astrophys, Santiago, Chile. [Bauer, Franz E.; Arevalo, Patricia; Treister, Ezequiel] EMBIGGEN Anillo, Concepcion, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Arevalo, Patricia] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Valparaiso, Chile. [Walton, Dominic J.; Balokovic, Mislav; Brightman, Murray; Harrison, Fiona A.; Rivers, Elizabeth] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Walton, Dominic J.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Koss, Michael J.] ETH, Dept Phys, Inst Astron, CH-8093 Zurich, Switzerland. [Puccetti, Simonetta] ASDC ASI, I-00133 Rome, Italy. [Puccetti, Simonetta] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Gandhi, Poshak] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Alexander, David M.; Del Moro, Agnese] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Boggs, Steve E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, William N.; Luo, Bin] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, William N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Comastri, Andrea] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Hickox, Ryan] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Markwardt, Craig B.; Rigby, Jane R.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Marinucci, Andrea; Matt, Giorgio] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Saez, Cristian] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Treister, Ezequiel] Univ Concepcion, Dept Astron, Concepcion, Chile. [Urry, C. Megan] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Urry, C. Megan] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. RP Bauer, FE (reprint author), Pontificia Univ Catolica Chile, Inst Astrofis, Santiago 22, Chile. RI Brandt, William/N-2844-2015; Boggs, Steven/E-4170-2015; OI Brandt, William/0000-0002-0167-2453; Boggs, Steven/0000-0001-9567-4224; Puccetti, Simonetta/0000-0002-2734-7835; Comastri, Andrea/0000-0003-3451-9970 FU CONICYT-Chile Basal [CATA PFB-06/2007]; FONDECYT [1141218, 1140304, 1120061]; Anillo grant [ACT1101]; Project "Millennium Institute of Astrophysics (MAS)" - Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009]; Swiss National Science Foundation through the Ambizione fellowship [PZ00P2_154799/1]; NuSTAR NASA ADP [44A-1092750, NNX10AC99G]; ASI/INAF [I/037/12/0-011/13]; STFC [ST/J003697/1]; NASA [NNG08FD60C]; National Aeronautics and Space Administration FX We thank the anonymous referee for useful comments, which improved the clarity of the paper. We acknowledge financial support from the following: CONICYT-Chile Basal-CATA PFB-06/2007 (FEB, ET), FONDECYT grants 1141218 (FEB), 1140304 (PA), 1120061 (ET), and Anillo grant ACT1101 (FEB, PA, ET); Project IC120009 "Millennium Institute of Astrophysics (MAS)" funded by the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo (FEB); Swiss National Science Foundation through the Ambizione fellowship grant PZ00P2_154799/1 (MK); NuSTAR subcontract 44A-1092750 NASA ADP grant NNX10AC99G (WNB, BL); ASI/INAF grant I/037/12/0-011/13 (SP, AC, AM and GM); and STFC grant ST/J003697/1 (PG). This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center (HEASARC) Online Service, provided by the NASA/Goddard Space Flight Center. NR 120 TC 20 Z9 20 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 116 DI 10.1088/0004-637X/812/2/116 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600028 ER PT J AU Buenzli, E Marley, MS Apai, D Saumon, D Biller, BA Crossfield, IJM Radigan, J AF Buenzli, Esther Marley, Mark. S. Apai, Daniel Saumon, Didier Biller, Beth A. Crossfield, Ian J. M. Radigan, Jacqueline TI CLOUD STRUCTURE OF THE NEAREST BROWN DWARFS. II. HIGH-AMPLITUDE VARIABILITY FOR LUHMAN 16 A AND B IN AND OUT OF THE 0.99 mu m FeH FEATURE SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: visual; brown dwarfs; stars: atmospheres; stars: individual (WISE J104915.57-531906.1, Luhman 16AB); stars: variables: general ID HUBBLE-SPACE-TELESCOPE; FLUX-REVERSAL BINARY; T-DWARFS; L/T TRANSITION; 2 PC; WISE J104915.57-531906.1AB; SPECTROSCOPIC VARIABILITY; EVOLVING WEATHER; TEMPERATURE; GRAVITY AB The re-emergence of the 0.99 mu m FeH feature in brown dwarfs of early-to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 mu m FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57-531906.1 (Luhman 16AB), a late-L and early-T dwarf, with Hubble Space Telescope/WFC3 in the G102 grism at 0.8-1.15 mu m. We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 hr, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K I feature below 0.84 mu m. No variations are seen across the 0.99 mu m FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. We re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness. C1 [Buenzli, Esther] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Marley, Mark. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Apai, Daniel] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Apai, Daniel; Crossfield, Ian J. M.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Biller, Beth A.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Radigan, Jacqueline] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Buenzli, E (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM buenzli@mpia.de OI Buenzli, Esther/0000-0003-3306-1486 FU Swiss National Science Foundation (SNSF); NASA [NAS 5-26555]; NASA through a grant from the Space Telescope Science Institute [13640] FX We thank the anonymous referee for a helpful report. We thank the staff at the Space Telescope Science Institute (STScI), in particular Amber Armstrong, for the scheduling of the observations. We thank Adam Burgasser, Alexei Kniazev, and Jackie Faherty for providing their published spectra of Luhman 16AB in electronic form. E.B. was supported by the Swiss National Science Foundation (SNSF). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 13640. Support for program 13640 was provided by NASA through a grant from the Space Telescope Science Institute. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System Bibliographic Services. NR 38 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 163 DI 10.1088/0004-637X/812/2/163 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600075 ER PT J AU Cucchiara, A Veres, P Corsi, A Cenko, SB Perley, DA Lien, A Marshall, FE Pagani, C Toy, VL Capone, JI Frail, DA Horesh, A Modjaz, M Butler, NR Littlejohns, OM Watson, AM Kutyrev, AS Lee, WH Richer, MG Klein, CR Fox, OD Prochaska, JX Bloom, JS Troja, E Ramirez-Ruiz, E de Diego, JA Georgiev, L Gonzalez, J Roman-Zuniga, CG Gehrels, N Moseley, H AF Cucchiara, A. Veres, P. Corsi, A. Cenko, S. B. Perley, D. A. Lien, A. Marshall, F. E. Pagani, C. Toy, V. L. Capone, J. I. Frail, D. A. Horesh, A. Modjaz, M. Butler, N. R. Littlejohns, O. M. Watson, A. M. Kutyrev, A. S. Lee, W. H. Richer, M. G. Klein, C. R. Fox, O. D. Prochaska, J. X. Bloom, J. S. Troja, E. Ramirez-Ruiz, E. de Diego, J. A. Georgiev, L. Gonzalez, J. Roman-Zuniga, C. G. Gehrels, N. Moseley, H. TI HAPPY BIRTHDAY SWIFT: ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual (GRB 141121A) ID GAMMA-RAY BURST; X-RAY; LIGHT CURVES; EARLY-TIME; ULTRAVIOLET/OPTICAL TELESCOPE; OPTICAL FLASH; REVERSE SHOCK; CALIBRATION; 130427A; ENVIRONMENT AB We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is E-gamma,E- iso (=) 8.0 x 10(52) erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forwardreverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t less than or similar to 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects. C1 [Cucchiara, A.; Lien, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Veres, P.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Corsi, A.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Cenko, S. B.; Marshall, F. E.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. B.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Perley, D. A.; Horesh, A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Perley, D. A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Lien, A.] CRESST, Greenbelt, MD 20771 USA. [Lien, A.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Toy, V. L.; Capone, J. I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Modjaz, M.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Butler, N. R.; Littlejohns, O. M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Watson, A. M.; Lee, W. H.; Richer, M. G.; de Diego, J. A.; Georgiev, L.; Gonzalez, J.; Roman-Zuniga, C. G.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Klein, C. R.; Fox, O. D.; Bloom, J. S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Prochaska, J. X.; Ramirez-Ruiz, E.] Univ Calif Santa Cruz, UCO Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Cucchiara, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM antonino.cucchiara@nasa.gov RI Gonzalez, Jose/L-6687-2014; Roman-Zuniga, Carlos/F-6602-2016; Horesh, Assaf/O-9873-2016 OI Gonzalez, Jose/0000-0002-3724-1583; Veres, Peter/0000-0002-2149-9846; Roman-Zuniga, Carlos/0000-0001-8600-4798; Horesh, Assaf/0000-0002-5936-1156 FU NASA Postdoctoral Program at the Goddard Space Flight Center; NASA-Swift GI program [13-SWIFT13-0030, 14-SWIFT14-0024]; OTKA [NN 111016]; NASA Fermi [NNH13ZDA001N]; NASA - JPL/Caltech; W. M. Keck Foundation; NASA [NNX09AH71G, NNX09AT02G, NNX10AI27G, NNX12AE66G]; CONACyT [INFR-2009-01-122785, CB-2008-101958]; UNAM PAPIIT [IN113810, IG100414]; UC MEXUS-CONACyT [CN 09-283]; NSF CAREER [AST-1352405]; NSF [AST-1413260]; Discovery Communications; National Science Foundation [AST-1005313] FX This research was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. A.C. thanks the PI of the Keck observations (Christian Ott) and the observers (Maryam Modjaz and David Fierroz) for donating some of their precious time to observe GRB 141121A. A.C. also acknowledges partial support from the NASA-Swift GI program via grants 13-SWIFT13-0030 and 14-SWIFT14-0024. Partial support of OTKA NN 111016 grant (PV). S.B.C. acknowledges support from the NASA Fermi grant NNH13ZDA001N. Partial support for DAP was provided by NASA through an award issued by JPL/Caltech. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We thank the CARMA observers (in particular, G. Keating) for executing our observations. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank the RATIR project team and the staff of the Observatorio Astronmico Nacional on Sierra San Pedro Mrtir. RATIR is a collaboration between the University of California, the Universidad Nacional Autonma de Mxico, NASA Goddard Space Flight Center, and Arizona State University, benefiting from the loan of an H2RG detector and hardware and software support from Teledyne Scientific and Imaging. RATIR, the automation of the Harold L. Johnson Telescope of the Observatorio Astronmico Nacional on Sierra San Pedro Mrtir, and the operation of both are funded through NASA grants NNX09AH71G, NNX09AT02G, NNX10AI27G, and NNX12AE66G, CONACyT grants INFR-2009-01-122785 and CB-2008-101958, UNAM PAPIIT grant IN113810, IG100414, and UC MEXUS-CONACyT grant CN 09-283. M. Modjaz is supported, in part, by the NSF CAREER award AST-1352405 and by the NSF award AST-1413260. These results made use of the Lowell Observatory Discovery Channel Telescope. Lowell operates the DCT in partnership with Boston University, Northern Arizona University, the University of Maryland, and the University of Toledo. Partial support of the DCT was provided by Discovery Communications. LMI was built by Lowell Observatory using funds from the National Science Foundation (AST-1005313). NR 91 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 122 DI 10.1088/0004-637X/812/2/122 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600034 ER PT J AU Gehrz, RD Evans, A Helton, LA Shenoy, DP Banerjee, DPK Woodward, CE Vacca, WD Dykhoff, DA Ashok, NM Cass, AC Carlon, RL Corgan, DT Eyres, SPS Joshi, V Keller, LD Krautter, J Liimets, T Rushton, M Starrfield, S AF Gehrz, R. D. Evans, A. Helton, L. A. Shenoy, D. P. Banerjee, D. P. K. Woodward, C. E. Vacca, W. D. Dykhoff, D. A. Ashok, N. M. Cass, A. C. Carlon, R. L. Corgan, D. T. Eyres, S. P. S. Joshi, V. Keller, Luke D. Krautter, J. Liimets, T. Rushton, M. Starrfield, S. TI THE EARLY INFRARED TEMPORAL DEVELOPMENT OF NOVA DELPHINI 2013 (V339 DEL) OBSERVED WITH THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY (SOFIA) AND FROM THE GROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; novae, cataclysmic variables; stars: individual (V339 Del); stars: winds, outflows ID LW SERPENTIS 1978; CLASSICAL NOVAE; SPECTROSCOPIC EVOLUTION; MIDINFRARED CAMERA; DATA REDUCTION; EARLY SCIENCE; DUST SHELL; PHOTOMETRY; EMISSION; EJECTA AB We present ground-based infrared photometry, JHK spectroscopy, and 5-28 mu m SOFIA FORCAST spectroscopy documenting the early temporal development of Nova Delphini 2013 (V339 Del). We derive a distance of similar to 4.5 kpc using data available from the early expansion of the fireball. This distance gives an outburst luminosity of similar to 8.3 x 10(5) L-circle dot making V339 Del the most luminous CO nova on record. Our data provide new constraints on the ejected gas mass and the dust yield in fast CO novae. The ejected gas mass as estimated by the cutoff wavelength during the free-free emission phase is similar to 7.5 x 10(-5) M-circle dot. There is evidence for the formation of similar to 1.2 (+/- 0.4) x 10(-7) M-circle dot of dust about 102 days after outburst. The gas to dust ratio of similar to 470/1-940/1 implies that dust production was much less efficient in V339 Del than is the case for most CO novae. C1 [Gehrz, R. D.; Shenoy, D. P.; Woodward, C. E.; Dykhoff, D. A.; Cass, A. C.; Carlon, R. L.; Corgan, D. T.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Evans, A.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Helton, L. A.; Vacca, W. D.] NASA, Ames Res Ctr, USRA SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Banerjee, D. P. K.; Ashok, N. M.; Joshi, V.] Phys Res Lab, Astron & Astrophys Div, Ahmadabad 380009, Gujarat, India. [Eyres, S. P. S.; Rushton, M.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Keller, Luke D.] Ithaca Coll, Ctr Nat Sci 264, Dept Phys & Astron, Ithaca, NY 14850 USA. [Krautter, J.] Heidelberg Univ, Landessternwarte Zentrum Astron, D-69117 Heidelberg, Germany. [Liimets, T.] Tartu Observ, EE-61602 Toravere, Estonia. [Liimets, T.] Univ Tartu, Inst Phys, EE-50411 Tartu, Estonia. [Starrfield, S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Gehrz, RD (reprint author), Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, 116 Church St SE, Minneapolis, MN 55455 USA. EM gehrz@astro.umn.edu FU USRA SOFIA Cycle 1 Target of Opportunity Nova contract; United States Air Force; Estonian Ministry for Education and Science; Department of Space, Government of India; NSF grant; NASA grant FX We are grateful to an anonymous referee for suggestions that substantially improved our presentation and interpretation of the data. We thank the British Astronomical Association/The Astronomer magazine for the visual light curve data. R. D. G., C. E. W., and L. A. H. were supported by a USRA SOFIA Cycle 1 Target of Opportunity Nova contract. R. D. G. received support from the United States Air Force. T. L. acknowledges the support of the Estonian Ministry for Education and Science. The research at the Physical Research Laboratory is supported by the Department of Space, Government of India. S. S. was supported by NSF and NASA grants to ASU. The OBO observations were supported, in part, by a generous gift from Edward Glickman. NR 59 TC 2 Z9 2 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 132 DI 10.1088/0004-637X/812/2/132 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600044 ER PT J AU Harman, CE Schwieterman, EW Schottelkotte, JC Kasting, JF AF Harman, C. E. Schwieterman, E. W. Schottelkotte, J. C. Kasting, J. F. TI ABIOTIC O-2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? SO ASTROPHYSICAL JOURNAL LA English DT Article DE planet-star interactions; planets and satellites: atmospheres; planets and satellites: terrestrial planets; ultraviolet: planetary systems ID EARTH-LIKE PLANETS; PRODUCT BRANCHING RATIOS; EVALUATED KINETIC-DATA; BANDED IRON FORMATIONS; EXOPLANET HOST STARS; EARLY ARCHEAN EARTH; HABITABLE ZONE; M-DWARFS; OXYGEN CONCENTRATION; ATMOSPHERIC OXYGEN AB In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet's atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth's atmosphere is O-2 (and its photochemical byproduct, O-3). However,. O-2 can also be produced abiotically by photolysis of CO2, followed by recombination of O atoms with each other. CO is produced in stoichiometric proportions. Whether O-2 and CO can accumulate to appreciable concentrations depends on the ratio of far-ultraviolet (FUV) to near-ultraviolet (NUV) radiation coming from the planet's parent star and on what happens to these gases when they dissolve in a planet's oceans. Using a one-dimensional photochemical model, we demonstrate that O-2 derived from CO2 photolysis should not accumulate to measurable concentrations on planets around F-and G-type stars. K-star, and especially M-star planets, however, may build up O-2 because of the low NUV flux from their parent stars, in agreement with some previous studies. On such planets, a "false positive" for life is possible if recombination of dissolved CO and O-2 in the oceans is slow and if other O-2 sinks (e.g., reduced volcanic gases or dissolved ferrous iron) are small. O-3, on the other hand, could be detectable at UV wavelengths (lambda < 300 nm) for a much broader range of boundary conditions and stellar types. C1 [Harman, C. E.; Kasting, J. F.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Harman, C. E.; Kasting, J. F.] Penn State Astrobiol Res Ctr, University Pk, PA 16802 USA. [Harman, C. E.; Schwieterman, E. W.; Kasting, J. F.] NASA, Astrobiol Inst, Virtual Planetary Lab, Washington, DC USA. [Harman, C. E.; Kasting, J. F.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Schwieterman, E. W.] Univ Washington, Dept Astron, Seattle, WA USA. [Schottelkotte, J. C.] Penn State Univ, Dept Astron, University Pk, PA 16802 USA. RP Harman, CE (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. EM ceharmanjr@psu.edu RI Harman, Chester/C-9146-2016; OI Harman, Chester/0000-0003-2281-1990; Schwieterman, Edward/0000-0002-2949-2163 FU NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team - NASA Astrobiology Institute [NNH12ZDA002C, NNA13AA93A] FX This work was supported in part by the NASA Astrobiology Institute's Virtual Planetary Laboratory Lead Team, funded through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A. NR 162 TC 20 Z9 20 U1 9 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 137 DI 10.1088/0004-637X/812/2/137 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600049 ER PT J AU Kodama, T Genda, H Abe, Y Zahnle, KJ AF Kodama, Takanori Genda, Hidenori Abe, Yutaka Zahnle, Kevin J. TI RAPID WATER LOSS CAN EXTEND THE LIFETIME OF PLANETARY HABITABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: oceans; planets and satellites: terrestrial planets ID MAIN-SEQUENCE STARS; EARTHS ATMOSPHERE; SUBDUCTION ZONES; EVOLUTION; RUNAWAY; OCEAN; VENUS; MASS; SURFACE; FATE AB Two habitable planetary states are proposed: an aqua planet like the Earth and a land planet that has a small amount of water. Land planets keep liquid water under larger solar radiation compared to aqua planets. Water loss may change an aqua planet into a land planet, and the planet can remain habitable for a longer time than if it had. remained. an aqua planet. We calculate planetary evolution with hydrogen escape for different initial water inventories and different distances from the central star. We find that there are two conditions necessary to. evolve an aqua planet into a land planet: the critical amount of water on the surface (M-ml) consistent with a planet being a land planet, and the critical amount of water vapor in the atmosphere (M-cv) that defines the onset of the runaway greenhouse state. We find that Earth- sized aqua planets with initial oceans <10% of the Earth's can evolve into land planets if M-cv = 3 m in precipitable water and M-ml = 5% of the Earth's ocean mass. Such planets can keep liquid water on their surface for another 2 Gyr. The initial amount of water and M-cv are shown to be important dividing parameters of the planetary evolution path. Our results indicate that massive hydrogen escape could give a fresh start as another kind of habitable planet rather than the end of its habitability. C1 [Kodama, Takanori; Abe, Yutaka] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. [Genda, Hidenori] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 1528550, Japan. [Zahnle, Kevin J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Kodama, T (reprint author), Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. EM koda@eps.s.u-tokyo.ac.jp RI Genda, Hidenori/A-7858-2014 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) [23103003]; GCOE program "From Earth to Earths" (MEXT); Kurita Water and Environment Foundation FX This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT; No. 23103003). This work was also partly supported by GCOE program "From Earth to Earths" (MEXT) and research Grant 2015 of Kurita Water and Environment Foundation. We thank the anonymous referee for the constructive review and helpful comments that improved our manuscript. NR 27 TC 2 Z9 2 U1 6 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 165 DI 10.1088/0004-637X/812/2/165 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600077 ER PT J AU Materese, CK Cruikshank, DP Sandford, SA Imanaka, H Nuevo, M AF Materese, Christopher K. Cruikshank, Dale P. Sandford, Scott A. Imanaka, Hiroshi Nuevo, Michel TI ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N-2-, CH4-, AND CO-CONTAINING ICES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; Kuiper Belt: general; molecular data; molecular processes; planets and satellites: surfaces; solid state: refractory ID HYDROGEN-CYANIDE POLYMERS; ADVANCED LIGHT-SOURCE; BUTYLDIMETHYLSILYL DERIVATIVES; INFRARED-SPECTROSCOPY; SOLID NITROGEN; UV PHOTOLYSIS; ULTRAVIOLET; ANALOGS; TRANSMISSION; IRRADIATION AB Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N-2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N-2, electron irradiation processing results in the production of refractory material with complex oxygen-and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C similar to 0.9 and O/C similar to 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries. C1 [Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Materese, Christopher K.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Imanaka, Hiroshi] SETI Inst, Mountain View, CA 94043 USA. [Nuevo, Michel] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. RP Materese, CK (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. OI Materese, Christopher/0000-0003-2146-4288 FU NASA's New Horizons mission program; NASA's Cassini Data Analysis Program; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH13ZDA017C]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX C.K.M. acknowledges R.L. Walker (NASA Ames) for technical support, the NASA Postdoctoral Program (NPP) administered by ORAU, and D. Kilcoyne for assistance with ALS beamline 5.3.2.2. D.P.C. acknowledges support from NASA's New Horizons mission program. H.I. acknowledges supports from NASA's Cassini Data Analysis Program. This material is based on work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement Notice NNH13ZDA017C issued through the Science Mission Directorate. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Finally, we also would like to thank an anonymous reviewer for their comments. NR 41 TC 6 Z9 6 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 150 DI 10.1088/0004-637X/812/2/150 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600062 ER PT J AU Mays, ML Thompson, BJ Jian, LK Colaninno, RC Odstrcil, D Mostl, C Temmer, M Savani, NP Collinson, G Taktakishvili, A MacNeice, PJ Zheng, Y AF Mays, M. L. Thompson, B. J. Jian, L. K. Colaninno, R. C. Odstrcil, D. Moestl, C. Temmer, M. Savani, N. P. Collinson, G. Taktakishvili, A. MacNeice, P. J. Zheng, Y. TI PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); solar-terrestrial relations; Sun: coronal mass ejections (CMEs) ID CORONAL MASS EJECTIONS; SOLAR-WIND FLOW; DYNAMICS-OBSERVATORY SDO; 3-DIMENSIONAL PROPAGATION; MAGNETIC CLOUDS; LARGE-ANGLE; CONE MODEL; EARTH; ARRIVAL; FLUX AB On 2014 January 7 an X1.2 flare and coronal mass ejection (CME) with a radial speed approximate to 2500 km s(-1) was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth (approximate to 36 hr) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of approximate to 49 hr and a K-P geomagnetic index of only 3-. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)-ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We explore a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSA-ENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hr for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging. C1 [Mays, M. L.; Collinson, G.; Taktakishvili, A.] Catholic Univ Amer, Washington, DC 20064 USA. [Mays, M. L.; Thompson, B. J.; Jian, L. K.; Savani, N. P.; Collinson, G.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Jian, L. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Colaninno, R. C.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Odstrcil, D.] Graz Univ, Inst Phys, IGAM Kanzelhohe Observ, Graz, Austria. [Moestl, C.] George Mason Univ, Fairfax, VA 22030 USA. [Moestl, C.; Temmer, M.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Savani, N. P.] Appl Phys Lab Johns Hopkins, Solar Sect, Laurel, MD USA. RP Mays, ML (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM m.leila.mays@nasa.gov RI Jian, Lan/B-4053-2010; Thompson, Barbara/C-9429-2012 OI Jian, Lan/0000-0002-6849-5527; FU NASA LWS grant [NNX15AB80G]; NSF [AGS 1242798, 1259549, 1321493]; NASA [S-136361-Y]; Austrian Science Fund (FWF) [P26174-N27, V195-N16]; European Union [606692]; NASA LWS-SC [NNX13AI96G] FX We gratefully acknowledge contributions from the model developers and participants of the Scoreboard (kauai.ccmc.gsfc.nasa.gov/CMEscoreboard). M.L.M. thanks T. Nieves-Chinchilla, I.G. Richardson, J.G. Luhmann, and N. Thakur for helpful discussions. M.L.M. acknowledges the support of NASA LWS grant NNX15AB80G. L.K. Jian acknowledges the support of NSF grants AGS 1242798, 1259549, and 1321493. R.C.C. acknowledges the support of NASA contract S-136361-Y to NRL. D. Odstrcil acknowledges the support of NASA LWS-SC NNX13AI96G. C.M. and M.T. acknowledge the Austrian Science Fund (FWF): P26174-N27 and V195-N16. The presented work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 606692 [HELCATS]. The ACE, Wind, and OMNI solar wind plasma and magnetic field data were obtained at NASA's CDAWeb (cdaweb.gsfc.nasa.gov and OMNIWeb). The final definitive KP indices were obtained from the Helmholtz Center Potsdam GFZ German Research Centre for Geosciences. The PFSS modeled magnetic field lines were traced using SolarSoft's PFSS package. SOHO is a mission of international cooperation between the European Space Agency and NASA. Some figure colors are based on ColorBrewer.org. NR 59 TC 8 Z9 8 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 145 DI 10.1088/0004-637X/812/2/145 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600057 ER PT J AU Treu, T Schmidt, KB Brammer, GB Vulcani, B Wang, X Bradac, M Dijkstra, M Dressler, A Fontana, A Gavazzi, R Henry, AL Hoag, A Huang, KH Jones, TA Kelly, PL Malkan, MA Mason, C Pentericci, L Poggianti, B Stiavelli, M Trenti, M von der Linden, A AF Treu, T. Schmidt, K. B. Brammer, G. B. Vulcani, B. Wang, X. Bradac, M. Dijkstra, M. Dressler, A. Fontana, A. Gavazzi, R. Henry, A. L. Hoag, A. Huang, K. -H. Jones, T. A. Kelly, P. L. Malkan, M. A. Mason, C. Pentericci, L. Poggianti, B. Stiavelli, M. Trenti, M. von der Linden, A. TI THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: strong ID STAR-FORMING GALAXIES; EMISSION-LINE GALAXIES; MASS-METALLICITY RELATION; HIGH-REDSHIFT GALAXIES; LY-ALPHA EMISSION; SIMILAR-TO 7; LYMAN BREAK GALAXIES; ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; CLUSTER ABELL 2744 AB We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of 10 massive clusters of galaxies at redshift z = 0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 (WFC3) yields nearinfrared spectra of the cluster cores covering the wavelength range 0.81-1.69 mu m through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACS J0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than H-AB = 23 is visually inspected by at least two co-authors and a redshift is measured when sufficient information is present in the spectra. Furthermore, we conducted a thorough search for emission lines through all of the GLASS WFC3 spectra with the aim of measuring redshifts for sources with continuum fainter than H-AB = 23. We provide a catalog of 139 emission-line-based spectroscopic redshifts for extragalactic sources, including three new redshifts of multiple image systems (one probable, two tentative). In addition to the data itself, we also release software tools that are helpful to navigate the data. C1 [Treu, T.; Malkan, M. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Treu, T.; Schmidt, K. B.; Wang, X.; Jones, T. A.; Mason, C.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Brammer, G. B.; Stiavelli, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Vulcani, B.] Univ Tokyo, UTIAS, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778582, Japan. [Bradac, M.; Hoag, A.; Huang, K. -H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Dijkstra, M.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Dressler, A.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Fontana, A.; Pentericci, L.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Gavazzi, R.] Inst Astrophys Paris, Paris, France. [Henry, A. L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Kelly, P. L.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Poggianti, B.] INAF Astron Observ Padova, Padua, Italy. [Trenti, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [von der Linden, A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [von der Linden, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Treu, T (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM tt@astro.ucla.edu OI Mason, Charlotte/0000-0002-3407-1785; Vulcani, Benedetta/0000-0003-0980-1499; Trenti, Michele/0000-0001-9391-305X; Brammer, Gabriel/0000-0003-2680-005X FU NASA through a grant from the Space Telescope Science Institute [HST-GO-13459]; NASA [NAS 5-26555]; World Premier International Research Center Initiative (WPI), MEXT, Japan; Japan Society for the Promotion of Science (JSPS) [26870140] FX Support for GLASS (HST-GO-13459) was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. We are very grateful to the staff of the Space Telescope for their assistance in planning, scheduling and executing the observations, and in setting up the GLASS public release website. We thank the referee for helpful suggestions that improved the paper. T.T. gratefully acknowledges the hospitality of the American Academy in Rome and of the Observatorio di Monteporzio Catone, where parts of this manuscript were written. B.V. acknowledges the support from the World Premier International Research Center Initiative (WPI), MEXT, Japan and the Kakenhi Grant-in-Aid for Young Scientists (B) (26870140) from the Japan Society for the Promotion of Science (JSPS). NR 143 TC 25 Z9 25 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2015 VL 812 IS 2 AR 114 DI 10.1088/0004-637X/812/2/114 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW7VD UT WOS:000365206600026 ER PT J AU Mahan, JR Walker, JA Stancil, MM AF Mahan, J. R. Walker, J. A., Jr. Stancil, M. M. TI Bidirectional reflection effects in practical integrating spheres SO APPLIED OPTICS LA English DT Article ID SPECTRALON AB Integrating spheres play a central role in radiometric instrument calibration, surface optical property measurement, and radiant source characterization. Our work involves a simulation, based on the Monte Carlo ray-trace (MCRT) of bidirectional reflections within a practical integrating sphere pierced with two viewing ports. We used data from the literature to create an empirical model for the bidirectional reflection distribution function (BRF) of Spectralon suitable for use in the MCRT environment. The ratio of power escaping through the two openings is shown to vary linearly with wall absorptivity for both diffuse and bidirectional reflections. The sensitivity of this ratio to absorptivity is shown to be less when reflections are weakly bidirectional. (C) 2015 Optical Society of America C1 [Mahan, J. R.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. [Walker, J. A., Jr.; Stancil, M. M.] Sci Syst & Applicat Inc, NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Mahan, JR (reprint author), Virginia Polytech Inst & State Univ, Dept Mech Engn, 460 Old Turner St, Blacksburg, VA 24061 USA. EM jrmahan@vt.edu FU NASA Langley Research Center (LaRC) [NNL11AA00B] FX NASA Langley Research Center (LaRC) (NNL11AA00B). NR 11 TC 0 Z9 0 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD OCT 20 PY 2015 VL 54 IS 30 BP 8951 EP 8956 DI 10.1364/AO.54.008951 PG 6 WC Optics SC Optics GA CU1VZ UT WOS:000363311400020 PM 26560384 ER PT J AU Chami, M Lafrance, B Fougnie, B Chowdhary, J Harmel, T Waquet, F AF Chami, Malik Lafrance, Bruno Fougnie, Bertrand Chowdhary, Jacek Harmel, Tristan Waquet, Fabien TI OSOAA: a vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean SO OPTICS EXPRESS LA English DT Article ID VOLUME-SCATTERING FUNCTION; AEROSOL PROPERTIES; BIDIRECTIONAL REFLECTANCE; RADIANCE CALCULATIONS; DIFFUSE-REFLECTANCE; SUCCESSIVE ORDER; LIGHT-SCATTERING; DARK WATER; POLARIZATION; RETRIEVAL AB In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors. (C) 2015 Optical Society of America C1 [Chami, Malik; Harmel, Tristan] Univ Paris 06, Sorbonne Univ, INSU CNRS, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Chami, Malik] Inst Univ France, F-75231 Paris 05, France. [Lafrance, Bruno] CS Syst Informat, F-31506 Toulouse 05, France. [Fougnie, Bertrand] Ctr Natl Etud Spatiales, F-75039 Paris 01, France. [Chowdhary, Jacek] Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA. [Waquet, Fabien] Univ Lille 1, Lab Opt Atmospher, F-59650 Villeneuve Dascq, France. RP Chami, M (reprint author), Univ Paris 06, Sorbonne Univ, INSU CNRS, Lab Oceanog Villefranche, 181 Chemin Lazaret, F-06230 Villefranche Sur Mer, France. EM chami@obs-vlfr.fr FU Centre National d'Etudes Spatiales (CNES); Institut Universitaire de France FX This work was funded by the Centre National d'Etudes Spatiales (CNES) and by the Institut Universitaire de France which provided the funding of the chair of excellence of Pr. M. Chami. The authors are grateful to the anonymous reviewers for their relevant comments and suggestions. NR 56 TC 3 Z9 3 U1 2 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 19 PY 2015 VL 23 IS 21 BP 27829 EP 27852 DI 10.1364/OE.23.027829 PG 24 WC Optics SC Optics GA CY7FR UT WOS:000366574400095 PM 26480444 ER PT J AU Kukolich, SG Sun, M Daly, AM Luo, W Zakharov, LN Liu, SY AF Kukolich, Stephen G. Sun, Ming Daly, Adam M. Luo, Wei Zakharov, Lev N. Liu, Shih-Yuan TI Identification and characterization of 1,2-BN cyclohexene using microwave spectroscopy SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HYDROGEN STORAGE MATERIAL; AMMONIA-BORANE; STRUCTURAL PARAMETERS; THERMAL-DECOMPOSITION; AMINE-BORANES; SPECTRUM; COMPLEXES; ROTATION; BARRIER; METAL AB 1,2-BN cyclohexene has been produced from 1,2-BN cyclohexane through the loss of H-2 and characterized and identified using a pulsed-beam Fourier-transform microwave spectrometer. Microwave spectra were measured in the frequency range of 5.5-12.5 GHz, providing accurate rotational constants and quadrupole coupling strengths. Results of high level calculations allowed clear assignment of the spectra to 1,2-BN cyclohexene. Heating the initial compound, 1,2-BN cyclohexane, to 60 degrees C in a 1 atm neon stream results in the loss of H2 and conversion to 1,2-BN cyclohexene and this appears to be the first characterization of this compound as the 1,2-BN cyclohexene monomer. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kukolich, Stephen G.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Sun, Ming] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Jiangsu, Peoples R China. [Daly, Adam M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Luo, Wei] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China. [Zakharov, Lev N.] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA. [Liu, Shih-Yuan] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA. RP Kukolich, SG (reprint author), Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. EM kukolich@u.arizona.edu RI Liu, Shih-Yuan/J-7813-2012 OI Liu, Shih-Yuan/0000-0003-3148-9147 FU National Science Foundation at the University of Arizona [CHE-1057796]; U.S. Department of Energy [DE-EE-0005658]; Camille Dreyfus Teacher-Scholar Awards Program FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-1057796 at the University of Arizona. Financial support has been provided by the U.S. Department of Energy (DE-EE-0005658). S.-Y. Liu thanks the Camille Dreyfus Teacher-Scholar Awards Program for a Teacher-Scholar award. NR 33 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 16 PY 2015 VL 639 BP 88 EP 92 DI 10.1016/j.cplett.2015.09.009 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CX6MF UT WOS:000365814400017 ER PT J AU Stark, A Oberst, J Preusker, F Peale, SJ Margot, JL Phillips, RJ Neumann, GA Smith, DE Zuber, MT Solomon, SC AF Stark, Alexander Oberst, Juergen Preusker, Frank Peale, Stanton J. Margot, Jean-Luc Phillips, Roger J. Neumann, Gregory A. Smith, David E. Zuber, Maria T. Solomon, Sean C. TI First MESSENGER orbital observations of Mercury's librations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Mercury; rotation; MESSENGER; laser altimetry; stereo photogrammetry; coregistration ID INNER-CORE; GRAVITY-FIELD; INTERIOR STRUCTURE; PERIOD; ROTATION; ORIENTATION; LONGITUDE; SYSTEM; TIDES; AXIS AB We have coregistered laser altimeter profiles from 3years of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbital observations with stereo digital terrain models to infer the rotation parameters for the planet Mercury. In particular, we provide the first observations of Mercury's librations from orbit. We have also confirmed available estimates for the orientation of the spin axis and the mean rotation rate of the planet. We find a large libration amplitude of 38.91.3arcsec and an obliquity of the spin axis of 2.0290.085arcmin, results confirming that Mercury possesses a liquid outer core. The mean rotation rate is observed to be (6.138518049.4x10(-7))degrees/d (a spin period of 58.6460768days0.78s), significantly higher than the expected resonant rotation rate. As a possible explanation we suggest that Mercury is undergoing long-period librational motion, related to planetary perturbations of its orbit. C1 [Stark, Alexander; Oberst, Juergen; Preusker, Frank] German Aerosp Ctr, Inst Planetary Res, Berlin, Germany. [Stark, Alexander] Tech Univ Berlin, Chair Geodesy & Geoinformat Sci, Berlin, Germany. [Oberst, Juergen] Moscow State Univ Geodesy & Cartog, Moscow, Russia. [Peale, Stanton J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Margot, Jean-Luc] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Margot, Jean-Luc] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Phillips, Roger J.] SW Res Inst, Boulder, CO USA. [Neumann, Gregory A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC USA. RP Stark, A (reprint author), German Aerosp Ctr, Inst Planetary Res, Berlin, Germany. EM alexander.stark@dlr.de RI Margot, Jean-Luc/A-6154-2012; Neumann, Gregory/I-5591-2013 OI Margot, Jean-Luc/0000-0001-9798-1797; Neumann, Gregory/0000-0003-0644-9944 FU German Research Foundation [OB124/11-1]; Russian Science Foundation [14-22-00197]; NASA [NAS5-97271, NASW-00002] FX This research was funded by a grant from the German Research Foundation (OB124/11-1). J. Oberst gratefully acknowledges being hosted by MIIGAiK and supported by the Russian Science Foundation under project 14-22-00197. The MESSENGER mission is supported by the NASA Discovery Program under contract NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. We acknowledge the contributions of the MESSENGER spacecraft team and MLA and MDIS instrument teams in acquiring the observations used herein. MESSENGER data are available from the Planetary Data System (https://pds.jpl.nasa.gov). We thank Hauke Hussmann and Marie Yseboodt for their helpful comments and discussions. Reviews by Mathieu Dumberry and an anonymous reviewer substantially improved this paper. NR 39 TC 5 Z9 5 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 7881 EP 7889 DI 10.1002/2015GL065152 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500005 ER PT J AU Duputel, Z Jiang, J Jolivet, R Simons, M Rivera, L Ampuero, JP Riel, B Owen, SE Moore, AW Samsonov, SV Culaciati, FO Minson, SE AF Duputel, Z. Jiang, J. Jolivet, R. Simons, M. Rivera, L. Ampuero, J. -P. Riel, B. Owen, S. E. Moore, A. W. Samsonov, S. V. Culaciati, F. Ortega Minson, S. E. TI The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE 2014 Iquique earthquake; 1877 Chile seismic gap; Bayesian inversion; kinematic source model; slow slip; prediction uncertainty ID W 8.1 EARTHQUAKE; CHILE SUBDUCTION ZONE; TOHOKU-OKI EARTHQUAKE; TOCOPILLA EARTHQUAKE; SEISMOGENIC ZONE; RUPTURE PROCESS; NORTHERN CHILE; SLIP; FAULT; GPS AB The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the M-w=8.1 main shock and a static slip model of the M-w=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the M-w=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region. C1 [Duputel, Z.; Rivera, L.] Univ Strasbourg, CNRS, EOST, Inst Phys Globe Strasbourg, Strasbourg, France. [Duputel, Z.; Jiang, J.; Jolivet, R.; Simons, M.; Rivera, L.; Ampuero, J. -P.; Riel, B.; Minson, S. E.] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. [Owen, S. E.; Moore, A. W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Samsonov, S. V.] Nat Resources Canada, Canada Ctr Mapping & Earth Observat, Ottawa, ON, Canada. [Culaciati, F. Ortega] Univ Chile, Dept Geofis, Santiago, Chile. RP Duputel, Z (reprint author), Univ Strasbourg, CNRS, EOST, Inst Phys Globe Strasbourg, Strasbourg, France. EM zacharie.duputel@unistra.fr RI Ampuero, Jean Paul/N-3348-2013; Duputel, Zacharie/C-2906-2016; Ortega-Culaciati, Francisco Hernan/A-2587-2014; OI Ampuero, Jean Paul/0000-0002-4827-7987; Duputel, Zacharie/0000-0002-8809-451X; Ortega-Culaciati, Francisco Hernan/0000-0002-2983-8646; Samsonov, Sergey/0000-0002-6798-4847; Jiang, Junle/0000-0002-8796-5846; Simons, Mark/0000-0003-1412-6395 FU Initiative d'Excellence (IDEX) funding framework (Universite de Strasbourg); Institut National des Sciences de l'Univers (INSU); CNRS international program for scientific cooperation (PICS); Southern California Earthquake Center (SCEC - NSF) [EAR-0529922]; Southern California Earthquake Center (USGS) [07HQAG0008] FX This research was supported by the Initiative d'Excellence (IDEX) funding framework (Universite de Strasbourg), the Institut National des Sciences de l'Univers (INSU) and the CNRS international program for scientific cooperation (PICS). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology (CALTECH), under a contract with the National Aeronautics and Space Administration. This research was also supported by the Southern California Earthquake Center (SCEC, funded by NSF Cooperative agreement EAR-0529922 and USGS Cooperative agreement 07HQAG0008). Some GPUs used for this research were donated by the NVIDIA Corporation. This work uses data operated by CALTECH, Ecole normale superieure (ENS), Geo Forschungs Zentrum (GFZ) Universidad de Chile, Servicio Hidrografico y Oceanografico de la Armada (SHOA), and the Canadian Space Agency. The slip contours of the Tocopilla earthquake were provided by M. Bejar-Pizarro. This study contributed from fruitful discussions with H. Kanamori, O. Lengline, L. Meng, and B. Gombert. We thank the Editor, E. Evans (USGS reviewer), W. Thatcher (USGS reviewer), J. Loveless (GRL reviewer), and an anonymous GRL reviewer for their constructive comments, which helped improve this manuscript. NR 46 TC 8 Z9 8 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 7949 EP 7957 DI 10.1002/2015GL065402 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500013 ER PT J AU Hulley, GC Hook, SJ Abbott, E Malakar, N Islam, T Abrams, M AF Hulley, Glynn C. Hook, Simon J. Abbott, Elsa Malakar, Nabin Islam, Tanvir Abrams, Michael TI The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth's emissivity at 100 meter spatial scale SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE emissivity; ASTER ID LAND-SURFACE TEMPERATURE; THERMAL INFRARED IMAGERY; VALIDATION; COVER; PRODUCTS; NDVI; SEPARATION; RETRIEVAL; CLIMATE; NEVADA AB Thermal infrared (TIR) data, acquired by instruments on several NASA satellite platforms, are primarily used to estimate the surface temperature/emissivity of the Earth's land surface. One such instrument launched on NASA's Terra satellite in 1999 is the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has a spatial resolution of 90m. Using ASTER data, NASA/Jet Propulsion Laboratory recently released the most detailed emissivity map of the Earth termed the ASTER Global Emissivity Dataset (ASTER GED) that was acquired by processing millions of cloud free ASTER scenes from 2000 to 2008. The ASTER GEDv3 provides an average emissivity at 100m and 1km, while GEDv4 provides a monthly emissivity from 2000 to 2015 at 5km spatial resolution in the wavelength range between 8 and 12 mu m. Validation with lab spectra from four desert sites resulted in an average absolute band error of 1%, compared to current heritage MODIS products that had average absolute errors of 2.4% (Collection 4) and 4.6% (Collection 5). C1 [Hulley, Glynn C.; Hook, Simon J.; Abbott, Elsa; Malakar, Nabin; Islam, Tanvir; Abrams, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hulley, GC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM glynn.hulley@jpl.nasa.gov RI Hook, Simon/D-5920-2016; OI Hook, Simon/0000-0002-0953-6165; Malakar, Nabin/0000-0002-4816-6304; Islam, Tanvir/0000-0003-2429-3074 FU NASA [MEAS-12-0023]; Landsat program within the NASA Earth Science Division FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The research was supported by NASA grant MEAS-12-0023 and the Landsat program within the NASA Earth Science Division. We kindly thank our collaborators Michele Lazzarini and Frank Goettsche for providing sand samples collected from the Rub' al Khali and Senegal validation sites, respectively. ASTER data were provided by NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. The ASTER GEDv3 is available for download at https://lpdaac.usgs.gov/dataset_discovery/community/community_products_t able, while the ASTER GEDv4 is available at http://cimss.ssec.wisc.edu/iremis/. NR 43 TC 9 Z9 10 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 7966 EP 7976 DI 10.1002/2015GL065564 PG 11 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500015 ER PT J AU Harpold, AA Molotch, NP AF Harpold, Adrian A. Molotch, Noah P. TI Sensitivity of soil water availability to changing snowmelt timing in the western US SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE soil moisture; snow; snowmelt; climate change; western US; water stress ID SUB-ALPINE FOREST; UNITED-STATES; CLIMATE-CHANGE; SIERRA-NEVADA; STREAMFLOW GENERATION; GROUNDWATER RECHARGE; SPATIAL VARIABILITY; WARMING CLIMATE; NORTH-AMERICA; MOISTURE AB The ecohydrological effects of changing snowmelt are strongly mediated by soil moisture. We utilize 259 Snow Telemetry stations across the western U.S. to address two questions: (1) how do relationships between peak soil moisture (PSM) timing and the day of snow disappearance (DSD) vary across ecoregions and (2) what is the regional sensitivity of PSM timing to earlier DSD associated with warming and drying scenarios? All western U.S. ecoregions showed significant relationships between the timing of PSM and DSD. Changes in the timing of PSM based on warming predicted for the middle and end of the 21st century ranged from 1 to 9days and from 6 to 17days among ecoregions, respectively. The maritime ecoregions PSM timing were 2-3 times more sensitive to warming and drying versus the interior mountain ecoregions. This work suggests that soil hydrology modifies the effects of earlier snowmelt on regional streamflow response and vegetation water stress. C1 [Harpold, Adrian A.] Univ Nevada, Nat Resources & Environm Sci Dept, Reno, NV 89557 USA. [Molotch, Noah P.] Univ Colorado, Dept Geog, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Harpold, AA (reprint author), Univ Nevada, Nat Resources & Environm Sci Dept, Reno, NV 89557 USA. EM adrian.harpold@gmail.com RI Molotch, Noah/C-8576-2009; OI Harpold, Adrian/0000-0002-2566-9574 FU NSF [EAR 1144894, EAR 1141764]; U.S. Department of Agriculture [2012-67003-19802]; NSF award Boulder Creek Critical Zone Observatory [EAR 1331828] FX Randall Julander provided insights regarding the SNOTEL data. The SNOTEL data sets are publicly available at http://www.wcc.nrcs.usda.gov/snow/. NSF post-doc fellowship (EAR 1144894) supported A. A. Harpold. Awards from U.S. Department of Agriculture (2012-67003-19802) and NSF (EAR 1141764) supported N.P. Molotch. NSF award (EAR 1331828) Boulder Creek Critical Zone Observatory supported both authors. NR 66 TC 6 Z9 6 U1 12 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 8011 EP 8020 DI 10.1002/2015GL065855 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500020 ER PT J AU Li, X Rignot, E Morlighem, M Mouginot, J Scheuchl, B AF Li, Xin Rignot, Eric Morlighem, Mathieu Mouginot, Jeremie Scheuchl, Bernd TI Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Antarctica; grounding line; radar interferometry; radar sounding; remote sensing; glaciology ID PINE ISLAND GLACIER; ICE-SHEET; MASS-BALANCE; RADAR ALTIMETRY; SHELVES; GREENLAND; SURFACE; DRIVEN; MODEL; LAND AB Totten Glacier, East Antarctica, a glacier that holds a 3.9m sea level change equivalent, has thinned and lost mass for decades. We map its grounding line positions in 1996 and 2013 using differential radar interferometry (InSAR) data and develop precise, high-resolution topographies of its ice surface and ice draft using NASA Operation IceBridge data, InSAR data, and a mass conservation method. We detect a 1 to 3km retreat of the grounding line in 17years. The retreat is asymmetrical along a two-lobe pattern, where ice is only grounded a few 10m above sea level, or ice plain, which may unground further with only modest amounts of ice thinning. The pattern of retreat indicates ice thinning of 12m in 17years or 0.70.1m/yr at the grounding line on average. Sustained thinning will cause further grounding line retreat but may not be conducive to a marine instability. C1 [Li, Xin; Rignot, Eric; Morlighem, Mathieu; Mouginot, Jeremie; Scheuchl, Bernd] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Rignot, Eric] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Li, X (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM xin.li@uci.edu RI Morlighem, Mathieu/O-9942-2014; Rignot, Eric/A-4560-2014; OI Morlighem, Mathieu/0000-0001-5219-1310; Rignot, Eric/0000-0002-3366-0481; Li, Xin/0000-0001-5876-0115 FU Cryosphere Science Program of National Aeronautics and Space Administration [NNX13AN46G, NNX14AN03G, NNX14AB93G]; German Aerospace Center (DLR) [XTI_GLAX0343] FX This work was performed at the University of California Irvine and at the California Institute of Technology's Jet Propulsion Laboratory, under contract NNX13AN46G, NNX14AN03G, and NNX14AB93G with the Cryosphere Science Program of National Aeronautics and Space Administration. ERS-1/ERS-2 TanDEM data were provided by European Space Agency. TanDEM-X data were provided by German Aerospace Center (DLR), through project XTI_GLAX0343. COSMO-SkyMed data (C)ASI (2013) were provided by e-GEOS under ESA's TPM scheme (category 1 proposal ID 14871). We thank Dana Floricioiu from DLR for her advice on TanDEM-X processing. NR 46 TC 6 Z9 6 U1 4 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 8049 EP 8056 DI 10.1002/2015GL065701 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500024 ER PT J AU Landerer, FW Wiese, DN Bentel, K Boening, C Watkins, MM AF Landerer, Felix W. Wiese, David N. Bentel, Katrin Boening, Carmen Watkins, Michael M. TI North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE AMOC; GRACE; variability; ocean bottom pressure; NADW; gravity ID 26-DEGREES-N; DECLINE; EARTH AB Concerns about North Atlantic Meridional Overturning Circulation (NAMOC) changes imply the need for a continuous, large-scale observation capability to detect changes on interannual to decadal time scales. Here we present the first measurements of Lower North Atlantic Deep Water (LNADW) transport changes using only time-variable gravity observations from Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 until now. Improved monthly gravity field retrievals allow the detection of North Atlantic interannual bottom pressure anomalies and LNADW transport estimates that are in good agreement with those from the Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array (RAPID/MOCHA). Concurrent with the observed AMOC transport anomalies from late 2009 through early 2010, GRACE measured ocean bottom pressures changes in the 3000-5000m deep western North Atlantic on the order of 20mm-H2O (200Pa), implying a southward volume transport anomaly in that layer of approximately -5.5sverdrup. Our results highlight the efficacy of space gravimetry for observing AMOC variations to evaluate latitudinal coherency and long-term variability. C1 [Landerer, Felix W.; Wiese, David N.; Bentel, Katrin; Boening, Carmen; Watkins, Michael M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Watkins, Michael M.] Univ Texas Austin, CSR, Austin, TX 78712 USA. RP Landerer, FW (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM landerer@jpl.nasa.gov OI Landerer, Felix/0000-0003-2678-095X FU Natural Environment Research Council in the UK; National Science Foundation; National Oceanic and Atmospheric Administration in the United States FX We thank Elanor Frajka-Williams for her helpful discussions about the RAPID-MOCHA measurements, and Don Chambers and an anonymous reviewer for their very constructive comments. This work represents one phase of research carried out at the Jet Propulsion Laboratory/California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The JPL-RL05M GRACE solutions are available via the Physical Oceanography Distributed Active Archive Center (PODAAC) as well as the GRACE Tellus websites (www.grace.jpl.nasa.gov). RAPID is funded by the Natural Environment Research Council in the UK and the National Science Foundation and National Oceanic and Atmospheric Administration in the United States. Data are freely available from http://www.rapid.ac.uk. NR 32 TC 5 Z9 5 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 8114 EP 8121 DI 10.1002/2015GL065730 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500032 ER PT J AU Wolfe, GM Hanisco, TF Arkinson, HL Bui, TP Crounse, JD Dean-Day, J Goldstein, A Guenther, A Hall, SR Huey, G Jacob, DJ Karl, T Kim, PS Liu, X Marvin, MR Mikoviny, T Misztal, PK Nguyen, TB Peischl, J Pollack, I Ryerson, T St Clair, JM Teng, A Travis, KR Ullmann, K Wennberg, PO Wisthaler, A AF Wolfe, G. M. Hanisco, T. F. Arkinson, H. L. Bui, T. P. Crounse, J. D. Dean-Day, J. Goldstein, A. Guenther, A. Hall, S. R. Huey, G. Jacob, D. J. Karl, T. Kim, P. S. Liu, X. Marvin, M. R. Mikoviny, T. Misztal, P. K. Nguyen, T. B. Peischl, J. Pollack, I. Ryerson, T. St Clair, J. M. Teng, A. Travis, K. R. Ullmann, K. Wennberg, P. O. Wisthaler, A. TI Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE flux; isoprene; deposition; emission; SEAC4RS; biosphere ID VOLATILE ORGANIC-COMPOUNDS; CHEMISTRY-CLIMATE MODEL; PEROXY NITRATES PAN; BOUNDARY-LAYER; TROPOSPHERIC DEGRADATION; EPOXIDE FORMATION; ISOPRENE VOLCANO; DRY DEPOSITION; AEROSOL; FOREST AB Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations. C1 [Wolfe, G. M.; Hanisco, T. F.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [Wolfe, G. M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Arkinson, H. L.; Marvin, M. R.] Univ Maryland, Dept Ocean & Atmospher Sci, College Pk, MD 20742 USA. [Bui, T. P.; Dean-Day, J.] NASA, Ames Res Ctr, Atmospher Chem & Dynam Branch, Moffett Field, CA 94035 USA. [Crounse, J. D.; Nguyen, T. B.; St Clair, J. M.; Teng, A.; Wennberg, P. O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Dean-Day, J.] Bay Area Environm Res Inst, Petaluma, CA USA. [Goldstein, A.; Misztal, P. K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Guenther, A.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Hall, S. R.; Ullmann, K.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Huey, G.; Liu, X.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Jacob, D. J.; Kim, P. S.; Travis, K. R.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, D. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Karl, T.] Univ Innsbruck, Inst Meteorol & Geophys, A-6020 Innsbruck, Austria. [Marvin, M. R.] Univ Maryland, Dept Chem, College Pk, MD 20742 USA. [Mikoviny, T.; Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway. [Peischl, J.; Pollack, I.; Ryerson, T.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Peischl, J.; Pollack, I.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Wennberg, P. O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. RP Wolfe, GM (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. EM glenn.m.wolfe@nasa.gov RI Karl, Thomas/D-1891-2009; Misztal, Pawel/B-8371-2009; Wolfe, Glenn/D-5289-2011; Pollack, Ilana/F-9875-2012; Travis, Katherine/G-1417-2016; Peischl, Jeff/E-7454-2010; Crounse, John/C-3700-2014; Manager, CSD Publications/B-2789-2015; OI Karl, Thomas/0000-0003-2869-9426; Misztal, Pawel/0000-0003-1060-1750; Travis, Katherine/0000-0003-1628-0353; Peischl, Jeff/0000-0002-9320-7101; Crounse, John/0000-0001-5443-729X; Teng, Alexander/0000-0002-6434-0501 FU NASA ROSES SEAC4RS [NNH10ZDA001N, NNX12AC06G]; ACCDAM [NNX14AP48G, NNX14AP46G]; NSF PRF [AGS-1331360]; National Institute of Aerospace (NIA) FX This work was supported by grants from the NASA ROSES SEAC4RS (NNH10ZDA001N and NNX12AC06G) and ACCDAM (NNX14AP48G and NNX14AP46G) programs. T.B.N. acknowledges support from NSF PRF award AGS-1331360. Isoprene measurements were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). A.W. and T.M. received support from the Visiting Scientist Program at the National Institute of Aerospace (NIA). We thank the DC-8 pilots, crew, payload operators, and mission scientists for their hard work and for the opportunity to calibrate the meteorological measurements. We are also grateful to NASA ESPO for mission logistics. We thank the Jimenez, Brock, and Anderson groups for use of aerosol data. We also thank L. Kaser, B. Yuan, S.-W. Kim, and J. Thornton for helpful discussions. All data used in this analysis are publicly available under the SEAC4RS DOI at 10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud. NR 51 TC 11 Z9 11 U1 5 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 16 PY 2015 VL 42 IS 19 BP 8231 EP 8240 DI 10.1002/2015GL065839 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CU7DF UT WOS:000363695500047 ER PT J AU Ajayi, OA Guitierrez, DH Peaslee, D Cheng, A Gao, T Wong, CW Chen, B AF Ajayi, Obafunso A. Guitierrez, Daniel H. Peaslee, David Cheng, Arthur Gao, Theodore Wong, Chee Wei Chen, Bin TI Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors SO NANOTECHNOLOGY LA English DT Article DE supercapacitors; carbon-based; electrophoretic deposition ID HIGH-ENERGY DENSITY; HIGH-PERFORMANCE; SUPERCAPACITORS; FILMS; ELECTRODES; REDUCTION; CONDUCTIVITY; SPECTROSCOPY; AREA AB We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT-GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g(-1). Upon thermal reduction, MWCNT-GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2x decrease of those without MWCNTs. C1 [Ajayi, Obafunso A.; Wong, Chee Wei] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Guitierrez, Daniel H.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Peaslee, David] Univ Missouri, Ctr Nanosci, St Louis, MO 63121 USA. [Peaslee, David] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Ajayi, Obafunso A.; Cheng, Arthur; Chen, Bin] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gao, Theodore] Northwestern Univ, Evanston, IL 60208 USA. [Wong, Chee Wei] Univ Calif Los Angeles, Dept Mech Engn, Los Angeles, CA 90094 USA. RP Ajayi, OA (reprint author), Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. EM bin-chen1@nasa.gov RI Wong, Chee Wei/E-9169-2017 FU National Science Foundation FX Special thanks must be given for the support of NASA Senior Scientist, Dr Meyya Meyyapan and Dr Jessica Koehne for their ongoing support of the Advanced Space Science and Technology group. Other contributors to this paper and the ASST group include, Drs Zuki Tanaka, Alisson Engstrom, Cristina Javier. Additional thanks is given to Dr Young Duck Kim and Ghidewon Arefe for fruitful discussions on the electrical measurements. O A A also acknowledges an Engineering Innovation Fellowship through Graduate Research Fellowship Program of the National Science Foundation. NR 39 TC 3 Z9 3 U1 4 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 16 PY 2015 VL 26 IS 41 AR 415203 DI 10.1088/0957-4484/26/41/415203 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CU3OC UT WOS:000363433700004 PM 26403850 ER PT J AU Stern, SA Bagenal, F Ennico, K Gladstone, GR Grundy, WM McKinnon, WB Moore, JM Olkin, CB Spencer, JR Weaver, HA Young, LA Andert, T Andrews, J Banks, M Bauer, B Bauman, J Barnouin, OS Bedini, P Beisser, K Beyer, RA Bhaskaran, S Binzel, RP Birath, E Bird, M Bogan, DJ Bowman, A Bray, VJ Brozovic, M Bryan, C Buckley, MR Buie, MW Buratti, BJ Bushman, SS Calloway, A Carcich, B Cheng, AF Conard, S Conrad, CA Cook, JC Cruikshank, DP Custodio, OS Ore, CMD Deboy, C Dischner, ZJB Dumont, P Earle, AM Elliott, HA Ercol, J Ernst, CM Finley, T Flanigan, SH Fountain, G Freeze, MJ Greathouse, T Green, JL Guo, Y Hahn, M Hamilton, DP Hamilton, SA Hanley, J Harch, A Hart, HM Hersman, CB Hill, A Hill, ME Hinson, DP Holdridge, ME Horanyi, M Howard, AD Howett, CJA Jackman, C Jacobson, RA Jennings, DE Kammer, JA Kang, HK Kaufmann, DE Kollmann, P Krimigis, SM Kusnierkiewicz, D Lauer, TR Lee, JE Lindstrom, KL Linscott, IR Lisse, CM Lunsford, AW Mallder, VA Martin, N McComas, DJ McNutt, RL Mehoke, D Mehoke, T Melin, ED Mutchler, M Nelson, D Nimmo, F Nunez, JI Ocampo, A Owen, WM Paetzold, M Page, B Parker, AH Parker, JW Pelletier, F Peterson, J Pinkine, N Piquette, M Porter, SB Protopapa, S Redfern, J Reitsema, HJ Reuter, DC Roberts, JH Robbins, SJ Rogers, G Rose, D Runyon, K Retherford, KD Ryschkewitsch, MG Schenk, P Schindhelm, E Sepan, B Showalter, MK Singer, KN Soluri, M Stanbridge, D Steffl, AJ Strobel, DF Stryk, T Summers, ME Szalay, JR Tapley, M Taylor, A Taylor, H Throop, HB Tsang, CCC Tyler, GL Umurhan, OM Verbiscer, AJ Versteeg, MH Vincent, M Webbert, R Weidner, S Weigle, GE White, OL Whittenburg, K Williams, BG Williams, K Williams, S Woods, WW Zangari, AM Zirnstein, E AF Stern, S. A. Bagenal, F. Ennico, K. Gladstone, G. R. Grundy, W. M. McKinnon, W. B. Moore, J. M. Olkin, C. B. Spencer, J. R. Weaver, H. A. Young, L. A. Andert, T. Andrews, J. Banks, M. Bauer, B. Bauman, J. Barnouin, O. S. Bedini, P. Beisser, K. Beyer, R. A. Bhaskaran, S. Binzel, R. P. Birath, E. Bird, M. Bogan, D. J. Bowman, A. Bray, V. J. Brozovic, M. Bryan, C. Buckley, M. R. Buie, M. W. Buratti, B. J. Bushman, S. S. Calloway, A. Carcich, B. Cheng, A. F. Conard, S. Conrad, C. A. Cook, J. C. Cruikshank, D. P. Custodio, O. S. Ore, C. M. Dalle Deboy, C. Dischner, Z. J. B. Dumont, P. Earle, A. M. Elliott, H. A. Ercol, J. Ernst, C. M. Finley, T. Flanigan, S. H. Fountain, G. Freeze, M. J. Greathouse, T. Green, J. L. Guo, Y. Hahn, M. Hamilton, D. P. Hamilton, S. A. Hanley, J. Harch, A. Hart, H. M. Hersman, C. B. Hill, A. Hill, M. E. Hinson, D. P. Holdridge, M. E. Horanyi, M. Howard, A. D. Howett, C. J. A. Jackman, C. Jacobson, R. A. Jennings, D. E. Kammer, J. A. Kang, H. K. Kaufmann, D. E. Kollmann, P. Krimigis, S. M. Kusnierkiewicz, D. Lauer, T. R. Lee, J. E. Lindstrom, K. L. Linscott, I. R. Lisse, C. M. Lunsford, A. W. Mallder, V. A. Martin, N. McComas, D. J. McNutt, R. L., Jr. Mehoke, D. Mehoke, T. Melin, E. D. Mutchler, M. Nelson, D. Nimmo, F. Nunez, J. I. Ocampo, A. Owen, W. M. Paetzold, M. Page, B. Parker, A. H. Parker, J. W. Pelletier, F. Peterson, J. Pinkine, N. Piquette, M. Porter, S. B. Protopapa, S. Redfern, J. Reitsema, H. J. Reuter, D. C. Roberts, J. H. Robbins, S. J. Rogers, G. Rose, D. Runyon, K. Retherford, K. D. Ryschkewitsch, M. G. Schenk, P. Schindhelm, E. Sepan, B. Showalter, M. K. Singer, K. N. Soluri, M. Stanbridge, D. Steffl, A. J. Strobel, D. F. Stryk, T. Summers, M. E. Szalay, J. R. Tapley, M. Taylor, A. Taylor, H. Throop, H. B. Tsang, C. C. C. Tyler, G. L. Umurhan, O. M. Verbiscer, A. J. Versteeg, M. H. Vincent, M. Webber, R. Weidner, S. Weigle, G. E., II White, O. L. Whittenburg, K. Williams, B. G. Williams, K. Williams, S. Woods, W. W. Zangari, A. M. Zirnstein, E. TI The Pluto system: Initial results from its exploration by New Horizons SO SCIENCE LA English DT Article ID STELLAR OCCULTATIONS; ATMOSPHERE; METHANE; ICES; SATELLITES; NITROGEN; COLLAPSE; ORIGIN; N-2 AB The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. C1 [Stern, S. A.; Olkin, C. B.; Spencer, J. R.; Young, L. A.; Andrews, J.; Birath, E.; Buie, M. W.; Conrad, C. A.; Cook, J. C.; Dischner, Z. J. B.; Finley, T.; Howett, C. J. A.; Kammer, J. A.; Kaufmann, D. E.; Parker, A. H.; Parker, J. W.; Peterson, J.; Porter, S. B.; Redfern, J.; Robbins, S. J.; Rose, D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Tsang, C. C. C.; Vincent, M.; Zangari, A. M.] SW Res Inst, Boulder, CO 80302 USA. [Bagenal, F.; Horanyi, M.; Piquette, M.; Szalay, J. R.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Ennico, K.; Moore, J. M.; Beyer, R. A.; Cruikshank, D. P.; Ore, C. M. Dalle; Umurhan, O. M.; White, O. L.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Gladstone, G. R.; Elliott, H. A.; Greathouse, T.; Hanley, J.; McComas, D. J.; Retherford, K. D.; Tapley, M.; Versteeg, M. H.; Weidner, S.; Weigle, G. E., II; Zirnstein, E.] SW Res Inst, San Antonio, TX USA. [Grundy, W. M.] Lowell Observ, Flagstaff, AZ 86001 USA. [McKinnon, W. B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Weaver, H. A.; Bauer, B.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Bowman, A.; Buckley, M. R.; Bushman, S. S.; Calloway, A.; Cheng, A. F.; Conard, S.; Custodio, O. S.; Deboy, C.; Ercol, J.; Ernst, C. M.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Guo, Y.; Hamilton, S. A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Holdridge, M. E.; Kang, H. K.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lindstrom, K. L.; Lisse, C. M.; Mallder, V. A.; McNutt, R. L., Jr.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Nunez, J. I.; Pinkine, N.; Roberts, J. H.; Rogers, G.; Runyon, K.; Ryschkewitsch, M. G.; Sepan, B.; Taylor, H.; Webber, R.; Whittenburg, K.; Williams, S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Andert, T.] Univ Bundeswehr Munchen, D-85577 Neubiberg, Germany. [Banks, M.; Throop, H. B.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Bauman, J.; Bryan, C.; Dumont, P.; Jackman, C.; Nelson, D.; Page, B.; Pelletier, F.; Stanbridge, D.; Taylor, A.; Williams, B. G.; Williams, K.] KinetX Aerosp, Tempe, AZ 85284 USA. [Bhaskaran, S.; Brozovic, M.; Buratti, B. J.; Jacobson, R. A.; Owen, W. M.] NASA, Jet Prop Lab, La Canada Flintridge, CA 91011 USA. [Binzel, R. P.; Earle, A. M.] MIT, Cambridge, MA 02139 USA. [Bird, M.] Univ Bonn, D-53113 Bonn, Germany. [Bogan, D. J.; Green, J. L.; Ocampo, A.] NASA Headquarters, Washington, DC 20546 USA. [Bray, V. J.] Univ Arizona, Tucson, AZ 85721 USA. [Carcich, B.] Cornell Univ, Ithaca, NY 14853 USA. [Hahn, M.; Paetzold, M.] Univ Cologne, Rhein Inst Umweltforsch, D-50931 Cologne, Germany. [Hamilton, D. P.; Protopapa, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Harch, A.; Martin, N.; Reitsema, H. J.] SW Res Inst, Boulder, CO 80302 USA. [Hinson, D. P.; Showalter, M. K.] Search Extraterr Intelligence Inst, Mountain View, CA 94043 USA. [Howard, A. D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Jennings, D. E.; Lunsford, A. W.; Reuter, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lauer, T. R.] Natl Opt Astron Observ, Tucson, AZ USA. [Lee, J. E.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Linscott, I. R.; Tyler, G. L.; Woods, W. W.] Stanford Univ, Stanford, CA 94305 USA. [Mutchler, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Nimmo, F.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Schenk, P.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Soluri, M.] Michael Soluri Photog, New York, NY 10014 USA. [Strobel, D. F.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Stryk, T.] Roane State Community Coll, Jamestown, TN 38556 USA. [Summers, M. E.] George Mason Univ, Fairfax, VA 22030 USA. [Verbiscer, A. J.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. RP Stern, SA (reprint author), SW Res Inst, Boulder, CO 80302 USA. EM astern@boulder.swri.edu RI Nunez, Jorge/J-4027-2015; Ernst, Carolyn/I-4902-2012; Weaver, Harold/D-9188-2016; Hill, Matthew/H-4312-2016; Roberts, James/I-9030-2012; Barnouin, Olivier/I-7475-2015; Kollmann, Peter/C-2583-2016; Lisse, Carey/B-7772-2016 OI Nunez, Jorge/0000-0003-0930-6674; Beyer, Ross/0000-0003-4503-3335; Hill, Matthew/0000-0002-5674-4936; Barnouin, Olivier/0000-0002-3578-7750; Kollmann, Peter/0000-0002-4274-9760; Lisse, Carey/0000-0002-9548-1526 FU NASA's New Horizons project FX We thank M. Sykes and three anonymous referees for their careful work to improve this paper, and R. Tedford and C. Chavez for logistical support. We also thank the many engineers who have contributed to the success of the New Horizons mission and NASA's Deep Space Network (DSN) for a decade of excellent support to New Horizons. We acknowledge the contributions to New Horizons of our late colleagues David C. Slater and Thomas C. Coughlin. Supporting imagery is available in the supplementary material. As contractually agreed to with NASA, fully calibrated New Horizons Pluto system data will be released via the NASA Planetary Data System at https://pds.nasa.gov/in a series of stages in 2016 and 2017 as the data set is fully downlinked and calibrated. This work was supported by NASA's New Horizons project. NR 35 TC 36 Z9 37 U1 11 U2 89 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 16 PY 2015 VL 350 IS 6258 AR aad1815 DI 10.1126/science.aad1815 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CT5HD UT WOS:000362838700032 PM 26472913 ER PT J AU Sun, JQ Madhavan, S Xiong, XX Wang, MH AF Sun, Junqiang Madhavan, Sriharsha Xiong, Xiaoxiong Wang, Menghua TI Long-term drift induced by the electronic crosstalk in Terra MODIS Band 29 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB Terra MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors in the NASA's Earth Observing System, which has successfully completed 15 years of on-orbit operation. Terra MODIS continues to collect valuable information of the Earth's energy radiation from visible to thermal infrared wavelengths. The instrument has been well characterized over its lifetime using onboard calibrators whose calibration references are traceable to the National Institute of Standards and Technology standards. In this paper, we focus on the electronic crosstalk effect of Terra MODIS band 29, a thermal emissive band (TEB) whose center wavelength is 8.55 mu m. Previous works have established the mechanism to describe the effect of the electronic crosstalk in the TEB channels of Terra MODIS. This work utilizes the established methodology to apply to band 29. The electronic crosstalk is identified and characterized using the regularly scheduled lunar observations. The moon being a near-pulse-like source allowed easy detection of extraneous signals around the actual Moon surface. First, the crosstalk-transmitting bands are identified along with their amplitudes. The crosstalk effect then is characterized using a moving average mechanism that allows a high fidelity of the magnitude to be corrected. The lunar-based analysis unambiguously shows that the crosstalk contamination is becoming more severe in recent years and should be corrected in order to maintain calibration quality for the affected spectral bands. Finally, two radiometrically well-characterized sites, Pacific Ocean and Libya 1 desert, are used to assess the impact of crosstalk effect. It is shown that the crosstalk contamination induces a long-term upward drift of 1.5 K in band 29 brightness temperature of MODIS Collection 6 L1B, which could significantly impact the science products. The crosstalk effect also induces strong detector-to-detector differences, which result in severe stripping in the Earth view images. With crosstalk correction applied, both the long-term drift and detector differences are significantly reduced. C1 [Sun, Junqiang; Wang, Menghua] NOAA, Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res, College Pk, MD 20740 USA. [Sun, Junqiang] Global Sci & Technol, Greenbelt, MD USA. [Madhavan, Sriharsha] Sci Syst & Applicat Inc, Lanham, MD USA. [Xiong, Xiaoxiong] NASA GSFC, Sci & Explorat Directorate, Greenbelt, MD USA. RP Sun, JQ (reprint author), NOAA, Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res, College Pk, MD 20740 USA. EM junqiang.sun@noaa.gov RI Wang, Menghua/F-5631-2010 OI Wang, Menghua/0000-0001-7019-3125 NR 20 TC 6 Z9 6 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2015 VL 120 IS 19 BP 9944 EP 9954 DI 10.1002/2015JD023602 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WR UT WOS:000209847200008 ER PT J AU Lu, X Chen, C Huang, WT Smith, JA Chu, XZ Yuan, T Pautet, PD Taylor, MJ Gong, JE Cullens, CY AF Lu, Xian Chen, Cao Huang, Wentao Smith, John A. Chu, Xinzhao Yuan, Tao Pautet, Pierre-Dominique Taylor, Mike J. Gong, Jie Cullens, Chihoko Y. TI A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are similar to 0.44 m/s in vertical wind and similar to 1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are similar to 219 +/- 4 and 16.0 +/- 0.3 km, respectively. The intrinsic period is similar to 1.3 h for the airglow layer, Doppler shifted by a mean wind of similar to 17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of similar to 135 degrees clockwise from north and an elevation angle of similar to 3 degrees from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about similar to 2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations. C1 [Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Chen, Cao; Smith, John A.; Chu, Xinzhao] Univ Colorado Boulder, Dept Aerosp Engn Sci, Boulder, CO USA. [Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. [Gong, Jie] NASA, Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA. [Cullens, Chihoko Y.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Lu, X (reprint author), Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM xian.lu@colorado.edu; xinzhao.chu@colorado.edu RI Chen, Cao /D-9851-2016; Lu, Xian/A-2980-2015; Cullens, Chihoko/P-2425-2015 OI Chen, Cao /0000-0002-7780-2787; Lu, Xian/0000-0002-2535-8151; Smith, John/0000-0001-6066-793X; Cullens, Chihoko/0000-0002-9951-9763 FU NSF CRRL grant [AGS-1136272, AGS-1135882]; NSF CEDAR grant [AGS-1343106]; NSF [PLR-1246405, 1042227]; NASA [NNX09AO35H]; CIRES Graduate Student Research Fellowship (GSRF); Air Force DURIP grant [F49620-02-1-0258] FX The STAR lidar work was supported by NSF CRRL grant AGS-1136272. Xian Lu's research was partially supported by the NSF CEDAR grant AGS-1343106 and Cao Chen's by NSF grant PLR-1246405. John A. Smith sincerely acknowledges the generous support of the NASA Earth and Space Science Fellowship (NESSF) with NASA grant NNX09AO35H and of the CIRES Graduate Student Research Fellowship (GSRF). The USU lidar study was performed as a part of the collaborative research program supported by NSF CRRL grant AGS-1135882. The USU AMTM was designed under the Air Force DURIP grant F49620-02-1-0258 and operated through the NSF grant 1042227. We thank Ian F. Barry and Muzhou Lu for helping on the language editing. The data producing the results of this paper can be requested from the corresponding authors (xian.lu@colorado.edu and xinzhao.chu@colorado.edu). NR 62 TC 4 Z9 4 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2015 VL 120 IS 19 BP 10006 EP 10021 DI 10.1002/2015JD023604 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WR UT WOS:000209847200012 ER PT J AU Notaro, M Yu, Y Kalashnikova, OV AF Notaro, Michael Yu, Yan Kalashnikova, Olga V. TI Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB The Arabian Peninsula has experienced pronounced interannual to decadal variability in dust activity, including an abrupt regime shift around 2006 from an inactive dust period during 1998-2005 to an active period during 2007-2013. Corresponding in time to the onset of this regime shift, the climate state transitioned into a combined La Nina and negative phase of the Pacific Decadal Oscillation, which incited a hiatus in global warming in the 2000s. Superimposed upon a long-term regional drying trend, synergistic interactions between these teleconnection modes triggered the establishment of a devastating and prolonged drought, which engulfed the Fertile Crescent, namely, Iraq and Syria, and led to crop failure and civil unrest. Dried soils and diminished vegetation cover in the Fertile Crescent, as evident through remotely sensed enhanced vegetation indices, supported greater dust generation and transport to the Arabian Peninsula in 2007-2013, as identified both in increased dust days observed at weather stations and enhanced remotely sensed aerosol optical depth. According to backward trajectory analysis of dust days on the Arabian Peninsula, increased dust lifting and atmospheric dust concentration in the Fertile Crescent during this recent, prolonged drought episode supported a greater frequency of dust events across the peninsula with associated northerly trajectories and led to the dust regime shift. These findings are particularly concerning, considering projections of warming and drying for the eastern Mediterranean region and potential collapse of the Fertile Crescent during this century. C1 [Notaro, Michael; Yu, Yan] Univ Wisconsin Madison, Nelson Inst Ctr Climat Res, Madison, WI 53706 USA. [Kalashnikova, Olga V.] NASA, Jet Prop Lab, Pasadena, CA USA. RP Notaro, M (reprint author), Univ Wisconsin Madison, Nelson Inst Ctr Climat Res, Madison, WI 53706 USA. EM mnotaro@wisc.edu FU University of Wisconsin-Madison Climate, People, and Environment Program FX Station observations, GPCP, MERRA Reanalysis, EVI, and NCEP-NCAR Reanalysis data were provided by NCDC (www.ncdc.noaa.gov/isd), NOAA (www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html), NASA (disc.sci.gsfc.nasa.gov), United States Geological Survey (lpdaac.usgs.gov), and NOAA (www.esrl.noaa.gov/psd/data/reanalysis), respectively. MODIS and MISR AOD data were provided by NASA Jet Propulsion Laboratory (Olga Kalashnikova, olga.kalashnikova@jpl.nasa.gov). The study was funded by the University of Wisconsin-Madison Climate, People, and Environment Program. Nelson Institute Center for Climatic Research publication 1227. NR 151 TC 14 Z9 14 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2015 VL 120 IS 19 BP 10229 EP 10249 DI 10.1002/2015JD023855 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WR UT WOS:000209847200025 ER PT J AU Jackson, RC McFarquhar, GM Fridlind, AM Atlas, R AF Jackson, Robert C. McFarquhar, Greg M. Fridlind, Ann M. Atlas, Rachel TI The dependence of cirrus gamma size distributions expressed as volumes in N-0-lambda-mu phase space and bulk cloud properties on environmental conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N-0, lambda, mu) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D > 15 mu m collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N-0, mu, and lambda from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension D-mm as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N-0, mu, and lambda, bulk extinction, IWC, and D-mm with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 mu m, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N-0, mu, and lambda between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested. C1 [Jackson, Robert C.; McFarquhar, Greg M.] Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA. [Fridlind, Ann M.; Atlas, Rachel] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Atlas, Rachel] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP McFarquhar, GM (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA. EM mcfarq@illinois.edu FU Office of Biological and Environmental Research (BER) of the U.S. Department of Energy [DE-SC0001279, DE-SC0008500, DE-SC0006988, DE-SC0014065]; Stratton Park Engineering Company; U.S. DOE, Office of Science, BER, Environmental Sciences Division FX This work was supported by the Office of Biological and Environmental Research (BER) of the U.S. Department of Energy (DE-SC0001279, DE-SC0008500, DE-SC0006988, and DE-SC0014065) and by the Stratton Park Engineering Company. Data were obtained from the ARM program archive, sponsored by the U.S. DOE, Office of Science, BER, Environmental Sciences Division. Data were downloaded from the ARM archive, and the raw 2DS data were provided by SPEC. In order to visualize the flight tracks overlaid on GOES visible and infrared satellite images for each flight, the website, given by the link (http://www.pm.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-expe riment-homepage&exp=ARM-SPARTICUS-2009) created by Patrick Minnis was used to generate Figure 3. In order to visualize historical WSR 88D data, the tool provided by the Iowa State University of Science and Technology, available at (https://mesonet.agron.iastate.edu/GIS/apps/rview/warnings.phtml) was used to generate Figure 3. NR 67 TC 9 Z9 9 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2015 VL 120 IS 19 BP 10351 EP 10377 DI 10.1002/2015JD023492 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WR UT WOS:000209847200032 ER PT J AU Ringerud, S Kummerow, CD Peters-Lidard, CD AF Ringerud, S. Kummerow, C. D. Peters-Lidard, C. D. TI A prototype physical database for passive microwave retrievals of precipitation over the US Southern Great Plains SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10 GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information. C1 [Ringerud, S.; Peters-Lidard, C. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kummerow, C. D.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Ringerud, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM sarah.e.ringerud@nasa.gov RI Peters-Lidard, Christa/E-1429-2012 OI Peters-Lidard, Christa/0000-0003-1255-2876 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, and Climate and Environmental Sciences Division; NASA NESSF fellowship grant; NASA's Precipitation Measurement Missions (PMM) Program, NASA Solicitation [NNH09ZDA001N] FX Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, and Climate and Environmental Sciences Division. The authors would like to thank Toshi Matsui of NASA GSFC for providing the model profiles. Data available from the authors by request (sarah@atmos.colostate.edu). This research was funded by a NASA NESSF fellowship grant, in addition to partial support from NASA's Precipitation Measurement Missions (PMM) Program, NASA Solicitation NNH09ZDA001N, PI: Peters-Lidard. NR 41 TC 1 Z9 1 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2015 VL 120 IS 19 BP 10465 EP 10482 DI 10.1002/2015JD023430 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WR UT WOS:000209847200037 ER PT J AU Ueyama, R Jensen, EJ Pfister, L Kim, JE AF Ueyama, Rei Jensen, Eric J. Pfister, Leonhard Kim, Ji-Eun TI Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB Processes that influence the humidity and cirrus cloud abundance in the Tropical Tropopause Layer (TTL) during boreal winter 2006-2007 are investigated in simulations of clouds along backward trajectories of parcels ending at the 372 K potential temperature (100 hPa) level in the tropics. Trajectories are calculated using offline calculations of seasonal mean tropical radiative heating rates along with reanalysis temperature and wind data with enhanced wave-driven variability in the TTL. The one-dimensional (vertical) time-dependent cloud microphysical model is initialized with water vapor measurements from the Microwave Limb Sounder and the evolution of clouds along each trajectory is simulated using temperature profiles extracted from reanalysis data and convective cloud top heights estimated from 3-hourly geostationary satellite imagery. Averaged over the tropics, waves dehydrate the 100 hPa level by 0.5 ppmv, while convection and cloud microphysical processes moisten by 0.3 and 0.7 ppmv, respectively. The tropical mean cloud occurrence frequencies in the middle to upper TTL agree well with those based on satellite observations (spatial correlation of 0.8). Waves and convection enhance cloud occurrence at the cold point tropopause by 4% and 2%, respectively. Temporal variability of the heating rates as indicated by the ERA-Interim 6-hourly heating rate fields dehydrates the TTL by 0.4 ppmv and decreases the cloud occurrence by 4% because parcels are more likely to encounter the coldest temperatures and dehydrate near the cold point, limiting cloud formation above. The final dehydration locations of parcels, concentrated near the dateline in the tropical Pacific, are insensitive to various model parameters. C1 [Ueyama, Rei; Jensen, Eric J.; Pfister, Leonhard] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ueyama, Rei] Bay Area Environm Res Inst, Petaluma, CA USA. [Kim, Ji-Eun] NorthWest Res Associates, CoRA Off, Boulder, CO USA. RP Ueyama, R (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM rei.ueyama@nasa.gov FU NASA Airborne Tropical Tropopause Experiment; NASA Upper-Atmosphere Research Program; NASA Postdoctoral Program FX We would like to thank Mark Schoeberl, Tao Wang, and an anonymous reviewer for thoughtful and helpful comments. We also thank the Aura Science Team for the MLS data (http://mls.jpl.nasa.gov/), the CALIPSO science team for the cloud profile data (https://eosweb.larc.nasa.gov/project/calipso/calipso_table), and ECMWF for the ERA-Interim data (http://apps.ecmwf.int/datasets/data/interim_full_daily/). This work was funded by the NASA Airborne Tropical Tropopause Experiment, NASA Upper-Atmosphere Research Program, and the NASA Postdoctoral Program. NR 55 TC 6 Z9 6 U1 4 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 16 PY 2015 VL 120 IS 19 BP 10483 EP 10500 DI 10.1002/2015JD023318 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA V45WR UT WOS:000209847200038 ER PT J AU Jagodnik, KM Blana, D van den Bogert, AJ Kirsch, RF AF Jagodnik, Kathleen M. Blana, Dimitra van den Bogert, Antonie J. Kirsch, Robert F. TI An optimized proportional-derivative controller for the human upper extremity with gravity SO JOURNAL OF BIOMECHANICS LA English DT Article DE Upper extremity; Musculoskeletal modeling and simulation; Optimization; Human; Feedback control; Proportional-derivative; Functional electrical stimulation ID FUNCTIONAL ELECTRICAL-STIMULATION; SPINAL-CORD-INJURY; ELBOW EXTENSION; NEUROMUSCULAR STIMULATION; ARM MOVEMENT; INDIVIDUALS; SYSTEMS; MUSCLE; RESTORATION; TETRAPLEGIA AB When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design. Published by Elsevier Ltd. C1 [Jagodnik, Kathleen M.; van den Bogert, Antonie J.; Kirsch, Robert F.] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. [Jagodnik, Kathleen M.] NASA Glenn Res Ctr, Fluid Phys & Transport Proc Branch, Cleveland, OH 44135 USA. [Jagodnik, Kathleen M.] Baylor Coll Med, Ctr Space Med, Houston, TX 77030 USA. [Blana, Dimitra] Keele Univ, Inst Sci & Technol Med, Keele, Staffs, England. [van den Bogert, Antonie J.] Cleveland State Univ, Dept Mech Engn, Fenn Coll Engn, Cleveland, OH 44115 USA. [van den Bogert, Antonie J.] Orchard Kinet LLC, Cleveland, OH USA. [Kirsch, Robert F.] Cleveland Funct Elect Stimulat FES Ctr, Cleveland, OH USA. [Kirsch, Robert F.] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH USA. [Kirsch, Robert F.] MetroHlth Med Ctr, Cleveland, OH USA. RP Jagodnik, KM (reprint author), NASA Glenn Res Ctr, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA. EM kathleen.jagodnik@nasa.gov RI van den Bogert, Antonie/A-7809-2009; OI van den Bogert, Antonie/0000-0002-3791-3749; Blana, Dimitra/0000-0003-0488-6120 FU National Institutes of Health (NIH) fellowship [TRN030167]; NIH [T32-EB004314]; Ardiem Medical Arm Control Device Grant [W81XWH0720044] FX This project was funded by National Institutes of Health (NIH) fellowship #TRN030167, NIH Training Grant #T32-EB004314, and Ardiem Medical Arm Control Device Grant #W81XWH0720044. The authors thank ions Lambrecht for his 3D arm visualization software, Dr. Peter Cooman for his input on project planning, Dr. Steven Sidik for statistical analysis guidance, and the CWRU High Performance Computing Cluster group for assistance with running simulations. NR 40 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 EI 1873-2380 J9 J BIOMECH JI J. Biomech. PD OCT 15 PY 2015 VL 48 IS 13 BP 3692 EP 3700 DI 10.1016/j.jbiomech.2015.08.016 PG 9 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA CX0DS UT WOS:000365367700018 PM 26358531 ER PT J AU Ahumada-Sempoal, MA Flexas, MM Bernardello, R Bahamon, N Cruzado, A Reyes-Hernandez, C AF Ahumada-Sempoal, M. -A. Flexas, M. M. Bernardello, R. Bahamon, N. Cruzado, A. Reyes-Hernandez, C. TI Shelf-slope exchanges and particle dispersion in Blanes submarine canyon (NW Mediterranean Sea): A numerical study SO CONTINENTAL SHELF RESEARCH LA English DT Article DE Submarine canyon; Shelf-slope exchanges; Particle dispersion; Residence time; Numerical modeling ID INTERANNUAL VARIABILITY; NORTHERN CURRENT; CIRCULATION; MARGIN; COAST; FLOW; PHYTOPLANKTON; DYNAMICS; HOTSPOTS; BIOMASS AB A climatological simulation performed with a fine-resolution (similar to 1.2 km) 3D circulation model nested in one-way to a coarse-resolution (similar to 4 km) 3D regional model is used to examine the cross-shelf break water exchange in the Blanes submarine canyon (similar to 41 degrees 00'-41 degrees 46'N; similar to 02 degrees 24'-03 degrees 24'E). A Lagrangian particle-tracking model coupled to the fine-resolution 3D circulation model is used to investigate the role of the incident regional flow (i.e. the Northern Current, NC) and its seasonal variability on the dispersion and residence time of passive particles inside Blanes Canyon. The NC flows southwestward, along the slope, with the coastline to the right. Water is advected offshore/onshore at the upstream/downstream canyon walls, with a net water transport toward the slope (i.e. offshore). The amount of water moved across the shelf break of the upstream wall is approximately three times larger than the amount moved across the shelf break of the downstream wall. This preferential zone for cross-shelf break water exchange is explained by the asymmetric geometry of the canyon and the orientation of the incident current with respect to the canyon bathymetry. Passive particles released upstream Blanes Canyon between the mid-shelf and the upper-slope drift within the NC and accumulate over the shelf edge of the canyon. About half of the particles released at depths above the shelf break move towards shallower areas inside the canyon. In contrast, about two-thirds of particles released below the shelf break move to deeper areas. Particle dispersion is higher under weakly (e.g. winter) than strongly (e.g. summer) stratified conditions. The residence time of passive particles inside the canyon (similar to 4-6 days) is double than the residence time downstream of the canyon, indicating that the canyon acts as an efficient retention zone for passive particles. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ahumada-Sempoal, M. -A.; Reyes-Hernandez, C.] Univ del Mar, San Pedro Pochutla 70902, Oaxaca, Mexico. [Flexas, M. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Bernardello, R.] Natl Oceanog Ctr, Southampton S014 3ZH, Hants, England. [Bahamon, N.] CSIC, CEAB, Blanes 17300, Spain. [Cruzado, A.] Oceans Catalonia Int SL, Blanes 17300, Spain. RP Ahumada-Sempoal, MA (reprint author), Univ del Mar, Ciudad Univ S-N, San Pedro Pochutla 70902, Oaxaca, Mexico. EM ahumada@angel.umar.mx; msbert@jpl.nasa.gov; raffer@noc.ac.uk; bahamon@ceab.csic.es; acruzado@oceans.cat; creyes@angel.umar.mx OI Bernardello, Raffaele/0000-0003-4923-1582 FU PROMEP (SEP-Mexico) FX The numerical simulations were performed at the Calculo Masivo Laboratory, Universidad del Mar Campus Puerto Angel. M.A. was partially supported by PROMEP (SEP-Mexico) in the framework of a Ph.D. Grant. Comments and suggestions of the editor and one anonymous reviewer have helped to largely improve the manuscript. This research was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 46 TC 0 Z9 0 U1 3 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-4343 EI 1873-6955 J9 CONT SHELF RES JI Cont. Shelf Res. PD OCT 15 PY 2015 VL 109 BP 35 EP 45 DI 10.1016/j.csr.2015.09.012 PG 11 WC Oceanography SC Oceanography GA CW3NE UT WOS:000364898200004 ER PT J AU Tompson, SR AF Tompson, Sara R. TI The Science of the Perfect Swing. SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD OCT 15 PY 2015 VL 140 IS 17 BP 109 EP 110 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA CT8RP UT WOS:000363084400236 ER PT J AU Ruzmaikin, A Feynman, J AF Ruzmaikin, Alexander Feynman, Joan TI The Earth's climate at minima of Centennial Gleissberg Cycles SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Centennial solar variability; Climate change forcing ID GLOBAL-WARMING SLOWDOWN; SURFACE-TEMPERATURE; SOLAR VARIABILITY; MAUNDER MINIMUM; TIME SCALES; CIRCULATION; IRRADIANCE; MODEL AB The recent extended, deep minimum of solar variability and the extended minima in the 19th and 20th centuries (1810-1830 and 1900 1920) are consistent with minima of the Centennial Gleissberg Cycle (CGC), a 90-100 year variation of the amplitude of the 11-year sunspot cycle observed on the Sun and at the Earth. The Earth's climate response to these prolonged low solar radiation inputs involves heat transfer to the deep ocean causing a time lag longer than a decade. The spatial pattern of the climate response, which allows distinguishing the CGC forcing from other climate forcings, is dominated by the Pacific North American pattern (PNA). The CGC minima, sometimes coincidently in combination with volcanic forcing, are associated with severe weather extremes. Thus the 19th century CGC minimum, coexisted with volcanic eruptions, led to especially cold conditions in United States, Canada and Western Europe. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Ruzmaikin, Alexander; Feynman, Joan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ruzmaikin, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Ruzmaikin@jpl.nasa.gov; Joan.Feynman@jpl.nasa.gov FU Jet Propulsion Laboratory of California Institute of Technology; NASA Living with a Star Targeted Research and Technology [NNN13D832T]; National Aeronautics and Space Administration FX We are grateful to the reviewers for helpful comments. This work was supported in part by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge the NASA Living with a Star Targeted Research and Technology Grant NNN13D832T. NR 57 TC 1 Z9 1 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD OCT 15 PY 2015 VL 56 IS 8 BP 1590 EP 1599 DI 10.1016/j.asr.2015.07.010 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CT2AL UT WOS:000362604300003 ER PT J AU Giunta, T Ader, M Bonifacie, M Agrinier, P Coleman, M AF Giunta, Thomas Ader, Magali Bonifacie, Magali Agrinier, Pierre Coleman, Max TI Pre-concentration of chloride in dilute water-samples for precise delta Cl-37 determination using a strong ion-exchange resin: Application to rainwaters SO CHEMICAL GEOLOGY LA English DT Article DE Chlorine stable isotopes; Ion-exchange; Pre-concentration; Rainwater analysis ID STABLE-ISOTOPE RATIOS; MASS-SPECTROMETRY; ORGANIC-COMPOUNDS; FLUIDS; RATES; BIODEGRADATION; CHROMATOGRAPHY; EVOLUTION; DIFFUSION; VOLCANOS AB Low chloride concentration in water samples is a limitation for chlorine stable isotope measurements using a gas source isotope ratio mass spectrometer (IRMS). Here we describe an optimized method of chloride (Cl-) pre-concentration for dilute waters using a strong anion-exchange resin (Amberlite AG 1-X4). In order to validate our method and its reliability for delta Cl-37 measurements we made high precision delta Cl-37 measurements by dual inlet (DI) IRMS, also applicable to delta Cl-37 measurements by continuous flow IRMS. A 3 ml solid phase extraction (SPE) cartridge is filled with 1 ml of Amberlite resin in hydroxide form (100-200 mesh) and is rinsed with 50 ml of a 1 M NaOH solution. The water sample containing aqueous chlorides is then loaded through the column at a flow rate of about 1.5 ml/min. Because of the high partition coefficient of Cl- between resin and water (Kd > 5300) the exchange of Cl- onto the resin is very efficient. We found that a volume as low as 5 ml of a 1 M KNO3 solution is enough for quantitative Cl- recovery from 1 ml of resin. Using an internal laboratory standard solution as well as natural samples (seawaters and hydrothermal waters) with more complex chemistries and known delta Cl-37 values, the efficiency of this method was validated in terms of Cl- recovery yields, as well as accuracy and reproducibility of delta Cl-37 measurements. For dilute standard solutions with chloride concentrations ranging from 0.02 to 0.4 mmol/l (Cl amounts ranging from 20 to 80 mu mol), the whole procedure recovery yields (ie. including the steps of Cl- pre-concentration and conversion into CH3Cl as well as consecutive CH3Cl purification) are 101 +/- 7% (1 sigma, n = 21) and the measured delta Cl-37 agrees with the expected delta Cl-37 value to within +/- 0.04%(1s), our current level of external precision reached by DI-IRMS measurements. Seawaters and hydrothermal waters with known delta Cl-37 values have also been diluted and treated using this method. All samples show quantitative Cl-recovery (yields similar to 100%) and accurate delta Cl-37 values, with one maximum shift from the expected value of + 0.09%. We also found that for water samples containing relatively high concentrations of anions with a higher affinity for the resin than chlorides, such as sulfates or nitrates, the resin capacity may be exceeded, preventing a quantitative recovery of Cl- and yielding lower delta Cl-37 than expected. For such samples, we recommend increasing the volume of resin adequately. This method allows the investigation of as yet poorly documented delta Cl-37 in dilute natural waters (e.g., soil solutions, rainwaters and river waters) with highly precise DI-IRMS measurements. In a preliminary investigation, we applied our method to 6 rainwater samples collected at the summit and lowland of the Soufriere volcano. For Cl- concentrations between 0.06 and 0.1 mmol/l we found small but significant delta Cl-37 variations, with values ranging from -0.16 to + 0.38% (+/- 0.04%, 1s). These results demonstrate that in active volcanic contexts, where rainwater Cl-may be partly sourced from volcanic degassing, delta Cl-37 carries information, which deserves further investigation given its potential implication for volcanic monitoring. (C) 2015 Elsevier B.V. All rights reserved. C1 [Giunta, Thomas; Ader, Magali; Bonifacie, Magali; Agrinier, Pierre] Univ Paris Diderot, Equipe Geochim Isotopes Stables, Inst Phys Globe Paris, Sorbonne Paris Cite,UMR 7154,CNRS, F-75005 Paris, France. [Bonifacie, Magali] Inst Phys Globe Paris, Observ Volcanol & Sismol Guadeloupe, F-97113 Le Houelmont, Gourbeyre Guade, France. [Coleman, Max] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Coleman, Max] NASA, Astrobiol Inst, Pasadena, CA 91109 USA. RP Giunta, T (reprint author), Univ Paris Diderot, Equipe Geochim Isotopes Stables, Inst Phys Globe Paris, Sorbonne Paris Cite,UMR 7154,CNRS, F-75005 Paris, France. EM giunta@ipgp.fr RI ader, magali/A-5613-2011 OI ader, magali/0000-0002-9239-1509 FU ANR CO2FIX [ANR-08-PCO2-003-03]; IPGP/Ademe/Schlumberger/Total CO2 geological storage program; JPL; IPGP FX The authors wish to thank Remi Losno for help with ICP-AES measurements, Celine Dessert and the team from Observatoire Volcanologique et Sismologique de la Guadeloupe (OVSG) for access to rainwater samples, as well as Hans Eggenkamp, Jean-Louis Birck and Pascale Louvat for support and stimulating exchanges. T. Giunta thanks the ANR CO2FIX (ANR-08-PCO2-003-03) and the IPGP/Ademe/Schlumberger/Total CO2 geological storage program for funding, and the members of its respective committees for stimulating discussions. The contribution of M. Coleman was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration ( NASA) and also at the IPGP, while on sabbatical research leave supported by JPL and by the IPGP. This is IPGP contribution n3657. NR 41 TC 2 Z9 2 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD OCT 15 PY 2015 VL 413 BP 86 EP 93 DI 10.1016/j.chemgeo.2015.08.019 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CS1RP UT WOS:000361845700008 ER PT J AU Schmitt, MP Rai, AK Zhu, DM Dorfman, MR Wolfe, DE AF Schmitt, Michael P. Rai, Amarendra K. Zhu, Dongming Dorfman, Mitchell R. Wolfe, Douglas E. TI Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Thermal barrier coating (TBC); Air plasma spray; Low-k; Rare earth zirconia; Composite; Erosion ID MICROSTRUCTURE; ARCHITECTURES; MECHANISMS; DEPOSITS; BEHAVIOR; SYSTEMS; OXIDES AB To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt.% yttria stabilized zirconia (7YSZ), similar to 1200 degrees C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t', Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by similar to 13% and similar to 25%, respectively. The 40 wt.% t' Low-k composite (40 wt.% t' Low-k 60 wt.% cubic Low-k) showed a similar to 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal conductivity in the composite coating. It was observed that a mere 20 wt.% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability. (C) 2015 Elsevier B.V. All rights reserved. C1 [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Rai, Amarendra K.] Universal Energy Syst Inc, Dayton, OH 45432 USA. [Zhu, Dongming] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Dorfman, Mitchell R.] Oerlikon Metco US Inc, Westbury, NY 11590 USA. [Wolfe, Douglas E.] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. RP Wolfe, DE (reprint author), Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. EM dew125@arl.psu.edu FU Department of Energy (DOE) STIR [DE-SC0004356]; Applied Research Laboratory Eric Walker Fellowship Program FX This research was sponsored by the Department of Energy (DOE) STIR under award number DE-SC0004356 (Dr. Patcharin Burke) and the Applied Research Laboratory Eric Walker Fellowship Program. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US DOE. NR 31 TC 2 Z9 3 U1 4 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD OCT 15 PY 2015 VL 279 BP 44 EP 52 DI 10.1016/j.surfcoat.2015.08.010 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CS1YJ UT WOS:000361864500007 ER PT J AU Fontana, P Pettit, D Cristoforetti, S AF Fontana, Pietro Pettit, Donald Cristoforetti, Samantha TI Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystal morphology; Skeletal crystals; Hopper pyramids; Dendrites; Microgravity conditions; Sodium chloride ID PATTERN-FORMATION; CRYSTALS AB Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a Rat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pettit, Donald] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Cristoforetti, Samantha] ESA, European Astronaut Ctr, Cologne, Germany. RP Fontana, P (reprint author), Josef Reinhart Weg 1, CH-4500 Solothurn, Switzerland. EM Pietro.Fontana@gawnet.ch RI 崔, 大鹏/O-6295-2015 FU Schweizer Salinen AG; RMS Foundation FX We wish to thank the Schweizer Salinen AG and the RMS Foundation for the support of this study and especially R. Heuberger (RMS Foundation) for the investigations using confocal microscopy. NR 15 TC 0 Z9 0 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD OCT 15 PY 2015 VL 428 BP 80 EP 85 DI 10.1016/j.jcrysgro.2015.07.026 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA CQ3KO UT WOS:000360501200012 ER PT J AU Desai, AR Xu, K Tian, HQ Weishampel, P Thom, J Baumann, D Andrews, AE Cook, BD King, JY Kolka, R AF Desai, Ankur R. Xu, Ke Tian, Hanqin Weishampel, Peter Thom, Jonathan Baumann, Dan Andrews, Arlyn E. Cook, Bruce D. King, Jennifer Y. Kolka, Randall TI Landscape-level terrestrial methane flux observed from a very tall tower (vol 201, pg 61, 2015) SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Correction C1 [Desai, Ankur R.; Xu, Ke; Thom, Jonathan] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA. [Tian, Hanqin] Auburn Univ, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Weishampel, Peter] Natl Ecol Observ Network Inc, Great Lakes Domain, Land O Lakes, WI USA. [Baumann, Dan] US Geol Survey, Wisconsin Water Sci Ctr, Rhinelander, WI USA. [Andrews, Arlyn E.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Cook, Bruce D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [King, Jennifer Y.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Kolka, Randall] US Forest Serv, USDA, No Res Stn, Grand Rapids, MI USA. RP Desai, AR (reprint author), Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA. EM desai@aos.wisc.edu RI Tian, Hanqin/A-6484-2012; OI Tian, Hanqin/0000-0002-1806-4091; Desai, Ankur/0000-0002-5226-6041 NR 1 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD OCT 15 PY 2015 VL 211 BP 1 EP 1 DI 10.1016/j.agrformet.2015.05.007 PG 1 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CN8PC UT WOS:000358702100001 ER PT J AU Fine, R Miller, MB Yates, EL Iraci, LT Gustin, MS AF Fine, Rebekka Miller, Matthieu B. Yates, Emma L. Iraci, Laura T. Gustin, Mae Sexauer TI Investigating the influence of long-range transport on surface O-3 in Nevada, USA, using observations from multiple measurement platforms SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Asian pollution; Stratosphere to troposphere transport; Back trajectory ID WESTERN UNITED-STATES; OZONE CONCENTRATIONS; FREE TROPOSPHERE; ASIAN AEROSOLS; NORTH-AMERICA; DEPOSITION; MERCURY; METHANE AB The current United States (US) National Ambient Air Quality Standard (NAAQS) for O-3 (75 ppb) is expected to be revised to between 60 and 70 ppb. As the NAAQS becomes more stringent, characterizing the extent of O-3 and precursors transported into the US is increasingly important. Given the high elevation, complex terrain, and location in the Intermountain West, the State of Nevada is ideally situated to intercept air transported into the US. Until recently, measurements of O-3 and associated pollutants were limited to areas in and around the cities of Las Vegas and Reno. In 2011, the Nevada Rural Ozone Initiative began and through this project 13 surface monitoring sites were established. Also in 2011, the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) began making routine aircraft measurements of O-3 and other greenhouse gases in Nevada. The availability of aircraft and surface measurements in a relatively rural, remote setting in the Intermountain West presented a unique opportunity to investigate sources contributing to the O-3 observed in Nevada. Our analyses indicate that stratosphere to troposphere transport, long-range transport of Asian pollution, and regional emissions from urban areas and wildfires influence surface observations. The complexity of sources identified here along with the fact that O-3 frequently approaches the threshold being considered for a revised NAAQS indicate that interstate and international cooperation will be necessary to achieve compliance with a more stringent regulatory standard. Further, on a seasonal basis we found no significant difference between daily 1-h maximum O-3 at surface sites, which ranged in elevation from 888 to 2307 m, and aircraft measurements of O-3 <2500 m which suggests that similar processes influence daytime O-3 across rural Nevada and indicates that column measurements from Railroad Valley, NV are useful in understanding these processes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fine, Rebekka; Miller, Matthieu B.; Gustin, Mae Sexauer] Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA. [Yates, Emma L.; Iraci, Laura T.] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. RP Fine, R (reprint author), 1664 N Virginia St MS 186, Reno, NV 89557 USA. EM rebekkafine@gmail.com; mgustin@cabnr.unr.edu FU Nevada Division of Environmental Protection [DEP 11-006]; Science Team for the Orbiting Carbon Observatory-2 Mission [NNH11ZDA001N-OCO2]; NASA Postdoctoral Program; Ames Research Center Director's funds; H211 L.L.C; NASA Ames Research Center FX This study was supported in part by funding from the Nevada Division of Environmental Protection under contract DEP 11-006. We greatly appreciate the support of the personnel from the Nevada Division of State Parks, National Park Service, Nevada Division of Environmental Protection, US Department of Energy, Clark County Department of Air Quality, as well as the Cripps and Lesperance families for the assistance with maintaining field monitoring sites in Nevada. We gratefully recognize the support and partnership of H211 L.L.C. with NASA Ames Research Center, with particular thanks to K. Ambrose, R. Simone, B. Quiambao, R. Fisher, J. Lee and L. Sharma. Technical contributions from Z. Young, E. Quigley, A. Trias, J. Tadic, M. Loewenstein, J. Lopez, M. Roby, and W. Gore are acknowledged. Funding from the Science Team for the Orbiting Carbon Observatory-2 Mission (NNH11ZDA001N-OCO2) (K. Jucks, NASA Program Officer), the NASA Postdoctoral Program, and the Ames Research Center Director's funds is gratefully acknowledged. We also acknowledge NOAA ESRL GMD for the O3 sonde data and the IMPROVE program for the PM chemical composition data. We also thank the two reviewers for their constructive comments which helped to improve this manuscript. NR 39 TC 3 Z9 3 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD OCT 15 PY 2015 VL 530 BP 493 EP 504 DI 10.1016/j.scitotenv.2015.03.125 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA CL0CH UT WOS:000356605800054 PM 25845306 ER PT J AU Moore, ME Berejikian, BA Goetz, FA Berger, AG Hodgson, SS Connor, EJ Quinn, TP AF Moore, Megan E. Berejikian, Barry A. Goetz, Frederick A. Berger, Andrew G. Hodgson, Sayre S. Connor, Edward J. Quinn, Thomas P. TI Multi-population analysis of Puget Sound steelhead survival and migration behavior SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Steelhead; Survival; Smolts; Migration; Telemetry ID TROUT ONCORHYNCHUS-MYKISS; SIZE-SELECTIVE MORTALITY; ATLANTIC SALMON POSTSMOLTS; COLUMBIA RIVER ESTUARY; MARINE SURVIVAL; PACIFIC SALMON; COHO SALMON; JUVENILE SALMONIDS; BRITISH-COLUMBIA; CHINOOK SALMON AB Until recently, research on mortality of anadromous fishes in the marine environment was largely limited to estimates of total mortality and association with group characteristics or the environment. Advances in sonic transmitter technology now allow estimates of survival in discrete marine habitats, yielding important information on species of conservation concern. Previous telemetry studies of steelhead Oncorhynchus mykiss smolts in Puget Sound, Washington, USA indicated that approx. 80% of fish entering marine waters did not survive to the Pacific Ocean. The present study re-examined data from previous research and incorporated data from additional Puget Sound populations (n = 7 wild and 6 hatchery populations) tagged during the same period (2006-2009) for a comprehensive analysis of steelhead early marine survival. We used mark-recapture models to examine the effects of several factors on smolt survival and to identify areas of Puget Sound where mortality rates were highest. Wild smolts had higher survival probabilities in general than hatchery smolts, with exceptions, and wild smolts released in early April and late May had a higher probability of survival than those released in early and mid-May. Steelhead smolts suffered greater instantaneous mortality rates in the central region of Puget Sound and from the north end of Hood Canal through Admiralty Inlet than in other monitored migration segments. Early marine survival rates were low (16.0 and 11.4% for wild and hatchery populations, respectively) and consistent among wild populations, indicating a common rather than watershed-specific mortality source. With segment-specific survival information we can begin to identify locations associated with high rates of mortality, and identify the mechanisms responsible. C1 [Moore, Megan E.; Berejikian, Barry A.] Natl Ocean & Atmospher Adm Fisheries, Environm & Fisheries Sci, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Manchester, WA 98353 USA. [Goetz, Frederick A.] US Army Corps Engineers, Seattle, WA 98134 USA. [Berger, Andrew G.] Puyallup Tribe Indians, Puyallup Tribe Fisheries Dept, Tacoma, WA 98404 USA. [Hodgson, Sayre S.] Nisqually Indian Tribe, Dept Nat Resources, Olympia, WA 98513 USA. [Connor, Edward J.] City Seattle, Seattle City Light, Seattle, WA 98104 USA. [Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. RP Moore, ME (reprint author), Natl Ocean & Atmospher Adm Fisheries, Environm & Fisheries Sci, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, POB 130, Manchester, WA 98353 USA. EM megan.moore@noaa.gov FU Steelhead Trout Club; Wild Steelhead Coalition; Nisqually Tribe; Puyallup Tribe; Squaxin Tribe; H. Mason Keeler Endowment; Washington Department of Fish and Wildlife; King County Department of Natural Resources; Seattle City Light; US Army Corps of Engineers; NOAA Fisheries; Pacific Ocean Shelf Tracking; Washington State FX This is Publication Number 2 from the Salish Sea Marine Survival Project: an international, collaborative research effort designed to determine the primary factors affecting the survival of juvenile chinook, coho and steelhead survival in the combined marine waters of Puget Sound and Strait of Georgia (marinesurvivalproject.com). Funding was provided by Washington State with equal in-kind contributions by those participating in the research. Additional funding was provided by the Steelhead Trout Club, Wild Steelhead Coalition, Nisqually Tribe, Puyallup Tribe, Squaxin Tribe, H. Mason Keeler Endowment to the University of Washington, Washington Department of Fish and Wildlife, King County Department of Natural Resources, Seattle City Light, US Army Corps of Engineers, NOAA Fisheries, Pacific Ocean Shelf Tracking. The study could not have been successful without the help of several individuals, to whom we are grateful, especially Skip Tezak, Joy Lee Waltermire, Rick Endicott, Teresa Sjostrom, Sean Hildebrandt, Mat Gillam, Eric Jeanes, Catherine Morello, Bob Leland, Kelly Kiyohara, Pat Michael, Brody Antipa, Pete Topping, Deborah Feldman, Kelly Andrews, John Blaine, Jim Deveraux, Correigh Greene, Shawn Larson, Jeff Christiansen, John Rupp, Chuck Ebel, Hal Boynton, Nate Mantua, John Kelly, Ed Conroy, Jose Reyes-Tomassini, Jennifer Scheurell, Chris Ewing, Dawn Pucci, Kurt Dobszinsky, Paul Winchell, David Welch, Debbie Goetz, Jose Gimenez, Aswea Porter, Emiliano Perez, Craig Smith, Tim Willson, Florian Leischner, Christopher Ellings, and Scott Steltzner. We also thank Mike Melnychuk and Jeff Laake for crucial support of the mark-recapture modeling process. NR 59 TC 2 Z9 2 U1 3 U2 21 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD OCT 14 PY 2015 VL 537 BP 217 EP 232 DI 10.3354/meps11460 PG 16 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA CU0BR UT WOS:000363180900017 ER PT J AU Hertz, E Trudel, M Brodeur, RD Daly, EA Eisner, L Farley, EV Harding, JA MacFarlane, RB Mazumder, S Moss, JH Murphy, JM Mazumder, A AF Hertz, Eric Trudel, M. Brodeur, R. D. Daly, E. A. Eisner, L. Farley, E. V., Jr. Harding, J. A. MacFarlane, R. B. Mazumder, S. Moss, J. H. Murphy, J. M. Mazumder, A. TI Continental-scale variability in the feeding ecology of juvenile Chinook salmon along the coastal Northeast Pacific Ocean SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Diet; Stable isotope; Trophic level; Turnover; Diet dependent discrimination factor; Oncorhynchus tshawytscha; Carbon; Nitrogen; Niche width; Ontogeny ID STABLE-ISOTOPE RATIOS; FOOD-WEB STRUCTURE; COMMUNITY-WIDE MEASURES; ONTOGENIC DIET SHIFTS; EASTERN BERING-SEA; TROPHIC STRUCTURE; ONCORHYNCHUS-TSHAWYTSCHA; CALIFORNIA CURRENT; MARINE SURVIVAL; WEST-COAST AB Trophic interactions within and among species vary widely across spatial scales and species' ontogeny. However, the drivers and implications of this variability are not well understood. Juvenile Chinook salmon Oncorhynchus tshawytscha have a wide distribution, ranging from northern California to the eastern Bering Sea in North America, but it is largely unknown how their feeding ecology varies and changes with ontogeny across this range. We collected juvenile Chinook salmon and zooplankton using standardized protocols along the coastal Northeast Pacific Ocean. Using a combination of stomach contents and stable isotopes of nitrogen (delta N-15) and carbon (delta C-13) to characterize feeding ecology, we found regional differences in prey utilization by juvenile Chinook salmon. With growth and ontogeny, juvenile salmon in all regions became equilibrated with oceanic isotopic values. There were regional differences in the d13C values of juvenile Chinook salmon that may correspond to regional differences in sea surface temperature. There were also regional differences in stable isotope-derived trophic level, and these estimates differed from those derived from stomach contents, possibly due to the different periods over which these metrics integrate. Dietary niche width, as indicated by stable isotopes, corresponded to the expected dietary diversity from stomach contents, combined with the isotopic variability seen in baseline values. Our results indicate strong geographic and ontogenetic differences in feeding ecology of juvenile Chinook salmon. These differences are likely influenced by a combination of ocean-entry date, ocean-entry size, ontogeny, growth rates and regional conditions. C1 [Hertz, Eric; Trudel, M.; Mazumder, S.; Mazumder, A.] Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada. [Trudel, M.] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada. [Brodeur, R. D.] Oregon State Univ, Hatfield Marine Sci Ctr, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Newport, OR 97365 USA. [Daly, E. A.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. [Eisner, L.; Farley, E. V., Jr.; Moss, J. H.; Murphy, J. M.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Ted Stevens Marine Res Inst, Juneau, AK 99801 USA. [Harding, J. A.; MacFarlane, R. B.] Natl Ocean & Atmospher Adm Fisheries, Southwest Fisheries Sci Ctr, Santa Cruz Lab, Santa Cruz, CA 95060 USA. RP Hertz, E (reprint author), Univ Victoria, Dept Biol, POB 3020,Stn CSC, Victoria, BC V8W 3N5, Canada. EM hertzy@uvic.ca RI Trudel, Marc/H-1955-2012; OI Hertz, Eric/0000-0002-2733-3812 FU NSERC; Fisheries and Oceans Canada; US National Marine Fisheries Service; Bonneville Power Administration FX The authors thank the numerous colleagues who were instrumental in collecting and processing the salmon in this study. We also thank the captains and crews of the CCGS 'W. E. Ricker', FV 'Frosti', and FV 'Sea Storm'. We thank Skip McKinnell for collating the sea surface temperature data. Marisa Litz, Brian Starzomski, James Robinson, and 3 anonymous reviewers provided helpful comments on an earlier draft of the manuscript. We thank NSERC, Fisheries and Oceans Canada, the US National Marine Fisheries Service and Bonneville Power Administration for funding. NR 84 TC 6 Z9 6 U1 3 U2 16 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD OCT 14 PY 2015 VL 537 BP 247 EP 263 DI 10.3354/meps11440 PG 17 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA CU0BR UT WOS:000363180900019 ER PT J AU Chembo, YK Grudinin, IS Yu, N AF Chembo, Yanne K. Grudinin, Ivan S. Yu, Nan TI Spatiotemporal dynamics of Kerr-Raman optical frequency combs SO PHYSICAL REVIEW A LA English DT Article ID MICRORESONATOR; LASER; GENERATION; MICROCAVITY; RESONATORS; SPECTRUM; FLUORIDE; FIBER; CHIP AB Optical frequency combs generated with ultrahigh-Q whispering-gallery-mode resonators are expected to provide a compact, versatile, and energy-efficient source for the generation of coherent lightwave and microwave signals. So far, Kerr and Raman nonlinearities in these resonators have predominantly been investigated separately, even though both effects originate from the same third-order susceptibility. We present a spatiotemporal formalism for the theoretical understanding of these Kerr-Raman combs, which allows us to describe the complex interplay between both nonlinearities and all-order dispersion. These theoretical findings are successfully compared with experiments performed with ultrahigh-Q calcium and magnesium fluoride resonators. C1 [Chembo, Yanne K.] Univ Bourgogne Franche Comte, CNRS, Inst FEMTO ST, Dept Opt, F-25030 Besancon, France. [Grudinin, Ivan S.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chembo, YK (reprint author), Univ Bourgogne Franche Comte, CNRS, Inst FEMTO ST, Dept Opt, 15B Ave Montboucons, F-25030 Besancon, France. EM yanne.chembo@femto-st.fr FU European Research Council through the project NextPhase (ERC StG) [278616]; European Research Council through the project Versyt (ERC PoC) [632108]; Centre National d'Etudes Spatiales (CNES) through the project SHYRO; Region de Franche-Comte; LabEx ACTION FX Y.K.C. acknowledges financial support from the European Research Council through the projects NextPhase (ERC StG Grant No. 278616) and Versyt (ERC PoC Grant No. 632108), from the Centre National d'Etudes Spatiales (CNES) through the project SHYRO, from the Region de Franche-Comte, and from the LabEx ACTION. He acknowledges hospitality at the NASA Jet Propulsion Laboratory as a Visiting Scientist during the completion of this research work. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 36 TC 12 Z9 12 U1 5 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD OCT 14 PY 2015 VL 92 IS 4 AR 043818 DI 10.1103/PhysRevA.92.043818 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CT5ZO UT WOS:000362890000013 ER PT J AU Dzero, M Vavilov, MG Kechedzhi, K Galitski, VM AF Dzero, Maxim Vavilov, Maxim G. Kechedzhi, Kostyantyn Galitski, Victor M. TI Nonuniversal weak antilocalization effect in cubic topological Kondo insulators SO PHYSICAL REVIEW B LA English DT Article ID SMB6 AB We study the quantum correction to conductivity on the surface of cubic topological Kondo insulators with multiple Dirac bands. We consider the model of time-reversal invariant disorder which induces the scattering of the electrons within the Dirac bands as well as between the bands. When only intraband scattering is present we find three long-range diffusion modes leading to weak antilocalization correction to conductivity which remains independent of the microscopic details such as Fermi velocities and relaxation times. Interband scattering gaps out two diffusion modes leaving only one long-range mode. We find that depending on the value of the phase coherence time, either three or only one long-range diffusion modes contribute to weak localization correction rendering the quantum correction to conductivity nonuniversal. We provide an interpretation for the results of the recent transport experiments on samarium hexaboride where weak antilocalization has been observed. C1 [Dzero, Maxim] Kent State Univ, Dept Phys, Kent, OH 44242 USA. [Dzero, Maxim] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Vavilov, Maxim G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kechedzhi, Kostyantyn] NASA, QuAIL, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kechedzhi, Kostyantyn] NASA, USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Galitski, Victor M.] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. [Galitski, Victor M.] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Galitski, Victor M.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia. RP Dzero, M (reprint author), Kent State Univ, Dept Phys, Kent, OH 44242 USA. FU KSU; MPI-PKS; DARPA; Simons Foundation; NSF [DMR-0955500] FX This work was financially supported by KSU and MPI-PKS (M.D.), DARPA and the Simons Foundation (V.G.), and NSF Grant No. DMR-0955500 (M.V.). We thank Igor Aleiner, Leonid Glazman, Alex Levchenko, and Jing Xia for useful discussions. NR 42 TC 2 Z9 2 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2015 VL 92 IS 16 AR 165415 DI 10.1103/PhysRevB.92.165415 PG 14 WC Physics, Condensed Matter SC Physics GA CT6BD UT WOS:000362894500004 ER PT J AU Tremblay, LB Schmidt, GA Pfirman, S Newton, R DeRepentigny, P AF Tremblay, L. B. Schmidt, G. A. Pfirman, S. Newton, R. DeRepentigny, P. TI Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE Arctic; sea ice; palaeoclimate ID WESTERN ARCTIC-OCEAN; MENDELEEV RIDGE; HISTORY; CLIMATE; VARIABILITY; GREENLAND; MODEL; DRIFT; ARCHIPELAGO; CIRCULATION AB Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (approximate to 88 degrees N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards (Krylov et al. 2008 Paleoceanography 23, PA1S06. (doi:10.1029/2007PA001497); Darby 2008 Paleoceanography 23, PA1S07. (doi: 10.1029/2007PA001479)). However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present (Polyak et al. 2010 Quaternary Science Reviews 29, 1757-1778. (doi: 10.1016/j.quascirev.2010.02.010)). We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records. C1 [Tremblay, L. B.; DeRepentigny, P.] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 0B9, Canada. [Schmidt, G. A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Pfirman, S.] Columbia Univ Barnard Coll, New York, NY 10027 USA. [Tremblay, L. B.; Newton, R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Tremblay, LB (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada. EM bruno.tremblay@mcgill.ca OI Schmidt, Gavin/0000-0002-2258-0486 FU Arctic Science Programme [ARC-0520496]; Office of Naval Research; Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program; National Science Foundation; Office of Polar Programme; NSERC Climate Change and Atmospheric Research (CCAR) FX This work was funded by National Science Foundation, Office of Polar Programme, Arctic Science Programme (ARC-0520496) and the Office of Naval Research. L.B.T. is grateful for funding from the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program and NSERC Climate Change and Atmospheric Research (CCAR) initiative via the Canadian Sea Ice and Snow Evolution (CanSISE) Network. NR 56 TC 1 Z9 1 U1 2 U2 5 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD OCT 13 PY 2015 VL 373 IS 2052 AR 20140168 DI 10.1098/rsta.2014.0168 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CW4LX UT WOS:000364964100004 ER PT J AU Tenneti, A Mandelbaum, R Di Matteo, T Kiessling, A Khandai, N AF Tenneti, Ananth Mandelbaum, Rachel Di Matteo, Tiziana Kiessling, Alina Khandai, Nishikanta TI Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; hydrodynamics; methods: numerical; galaxies: star formation; cosmology: theory ID WEAK-LENSING SURVEYS; INTRINSIC ALIGNMENTS; POWER SPECTRUM; HALO ELLIPTICITY; ANGULAR MOMENTA; COSMIC WEB; BARYONS; IMPACT; MODEL; MASS AB We compare the shapes and intrinsic alignments of galaxies in the MassiveBlack-II (MBII) cosmological hydrodynamic simulation to those in an identical dark matter-only (DMO) simulation. Understanding the impact of baryonic physics on galaxy shapes should prove useful for creating mock galaxy catalogues based on DMO simulations that mimic intrinsic alignments in hydrodynamic simulations. The dark matter subhaloes are typically rounder in MBII, and the shapes of stellar matter in low-mass galaxies are more misaligned with the shapes of dark matter of the corresponding subhaloes in the DMO simulation. At z = 0.06, the fractional difference in the mean misalignment angle between MBII and DMO simulations varies from similar to 28to12 per cent in the mass range 10(10.8)-6.0 x 10(14) h(-1)M(circle dot). We study the dark matter halo shapes and alignments as a function of radius, and find that while galaxies in MBII are more aligned with the inner parts of their dark matter subhaloes, there is no radial trend in their alignments with the corresponding subhalo in the DMO simulation. This result highlights the importance of baryonic physics in determining galaxy alignments with inner parts of their halo. Finally, we find that the stellar-dark matter misalignment suppresses the ellipticity-direction (ED) correlation of galaxies in comparison to that of dark matter haloes. In the projected shape-density correlation (w(delta+)), higher mean ellipticities of the stellar component reduce this effect, but differences of the order of 30-40 per cent remain on scales > 1 Mpc. C1 [Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Kiessling, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Khandai, Nishikanta] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar 751005, Odisha, India. RP Tenneti, A (reprint author), Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. EM vat@andrew.cmu.edu; rmandelb@andrew.cmu.edu; tiziana@phys.cmu.edu RI Mandelbaum, Rachel/N-8955-2014; OI Mandelbaum, Rachel/0000-0003-2271-1527; Kiessling, Alina/0000-0002-2590-1273 FU NASA ROSES [12-EUCLID12-0004, 13-ATP13-0019]; National Science Foundation (NSF) PetaApps [OCI-0749212]; NSF [AST-1009781, ACI-1036211]; JPL; Caltech; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank the anonymous referee for useful comments on the paper. AT and RM acknowledge the support of NASA ROSES 12-EUCLID12-0004. We thank Rachel Bean, Jonathan Blazek, Nick Gnedin, Katrin Heitmann, Michael Schneider, and other member of the LSST-DESC collaboration for providing helpful feedback on this work. TDM has been funded by the National Science Foundation (NSF) PetaApps, OCI-0749212 and by NSF AST-1009781 and ACI-1036211. AK was supported in part by JPL, run under a contract by Caltech for NASA. AK was also supported in part by NASA ROSES 13-ATP13-0019. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2015 VL 453 IS 1 BP 469 EP 482 DI 10.1093/mnras/stv1625 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY2CD UT WOS:000366215500039 ER PT J AU Israel, H Massey, R Prod'homme, T Cropper, M Cordes, O Gow, J Kohley, R Marggraf, O Niemi, S Rhodes, J Short, A Verhoeve, P AF Israel, Holger Massey, Richard Prod'homme, Thibaut Cropper, Mark Cordes, Oliver Gow, Jason Kohley, Ralf Marggraf, Ole Niemi, Sami Rhodes, Jason Short, Alex Verhoeve, Peter TI How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instrumentation: detectors; methods: data analysis; space vehicles: instruments ID HUBBLE-SPACE-TELESCOPE; PIXEL-BASED CORRECTION; SHAPE MEASUREMENTS; NORMAL VARIABLES; ADVANCED CAMERA; NOISE BIAS; WEAK; RATIOS; SHEAR; MODEL AB Radiation damage to space-based charge-coupled device detectors creates defects which result in an increasing charge transfer inefficiency (CTI) that causes spurious image trailing. Most of the trailing can be corrected during post-processing, by modelling the charge trapping and moving electrons back to where they belong. However, such correction is not perfect - and damage is continuing to accumulate in orbit. To aid future development, we quantify the limitations of current approaches, and determine where imperfect knowledge of model parameters most degrades measurements of photometry and morphology. As a concrete application, we simulate 1.5 x 10(9) 'worst-case' galaxy and 1.5 x 10(8) star images to test the performance of the Euclid visual instrument detectors. There are two separable challenges. If the model used to correct CTI is perfectly the same as that used to add CTI, 99.68 per cent of spurious ellipticity is corrected in our setup. This is because readout noise is not subject to CTI, but gets overcorrected during correction. Secondly, if we assume the first issue to be solved, knowledge of the charge trap density within Delta rho/rho = (0.0272 +/- 0.0005) per cent and the characteristic release time of the dominant species to be known within Delta tau/tau = (0.0400 +/- 0.0004) per cent will be required. This work presents the next level of definition of in-orbit CTI calibration procedures for Euclid. C1 [Israel, Holger; Massey, Richard] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Israel, Holger] Univ Durham, Ctr Extragalact Astron, Durham DH1 3LE, England. [Massey, Richard] Univ Durham, Ctr Adv Instrumentat, Durham DH1 3LE, England. [Prod'homme, Thibaut; Short, Alex; Verhoeve, Peter] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Cropper, Mark; Niemi, Sami] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Cordes, Oliver; Marggraf, Ole] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Gow, Jason] Open Univ, Ctr Elect Imaging E2v, Milton Keynes MK7 6AA, Bucks, England. [Kohley, Ralf] ESAC, European Space Agcy, E-28691 Madrid, Spain. [Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Israel, H (reprint author), Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England. EM holger.israel@durham.ac.uk FU BIS National E-infrastructure capital grant [ST/K00042X/1]; STFC capital grants [ST/H008519/1, ST/K00087X/1]; STFC DiRAC Operations grant [ST/K003267/1]; Durham University; European Research Council [MIRG-CT-208994]; Science and Technology Facilities Council [ST/H005234/1, ST/N001494/1]; Leverhulme Trust [PLP-2011-003]; JPL; German Federal Ministry for Economic Affairs and Energy (BMWi) via DLR [50QE1103] FX This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grants ST/H008519/1 and ST/K00087X/1, and STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure.; HI thanks Lydia Heck and Alan Lotts for friendly and helpful system administration. HI acknowledges support through European Research Council grant MIRG-CT-208994. RM and HI are supported by the Science and Technology Facilities Council (grant numbers ST/H005234/1 and ST/N001494/1) and the Leverhulme Trust (grant number PLP-2011-003). JR was supported by JPL, run under a contract for NASA by Caltech. OC and OM acknowledge support from the German Federal Ministry for Economic Affairs and Energy (BMWi) provided via DLR under project no. 50QE1103. NR 41 TC 3 Z9 3 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2015 VL 453 IS 1 BP 561 EP 580 DI 10.1093/mnras/stv1660 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY2CD UT WOS:000366215500046 ER PT J AU Hakala, P Ramsay, G Barclay, T Charles, P AF Hakala, Pasi Ramsay, Gavin Barclay, Thomas Charles, Phil TI K2 and MAXI observations of Sco X-1 evidence for disc precession? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; X-rays: binaries; X-rays: individual: Sco X-1 ID X-RAY; SCORPIUS X-1; MISSION; SUPERHUMPS; PERIOD AB Sco X-1 is the archetypal low-mass X-ray binary and the brightest persistent extrasolar X-ray source in the sky. It was included in the K2 Campaign 2 field and was observed continuously for 71 d with 1 min time resolution. In this Letter, we report these results and underline the potential of K2 for similar observations of other accreting compact binaries. We reconfirm that Sco X-1 shows a bimodal distribution of optical 'high' and 'low' states and rapid transitions between them on time-scales less than 3 h (or 0.15 orbits). We also find evidence that this behaviour has a typical systemic time-scale of 4.8 d, which we interpret as a possible disc precession period in the system. Finally, we confirm the complex optical versus X-ray correlation/anticorrelation behaviour for 'high' and 'low' optical states, respectively. C1 [Hakala, Pasi] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Pukkio, Finland. [Ramsay, Gavin] Armagh Observ, Armagh BT61 9DG, North Ireland. [Barclay, Thomas] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, Thomas] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. [Charles, Phil] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RP Hakala, P (reprint author), Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, FI-21500 Pukkio, Finland. EM pahakala@utu.fi FU NASA Science Mission Directorate; Northern Ireland Government through the Department of Culture, Arts and Leisure FX Funding for the K2 spacecraft is provided by the NASA Science Mission Directorate, The data presented in this Letter were obtained from the Mikulski Archive for Space Telescopes (MAST). This re search has made use of the MAXI data provided by RIKEN, JAXA and the MAXI team. Our work has made use of PYKE, a software package for the reduction and analysis of Kepler and K2 data. This open source software project is developed and distributed by the NASA Kepler Guest Observer Office. Armagh Observatory is supported by the Northern Ireland Government through the Department of Culture, Arts and Leisure. After the submission of this Letter, a paper by Scaringi et al. (2015) appeared in astro-PH. Apart from the 4.8d period (which they do not refer to), their analysis of the same dataset is broadly in agreement with our results. NR 25 TC 2 Z9 2 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2015 VL 453 IS 1 BP L6 EP L10 DI 10.1093/mnrasl/slv089 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CR4KG UT WOS:000361300300002 ER PT J AU Agol, E Jansen, T Lacy, B Robinson, TD Meadows, V AF Agol, Eric Jansen, Tiffany Lacy, Brianna Robinson, Tyler D. Meadows, Victoria TI THE CENTER OF LIGHT: SPECTROASTROMETRIC DETECTION OF EXOMOONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; planets and satellites: detection; techniques: imaging spectroscopy ID EXTRASOLAR GIANT PLANETS; SUPER-JOVIAN PLANETS; EARTH-LIKE PLANETS; WATER ICE LINES; OBLIQUITY VARIATIONS; GALILEAN SATELLITES; AURA SATELLITE; GASEOUS NEBULA; SYSTEM; MOONS AB Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, "spectroastrometry." This new application of this technique could be used to detect an exomoon, to determine the exomoon's orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon. We consider two model systems, for which we discuss the requirements for detection of exomoons around nearby stars. We simulate the characterization of an Earth-Moon analog system with spectroastrometry, showing that the orbit, the planet mass, and the spectra of both bodies can be recovered. To enable the detection and characterization of exomoons we recommend that coronagraphic telescopes should extend in wavelength coverage to 3 mu m, and should be designed with spectroastrometric requirements in mind. C1 [Agol, Eric; Jansen, Tiffany; Lacy, Brianna; Robinson, Tyler D.; Meadows, Victoria] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Agol, Eric; Robinson, Tyler D.; Meadows, Victoria] NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98195 USA. [Robinson, Tyler D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Agol, Eric; Meadows, Victoria] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. RP Agol, E (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM agol@uw.edu OI /0000-0002-0802-9145; Robinson, Tyler/0000-0002-3196-414X FU NASA Astrobiology Institute's Virtual Planetary Laboratory - National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNH05ZDA001C] FX T.R., E.A., and V.M. were partly funded by the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under solicitation No. NNH05ZDA001C. We thank Rory Barnes and referee Rene Heller for feedback on the submitted version of this paper. T.R. gratefully acknowledges support from an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Affiliated Universities. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. NR 86 TC 7 Z9 7 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 5 DI 10.1088/0004-637X/812/1/5 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700005 ER PT J AU Bucik, R Innes, DE Guo, L Mason, GM Wiedenbeck, ME AF Bucik, R. Innes, D. E. Guo, L. Mason, G. M. Wiedenbeck, M. E. TI OBSERVATIONS OF EUV WAVES IN He-3-RICH SOLAR ENERGETIC PARTICLE EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; Sun: flares; Sun: particle emission; waves ID STOCHASTIC ACCELERATION; STEREO MISSION; FLARES; SPACECRAFT; TELESCOPE; ELECTRON; HEAVY; ASSOCIATION; CONNECTION; SDO/AIA AB Small He-3-rich solar energetic particle (SEP) events with their anomalous abundances, markedly different from the solar system, provide evidence for a unique acceleration mechanism that operates routinely near solar active regions. Although the events are sometimes accompanied by coronal mass ejections (CMEs), it is believed that mass and isotopic fractionation is produced directly in the flare sites on the Sun. We report on a large-scale extreme-ultraviolet (EUV) coronal wave observed in association with He-3-rich SEP events. In the two examples discussed, the observed waves were triggered by minor flares and appeared concurrently with EUV jets and type III radio bursts, but without CMEs. The energy spectra from one event are consistent with so-called class-1 (characterized by power laws) He-3-rich SEP events, while the other with class-2 (characterized by rounded He-3 and Fe spectra), suggesting different acceleration mechanisms in the two. The observation of EUV waves suggests that large-scale disturbances, in addition to more commonly associated jets, may be responsible for the production of He-3-rich SEP events. C1 [Bucik, R.; Innes, D. E.; Guo, L.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Bucik, R.; Innes, D. E.; Guo, L.] Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08540 USA. [Bucik, R.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Mason, G. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bucik, R (reprint author), Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. EM bucik@mps.mpg.de RI Bucik, Radoslav/B-6501-2016 OI Bucik, Radoslav/0000-0001-7381-6949 FU Bundesministerium fur Wirtschaft through the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [50 OC 1301]; NASA [NNX13AR20G/115828, NNX11A075G, NNX13AH66G]; NASA through subcontract University of California Berkeley [SA4889-26309]; UC Berkeley under NASA [SA2715-26309, NAS5-03131T]; Max-Planck-Gesellschaft zur Forderung der Wissenschaften FX We are grateful to the referee for valuable comments that helped to improve the manuscript. This work was supported by the Max-Planck-Gesellschaft zur Forderung der Wissenschaften. The STEREO SIT is supported by the Bundesministerium fur Wirtschaft through the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) under grant 50 OC 1301. ACE/ULEIS and STEREO/SIT are supported at APL by NASA grant NNX13AR20G/115828 and NASA through subcontract SA4889-26309 from the University of California Berkeley. The work at JPL and Caltech was supported through subcontract SA2715-26309 from UC Berkeley under NASA contract NAS5-03131T, and by NASA grants NNX11A075G and NNX13AH66G. NR 42 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 53 DI 10.1088/0004-637X/812/1/53 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700053 ER PT J AU Bussmann, RS Riechers, D Fialkov, A Scudder, J Hayward, CC Cowley, WI Bock, J Calanog, J Chapman, SC Cooray, A De Bernardis, F Farrah, D Fu, H Gavazzi, R Hopwood, R Ivison, RJ Jarvis, M Lacey, C Loeb, A Oliver, SJ Perez-Fournon, I Rigopoulou, D Roseboom, IG Scott, D Smith, AJ Vieira, JD Wang, L Wardlow, J AF Bussmann, R. S. Riechers, D. Fialkov, A. Scudder, J. Hayward, C. C. Cowley, W. I. Bock, J. Calanog, J. Chapman, S. C. Cooray, A. De Bernardis, F. Farrah, D. Fu, Hai Gavazzi, R. Hopwood, R. Ivison, R. J. Jarvis, M. Lacey, C. Loeb, A. Oliver, S. J. Perez-Fournon, I. Rigopoulou, D. Roseboom, I. G. Scott, Douglas Smith, A. J. Vieira, J. D. Wang, L. Wardlow, J. TI HerMES: ALMA IMAGING OF HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; submillimeter: galaxies; techniques: interferometric ID DEEP FIELD SOUTH; HIGH-REDSHIFT GALAXIES; DIGITAL SKY SURVEY; DARK-MATTER HALOS; SUBMILLIMETER GALAXIES; MOLECULAR GAS; COSMOS FIELD; INTERACTING GALAXIES; EXTRAGALACTIC SURVEY; FORMATION HISTORY AB The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870 mu m 0 ''.45 resolution imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs that have far-infrared (FIR) flux densities that lie between the brightest of sources found by Herschel and fainter DSFGs found via ground-based surveys in the submillimeter region. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5 sigma point-source sensitivity limit in our ALMA sample; sigma approximate to 0.2 mJy). Optical or near-infrared imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (mu > 1.1), but only six are strongly lensed and show multiple images. We introduce and make use of UVMCMCFIT, a general-purpose and publicly available Markov chain Monte Carlo visibility-plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 mJy at 880 mu m and a steep fall-off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish submillimeter or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and small projected separations between sources seen in our sample argue in favor of interactions and mergers plausibly driving both the prodigious emission from the brightest DSFGs as well as the sharp downturn above S-880 = 8 mJy. C1 [Bussmann, R. S.; Riechers, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Fialkov, A.] CNRS, Ecole Normale Super, Dept Phys, F-75005 Paris, France. [Scudder, J.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Hayward, C. C.] CALTECH, TAPIR 350 17, Pasadena, CA 91125 USA. [Hayward, C. C.; Loeb, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cowley, W. I.; Lacey, C.; Wang, L.] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Bock, J.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Calanog, J.; Cooray, A.; De Bernardis, F.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Chapman, S. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Fu, Hai] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Gavazzi, R.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Hopwood, R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M.; Rigopoulou, D.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Jarvis, M.] Univ Western Cape, Astrophys Grp, Dept Phys, Cape Town, South Africa. [Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Wang, L.] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Wardlow, J.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. RP Bussmann, RS (reprint author), Cornell Univ, Dept Astron, Space Sci Bldg, Ithaca, NY 14853 USA. RI Ivison, R./G-4450-2011; Wardlow, Julie/C-9903-2015; OI Ivison, R./0000-0001-5118-1313; Wardlow, Julie/0000-0003-2376-8971; Scudder, Jillian/0000-0002-8798-3972; Scott, Douglas/0000-0002-6878-9840; Hayward, Christopher/0000-0003-4073-3236 FU Danish National Research Foundation; European Research Council Advanced Investigator Grant, Cosmicism [321302]; Gordon; Betty Moore Foundation FX The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Dark Cosmology Centre is funded by the Danish National Research Foundation. R. J. I. acknowledges support from European Research Council Advanced Investigator Grant, Cosmicism, 321302. C. C. H. is grateful to the Gordon and Betty Moore Foundation for financial support. NR 107 TC 14 Z9 14 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 43 DI 10.1088/0004-637X/812/1/43 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700043 ER PT J AU Furniss, A Noda, K Boggs, S Chiang, J Christensen, F Craig, W Giommi, P Hailey, C Harisson, F Madejski, G Nalewajko, K Perri, M Stern, D Urry, M Verrecchia, F Zhang, W Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Caneva, G De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Guberman, D Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kellermann, H Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lewandowska, N Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Saito, K Satalecka, K Scapin, V Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Will, M Zanin, R Archer, A Benbow, W Bird, R Biteau, J Bugaev, V Cardenzana, JV Cerruti, M Chen, X Ciupik, L Connolly, MP Cui, W Dickinson, HJ Dumm, J Eisch, JD Falcone, A Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Gerard, L Gillanders, GH Griffin, S Griffiths, ST Grube, J Gyuk, G Hakansson, N Holder, J Humensky, TB Johnson, CA Kaaret, P Kertzman, M Kieda, D Krause, M Krennrich, F Lang, MJ Lin, TTY Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nieto, D de Bhroithe, AO Ong, RA Park, N Petry, D Pohl, M Popkow, A Ragan, K Ratliff, G Reyes, LC Reynolds, PT Richards, GT Roache, E Santander, M Sembroski, GH Shahinyan, K Staszak, D Telezhinsky, I Tucci, JV Tyler, J Vassiliev, VV Wakely, SP Weiner, OM Weinstein, A Wilhelm, A Williams, DA Zitzer, B Vince, O Fuhrmann, L Angelakis, E Karamanavis, V Myserlis, I Krichbaum, TP Zensus, JA Ungerechts, H Sievers, A Bachev, R Bottcher, M Chen, WP Damljanovic, G Eswaraiah, C Guver, T Hovatta, T Hughes, Z Ibryamov, SI Joner, MD Jordan, B Jorstad, SG Joshi, M Kataoka, J Kurtanidze, OM Kurtanidze, SO Lahteenmaki, A Latev, G Lin, HC Larionov, VM Mokrushina, AA Morozova, DA Nikolashvili, MG Raiteri, CM Ramakrishnan, V Readhead, ACR Sadun, AC Sigua, LA Semkov, EH Strigachev, A Tammi, J Tornikoski, M Troitskaya, YV Troitsky, IS Villata, M AF Furniss, A. Noda, K. Boggs, S. Chiang, J. Christensen, F. Craig, W. Giommi, P. Hailey, C. Harisson, F. Madejski, G. Nalewajko, K. Perri, M. Stern, D. Urry, M. Verrecchia, F. Zhang, W. Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. de Almeida, U. Barres Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Caneva, G. De Lotto, B. de Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Eisenacher Glawion, D. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kellermann, H. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lewandowska, N. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Saito, T. Saito, K. Satalecka, K. Scapin, V. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Will, M. Zanin, R. Archer, A. Benbow, W. Bird, R. Biteau, J. Bugaev, V. Cardenzana, J. V. Cerruti, M. Chen, X. Ciupik, L. Connolly, M. P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Gerard, L. Gillanders, G. H. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Hakansson, N. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kertzman, M. Kieda, D. Krause, M. Krennrich, F. Lang, M. J. Lin, T. T. Y. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nieto, D. de Bhroithe, A. O'Faolain Ong, R. A. Park, N. Petry, D. Pohl, M. Popkow, A. Ragan, K. Ratliff, G. Reyes, L. C. Reynolds, P. T. Richards, G. T. Roache, E. Santander, M. Sembroski, G. H. Shahinyan, K. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Vassiliev, V. V. Wakely, S. P. Weiner, O. M. Weinstein, A. Wilhelm, A. Williams, D. A. Zitzer, B. Vince, O. Fuhrmann, L. Angelakis, E. Karamanavis, V. Myserlis, I. Krichbaum, T. P. Zensus, J. A. Ungerechts, H. Sievers, A. Bachev, R. Boettcher, M. Chen, W. P. Damljanovic, G. Eswaraiah, C. Guver, T. Hovatta, T. Hughes, Z. Ibryamov, S. I. Joner, M. D. Jordan, B. Jorstad, S. G. Joshi, M. Kataoka, J. Kurtanidze, O. M. Kurtanidze, S. O. Lahteenmaki, A. Latev, G. Lin, H. C. Larionov, V. M. Mokrushina, A. A. Morozova, D. A. Nikolashvili, M. G. Raiteri, C. M. Ramakrishnan, V. Readhead, A. C. R. Sadun, A. C. Sigua, L. A. Semkov, E. H. Strigachev, A. Tammi, J. Tornikoski, M. Troitskaya, Y. V. Troitsky, I. S. Villata, M. CA NuSTAR Team MAGIC Collaboration VERITAS Collaboration F-Gamma Consortium TI FIRST NuSTAR OBSERVATIONS OF MRK 501 WITHIN A RADIO TO TeV MULTI-INSTRUMENT CAMPAIGN SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: individual (Markarian 501); X-rays: galaxies ID GAMMA-RAY EMISSION; BL LACERTAE OBJECTS; LOG-PARABOLIC SPECTRA; LARGE-AREA TELESCOPE; X-RAY; MULTIWAVELENGTH OBSERVATIONS; PARTICLE-ACCELERATION; MAGIC TELESCOPE; CRAB-NEBULA; FERMI-LAT AB We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsahovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission. C1 [Furniss, A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Noda, K.; Bangale, P.; de Almeida, U. Barres; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hose, J.; Kellermann, H.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Boggs, S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chiang, J.; Madejski, G.; Nalewajko, K.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Christensen, F.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Giommi, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Readhead, A. C. R.] Italian Space Agcy ASI, ASI Sci Data Ctr, Rome, Italy. [Harisson, F.; Hovatta, T.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Perri, M.; Verrecchia, F.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, D.] INAF OAR, I-00040 Monte Porzio Catone, RM, Italy. [Urry, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.] ETH, CH-8093 Zurich, Switzerland. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] Univ Udine, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INFN Trieste, I-33100 Udine, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Siena, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] INFN Pisa, I-53100 Siena, Italy. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, HR-10000 Zagreb, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Univ Split, HR-10000 Zagreb, Croatia. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.; Scapin, V.] Saha Inst Nucl Phys, Kolkata 700064, India. [Becerra Gonzalez, J.; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Ctr Brasileiro Pesquisas Fis CBPF MCTI, BR-22290180 Rio De Janeiro, RJ, Brazil. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Complutense, E-28040 Madrid, Spain. [Bernardini, E.; De Caneva, G.; Garczarczyk, M.; Mallot, K.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bretz, T.; Dorner, D.; Eisenacher Glawion, D.; Elsaesser, D.; Lewandowska, N.; Mannheim, K.; Steinbring, T.] Univ Lodz, PL-90236 Lodz, Poland. [Carmona, E.; Delgado Mendez, C.; Chen, X.; Fleischhack, H.; Gerard, L.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] DESY, D-15738 Zeuthen, Germany. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [de Ona Wilhelmi, E.] IFAE, E-08193 Bellaterra, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Font, L.; Garrido Terrats, D.; Gaug, M.] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Univ Padua, I-35131 Padua, Italy. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Persic, M.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Inst Space Sci, E-08193 Barcelona, Spain. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Moroni, P. G. Prada; Shore, S. N.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Barcelona, Spain. [Moroni, P. G. Prada; Shore, S. N.] Univ Autonoma Barcelona, CERES IEEC, E-08193 Barcelona, Spain. [Torres, D. F.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Treves, A.] Univ Tokyo, Japanese MAGIC Consortium, ICRR, Dept Phys, Tokyo 1138654, Japan. [Treves, A.] Univ Tokushima, Kyoto Univ, Tokai Univ, Hakubi Ctr,KEK, Tokushima, Japan. [de Almeida, U. Barres] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, SF-20500 Turku, Finland. [de Almeida, U. Barres] Univ Oulu, Dept Phys, SF-90100 Oulu, Finland. [Becerra Gonzalez, J.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria. [Bernardini, E.] Finnish Ctr Astron ESO FINCA, Turku, Finland. [Bretz, T.] INAF Trieste, Trieste, Italy. [Nilsson, K.] Univ Pisa, I-56126 Pisa, Italy. [Nilsson, K.] INFN, I-56126 Pisa, Italy. [Persic, M.] ICREA, E-08193 Barcelona, Spain. [Treves, A.] Univ Insubria, I-22100 Como, Italy. [Treves, A.] INFN Milano Bicocca, I-22100 Como, Italy. [Archer, A.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Biteau, J.; Johnson, C. A.; Williams, D. A.; Hughes, Z.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Biteau, J.; Johnson, C. A.; Williams, D. A.; Hughes, Z.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Griffiths, S. T.; Kaaret, P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Holder, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Humensky, T. B.; Nieto, D.; Weiner, O. M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.; Weiner, O. M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Kertzman, M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kieda, D.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Griffin, S.; Lin, T. T. Y.; Ragan, K.; Staszak, D.; Tyler, J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Meagher, K.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Meagher, K.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Mukherjee, R.; Santander, M.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Ong, R. A.; Popkow, A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Reyes, L. C.; Guver, T.] Astron Observ, Belgrade 11060, Serbia. [Reynolds, P. T.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Zitzer, B.] Cork Inst Technol, Dept Appl Sci, Cork, Ireland. [Fuhrmann, L.; Angelakis, E.; Karamanavis, V.; Myserlis, I.; Krichbaum, T. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zensus, J. A.; Ungerechts, H.; Sievers, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Bachev, R.; Strigachev, A.] Inst Radio Astron Millimetr, E-18012 Granada, Spain. [Boettcher, M.] Bulgarian Acad Sci, Inst Astron, Sofia 1784, Bulgaria. [Chen, W. P.; Eswaraiah, C.; Lin, H. C.] North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa. [Damljanovic, G.] Natl Cent Univ, Grad Inst Astron, Zhongli 32001, Taiwan. [Hovatta, T.] Istanbul Univ, Fac Sci, Dept Astron & Space Sci, TR-34119 Istanbul, Turkey. [Ibryamov, S. I.; Semkov, E. H.] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Joner, M. D.] Bulgarian Acad Sci, NAO, Sofia 1784, Bulgaria. [Jordan, B.] Brigham Young Univ Provo, Dept Phys, Provo, UT USA. [Jorstad, S. G.; Joshi, M.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin, Ireland. [Jorstad, S. G.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Kataoka, J.; Larionov, V. M.; Mokrushina, A. A.; Morozova, D. A.; Troitskaya, Y. V.; Troitsky, I. S.] St Petersburg State Univ, Astron Inst, St Petersburg 198504, Russia. [Kurtanidze, O. M.; Kurtanidze, S. O.; Nikolashvili, M. G.; Sigua, L. A.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kurtanidze, O. M.] Abastumani Observ, GE-0301 Mt Kanobili, Abastumani, Rep of Georgia. [Lahteenmaki, A.; Ramakrishnan, V.; Tammi, J.; Tornikoski, M.] Kazan Fed Univ, Engelhardt Astron Observ, Tatarstan, Russia. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, FI-00076 Aalto, Finland. [Latev, G.] BAS, Inst Astron NAO, BG-1784 Sofia, Bulgaria. [Larionov, V. M.; Mokrushina, A. A.] Pulkovo Observ, St Petersburg, Russia. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, Santiago, Chile. [Raiteri, C. M.; Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80202 USA. RP Furniss, A (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM amy.@gmail.com; nodak5@gmail.com; josefa.becerra@nasa.gov RI Lahteenmaki, Anne/L-5987-2013; GAug, Markus/L-2340-2014; Nieto, Daniel/J-7250-2015; Manganaro, Marina/B-7657-2011; Boggs, Steven/E-4170-2015; Miranda, Jose Miguel/F-2913-2013; Tammi, Joni/G-2959-2012; Font, Lluis/L-4197-2014; Poutanen, Juri/H-6651-2016; Nievas Rosillo, Mireia/K-9738-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Morozova, Daria/H-1298-2013; Torres, Diego/O-9422-2016; Troitskiy, Ivan/K-7979-2013; Delgado, Carlos/K-7587-2014; Barrio, Juan/L-3227-2014; Martinez Rodriguez, Manel/C-2539-2017; Cortina, Juan/C-2783-2017; Ramakrishnan, Venkatessh/C-8628-2017; OI GAug, Markus/0000-0001-8442-7877; Nieto, Daniel/0000-0003-3343-0755; Manganaro, Marina/0000-0003-1530-3031; Boggs, Steven/0000-0001-9567-4224; Miranda, Jose Miguel/0000-0002-1472-9690; Tammi, Joni/0000-0002-9164-2695; Font, Lluis/0000-0003-2109-5961; Poutanen, Juri/0000-0002-0983-0049; Nievas Rosillo, Mireia/0000-0002-8321-9168; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384; Morozova, Daria/0000-0002-9407-7804; Torres, Diego/0000-0002-1522-9065; Troitskiy, Ivan/0000-0002-4218-0148; Delgado, Carlos/0000-0002-7014-4101; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; Ramakrishnan, Venkatessh/0000-0002-9248-086X; LA BARBERA, ANTONINO/0000-0002-5880-8913; Verrecchia, Francesco/0000-0003-3455-5082; Prada Moroni, Pier Giorgio/0000-0001-9712-9916; Villata, Massimo/0000-0003-1743-6946; Stamerra, Antonio/0000-0002-9430-5264; Antonelli, Lucio Angelo/0000-0002-5037-9034; Perri, Matteo/0000-0003-3613-4409; Di Pierro, Federico/0000-0003-4861-432X; Guver, Tolga/0000-0002-3531-9842; Raiteri, Claudia Maria/0000-0003-1784-2784; Krause, Maria/0000-0001-7595-0914; Larionov, Valeri/0000-0002-4640-4356; Bird, Ralph/0000-0002-4596-8563; Karamanavis, Vassilis/0000-0003-3133-2617; Angelakis, Emmanouil/0000-0001-7327-5441; Doro, Michele/0000-0001-9104-3214; Covino, Stefano/0000-0001-9078-5507; de Ona Wilhelmi, Emma/0000-0002-5401-0744; Bonnoli, Giacomo/0000-0003-2464-9077; Prandini, Elisa/0000-0003-4502-9053; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU NASA [NNG08FD60C, NNX08AW31G, NNX11A043G]; National Aeronautics and Space Administration; German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa project of the Spanish Consolider-Ingenio programme [SEV-2012-0234]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW grant [745/N-HESS-MAGIC/2010/0]; U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the U.K; INSU/CNRS (France); MPG (Germany); IGN (Spain); International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Bonn; NSF [AST-0808050, AST-1109911]; Istanbul University [49429, 48285]; Bilim Akademisi (BAGEP program); TUBITAK [13AT100-431, 13AT100-466, 13AT60-430]; Russian RFBR grant [15-02-00949]; St. Petersburg University research grant [6.38.335.2015]; NASA Fermi Guest Investigator grant [NNX14AQ58G]; Swift Guest Investigator grant [NNX14AI96G]; BU; Lowell Observatory; Scientific Research Fund of the Bulgarian Ministry of Education and Sciences [DO 02-137 (BIn-13/09)]; Shota Rustaveli National Science Foundation [FR/577/6-320/13]; Institute of Astronomy; Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences; Ministry of Education, Science and Technological Development of the Republic of Serbia [176011, 176004, 176021]; CPAN project of the Spanish Consolider-Ingenio programme [CSD2007-00042]; MultiDark project of the Spanish Consolider-Ingenio programme [CSD2009-00064]; International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Cologne FX This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA).; The MAGIC Collaboration would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO, and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.; This research is also supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the VERITAS instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible.; This research is partly based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg and with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). V. Karamanavis and I. Myserlis are funded by the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne.; The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911.; T. G. acknowledges support from Istanbul University (Project numbers 49429 and 48285), Bilim Akademisi (BAGEP program) and TUBITAK (project numbers 13AT100-431, 13AT100-466, and 13AT60-430).; St. Petersburg University team acknowledges support from Russian RFBR grant 15-02-00949 and St. Petersburg University research grant 6.38.335.2015.; The research at Boston University (BU) was funded in part by NASA Fermi Guest Investigator grant NNX14AQ58G and Swift Guest Investigator grant NNX14AI96G. The PRISM camera at Lowell Observatory was developed by K. Janes et al. at BU and Lowell Observatory, with funding from the NSF, BU, and Lowell Observatory.; This research was partially supported by Scientific Research Fund of the Bulgarian Ministry of Education and Sciences under grant DO 02-137 (BIn-13/09). The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology-Hellas, and the Max-Planck-Institut fur Extraterrestrische Physik.; The Abastumani Observatory team acknowledges financial support by the by Shota Rustaveli National Science Foundation under contract FR/577/6-320/13.; G. Damljanovic and O. Vince gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences. This work is in accordance with the Projects No 176011 ("Dynamics and kinematics of celestial bodies and systems"), No 176004 ("Stellar physics") and No 176021 ("Visible and invisible matter in nearby galaxies: theory and observations") supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. NR 98 TC 7 Z9 7 U1 4 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 65 DI 10.1088/0004-637X/812/1/65 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700065 ER PT J AU Goicoechea, JR Teyssier, D Etxaluze, M Goldsmith, PF Ossenkopf, V Gerin, M Bergin, EA Black, JH Cernicharo, J Cuadrado, S Encrenaz, P Falgarone, E Fuente, A Hacar, A Lis, DC Marcelino, N Melnick, GJ Muller, HSP Persson, C Pety, J Rollig, M Schilke, P Simon, R Snell, RL Stutzki, J AF Goicoechea, Javier R. Teyssier, D. Etxaluze, M. Goldsmith, P. F. Ossenkopf, V. Gerin, M. Bergin, E. A. Black, J. H. Cernicharo, J. Cuadrado, S. Encrenaz, P. Falgarone, E. Fuente, A. Hacar, A. Lis, D. C. Marcelino, N. Melnick, G. J. Mueller, H. S. P. Persson, C. Pety, J. Roellig, M. Schilke, P. Simon, R. Snell, R. L. Stutzki, J. TI VELOCITY-RESOLVED [CII] EMISSION AND [CII]/FIR MAPPING ALONG ORION WITH HERSCHEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: ISM; HII regions; infrared: galaxies; ISM: clouds ID C-II EMISSION; DIFFUSE INTERSTELLAR-MEDIUM; NONEQUILIBRIUM PHOTODISSOCIATION REGIONS; POLYCYCLIC AROMATIC-HYDROCARBONS; ULTRALUMINOUS INFRARED GALAXIES; SPACE-OBSERVATORY MEASUREMENTS; EXTREME L-FIR/M-H2 RATIOS; LASER MAGNETIC-RESONANCE; PHOTON-DOMINATED REGIONS; STAR-FORMATION RATES AB We present the first similar to 7'.5 x 11'.5 velocity-resolved (similar to 0.2 km s(-1)) map of the [C II] 158 mu m line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-IR (FIR) photometric images and velocity-resolved maps of the H41 alpha hydrogen recombination and CO J = 2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/photodissociation region (PDR)/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C II] luminosity (similar to 85%) is from the extended, FUV-illuminated face of the cloud (G(0) > 500, n(H) > 5 x 10(3) cm(-3)) and from dense PDRs (G(0) greater than or similar to 10(4), n(H) greater than or similar to 10(5) cm(-3)) at the interface between OMC 1 and the H II region surrounding the Trapezium cluster. Around similar to 15% of the [C II] emission arises from a different gas component without a CO counterpart. The [C II] excitation, PDR gas turbulence, line opacity (from [C-13 II]), and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C II]/L-FIR and L-FIR/M-Gas ratios and show that L[C II]/L-FIR decreases from the extended cloud component (similar to 10(-2)-10(-3)) to the more opaque star-forming cores (similar to 10(-3)-10(-4)). The lowest values are reminiscent of the "[C II] deficit" seen in local ultraluminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C II]/L-FIR ratio correlates better with the column density of dust through the molecular cloud than with L-FIR/M-Gas. We conclude that the [C II]-emitting column relative to the total dust column along each line of sight is responsible for the observed L[C II]/L-FIR variations through the cloud. C1 [Goicoechea, Javier R.; Etxaluze, M.; Cernicharo, J.; Cuadrado, S.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Teyssier, D.] ESA ESAC, Herschel Sci Ctr, E-28691 Madrid, Spain. [Etxaluze, M.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ossenkopf, V.; Mueller, H. S. P.; Roellig, M.; Schilke, P.; Simon, R.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Gerin, M.; Encrenaz, P.; Falgarone, E.; Lis, D. C.] Univ Paris 06, Sorbonne Univ, CNRS, LERMA,Observ Paris,PSL Res Univ, F-75014 Paris, France. [Gerin, M.; Falgarone, E.] Ecole Normale Super, F-75005 Paris, France. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Black, J. H.; Persson, C.] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, SE-43992 Onsala, Sweden. [Fuente, A.] Observ Astron Nacl OAN IGN, E-28803 Alcala De Henares, Spain. [Hacar, A.] Univ Vienna, Inst Astrophys, A-1180 Vienna, Austria. [Marcelino, N.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pety, J.] Inst Radioastron Millimetr, F-38406 St Martin Dheres, France. [Snell, R. L.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Goicoechea, JR (reprint author), CSIC, Inst Ciencia Mat Madrid, Calle Sor Juana Ines Cruz 3, E-28049 Madrid, Spain. EM jr.goicoechea@icmm.csic.es RI Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; OI Fuente, Asuncion/0000-0001-6317-6343; Hacar, Alvaro/0000-0001-5397-6961; Cernicharo, Jose/0000-0002-3518-2524 FU Spanish MINECO [CSD2009-00038, AYA2009-07304, AYA2012-32032]; ERC [ERC-2013-Syg-610256-NANOCOSMOS]; NASA; German Deutsche Forschungsgemeinschaft, DFG [SFB 956]; CNRS program "Physique et Chimie du Milieu Interstellaire (PCMI)" FX We acknowledge helpful comments and suggestions from our referee. We thank Spanish MINECO for funding support under grants CSD2009-00038, AYA2009-07304, and AYA2012-32032. We also thank the ERC for support under grant ERC-2013-Syg-610256-NANOCOSMOS. Part of this research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA through an award issued by JPL/Caltech. This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number SFB 956, C1. This work was in part also supported by theCNRS program "Physique et Chimie du Milieu Interstellaire (PCMI)." NR 127 TC 12 Z9 12 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 75 DI 10.1088/0004-637X/812/1/75 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700075 ER PT J AU Horesh, A Cenko, SB Perley, DA Kulkarni, SR Hallinan, G Bellm, E AF Horesh, Assaf Cenko, S. Bradley Perley, Daniel A. Kulkarni, S. R. Hallinan, Gregg Bellm, Eric TI THE UNUSUAL RADIO AFTERGLOW OF THE ULTRA-LONG GAMMA-RAY BURST GRB 130925A SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID MASSIVE BLACK-HOLE; MAGNETIC RECONNECTION; TIDAL DISRUPTION; FIREBALL MODEL; VARIABILITY; SUPERNOVAE; EMISSION; OUTBURST; SPECTRA; BLAZARS AB GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 greater than or similar to 1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (similar to 7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE proportional to E-4, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios. C1 [Horesh, Assaf] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Perley, Daniel A.; Kulkarni, S. R.; Hallinan, Gregg; Bellm, Eric] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. RP Horesh, A (reprint author), Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. RI Horesh, Assaf/O-9873-2016; OI Horesh, Assaf/0000-0002-5936-1156; Bellm, Eric/0000-0001-8018-5348 FU EU/FP7 via ERC grant [307260]; ISF grant; Minerva grant; Weizmann-UK grant; Quantum Universe I-Core Program of the Planning and Budgeting Committee; Israel Science Foundation; NASA grant [NNH13ZDA001N]; NASA through JPL/Caltech; NASA through Hubble Fellowship grant - Space Telescope Science Institute [HST-HF-51296.01-A] FX We thank R. Barniol Duran, T. Piran, E. Nakar, R. Sari, and K. Mooley for useful discussions. We thank the VLA staff for promptly scheduling the observation of this target of opportunity. We also acknowledge the use of the Astronomical Matlab Packages by Ofek (2014). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Research leading to these results has received funding from the EU/FP7 via ERC grant 307260; ISF, Minerva, and Weizmann-UK grants; as well as the Quantum Universe I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation. S.B.C. acknowledges funding from NASA grant NNH13ZDA001N. Support for D.A.P was provided by NASA through an award issued by JPL/Caltech, and through Hubble Fellowship grant HST-HF-51296.01-A awarded by the Space Telescope Science Institute. NR 54 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 86 DI 10.1088/0004-637X/812/1/86 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700086 ER PT J AU Madsen, KK Furst, F Walton, DJ Harrison, FA Nalewajko, K Ballantyne, DR Boggs, SE Brenneman, LW Christensen, FE Craig, WW Fabian, AC Forster, K Grefenstette, BW Guainazzi, M Hailey, CJ Madejski, GM Matt, G Stern, D Walter, R Zhang, WW AF Madsen, Kristin K. Fuerst, Felix Walton, Dominic J. Harrison, Fiona A. Nalewajko, Krzysztof Ballantyne, David R. Boggs, Steve E. Brenneman, Laura W. Christensen, Finn E. Craig, William W. Fabian, Andrew C. Forster, Karl Grefenstette, Brian W. Guainazzi, Matteo Hailey, Charles J. Madejski, Greg M. Matt, Giorgio Stern, Daniel Walter, Roland Zhang, William W. TI 3C 273 WITH NuSTAR: UNVEILING THE ACTIVE GALACTIC NUCLEUS SO ASTROPHYSICAL JOURNAL LA English DT Article DE quasars: individual (3C 273); X-rays: individual (3C 273) ID X-RAY-SPECTRUM; LINE RADIO GALAXIES; XMM-NEWTON OBSERVATIONS; CORONAL PROPERTIES; RAPID VARIABILITY; GAMMA-RAYS; JET; 3C-273; EMISSION; TELESCOPE AB We present results from a 244 ks NuSTAR observation of 3C 273 obtained during a cross-calibration campaign with the Chandra, INTEGRAL, Suzaku, Swift, and XMM-Newton observatories. We show that the spectrum, when fit with a power-law model using data from all observatories except INTEGRAL over the 1-78 keV band, leaves significant residuals in the NuSTAR data between 30 and 78 keV. The NuSTAR 3-78 keV spectrum is well. described by an exponentially cutoff power law (Gamma = 1.646 +/- 0.006, E-cutoff = 202(-34)(+51) keV) with a weak reflection component from cold, dense material. There is also evidence for a weak (EW = 23 +/- 11 eV) neutral iron line. We interpret these features as arising from coronal emission plus reflection off an accretion disk or distant material. Beyond 80 keV INTEGRAL data show clear excess flux relative to an extrapolation of the active galactic nucleus model fit to NuSTAR. This high-energy power. law is consistent with the presence of a beamed jet, which begins to dominate over emission from the inner accretion flow at 30-40 keV. Modeling the jet locally (in the NuSTAR + INTEGRAL band) as a power. law, we find that the coronal component is fit by Gamma(AGN) = 1.638 +/- 0.045, E-cutoff = 47 +/- 15 keV, and jet photon index by Gamma(jet) = 1.05 +/- 0.4. We also consider Fermi/LAT observations of 3C 273, and here the broadband spectrum of the jet can be described by a log-parabolic model, peaking at similar to 2 MeV. Finally, we investigate the spectral variability in the NuSTAR band and find an inverse correlation between flux and Gamma. C1 [Madsen, Kristin K.; Fuerst, Felix; Walton, Dominic J.; Harrison, Fiona A.; Forster, Karl; Grefenstette, Brian W.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Walton, Dominic J.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nalewajko, Krzysztof; Madejski, Greg M.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Ballantyne, David R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Boggs, Steve E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brenneman, Laura W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Fabian, Andrew C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Guainazzi, Matteo] European Space Astron Ctr ESA, E-28691 Madrid, Spain. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Matt, Giorgio] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Walter, Roland] Univ Geneva, Observ Geneva, CH-1290 Versoix, Switzerland. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Madsen, KK (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891; Ballantyne, David/0000-0001-8128-6976 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX We thank Chris Done for bringing to our attention the alternative interpretation of the jet as a two-component inverse Compton model, and the anonymous referee, whose remarks and corrections helped improve the quality of this paper. This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 53 TC 10 Z9 10 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 14 DI 10.1088/0004-637X/812/1/14 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700014 ER PT J AU Rho, J Hewitt, JW Boogert, A Kaufman, M Gusdorf, A AF Rho, J. Hewitt, J. W. Boogert, A. Kaufman, M. Gusdorf, A. TI DETECTION OF EXTREMELY BROAD WATER EMISSION FROM THE MOLECULAR CLOUD INTERACTING SUPERNOVA REMNANT G349.7+0.2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G349.7+0.2); ISM: molecules; ISM: supernova remnants; shock waves ID HERSCHEL OBSERVATIONS; SHOCK-WAVES; GAS; ABUNDANCES; H2O; EXCITATION; PROGRAM; IC-443; H-2 AB We performed Herschel HIFI, PACS, and SPIRE observations toward the molecular cloud interacting supernova remnant G349.7+0.2. An extremely broad emission line was detected at 557 GHz from the ground state transition 1(10)-1(01) of ortho-water. This water line can be separated into three velocity components with widths of 144, 27, and 4 km s(-1). The 144 km s(-1) component is the broadest water line detected to date in the literature. This extremely broad line width shows the importance of probing shock dynamics. PACS observations revealed three additional ortho-water lines, as well as numerous high-J carbon monoxide (CO) lines. No para-water lines were detected. The extremely broad water line is indicative of a high velocity shock, which is supported by the observed CO rotational diagram that was reproduced with a J-shock model with a density of 10(4) cm(-3) and a shock velocity of 80 km s(-1). Two far-infrared fine-structure lines, [O I] at 145 mu m and [C II] line at 157 mu m, are also consistent with the high velocity J-shock model. The extremely broad water line could be simply from short-lived molecules that have not been destroyed in high velocity J-shocks; however, it may be from more complicated geometry such as high-velocity water bullets or a shell expanding in high velocity. We estimate the CO and H2O densities, column densities, and temperatures by comparison with RADEX and detailed shock models. C1 [Rho, J.] SETI Inst, Mountain View, CA 94043 USA. [Rho, J.] NASA, Ames Res Ctr, Mountain View, CA 94043 USA. [Hewitt, J. W.] Univ Maryland, CRESST, Baltimore, MD 21250 USA. [Hewitt, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boogert, A.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Kaufman, M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Gusdorf, A.] Ecole Normale Super, CNRS, Observ Paris, LERMA,UMR 8112, F-75231 Paris 05, France. RP Rho, J (reprint author), SETI Inst, 189 N Bernardo Ave, Mountain View, CA 94043 USA. EM jrho@seti.org; john.w.hewitt@nasa.gov; aboogert@sofia.usra.edu; michael.kaufman@sjsu.edu; antoine.gusdorf@lra.ens.fr FU NASA [NNX12AG97G] FX Support for this work, part of the NASA Herschel Science Center (through JPL/Caltech), Astrophysics Data Analysis Program (grant NNX12AG97G) and Theoretical Research/Laboratory Astrophysics Program, was provided by NASA. We thank David Hollenbach for insightful and critical comments that helped to significantly improve the paper. We thank Tom Pannuti for discussion on SNRs, Herschel Science Center staff members including Ivan Valtchanov, David Teyssier, and David Shupe for their support on data reduction, and calibration, and Emmanuel Caux for various discussion on and updating CASSIS. NR 39 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 44 DI 10.1088/0004-637X/812/1/44 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700044 ER PT J AU Simon, AA Wong, MH Orton, GS AF Simon, Amy A. Wong, Michael H. Orton, Glenn S. TI FIRST RESULTS FROM THE HUBBLE OPAL PROGRAM: JUPITER IN 2015 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: atmospheres; planets and satellites: gaseous planets; planets and satellites: individual (Jupiter); waves ID PROBE MASS-SPECTROMETER; SMALL-SCALE WAVES; GREAT-RED-SPOT; BAROCLINIC WAVES; JOVIAN ATMOSPHERE; SATELLITES; VOYAGER-2; HORIZONS; HEIGHT AB The Hubble 2020: Outer Planet Atmospheres Legacy program is generating new yearly global maps for each of the outer planets. This report focuses on Jupiter results from the first year of the campaign. The zonal wind profile was measured and is in the same family as the Voyager and Cassini era profiles, showing some variation in mid- to high-latitude wind jet magnitudes, particularly at +40 degrees and -35 degrees planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, but also shows new internal structures, including a reduced core and new filamentary features. Finally, a wave that was not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16 degrees N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale. C1 [Simon, Amy A.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div 690, Greenbelt, MD 20771 USA. [Wong, Michael H.] Univ Calif Berkeley, Dept Astron, Berkeley, CA USA. [Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Simon, AA (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div 690, Greenbelt, MD 20771 USA. EM amy.simon@nasa.gov RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 FU Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; NASA/ESA Hubble Space Telescope [GO13937] FX This work was based on observations made with the NASA/ESA Hubble Space Telescope under program GO13937. Support for this program was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. A.A.S. thanks Peter Gierasch for informative discussions about wave formation and baroclinic instabilities. NR 40 TC 5 Z9 5 U1 4 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 55 DI 10.1088/0004-637X/812/1/55 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700055 ER PT J AU Thompson, SE Mullally, F Coughlin, J Christiansen, JL Henze, CE Haas, MR Burke, CJ AF Thompson, Susan E. Mullally, Fergal Coughlin, Jeff Christiansen, Jessie L. Henze, Christopher E. Haas, Michael R. Burke, Christopher J. TI A MACHINE LEARNING TECHNIQUE TO IDENTIFY TRANSIT SHAPED SIGNALS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: eclipsing; methods: data analysis; planetary systems ID KEPLER-MISSION; PLANET SAMPLE; ECLIPSING BINARIES; LIGHT CURVES; ARCHIVE DATA; DATA RELEASE; CANDIDATES; CLASSIFICATION; CATALOG; SCIENCE AB We describe a new metric that uses machine learning to determine if a periodic signal found in a photometric time series appears to be shaped like the signature of a transiting exoplanet. This metric uses dimensionality reduction and k-nearest neighbors to determine whether a given signal is sufficiently similar to known transits in the same data set. This metric is being used by the Kepler Robovetter to determine which signals should be part of the Q1-Q17 DR24 catalog of planetary candidates. The Kepler Mission reports roughly 20,000 potential transiting signals with each run of its pipeline, yet only a few thousand appear to be sufficiently transit shaped to be part of the catalog. The other signals tend to be variable stars and instrumental noise. With this metric, we are able to remove more than 90% of the non-transiting signals while retaining more than 99% of the known planet candidates. When tested with injected transits, less than 1% are lost. This metric will enable the Kepler mission and future missions looking for transiting planets to rapidly and consistently find the best planetary candidates for follow-up and cataloging. C1 [Thompson, Susan E.; Mullally, Fergal; Henze, Christopher E.; Haas, Michael R.; Burke, Christopher J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thompson, Susan E.; Mullally, Fergal; Coughlin, Jeff; Burke, Christopher J.] SETI Inst, Mountain View, CA 94043 USA. [Christiansen, Jessie L.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91106 USA. RP Thompson, SE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM susan.e.thompson@nasa.gov FU NASA Science Mission Directorate; Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; larger Kepler team FX We thank the larger Kepler team for their support and hard work in making this data available and in supporting this paper. Funding for the Kepler mission is provided by the NASA Science Mission Directorate. We also thank the referee for useful and insightful comments that improved the clarity of the manuscript. Some of the data presented in this paper were obtained from the Multi-mission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NR 43 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2015 VL 812 IS 1 AR 46 DI 10.1088/0004-637X/812/1/46 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV4KC UT WOS:000364234700046 ER PT J AU Vaillancourt, JE Andersson, BG AF Vaillancourt, John E. Andersson, B. -G. TI A FAR-INFRARED OBSERVATIONAL TEST OF THE DIRECTIONAL DEPENDENCE IN RADIATIVE GRAIN ALIGNMENT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; ISM: individual objects (OMC-1); ISM: magnetic fields; polarization; submillimeter: ISM ID INTERSTELLAR GRAINS; TIME-SERIES; TORQUES; POLARIMETRY; FIELD AB The alignment of interstellar dust grains with magnetic fields provides a key method for measuring the strength and morphology of the fields. In turn, this provides a means to study the role of magnetic fields from diffuse gas to dense star-forming regions. The physical mechanism for aligning the grains has been a long-term subject of study and debate. The theory of radiative torques, in which an anisotropic radiation field imparts sufficient torques to align the grains while simultaneously spinning them to high rotational velocities, has passed a number of observational tests. Here we use archival polarization data in dense regions of the Orion molecular cloud (OMC-1) at 100, 350, and 850 mu m to test the prediction that the alignment efficiency is dependent upon the relative orientations of the magnetic field and radiation anisotropy. We find that the expected polarization signal, with a 180-degree period, exists at all wavelengths out to radii of 1.5 arcmin centered on the Becklin-Neugebauer Kleinmann-Low (BNKL) object in OMC-1. The probabilities that these signals would occur due to random noise are low (less than or similar to 1%), and are lowest toward BNKL compared to the rest of the cloud. Additionally, the relative magnetic field to radiation anisotropy directions accord with theoretical predictions in that they agree to better than 15 degrees at 100 mu m and 4 degrees at 350 mu m. C1 [Vaillancourt, John E.; Andersson, B. -G.] NASA, Ames Res Ctr, Univ Space Res Assoc, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. RP Vaillancourt, JE (reprint author), NASA, Ames Res Ctr, Univ Space Res Assoc, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. EM jvaillancourt@sofia.usra.edu; bg@sofia.usra.edu OI Andersson, B-G/0000-0001-6717-0686; Vaillancourt, John/0000-0001-8916-1828 FU NSF [AST 11-09469] FX This work has been supported by NSF grant AST 11-09469. NR 26 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 10 PY 2015 VL 812 IS 1 AR L7 DI 10.1088/2041-8205/812/1/L7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7UC UT WOS:000364479800007 ER PT J AU Grotzinger, JP Gupta, S Malin, MC Rubin, DM Schieber, J Siebach, K Sumner, DY Stack, KM Vasavada, AR Arvidson, RE Calef, F Edgar, L Fischer, WF Grant, JA Griffes, J Kah, LC Lamb, MP Lewis, KW Mangold, N Minitti, ME Palucis, M Rice, M Williams, RME Yingst, RA Blake, D Blaney, D Conrad, P Crisp, J Dietrich, WE Dromart, G Edgett, KS Ewing, RC Gellert, R Hurowitz, JA Kocurek, G Mahaffy, P McBride, MJ McLennan, SM Mischna, M Ming, D Milliken, R Newsom, H Oehler, D Parker, TJ Vaniman, D Wiens, RC Wilson, SA AF Grotzinger, J. P. Gupta, S. Malin, M. C. Rubin, D. M. Schieber, J. Siebach, K. Sumner, D. Y. Stack, K. M. Vasavada, A. R. Arvidson, R. E. Calef, F., III Edgar, L. Fischer, W. F. Grant, J. A. Griffes, J. Kah, L. C. Lamb, M. P. Lewis, K. W. Mangold, N. Minitti, M. E. Palucis, M. Rice, M. Williams, R. M. E. Yingst, R. A. Blake, D. Blaney, D. Conrad, P. Crisp, J. Dietrich, W. E. Dromart, G. Edgett, K. S. Ewing, R. C. Gellert, R. Hurowitz, J. A. Kocurek, G. Mahaffy, P. McBride, M. J. McLennan, S. M. Mischna, M. Ming, D. Milliken, R. Newsom, H. Oehler, D. Parker, T. J. Vaniman, D. Wiens, R. C. Wilson, S. A. TI Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars SO SCIENCE LA English DT Article ID EARLY MARTIAN CLIMATE; ALLUVIAL ARCHITECTURE; POINT-BAR; EVOLUTION; CANADA; RIVER; ATMOSPHERE; CURIOSITY; SEDIMENT; DELTAS AB The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). C1 [Grotzinger, J. P.; Siebach, K.; Fischer, W. F.; Griffes, J.; Lamb, M. P.; Palucis, M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Gupta, S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Malin, M. C.; Edgett, K. S.; McBride, M. J.] Malin Space Sci Syst, San Diego, CA 92121 USA. [Rubin, D. M.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Schieber, J.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [Sumner, D. Y.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Stack, K. M.; Vasavada, A. R.; Calef, F., III; Blaney, D.; Crisp, J.; Mischna, M.; Parker, T. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Arvidson, R. E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Edgar, L.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Grant, J. A.; Wilson, S. A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, Washington, DC 20560 USA. [Kah, L. C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Lewis, K. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Mangold, N.] Le Ctr Natl Rech, Lab Planetol & Geodynam Nantes, Unite Mixte Rech 6112, F-44322 Nantes, France. [Mangold, N.] Univ Nantes, F-44322 Nantes, France. [Minitti, M. E.; Williams, R. M. E.; Yingst, R. A.; Vaniman, D.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Rice, M.] Western Washington Univ, Dept Geol, Bellingham, WA 98225 USA. [Blake, D.] NASA, Ames Res Ctr, Dept Space Sci, Moffett Field, CA 94035 USA. [Conrad, P.; Mahaffy, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dietrich, W. E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Dromart, G.] Univ Lyon, Lab Geol Lyon, F-69364 Lyon, France. [Ewing, R. C.] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Hurowitz, J. A.; McLennan, S. M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Kocurek, G.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Ming, D.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Div, Houston, TX 77058 USA. [Milliken, R.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Newsom, H.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Oehler, D.] NASA, Lyndon B Johnson Space Ctr, LZ Technol, Houston, TX 77058 USA. [Wiens, R. C.] Los Alamos Natl Lab, Space Remote Sensing, Los Alamos, NM 87544 USA. RP Grotzinger, JP (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RI Crisp, Joy/H-8287-2016; OI Crisp, Joy/0000-0002-3202-4416; Siebach, Kirsten/0000-0002-6628-6297 FU UK Space Agency FX The authors are indebted to the MSL project's engineering and management teams for their exceptionally skilled and diligent efforts in making the mission as effective as possible and enhancing science operations. We are also grateful to all those MSL team members who participated in tactical and strategic operations. Without the support of both the engineering and science teams, the data presented here could not have been collected. Helpful reviews were provided by K. Bohacs and two anonymous reviewers. Some of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Work in the UK was funded by the UK Space Agency. Data presented in this paper are archived in the Planetary Data System (pds.nasa.gov). NR 77 TC 52 Z9 54 U1 11 U2 80 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 9 PY 2015 VL 350 IS 6257 AR AAC7575 DI 10.1126/science.aac7575 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS9JB UT WOS:000362405600029 PM 26450214 ER PT J AU Boccaletti, A Thalmann, C Lagrange, AM Janson, M Augereau, JC Schneider, G Milli, J Grady, C Debes, J Langlois, M Mouillet, D Henning, T Dominik, C Maire, AL Beuzit, JL Carson, J Dohlen, K Engler, N Feldt, M Fusco, T Ginski, C Girard, JH Hines, D Kasper, M Mawet, D Menard, F Meyer, MR Moutou, C Olofsson, J Rodigas, T Sauvage, JF Schlieder, J Schmid, HM Turatto, M Udry, S Vakili, F Vigan, A Wahhaj, Z Wisniewski, J AF Boccaletti, Anthony Thalmann, Christian Lagrange, Anne-Marie Janson, Markus Augereau, Jean-Charles Schneider, Glenn Milli, Julien Grady, Carol Debes, John Langlois, Maud Mouillet, David Henning, Thomas Dominik, Carsten Maire, Anne-Lise Beuzit, Jean-Luc Carson, Joseph Dohlen, Kjetil Engler, Natalia Feldt, Markus Fusco, Thierry Ginski, Christian Girard, Julien H. Hines, Dean Kasper, Markus Mawet, Dimitri Menard, Franois Meyer, Michael R. Moutou, Claire Olofsson, Johan Rodigas, Timothy Sauvage, Jean-Francois Schlieder, Joshua Schmid, Hans Martin Turatto, Massimo Udry, Stephane Vakili, Farrokh Vigan, Arthur Wahhaj, Zahed Wisniewski, John TI Fast-moving features in the debris disk around AU Microscopii SO NATURE LA English DT Article ID BETA-PICTORIS; CIRCUMSTELLAR DISK; EVOLUTIONARY MODELS; BROWN DWARFS; DUST DISK; EXOPLANETS; PLANET AB In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories. C1 [Boccaletti, Anthony] Univ Paris 06, Univ Paris Diderot, CNRS, Observ Paris,LESIA, F-92190 Meudon, France. [Thalmann, Christian; Engler, Natalia; Meyer, Michael R.; Schmid, Hans Martin] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Lagrange, Anne-Marie; Augereau, Jean-Charles; Mouillet, David; Beuzit, Jean-Luc] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Lagrange, Anne-Marie; Augereau, Jean-Charles; Milli, Julien; Beuzit, Jean-Luc; Girard, Julien H.; Kasper, Markus] IPAG, CNRS, F-38000 Grenoble, France. [Janson, Markus] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Janson, Markus; Henning, Thomas; Carson, Joseph; Olofsson, Johan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Schneider, Glenn] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Milli, Julien; Girard, Julien H.; Vigan, Arthur; Wahhaj, Zahed] ESO, Santiago 19001, Chile. [Grady, Carol] Eureka Sci, Oakland, CA 96002 USA. [Debes, John; Hines, Dean] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Langlois, Maud] Univ Lyon 1, CNRS, Ctr Rech Astrophys Lyon, ENS L, F-69561 St Genis Laval, France. [Langlois, Maud; Dohlen, Kjetil; Fusco, Thierry; Moutou, Claire; Sauvage, Jean-Francois; Vigan, Arthur; Wahhaj, Zahed] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Dominik, Carsten] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Maire, Anne-Lise; Turatto, Massimo] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Carson, Joseph] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Fusco, Thierry; Sauvage, Jean-Francois] Off Natl Etud & Rech Aerosp, F-92322 Chatillon, France. [Ginski, Christian] Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Kasper, Markus] ESO, D-85748 Garching, Germany. [Mawet, Dimitri] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Menard, Franois] INSU France, CNRS, UMI, FCA,UMI 3386, Montpellier, France. [Menard, Franois] Univ Chile, Dept Astron, Santiago, Chile. [Rodigas, Timothy] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Schlieder, Joshua] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Udry, Stephane] Univ Geneva, Observ Geneve, CH-1290 Versoix, Switzerland. [Vakili, Farrokh] Univ Nice Sophia Antipolis UNS, CNRS, Lab JL Lagrange, OCA, F-06108 Nice 2, France. [Wisniewski, John] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. RP Boccaletti, A (reprint author), Univ Paris 06, Univ Paris Diderot, CNRS, Observ Paris,LESIA, 5 Pl Jules Janssen, F-92190 Meudon, France. EM anthony.boccaletti@obspm.fr OI Turatto, Massimo/0000-0002-9719-3157; Vigan, Arthur/0000-0002-5902-7828 FU ESO; CNRS; MPIA; INAF; FINES; NOVA; European Commission FP6 programme as part of OPTICON [RII3-Ct-2004-001566]; European Commission FP7 programme as part of OPTICON [226604, 312430]; Swiss National Science Foundation; SNSF; ESO Very Large Telescope [60.A-9249]; NASA/ESA Hubble Space Telescope [12228]; NASA [NAS 5-26555]; [ANR-14-CE33-0018] FX SPHERE was built by a European consortium led by IPAG (France). SPHERE was funded by the ESO, with additional contributions from CNRS, MPIA, INAF, FINES and NOVA. SPHERE also received funding from the European Commission FP6 and FP7 programmes as part of OPTICON under grant numbers RII3-Ct-2004-001566 (FP6), 226604 (FP7) and 312430 (FP7). French co-authors are supported by ANR-14-CE33-0018. Part of this work has been carried out within the framework of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation. C.T. and M.R.M. acknowledge the financial support of the SNSF. This study is based on observations from program 60.A-9249(C) at ESO Very Large Telescope and from program number 12228 made with the NASA/ESA Hubble Space Telescope, obtained at STScI, which is operated by AURA Inc. under NASA contract NAS 5-26555. We are also grateful to the ESO for releasing the commissioning data for publication. Finally, we thank P. Zarka, N. Meyer-Vernet, B. Stelzer and Q. Kral for discussions. J.S. is a NASA Postdoctoral Program Fellow. NR 29 TC 20 Z9 20 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 8 PY 2015 VL 526 IS 7572 BP 230 EP + DI 10.1038/nature15705 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS9GV UT WOS:000362399000041 PM 26450055 ER PT J AU Bohe, A Faye, G Marsat, S Porter, EK AF Bohe, Alejandro Faye, Guillaume Marsat, Sylvain Porter, Edward K. TI Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE post-Newtonian approximation; gravitational waves; binary systems; compact objects ID POST-NEWTONIAN ORDER; BLACK-HOLE; GENERAL-RELATIVITY; RADIATION; EQUATIONS; MOTION; FIELD; PARTICLES; EXPANSION; SYSTEMS AB We investigate the dynamics of spinning binaries of compact objects at the next-to-leading order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN). Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric within the near zone, we derive the post-Newtonian equations of motion as well as the equations of spin precession. We find full equivalence with available results. We then focus on the far-zone field produced by those systems and obtain the previously unknown 3PN spin contributions to the gravitational-wave energy flux by means of the multipolar post-Minkowskian wave generation formalism. Our results are presented in the center-of-mass frame for generic orbits, before being further specialized to the case of spin-aligned, circular orbits. Based on the energy balance equation, we derive the orbital phase of the binary at the order 3PN including all conservative spin effects and briefly discuss the relevance of the new terms. C1 [Bohe, Alejandro] Albert Einstein Inst, D-14476 Potsdam, Germany. [Faye, Guillaume] Univ Paris 04, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Faye, Guillaume] Univ Paris 06, F-75014 Paris, France. [Marsat, Sylvain] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Marsat, Sylvain] Univ Maryland, Joint Space Sci Ctr, Dept Phys, College Pk, MD 20742 USA. [Marsat, Sylvain] NASA, Gravitat Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Porter, Edward K.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, Francois Arago Ctr,APC,CEA Irfu,CNRS IN2P3, F-75205 Paris 13, France. RP Faye, G (reprint author), Univ Paris 04, CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. EM alejandro.bohe@aei.mpg.de; faye@iap.fr; smarsat@umd.edu; porter@apc.univ-paris7.fr FU NASA [11-ATP-046]; NASA at the University of Maryland College Park [NNX12AN10G] FX We are thankful to Luc Blanchet, Alessandra Buonanno and Jan Steinhoff for useful discussions and comments. S M was supported by the NASA grant 11-ATP-046, as well as the NASA grant NNX12AN10G at the University of Maryland College Park. GF is grateful to the APC for granting him access to the various facilities of the laboratory during the preparation of this work. NR 94 TC 12 Z9 12 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD OCT 8 PY 2015 VL 32 IS 19 AR 195010 DI 10.1088/0264-9381/32/19/195010 PG 42 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CS7PF UT WOS:000362275900010 ER PT J AU Schwantes, RH Teng, AP Nguyen, TB Coggon, MM Crounse, JD St Clair, JM Zhang, X Schilling, KA Seinfeld, JH Wennberg, PO AF Schwantes, Rebecca H. Teng, Alexander P. Nguyen, Tran B. Coggon, Matthew M. Crounse, John D. St Clair, Jason M. Zhang, Xuan Schilling, Katherine A. Seinfeld, John H. Wennberg, Paul O. TI Isoprene NO3 Oxidation Products from the RO2 + HO2 Pathway SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SECONDARY ORGANIC AEROSOL; OH-INITIATED OXIDATION; REGIONAL AIR-QUALITY; METHYL VINYL KETONE; GAS-PHASE; ATMOSPHERIC CHEMISTRY; PEROXY-RADICALS; NO3-INITIATED OXIDATION; BIOGENIC COMPOUNDS; MASS-SPECTROMETER AB We describe the products of the reaction of the hydroperoxy radical (HO2) with the alkylperoxy radical formed following addition of the nitrate radical (NO3) and O-2 to isoprene. NO3 adds preferentially to the C-1 position of isoprene (>6 times more favorably than addition to C-4), followed by the addition of O-2 to produce a suite of nitrooxy alkylperoxy radicals (RO2). At an RO2 lifetime of similar to 30 s, delta-nitrooxy and beta-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO2 + HO2 pathway are identified as 0.75-0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH2O) + hydroxyl radical (OH) + nitrogen dioxide (NO2), and 0-0.03 methacrolein (MACR) + CH2O + OH + NO2. We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation. C1 [Schwantes, Rebecca H.; Teng, Alexander P.; Nguyen, Tran B.; Crounse, John D.; Zhang, Xuan; Wennberg, Paul O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Coggon, Matthew M.; Schilling, Katherine A.; Seinfeld, John H.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Seinfeld, John H.; Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [St Clair, Jason M.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA. [St Clair, Jason M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. RP Schwantes, RH (reprint author), CALTECH, Div Geol & Planetary Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA. EM rschwant@caltech.edu; wennberg@gps.caltech.edu RI Coggon, Matthew/I-8604-2016; Crounse, John/C-3700-2014; OI Coggon, Matthew/0000-0002-5763-1925; Crounse, John/0000-0001-5443-729X; Teng, Alexander/0000-0002-6434-0501 FU National Science Foundation [AGS-1240604, AGS-1428482]; Electric Power Research Institute; NSF PRF award [AGS-1331360] FX The authors thank the National Science Foundation (AGS-1240604) and the Electric Power Research Institute for their support of this work. TBN acknowledges support from NSF PRF award AGS-1331360. Development of the GC-ToF-CIMS is supported by an award from the National Science Foundation's Major Research Instrumentation Program (AGS-1428482). NR 71 TC 13 Z9 13 U1 16 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 8 PY 2015 VL 119 IS 40 BP 10158 EP 10171 DI 10.1021/acs.jpca.5b06355 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CT3JA UT WOS:000362701800005 PM 26335780 ER PT J AU Werneth, CM Maung, KM Ford, WP AF Werneth, C. M. Maung, K. M. Ford, W. P. TI Relativistic elastic differential cross sections for equal mass nuclei SO PHYSICS LETTERS B LA English DT Article DE Lippmann-Schwinger equation; Relativistic kinematics; Elastic differential cross section ID SCATTERING AB The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann-Schwinger equation with the first order optical potential that was employed in the calculation. Published by Elsevier B.V. C1 [Werneth, C. M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Maung, K. M.; Ford, W. P.] Univ So Mississippi, Hattiesburg, MS 39406 USA. RP Werneth, CM (reprint author), NASA, Langley Res Ctr, 2 W Reid St, Hampton, VA 23681 USA. EM charles.m.werneth@nasa.gov FU Human Research Program under the Human Exploration and Operations Mission Directorate of NASA; NASA [NNX13AH31A] FX The authors would like to thank Drs. John Norbury, Steve Blattnig, Ryan Norman, Jonathan Ransom, and Francis Badavi for reviewing this manuscript. The authors also thank the referees for their helpful comments. This work was supported by the Human Research Program under the Human Exploration and Operations Mission Directorate of NASA and NASA grant number NNX13AH31A. NR 30 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 7 PY 2015 VL 749 BP 331 EP 336 DI 10.1016/j.physletb.2015.08.002 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CR7WO UT WOS:000361562900047 ER PT J AU Angal, A Xiong, XX Sun, JQ Geng, X AF Angal, Amit Xiong, Xiaoxiong Sun, Junqiang Geng, Xu TI On-orbit noise characterization of MODIS reflective solar bands SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Moderate Resolution Imaging Spectroradiometer; radiometer; calibration; solar diffuser; signal-to-noise ratio; solar diffuser degradation ID PERFORMANCE; CALIBRATION; TERRA AB The Moderate Resolution Imaging Spectroradiometer (MODIS), launched on the Terra and Aqua spacecrafts, was designed to collect complementary and comprehensive measurements of the Earth's properties on a global scale. The 20 reflective solar bands (RSBs), covering a wavelength range from 0.41 to 2.1 mu m, are calibrated on-orbit using regularly scheduled solar diffuser (SD) observations. Although primarily used for on-orbit gain derivation, the SD observations also facilitate the characterization of the detector signal-to-noise ratio (SNR). In addition to the calibration requirement of 2% for the reflectance factors and 5% for the radiances, the required SNRs are also specified for all RSB at their typical scene radiances. A methodology to characterize the on-orbit SNR for the MODIS RSB is presented. Overall performance shows that a majority of the RSB continue to meet the specification, therefore performing well. A temporal decrease in the SNR, observed in the short-wavelength bands, is attributed primarily to the decrease in their detector responses. With the exception of the inoperable and noisy detectors in band 6 identified prelaunch, the detectors of AquaMODIS RSB perform better than TerraMODIS. The approach formulated for on-orbit SNR characterization can also be used by other sensors that use on-board SDs for their on-orbit calibration (e.g., Suomi National Polar-Orbiting Partnership [SNPP]-Visible Infrared Imaging Radiometer Suite). (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Angal, Amit; Xiong, Xiaoxiong; Sun, Junqiang; Geng, Xu] NASA, Goddard Space Flight Ctr, MODIS Characterizat Support Team, Greenbelt, MD 20771 USA. [Angal, Amit; Geng, Xu] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, GSFC, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Sun, Junqiang] Global Sci & Technol, Greenbelt, MD 20770 USA. RP Angal, A (reprint author), NASA, Goddard Space Flight Ctr, MODIS Characterizat Support Team, Greenbelt, MD 20771 USA. EM amit.angal@ssaihq.com NR 14 TC 4 Z9 4 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD OCT 6 PY 2015 VL 9 AR 094092 DI 10.1117/1.JRS.9.094092 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CX7NB UT WOS:000365887600001 ER PT J AU Summers, DP Rodoni, D AF Summers, David P. Rodoni, David TI Vesicle Encapsulation of a Nonbiological Photochemical System Capable of Reducing NAD(+) to NADH SO LANGMUIR LA English DT Article ID AUTOPOIETIC SELF-REPRODUCTION; FATTY-ACID VESICLES; ARTIFICIAL CELLS; PREBIOTIC CONDITIONS; LIPID VESICLES; LIPOSOMES; MODELS; ENERGY; REDUCTION; COMPLEXES AB One of the fundamental structures of a cell is the membrane. Self-assembling lipid bilayer vesicles can form the membrane of an artificial cell and could also have plausibly assembled prebiotically for the origin of life. Such cell-like structures, that encapsulate some basic subset of the functions of living cells, are important for research to infer the minimum chemistry necessary for a cell, to help understand the origin of life, and to allow the production of useful species in microscopic containers. We show that the encapsulation of TiO2 particles has the potential to provide the basis for an energy transduction system inside vesicles which can be used to drive subsequent chemistry. TiO2 encapsulated in vesicles can be used to produce biochemical species such as NADH. The NADH is formed from NAD(+) reduction and is produced in a form that is able to drive further enzymatic chemistry. This allows us to link a mineral-based, nonbiological photosystem to biochemical reactions. This is a fundamental step toward being able to use this mineral photosystem in a protocell/artificial cell. C1 [Summers, David P.] NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Rodoni, David] Foothill Coll, Los Altos, CA 94022 USA. RP Summers, DP (reprint author), NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM David.P.Summers@nasa.gov FU NASA's Astrobiology: Exobiology and Evolutionary Biology program FX We thank NASA's Astrobiology: Exobiology and Evolutionary Biology program for funding. NR 31 TC 4 Z9 4 U1 10 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 6 PY 2015 VL 31 IS 39 BP 10633 EP 10637 DI 10.1021/la502003j PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CT2JY UT WOS:000362629000001 PM 26177350 ER PT J AU Meenehan, SM Cohen, JD MacCabe, GS Marsili, F Shaw, MD Painter, O AF Meenehan, Sean M. Cohen, Justin D. MacCabe, Gregory S. Marsili, Francesco Shaw, Matthew D. Painter, Oskar TI Pulsed Excitation Dynamics of an Optomechanical Crystal Resonator near Its Quantum Ground State of Motion SO PHYSICAL REVIEW X LA English DT Article ID CAVITY OPTOMECHANICS; ATOMIC ENSEMBLES; LINEAR OPTICS; CONVERSION; MICROWAVE AB Using pulsed optical excitation and read-out along with single-phonon-counting techniques, we measure the transient backaction, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of T-f approximate to 11 mK. In addition to observing a slow (approximately 740-ns) turn-on time for the optical-absorption-induced hot-phonon bath, we measure for the 5.6-GHz "breathing" acoustic mode of the cavity an initial phonon occupancy as low as < n > = 0.021 +/- 0.007 (mode temperature T-min approximate to 70 mK) and an intrinsic mechanical decay rate of gamma(0) = 328 +/- 14 Hz (Q(m) approximate to 1.7 x 10(7)). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating. C1 [Meenehan, Sean M.; Cohen, Justin D.; MacCabe, Gregory S.; Painter, Oskar] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA. [Meenehan, Sean M.; Cohen, Justin D.; MacCabe, Gregory S.; Painter, Oskar] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA. [Meenehan, Sean M.; Cohen, Justin D.; MacCabe, Gregory S.; Painter, Oskar] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA. [Marsili, Francesco; Shaw, Matthew D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Painter, O (reprint author), CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA. EM opainter@caltech.edu FU DARPA ORCHID program; DARPA MESO program; Institute for Quantum Information and Matter; NSF Physics Frontiers Center; Gordon and Betty Moore Foundation; AFOSR through the "Wiring Quantum Networks with Mechanical Transducers" MURI program; Kavli Nanoscience Institute at Caltech FX The authors would like to thank V. B. Verma, R. P. Miriam, and S. W. Nam for their help with the single-photon detectors used in this work. This work was supported by the DARPA ORCHID and MESO programs, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation, the AFOSR through the "Wiring Quantum Networks with Mechanical Transducers" MURI program, and the Kavli Nanoscience Institute at Caltech. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 32 TC 21 Z9 21 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD OCT 6 PY 2015 VL 5 IS 4 AR 041002 DI 10.1103/PhysRevX.5.041002 PG 8 WC Physics, Multidisciplinary SC Physics GA CS8LG UT WOS:000362338400001 ER PT J AU Mawet, D AF Mawet, Dimitri TI Eyeing up a Jupiter-like exoplanet SO SCIENCE LA English DT Editorial Material ID HABITABLE ZONE; PLANETS; DISCOVERY; SPECTROSCOPY; KEPLER; STAR C1 CALTECH, Dept Astron, Jet Prop Lab, Pasadena, CA 91125 USA. RP Mawet, D (reprint author), CALTECH, Dept Astron, Jet Prop Lab, Pasadena, CA 91125 USA. EM dmawet@astro.caltech.edu NR 15 TC 0 Z9 0 U1 0 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 2 PY 2015 VL 350 IS 6256 BP 39 EP 40 DI 10.1126/science.aad0904 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS5EA UT WOS:000362098300034 PM 26430108 ER PT J AU Macintosh, B Graham, JR Barman, T De Rosa, RJ Konopacky, Q Marley, MS Marois, C Nielsen, EL Pueyo, L Rajan, A Rameau, J Saumon, D Wang, JJ Patience, J Ammons, M Arriaga, P Artigau, E Beckwith, S Brewster, J Bruzzone, S Bulger, J Burningham, B Burrows, AS Chen, C Chiang, E Chilcote, JK Dawson, RI Dong, R Doyon, R Draper, ZH Duchene, G Esposito, TM Fabrycky, D Fitzgerald, MP Follette, KB Fortney, JJ Gerard, B Goodsell, S Greenbaum, AZ Hibon, P Hinkley, S Cotten, TH Hung, LW Ingraham, P Johnson-Groh, M Kalas, P Lafreniere, D Larkin, JE Lee, J Line, M Long, D Maire, J Marchis, F Matthews, BC Max, CE Metchev, S Millar-Blanchaer, MA Mittal, T Morley, CV Morzinski, KM Murray-Clay, R Oppenheimer, R Palmer, DW Patel, R Perrin, MD Poyneer, LA Rafikov, RR Rantakyro, FT Rice, EL Rojo, P Rudy, AR Ruffio, JB Ruiz, MT Sadakuni, N Saddlemyer, L Salama, M Savransky, D Schneider, AC Sivaramakrishnan, A Song, I Soummer, R Thomas, S Vasisht, G Wallace, JK Ward-Duong, K Wiktorowicz, SJ Wolff, SG Zuckerman, B AF Macintosh, B. Graham, J. R. Barman, T. De Rosa, R. J. Konopacky, Q. Marley, M. S. Marois, C. Nielsen, E. L. Pueyo, L. Rajan, A. Rameau, J. Saumon, D. Wang, J. J. Patience, J. Ammons, M. Arriaga, P. Artigau, E. Beckwith, S. Brewster, J. Bruzzone, S. Bulger, J. Burningham, B. Burrows, A. S. Chen, C. Chiang, E. Chilcote, J. K. Dawson, R. I. Dong, R. Doyon, R. Draper, Z. H. Duchene, G. Esposito, T. M. Fabrycky, D. Fitzgerald, M. P. Follette, K. B. Fortney, J. J. Gerard, B. Goodsell, S. Greenbaum, A. Z. Hibon, P. Hinkley, S. Cotten, T. H. Hung, L-W. Ingraham, P. Johnson-Groh, M. Kalas, P. Lafreniere, D. Larkin, J. E. Lee, J. Line, M. Long, D. Maire, J. Marchis, F. Matthews, B. C. Max, C. E. Metchev, S. Millar-Blanchaer, M. A. Mittal, T. Morley, C. V. Morzinski, K. M. Murray-Clay, R. Oppenheimer, R. Palmer, D. W. Patel, R. Perrin, M. D. Poyneer, L. A. Rafikov, R. R. Rantakyroe, F. T. Rice, E. L. Rojo, P. Rudy, A. R. Ruffio, J-B. Ruiz, M. T. Sadakuni, N. Saddlemyer, L. Salama, M. Savransky, D. Schneider, A. C. Sivaramakrishnan, A. Song, I. Soummer, R. Thomas, S. Vasisht, G. Wallace, J. K. Ward-Duong, K. Wiktorowicz, S. J. Wolff, S. G. Zuckerman, B. TI Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager SO SCIENCE LA English DT Article ID PICTORIS MOVING GROUP; HR 8799 PLANETS; BETA-PICTORIS; MASS COMPANION; GJ 504; GAS; STARS; ATMOSPHERES; INSTABILITY; ACCRETION AB Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the similar to 20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 x 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter. C1 [Macintosh, B.; Nielsen, E. L.; Follette, K. B.; Ruffio, J-B.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Macintosh, B.; Ammons, M.; Palmer, D. W.; Poyneer, L. A.] Lawrence Livermore Natl Lab, Livermore, CA 94040 USA. [Graham, J. R.; De Rosa, R. J.; Wang, J. J.; Beckwith, S.; Chiang, E.; Dawson, R. I.; Dong, R.; Duchene, G.; Kalas, P.; Mittal, T.; Salama, M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Barman, T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Konopacky, Q.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Marley, M. S.; Burningham, B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Marois, C.; Draper, Z. H.; Gerard, B.; Johnson-Groh, M.; Matthews, B. C.; Saddlemyer, L.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Marois, C.; Draper, Z. H.; Gerard, B.; Johnson-Groh, M.; Matthews, B. C.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. [Nielsen, E. L.; Brewster, J.; Kalas, P.; Marchis, F.; Ruffio, J-B.] Search Extraterr Intelligence Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Pueyo, L.; Chen, C.; Greenbaum, A. Z.; Long, D.; Perrin, M. D.; Sivaramakrishnan, A.; Soummer, R.; Wolff, S. G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Rajan, A.; Patience, J.; Bulger, J.; Ward-Duong, K.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Rameau, J.; Artigau, E.; Doyon, R.; Lafreniere, D.] Univ Montreal, Inst Rech Exoplanetes, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Arriaga, P.; Esposito, T. M.; Fitzgerald, M. P.; Hung, L-W.; Larkin, J. E.; Zuckerman, B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Bruzzone, S.; Metchev, S.] Univ Western Ontario, Ctr Planetary Sci & Explorat, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Bulger, J.] Subaru Telescope, Hilo, HI 96720 USA. [Burningham, B.] Univ Hertfordshire, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Burrows, A. S.; Rafikov, R. R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Chilcote, J. K.; Maire, J.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Duchene, G.] Univ Grenoble Alpes, CNRS, Inst Planetol & Astrophys Grenoble, F-38000 Grenoble, France. [Fabrycky, D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fortney, J. J.; Line, M.; Max, C. E.; Morley, C. V.; Rudy, A. R.; Wiktorowicz, S. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Goodsell, S.] Univ Durham, Dept Phys, Durham DH1, England. [Goodsell, S.; Hibon, P.; Rantakyroe, F. T.; Sadakuni, N.] Gemini Observ, La Serena, Chile. [Greenbaum, A. Z.; Wolff, S. G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hinkley, S.] Univ Exeter, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Cotten, T. H.; Lee, J.; Song, I.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Ingraham, P.; Thomas, S.] Large Synopt Survey Telescope, Tucson, AZ 85719 USA. [Metchev, S.; Patel, R.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Millar-Blanchaer, M. A.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Morzinski, K. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Murray-Clay, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Oppenheimer, R.; Rice, E. L.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Rice, E. L.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Rojo, P.; Ruiz, M. T.] Univ Chile, Dept Astron, Santiago, Chile. [Sadakuni, N.] Univ Space Res Assoc, NASA Armstrong Flight Res Ctr, Stratospher Observ Infrared Astron, Palmdale, CA 93550 USA. [Savransky, D.] Cornell Univ, Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Schneider, A. C.] Univ Toledo, Phys & Astron, Toledo, OH 43606 USA. [Vasisht, G.; Wallace, J. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Macintosh, B (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM bmacintosh@stanford.edu RI Rojo, Patricio/I-5765-2016; Ruiz, Maria Teresa/I-5770-2016; Savransky, Dmitry/M-1298-2014; OI Rice, Emily/0000-0002-3252-5886; Greenbaum, Alexandra/0000-0002-7162-8036; Fabrycky, Daniel/0000-0003-3750-0183; Ruiz, Maria Teresa/0000-0002-6799-1537; Savransky, Dmitry/0000-0002-8711-7206; Oppenheimer, Rebecca/0000-0001-7130-7681; Burningham, Ben/0000-0003-4600-5627; Marley, Mark/0000-0002-5251-2943; Morzinski, Katie/0000-0002-1384-0063; Fitzgerald, Michael/0000-0002-0176-8973; Wang, Jason/0000-0003-0774-6502 FU NSF [AST-1411868, AST-0909188, AST-1313718, AST-1413718, AST-1405505, DGE-123825, DGE-1311230, DGE-1232825, DGE-1144087]; NASA [NNX14AJ80G, NNH15AZ591, NNX15AD95G, NNX11AD21G, NNH11ZDA001N]; Fonds de Recherche du Quebec; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy under a cooperative agreement with NSF on behalf of the Gemini partnership, whose membership includes: NSF (United States); the National Research Council (Canada); the Comision Nacional de Investigacion Cientifica y Tecnologica (Chile); the Australian Research Council (Australia); the Ministerio da Ciencia, Tecnologia e Inovacao (Brazil); and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). The research was supported by grants from NSF, including AST-1411868 (B.M., K.F., J.P., and A.R.), AST-0909188 and AST-1313718 (J.R.G., P.K., R.D.R., and J.W.), AST-1413718 (M.P.F. and G.D.), and AST-1405505 (T.B.). Support was also provided by grants from NASA, including NNX14AJ80G (B.M., F.M., E.N., and M.P.), NNH15AZ591 (D.S. and M.M.), NNX15AD95G (J.R.G. and P.K.), NNX11AD21G (J.R.G. and P.K.), and NNH11ZDA001N (S.M. and R.P.). J.R., R.D., and D.L. acknowledge support from the Fonds de Recherche du Quebec. Support is acknowledged from NSF fellowships DGE-123825 (A.Z.G.), DGE-1311230 (K.W.-D.), DGE-1232825 (S.G.W.), and DGE-1144087 (L.W.H.). Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. GPI data are archived at the Gemini Science Archive: www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/gsa/. NR 46 TC 71 Z9 71 U1 2 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 2 PY 2015 VL 350 IS 6256 BP 64 EP 67 DI 10.1126/science.aac5891 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS5EA UT WOS:000362098300045 PM 26272904 ER PT J AU Wei, MH Li, BY David, RLA Jones, SC Sarohia, V Schmitigal, JA Kornfield, JA AF Wei, Ming-Hsin Li, Boyu David, R. L. Ameri Jones, Simon C. Sarohia, Virendra Schmitigal, Joel A. Kornfield, Julia A. TI Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers SO SCIENCE LA English DT Article ID SUPRAMOLECULAR POLYMERS; POLYMERIZATION; EQUILIBRIA; COMPLEXES AB We used statistical mechanics to design polymers that defy conventional wisdom by self-assembling into "megasupramolecules" (>= 5000 kg/mol) at low concentration (<= 0.3 weight percent). Theoretical treatment of the distribution of individual subunits-end-functional polymers-among cyclic and linear supramolecules (ring-chain equilibrium) predicts that megasupramolecules can format lowtotal polymer concentration if, and only if, the backbones are long (> 400 kg/mol) and end-association strength is optimal. Viscometry and scattering measurements of long telechelic polymers having polycyclooctadiene backbones and acid or amine end groups verify the formation of megasupramolecules. They control misting and reduce drag in the same manner as ultralong covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (weight-average molecular weights of 400 to 1000 kg/mol) and reversible linkages that protect covalent bonds, these megasupramolecules overcome the obstacles of shear degradation and engine incompatibility. C1 [Wei, Ming-Hsin; Li, Boyu; David, R. L. Ameri; Kornfield, Julia A.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Jones, Simon C.] CALTECH, Jet Prop Lab, Electrochem Technol Grp, Pasadena, CA 91109 USA. [Sarohia, Virendra] CALTECH, Jet Prop Lab, Off Chief Technologist, Pasadena, CA 91109 USA. [Schmitigal, Joel A.] US Army RDECOM TARDEC, Warren, MI 48397 USA. RP Kornfield, JA (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. EM jakornfield@cheme.caltech.edu OI Li, Boyu/0000-0002-7648-3745 FU U.S. Army TARDEC; FAA; NASA [NAS7-03001]; Gates Grubstake Fund; Schlumberger Foundation FX Funding for this research was provided from U.S. Army TARDEC, FAA, and NASA (NAS7-03001) and the Gates Grubstake Fund. B.L. is grateful for support from the Schlumberger Foundation Faculty for the Future Program. We thank P. Arakelian (GALCIT) and T. Wynne (JPL) for assistance with the fuel impact tests; B. Hammouda (NIST) and L. He (ORNL) for assistance with SANS; T. Durbin, R. Russell, D. Pacocha, and K. Bumiller at UCR CE-CERT for assistance with engine tests; A. Meyer at Wyatt Technology and Caltech graduate student J. Kim for assistance with MALLS; and Caltech undergraduates S. Li and A. Guo for assistance with shear degradation tests and rheological measurements. A patent application (WO/2014/145920) based on some results reported here has been submitted. NR 30 TC 9 Z9 9 U1 15 U2 57 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 2 PY 2015 VL 350 IS 6256 BP 72 EP 75 DI 10.1126/science.aab0642 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS5EA UT WOS:000362098300047 PM 26430115 ER PT J AU Parker, P AF Parker, Peter TI Untitled SO QUALITY ENGINEERING LA English DT Editorial Material C1 NASA, Washington, DC 20546 USA. RP Parker, P (reprint author), NASA, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-2112 EI 1532-4222 J9 QUAL ENG JI Qual. Eng. PD OCT 2 PY 2015 VL 27 IS 4 BP 401 EP 401 DI 10.1080/08982112.2015.1090248 PG 1 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA CR5KI UT WOS:000361380200001 ER PT J AU Wilson, SR Leonard, RD Edwards, DJ Swieringa, KA Murdoch, JL AF Wilson, Sara R. Leonard, Robert D. Edwards, David J. Swieringa, Kurt A. Murdoch, Jennifer L. TI Model Specification and Confidence Intervals for Voice Communication SO QUALITY ENGINEERING LA English DT Article DE probability distributions; nonnormal data; nonparametric methods; bootstrap methods; maximum likelihood estimation ID LOGNORMAL MEANS; DISTRIBUTIONS AB There is an ongoing need for modeling voice communications in industrial applications, with system performance often depending on the accuracy of this information transfer. This article presents a case study using data from a human-in-the-loop experiment with a simulated flight environment conducted by the National Aeronautics and Space Administration (NASA) to investigate airborne spacing procedures. The interval management procedures during approach to an airport required a complex voice clearance issued by Air Traffic Control to a flight crew using radio communications. The time required for voice communication transfers is modeled, as is the time required for flight crews to complete data entry tasks. Commonly used reliability distributions are fit to the data, and the lognormal and log-logistic distributions are found to model the data reasonably well. Two analytical methods for calculating the confidence intervals for the lognormal mean are compared, and bootstrapping is used for log-logistic mean confidence intervals. Extensive investigation of outliers was performed to identify procedural anomalies. These initial results lead to design guidance for the phraseology used in air/ground communications. C1 [Wilson, Sara R.; Swieringa, Kurt A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Wilson, Sara R.] NASA, Langley Stat Engn Team, Hampton, VA 23681 USA. [Wilson, Sara R.] NASA, Airspace Operat & Safety Program, Hampton, VA 23681 USA. [Murdoch, Jennifer L.] NASA, Langley Res Ctr, Crew Syst & Aviat Operat Branch, Hampton, VA 23681 USA. [Leonard, Robert D.] Virginia Commonwealth Univ, Syst Modeling & Anal Program, Richmond, VA USA. [Edwards, David J.] Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Stat, Richmond, VA USA. RP Wilson, SR (reprint author), NASA, Langley Res Ctr, 4 Langley Blvd,Bldg 1230,Mail Stop 238, Hampton, VA 23681 USA. EM sara.r.wilson@nasa.gov FU NASA Airspace Systems Program, Systems Analysis, Integration and Evaluation Project; Simons Foundation [244759] FX The authors appreciate the support of the NASA Airspace Systems Program, Systems Analysis, Integration and Evaluation Project for funding this research effort. This work was also partially supported by a grant from the Simons Foundation (award no. 244759 to David J. Edwards). NR 17 TC 0 Z9 0 U1 1 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-2112 EI 1532-4222 J9 QUAL ENG JI Qual. Eng. PD OCT 2 PY 2015 VL 27 IS 4 BP 402 EP 415 DI 10.1080/08982112.2015.1023313 PG 14 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA CR5KI UT WOS:000361380200002 ER PT J AU Cook, T Cahoy, K Chakrabarti, S Douglas, E Finn, SC Kuchner, M Lewis, N Marinan, A Martel, J Mawet, D Mazin, B Meeker, SR Mendillo, C Serabyn, G Stuchlik, D Swain, M AF Cook, Timothy Cahoy, Kerri Chakrabarti, Supriya Douglas, Ewan Finn, Susanna C. Kuchner, Marc Lewis, Nikole Marinan, Anne Martel, Jason Mawet, Dimitri Mazin, Benjamin Meeker, Seth R. Mendillo, Christopher Serabyn, Gene Stuchlik, David Swain, Mark TI Planetary Imaging Concept Testbed Using a Recoverable Experiment-Coronagraph (PICTURE C) SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE exoplanet; high-altitude balloon; coronagraph; direct imaging ID MU-M; JUPITER; CANDIDATE; COMPANION; DESIGN; SYSTEM; STAR AB An exoplanet mission based on a high-altitude balloon is a next logical step in humanity's quest to explore Earthlike planets in Earthlike orbits orbiting Sunlike stars. The mission described here is capable of spectrally imaging debris disks and exozodiacal light around a number of stars spanning a range of infrared excesses, stellar types, and ages. The mission is designed to characterize the background near those stars, to study the disks themselves, and to look for planets in those systems. The background light scattered and emitted from the disk is a key uncertainty in the mission design of any exoplanet direct imaging mission, thus, its characterization is critically important for future imaging of exoplanets. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. C1 [Cook, Timothy; Chakrabarti, Supriya; Finn, Susanna C.; Martel, Jason; Mendillo, Christopher] Univ Massachusetts, 600 Suffolk St, Lowell, MA 01854 USA. [Cahoy, Kerri; Marinan, Anne] MIT, Cambridge, MA 02139 USA. [Douglas, Ewan] Boston Univ, Boston, MA 02215 USA. [Kuchner, Marc] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lewis, Nikole] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Mawet, Dimitri] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Mazin, Benjamin; Meeker, Seth R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Serabyn, Gene; Swain, Mark] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stuchlik, David] NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA. RP Cook, T (reprint author), Univ Massachusetts, 600 Suffolk St, Lowell, MA 01854 USA. EM Timothy_Cook@uml.edu RI Mazin, Ben/B-8704-2011; OI Mazin, Ben/0000-0003-0526-1114; Douglas, Ewan/0000-0002-0813-4308 NR 43 TC 0 Z9 0 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2015 VL 1 IS 4 AR 044001 DI 10.1117/1.JATIS.1.4.044001 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DJ4QA UT WOS:000374190700002 ER PT J AU Fryauf, DM Phillips, AC Kobayashi, NP AF Fryauf, David M. Phillips, Andrew C. Kobayashi, Nobuhiko P. TI Corrosion barriers for silver-based telescope mirrors: comparative study of plasma-enhanced atomic layer deposition and reactive evaporation of aluminum oxide SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE atomic layer deposition; plasma-enhanced atomic layer deposition; mirrors; reflective coatings; corrosion barrier; moisture barrier; permeation barrier; silver; protected silver; physical vapor deposition; deposition techniques ID PROTECTED SILVER; COATINGS AB Astronomical telescopes continue to demand high-endurance high-reflectivity silver (Ag) mirrors that can withstand years of exposure in Earth-based observatory environments. We present promising results of improved Ag mirror robustness using plasma-enhanced atomic layer deposition (PEALD) of aluminum oxide (AlOx) as a top barrier layer. Transparent AlOx is suitable for many optical applications; therefore, it has been the initial material of choice for this study. Two coating recipes developed with electron beam ion-assisted deposition (e-beam IAD) of materials including yttrium fluoride, titanium nitride, oxides of yttrium, tantalum, and silicon are used to provide variations in basic Ag mirror structures to compare the endurance of reactive e-beam IAD barriers with PEALD barriers. Samples undergo high temperature/high humidity environmental testing in a controlled environment of 80% humidity at 80 degrees C for 10 days. Environmental testing shows visible results suggesting that the PEALD AlOx barrier offers robust protection against chemical corrosion and moisture permeation. Ag mirror structures were further characterized by reflectivity/absorption before and after deposition of AlOx barriers. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Fryauf, David M.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. [Fryauf, David M.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, NASA, Ames Res Ctr, Nanostruct Energy Convers Technol & Res Adv Studi, Moffett Field, CA 94035 USA. [Phillips, Andrew C.] Univ Calif Santa Cruz, Univ Calif Observ, Santa Cruz, CA 95064 USA. RP Fryauf, DM (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM dfryauf@ucsc.edu NR 21 TC 2 Z9 2 U1 4 U2 7 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2015 VL 1 IS 4 AR 044002 DI 10.1117/1.JATIS.1.4.044002 PG 5 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DJ4QA UT WOS:000374190700003 ER PT J AU Guainazzi, M David, L Grant, CE Miller, E Natalucci, L Nevalainen, J Petre, R Audard, M AF Guainazzi, Matteo David, Laurence Grant, Catherine E. Miller, Eric Natalucci, Lorenzo Nevalainen, Jukka Petre, Robert Audard, Marc TI On the in-flight calibration plans of modern x-ray observatories SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE x-ray instrumentation; operations; x-rays ID XMM-NEWTON OBSERVATIONS; PHOTON IMAGING CAMERA; CROSS-CALIBRATION; CRAB-NEBULA; EPIC-PN; GRATING SPECTROMETER; GALAXY CLUSTERS; MSH 15-52; 3C 273; CHANDRA AB We present an overview of the set of celestial sources used for in-flight calibration of x-ray detectors by past and operational missions. We show the rationale behind their choice as a guideline for future missions aiming at optimizing the critical early phases of their science operations. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Guainazzi, Matteo] ESA European Space Astron Ctr, E-28692 Madrid, Spain. [Guainazzi, Matteo] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [David, Laurence] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Grant, Catherine E.; Miller, Eric] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Natalucci, Lorenzo] INAF IAPS, Ist Nazl Astrofis, I-00133 Rome, Italy. [Nevalainen, Jukka] Tartu Observ, EE-61602 Toravere, Estonia. [Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Audard, Marc] Univ Geneva, Dept Astron, CH-1290 Versoix, Switzerland. RP Guainazzi, M (reprint author), ESA European Space Astron Ctr, E-28692 Madrid, Spain. EM Matteo.Guainazzi@sciops.esa.int NR 80 TC 1 Z9 1 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2015 VL 1 IS 4 AR 047001 DI 10.1117/1.JATIS.1.4.047001 PG 12 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DJ4QA UT WOS:000374190700013 ER PT J AU Marlowe, H McEntaffer, RL Allured, R DeRoo, CT Donovan, BD Miles, DM Tutt, JH Burwitz, V Menz, B Hartner, GD Smith, RK Cheimets, P Hertz, E Bookbinder, JA Gunther, R Yanson, A Vacanti, G Ackermann, M AF Marlowe, Hannah McEntaffer, Randall L. Allured, Ryan DeRoo, Casey T. Donovan, Benjamin D. Miles, Drew M. Tutt, James H. Burwitz, Vadim Menz, Benedikt Hartner, Gisela D. Smith, Randall K. Cheimets, Peter Hertz, Edward Bookbinder, Jay A. Gunther, Ramses Yanson, Alex Vacanti, Giuseppe Ackermann, Marcelo TI Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE diffraction; gratings; grazing incidence; x-rays ID X-RAY OPTICS; ROSAT AB An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Marlowe, Hannah; McEntaffer, Randall L.; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.] Univ Iowa, Dept Phys & Astron, 210 Van Allen Hall, Iowa City, IA 52242 USA. [Allured, Ryan; Smith, Randall K.; Cheimets, Peter; Hertz, Edward] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.] MPI Extraterr Phys, D-85748 Garching, Germany. [Bookbinder, Jay A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gunther, Ramses; Yanson, Alex; Vacanti, Giuseppe] Cosine Sci & Comp BV, NL-2333 CH Leiden, Netherlands. [Ackermann, Marcelo] Cosine Res BV, NL-2333 CH Leiden, Netherlands. RP Marlowe, H (reprint author), Univ Iowa, Dept Phys & Astron, 210 Van Allen Hall, Iowa City, IA 52242 USA. EM hannah-marlowe@uiowa.edu NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD OCT PY 2015 VL 1 IS 4 AR 045004 DI 10.1117/1.JATIS.1.4.045004 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DJ4QA UT WOS:000374190700011 ER PT J AU Fuchs, TJ Thompson, DR Bue, BD Castillo-Rogez, J Chien, SA Gharibian, D Wagstaff, KL AF Fuchs, Thomas J. Thompson, David R. Bue, Brian D. Castillo-Rogez, Julie Chien, Steve A. Gharibian, Dero Wagstaff, Kiri L. TI Enhanced flyby science with onboard computer vision: Tracking and surface feature detection at small bodies SO EARTH AND SPACE SCIENCE LA English DT Article ID AUTOMATIC DETECTION; CLASSIFICATION; TIME; MARS AB Spacecraft autonomy is crucial to increase the science return of optical remote sensing observations at distant primitive bodies. To date, most small bodies exploration has involved short timescale flybys that execute prescripted data collection sequences. Light time delay means that the spacecraft must operate completely autonomously without direct control from the ground, but in most cases the physical properties and morphologies of prospective targets are unknown before the flyby. Surface features of interest are highly localized, and successful observations must account for geometry and illumination constraints. Under these circumstances onboard computer vision can improve science yield by responding immediately to collected imagery. It can reacquire bad data or identify features of opportunity for additional targeted measurements. We present a comprehensive framework for onboard computer vision for flyby missions at small bodies. We introduce novel algorithms for target tracking, target segmentation, surface feature detection, and anomaly detection. The performance and generalization power are evaluated in detail using expert annotations on data sets from previous encounters with primitive bodies. C1 [Fuchs, Thomas J.; Thompson, David R.; Bue, Brian D.; Castillo-Rogez, Julie; Chien, Steve A.; Gharibian, Dero; Wagstaff, Kiri L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Fuchs, TJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA. EM fuchs@caltech.edu OI Thompson, David/0000-0003-1100-7550 NR 37 TC 1 Z9 1 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 Earth Space Sci JI Earth Space Sci. PD OCT PY 2015 VL 2 IS 10 BP 417 EP 434 DI 10.1002/2014EA000042 PG 18 WC Geosciences, Multidisciplinary SC Geology GA DE6NN UT WOS:000370750700003 ER PT J AU Cicolani, L Ivler, C Ott, C Raz, R Rosen, A AF Cicolani, Luigi Ivler, Christina Ott, Carl Raz, Reuben Rosen, Aviv TI Rotational Stabilization of Cargo Container Slung Loads SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article AB The stabilization of "difficult" loads that become aerodynamically unstable at airspeeds well below the power-limited speed of the helicopter-load configuration has been studied since the 1960s. This paper looks at the possibility of stabilizing slung loads in forward flight by imposing a slow steady rotation in yaw (spin stabilization). Slow rotations of 100-150 deg/s suffice to suppress the pendulum motions of the load. A swivel is required at the hook, and only a few foot-pounds of yaw moment are needed to overcome swivel friction and impose the desired yaw rate. The approach is limited to single-point suspensions. A stabilizer design consisting of a one-shaft anemometer-like device with hemispherical cups at the ends was developed in wind tunnel tests. The shaft angle can be controlled to vary the applied yaw moment and allow feedback regulation of the load yaw rate. Flight tests with two cargo containers demonstrated that a simple linear control law with fixed gains was effective in maintaining the desired yaw rate in forward flight over the range of configurations of the test loads. Wind tunnel data were obtained at all stages of the development and testing and proved to be an accurate source of design data and an accurate predictor of performance in flight. C1 [Cicolani, Luigi] San Jose State Univ Fdn, San Jose, CA USA. [Cicolani, Luigi] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ivler, Christina; Ott, Carl] US Army Aviat Dev Directorate AFDD, Aviat & Missile Res Dev & Engn Ctr, Res Dev & Engn Command, Moffett Field, CA USA. [Raz, Reuben; Rosen, Aviv] Technion Israel Inst Technol, Fac Aerosp Engn, IL-32000 Haifa, Israel. RP Cicolani, L (reprint author), San Jose State Univ Fdn, San Jose, CA USA. EM luigi.s.cicolani.ctr@mail.mil NR 26 TC 1 Z9 1 U1 1 U2 4 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2015 VL 60 IS 4 AR 042006 DI 10.4050/JAHS.60.042006 PG 13 WC Engineering, Aerospace SC Engineering GA DE1LU UT WOS:000370389300006 ER PT J AU Jacobs, CM McIntyre, TJ Morgan, RG Brandis, AM Laux, CO AF Jacobs, C. M. McIntyre, T. J. Morgan, R. G. Brandis, A. M. Laux, C. O. TI Radiative Heat Transfer Measurements in Low-Density Titan Atmospheres SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article ID STRONG SHOCK-WAVES; INTENSITY; ENTRY; TUBE AB The X2 facility at the University of Queensland was modified to allow experimentation at low pressures in a nonreflected shock tube mode. Titan conditions (98% N-2, 2% CH4) were examined. Emission spectroscopy measurements were taken for three conditions, with freestream pressures of 13, 8, and 4 Pa, and average shock speeds of 6.4, 6.2, and 9.0 km/s, respectively. A region approximately 100 mm long was imaged onto the entrance slit of the spectrometer. Comparisons with previous experimental work showed that the peak nonequilibrium emission intensity behind the shock was consistent for the 13 and 8 Pa conditions. The spectral results showed that, in comparison to these previous results, the modified facility resulted in significant improvements in signal strength and an increase in the length of test flow available at such low-pressure conditions, allowing finer spectral resolution and the potential, if needed, for further spatial resolution. The experimental results at the 4 Pa condition were the first results obtained at such a low pressure. They provided information about the nonequilibrium peak and falloff rate of the radiative heating behind the shock wave. The results showed consistency and repeatability, and sufficient test time and test gas were available to allow the capture of high-resolution spectral images, even at the lowest pressure condition. C1 [Jacobs, C. M.] Univ Queensland, St Lucia, Qld 4072, Australia. [McIntyre, T. J.] Univ Queensland, Ctr Hyperson, Sch Math & Phys, St Lucia, Qld 4072, Australia. [Morgan, R. G.] Univ Queensland, Ctr Hyperson, St Lucia, Qld 4072, Australia. [Brandis, A. M.] NASA Ames, ERC Inc, Aerothermodynam Branch, Moffett Field, CA 94035 USA. [Laux, C. O.] Ecole Cent Paris, CNRS, Lab EM2C, UPR 288, F-92295 Chatenay Malabry, France. RP Jacobs, CM (reprint author), Supelec, Dept Energie, Gif Sur Yvette, France. EM carolyn.jacobs@supelec.fr OI Jacobs, Carolyn/0000-0003-1285-7629 FU Australian Research Council FX This work was supported by an Australian Research Council grant. Thanks also go to the Mechanical Engineering workshop staff for the construction of the modifications, the X2 operating team, Troy Eichmann for assistance in the development of the spectroscopic system, and to Adrien Lemal for the spatial function code. NR 39 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT PY 2015 VL 29 IS 4 BP 835 EP 844 DI 10.2514/1.T4519 PG 10 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DC7SP UT WOS:000369421000022 ER PT J AU Tanno, H Komuro, T Lillard, RP Olejniczak, J AF Tanno, Hideyuki Komuro, Tomoyuki Lillard, Randolph P. Olejniczak, Joseph TI Experimental Study of High-Enthalpy Heat Flux Augmentation in Shock Tunnels SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article C1 [Tanno, Hideyuki; Komuro, Tomoyuki] Japan Aerosp Explorat Agcy, Kakuda Space Ctr, Res & Dev Directorate, Res Unit 4, Kakuda, Miyagi 9811525, Japan. [Lillard, Randolph P.] NASA, Lyndon B Johnson Space Ctr, Space Technol Mission Directorate, Houston, TX 77058 USA. [Olejniczak, Joseph] NASA, Ames Res Ctr, MPCV Or Aerosciences, Moffett Field, CA 94035 USA. RP Tanno, H (reprint author), Japan Aerosp Explorat Agcy, Kakuda Space Ctr, Res & Dev Directorate, Res Unit 4, Kakuda, Miyagi 9811525, Japan. EM tanno.hideyuki@jaxa.jp NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT PY 2015 VL 29 IS 4 BP 858 EP U249 DI 10.2514/1.T4478 PG 5 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DC7SP UT WOS:000369421000024 ER PT J AU Islam, T Srivastava, PK Petropoulos, GP AF Islam, Tanvir Srivastava, Prashant K. Petropoulos, George P. TI Variational Bayes and the Principal Component Analysis Coupled With Bayesian Regulation Backpropagation Network to Retrieve Total Precipitable Water (TPW) From GCOM-W1/AMSR2 SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Atmospheric moisture retrieval; data assimilation; European Centre for Medium-Range Weather Forecasts (ECMWF) analysis; H2O absorption; inversion algorithm; passive microwave radiometer; radiative transfer model; radiosonde; sea ice screening; water vapor sounding ID SURFACE-TEMPERATURE; VAPOR; RADIOSONDE; REGRESSION; ALGORITHM; FOREST AB The Bayes Principal components Backpropagation Network (BPBN) is proposed to retrieve total precipitable water (TPW) from the AMSR2 instrument on-board recently launched GCOM-W1 satellite. The proposed algorithm is a physical inversion method, developed using a radiative transfer model to assure that the geophysical retrieval of the TPW is consistent with the radiative transfer theory. The algorithm is comprised of-a Bayes variational algorithm for bias correction, the principal components transformation of the bias-corrected radiometric brightness temperature, and finally, a Bayesian regulation backpropagation network to translate the principal components to TPW estimate in the geophysical space. The algorithm is applicable over ocean, and in clear and cloudy scenes. However, the rainy and sea ice scenes are excluded in the retrieval. A random forest classifier and NASA sea ice temperature retrieval algorithm are used to detect and suppress the rainy and sea ice scenes, respectively. On the whole, the BPBN is a "comprehensive" algorithm, from discarding the redundant scenes to transforming the radiometric information to TPW estimate, and doesn't use any auxiliary data. This will make it very useful for assimilating into the numerical weather prediction models. The retrieval accuracy of the BPBN algorithm is around 2 kg/m(2). C1 [Islam, Tanvir] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Islam, Tanvir] NOAA, NESDIS Ctr Satellite Applicat & Res, College Pk, MD 20740 USA. [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20771 USA. [Petropoulos, George P.] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3FL, Dyfed, Wales. RP Islam, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tanvir.islam@jpl.nasa.gov; prashant.k.srivastava@nasa.gov; gep9@aber.ac.uk RI Petropoulos, George/F-2384-2013; OI Petropoulos, George/0000-0003-1442-1423; Islam, Tanvir/0000-0003-2429-3074 FU National Aeronautics and Space Administration FX Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 22 TC 1 Z9 1 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD OCT PY 2015 VL 8 IS 10 SI SI BP 4819 EP 4824 DI 10.1109/JSTARS.2015.2447532 PG 6 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA DC0JV UT WOS:000368904000021 ER PT J AU Zhao, KL Wang, RH Burleigh, SC Qiu, MJ Sabbagh, A Hu, JL AF Zhao, Kanglian Wang, Ruhai Burleigh, Scott C. Qiu, Mingjian Sabbagh, Alaa Hu, Jianling TI Modeling Memory-Variation Dynamics for the Licklider Transmission Protocol in Deep-Space Communications SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article ID FILE-DELIVERY PROTOCOL; SATELLITE-COMMUNICATIONS; INTERPLANETARY INTERNET; TOLERANT NETWORKING; DTN; BUNDLES; TIME; LTP AB Delay/disruption-tolerant networking was developed to enable automated network communications despite the long link delay and frequent link disruptions that generally characterize deep-space communications. It uses the well-known approach of store-and-forward with optional custody transfer, in which a node agrees to hold a file in memory (or storage) until its successful reception is acknowledged by the next node. The performance and memory consumption of delay/disruption-tolerant networking's Licklider transmission protocol (LTP) and bundle protocol in deep space will bear on decisions to adopt this technology. There is currently an urgent need to evaluate the performance and memory dynamics for file transmission by LTP and bundle protocol. In this paper, we present a study of memory dynamics for LTP-based transmission in a typical relay-based deep-space communication system characterized by an extremely long signal-propagation delay, lossy data links, and asymmetric data rates. Analytical models are built to quantify the dynamics of memory occupancy/release and memory release latency imposed by the use of LTP for reliable and complete file delivery in deep-space missions. File-transfer experiments are conducted using a test bed to validate the models. C1 [Wang, Ruhai; Sabbagh, Alaa] Lamar Univ, Phillip M Drayer Dept Elect Engn, 211 Redbird Lane, Beaumont, TX 77710 USA. [Zhao, Kanglian] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China. [Burleigh, Scott C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Qiu, Mingjian; Hu, Jianling] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Jiangsu, Peoples R China. RP Wang, RH (reprint author), Lamar Univ, Phillip M Drayer Dept Elect Engn, 211 Redbird Lane, Beaumont, TX 77710 USA. EM rwang@lamar.edu FU Future Networks Innovation Institute of Jiangsu Province, China [BY2013039-3-10]; National Natural Science Foundation (NSFC) of China [61401194, 61271360] FX This work was supported in part by the Future Networks Innovation Institute of Jiangsu Province, China, for a Prospective Research Project on Future Networks under Grant BY2013039-3-10 and by the National Natural Science Foundation (NSFC) of China under Grant 61401194 and Grant 61271360. NR 31 TC 2 Z9 2 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 EI 1557-9603 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD OCT PY 2015 VL 51 IS 4 BP 2510 EP 2524 DI 10.1109/TAES.2015.140907 PG 15 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DC1VO UT WOS:000369006000002 ER PT J AU Nayak, M Beck, J Udrea, B AF Nayak, Michael Beck, Jaclyn Udrea, Bogdan TI Nanosatellite Maneuver Planning for Point Cloud Generation With a Rangefinder SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article ID SPACE AB This paper discusses the application of a single beam laser rangefinder (LRF) to point cloud generation, shape detection, and shape reconstruction for a space-based space situational awareness (SSA) mission. The LRF is part of the payload of a chaser satellite tasked to image a resident space object (RSO). The one-dimensional (1D) nature of LRF returns significantly increases the complexity of the imaging task. To maximize coverage, a method to autonomously detect and fill gaps in sparse point cloud coverage using a narrow field of view (NFOV) camera in conjunction with the LRF is presented. First, relative orbital motion and scanning attitude motion are combined to generate a baseline 3D point cloud of the RSO. The effectiveness of pregenerated command profiles is analyzed by using a weighted edge reconstruction metric that scores how well a point cloud characterizes RSO shape. The design and characterization of multiple relative motion and attitude maneuver profiles, as well as the time and propellant cost of each profile, are presented with the assumption that the entire metrology chain is error free. Next, a three-part algorithm is used that 1) creates a 3D panoramic map from stitched NFOV camera images, 2) correlates the areas of sparse LRF coverage to the map, and 3) generates attitude commands to close the coverage. This provides a consistent and reliable method to C1 [Nayak, Michael] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95060 USA. [Beck, Jaclyn] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Udrea, Bogdan] Embry Riddle Aeronaut Univ, Dept Aerosp Engn, Daytona Beach, FL 32114 USA. RP Nayak, M (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95060 USA. EM mnayak@ucsc.edu FU Red Sky Research, LLC.; DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship [32 CFR 168a] FX M. Nayak would like to acknowledge funding from Red Sky Research, LLC. This research was also partially conducted with government support to M. Nayak under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. NR 34 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 EI 1557-9603 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD OCT PY 2015 VL 51 IS 4 BP 3085 EP 3098 DI 10.1109/TAES.2015.140075 PG 14 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DC1VO UT WOS:000369006000043 ER PT J AU Wang, XC Zhao, LQ Li, ZJ Menemenlis, D AF Wang, Xiaochun Zhao, Liqing Li, Zhijin Menemenlis, Dimitris TI Regional ocean forecasting systems and their applications: Design considerations of such a system for the South China Sea SO AQUATIC ECOSYSTEM HEALTH & MANAGEMENT LA English DT Article; Proceedings Paper CT 7th International Workshop on Tropical Marine Environmental Changes CY NOV 23-24, 2013 CL State Key Lab Trop Oceanog, Guangzhou, PEOPLES R CHINA HO State Key Lab Trop Oceanog DE Regional Ocean Modeling System; data assimilation; nesting; ensemble ID VARIATIONAL DATA ASSIMILATION; MODELING-SYSTEM; BOUNDARY-CONDITION; CALIFORNIA; SCHEME; FLOWS AB Essential components and technical details of regional ocean forecasting systems configured from the Regional Ocean Modeling System are discussed with the goal of bridging the gap between user and ocean modeling communities. Recent development of these systems and applications are also surveyed. Design considerations of such a system for the South China Sea are discussed, based on regional dynamic characteristics and potential applications. C1 [Wang, Xiaochun; Zhao, Liqing] Nanjing Univ Informat & Sci Technol, Jiangsu Res Ctr Ocean Survey Technol, Sch Marine Sci, Nanjing 210044, Jiangsu, Peoples R China. [Wang, Xiaochun] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Li, Zhijin; Menemenlis, Dimitris] CALTECH, JPL, MS 300 323, Pasadena, CA 91109 USA. RP Wang, XC (reprint author), Nanjing Univ Informat & Sci Technol, Jiangsu Res Ctr Ocean Survey Technol, Sch Marine Sci, 219 NingLiu Rd, Nanjing 210044, Jiangsu, Peoples R China. EM xiaochun.wang211@gmail.com FU Chinese National Science Foundation [41328006]; Nanjing University of Information Science and Technology Faculty Start-up Fund [S8113046001]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Program for Innovation Research and Entrepreneurship Team in Jiangsu Province FX Research was supported by the Chinese National Science Foundation (41328006), Nanjing University of Information Science and Technology Faculty Start-up Fund (S8113046001), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Program for Innovation Research and Entrepreneurship Team in Jiangsu Province. NR 45 TC 0 Z9 0 U1 2 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1463-4988 EI 1539-4077 J9 AQUAT ECOSYST HEALTH JI Aquat. Ecosyst. Health Manag. PD OCT-DEC PY 2015 VL 18 IS 4 BP 443 EP 453 DI 10.1080/14634988.2015.1112123 PG 11 WC Ecology; Environmental Sciences; Marine & Freshwater Biology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CZ2LG UT WOS:000366936100011 ER PT J AU Marvel, K Schmidt, GA Shindell, D Bonfils, C LeGrande, AN Nazarenko, L Tsigaridis, K AF Marvel, Kate Schmidt, Gavin A. Shindell, Drew Bonfils, Celine LeGrande, Allegra N. Nazarenko, Larissa Tsigaridis, Kostas TI Do responses to different anthropogenic forcings add linearly in climate models? SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE detection and attribution; radiative forcing; linearity ID 20TH-CENTURY TEMPERATURE-CHANGE; HYDROLOGICAL CYCLE; GLOBAL PRECIPITATION; STRATOSPHERIC OZONE; ENERGY BUDGET; GISS MODELE2; CMIP5; SIMULATIONS; SURFACE; DESIGN AB Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However, we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments. C1 [Marvel, Kate; Schmidt, Gavin A.; LeGrande, Allegra N.; Nazarenko, Larissa] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Marvel, Kate] Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10027 USA. [Shindell, Drew] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Bonfils, Celine] Lawrence Livermore Natl Lab, Livermore, CA USA. [Nazarenko, Larissa; Tsigaridis, Kostas] Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY 10027 USA. RP Marvel, K (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM kate.marvel@nasa.gov FU NASA Modeling, Analysis and Prediction program; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; United States Department of Energy's Office of Science; LLNL [DE-AC52-07NA27344]; DOE's Regional and Climate Modeling (RGCM) Program [DOE-FOA-0001036] FX Climate modeling at GISS is supported by the NASA Modeling, Analysis and Prediction program and resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. CB was supported by the United States Department of Energy's Office of Science through her Early Career Research Program award, and under the auspices of LLNL under Contract DE-AC52-07NA27344. The (LLNL/Columbia/GISS) multi-institution collaboration has been partially motivated by the DOE's Regional and Climate Modeling (RGCM) Program through the funding opportunity number DOE-FOA-0001036. NR 31 TC 4 Z9 4 U1 6 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT PY 2015 VL 10 IS 10 AR 104010 DI 10.1088/1748-9326/10/10/104010 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CZ5ZG UT WOS:000367180300014 ER PT J AU Kalmoni, NME Rae, IJ Watt, CEJ Murphy, KR Forsyth, C Owen, CJ AF Kalmoni, N. M. E. Rae, I. J. Watt, C. E. J. Murphy, K. R. Forsyth, C. Owen, C. J. TI Statistical characterization of the growth and spatial scales of the substorm onset arc SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ULF waves; THEMIS; aurora; instabilities ID FIELD LINE RESONANCES; GEOMAGNETIC TAIL; MAGNETOSPHERIC SUBSTORMS; BALLOONING INSTABILITY; PLASMA INSTABILITIES; EARTHS MAGNETOTAIL; AURORAL SUBSTORMS; SHEET; DYNAMICS; RECONNECTION AB We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength approximate to 1700-2500km in the equatorial magnetosphere at around 9-12R(E). We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross-Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross-Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations. C1 [Kalmoni, N. M. E.; Rae, I. J.; Forsyth, C.; Owen, C. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Watt, C. E. J.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Murphy, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kalmoni, NME (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM nadine.kalmoni.13@ucl.ac.uk RI Owen, Christopher/C-2999-2008; Forsyth, Colin/E-4159-2010; Watt, Clare/C-5218-2008 OI Owen, Christopher/0000-0002-5982-4667; Forsyth, Colin/0000-0002-0026-8395; Watt, Clare/0000-0003-3193-8993 FU Science and Technology Facilities Council (STFC) [ST/K50239X/1]; Natural Environment Research Council (NERC) [NE/L007495/1, NE/M00886X/1]; STFC [ST/L000563/1, ST/M000885/1]; Canadian Postdoctoral Fellowship from NSERC; NASA [NAS5-02099]; NSF [AGS-1004736]; [ST/K000977/1] FX N.M.E.K. is supported by a Science and Technology Facilities Council (STFC) PhD studentship grant ST/K50239X/1. I.J.R. and C.F. are supported by Natural Environment Research Council (NERC) NE/L007495/1 and NE/M00886X/1, and I.J.R. is supported by STFC grant ST/L000563/1. C.E.J.W. is supported by STFC grant ST/M000885/1. K.R.M. is funded by a Canadian Postdoctoral Fellowship from NSERC. C.J.O. is supported in part by ST/K000977/1. We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission. Specifically, we acknowledge S. Mende and E. Donovan for use of the ASI data, the CSA for logistical support in fielding, and data retrieval from the GBO stations and NSF for support of GIMNAST through grant AGS-1004736. We thank A.T.Y. Lui for educating us on the intricacies of the Cross-Field Current Instability and many valuable discussions. The THEMIS data used in this study can be accessed at http://themis.ssl.berkeley.edu/data/themis/thg/l1/asi/. NR 64 TC 7 Z9 7 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 8503 EP 8516 DI 10.1002/2015JA021470 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200024 PM 27867792 ER PT J AU Kang, SB Min, KW Fok, MC Hwang, J Choi, CR AF Kang, Suk-Bin Min, Kyoung-Wook Fok, Mei-Ching Hwang, Junga Choi, Cheong-Rim TI Estimation of pitch angle diffusion rates and precipitation time scales of electrons due to EMIC waves in a realistic field model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE pitch angle diffusion rate; relativistic electron; EMIC waves; quasi-linear theory; realistic field model; precipitation time scale ID ION-CYCLOTRON WAVES; ALLEN PROBES OBSERVATIONS; RADIATION BELT ELECTRONS; INNER MAGNETOSPHERE; MAGNETIC-FIELD; GEOMAGNETIC STORMS; RESONANT INTERACTIONS; PARTICLE INTERACTIONS; OMEGA-HE; COEFFICIENTS AB Electromagnetic ion cyclotron (EMIC) waves are closely related to precipitating loss of relativistic electrons in the radiation belts, and thereby, a model of the radiation belts requires inclusion of the pitch angle diffusion caused by EMIC waves. We estimated the pitch angle diffusion rates and the corresponding precipitation time scales caused by H and He band EMIC waves using the Tsyganenko 04 (T04) magnetic field model at their probable regions in terms of geomagnetic conditions. The results correspond to enhanced pitch angle diffusion rates and reduced precipitation time scales compared to those based on the dipole model, up to several orders of magnitude for storm times. While both the plasma density and the magnetic field strength varied in these calculations, the reduction of the magnetic field strength predicted by the T04 model was found to be the main cause of the enhanced diffusion rates relative to those with the dipole model for the same L-i values, where L-i is defined from the ionospheric foot points of the field lines. We note that the bounce-averaged diffusion rates were roughly proportional to the inversion of the equatorial magnetic field strength and thus suggest that scaling the diffusion rates with the magnetic field strength provides a good approximation to account for the effect of the realistic field model in the EMIC wave-pitch angle diffusion modeling. C1 [Kang, Suk-Bin; Min, Kyoung-Wook; Choi, Cheong-Rim] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Kang, Suk-Bin; Fok, Mei-Ching] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, Junga] Korea Astron & Space Sci Inst, Taejon, South Korea. RP Kang, SB (reprint author), Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. EM suk-bin.kang@nasa.gov RI Min, Kyoung Wook/C-1948-2011; OI Kang, Suk-bin/0000-0002-4430-4802 FU National Research Foundation of Korea [NRF-2013M1A3A3A02041911, 2014M1A3A3A02034585]; NASA Postdoctoral Program at Goddard Space Flight Center; NASA; Planetary System Research for Space Exploration Project; Basic Research Funding from KASI FX This work was supported by the National Research Foundation of Korea through grants NRF-2013M1A3A3A02041911 and 2014M1A3A3A02034585. This work was also supported by an appointment of NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, the Planetary System Research for Space Exploration Project, and the Basic Research Funding from KASI. The solar wind and IMF data were provided by OMNIWeb Plus at NASA/Goddard Space Flight Center of http://omniweb.gsfc.nasa.gov/. The Dst and Kp index data were provided by the World Data Center for Geomagnetism of Kyoto University at http://wdc.kugi.kyoto-u.ac.jp/. NR 67 TC 2 Z9 2 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 8529 EP 8546 DI 10.1002/2014JA020644 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200026 ER PT J AU Gershman, DJ Raines, JM Slavin, JA Zurbuchen, TH Anderson, BJ Korth, H Ho, GC Boardsen, SA Cassidy, TA Walsh, BM Solomon, SC AF Gershman, Daniel J. Raines, Jim M. Slavin, James A. Zurbuchen, Thomas H. Anderson, Brian J. Korth, Haje Ho, George C. Boardsen, Scott A. Cassidy, Timothy A. Walsh, Brian M. Solomon, Sean C. TI MESSENGER observations of solar energetic electrons within Mercury's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE polar rain; energetic electrons; Mercury; SEP; MESSENGER ID POLAR RAIN; MAGNETIC-FIELD; VELOCITY DISTRIBUTION; 0.3 AU; PLASMA; PARTICLE; IONS; MAGNETOTAIL; DYNAMICS; SPECTROMETER AB During solar energetic particle (SEP) events, the inner heliosphere is bathed in MeV electrons. Through magnetic reconnection, these relativistic electrons can enter the magnetosphere of Mercury, nearly instantaneously filling the regions of open field lines with precipitating particles. With energies sufficient to penetrate solid aluminum shielding more than 1mm thick, these electrons were observable by a number of sensors on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Because of its thin shielding, frequent sampling, and continuous temporal coverage, the Fast Imaging Plasma Spectrometer provided by far the most sensitive measurements of MeV electrons of all MESSENGER sensors. Sharp changes in energetic electron flux coincided with topological boundaries in the magnetosphere, including the magnetopause, polar cap, and central plasma sheet. Precipitating electrons with fluxes equal to 40% of their corresponding upstream levels were measured over the entire polar cap, demonstrating that electron space weathering of Mercury's surface is not limited to the cusp region. We use these distinct precipitation signatures acquired over 33 orbits during 11 SEP events to map the full extent of Mercury's northern polar cap. We confirm a highly asymmetric polar cap, for which the dayside and nightside boundary latitudes range over 50-70 degrees N and 30-60 degrees N, respectively. These latitudinal ranges are consistent with average models of Mercury's magnetic field but exhibit a large variability indicative of active dayside and nightside magnetic reconnection processes. Finally, we observed enhanced electron fluxes within the central plasma sheet. Although these particles cannot form a stable ring current around the planet, their motion results in an apparent trapped electron population at low latitudes in the magnetotail. C1 [Gershman, Daniel J.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Anderson, Brian J.; Korth, Haje; Ho, George C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Boardsen, Scott A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Cassidy, Timothy A.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Walsh, Brian M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC USA. RP Gershman, DJ (reprint author), NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. EM daniel.j.gershman@nasa.gov RI Walsh, Brian/C-4899-2016; Slavin, James/H-3170-2012 OI Walsh, Brian/0000-0001-7426-5413; Slavin, James/0000-0002-9206-724X FU NASA [NAS5-97271, NASW-00002]; NASA Postdoctoral Program at Goddard Space Flight Center FX We thank two anonymous reviewers for constructive comments on an earlier version of this paper. MESSENGER data are available from the Planetary Data System (http://ppi.pds.nasa.gov/MESSE_V_H_SW-EPPS-3-FIPS-CDF-V1.0). The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. D.J.G. is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities. NR 80 TC 5 Z9 5 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 8559 EP 8571 DI 10.1002/2015JA021610 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200028 ER PT J AU Kollmann, P Roussos, E Kotova, A Cooper, JF Mitchell, DG Krupp, N Paranicas, C AF Kollmann, P. Roussos, E. Kotova, A. Cooper, J. F. Mitchell, D. G. Krupp, N. Paranicas, C. TI MeV proton flux predictions near Saturn's D ring SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Saturn; Cassini; radiation belts; ring; proximal orbits; CRAND ID TRANSFER CROSS-SECTIONS; ALBEDO NEUTRON DECAY; COSMIC-RAY; INNER MAGNETOSPHERE; CUTOFF RIGIDITIES; HYDROGEN-IONS; RADIATION; OCCULTATIONS; DENSITY; MIMI AB Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments. C1 [Kollmann, P.; Mitchell, D. G.; Paranicas, C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Roussos, E.; Kotova, A.; Krupp, N.] Max Planck Inst Solar Syst Res, Gottingen, Germany. [Kotova, A.] Univ Toulouse 3, UPS OMP, IRAP, F-31062 Toulouse, France. [Cooper, J. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kollmann, P (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. EM Peter.Kollmann@jhuapl.edu RI Paranicas, Christopher/B-1470-2016; Kollmann, Peter/C-2583-2016; OI Paranicas, Christopher/0000-0002-4391-8255; Kollmann, Peter/0000-0002-4274-9760; Roussos, Elias/0000-0002-5699-0678 FU NASA Office of Space Science [NAS5-97271]; German Space Agency (DLR) [50 OH 1502]; Max Planck Society; International Max Planck Research School for Solar System Science (IMPRS) at the University of Gottingen, Germany; International Max Planck Research School for Solar System Science (IMPRS) at Max Planck Institute for Solar System Research (MPS) FX Cassini/MIMI data are available online through NASA's planetary data system (PDS). The JHU/APL authors were partially supported by the NASA Office of Space Science under task order 003 of contract NAS5-97271 between NASA/GSFC and JHU. The MPS authors were partially supported by the German Space Agency (DLR) under contract 50 OH 1502, by the Max Planck Society, and by the International Max Planck Research School for Solar System Science (IMPRS) at the University of Gottingen, Germany and at the Max Planck Institute for Solar System Research (MPS). The authors like to thank D. Strobel (JHU) for developing the engineering atmosphere model, M.M. Hedman (Cornell University) for his analysis on the D ring, A. Lagg (MPS) for analysis software support, and J. Vandegriff (JHU/APL) and M. Kusterer (JHU/APL) for data reduction. NR 57 TC 0 Z9 0 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 8586 EP 8602 DI 10.1002/2015JA021621 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200030 PM 27812437 ER PT J AU Garcia-Sage, K Moore, TE Pembroke, A Merkin, VG Hughes, WJ AF Garcia-Sage, K. Moore, T. E. Pembroke, A. Merkin, V. G. Hughes, W. J. TI Modeling the effects of ionospheric oxygen outflow on bursty magnetotail flows SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetosphere; outflow; oxygen; transport; fast flow; plasma sheet ID PLASMA SHEET; EARTHS MAGNETOTAIL; ION COMPOSITION; TAIL CURRENT; BULK FLOWS; MAGNETOSPHERE; SIMULATION AB Using a global multifluid MHD model, we demonstrate the effects of magnetospheric O+ on bursty magnetotail flows. We carry out two simulations without ionospheric outflow to use as baseline, one driven by real solar wind data and one driven by idealized solar wind. Solar wind data from 1 October 2001 are used as a storm time solar wind driver. During this event, the plasma sheet was observed to be rich in O+, making the event of interest for a model analysis of the effects of ionospheric origin O+ on magnetospheric dynamics. We carry out outflow comparison simulations for both the realistic and idealized solar wind drivers using a simple empirical model that places auroral outflow in regions where downward propagating Poynting flux and electron precipitation are present, combined with a low-flux thermal energy O+ outflow over the entire polar region. We demonstrate the effects of O+ on magnetotail structure and the occurrence rate and strength of bursty, fast earthward flows. The addition of O+ to the magnetotail stretches the tail and increases the velocity of bursty earthward flows. This increase is shown to be produced by reconnection events in an extended current sheet created by tail stretching. C1 [Garcia-Sage, K.; Moore, T. E.; Pembroke, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Garcia-Sage, K.; Pembroke, A.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Merkin, V. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Hughes, W. J.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Garcia-Sage, K (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM katherine.garcia-sage@nasa.gov RI Merkin, Viacheslav/D-5982-2016 OI Merkin, Viacheslav/0000-0003-4344-5424 FU NASA; [NASANNX13AF82G]; [NSFAGS-1404322] FX K. Garcia-Sage was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. V.G.M. was supported by the following grants: NASANNX13AF82G and NSFAGS-1404322. OMNI solar wind and geomagnetic indices were obtained from the Space Physics Data Facility's (SPDF) Coordinated Data Analysis Web site (http://cdaweb.gsfc.nasa.gov/istp_public/). Computing resources were provided through NASA Center for Climate Simulation (NCCS) at GSFC. We thank John Lyon for the use of the MFLFM code, and we thank Yamada and Watanabe for the use of the Akebono empirical outflow model. NR 56 TC 2 Z9 2 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 8723 EP 8737 DI 10.1002/2015JA021228 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200039 ER PT J AU Zhang, JC Kistler, LM Spence, HE Wolf, RA Reeves, G Skoug, R Funsten, H Larsen, BA Niehof, JT MacDonald, EA Friedel, R Ferradas, CP Luo, H AF Zhang, J. -C. Kistler, L. M. Spence, H. E. Wolf, R. A. Reeves, G. Skoug, R. Funsten, H. Larsen, B. A. Niehof, J. T. MacDonald, E. A. Friedel, R. Ferradas, C. P. Luo, H. TI "Trunk-like" heavy ion structures observed by the Van Allen Probes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ion structure; ion injection; inner magnetosphere; magnetic storm; magnetic cloud; Van Allen Probes ID RING CURRENT PARTICLES; INNER MAGNETOSPHERE; GEOMAGNETIC STORMS; ENERGETIC PARTICLE; MAGNETIC STORM; SIMULATIONS; POTENTIALS; DYNAMICS; FEATURES; LOSSES AB Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report trunk-like ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L=3.6-2.6, magnetic local time (MLT)=9.1-10.5, and magnetic latitude (MLAT)=-2.4-0.09 degrees, vary monotonically from 3.5 to 0.04keV. The values at the two end points of the O+ trunk are energy=4.5-0.7keV, L=3.6-2.5, MLT=9.1-10.7, and MLAT=-2.4-0.4 degrees. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species. C1 [Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Niehof, J. T.; Ferradas, C. P.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Wolf, R. A.] Rice Univ, Dept Phys & Astron, Houston, TX USA. [Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B. A.; Friedel, R.] Los Alamos Natl Lab, ISR Space Sci & Applicat, Los Alamos, NM USA. [MacDonald, E. A.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Luo, H.] Chinese Acad Sci, Inst Geol & Geophys, Beijing, Peoples R China. RP Zhang, JC (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM Jichun.Zhang@unh.edu RI Reeves, Geoffrey/E-8101-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Funsten, Herbert/0000-0002-6817-1039; Ferradas, Cristian/0000-0002-6931-1793 FU RBSP-ECT - JHU/APL contract under NASA [967399, NAS5-01072]; NASA [NNX13AE23G]; United States Department of Energy FX This work was supported by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's Prime Contract No. NAS5-01072. Work at UNH was also supported by NASA under grant NNX13AE23G. Work at LANL was performed under the auspices of the United States Department of Energy. HOPE data used in this paper were downloaded from the Van Allen Probes ECT website at http://www.rbsp-ect.lanl.gov/rbsp_ect.php. Solar wind plasma/IMF data and the Kp and Sym-H indices were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. D.R. Weimer provided the Weimer96 model for the ion tracings. J.-C. Zhang thanks Richard Thorne, Mike Liemohn, and Noe Lugaz for their helpful discussions. NR 49 TC 4 Z9 4 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 8738 EP 8748 DI 10.1002/2015JA021822 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200040 ER PT J AU Michell, RG Samara, M AF Michell, R. G. Samara, M. TI Ground magnetic field fluctuations associated with pulsating aurora SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE aurora; magnetic field; imaging; ionospheric current ID PRECIPITATING ELECTRONS; FORMS AB A case study of an intense pulsating auroral event is presented where the large-scale (100-200km) optical intensity variations are anticorrelated with fluctuations in the ground magnetometer data at a frequency of 0.1Hz. The auroral event occurred over Poker Flat, Alaska, on 1 March 2012 and was imaged optically with several different fields of view and filters. The fluctuations in the magnetometer data were most prominent in the D component and had magnitudes of 1 to 5nT. The auroral intensity variations had amplitudes of 200 to 400R, comprising 25% to 50% of the total auroral luminosity at 427.8nm. The direction of the magnetometer deflections is consistent with a south-to-north ionospheric current present when each pulsation is on, thus providing closure for the field-aligned currents associated with each of the pulsating patches. C1 [Michell, R. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Michell, R. G.; Samara, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Michell, RG (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM robert.g.michell@nasa.gov FU National Science Foundation [AGS-1456161, AGS-1456129] FX This work was supported by National Science Foundation grants AGS-1456161 and AGS-1456129. The magnetometer data were provided by the Goephysical Institute Magnetometer Array (GIMA) through the Alaska Satellite Facility. The authors thank Don Hampton for assistance with imager setup and operation. The data analyzed here are available upon request from the authors. NR 27 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2015 VL 120 IS 10 BP 9192 EP 9201 DI 10.1002/2015JA021252 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY0ZI UT WOS:000366135200074 ER PT J AU Seol, ML Lee, SH Han, JW Kim, D Cho, GH Choi, YK AF Seol, Myeong-Lok Lee, Sang-Han Han, Jin-Woo Kim, Daewon Cho, Gyu-Hyeong Choi, Yang-Kyu TI Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures SO NANO ENERGY LA English DT Article DE Energy harvesting; Triboelectric nanogenerator (TENG); Nanostructure; Contact interface; Pressure sensor; Pyramid array ID PIEZOELECTRIC NANOGENERATOR; POWER SOURCE; ENERGY; GENERATOR; SENSORS; ELECTRIFICATION; MICRO; LITHOGRAPHY; NANOSENSOR; VIBRATION AB A micro- and nano-structure at the contact interface of triboelectric nanogenerator (TENG) is an essential element enabling a remarkable performance improvement. Despite the various innovative inventions of interfacial structures, there has been little understanding about the analytical interpretation of the contact interface. Herein, the deformation behavior of interfacial micro- and nano-structures during the contact process is systematically analyzed to clarify the origin of the contact pressure to output voltage relationship of TENG. The visualization experiment, simulation, theoretical modeling, and electrical measurements are conducted for the comprehensive analysis. The results confirm that the deformation of interfacial structures directly determines the pressure-voltage relationship of TENG. The surface enlargement effect by interfacial nanostructure formation becomes completely valid only when the provided contact pressure is stronger than the certain threshold pressure to make the full-contact condition. Due to the correlation between contact pressure and output voltage, interfacial structure of the TENG should be carefully customized depending on the application environment. Based on the analyzed pressure-voltage relationship of the TENG, a hybrid circuit for energy scavenging and digital pressure sensing is designed and experimentally demonstrated. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Seol, Myeong-Lok; Lee, Sang-Han; Kim, Daewon; Cho, Gyu-Hyeong; Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea. [Han, Jin-Woo] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Choi, YK (reprint author), Korea Adv Inst Sci & Technol, Dept Elect Engn, 291 Daehak Ro, Taejon 305701, South Korea. EM ykchoi@ee.kaist.ac.kr RI Cho, Gyu-Hyeong/C-1877-2011; OI Seol, Myeong-Lok/0000-0001-5724-2244 FU Center for Integrated Smart Sensors; End Run Project - Ministry of Science, ICT and Future Planning as Global Frontier Project [CISS-2011-0031848]; Open Innovation Lab Project from the National Nanofab Center (NNFC) FX This work was supported by the Center for Integrated Smart Sensors and the End Run Project funded by the Ministry of Science, ICT and Future Planning as Global Frontier Project (CISS-2011-0031848). This work is also supported by Open Innovation Lab Project from the National Nanofab Center (NNFC). NR 41 TC 13 Z9 13 U1 10 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD OCT PY 2015 VL 17 BP 63 EP 71 DI 10.1016/j.nanoen.2015.08.005 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CY1EH UT WOS:000366149000008 ER PT J AU Gilliland, RL Chaplin, WJ Jenkins, JM Ramsey, LW Smith, JC AF Gilliland, Ronald L. Chaplin, William J. Jenkins, Jon M. Ramsey, Lawrence W. Smith, Jeffrey C. TI KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES REVISITED SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: observational; stars: activity; stars: late-type; stars: statistics; techniques: photometric ID SYSTEMATIC-ERROR CORRECTION; SUN-LIKE STARS; TRANSITING PLANETS; HABITABLE ZONE; VARIABILITY; PATTERNS; GRAVITY AB An earlier study of the Kepler Mission noise properties on timescales of primary relevance to detection of exoplanet transits found that higher than expected noise followed, to a large extent, from the stars rather than instrument or data analysis performance. The earlier study over the first six quarters of Kepler data is extended to the full four years ultimately comprising the mission. Efforts to improve the pipeline data analysis have been successful in reducing noise levels modestly as evidenced by smaller values derived from the current data products. The new analyses of noise properties on transit timescales show significant changes in the component attributed to instrument and data analysis, with essentially no change in the inferred stellar noise. We also extend the analyses to timescales of several days, instead of several hours to better sample stellar noise that follows from magnetic activity. On the longer timescale there is a shift in stellar noise for solar-type stars to smaller values in comparison to solar values. C1 [Gilliland, Ronald L.; Ramsey, Lawrence W.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gilliland, Ronald L.; Ramsey, Lawrence W.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Chaplin, William J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Chaplin, William J.] Aarhus Univ, Dept Phys & Astron, SAC, DK-8000 Aarhus C, Denmark. [Jenkins, Jon M.; Smith, Jeffrey C.] NASA, Ames Res Ctr, Moffett Field, CA 95035 USA. [Smith, Jeffrey C.] SETI Inst, Mountain View, CA 94043 USA. RP Gilliland, RL (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM gillil@stsci.edu FU NASA's Science Mission Directorate; NASA ADAP program [NNX14AK65G-S01]; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; NASA Office of Space Science [NNX13AC07G] FX Funding for Kepler, the tenth Discovery mission, was provided by NASA's Science Mission Directorate. The many people contributing to the development of the Kepler Mission are gratefully acknowledged. We thank Joseph Twicken for shepherding evolution of the Kepler data processing pipeline. R. L. G. and L. W. R. have been partially supported through grant NNX14AK65G-S01 of the NASA ADAP program. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. Data presented in this paper were obtained from the Mikulski Archive for Space Telescopes. Support to MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. NR 34 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 133 DI 10.1088/0004-6256/150/4/133 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900036 ER PT J AU Koenig, X Hillenbrand, LA Padgett, DL DeFelippis, D AF Koenig, Xavier Hillenbrand, Lynne A. Padgett, Deborah L. DeFelippis, Daniel TI SPECTROSCOPIC ASSESSMENT OF WISE-BASED YOUNG STELLAR OBJECT SELECTION NEAR lambda AND sigma ORIONIS SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; H II regions; infrared: stars; stars: formation; stars: pre-main sequence ID INFRARED-SURVEY-EXPLORER; STAR-FORMING REGION; LOW-MASS STARS; LOW-RESOLUTION SPECTROSCOPY; MAIN-SEQUENCE STARS; T-TAURI STARS; BROWN DWARFS; PROPER MOTIONS; SOLAR-TYPE; H-ALPHA AB We have conducted a sensitive search down to the hydrogen burning limit for unextincted stars over similar to 200 square degrees around Lambda Orionis and 20 square degrees around Sigma Orionis using the methodology of Koenig & Leisawitz. From WISE and 2MASS data we identify 544 and 418 candidate young stellar objects (YSOs) in the vicinity of lambda and sigma respectively. Based on our followup spectroscopy for some candidates and the existing literature for others, we found that similar to 80% of the K14-selected candidates are probable or likely members of the Orion star-forming region. The yield from the photometric selection criteria shows that WISE sources with K-S - w3 > 1.5 mag and K-S between 10 and 12 mag are most likely to show spectroscopic signs of youth, while WISE sources with K-S - w3 > 4 mag and K-S > 12 were often active galactic nuclei when followed up spectroscopically. The population of candidate YSOs traces known areas of active star formation, with a few new "hot spots" of activity near Lynds 1588 and 1589 and a more dispersed population of YSOs in the northern half of the H II region bubble around sigma and epsilon Ori. A minimal spanning tree analysis of the two regions to identify stellar groupings finds that roughly two-thirds of the YSO candidates in each region belong to groups of 5 or more members. The population of stars selected by WISE outside the MST groupings also contains spectroscopically verified YSOs, with a local stellar density as low as 0.5 stars per square degree. C1 [Koenig, Xavier] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Hillenbrand, Lynne A.; DeFelippis, Daniel] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Padgett, Deborah L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Koenig, X (reprint author), Yale Univ, Dept Astron, New Haven, CT 06511 USA. FU NASA ADAP [NNX13AF07G]; National Aeronautics and Space Administration (NASA); National Science Foundation; NASA/IPAC Infrared Science Archive FX We thank the anonymous referee whose comments and suggestions improved the paper. Author Koenig gratefully acknowledges support from NASA ADAP grant No. NNX13AF07G. This work is based on data obtained from (1) the Wide-Field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), funded by the National Aeronautics and Space Administration (NASA); (2) 2MASS, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/Caltech, funded by NASA and the National Science Foundation; and (3) the NASA/IPAC Infrared Science Archive, which is operated by JPL, Caltech, under a contract with NASA. This research has made use of NASA's Astrophysics Data System. NR 72 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 100 DI 10.1088/0004-6256/150/4/100 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900003 ER PT J AU Mommert, M Harris, AW Mueller, M Hora, JL Trilling, DE Bottke, WF Thomas, CA Delbo, M Emery, JP Fazio, G Smith, HA AF Mommert, M. Harris, A. W. Mueller, M. Hora, J. L. Trilling, D. E. Bottke, W. F. Thomas, C. A. Delbo, M. Emery, J. P. Fazio, G. Smith, H. A. TI EXPLORENEOS. VIII. DORMANT SHORT-PERIOD COMETS IN THE NEAR-EARTH ASTEROID POPULATION SO ASTRONOMICAL JOURNAL LA English DT Article DE comets: general; minor planets, asteroids: general ID SPITZER-SPACE-TELESCOPE; JUPITER-FAMILY COMETS; PHYSICAL-PROPERTIES; WILSON-HARRINGTON; 103P/HARTLEY 2; THERMAL-MODEL; OBJECTS; NUCLEUS; ORBITS; DISTRIBUTIONS AB We perform a search for dormant comets, asteroidal objects of cometary origin, in the near-Earth asteroid (NEA) population based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari asteroid catalog. We use a statistical approach to identify asteroids on orbits that resemble those of short-period near-Earth comets (NECs) using the Tisserand parameter with respect to Jupiter, the aphelion distance, and the minimum orbital intersection distance with respect to Jupiter. From the sample of NEAs on comet-like orbits, we select those with a geometric albedo p(V) <= 0.064 as dormant comet candidates, and find that only similar to 50% of NEAs on comet-like orbits also have comet-like albedos. We identify a total of 23 NEAs from our sample that are likely to be dormant short-period NECs and, based on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate both magnitudelimited and size-limited fractions of the NEA population that are dormant short-period comets. We find that 0.3%-3.3% of the NEA population with H <= 21, and (9(-5)(+2))% of the population with diameters d >= 1 km, are dormant short-period NECs. C1 [Mommert, M.; Trilling, D. E.] Univ Arizona, Dept Phys & Astron, Flagstaff, AZ 86011 USA. [Mommert, M.; Harris, A. W.] DLR Inst Planetary Res, D-12489 Berlin, Germany. [Mueller, M.] SRON, Netherlands Inst Space Res, NL-9700 Groningen, Netherlands. [Hora, J. L.; Fazio, G.; Smith, H. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Trilling, D. E.] Univ Western Cape, ZA-7535 Bellville, South Africa. [Bottke, W. F.] Southwest Res Inst, Boulder, CO 80302 USA. [Thomas, C. A.] NASA, Goddard Space Flight Ctr, ORAU, Greenbelt, MD 20771 USA. [Delbo, M.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-063044 Nice 4, France. [Emery, J. P.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Mommert, M (reprint author), Univ Arizona, Dept Phys & Astron, POB 6010, Flagstaff, AZ 86011 USA. EM michael.mommert@nau.edu OI Mueller, Michael/0000-0003-3217-5385 FU DFG Special Priority Program 1385, "The First 10 Million Years of the solar system-a Planetary Materials Approach"; NASA [NNX10AB23G, NNX12AR54G]; NASA; National Aeronautics and Space Administration FX M.M. acknowledges support by the DFG Special Priority Program 1385, "The First 10 Million Years of the solar system-a Planetary Materials Approach." We would like to thank two anonymous referees for useful suggestions that led to significant improvements of the manuscript. Support for this work was provided by NASA awards NNX10AB23G and NNX12AR54G. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research is based on observations with Akari, a JAXA project with the participation of ESA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 60 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 106 DI 10.1088/0004-6256/150/4/106 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900009 ER PT J AU Moorhead, AV Brown, PG Spurny, P Cooke, WJ Shrbeny, L AF Moorhead, Althea V. Brown, Peter G. Spurny, Pavel Cooke, William J. Shrbeny, Lukas TI THE 2014 KCG METEOR OUTBURST: CLUES TO A PARENT BODY SO ASTRONOMICAL JOURNAL LA English DT Article DE meteorites, meteors, meteoroids ID KAPPA-CYGNID; ORBIT RADAR; EJECTION; SHOWER; COMETS; STREAM; SYSTEM AB The kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the flux of KCG meteors compared to normal years. The shower was detected during the routine operation of several radar and optical systems. Meteoroids associated with the outburst ranged from approximately 10(-6) -10(-5) kg for radar meteors and from 10(-3) to 2 kg for optical meteors. The Canadian Meteor Orbit Radar, Czech part of the European Fireball Network, and NASA All Sky and Southern Ontario Meteor Networks produced thousands of KCG meteor trajectories in total. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The KCGs have a diffuse radiant and a significant spread in orbital characteristics. Our analysis of the highest quality KCG trajectories reveals concentrations of stream members near major resonances with Jupiter. We conducted a new search for parent bodies and find that several known asteroids are orbitally similar to the KCGs. Our meteor stream simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces a match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate. C1 [Moorhead, Althea V.; Cooke, William J.] NASA, Meteoroid Environm Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Brown, Peter G.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Spurny, Pavel; Shrbeny, Lukas] Acad Sci Czech Republic, Astron Inst, CZ-25165 Ondrejov, Czech Republic. RP Moorhead, AV (reprint author), NASA, Meteoroid Environm Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM althea.moorhead@nasa.gov OI Moorhead, Althea/0000-0001-5031-6554 FU NASA [NNX11AB76A]; Praemium Academiae of the AS CR; [RVO 67985815] FX This work was supported in part by NASA Cooperative Agreement NNX11AB76A. The work of P. S. and L. S. was supported by the Praemium Academiae of the AS CR and by the project RVO 67985815. NR 39 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 122 DI 10.1088/0004-6256/150/4/122 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900025 ER PT J AU O'Dell, CR Ferland, GJ Henney, WJ Peimbert, M Garcia-Diaz, MT Rubin, RH AF O'Dell, C. R. Ferland, G. J. Henney, W. J. Peimbert, M. Garcia-Diaz, Ma. T. Rubin, Robert H. TI THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER SO ASTRONOMICAL JOURNAL LA English DT Article DE H II regions; ISM: individual objects (Orion Nebula, NGC 1976, M42, Orion-South); protoplanetary disks ID HUBBLE-SPACE-TELESCOPE; HERBIG-HARO OBJECTS; INTEGRAL FIELD SPECTROSCOPY; PROPER-MOTION FEATURES; TRAPEZIUM CLUSTER; CIRCUMSTELLAR DISKS; VELOCITY FEATURES; MASS FUNCTION; IONIZED-GAS; PROTOPLANETARY DISKS AB Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database. C1 [O'Dell, C. R.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Ferland, G. J.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Henney, W. J.] Univ Nacl Autonoma Mexico, Inst Radioastron & Astrofis, Morelia 58090, Michoacan, Mexico. [Peimbert, M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Garcia-Diaz, Ma. T.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada 22860, BC, Mexico. [Rubin, Robert H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP O'Dell, CR (reprint author), Vanderbilt Univ, Dept Phys & Astron, Box 1807-B, Nashville, TN 37235 USA. EM cr.odell@vanderbilt.edu OI Ferland, Gary/0000-0003-4503-6333 FU NSF [0908877, 1108928, 1109061]; NASA [10-ATP10-0053, 10-ADAP10-0073, NNX12AH73G]; JPL [1430426]; STScI [HST-AR-12125.01, GO-12560, HST-GO-12309]; CONACyT [129553]; DGAPA-UNAM [PAPIIT IN102012]; HST program [GO 12543] FX We are grateful to the referee, Professor John Bally, for his helpful comments on this paper. G.J.F. acknowledges support by NSF (0908877; 1108928; and 1109061), NASA (10-ATP10-0053, 10-ADAP10-0073, and NNX12AH73G), JPL (RSA No 1430426), and STScI (HST-AR-12125.01, GO-12560, and HST-GO-12309). M.P. received partial support from CONACyT grant 129553. W.J.H. acknowledges financial support from DGAPA-UNAM through project PAPIIT IN102012. C.R.O.'s participation was supported in part by HST program GO 12543. NR 124 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 108 DI 10.1088/0004-6256/150/4/108 PG 63 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900011 ER PT J AU Park, RS Folkner, WM Jones, DL Border, JS Konopliv, AS Martin-Mur, TJ Dhawan, V Fomalont, E Romney, JD AF Park, Ryan S. Folkner, William M. Jones, Dayton L. Border, James S. Konopliv, Alexander S. Martin-Mur, Tomas J. Dhawan, Vivek Fomalont, Ed Romney, Jonathan D. TI VERY LONG BASELINE ARRAY ASTROMETRIC OBSERVATIONS OF MARS ORBITERS SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; ephemerides; planets and satellites: individual (Mars); reference systems AB This paper presents astrometric observations of Mars that are reduced from Very Long Baseline Array (VLBA) measurements of Mars-orbiting satellites. These observations provide angular positions for Mars in the International Celestial Reference Frame (ICRF). Nine observing epochs were used: eight from 2008 and one from 2013. For each epoch, observed R.A. and decl. are provided with associated uncertainties. The post-fit rms residuals of these measurements against JPL's DE430 ephemeris are 0.13 mas and 0.18 mas for R. A. and decl., respectively, with average uncertainty of 0.24 mas in R. A. and 0.32 mas in decl. The results are generally in good agreement with single-baseline Very Long Baseline Interferometry and range measurements of Mars-orbiting satellites. The VLBA measurements of Mars are used to determine the orientation of the dynamical system of Earth and Mars relative to the ICRF with uncertainty of 0.23 mas. C1 [Park, Ryan S.; Folkner, William M.; Jones, Dayton L.; Border, James S.; Konopliv, Alexander S.; Martin-Mur, Tomas J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dhawan, Vivek; Romney, Jonathan D.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Fomalont, Ed] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Park, RS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ryan.S.Park@jpl.nasa.gov FU National Aeronautics and Space Administration FX This research was in part carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 13 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 121 DI 10.1088/0004-6256/150/4/121 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900024 ER PT J AU Poppenhaeger, K Cody, AM Covey, KR Gunther, HM Hillenbrand, LA Plavchan, P Rebull, LM Stauffer, JR Wolk, SJ Espaillat, C Forbrich, J Gutermuth, RA Hora, JL Morales-Calderon, M Song, I AF Poppenhaeger, K. Cody, A. M. Covey, K. R. Guenther, H. M. Hillenbrand, L. A. Plavchan, P. Rebull, L. M. Stauffer, J. R. Wolk, S. J. Espaillat, C. Forbrich, J. Gutermuth, R. A. Hora, J. L. Morales-Calderon, M. Song, Inseok TI YSOVAR: MID-INFRARED VARIABILITY OF YOUNG STELLAR OBJECTS AND THEIR DISKS IN THE CLUSTER IRAS 20050+2720 SO ASTRONOMICAL JOURNAL LA English DT Article DE accretion, accretion disks; infrared: stars; protoplanetary disks; stars: pre-main sequence; stars: variables: general ID T-TAURI STARS; ORION NEBULA CLUSTER; MAIN-SEQUENCE STARS; INFRARED PHOTOMETRIC VARIABILITY; SPITZER-SPACE-TELESCOPE; CIRCUMSTELLAR DISKS; MOLECULAR CLOUD; FORMING REGION; PROTOPLANETARY DISKS; MULTIPOLAR OUTFLOW AB We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 mu m with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members. C1 [Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cody, A. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Covey, K. R.] Western Washington Univ, Bellingham, WA 98225 USA. [Guenther, H. M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Hillenbrand, L. A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Plavchan, P.] Missouri State Univ, Springfield, MO 65897 USA. [Rebull, L. M.; Stauffer, J. R.] Spitzer Sci Ctr Caltech, Pasadena, CA 91125 USA. [Espaillat, C.] Boston Univ, Boston, MA 02215 USA. [Forbrich, J.] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria. [Gutermuth, R. A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Morales-Calderon, M.] CSIC, INTA, Ctr Astrobiol, E-28691 Villanueva De La Canada, Spain. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. RP Poppenhaeger, K (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Morales-Calderon, Maria/C-8384-2017; OI Morales-Calderon, Maria/0000-0001-9526-9499; Poppenhaeger, Katja/0000-0003-1231-2194; Gunther, Hans Moritz/0000-0003-4243-2840; Wolk, Scott/0000-0002-0826-9261; Rebull, Luisa/0000-0001-6381-515X; Plavchan, Peter/0000-0002-8864-1667; Covey, Kevin/0000-0001-6914-7797 FU NASA [NAS8-03060]; National Science Foundation; Jet Propulsion Laboratory (JPL) - NASA through the Sagan Fellowship Program; Spitzer grant [1490851] FX The authors thank Joshua Bloom and Mike Skrutskie for access to the PAIRITEL telescope, and Elaine Winston for helpful comments on the manuscript. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). This research has made use of the SIMBAD database and the VizieR catalog access tool (Ochsenbein et al. 2000), both operated at CDS, Strasbourg, France and of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. K. P.'s work was supported in part by the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. H. M. G. acknowledges Spitzer grant 1490851. P. P. acknowledges the JPL Research and Technology Development and Exoplanet Exploration programs. S. J. W. was supported by NASA contract NAS8-03060. NR 99 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 118 DI 10.1088/0004-6256/150/4/118 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900021 ER PT J AU Rebull, LM Carlberg, JK Gibbs, JC Deeb, JE Larsen, E Black, DV Altepeter, S Bucksbee, E Cashen, S Clarke, M Datta, A Hodgson, E Lince, M AF Rebull, Luisa M. Carlberg, Joleen K. Gibbs, John C. Deeb, J. Elin Larsen, Estefania Black, David V. Altepeter, Shailyn Bucksbee, Ethan Cashen, Sarah Clarke, Matthew Datta, Ashwin Hodgson, Emily Lince, Megan TI ON INFRARED EXCESSES ASSOCIATED WITH Li-RICH K GIANTS SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: stars; stars: evolution; stars: late-type ID POINT-SOURCE CATALOG; T-TAURI STARS; DIGITAL SKY SURVEY; MASS RED GIANTS; LITHIUM ABUNDANCES; PLANETARY-NEBULAE; SURVEY-EXPLORER; BROWN DWARFS; CARBON STARS; DEBRIS DISKS AB Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and Li abundance measurements with no previous IR measurements, and a large sample of RGs asserted to be Li-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by similar to 20 mu m(with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, C-12/C-13. IR excesses by 20 mu m, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the Li-enrichment mechanism may only occasionally produce dust, and an additional parameter (e.g., rotation) may control whether or not a shell is ejected. C1 [Rebull, Luisa M.] CALTECH, IPAC, SSC, Pasadena, CA 91125 USA. [Rebull, Luisa M.] CALTECH, IPAC, Infrared Sci Arch IRSA, Pasadena, CA 91125 USA. [Carlberg, Joleen K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gibbs, John C.; Cashen, Sarah; Datta, Ashwin; Hodgson, Emily; Lince, Megan] Glencoe High Sch, Hillsboro, OR 97124 USA. [Deeb, J. Elin] Bear Creek High Sch, Lakewood, CO 80227 USA. [Larsen, Estefania; Altepeter, Shailyn; Bucksbee, Ethan; Clarke, Matthew] Millard South High Sch, Omaha, NE 68137 USA. [Black, David V.] Walden Sch Liberal Arts, Provo, UT 84604 USA. RP Rebull, LM (reprint author), CALTECH, IPAC, SSC, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM rebull@ipac.caltech.edu OI Rebull, Luisa/0000-0001-6381-515X FU NASA/IPAC Teacher Archive Research Program (NITARP); NASA ADP program; IPAC archives; NASA; National Aeronautics and Space Administration; U.S. Government [NAG W-2166]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Ballistic Missile Defense Organization; NASA Office of Space Science FX Support provided for this work by the NASA/IPAC Teacher Archive Research Program (NITARP; http://nitarp.ipac.caltech.edu), which partners small groups of high school educators with a mentor astronomer for an authentic research project. It receives funding from the NASA ADP program and the IPAC archives. We acknowledge the following students who helped out at various phases of this project: Rosie Buhrley, Julie Herring, Kendall Jacoby, and Elena Mitchell, from Walden School of Liberal Arts. J. K. C. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This research has made etensive use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions." Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research is based on observations with AKARI, a JAXA project with the participation of ESA. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research made use of data products from the Midcourse Space Experiment.; Processing of the data was funded by the Ballistic Missile Defense Organization with additional support from NASA Office of Space Science. This research has also made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System (ADS) Abstract Service, and of the SIMBAD database, operated at CDS, Strasbourg, France. NR 77 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 123 DI 10.1088/0004-6256/150/4/123 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900026 ER PT J AU Richardson, ND Gies, DR Gull, TR Moffat, AFJ St-Jean, L AF Richardson, N. D. Gies, D. R. Gull, T. R. Moffat, A. F. J. St-Jean, L. TI THE OPTICAL WIND LINE VARIABILITY OF eta CARINAE DURING THE 2009.0 EVENT SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: general; stars: early-type; stars: individual (eta Carinae); stars: winds, outflows ID RADIATIVE-TRANSFER SIMULATIONS; INNER COLLIDING WINDS; H-ALPHA VARIATIONS; 2003.5 MINIMUM; IONIZATION STRUCTURE; BINARY; ABSORPTION; HOMUNCULUS; HELIUM; EJECTA AB We report on high-resolution spectroscopy of the 2009.0 spectroscopic event of eta Carinae collected via SMARTS observations using the CTIO 1.5 m telescope and echelle spectrograph. Our observations were made almost every night over a two-month interval around the photometric minimum of eta Car associated with the periastron passage of a hot companion. The photoionizing flux of the companion and heating related to colliding winds causes large changes in the wind properties of the massive primary star. Here we present an analysis of temporal variations in a sample of spectral lines that are clearly formed in the wind of the primary star. These lines are affected by a changing illumination of the flux of the secondary star during the periastron passage. We document the sudden onset of blueshifted absorption that occurred in most of the lines near or slightly after periastron, and we argue that these absorption components are seen when we view the relatively undisturbed wind of the foreground primary star. We present time series measurements of the net equivalent width of the wind lines and of the radial velocities of the absorption trough minima and the emission peak midpoints. Most lines decrease in emission strength around periastron, and those high excitation lines formed close to the primary exhibit a red-ward velocity excursion. We show how these trends can be explained using an illuminated hemisphere model that is based on the idea that the emission originates primarily from the side of the primary facing the hot companion. C1 [Richardson, N. D.; Moffat, A. F. J.; St-Jean, L.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Richardson, N. D.; Moffat, A. F. J.; St-Jean, L.] Univ Montreal, CRAQ, Montreal, PQ H3C 3J7, Canada. [Gies, D. R.] Georgia State Univ, Dept Phys & Astron, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Gull, T. R.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Richardson, ND (reprint author), Univ Montreal, Dept Phys, CP 6128, Montreal, PQ H3C 3J7, Canada. EM richardson@astro.umontreal.ca OI Richardson, Noel/0000-0002-2806-9339 FU University of Minnesota; Space Telescope Science Institute; NASA; CRAQ fellowship; National Science Foundation [AST-1009080, AST-1411654]; NSERC (Canada); FQRNT (Quebec) FX These spectra were collected with the CTIO 1.5 m telescope, which is operated by the SMARTS Consortium. We thank Todd Henry for his assistance in obtaining the spectra during the spectroscopic event. We are extremely grateful to Fred Walter (Stony Brook University) for his careful scheduling of this program and to the CTIO SMARTS staff for queue observing support. The spectra analyzed in the post-event state were obtained with NOAO programs 09b-153, 12a-0216, and 12b-0194. This research has made use of the data archive for the HST Treasury Program on Eta Carinae (GO 9973) which is available on-line at. http://etacar.umn.edu. The archive is supported by the University of Minnesota and the Space Telescope Science Institute under contract with NASA. N. D. R. gratefully acknowledges his CRAQ fellowship. This work was supported by the National Science Foundation under grants AST-1009080 and AST-1411654. A. F. J. M. is grateful for support from NSERC (Canada) and FQRNT (Quebec). Institutional support has been provided from the GSU College of Arts and Sciences and from the Research Program Enhancement Fund of the Board of Regents of the University System of Georgia, administered through the GSU Office of the Vice President for Research and Economic Development. NR 39 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 109 DI 10.1088/0004-6256/150/4/109 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900012 ER PT J AU Roberts, LC Tokovinin, A Mason, BD Hartkopf, WI Riddle, RL AF Roberts, Lewis C., Jr. Tokovinin, Andrei Mason, Brian D. Hartkopf, William I. Riddle, Reed L. TI OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics ID ADAPTIVE OPTICS SYSTEM; HIGH-ORDER MULTIPLICITY; BINARY STARS; G DWARFS; SPECKLE INTERFEROMETRY; ORBITAL ELEMENTS; 67 PC; NEIGHBORHOOD; PHOTOMETRY; COMPANIONS AB Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually. C1 [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tokovinin, Andrei] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Mason, Brian D.; Hartkopf, William I.] US Naval Observ, Washington, DC 20392 USA. [Riddle, Reed L.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lewis.c.roberts@jpl.nasa.gov OI Tokovinin, Andrei/0000-0002-2084-0782 FU National Aeronautics and Space Administration (NASA); NASA; National Science Foundation FX We thank D. Latham for the insight he provided on a number of these systems. This paper is based on observations obtained at the Hale Telescope, Palomar Observatory. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). This research made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the SIMBAD database, operated by the CDS in Strasbourg, France and NASA's Astrophysics Data System. This publication made use of data products from the Two Micron All Sky Survey, which is a joint project of the Universit of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the National Science Foundation. NR 40 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 130 DI 10.1088/0004-6256/150/4/130 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900033 ER PT J AU Roberts, LC Oppenheimer, R Crepp, JR Baranec, C Beichman, C Brenner, D Burruss, R Cady, E Luszcz-Cook, S Dekany, R Hillenbrand, L Hinkley, S King, D Lockhart, TG Nilsson, R Parry, IR Pueyo, L Sivaramakrishnan, A Soummer, R Rice, EL Veicht, A Vasisht, G Zhai, CX Zimmerman, NT AF Roberts, Lewis C., Jr. Oppenheimer, Rebecca Crepp, Justin R. Baranec, Christoph Beichman, Charles Brenner, Douglas Burruss, Rick Cady, Eric Luszcz-Cook, Statia Dekany, Richard Hillenbrand, Lynne Hinkley, Sasha King, David Lockhart, Thomas G. Nilsson, Ricky Parry, Ian R. Pueyo, Laurent Sivaramakrishnan, Anand Soummer, Remi Rice, Emily L. Veicht, Aaron Vasisht, Gautam Zhai, Chengxing Zimmerman, Neil T. TI KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830 SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; stars: individual (HD 177830) ID ADAPTIVE OPTICS SYSTEM; INTEGRAL FIELD SPECTROGRAPH; BINARY STARS; DEBRIS DISKS; COOL STARS; CHARA ARRAY; PHOTOMETRY; SPITZER; SEARCH; ASTROMETRY AB HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 +/- 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years. C1 [Roberts, Lewis C., Jr.; Beichman, Charles; Burruss, Rick; Cady, Eric; Lockhart, Thomas G.; Vasisht, Gautam; Zhai, Chengxing] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Oppenheimer, Rebecca; Brenner, Douglas; Luszcz-Cook, Statia; Nilsson, Ricky; Veicht, Aaron] Amer Museum Nat Hist, New York, NY 10024 USA. [Crepp, Justin R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Baranec, Christoph] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. [Beichman, Charles; Dekany, Richard; Hillenbrand, Lynne] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Beichman, Charles] NASA Exoplanet Sci Inst, Pasadena, CA 91122 USA. [Hinkley, Sasha] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [King, David; Parry, Ian R.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England. [Nilsson, Ricky; Sivaramakrishnan, Anand; Soummer, Remi] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Pueyo, Laurent] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pueyo, Laurent] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Rice, Emily L.] CUNY, Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Zimmerman, Neil T.] Princeton Univ, MAE, Princeton, NJ 08544 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lewis.c.roberts@jpl.nasa.gov OI Oppenheimer, Rebecca/0000-0001-7130-7681; Zimmerman, Neil/0000-0001-5484-1516; Rice, Emily/0000-0002-3252-5886 FU National Aeronautics and Space Administration (NASA); NASA ROSES Origins of Solar Systems Grant [NMO710830/102190]; National Science Foundation [AST-0520822, AST-0804417, AST-0908484]; Cordelia Corporation; Vincent Astor Fund; Alfred P. Sloan Foundation FX A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). This work was partially funded through the NASA ROSES Origins of Solar Systems Grant NMO710830/102190. Project 1640 is funded by National Science Foundation grants AST-0520822, AST-0804417, and AST-0908484. The members of the Project 1640 team are also grateful for support from the Cordelia Corporation, Hilary and Ethel Lipsitz, the Vincent Astor Fund, Judy Vale, Andrew Goodwin, and an anonymous donor. C. B. acknowledges support from the Alfred P. Sloan Foundation. We thank the staff of the Palomar Observatory for their invaluable assistance in collecting these data. This paper is based on observations obtained at the Hale Telescope, Palomar Observatory. This research made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the SIMBAD database, operated by the CDS in Strasbourg, France and NASA's Astrophysics Data System. NR 51 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 103 DI 10.1088/0004-6256/150/4/103 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900006 ER PT J AU Shporer, A Hu, RY AF Shporer, Avi Hu, Renyu TI STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (Kepler-7, Kepler-12, Kepler-41); techniques: photometric ID EXTRASOLAR GIANT PLANETS; LIGHT CURVES; HD 189733B; SPECTRAL-ANALYSIS; ROTATION PERIODS; HIGH ALBEDO; SPACED DATA; STARS; COMPANIONS; EXOPLANETS AB We identify three Kepler transiting planets, Kepler-7b, Kepler-12b, and Kepler-41b, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e., gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase-curve shape. We present here the analysis of Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was already presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest region on the planetary surface and the substellar point, similar to Kepler-7b. We find that reflective clouds located on the west side of the substellar point can explain the phase shift. The existence of inhomogeneous atmospheric reflection in all three of our targets, selected due to their atmosphere-dominated Kepler phase curve, suggests this phenomenon is common. Therefore, it is also likely to be present in planetary phase curves that do not allow a direct view of the planetary atmosphere as they contain additional orbital processes. We discuss the implications of a bright-spot shift on the analysis of phase curves where both atmospheric and gravitational processes appear, including the mass discrepancy seen in some cases between the companion's mass derived from the beaming and ellipsoidal photometric amplitudes. Finally, we discuss the potential detection of non-transiting but otherwise similar planets, whose mass is too small to show a gravitational photometric signal, but their atmosphere is reflective enough to show detectable phase modulations. C1 [Shporer, Avi; Hu, Renyu] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Shporer, Avi; Hu, Renyu] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Shporer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Shporer, Avi/0000-0002-1836-3120 FU California Institute of Technology (Caltech) - NASA through the Sagan Fellowship Program; NASA through Hubble Fellowship - Space Telescope Science Institute [51332]; NASA [NAS 5-26555]; NASA Science Mission directorate FX We are grateful to the anonymous referee whose comments helped improve this paper. This work was performed in part at the Jet Propulsion Laboratory, under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. Support for R.H. for this work was provided by NASA through Hubble Fellowship grant #51332 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. This research has made use of NASA's Astrophysics Data System Service. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. NR 72 TC 15 Z9 15 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 112 DI 10.1088/0004-6256/150/4/112 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900015 ER PT J AU Smith, KL Boyd, PT Mushotzky, RF Gehrels, N Edelson, R Howell, SB Gelino, DM Brown, A Young, S AF Smith, Krista Lynne Boyd, Patricia T. Mushotzky, Richard F. Gehrels, Neil Edelson, Rick Howell, Steve B. Gelino, Dawn M. Brown, Alexander Young, Steve TI KSwAGS: A SWIFT X-RAY AND UV SURVEY OF THE KEPLER FIELD. I. SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: Seyfert; stars: activity; stars: variables: general; surveys ID ACTIVE GALACTIC NUCLEI; MEDIUM-SENSITIVITY SURVEY; DATA RELEASE; ECLIPSING BINARIES; INPUT CATALOG; BLACK-HOLE; OF-VIEW; STARS; VARIABILITY; CALIBRATION AB We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of similar to 6 square degrees of the Kepler field using the Swift X-ray telescope (XRT) and UV/Optical Telescope. We detect 93 unique X-ray sources with signal-to-noise ratio >= 3 with the XRT, of which 60 have UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the f(X)/f(V) ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or active galactic nuclei (AGNs) with certainty, we construct spectral energy distributions (SEDs) using the 2MASS, UBV, and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields. C1 [Smith, Krista Lynne; Mushotzky, Richard F.; Edelson, Rick; Young, Steve] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Smith, Krista Lynne; Boyd, Patricia T.; Gehrels, Neil] NASA, GSFC, Greenbelt, MD 20771 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94095 USA. [Gelino, Dawn M.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Brown, Alexander] Univ Colorado, CASA, Boulder, CO 80309 USA. RP Smith, KL (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM klsmith@astro.umd.edu OI Gelino, Dawn/0000-0003-1274-2784 FU National Aeronautics and Space Administration; NASA Earth and Space Sciences Fellowship (NESSF) FX We would like to thank the referee for a helpful report which improved the manuscript. We acknowledge Trisha Doyle for her assistance during the Palomar observing run. We also acknowledge the extremely helpful and accommodating staff at Palomar Observatory. The GALEX data for many of our KSwAGS sources was obtained thanks to A. Brown's GALEX GO programs GI4-056 and GI5-055, a UV survey specifically designed to locate active stars in the Kepler field. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. K. L. S. is grateful for support from the NASA Earth and Space Sciences Fellowship (NESSF), which enabled the majority of this work. NR 59 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD OCT PY 2015 VL 150 IS 4 AR 126 DI 10.1088/0004-6256/150/4/126 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CX7EF UT WOS:000365863900029 ER PT J AU de Putter, R Dore, O Green, D AF de Putter, Roland Dore, Olivier Green, Daniel TI Is there scale-dependent bias in single-field inflation? SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE redshift surveys; inflation; power spectrum; cosmological parameters from LSS ID PRIMORDIAL NON-GAUSSIANITY; CONSISTENCY RELATIONS; UNIVERSE; SYMMETRIES; MODELS AB Scale-dependent halo bias due to local primordial non-Gaussianity provides a strong test of single-field inflation. While it is universally understood that single-field inflation predicts negligible scale-dependent bias compared to current observational uncertainties, there is still disagreement on the exact level of scale-dependent bias at a level that could strongly impact inferences made from future surveys. In this paper, we clarify this confusion and derive in various ways that there is exactly zero scale-dependent bias in single-field inflation. Much of the current confusion follows from the fact that single-field inflation does predict a mode coupling of matter perturbations at the level of f(NL)(local) approximate to -5/3, which naively would lead to scale-dependent bias. However, we show explicitly that this mode coupling cancels out when perturbations are evaluated at a fixed physical scale rather than fixed coordinate scale. Furthermore, we show how the absence of scale-dependent bias can be derived easily in any gauge. This result can then be incorporated into a complete description of the observed galaxy clustering, including the previously studied general relativistic terms, which are important at the same level as scale-dependent bias of order f(NL)(local) similar to 1. This description will allow us to draw unbiased conclusions about inflation from future galaxy clustering data. C1 [de Putter, Roland; Dore, Olivier] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [de Putter, Roland; Dore, Olivier] CALTECH, Pasadena, CA 91125 USA. [Green, Daniel] Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Green, Daniel] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP de Putter, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM rdputter@caltech.edu; Olivier.P.Dore@jpl.nasa.gov; drgreen@cita.utoronto.ca FU NASA ATP [11-ATP-090]; NSERC FX We thank the participants of the workshop Testing Inflation with Large Scale Structure: Connecting Hopes with Reality held at CITA, University of Toronto in October 2015 for stimulating discussions. We particularly thank Matias Zaldarriaga for several insights and for highlighting the relevance of proper physical scales in this problem. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by NASA ATP grant 11-ATP-090. D.G. is supported by a NSERC Discovery Grant. NR 59 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2015 IS 10 AR 024 DI 10.1088/1475-7516/2015/10/024 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX6II UT WOS:000365804000025 ER PT J AU Huntley, HS Lipphardt, BL Jacobs, G Kirwan, AD AF Huntley, Helga S. Lipphardt, B. L., Jr. Jacobs, Gregg Kirwan, A. D., Jr. TI Clusters, deformation, and dilation: Diagnostics for material accumulation regions SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID LAGRANGIAN COHERENT STRUCTURES; TIME LYAPUNOV EXPONENTS; WATER-HORIZON SPILL; GULF-OF-MEXICO; RELATIVE DISPERSION; FLOWS; OCEAN; TRANSPORT; TURBULENCE; CIRCULATION AB Clusters of material at the ocean surface have been frequently observed. Such accumulations of material play an important role in a variety of applications, from biology to pollution mitigation. Identifying where clusters will form can aid in locating, for example, hotspots of biological activity or regions of high pollutant concentration. Here cluster strength is introduced as a new metric for defining clusters when all particle positions are known. To diagnose regions likely to contain clusters without the need to integrate millions of particle trajectories, we propose to use dilation, which quantifies area changes of Lagrangian patches. Material deformation is decomposed into dilation and area-preserving stretch processes to refine previous approaches based on finite-time Lyapunov exponents (FTLE) by splitting the FTLE into fundamental kinematic properties. The concepts are developed theoretically and illustrated in the context of a state-of-the-art data-assimilating predictive ocean model of the Gulf of Mexico. Regions of dilation less than one are shown to be much more likely (6 times more likely in the given example) to be visited by particles than those of dilation greater than one. While the relationship is nonlinear, dilation and cluster strength exhibit a fairly good correlation. In contrast, both stretch and Eulerian divergence are found to be uncorrelated with cluster strength. Thus, dilation maps can be used as guides for identifying cluster locations, while saving some of the computational cost of trajectory integrations. C1 [Huntley, Helga S.; Lipphardt, B. L., Jr.; Kirwan, A. D., Jr.] Univ Delaware, Sch Marine Sci & Policy, Newark, DE 19716 USA. [Jacobs, Gregg] Naval Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS USA. RP Huntley, HS (reprint author), Univ Delaware, Sch Marine Sci & Policy, Newark, DE 19716 USA. EM helgah@udel.edu FU Office of Naval Research for MURI OCEAN 3D11 [N00014-11-1-0087]; BP/The Gulf of Mexico Research Initiative for the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment FX The model velocity fields used here are archived at the Gulf of Mexico Research Initiative's Information and Data Cooperative's website https://data.gulfresearchinitiative.org and can be retrieved under doi number 10.7266/N72Z13F4. All model data used for the analysis, including particle trajectories, are also available upon request from the corresponding author. This work was funded in part by grant N00014-11-1-0087 from the Office of Naval Research for MURI OCEAN 3D11 and in part by a grant from BP/The Gulf of Mexico Research Initiative for the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment. The authors thank two anonymous reviewers for their helpful and constructive comments. NR 49 TC 4 Z9 4 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD OCT PY 2015 VL 120 IS 10 BP 6622 EP 6636 DI 10.1002/2015JC011036 PG 15 WC Oceanography SC Oceanography GA CX2PS UT WOS:000365539700002 ER PT J AU Canuto, VM AF Canuto, V. M. TI PV dynamics: The role of small-scale turbulence, submesoscales and mesoscales SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID POTENTIAL VORTICITY; KINETIC-ENERGY; CALIFORNIA CURRENT; NORTH-ATLANTIC; OCEAN; MODEL; INSTABILITY; SURFACE; DISSIPATION; STABILITY AB The diabatic and frictional components of the PV fluxes J in the Haynes-McIntyre conservation law have been studied with physical arguments, scaling laws and numerical simulations. We suggest a procedure that expresses J in terms of buoyancy and momentum fluxes by small-scale turbulence SS, submesoscales SM and mesoscales M. We employ the latest parameterizations of these processes and derive analytic expressions of the diabatic and frictional J fluxes for arbitrary wind stresses; we then consider the case of an Ekman flow. Small-scale turbulence: at z50, down and up-front winds contribute equally to the frictional component of J while the diabatic component is much larger than that of mesoscales. Submesoscales: the geostrophic contributions to both diabatic and frictional J have the same sign while the wind contributions have opposite signs. Their magnitude depends on the SM kinetic energy which is derived in terms of large-scale parameters. Comparison with numerical simulations is limited since the ones available resolve M but not SM. They concluded that the field patterns of the J fluxes are very similar to those obtained without resolving M, in agreement with the present analysis; a second conclusion that the diabatic component of J is an order of magnitude larger than the frictional one, is also in accordance with present results. When wind stresses are accounted for, down-front winds lower PV and up-front winds increase it. The changes in Hoskins' criterion for the onset of symmetric instabilities are discussed. C1 [Canuto, V. M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Canuto, V. M.] Columbia Univ, Dept Appl Phys & Math, New York, NY USA. RP Canuto, VM (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM vittorio.m.canuto@nasa.gov NR 35 TC 0 Z9 0 U1 5 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD OCT PY 2015 VL 120 IS 10 BP 6971 EP 6985 DI 10.1002/2015JC011043 PG 15 WC Oceanography SC Oceanography GA CX2PS UT WOS:000365539700023 ER PT J AU Conway, EM AF Conway, Erik M. TI Simulation and Spacecraft Design Engineering Mars Landings SO TECHNOLOGY AND CULTURE LA English DT Article ID ENTRY AB A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction. C1 [Conway, Erik M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Conway, EM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. FU U.S. government FX Erik M. Conway is historian at Jet Propulsion Laboratory, California Institute of Technology. The author would like to thank Robert M. Manning, Tommaso Rivellini, and Sam Thurman for key documents used in this publication, and two reviewers and the editors of this journal for valuable insights and commentary on drafts of this article. U.S. government sponsorship acknowledged. NR 39 TC 0 Z9 0 U1 1 U2 3 PU JOHNS HOPKINS UNIV PRESS PI BALTIMORE PA JOURNALS PUBLISHING DIVISION, 2715 NORTH CHARLES ST, BALTIMORE, MD 21218-4363 USA SN 0040-165X EI 1097-3729 J9 TECHNOL CULT JI Technol. Cult. PD OCT PY 2015 VL 56 IS 4 BP 812 EP 838 PG 27 WC History & Philosophy Of Science SC History & Philosophy of Science GA CX2VR UT WOS:000365555400002 PM 26593710 ER PT J AU Ao, CO Edwards, CD Kahan, DS Pi, X Asmar, SW Mannucci, AJ AF Ao, C. O. Edwards, C. D., Jr. Kahan, D. S. Pi, X. Asmar, S. W. Mannucci, A. J. TI A first demonstration of Mars crosslink occultation measurements SO RADIO SCIENCE LA English DT Article ID RADIO OCCULTATION; ATMOSPHERE; PROFILES; VENUS AB A series of three crosslink occultation experiments have been acquired between the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft to probe the Martian atmosphere in 2007. While crosslink occultations between Earth-orbiting satellites have been used to profile the Earth's atmosphere and ionosphere since 1995, this represents the first demonstration of crosslink occultation measurements at another planet. These measurements leverage the proximity link telecommunication payloads on each orbiter, which are nominally used to provide relay communication and navigation services to Mars landers and rovers. Analysis of the observed Doppler shift on each crosslink measurement reveals a clear signature of the Martian atmosphere, primarily the ionosphere. Inversion of the observed Doppler data yields vertical profiles of the Martian refractivity and electron density. The electron density profiles show the presence of two layers with peak densities and peak heights that are consistent with empirical model results. Our study demonstrates the feasibility and future potential of the crosslink radio occultation technique in the exploration of planetary atmospheres. C1 [Ao, C. O.; Edwards, C. D., Jr.; Kahan, D. S.; Pi, X.; Asmar, S. W.; Mannucci, A. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ao, CO (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM chi.o.ao@jpl.nasa.gov NR 22 TC 4 Z9 4 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD OCT PY 2015 VL 50 IS 10 BP 997 EP 1007 DI 10.1002/2015RS005750 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA CW6QC UT WOS:000365121300004 ER PT J AU Kim, DJ Jung, J Kang, KM Kim, SH Xu, Z Hensley, S Swan, A Duersch, M AF Kim, Duk-jin Jung, Jungkyo Kang, Ki-mook Kim, Seung Hee Xu, Zhen Hensley, Scott Swan, Aaron Duersch, Michael TI Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring SO SENSORS LA English DT Article DE airborne remote sensing; synthetic aperture radar; thermal infrared; coastal monitoring; interferometry ID WATER AB Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. C1 [Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. [Hensley, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Swan, Aaron; Duersch, Michael] IMSAR LLC, Springville, UT 84663 USA. RP Kim, DJ (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. EM djkim@snu.ac.kr; oberonia@naver.com; mook0416@naver.com; dalcomeboy@snu.ac.kr; xuzhen426@snu.ac.kr; scott.hensley@jpl.nasa.gov; aarons@imsar.com; michaeld@imsar.com FU Space Core Technology Development program through the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [2011-0020884, 2014M1A3A3A03034799] FX This research was supported by the Space Core Technology Development program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2011-0020884 & 2014M1A3A3A03034799). A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 15 TC 2 Z9 2 U1 2 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD OCT PY 2015 VL 15 IS 10 BP 25366 EP 25384 DI 10.3390/s151025366 PG 19 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA CV4MX UT WOS:000364242300035 ER PT J AU Lee, HJ Sherrit, S Tosi, LP Walkemeyer, P Colonius, T AF Lee, Hyeong Jae Sherrit, Stewart Tosi, Luis Phillipe Walkemeyer, Phillip Colonius, Tim TI Piezoelectric Energy Harvesting in Internal Fluid Flow SO SENSORS LA English DT Article DE piezoelectric; flow energy harvesting; fluid-structure interaction; transducer ID PZT CERAMICS AB We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. C1 [Lee, Hyeong Jae; Sherrit, Stewart; Walkemeyer, Phillip] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tosi, Luis Phillipe; Colonius, Tim] CALTECH, Pasadena, CA 91109 USA. RP Lee, HJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM hjlee@jpl.nasa.gov; stewart.sherrit@jpl.nasa.gov; ltos@caltech.edu; Phillip.E.Walkemeyer@jpl.nasa.gov; colonius@caltech.edu NR 31 TC 2 Z9 2 U1 7 U2 23 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD OCT PY 2015 VL 15 IS 10 BP 26039 EP 26062 DI 10.3390/s151026039 PG 24 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA CV4MX UT WOS:000364242300071 PM 26473879 ER PT J AU St Cyr, OC Flint, QA Xie, H Webb, DF Burkepile, JT Lecinski, AR Quirk, C Stanger, AL AF St Cyr, O. C. Flint, Q. A. Xie, H. Webb, D. F. Burkepile, J. T. Lecinski, A. R. Quirk, C. Stanger, A. L. TI MLSO Mark III K-Coronameter Observations of the CME Rate from 1989-1996 SO SOLAR PHYSICS LA English DT Article DE Solar corona; Coronal mass ejections; Solar activity ID SOLAR MAXIMUM MISSION; MASS EJECTIONS; BRIGHTNESS VARIATIONS; SMM OBSERVATIONS; ELECTRON CORONA; CYCLE VARIATION; LASCO; POLARIMETER; SPACECRAFT; CATALOG AB We report here an attempt to fill the 1990 -aEuro parts per thousand 1995 gap in the CME rate using the Mauna Loa Solar Observatory's Mark III (Mk3) K-coronameter. The Mk3 instrument observed routinely several hours most days beginning in 1980 until it was upgraded to Mk4 in 1999. We describe the statistical properties of the CMEs detected during 1989 -aEuro parts per thousand 1996, and we determine a CME rate for each of those years. Since spaceborne coronagraphs have more complete duty cycles than a ground-based instrument at a single location, we compare the Mk3-derived CME rate from 1989 with the rate from the SMM C/P coronagraph, and from 1996 with the rate from the SOHO LASCO coronagraphs. C1 [St Cyr, O. C.] NASA, GSFC, Code 670, Greenbelt, MD 20771 USA. [St Cyr, O. C.; Flint, Q. A.; Xie, H.; Quirk, C.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Flint, Q. A.] Gustavus Adolphus Coll, St Peter, MN 56082 USA. [Webb, D. F.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA. [Burkepile, J. T.; Lecinski, A. R.; Stanger, A. L.] High Altitude Observ, Boulder, CO 80301 USA. RP St Cyr, OC (reprint author), NASA, GSFC, Code 670, Greenbelt, MD 20771 USA. EM chris.stcyr@nasa.gov FU National Science Foundation; NASA LWS grant [NNX15AB70G] FX The Mauna Loa Solar Observatory is operated by the High Altitude Observatory, as part of the National Center for Atmospheric Research (NCAR). NCAR is supported by the National Science Foundation. The data were acquired through the hard work and dedication of the MLSO observers: K. Fisher, E. Yasukawa, C. Garcia, D. Chu, E. Lundin, P. Seagraves, and D. Koon. H. Xie was supported by NASA LWS grant number NNX15AB70G. The authors declare that they have no conflict of interest. NR 38 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD OCT PY 2015 VL 290 IS 10 BP 2951 EP 2962 DI 10.1007/s11207-015-0780-2 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8AE UT WOS:000365220000018 ER PT J AU Reiner, MJ MacDowall, RJ AF Reiner, M. J. MacDowall, R. J. TI Electron Exciter Speeds Associated with Interplanetary Type III Solar Radio Bursts SO SOLAR PHYSICS LA English DT Article DE Radio bursts, type III; Radio emission, active regions; Waves, plasma; Radio bursts, meter-wavelengths and longer (m, dkm, hm, km) ID MAGNETIC-FIELDS; ULYSSES OBSERVATIONS; PLASMA FREQUENCY; THERMAL NOISE; 1 AU; EMISSION; DENSITY; CORONA; WAVES; WIND AB This article provides a comprehensive quantitative investigation of the kinematics of the electron exciters associated with interplanetary type III solar radio bursts. Detailed multispacecraft analyses of the radio and plasma wave data from the widely separated Wind and STEREO spacecraft are provided for five interplanetary type III bursts that illustrate different aspects of the problems involved in establishing the electron exciter speeds. The exciter kinematics are determined from the observed frequency drift and in-situ radiation characteristics for each type III burst. The analysis assumes propagation of the electron exciters along a Parker spiral, with origin at the associated solar active region, and curvature determined by the measured solar wind speed. The analyses take fully into account the appropriate light-propagation-time corrections from the radio source to the observing spacecraft as the exciters propagate along the Parker spiral path. For the five in-situ type III bursts analyzed in detail here, we found that their initial exciter speeds, near the Sun, ranged from to , where is the speed of light. This is significantly higher than the exciter speeds derived from other recent analyses. The results presented here further suggest that the type III electron exciters normally decelerate as they propagate through the interplanetary medium. We argue based on the observations by the widely separated spacecraft that the initial part of the type III radiation usually occurs at the fundamental of the plasma frequency. Finally, we compare the results for the exciter speeds to all previous determinations and provide quantitative arguments to explain the differences. C1 [Reiner, M. J.] Catholic Univ Amer, Washington, DC 20064 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20071 USA. RP Reiner, MJ (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM michael.reiner@nasa.gov; robert.macdowall@nasa.gov FU CNES; CNRS FX The STEREO/WAVES and Wind/WAVES experiments are a collaboration of NASA/Goddard Space Flight Center, the Observatoire of Paris-Meudon, the University of Minnesota and the University of California, Berkeley. The French part of SWAVES was supported by CNES and CNRS. NR 50 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD OCT PY 2015 VL 290 IS 10 BP 2975 EP 3004 DI 10.1007/s11207-015-0779-8 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8AE UT WOS:000365220000020 ER PT J AU Cash, MD Biesecker, DA Pizzo, V de Koning, CA Millward, G Arge, CN Henney, CJ Odstrcil, D AF Cash, M. D. Biesecker, D. A. Pizzo, V. de Koning, C. A. Millward, G. Arge, C. N. Henney, C. J. Odstrcil, D. TI Ensemble Modeling of the 23 July 2012 Coronal Mass Ejection SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR-WIND; MAGNETIC FIELDS; WSA-ENLIL; CME; INTERPLANETARY; PROPAGATION; MISSION; EVENT; SUN AB On 23 July 2012 a significant and rapid coronal mass ejection (CME) was detected in situ by the Solar Terrestrial Relations Observatory (STEREO) A. This CME was unusual due to its extremely brief Sun-to-1 AU transit time of less than 21 h and its exceptionally high impact speed of 2246 km/s. If this CME had been Earth directed, it would have produced a significant geomagnetic storm with potentially serious consequences. To protect our ground-and space-based assets, there is a clear need to accurately forecast the arrival times of such events using realistic input parameters and models run in near real time. Using Wang-Sheely-Arge (WSA)-Enlil, the operational model currently employed at the NOAA Space Weather Prediction Center, we investigate the sensitivity of the 23 July CME event to model input parameters. Variations in the initial CME speed, angular width, and direction, as well as the ambient solar wind background, are investigated using an ensemble approach to study the effect on the predicted arrival time of the CME at STEREO A. Factors involved in the fast transit time of this large CME are discussed, and potential improvements to modeling such events with the WSA-Enlil model are presented. C1 [Cash, M. D.; de Koning, C. A.; Millward, G.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Cash, M. D.; Biesecker, D. A.; Pizzo, V.; de Koning, C. A.; Millward, G.] Natl Ocean & Atmospher Adm, Space Weather Predict Ctr, Boulder, CO USA. [Arge, C. N.; Henney, C. J.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA. [Odstrcil, D.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Odstrcil, D.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Cash, MD (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM michele.cash@noaa.gov FU AFOSR [FA9550-14-1-0262]; AFRL; Air Force Office of Scientific Research (AFOSR) FX This work was supported by the AFOSR Young Investigator Program grant FA9550-14-1-0262. SOHO coronagraph images were obtained from NASA's SOHO Science Archive (http://sohowww.nascom.nasa.gov). The STEREO A coronagraph images were obtained from NASA's STEREO Science Center Data Archive (http://stereo-ssc.nascom.nasa.gov), and the STEREO A solar wind plasma and magnetic field data were obtained from the PLASTIC Instrument Data Page (http://fiji.sr.unh.edu). Source surface synoptic charts were obtained from the Wilcox Solar Observatory website (http://wso.stanford.edu/synsourcel.html). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL and Air Force Office of Scientific Research (AFOSR). The input data utilized by ADAPT are obtained by NSO/NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The GONG and ADAPT maps used in this study can be found at ftp://gong2.nso.edu/oQR/bqs and ftp://gong2.nso.edu/adapt/maps/special/Cash2015, respectively. The Enlil solar wind model used to run all CME simulations presented in this work is publicly accessible through the Community Coordinated Modeling Center at http://ccmc.gsfc.nasa.gov/models. NR 30 TC 5 Z9 5 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2015 VL 13 IS 10 BP 611 EP 625 DI 10.1002/2015SW001232 PG 15 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CX0UX UT WOS:000365413700003 ER PT J AU Guerra, JA Pulkkinen, A Uritsky, VM AF Guerra, J. A. Pulkkinen, A. Uritsky, V. M. TI Ensemble forecasting of major solar flares: First results SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID PREDICTION AB We present the results from the first ensemble prediction model for major solar flares (M and X classes). The primary aim of this investigation is to explore the construction of an ensemble for an initial prototyping of this new concept. Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte Carlo-type algorithm that applies a decision threshold P-th to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the data for 13 recent solar active regions between years 2012 and 2014, we found that linear combination methods can improve the overall probabilistic prediction and improve the categorical prediction for certain values of decision thresholds. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of P-th. According to the maximum values of HSS, a performance-based weights calculated by averaging over the sample, performed similarly to a equally weighted model. The values P-th for which the ensemble forecast performs the best are 25% for M-class flares and 15% for X-class flares. When the human-adjusted probabilities from NOAA are excluded from the ensemble, the ensemble performance in terms of the Heidke score is reduced. C1 [Guerra, J. A.; Uritsky, V. M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Guerra, J. A.; Uritsky, V. M.] NASA GSFC, Heliophys Sci Div, Greenbelt, MD USA. [Pulkkinen, A.] NASA GSFC, Heliophys Sci Div, Space Weather Lab, Greenbelt, MD USA. RP Guerra, JA (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. EM 94guerraagui@cardinalmail.cua.edu NR 18 TC 3 Z9 4 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD OCT PY 2015 VL 13 IS 10 BP 626 EP 642 DI 10.1002/2015SW001195 PG 17 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CX0UX UT WOS:000365413700004 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Barrena, R Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bikmaev, I Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burenin, R Burigana, C Butler, RC Calabrese, E Carvalho, P Catalano, A Chamballu, A Chiang, HC Chon, G Christensen, PR Churazov, E Clements, DL Colombo, LPL Comis, B Couchot, F Curto, A Cuttaia, F Dahle, H Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Diego, JM Dole, H Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gilfanov, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Hansen, FK Hanson, D Harrison, DL Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melin, JB Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Scott, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Barrena, R. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bikmaev, I. Boehringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burenin, R. Burigana, C. Butler, R. C. Calabrese, E. Carvalho, P. Catalano, A. Chamballu, A. Chiang, H. C. Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colombo, L. P. L. Comis, B. Couchot, F. Curto, A. Cuttaia, F. Dahle, H. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Diego, J. M. Dole, H. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gilfanov, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melin, J. -B. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Scott, D. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; catalogs ID CATALOG; GALAXIES AB We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time. C1 [Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Lrfu,Observ Paris, F-75205 Paris 13, France. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Russia. [Kunz, M.] African Inst Math Sci, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Melin, J. -B.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, I-40127 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Clements, D. L.; Ducout, A.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Fromenteau, S.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Carvalho, P.; Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Barrena, R.; Genova-Santos, R. T.; Hempel, A.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Carvalho, P.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75104 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Catalano, A.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, Lab Phys Subatom & Cosmol, CNRS,IN2P3, F-38026 St Martin Dheres, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94790 USA. [Churazov, E.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Montreal, PQ H3A 2T8, Canada. [Burenin, R.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Novikov, D.] Russian Acad Sci, Ctr Astro Space, PN Lebedev Phys Inst, Moscow 117997, Russia. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.; Churazov, E.; Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Burenin, R (reprint author), Moscow Inst Phys & Technol, Inst Sky Per 9, Moscow 141700, Russia. EM rodion@hea.iki.rssi.ru RI Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Butler, Reginald/N-4647-2015; Novikov, Dmitry/P-1807-2015; Herranz, Diego/K-9143-2014; Toffolatti, Luigi/K-5070-2014; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Churazov, Eugene/A-7783-2013; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014 OI Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Lopez-Caniego, Marcos/0000-0003-1016-9283; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Gruppuso, Alessandro/0000-0001-9272-5292; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; De Zotti, Gianfranco/0000-0003-2868-2595; Butler, Reginald/0000-0003-4366-5996; Cuttaia, Francesco/0000-0001-6608-5017; Herranz, Diego/0000-0003-4540-1417; Toffolatti, Luigi/0000-0003-2645-7386; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X FU Russian Foundation for Basic Research [13-02-12250-ofi-m, 13-02-01464, 14-22-03111-ofi-m]; Russian Academy of Sciences [P-21, OPhN-17]; Russian Government [02.A03.21.0002]; NASA; CNES; CNRS FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). The authors thank TUBITAK, IKI, KFU, and AST for support in using the RTT150 (Russian-Turkish 1.5 m telescope, Bakyrlytepe, Turkey), and in particular thank KFU and IKI for providing a significant amount of their observing time. We also thank the BTA 6 m telescope Time Allocation Committee (TAC) for support of the optical follow-up project. We are grateful to S. N. Dodonov, A. Galeev, E. Irtuganov, S. Melnikov, A. V. Mescheryakov, A. Moiseev, A. Yu. Tkachenko, R. Uklein, R. Zhuchkov and to other observers at the RTT150 and BTA 6 m telescopes for their help with the observations. This work was supported by Russian Foundation for Basic Research, grants 13-02-12250-ofi-m, 13-02-01464, 14-22-03111-ofi-m, by Programs of the Russian Academy of Sciences P-21 and OPhN-17 and by the subsidy of the Russian Government to Kazan Federal University (agreement No.02.A03.21.0002). This research has made use of the following databases: the NED database, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; SIMBAD, operated at CDS, Strasbourg, France; and the SZ database operated by Integrated Data and Operation Center (IDOC) operated by IAS under contract with CNES and CNRS. NR 27 TC 5 Z9 5 U1 2 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A29 DI 10.1051/0004-6361/201424674 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500029 ER PT J AU Ade, PAR Aghanim, N Aniano, G Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Cardoso, JF Casandjian, JM Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Digel, SW Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Fukui, Y Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Grenier, IA Gruppuso, A Hansen, FK Hanson, D Harrison, DL Henrot-Versill, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rusholme, B Sandri, M Santos, D Scott, D Spencer, LD Stolyarov, V Strong, AW Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Tibaldo, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Aniano, G. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Casandjian, J. M. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Digel, S. W. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Fukui, Y. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Grenier, I. A. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versill, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rusholme, B. Sandri, M. Santos, D. Scott, D. Spencer, L. D. Stolyarov, V. Strong, A. W. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Tibaldo, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration Fermi Collaboration TI Planck intermediate results XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; gamma rays: ISM; cosmic rays; dust, extinction; local insterstellar matter ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; CO-TO-H-2 CONVERSION FACTOR; MOLECULAR CLOUDS; COSMIC-RAY; INFRARED-EMISSION; GALACTIC PLANE; DATA RELEASE; MILKY-WAY; DARK GAS AB The nearby Chamaeleon clouds have been observed in gamma rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the Hi and (CO)-C-12 radio data to (i) map the hydrogen column densities, N-H, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the H I-bright and CO-bright media; (ii) constrain the CO-to-H-2 conversion factor, X-CO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and (1)2CO line emission to model in parallel the gamma-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, tau(353); the thermal radiance of the large grains; and an estimate of the dust extinction, A(VQ), empirically corrected for the starlight intensity. The dust and gamma-models have been coupled to account for the DNM gas. The consistent gamma-emissivity spectra recorded in the different phases confirm that the GeV-TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the (CO)-C-12 cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the H I-DNM-CO transitions for five separate clouds. CO-dark H-2 dominates the molecular columns up to A(V) similar or equal to 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected A(VQ) extinction largely provides the best fit to the total gas traced by the gamma rays. Nevertheless, we find evidence for a marked rise in A(VQ)/N-H with increasing N-H and molecular fraction, and with decreasing dust temperature. The rise in tau(353)/N-H is even steeper. We observe variations of lesser amplitude and orderliness for the specific power of the grains, except for a coherent decline by half in the CO cores. This combined information suggests grain evolution. We provide average values for the dust properties per gas nucleon in the different phases. The gamma rays and dust radiance yield consistent X-CO estimates near 0.7 x 10(20) cm(-2) K-1 km(-1) s. The A(VQ) and tau(353) tracers yield biased values because of the large rise in grain opacity in the CO clouds. These results clarify a recurrent disparity in the gamma-versus dust calibration of X-CO, but they confirm the factor of 2 difference found between the X-CO estimates in nearby clouds and in the neighbouring spiral arms. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00186 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid 117, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Colombo, L. P. L.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Fukui, Y.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, SF-00100 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] IASF Milano, INAF, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aniano, G.; Aumont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR8617, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-1029 Oslo, Norway. [Rebolo, R.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versill, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, F-75014 Paris, France. [Arnaud, M.; Casandjian, J. M.; Chamballu, A.; Grenier, I. A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA,DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3,Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Digel, S. W.; Tibaldo, L.] Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Digel, S. W.; Tibaldo, L.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Grenier, IA (reprint author), Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. EM isabelle.grenier@cea.fr RI Butler, Reginald/N-4647-2015; Gruppuso, Alessandro/N-5592-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Herranz, Diego/K-9143-2014; Toffolatti, Luigi/K-5070-2014; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Novikov, Dmitry/P-1807-2015; OI TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Hurier, Guillaume/0000-0002-1215-0706; Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Villa, Fabrizio/0000-0003-1798-861X; Gruppuso, Alessandro/0000-0001-9272-5292; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; De Zotti, Gianfranco/0000-0003-2868-2595; Cuttaia, Francesco/0000-0001-6608-5017; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Herranz, Diego/0000-0003-4540-1417; Toffolatti, Luigi/0000-0003-2645-7386; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Vielva, Patricio/0000-0003-0051-272X; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Institut Universitaire de France FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. Support from the Institut Universitaire de France is acknowledged. NR 81 TC 7 Z9 7 U1 2 U2 10 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A31 DI 10.1051/0004-6361/201424955 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500031 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Battye, R Benabed, K Bendo, GJ Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chary, RR Chen, X Chiang, HC Christensen, PR Clements, DL Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Israel, FP Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Madden, S Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Pearson, TJ Peel, M Perdereau, O Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Battye, R. Benabed, K. Bendo, G. J. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chen, X. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Israel, F. P. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Madden, S. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Peel, M. Perdereau, O. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXV. The Andromeda galaxy as seen by Planck SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: individual: Messier 31; galaxies: structure; galaxies: ISM; submillimeter: galaxies; radio continuum: galaxies ID MULTIBAND IMAGING PHOTOMETER; RADIO-CONTINUUM SURVEY; PRE-LAUNCH STATUS; SPITZER-SPACE-TELESCOPE; FAR-INFRARED LUMINOSITY; SPINNING DUST EMISSION; RESOLUTION IRAS MAPS; STAR-FORMATION RATES; LOCAL GROUP GALAXIES; COMPLETE CO SURVEY AB The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (greater than or similar to 0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 mu m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 mu m emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 +/- 1.0) K with a spectral index of 1.62 +/- 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M-circle dot yr(-1). We find a 2.3 sigma detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 +/- 0.3 Jy, which is in line with expectations from our Galaxy. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Lrfu,Observ Paris, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, SPP, Irfu, DSM, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, SF-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, SF-00100 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Catania, Italy. [de Zotti, G.] Osserv Astron Padova, INAF, I-35141 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00136 Rome, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Chen, X.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Peel, M.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Madden, S.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, PN Lebedev Phys Inst, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London WC1E GBT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 90095 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Israel, F. P.] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Bendo, G. J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, UK ALMA Reg Ctr Node, Manchester M13 9PL, Lancs, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Peel, M (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM email@mikepeel.net RI Pearson, Timothy/N-2376-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Lahteenmaki, Anne/L-5987-2013; Novikov, Dmitry/P-1807-2015; Vielva, Patricio/F-6745-2014; Herranz, Diego/K-9143-2014; Toffolatti, Luigi/K-5070-2014; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015; OI Juvela, Mika/0000-0002-5809-4834; Watson, Robert/0000-0002-5873-0124; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Pearson, Timothy/0000-0001-5213-6231; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; De Zotti, Gianfranco/0000-0003-2868-2595; Lopez-Caniego, Marcos/0000-0003-1016-9283; Peel, Mike/0000-0003-3412-2586; Scott, Douglas/0000-0002-6878-9840; Vielva, Patricio/0000-0003-0051-272X; Herranz, Diego/0000-0003-4540-1417; Toffolatti, Luigi/0000-0003-2645-7386; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Frailis, Marco/0000-0002-7400-2135; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Cuttaia, Francesco/0000-0001-6608-5017; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Gruppuso, Alessandro/0000-0001-9272-5292; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388 FU NASA Office of Space Science; National Aeronautics and Space Administration; European Research Council under European Union/ERC [307209]; STFC [ST/L000768/1]; ESA (France); CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU) FX We thank M. Haas for providing a copy of the reduced 170 mu m data from ISO, P. Barmby for providing the Spitzer IRAC 3.6 mu m data, L. Chemin for providing the H I map from DRAO, J. Fritz, M. Smith and others in the HELGA collaboration for providing a copy of the Herschel data, S. Viaene for providing a copy of the foreground star-subtracted GALEX map, and A. Richards for assistance with the CO data. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA); support for LAMBDA is provided by the NASA Office of Space Science. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 307209, as well as funding from an STFC Consolidated Grant (No. ST/L000768/1). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion NR 165 TC 2 Z9 2 U1 3 U2 15 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A28 DI 10.1051/0004-6361/201424643 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500028 ER PT J AU Aghanim, N Altieri, B Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Beelen, A Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bethermin, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Calabrese, E Canameras, R Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Couchot, F Crill, BP Curto, A Danese, L Dassas, K Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Falgarone, E Flores-Cacho, I Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Frye, B Galeotta, S Galli, S Ganga, K Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guery, D Hansen, FK Hanson, D Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Le Floc'h, E Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF MacKenzie, T Maffei, B Mandolesi, N Maris, M Martin, PG Martinache, C Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mennella, A Migliaccio, M Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Natoli, P Negrello, M Nesvadba, NPH Novikov, D Novikov, I Omont, A Pagano, L Pajot, F Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rusholme, B Sandri, M Santos, D Savini, G Scott, D Spencer, LD Stolyarov, V Sunyaev, R Sutton, D Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Valtchanov, I Van Tent, B Vieira, JD Vielva, P Wade, LA Wandelt, BD Wehus, IK Welikala, N Zacchei, A Zonca, A AF Aghanim, N. Altieri, B. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Beelen, A. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bethermin, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Calabrese, E. Canameras, R. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Couchot, F. Crill, B. P. Curto, A. Danese, L. Dassas, K. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Falgarone, E. Flores-Cacho, I. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Frye, B. Galeotta, S. Galli, S. Ganga, K. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guery, D. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Floc'h, E. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. MacKenzie, T. Maffei, B. Mandolesi, N. Maris, M. Martin, P. G. Martinache, C. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mennella, A. Migliaccio, M. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Natoli, P. Negrello, M. Nesvadba, N. P. H. Novikov, D. Novikov, I. Omont, A. Pagano, L. Pajot, F. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Sunyaev, R. Sutton, D. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Valtchanov, I. Van Tent, B. Vieira, J. D. Vielva, P. Wade, L. A. Wandelt, B. D. Wehus, I. K. Welikala, N. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: high-redshift; galaxies: clusters: general; galaxies: evolution; galaxies: star formation; cosmology: observations; large-scale structure of Universe ID SOUTH-POLE TELESCOPE; STAR-FORMING GALAXIES; SIMILAR-TO 2; SUBMILLIMETER NUMBER COUNTS; ACTIVE GALACTIC NUCLEI; 500 MU-M; RADIO GALAXIES; PROTO-CLUSTERS; BACKGROUND-RADIATION; LUMINOSITY FUNCTION AB We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These "cold" Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353-857 GHz. This colour-selection favours galaxies in the redshift range z = 2-4, which we consider as cold peaks in the cosmic infrared background. With a 4.'5 beam at the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500 mu m sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350 mu m, with 3% peaking at 500 mu m, and none peaking at 250 mu m. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z > 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10 sigma. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z similar or equal to 2, assuming a single common dust temperature for the sources of T-d = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4x10(12) L-circle dot, yielding star formation rates of typically 700 M-circle dot yr(-1). If the observed overdensities are actual gravitationally-bound structures, the total IR luminosity of all their SPIRE-detected sources peaks at 4 x 10(13) L-circle dot, leading to total star formation rates of perhaps 7 x 10(3) M-circle dot yr(-1) per overdensity. Taken together, these sources show the signatures of high-z (z > 2) protoclusters of intensively star-forming galaxies. All these observations confirm the uniqueness of our sample compared to reference samples and demonstrate the ability of the all-sky Planck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, CNRS IN2P3, CEA Lrfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Muizenberg, Muizerberg Cape, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 92093 USA. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Vieira, J. D.; Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [MacKenzie, T.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 121, Canada. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Keihaenen, E.; Kurki-Suonio, H.; Valiviita, J.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.] Princeton Univ, Dept Phys, Princeton, NJ 02544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago, Chile. [Altieri, B.; Valtchanov, I.] European Space Agcy, ESAC, Madrid 28692, Spain. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy. [de Zotti, G.; Negrello, M.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Burigana, C.; de Rosa, A.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.] IASF Bologna, INAF, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Mennella, A.; Tomasi, M.] IASF Milano, INAF, I-20133 Milan, Italy. [Burigana, C.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Beelen, A.; Boulanger, F.; Canameras, R.; Chamballu, A.; Dassas, K.; Dole, H.; Douspis, M.; Guery, D.; Hurier, G.; Kunz, M.; Lagache, G.; Martinache, C.; Nesvadba, N. P. H.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Omont, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davies, R. D.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, Paris, France. [Arnaud, M.; Bethermin, M.; Chamballu, A.; Le Floc'h, E.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA,DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Munshi, D.; Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Frye, B.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Calabrese, E.; Welikala, N.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Dole, H (reprint author), Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91405 Orsay, France. EM herve.dole@ias.u-psud.fr RI Gruppuso, Alessandro/N-5592-2015; Canameras, Raoul/S-6300-2016; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Novikov, Dmitry/P-1807-2015; Toffolatti, Luigi/K-5070-2014; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Lattanzi, Massimiliano/D-8120-2011; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; OI Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Bethermin, Matthieu/0000-0002-3915-2015; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Gruppuso, Alessandro/0000-0001-9272-5292; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Pasian, Fabio/0000-0002-4869-3227; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Canameras, Raoul/0000-0002-2468-5169; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Umana, Grazia/0000-0002-6972-8388; De Zotti, Gianfranco/0000-0003-2868-2595; Matarrese, Sabino/0000-0002-2573-1243; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Toffolatti, Luigi/0000-0003-2645-7386; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Lattanzi, Massimiliano/0000-0003-1059-2532; Vielva, Patricio/0000-0003-0051-272X; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); INSU/CNRS (France); IGN (Spain); National Aeronautics and Space Administration; CNES; PNCG (Programme National de Cosmologie et Galaxies); ANR HUGE [ANR-09-BLAN-0224-HUGE]; ANR MULTIVERSE [ANR-11-BS56-015]; Region Ile-de-France; DIM-ACAV; CNRS; ASI/INAF [I/072/09/0]; PRIN-INAF; Spanish CSIC - European Social Fund; Ministerio de Economia y Competitividad [AYA2012-39475-C02-01] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tionhttp://www.sciops.esa.int/index.php?project=planck. The Herschel spacecraft was designed, built, tested, and launched under a contract to ESA managed by the Herschel/Planck Project team by an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen) responsible for the payload module and for system testing at spacecraft level, Thales Alenia Space (Turin) responsible for the service module, and Astrium (Toulouse) responsible for the telescope, with in excess of a hundred subcontractors. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Based in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based in part on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, and the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based in part on observations carried out with the IRAM 30-m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). Based in part on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). Based in part on observations made at JCMT with SCUBA-2. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge the support from the CNES, the PNCG (Programme National de Cosmologie et Galaxies), ANR HUGE (ANR-09-BLAN-0224-HUGE) and ANR MULTIVERSE (ANR-11-BS56-015). We also acknowledge the support from Region Ile-de-France with DIM-ACAV. We acknowledge the Integrated Data & Operation Center (IDOC) at Institut d'Astrophysique Spatiale and Observatoire des Sciences de l'Univers de l'Universite Paris Sud (OSUPS).; Support for IDOC is provided by CNRS and CNES. We acknowledge final support from ASI/INAF agreement I/072/09/0 and PRIN-INAF 2012 project "Looking into the dust-obscured phase of galaxy formation through cosmic zoom lenses in the Herschel Astrophysical Large Area Survey." We acknowledges financial support from the Spanish CSIC for a JAE-DOC fellowship, cofunded by the European Social Fund and from the Ministerio de Economia y Competitividad, project AYA2012-39475-C02-01. This research made use of matplotlib Hunter (2007), and of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com. We thank E. Egami, B. Clement, E. Daddi, H. J. McCracken and A. Boucaud and for fruitful discussions and helpful advice. NR 148 TC 4 Z9 4 U1 3 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A30 DI 10.1051/0004-6361/201424790 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500030 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardini, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Caneva, G De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Terrats, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Guberman, D Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kellermann, H Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lewandowska, N Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Saito, K Satalecka, K Scapin, V Schultz, C Schweizer, T Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Will, M Zanin, R Desiante, R Hays, E AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Bernardini, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Caneva, G. De Lotto, B. de Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Glawion, D. Eisenacher Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kellermann, H. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lewandowska, N. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Moroni, P. G. Prada Prandini, E. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Saito, T. Saito, K. Satalecka, K. Scapin, V. Schultz, C. Schweizer, T. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Will, M. Zanin, R. Desiante, R. Hays, E. TI Very high-energy gamma-ray observations of novae and dwarf novae with the MAGIC telescopes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE novae, cataclysmic variables; gamma rays: stars; binaries: general; stars: activity ID LARGE-AREA TELESCOPE; V407 CYGNI; PARTICLE-ACCELERATION; CLASSICAL NOVAE; EMISSION; OUTBURST AB Context. In the last five years the Fermi Large Area Telescope (LAT) instrument detected GeV gamma-ray emission from five novae. The GeV emission can be interpreted in terms of an inverse Compton process of electrons accelerated in a shock. In this case it is expected that protons in the same conditions can be accelerated to much higher energies. Consequently they may produce a second component in the gamma-ray spectrum at TeV energies. Aims. We aim to explore the very high-energy domain to search for gamma-ray emission above 50 GeV and to shed light on the acceleration process of leptons and hadrons in nova explosions. Methods. We have performed observations, with the MAGIC telescopes of the classical nova V339 Del shortly after the 2013 outburst; optical and subsequent GeV gamma-ray detections triggered the MAGIC observations. We also briefly report on VHE observations of the symbiotic nova YY Her and the dwarf nova ASASSN-13ax. We complement the TeV MAGIC observations with the analysis of contemporaneous Fermi-LAT data of the sources. The TeV and GeV observations are compared in order to evaluate the acceleration parameters for leptons and hadrons. Results. No significant TeV emission was found from the studied sources. We computed upper limits on the spectrum and night-by-night flux. The combined GeV and TeV observations of V339 Del limit the ratio of proton to electron luminosities to L-p less than or similar to 0.15 L-e. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] ETH, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Desiante, R.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, Zagreb 10000, Croatia. [Babic, A.; Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Zagreb 10000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, Kolkata 700064, W Bengal, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hose, J.; Kellermann, H.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Noda, K.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Strzys, M.; Teshima, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.; Scapin, V.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; De Caneva, G.; Garczarczyk, M.; Mallot, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Sitarek, J.] IFAE, Bellaterra 08193, Spain. [Bretz, T.; Dorner, D.; Glawion, D. Eisenacher; Elsaesser, D.; Lewandowska, N.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [de Ona Wilhelmi, E.] Inst Space Sci, Barcelona 08193, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES, IEEC, Bellaterra 08193, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona, ICC, IEEC, E-08028 Barcelona, Spain. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Univ Tokyo, ICRR, Japanese MAGIC Consortium, Dept Phys, Tokyo 1138654, Japan. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Kyoto Univ, Hakubi Ctr, Kyoto 6068501, Japan. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Tokai Univ, Hiratsuka, Kanagawa 25912, Japan. [Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Saito, K.; Takami, H.] Univ Tokushima, KEK, Tokushima 7700855, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Finnish MAGIC Consortium, SF-20500 Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, Oulu 90014, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Moroni, P. G. Prada] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Torres, D. F.] Inst Space Sci, Barcelona 08193, Spain. [Treves, A.] Univ Insubria, I-22100 Como, Como, Italy. [Treves, A.] INFN Milano Bicocca, I-22100 Como, Como, Italy. [Bernardini, E.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Persic, M.] Ist Nazl Fis Nucl, Trieste, Italy. [Prandini, E.] ISDC, Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sitarek, J (reprint author), Univ Lodz, PL-90236 Lodz, Poland. EM bednar@uni.lodz.pl; rlopez@ifae.es; jsitarek@uni.lodz.pl RI Delgado, Carlos/K-7587-2014; Barrio, Juan/L-3227-2014; Martinez Rodriguez, Manel/C-2539-2017; Cortina, Juan/C-2783-2017; Fonseca Gonzalez, Maria Victoria/I-2004-2015; GAug, Markus/L-2340-2014; Miranda, Jose Miguel/F-2913-2013; Font, Lluis/L-4197-2014; Poutanen, Juri/H-6651-2016; Nievas Rosillo, Mireia/K-9738-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Torres, Diego/O-9422-2016 OI Delgado, Carlos/0000-0002-7014-4101; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; LA BARBERA, ANTONINO/0000-0002-5880-8913; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; Di Pierro, Federico/0000-0003-4861-432X; Ahnen, Max Ludwig/0000-0003-1000-0082; GAug, Markus/0000-0001-8442-7877; Miranda, Jose Miguel/0000-0002-1472-9690; Font, Lluis/0000-0003-2109-5961; Poutanen, Juri/0000-0002-0983-0049; Nievas Rosillo, Mireia/0000-0002-8321-9168; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384; Torres, Diego/0000-0002-1522-9065 FU Centro de Excelencia Severo Ochoa [SEV-2012-0234, CSD2007-00042, CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0, NCN 2011/01/B/ST9/00411]; Fundacja UL FX The MAGIC Collaboration would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO, and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0 and NCN 2011/01/B/ST9/00411. J.S. is supported by Fundacja UL. We thank M.A. Perez-Torres for the information about nova ASASSN-13ax. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. Authors would like to thank S.N. Shore for scientific discussions and providing an optical spectrum of V339 Del and UV spectrum of OS And. We would also like to thank the anonymous referee for comments that helped to improve the paper. NR 36 TC 2 Z9 2 U1 4 U2 18 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A67 DI 10.1051/0004-6361/201526478 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500067 ER PT J AU Appourchaux, T Antia, HM Ball, W Creevey, O Lebreton, Y Verma, K Vorontsov, S Campante, TL Davies, GR Gaulme, P Regulo, C Horch, E Howell, S Everett, M Ciardi, D Fossati, L Miglio, A Montalban, J Chaplin, WJ Garcia, RA Gizon, L AF Appourchaux, T. Antia, H. M. Ball, W. Creevey, O. Lebreton, Y. Verma, K. Vorontsov, S. Campante, T. L. Davies, G. R. Gaulme, P. Regulo, C. Horch, E. Howell, S. Everett, M. Ciardi, D. Fossati, L. Miglio, A. Montalban, J. Chaplin, W. J. Garcia, R. A. Gizon, L. TI A seismic and gravitationally bound double star observed by Kepler Implication for the presence of a convective core SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE asteroseismology; binaries: general; stars: evolution; stars: solar-type; astrometry ID LINE-DATA-BASE; STELLAR OSCILLATION FREQUENCIES; SPACE-BASED PHOTOMETRY; EQUATION-OF-STATE; RED-GIANT BRANCH; SOLAR-TYPE STARS; SPECKLE OBSERVATIONS; BINARY STARS; MAIN-SEQUENCE; ASTROMETRIC MEASUREMENTS AB Context. Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe stars using asteroseismology. Aims. The derivation of stellar parameters has usually been done with single stars. The aim of the paper is to derive the stellar parameters of a double-star system (HIP 93511), for which an interferometric orbit has been observed along with asteroseismic measurements. Methods. We used a time series of nearly two years of data for the double star to detect the two oscillation-mode envelopes that appear in the power spectrum. Using a new scaling relation based on luminosity, we derived the radius and mass of each star. We derived the age of each star using two proxies: one based upon the large frequency separation and a new one based upon the small frequency separation. Using stellar modelling, the mode frequencies allowed us to derive the radius, the mass, and the age of each component. In addition, speckle interferometry performed since 2006 has enabled us to recover the orbit of the system and the total mass of the system. Results. From the determination of the orbit, the total mass of the system is 2.34(-0.33)(+0.45) M-circle dot. The total seismic mass using scaling relations is 2.47 +/- 0.07 M-circle dot. The seismic age derived using the new proxy based upon the small frequency separation is 3.5 +/- 0.3 Gyr. Based on stellar modelling, the mean common age of the system is 2.7-3.9 Gyr. The mean total seismic mass of the system is 2.34-2.53 M-circle dot consistent with what we determined independently with the orbit. The stellar models provide the mean radius, mass, and age of the stars as R-A = 1.82-1.87 R-circle dot, M-A = 1.25-1.39 M-circle dot, Age(A) = 2.6-3.5 Gyr; R-B = 1.22-1.25 R-circle dot, M-B = 1.08-1.14 M-circle dot, Age(B) = 3.35-4.21 Gyr. The models provide two sets of values for Star A: [1.25-1.27] M-circle dot and [1.34-1.39] M-circle dot. We detect a convective core in Star A, while Star B does not have any. For the metallicity of the binary system of Z approximate to 0.02, we set the limit between stars having a convective core in the range [1.14-1.25] M-circle dot. C1 [Appourchaux, T.; Creevey, O.] Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, CNRS, F-91405 Orsay, France. [Antia, H. M.; Verma, K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Ball, W.; Gizon, L.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Lebreton, Y.] CNRS, Observ Paris, GEPI, UMR 8111, F-92195 Meudon, France. [Lebreton, Y.] Univ Rennes 1, Inst Phys Rennes, CNRS, UMR 6251, F-35042 Rennes, France. [Vorontsov, S.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Vorontsov, S.] Russian Acad Sci, Inst Phys Earth, Moscow 123810, Russia. [Campante, T. L.; Davies, G. R.; Miglio, A.; Chaplin, W. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Campante, T. L.; Davies, G. R.; Miglio, A.; Chaplin, W. J.] Aarhus Univ, SAC, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gaulme, P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Regulo, C.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Regulo, C.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Horch, E.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Howell, S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Everett, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ciardi, D.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Fossati, L.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Montalban, J.] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy. [Garcia, R. A.] Univ Paris Diderot, Lab AIM, CEA DSM CNRS, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Gizon, L.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. RP Appourchaux, T (reprint author), Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, CNRS, Batiment 121, F-91405 Orsay, France. RI Dep. Molecular Physics, Team/B-5839-2016; OI Antia, H. M./0000-0001-7549-9684; Ciardi, David/0000-0002-5741-3047; Garcia, Rafael/0000-0002-8854-3776; Ball, Warrick/0000-0002-4773-1017 FU Centre National d'Etudes Spatiales (CNES) under PLATO; UK Science and Technology Facilities Council (STFC); Deutsche Forschungsgemeinschaft [SFB 963]; Center for Space Science, NYU Abu Dhabi Institute, UAE; Danish National Research Foundation FX T.A. gratefully acknowledges the financial support of the Centre National d'Etudes Spatiales (CNES) under a PLATO grant. T.L.C., W.J.C., and G.R.D. acknowledge financial support from the UK Science and Technology Facilities Council (STFC). W.B. and L.G. acknowledge support from the Deutsche Forschungsgemeinschaft SFB 963 "Astrophysical Flow Instabilities and Turbulence" (Project A18). L.G. acknowledges research funding from the Center for Space Science, NYU Abu Dhabi Institute, UAE. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation. We are indebted to Ian Roxburgh for extensively commenting on the paper and for his timely contribution. We are grateful to Sebastien Salmon for commenting on an earlier version of the paper. We are also indebted to Georges Herriman for silently accepting to use the name Krazy and Ignatz for these two stars. We are grateful to the anonymous referee for the constructive and useful comments. NR 123 TC 4 Z9 4 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A25 DI 10.1051/0004-6361/201526610 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500025 ER PT J AU Ofman, L Parisi, M Srivastava, AK AF Ofman, L. Parisi, M. Srivastava, A. K. TI Three-dimensional MHD modeling of vertical kink oscillations in an active region plasma curtain SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE magnetohydrodynamics (MHD); Sun: corona; Sun: magnetic fields; Sun: oscillations; Sun: flares; Sun: activity ID CORONAL LOOP OSCILLATIONS; NUMERICAL SIMULATIONS; SOLAR CORONA; TRANSVERSE OSCILLATIONS; EUV WAVES; SEISMOLOGY; TRACE; DYNAMICS; AIA/SDO; ENERGY AB Context. Observations on 2011 August 9 of an X 6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in extreme UV coronal lines with periods in the range 8.8-14.9 min. Aims. Our aim is to study the generation and propagation of the magnetohydrodynamic (MHD) oscillations in the plasma curtain taking the realistic 3D magnetic and the density structure of the curtain into account. We also aim to test and improve coronal seismology for a more accurate determination of the magnetic field than with the standard method. Methods. We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain, to initialize a 3D MHD model of the observed vertical and transverse oscillations. To accomplish this, we implemented the impulsively excited velocity pulse mimicking the flare-generated nonlinear fast magnetosonic propagating disturbance interacting obliquely with the curtain. The model is simplified by utilizing an initial dipole magnetic field, isothermal energy equation, and gravitationally stratified density guided by observational parameters. Results. Using the 3D MHD model, we are able to reproduce the details of the vertical oscillations and study the process of their excitation by a nonlinear fast magnetosonic pulse, propagation, and damping, finding agreement with the observations. Conclusions. We estimate the accuracy of simplified slab-based coronal seismology by comparing the determined magnetic field strength to actual values from the 3D MHD modeling results, and demonstrate the importance of taking more realistic magnetic geometry and density for improving coronal seismology into account. C1 [Ofman, L.] Catholic Univ Amer, Washington, DC 20064 USA. [Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Parisi, M.] Univ Roma La Sapienza, Dept Mech & Aerosp Engn, I-00184 Rome, Italy. [Srivastava, A. K.] Banaras Hindu Univ, Indian Inst Technol, Dept Phys, Varanasi 221005, Uttar Pradesh, India. RP Ofman, L (reprint author), Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. EM Leon.Ofman@nasa.gov FU NASA [NNX11AO68G, NNX12AB34G] FX We are grateful to SDO/AIA team for providing the data used in this study. L.O. was supported by NASA grants NNX11AO68G and NNX12AB34G. A.K.S. acknowledge the patient encouragements of Shobhna. We thank T.J. Wang for useful discussions. NR 53 TC 1 Z9 1 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A75 DI 10.1051/0004-6361/201425054 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500075 ER PT J AU Straus, T Fleck, B Andretta, V AF Straus, Thomas Fleck, Bernhard Andretta, Vincenzo TI A steady-state supersonic downflow in the transition region above a sunspot umbra SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE sunspots; Sun: atmosphere; Sun: oscillations; Sun: transition region ID SOLAR CORONAL LOOPS; EXTREME-ULTRAVIOLET-SPECTRA; DYNAMICS-OBSERVATORY SDO; STATIONARY SIPHON FLOWS; IMAGING-SPECTROGRAPH; EMISSION-LINES; ATOMIC DATABASE; MAGNETIC-FIELD; DUAL FLOWS; MODELS AB We investigate a small-scale (similar to 1.5Mm along the slit), supersonic downflow of about 90 km s(-1) in the transition region above the lightbridged sunspot umbra in AR11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2 from 16: 40 to 17: 59 UT. The downflow shows up as redshifted "satellite" lines of the Si IV and O IV transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the redshifted satellites of the O IV lines (N-e = 10(10.6 +/- 0.25) cm(-3)) is only a factor 2 smaller than the one inferred from the main components (N-e = 10(10.95 +/- 0.20) cm(-3)). Consequently, this implies a substantial mass flux (similar to 5x10(-7) g cm(-2) s(-1)), which would evacuate the overlying corona on timescales close to 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop that is rooted in the central umbra of the spot. C1 [Straus, Thomas; Andretta, Vincenzo] INAF Osservatorio Astronom Capodimonte, I-80131 Naples, Italy. [Fleck, Bernhard] NASA, GSFC, ESA Sci Operat Dept, Greenbelt, MD 20771 USA. RP Straus, T (reprint author), INAF Osservatorio Astronom Capodimonte, Via Moiariello 16, I-80131 Naples, Italy. EM straus@oacn.inaf.it OI Straus, Thomas/0000-0002-6280-806X; Andretta, Vincenzo/0000-0003-1962-9741 FU ESA; Norwegian Space Center (NSC) FX IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research Center and major contributions to downlink communications funded by ESA and the Norwegian Space Center (NSC). CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), and the University of Cambridge (UK). We gratefully acknowledge helpful discussions with Bart De Pontieu, Joe Gurman, Jim Klimchuk, Daniele Spadaro, and Han Uitenbroek. This work has also benefited from discussions at the International Space Science Institute (ISSI) meeting, Heating of the magnetized chromosphere, from 5-8 January, 2015, where many aspects of this paper were discussed with other colleagues. We also thank an anonymous referee for useful comments. NR 57 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A116 DI 10.1051/0004-6361/201525805 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500116 ER PT J AU Werner, K Rauch, T Kruk, JW AF Werner, K. Rauch, T. Kruk, J. W. TI The far-ultraviolet spectra of "cool" PG1159 stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: abundances; stars: atmospheres; stars: evolution; stars: AGB and post-AGB; white dwarfs ID HOT WHITE-DWARFS; TO-OXYGEN RATIO; PG 1159 STARS; OSCILLATOR-STRENGTHS; STELLAR LABORATORIES; PLANETARY-NEBULAE; INTERSTELLAR-MEDIUM; ATOMIC DATABASE; HIGH-RESOLUTION; PG-1159 STARS AB We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 angstrom) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range T-eff = 75 000-200 000 K. As two representatives of the cooler objects, we have selected PG1707+427 (Teff = 85 000 K) and PG1424+535 (T-eff = 110 000 K), complementing a previous study of the hotter prototype PG1159-035 (T-eff = 140 000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from CIII-IV and OIII- VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found. C1 [Werner, K.; Rauch, T.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Kruk, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Werner, K (reprint author), Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM werner@astro.uni-tuebingen.de FU German Aerospace Center (DLR) [05 OR 1402] FX T. Rauch is supported by the German Aerospace Center (DLR) under grant 05 OR 1402. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System Bibliographic Services. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). This work had been done using the profile fitting procedure Owens.f, developed by M. Lemoine and the FUSE French Team. NR 42 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2015 VL 582 AR A94 DI 10.1051/0004-6361/201526842 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4YT UT WOS:000363538500094 ER PT J AU Young, CL Wray, JJ Clark, RN Spencer, JR Jennings, DE Hand, KP Poston, MJ Carlson, RW AF Young, Cindy L. Wray, James J. Clark, Roger N. Spencer, John R. Jennings, Donald E. Hand, Kevin P. Poston, Michael J. Carlson, Robert W. TI SILICATES ON IAPETUS FROM CASSINI'S COMPOSITE INFRARED SPECTROMETER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Iapetus); planets and satellites: surfaces; techniques: spectroscopic ID DARK MATERIAL; SATURN SYSTEM; SPECTROSCOPY; VIMS; SIDE; CO2; MINERALOGY; SPECTRA; ORIGIN AB We present the first spectral features obtained from Cassini's Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal-to-noise ratios (S/Ns) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/N and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at similar to 855 cm(-1) and a possible doublet at 660 and 690 cm(-1) that do not correspond to any known instrument artifacts. We attribute the 855 cm(-1) feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn's icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure have features near 855 and 660 cm(-1). However, peaks can shift depending on temperature and pressure, so measurements at Iapetus-like conditions are necessary for more positive feature identifications. As a first investigation, we measured muscovite at 125 K in a vacuum and found that this spectrum does match the emissivity feature near 855 cm(-1) and the location of the doublet. Further measurements are needed to robustly identify a specific silicate, which would provide clues regarding the origin and implications of the dark material. C1 [Young, Cindy L.; Wray, James J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Young, Cindy L.] Emory Univ, Atlanta, GA 30322 USA. [Clark, Roger N.] Planetary Sci Inst, Tucson, AZ USA. [Spencer, John R.] Southwest Res Inst, Boulder, CO USA. [Jennings, Donald E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hand, Kevin P.; Carlson, Robert W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Poston, Michael J.] CALTECH, Pasadena, CA 91125 USA. RP Young, CL (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RI Wray, James/B-8457-2008; OI Wray, James/0000-0001-5559-2179; Poston, Michael/0000-0001-5113-1017 FU NASA Outer Planets Research Program [NNX14AO34G]; Georgia Tech's Center for Space Technology and Research (C-STAR) FX This work was supported by NASA Outer Planets Research Program grant NNX14AO34G and by Georgia Tech's Center for Space Technology and Research (C-STAR). The authors thank Janice Bishop for providing serpentine lab spectra and Richard Cartwright, Tim Glotch, and Sarah Horst for helpful discussions, as well as an anonymous referee for a thoughtful review of our work. NR 40 TC 0 Z9 0 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2015 VL 811 IS 2 AR L27 DI 10.1088/2041-8205/811/2/L27 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7TR UT WOS:000364478600013 ER PT J AU Wolf, J West, TO Le Page, Y Kyle, GP Zhang, XS Collatz, GJ Imhoff, ML AF Wolf, Julie West, Tristram O. Le Page, Yannick Kyle, G. Page Zhang, Xuesong Collatz, G. James Imhoff, Marc L. TI Biogenic carbon fluxes from global agricultural production and consumption SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID SOIL ORGANIC-CARBON; UNITED-STATES; LAND-USE; SPATIAL-DISTRIBUTION; BIOCHEMICAL QUALITY; PRODUCTION SYSTEMS; METHANE EMISSIONS; US MIDWEST; BIOMASS; ENERGY AB Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05 degrees resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 +/- 0.46 Pg Cyr(-1), of which 2.05 +/- 0.05 Pg Cyr(-1) was harvested and 0.54 Pg Cyr(-1) was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 +/- 0.21 Pg Cyr(-1), of which 2.31 +/- 0.21 Pg Cyr(-1) was emitted as CO2, 0.07 +/- 0.01 Pg Cyr(-1) was emitted as CH4, and 0.04 PgCyr(-1) was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg Cyr(-1) in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 +/- 0.03 Pg Cyr(-1) in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models. C1 [Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Imhoff, Marc L.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 02108 USA. [Collatz, G. James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP West, TO (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 02108 USA. EM Tristram.west@pnnl.gov RI zhang, xuesong/B-7907-2009; collatz, george/D-5381-2012; OI wolf, julie/0000-0002-1437-982X FU National Aeronautics and Space Administration Carbon Monitoring System program [NNH12AU35I, NNH13AW58I] FX Results presented here can be recreated from the publicly available inventory and remote sensing data sources identified in section 2, in combination with the information provided in the supporting information tables and text. The global gridded flux data presented here are available online from Oak Ridge National Laboratory Distributed Active Archive Center at http://dx.doi.org/10.3334/ORNLDAAC/1279. This research was conducted with support from the National Aeronautics and Space Administration Carbon Monitoring System program under projects NNH12AU35I and NNH13AW58I. We thank Celia Wilkinson Enns (U.S. Department of Agriculture) for providing information on U.S. and international food intake survey data. NR 78 TC 1 Z9 1 U1 0 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD OCT PY 2015 VL 29 IS 10 BP 1617 EP 1639 DI 10.1002/2015GB005119 PG 23 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CW3FD UT WOS:000364876500004 ER PT J AU Rousseaux, CS Gregg, WW AF Rousseaux, Cecile S. Gregg, Watson W. TI Recent decadal trends in global phytoplankton composition SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID LONG-TERM TRENDS; CLIMATE-CHANGE; OCEAN CHLOROPHYLL; DIATOM ABUNDANCE; SATELLITE DATA; PACIFIC-OCEAN; CELL-SIZE; PLANKTON; PRODUCTIVITY; TEMPERATURE AB Identifying major trends in biogeochemical composition of the oceans is essential to improve our understanding of biological responses to climate forcing. Using the NASA Ocean Biogeochemical Model combined with ocean color remote sensing data assimilation, we assessed the trends in phytoplankton composition (diatoms, cyanobacteria, coccolithophores, and chlorophytes) at a global scale for the period 1998-2012. We related these trends in phytoplankton to physical conditions (surface temperature, surface photosynthetically available radiation (PAR), and mixed layer depth (MLD)) and nutrients (iron, silicate, and nitrate). We found a significant global decline in diatoms (-1.22%yr(-1), p<0.05). This trend was associated with a significant (p<0.05) shallowing of the MLD (-0.20%yr(-1)), a significant increase in PAR (0.09%yr(-1)), and a significant decline in nitrate (-0.38%yr(-1)). The global decline in diatoms was mostly attributed to their decline in the North Pacific (-1.00%yr(-1), p<0.05), where the MLD shallowed significantly and resulted in a decline in all three nutrients (p<0.05). None of the other phytoplankton groups exhibited a significant change globally, but regionally there were considerable significant trends. A decline in nutrients in the northernmost latitudes coincided with a significant decline in diatoms (North Pacific, -1.00%yr(-1)) and chlorophytes (North Atlantic, -9.70%yr(-1)). In the northern midlatitudes (North Central Pacific and Atlantic) where nutrients were more scarce, a decline in nutrients was associated with a decline in smaller phytoplankton: cyanobacteria declined significantly in the North Central Pacific (-0.72%yr(-1)) and Atlantic (-1.56%yr(-1)), and coccolithophores declined significantly in the North Central Atlantic (-2.06%yr(-1)). These trends represent the diversity and complexity of mechanisms that drives phytoplankton communities to adapt to variable conditions of nutrients, light, and mixed layer depth. These results provide a first insight into the existence of trends in phytoplankton composition over the maturing satellite ocean color era and illustrate how changes in the conditions of the oceans in the last similar to 15years may have affected them. C1 [Rousseaux, Cecile S.; Gregg, Watson W.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Rousseaux, Cecile S.] Univ Space Res Assoc, Columbia, MD USA. RP Rousseaux, CS (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. EM Cecile.S.Rousseaux@nasa.gov RI Rousseaux, Cecile/E-8811-2012 OI Rousseaux, Cecile/0000-0002-3022-2988 FU NASA MAP Program; NASA PACE Program FX We thank the NASA Ocean Color project for providing the satellite chlorophyll data and the NASA Center for Climate Simulation for computational support. This paper was funded by the NASA MAP and PACE Programs. Data used in this analysis can be obtained at the NASA GES-DISC Giovanni web location http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocean_mo del. We also thank the reviewers for their constructive feedback on this paper. NR 76 TC 5 Z9 6 U1 11 U2 52 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD OCT PY 2015 VL 29 IS 10 BP 1674 EP 1688 DI 10.1002/2015GB005139 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CW3FD UT WOS:000364876500007 ER PT J AU Anderson, LO Aragao, LEOC Gloor, M Arai, E Adami, M Saatchi, SS Malhi, Y Shimabukuro, YE Barlow, J Berenguer, E Duarte, V AF Anderson, Liana Oighenstein Aragao, Luiz E. O. C. Gloor, Manuel Arai, Egidio Adami, Marcos Saatchi, Sassan S. Malhi, Yadvinder Shimabukuro, Yosio E. Barlow, Jos Berenguer, Erika Duarte, Valdete TI Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID FOREST CLEARING EXPERIMENT; BRAZILIAN AMAZON; BURNED AREA; NUTRIENT DYNAMICS; GLOBAL ESTIMATION; SOUTHERN AMAZON; TREE MORTALITY; SATELLITE DATA; TIME-SERIES; MODIS DATA AB In less than 15years, the Amazon region experienced three major droughts. Links between droughts and fires have been demonstrated for the 1997/1998, 2005, and 2010 droughts. In 2010, emissions of 510 +/- 120 TgC were associated to fire alone in Amazonia. Existing approaches have, however, not yet disentangled the proportional contribution of multiple land cover sources to this total. We develop a novel integration of multisensor and multitemporal satellite-derived data on land cover, active fires, and burned area and an empirical model of fire-induced biomass loss to quantify the extent of burned areas and resulting biomass loss for multiple land covers in Mato Grosso (MT) state, southern Amazoniathe 2010 drought most impacted region. We show that 10.77% (96,855 km(2)) of MT burned. We estimated a gross carbon emission of 56.21 +/- 22.5 TgC from direct combustion of biomass, with an additional 29.4 +/- 10 TgC committed to be emitted in the following years due to dead wood decay. It is estimated that old-growth forest fires in the whole Brazilian Legal Amazon (BLA) have contributed to 14.81 Tg of C (11.75 TgC to 17.87 TgC) emissions to the atmosphere during the 2010 fire season, with an affected area of 27,555 km(2). Total C loss from the 2010 fires in MT state and old-growth forest fires in the BLA represent, respectively, 77% (47% to 107%) and 86% (68.2% to 103%) of Brazil's National Plan on Climate Change annual target for Amazonia C emission reductions from deforestation. C1 [Anderson, Liana Oighenstein] Natl Ctr Monitoring & Early Warning Nat Disasters, Sao Jose Dos Campos, Brazil. [Anderson, Liana Oighenstein; Malhi, Yadvinder] Univ Oxford, Environm Change Inst, Oxford, England. [Anderson, Liana Oighenstein; Aragao, Luiz E. O. C.; Arai, Egidio; Adami, Marcos; Shimabukuro, Yosio E.; Duarte, Valdete] Natl Inst Space Res, Remote Sensing Div, Sao Jose Dos Campos, Brazil. [Aragao, Luiz E. O. C.] Univ Exeter, Coll Life & Environm Sci, Exeter, Devon, England. [Gloor, Manuel] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. [Saatchi, Sassan S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Saatchi, Sassan S.] Univ Calif Los Angeles, Inst Environm, Los Angeles, CA USA. [Barlow, Jos; Berenguer, Erika] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. RP Anderson, LO (reprint author), Natl Ctr Monitoring & Early Warning Nat Disasters, Sao Jose Dos Campos, Brazil. EM liana.anderson@cemaden.gov.br RI Barlow, Jos/E-7861-2014; OI Adami, Marcos/0000-0003-4247-4477; Anderson, Liana/0000-0001-9545-5136 FU UK NERC Amazonica grant [NE/F005482/1]; Brazil MCTI-PCI [302541/2014-4]; CNPq [458022/2013-6, 400640/2012-0]; NASA-IDS grant [NNX14AD31G] FX Data for this research are available at (i) Landsat and Terra/MODIS images (http://glovis.usgs.gov/), (ii) MODIS fire pixel (http://modis-fire.umd.edu/), (iii) Panamazonia II project (http://www.dsr.inpe.br/laf/panamazonia/dados.html), (iv) Biomass data (http://carbon.jpl.nasa.gov/data/), and (http://www.whrc.org/mapping/pantropical/carbon_dataset). This work was supported by UK NERC Amazonica grant NE/F005482/1, Brazil MCTI-PCI (302541/2014-4), CNPq grants 458022/2013-6 and 400640/2012-0, and NASA-IDS grant NNX14AD31G. The authors thank L. Andere and B. Duarte for their technical support on the mapping phase and J.G. Filho and S. Coimbra for their support in the validation phase. The reviewers and Editor's comments have greatly improved the quality of this work. NR 68 TC 6 Z9 6 U1 3 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD OCT PY 2015 VL 29 IS 10 BP 1739 EP 1753 DI 10.1002/2014GB005008 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CW3FD UT WOS:000364876500011 ER PT J AU Wieder, WR Allison, SD Davidson, EA Georgiou, K Hararuk, O He, YJ Hopkins, F Luo, YQ Smith, MJ Sulman, B Todd-Brown, K Wang, YP Xia, JY Xu, XF AF Wieder, William R. Allison, Steven D. Davidson, Eric A. Georgiou, Katerina Hararuk, Oleksandra He, Yujie Hopkins, Francesca Luo, Yiqi Smith, Matthew J. Sulman, Benjamin Todd-Brown, Katherine Wang, Ying-Ping Xia, Jianyang Xu, Xiaofeng TI Explicitly representing soil microbial processes in Earth system models SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID CARBON-NITROGEN INTERACTIONS; MICHAELIS-MENTEN KINETICS; AIR CO2 ENRICHMENT; ORGANIC-MATTER; TERRESTRIAL ECOSYSTEMS; LITTER DECOMPOSITION; TEMPERATURE SENSITIVITY; ENZYME-ACTIVITY; CLIMATE-CHANGE; USE EFFICIENCY AB Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models, we suggest the following: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales. C1 [Wieder, William R.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Allison, Steven D.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA. [Allison, Steven D.; He, Yujie; Hopkins, Francesca] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Davidson, Eric A.] Univ Maryland, Ctr Environm Sci, Appalachian Lab, Frostburg, MD USA. [Georgiou, Katerina] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Georgiou, Katerina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hararuk, Oleksandra] Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC, Canada. [He, Yujie] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Hopkins, Francesca] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Luo, Yiqi; Todd-Brown, Katherine; Xia, Jianyang] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Smith, Matthew J.] Microsoft Res, Sci Computat Lab, Cambridge, England. [Sulman, Benjamin] Indiana Univ, Dept Biol, Bloomington, IN USA. [Todd-Brown, Katherine] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Ying-Ping] CSIRO Ocean & Atmosphere Flagship, Aspendale, Vic, Australia. [Xia, Jianyang] E China Normal Univ, Tiantong Natl Forest Ecosyst Observat & Res Stn, Sch Ecol & Environm Sci, Shanghai 200062, Peoples R China. [Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. RP Wieder, WR (reprint author), Natl Ctr Atmospher Res, Climate & Global Dynam Div, POB 3000, Boulder, CO 80307 USA. EM wwieder@ucar.edu RI Davidson, Eric/K-4984-2013; Xu, Xiaofeng/B-2391-2008; Allison, Steven/E-2978-2010; wang, yp/A-9765-2011; He, Yujie/E-2514-2017; OI Davidson, Eric/0000-0002-8525-8697; Xu, Xiaofeng/0000-0002-6553-6514; Allison, Steven/0000-0003-4629-7842; He, Yujie/0000-0001-8261-5399; Todd-Brown, Katherine/0000-0002-3109-8130; WIEDER, WILLIAM/0000-0001-7116-1985 FU United States National Science Foundation; Department of Energy; National Science Foundation Research Coordination (RCN) grant [DEB 0840964]; Department of Energy [DE SC0008270]; U.S. Department of Agriculture/National Institute of Food and Agriculture grant [2015-67003-23485]; U.S. Department of Energy, Terrestrial Ecosystem Science (TES) Program [DE-SC0014374] FX The National Center for Atmospheric Research is sponsored by the United States National Science Foundation and Department of Energy. This work was produced from a workshop that was financially supported by the National Science Foundation Research Coordination (RCN) grant DEB 0840964 and Department of Energy DE SC0008270. W. Wieder was supported by U.S. Department of Agriculture/National Institute of Food and Agriculture grant 2015-67003-23485 and U.S. Department of Energy, Terrestrial Ecosystem Science (TES) Program grant DE-SC0014374. No data were used in producing this manuscript; material in the figures and table are properly cited and referred to in the reference list. NR 182 TC 14 Z9 14 U1 24 U2 90 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD OCT PY 2015 VL 29 IS 10 BP 1782 EP 1800 DI 10.1002/2015GB005188 PG 19 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CW3FD UT WOS:000364876500014 ER PT J AU Park, J Karumanchi, S Iagnemma, K AF Park, Junghee Karumanchi, Sisir Iagnemma, Karl TI Homotopy-Based Divide-and-Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming SO IEEE TRANSACTIONS ON ROBOTICS LA English DT Article DE Mixed-integer programming (MIP); model-predictive control (MPC); motion control; nonholonomic motion planning ID AVOIDANCE CONSTRAINTS AB This paper proposes an optimal trajectory generation framework in which the global obstacle-avoidance problem is decomposed into simpler subproblems, corresponding to distinct path homotopies. In classical approaches to homotopic trajectory planning, trajectory planning and homotopy identification are performed simultaneously, leading to a substantial computational burden. The main benefit of the proposed approach is the development of a method to enumerate and explicitly represent distinct homotopy classes before trajectory planning or optimization, which allow the problem to be decomposed into simpler independent subproblems. The main contribution of the paper is twofold. The first contribution is the description of a method for utilizing existing cell-decomposition methods to enumerate and represent local trajectory generation problems that can be solved efficiently and independently. In addition, a relationship between the proposed cell-sequence representation and homotopy classes is analyzed. The second contribution is a computationally efficient novel formulation of the trajectory optimization problem within a cell sequence via mixed-integer quadratic programming (MIQP). Computational efficiency and increased solution richness of the proposed approach are demonstrated through simulation studies. The proposed MIQP formulation fits into a linear model-predictive control framework with nonconvex collision-free constraints. C1 [Park, Junghee; Iagnemma, Karl] MIT, Lab Mfg & Prod, Robot Mobil Grp, Cambridge, MA 02139 USA. [Karumanchi, Sisir] NASA Jet Prop Lab, Mobil & Robot Syst Sect, Manipulat & Sampling Grp, Pasadena, CA 91109 USA. RP Park, J (reprint author), MIT, Lab Mfg & Prod, Robot Mobil Grp, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM junghee@mit.edu; sisir.b.karumanchi@jpl.nasa.gov; kdi@mit.edu FU U.S. Army Research Office [W911NF-11-1-0046]; STX Scholarship Foundation FX This work was supported by the U.S. Army Research Office under Contract W911NF-11-1-0046 and by the STX Scholarship Foundation. NR 23 TC 0 Z9 0 U1 8 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1552-3098 EI 1941-0468 J9 IEEE T ROBOT JI IEEE Trans. Robot. PD OCT PY 2015 VL 31 IS 5 BP 1101 EP 1115 DI 10.1109/TRO.2015.2459373 PG 15 WC Robotics SC Robotics GA CV8CP UT WOS:000364504400003 ER PT J AU Baratti, E Pajola, M Rossato, S Mangili, C Coradini, M Montanari, A McBride, K AF Baratti, E. Pajola, M. Rossato, S. Mangili, C. Coradini, M. Montanari, A. McBride, K. TI Hydraulic modeling of the tributary and the outlet of a Martian paleolake located in the Memnonia quadrangle SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ORBITER LASER ALTIMETER; OUTFLOW CHANNELS; VALLEY NETWORKS; EARLY MARS; WATER FLOWS; AQUEOUS SEDIMENTATION; PALEOFLOOD HYDROLOGY; FLUVIAL ACTIVITY; NORTHERN PLAINS; DELTA FORMATION AB We present a steady state hydraulic model of the tributary and the outlet of a Martian paleolake located in the Memnonia quadrangle between 167 degrees 0'0 '' W and 167 degrees 30'0 '' W longitude and between 9 degrees 25'0 '' S and 9 degrees 45'0 '' S latitude. The Mars Express High-resolution stereo camera (HRSC) digital elevation model, H31850000DA4, with a spatial resolution of 75m is used to describe the geometrical features of the hydraulic system. A steady state hydraulic model, through a Monte Carlo procedure, is adopted to investigate the assumption that the tributary-lake-outlet hydraulic system was acting simultaneously during its last water-related evolutionary phase. Through our analysis, we infer the roughness coefficient and the discharge of both the tributary and the outlet channels. Geomorphic evidence, such as river terraces, were used to constrain the water discharge and the Manning's roughness coefficient, thereby obtaining estimates of the water level in the lake, during the last evolutionary phase of the system. Our analysis of the outlet reveals a median paleodischarge of 7135m(3)s(-1) and a median Manning's roughness coefficient of 0.067m(-1/3)s. Tributary analysis provides a median flow and a median roughness coefficient of 6405m(3)s(-1) and 0.123m(-1/3)s, respectively. Moreover, the hydraulic analysis suggests that the paleolake water surface level was -1397m (median value, HRSC elevation), which is consistent with the observed paleoshoreline. The results imply that the tributary, the lake, and the outlet were hydraulically synchronized, therefore confirming the presence of a connected water system. This study demonstrates that hydraulic analysis can provide valuable information regarding ancient Martian water fluxes. C1 [Baratti, E.; Montanari, A.] Univ Bologna, DICAM, Sch Civil Engn, Bologna, Italy. [Pajola, M.] Univ Padua, Ctr Studies & Act Space G Colombo, Padua, Italy. [Rossato, S.] Univ Padua, Dept Geosci, Padua, Italy. [Mangili, C.] Univ Geneva, EES, Geneva, Switzerland. [Coradini, M.] Italian Space Agcy, Rome, Italy. [Coradini, M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [McBride, K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Baratti, E (reprint author), Univ Bologna, DICAM, Sch Civil Engn, Bologna, Italy. EM emanuele.baratti@unibo.it RI Montanari, Alberto/B-5427-2009; Rossato, Sandro/R-2353-2016; OI Montanari, Alberto/0000-0001-7428-0410; Rossato, Sandro/0000-0002-1075-2586; BARATTI, EMANUELE/0000-0001-6554-1981 NR 118 TC 3 Z9 3 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2015 VL 120 IS 10 BP 1597 EP 1619 DI 10.1002/2015JE004812 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CW1YI UT WOS:000364787600001 ER PT J AU Srivastava, PK Han, DW Rico-Ramirez, MA O'Neill, P Islam, T Gupta, M Dai, Q AF Srivastava, Prashant K. Han, Dawei Rico-Ramirez, Miguel A. O'Neill, Peggy Islam, Tanvir Gupta, Manika Dai, Qiang TI Performance evaluation of WRF-Noah Land surface model estimated soil moisture for hydrological application: Synergistic evaluation using SMOS retrieved soil moisture SO JOURNAL OF HYDROLOGY LA English DT Article DE WRF; Noah Land surface model; ECWMF; Soil moisture deficit; SMOS ID RAINFALL-RUNOFF MODEL; MESOSCALE ETA-MODEL; DATA ASSIMILATION; CATCHMENT-SCALE; INCREMENTAL APPROACH; FORECASTING-MODEL; WEATHER RESEARCH; EVAPOTRANSPIRATION; IMPLEMENTATION; PREDICTION AB This study explores the performance of soil moisture data from the global European Centre for Medium Range Weather Forecasts (ECMWF) ERA interim reanalysis datasets using the Weather Research and Forecasting (WRF) mesoscale numerical weather model coupled with the Noah Land surface model for hydrological applications. For evaluating the performance of WRF for soil moisture estimation, three domains are taken into account. The domain with best performance is used for estimating the soil moisture deficit (SMD). Further, several approaches are presented in this study to evaluate the efficiency of WRF simulated soil moisture for SMD estimation and compared against Soil Moisture and Ocean Salinity (SMOS) downscaled and non-downscaled soil moisture. In this study, the first approach is based on the empirical relationship between WRF soil moisture and the SMD on a continuous time series basis, while the second approach is focused on the vegetation cover impact on SMD retrieval, depicted in terms of growing and non-growing seasons. The linear growing and non-growing seasonal model in combination performs well with the NSE = 0.79, RMSE = 0.011 m; Bias = 0.24 m, in comparison to linear model (NSE = 0.70, RMSE = 0.013 m; Bias = 0.01 m). The performance obtained using WRF soil moisture is comparable to SMOS level 2 product but lower than the downscaled SMOS datasets. The results indicate that methodologies could be useful for modelers working in the field of soil moisture information system and SMD estimation at a catchment scale. The study could be useful for ungauged basins that pose a challenge to hydrological modeling due to unavailability of datasets for proper model calibration and validation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Srivastava, Prashant K.; O'Neill, Peggy; Gupta, Manika] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. [Srivastava, Prashant K.] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi 221005, Uttar Pradesh, India. [Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; Islam, Tanvir] Univ Bristol, Dept Civil Engn, Water & Environm Management Res Ctr, Bristol BS8 1TR, Avon, England. [Islam, Tanvir] NASA Jet Prop Lab, Pasadena, CA USA. [Islam, Tanvir] CALTECH, Pasadena, CA 91125 USA. [Gupta, Manika] Univ Space Res Assoc, Columbia, MD USA. [Dai, Qiang] Nanjing Normal Univ, Minist Educ, Key Lab VGE, Nanjing, Jiangsu, Peoples R China. [Dai, Qiang] Nanjing Normal Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Jiangsu, Peoples R China. RP Srivastava, PK (reprint author), NASA, Goddard Space Flight Ctr, ESSIC, Hydrol Sci Code 617,Room G208,Bldg 33, Greenbelt, MD 20771 USA. EM prashant.k.srivastava@nasa.gov RI Rico-Ramirez, Miguel/H-3248-2014; OI Rico-Ramirez, Miguel/0000-0002-8885-4582; Islam, Tanvir/0000-0003-2429-3074 FU Commonwealth Scholarship Commission; British Council, United Kingdom; Ministry of Human Resource Development, Government of India FX We are thankful to the anonymous reviewer for their constructive comments. The authors would like to thank the Commonwealth Scholarship Commission, British Council, United Kingdom and Ministry of Human Resource Development, Government of India for providing the necessary support and funding for this research. The authors would like to acknowledge the British Atmospheric Data Centre, United Kingdom for providing the ground datasets. We also thank the ECMWF for providing the ERA interim reanalysis datasets to drive the WRF model. The author also acknowledges the Advanced Computing Research Centre at University of Bristol for providing the access to supercomputer facility (The Blue Crystal) for some of the analysis. The authors are highly thankful to the Dr. Susanne Mecklenburg European Space Agency for providing the SMOS datasets and Yann Kerr (CESBIO, Toulouse, France) for providing insight to the SMOS soil moisture algorithms and datasets. NR 61 TC 2 Z9 2 U1 8 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD OCT PY 2015 VL 529 BP 200 EP 212 DI 10.1016/j.jhydrol.2015.07.041 PN 1 PG 13 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CV4PK UT WOS:000364248800016 ER PT J AU Koppes, M Hallet, B Rignot, E Mouginot, J Wellner, JS Boldt, K AF Koppes, Michele Hallet, Bernard Rignot, Eric Mouginot, Jeremie Wellner, Julia Smith Boldt, Katherine TI Observed latitudinal variations in erosion as a function of glacier dynamics SO NATURE LA English DT Article ID NORTHERN ANTARCTIC PENINSULA; SEDIMENT ACCUMULATION; HALF-CENTURY; ICE-SHEET; PATAGONIA; EVOLUTION; CLIMATE; FJORDS; LANDSCAPE; ALASKA AB Glacial erosion is fundamental to our understanding of the role of Cenozoic-era climate change in the development of topography worldwide, yet the factors that control the rate of erosion by ice remain poorly understood. In many tectonically active mountain ranges, glaciers have been inferred to be highly erosive, and conditions of glaciation are used to explain both the marked relief typical of alpine settings and the limit on mountain heights above the snowline, that is, the glacial buzzsaw(1). In other high-latitude regions, glacial erosion is presumed to be minimal, where a mantle of cold ice effectively protects landscapes from erosion(2-4). Glacial erosion rates are expected to increase with decreasing latitude, owing to the climatic control on basal temperature and the production of meltwater, which promotes glacial sliding, erosion and sediment transfer. This relationship between climate, glacier dynamics and erosion rate is the focus of recent numerical modelling(5-8), yet it is qualitative and lacks an empirical database. Here we present a comprehensive data set that permits explicit examination of the factors controlling glacier erosion across climatic regimes. We report contemporary ice fluxes, sliding speeds and erosion rates inferred from sediment yields from 15 outlet glaciers spanning 19 degrees of latitude from Patagonia to the Antarctic Peninsula. Although this broad region has a relatively uniform tectonic and geologic history, the thermal regimes of its glaciers range from temperate to polar. We find that basin-averaged erosion rates vary by three orders of magnitude over this latitudinal transect. Our findings imply that climate and the glacier thermal regime control erosion rates more than do extent of ice cover, ice flux or sliding speeds. C1 [Koppes, Michele] Univ British Columbia, Dept Geog, Vancouver, BC V6T 1Z2, Canada. [Hallet, Bernard] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Hallet, Bernard] Univ Washington, Quaternary Res Ctr, Seattle, WA 98195 USA. [Rignot, Eric; Mouginot, Jeremie] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92617 USA. [Rignot, Eric] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Wellner, Julia Smith] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Boldt, Katherine] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Koppes, M (reprint author), Univ British Columbia, Dept Geog, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada. EM koppes@geog.ubc.ca RI Mouginot, Jeremie/G-7045-2015; Rignot, Eric/A-4560-2014 OI Rignot, Eric/0000-0002-3366-0481 FU US National Science Foundation [OPP 0338371] FX This research was funded by the US National Science Foundation (OPP 0338371). We thank the crews of the ice breaker RV Nathaniel B. Palmer and the MV Petrel IV, members of Waters of Patagonia, support staff from Raytheon Polar Services, and collaborators from the Centro de Estudios Cientificos in Valdivia, Chile, the University of Washington, Rice University and the University of Houston for assisting in deployments, sampling and analysis of the sediment cores, bathymetric data, ice front geometries and acoustic reflection profiles collected during the cruises. We particularly thank J. Anderson, A. Rivera, M. Jaffrey, J. Evans and T. Verzone for help and logistical support in the field; R. Sylwester for his contribution to the collection of acoustic reflection profiles in Chile; C. Nittrouer, B. Forrest, C. Landowski, J. Berquist and T. Drexler for processing and analysing the sediment cores; T. Pratt for processing of acoustic profiles in Jorge Montt; J. Anderson and R. Fernandez for supporting data and discussions; C. Brookfield for editing and insight; R. Jana at INACH for provision of Landsat imagery of the Antarctic Peninsula; and M. Jaffrey, J. Newton and A. Winter-Billington for help with statistical analyses. NR 52 TC 18 Z9 18 U1 12 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 1 PY 2015 VL 526 IS 7571 BP 100 EP + DI 10.1038/nature15385 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS5CY UT WOS:000362095100041 PM 26432248 ER PT J AU Geogdzhayev, IV Mishchenko, MI AF Geogdzhayev, Igor V. Mishchenko, Michael I. TI Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data SO Remote Sensing LA English DT Article DE tropospheric aerosols; remote sensing; validation ID UNIFIED SATELLITE CLIMATOLOGY; PRODUCTS; OCEAN; TREND; MISR; ASSIMILATION; NETWORK; RECORD; MODEL; WATER AB A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the validation procedure and cause us to caution against a direct extrapolation of the presented validation results to the entirety of the GACP dataset. C1 [Geogdzhayev, Igor V.] Columbia Univ, Dept Appl Phys & Appl Math, NASA, GISS, New York, NY 10025 USA. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Geogdzhayev, IV (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, NASA, GISS, 2880 Broadway, New York, NY 10025 USA. EM igor.v.geogdzhayev@nasa.gov; michael.i.mishchenko@nasa.gov FU NASA Radiation Sciences Program FX This research was supported by the NASA Radiation Sciences Program managed by Hal Maring. We thank four anonymous reviewers for their insightful comments which resulted in a much improved manuscript. NR 36 TC 0 Z9 0 U1 4 U2 15 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD OCT PY 2015 VL 7 IS 10 BP 12588 EP 12605 DI 10.3390/rs71012588 PG 18 WC Remote Sensing SC Remote Sensing GA CV5RK UT WOS:000364328600001 ER PT J AU Quinlan, CL AF Quinlan, Catherine L. TI Bringing Astrobiology Down to Earth SO AMERICAN BIOLOGY TEACHER LA English DT Article DE Astrobiology; biology; evolution; extremophiles; extreme environments; microbes; nature of science; origin of life; project-based learning AB Astrobiology seeks to understand life in the universe through various disciplines and approaches. Astrobiology not only provides crosscutting content, but its study supports the three dimensions of learning promoted by the Next Generation Science Standards. While astrobiology research has been progressive and has accomplished great feats for science and society, astrobiology education in schools and colleges has lagged behind astrobiology research. Astrobiology can be used in the classroom as an engaging context for the Socratic method or in long-or short-term projects to encourage higher-order thinking. C1 US Satellite Lab, NASA, Endeavor Grad Course, Rye, NY 10580 USA. RP Quinlan, CL (reprint author), US Satellite Lab, NASA, Endeavor Grad Course, Rye, NY 10580 USA. EM drcatherinequinlan@gmail.com NR 19 TC 1 Z9 1 U1 5 U2 13 PU NATL ASSOC BIOLOGY TEACHERS INC PI RESTON PA 12030 SUNRISE VALLEY DR, #110, RESTON, VA 20191 USA SN 0002-7685 EI 1938-4211 J9 AM BIOL TEACH JI Am. Biol. Teach. PD OCT PY 2015 VL 77 IS 8 BP 567 EP 574 DI 10.1525/abt.2015.77.8.2 PG 8 WC Biology; Education, Scientific Disciplines SC Life Sciences & Biomedicine - Other Topics; Education & Educational Research GA CV3GH UT WOS:000364146500002 ER PT J AU Gaiser, EE Anderson, EP Castaneda-Moya, E Collado-Vides, L Fourqurean, JW Heithaus, MR Jaffe, R Lagomasino, D Oehm, NJ Price, RM Rivera-Monroy, VH Chowdhury, RR Troxler, TG AF Gaiser, Evelyn E. Anderson, Elizabeth P. Castaneda-Moya, Edward Collado-Vides, Ligia Fourqurean, James W. Heithaus, Michael R. Jaffe, Rudolf Lagomasino, David Oehm, Nicholas J. Price, Rene M. Rivera-Monroy, Victor H. Chowdhury, Rinku Roy Troxler, Tiffany G. TI New perspectives on an iconic landscape from comparative international long-term ecological research SO ECOSPHERE LA English DT Article DE biogeochemistry; estuary; Everglades; food webs; groundwater discharge; hydrology; ILTER; karstic; LTER; mangrove; periphyton; Special Feature: International LTER; wetland ID DISSOLVED ORGANIC-MATTER; EVERGLADES-NATIONAL-PARK; SEAGRASS THALASSIA-TESTUDINUM; FLORIDA COASTAL EVERGLADES; BOCAS-DEL-TORO; SUBTROPICAL ESTUARY; MANGROVE FORESTS; SOUTH FLORIDA; FRESH-WATER; SHARK BAY AB Iconic ecosystems like the Florida Coastal Everglades can serve as sentinels of environmental change from local to global scales. This characteristic can help inform general theory about how and why ecosystems transform, particularly if distinctive ecosystem properties are studied over long time scales and compared to those of similar ecosystems elsewhere. Here we review the ways in which long-term, comparative, international research has provided perspectives on iconic features of the Everglades that have, in turn, informed general ecosystem paradigms. Studies in other comparable wetlands from the Caribbean to Australia have shed light on distinctive and puzzling aspects such as the "upside-down estuary'' and "productivity paradox'' for which the Everglades is known. These studies suggest that coastal wetlands on carbonate (karstic) platforms have: (1) hydrological and biogeochemical properties that reflect "hidden'' groundwater sources of water and nutrients, (2) very productive, mat-forming algal communities that present a low-quality food to aquatic consumers that encourages (3) highly diversified feeding strategies within and among populations, and (4) extensive and productive seagrass meadows and mangrove forests that promote strong cultural dependencies associated with the ecosystem services they provide. The contribution of international research to each of these general ecological topics is discussed with a particular goal of encouraging informed decision-making in threatened wetlands across the globe. C1 [Gaiser, Evelyn E.; Anderson, Elizabeth P.; Collado-Vides, Ligia; Fourqurean, James W.; Heithaus, Michael R.; Jaffe, Rudolf; Oehm, Nicholas J.; Price, Rene M.; Troxler, Tiffany G.] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. [Gaiser, Evelyn E.; Collado-Vides, Ligia; Fourqurean, James W.; Heithaus, Michael R.; Troxler, Tiffany G.] Florida Int Univ, Dept Biol Sci, Sch Environm Arts & Soc, Miami, FL 33199 USA. [Anderson, Elizabeth P.; Price, Rene M.] Florida Int Univ, Dept Earth & Environm, Sch Environm Arts & Soc, Miami, FL 33199 USA. [Castaneda-Moya, Edward; Rivera-Monroy, Victor H.] Louisiana State Univ, Sch Coast & Environm, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. [Jaffe, Rudolf] Florida Int Univ, Dept Chem, Sch Environm Arts & Soc, Miami, FL 33181 USA. [Lagomasino, David] Univ Space Res Assoc, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Oehm, Nicholas J.] Florida Int Univ, STEM Transformat Inst, Miami, FL 33199 USA. [Chowdhury, Rinku Roy] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. RP Gaiser, EE (reprint author), Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. EM gaisere@fiu.edu OI Fourqurean, James/0000-0002-0811-8500 FU Florida Coastal Everglades Long-Term Ecological Research program through U.S. National Science Foundation [DEB-9910514, DBI-0620409, DEB-1237517]; NSF [OCE0745606, OCE526065]; George Barley Chair; National Aeronautics and Space Administration's Water Science of Coupled Aquatic Processes in Ecosystems from Space (WaterSCAPES) University Research Center program [NNX-10AQ13]; Consejo Nacional de Ciencia y Tecnologia (CONACyT) [CONACyT-Fondo Institucional: I0002, 24847, Etapa: 001]; NASA-JPL project (LSU Subcontract) [1452878]; Southeast Environmental Research Center at FIU [748] FX This paper was stimulated by conversations at the 2013 meeting of the International Long-Term Ecological Research Network in Seoul, Korea. Research in the Everglades was supported by the Florida Coastal Everglades Long-Term Ecological Research program through U.S. National Science Foundation grants (DEB-9910514, DBI-0620409, and DEB-1237517), and initial research in Australia, Belize and Mexico by international supplements to this program. Subsequent research in Australia was supported by NSF Grant OCE0745606 and OCE526065, and international research on organic matter dynamics benefited from additional support of the George Barley Chair (to R. Jaffe). Geochemical research in the Sian Ka'an Biosphere Reserve was provided by the National Aeronautics and Space Administration's Water Science of Coupled Aquatic Processes in Ecosystems from Space (WaterSCAPES) University Research Center program under Grant No. NNX-10AQ13. Student travel support was made available from the Latin American Caribbean program and Christina Menendez Foundation at Florida International University (FIU). Partial funding for VHRM participation was provided by the Consejo Nacional de Ciencia y Tecnologia (CONACyT) to the Red Mex-LTER program (CONACyT-Fondo Institucional: I0002; Proyecto# 24847, Etapa: 001) through the project "Demandas Hidrologicas de los Ecosistemas Naturales en Mexico: Fase 1'' and the NASA-JPL project (LSU Subcontract# 1452878) "Vulnerability Assessment of Mangrove Forest Regions of the Americas''. This is contribution number 81 of the Shark Bay Ecosystem Research Project 748 of the Southeast Environmental Research Center at FIU. NR 124 TC 1 Z9 1 U1 4 U2 16 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 2150-8925 J9 ECOSPHERE JI Ecosphere PD OCT PY 2015 VL 6 IS 10 AR 181 DI 10.1890/ES14-00388.1 PG 18 WC Ecology SC Environmental Sciences & Ecology GA CV1NF UT WOS:000364024300010 ER PT J AU Fujii, Y Cummings, J Xue, Y Schiller, A Lee, T Balmaseda, MA Remy, E Masuda, S Brassington, G Alves, O Cornuelle, B Martin, M Oke, P Smith, G Yang, XS AF Fujii, Yosuke Cummings, James Xue, Yan Schiller, Andreas Lee, Tong Balmaseda, Magdalena Alonso Remy, Elisabeth Masuda, Shuhei Brassington, Gary Alves, Oscar Cornuelle, Bruce Martin, Matthew Oke, Peter Smith, Gregory Yang, Xiaosong TI Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Review DE TPOS2020; ocean data assimilation; TAO; TRITON array; observing system evaluation; observing system experiment ID VARIATIONAL DATA ASSIMILATION; GENERAL-CIRCULATION MODEL; SEA-SURFACE TEMPERATURE; HEAT-CONTENT; EL-NINO; EQUATORIAL PACIFIC; CLIMATE PREDICTION; INSTABILITY WAVES; PART I; ENSEMBLE AB The drastic reduction in the number of observation data from the Tropical Atmospheric Ocean (TAO)/Triangle Trans-Ocean Buoy Network (TRITON) array since 2012 has given rise to a need to assess the impact of those data in ocean data assimilation (DA) systems. This article provides a review of existing studies evaluating the impacts of data from the TAO/TRITON array and other components of the Tropical Pacific Observing System (TPOS) on current ocean DA systems used for a variety of operational and research applications. It can be considered as background information that can guide the evaluation exercise of TPOS. Temperature data from TAO/TRITON array are assimilated in most ocean DA systems which cover the tropical Pacific in order to constrain the ocean heat content, stratification, and circulation. It is shown that the impacts of observation data depend considerably on the system and application. The presence of model error often makes the results difficult to interpret. Nevertheless there is consensus that the data from TAO/TRITON generally have positive impacts complementary to Argo floats. In the equatorial Pacific, the impacts are generally around the same level or larger than those of Argo. We therefore conclude that, with the current configuration of TPOS, the loss of the TAO/TRITON data is having a significant detrimental impact on many applications based on ocean DA systems. This conclusion needs to be kept under review because the equatorial coverage by Argo is expected to improve in the future. C1 [Fujii, Yosuke] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 30050052, Japan. [Cummings, James] Naval Res Lab, Monterey, CA USA. [Xue, Yan] NOAA NWS NCEP, Climate Predict Ctr, College Pk, MD USA. [Schiller, Andreas; Oke, Peter] CSIRO Oceans & Atmospher Flagship, Hobart, Tas, Australia. [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Balmaseda, Magdalena Alonso] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Remy, Elisabeth] Mercator Ocean, Toulouse, France. [Masuda, Shuhei] Japan Agcy Marine Earth Sci & Technol, Res & Dev Ctr Global Change, Yokosuka, Kanagawa 2370061, Japan. [Brassington, Gary; Alves, Oscar] Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Cornuelle, Bruce] UCSD, Scripps Inst Oceanog, La Jolla, CA USA. [Martin, Matthew] Met Off, Exeter, Devon, England. [Smith, Gregory] Environm Canada, Dorval, PQ, Canada. [Yang, Xiaosong] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Fujii, Y (reprint author), Japan Meteorol Agcy, Meteorol Res Inst, 1-1 Nagamine, Tsukuba, Ibaraki 30050052, Japan. EM yfujii@mri-jma.go.jp RI Oke, Peter/C-5127-2011; Yang, Xiaosong/C-7260-2009 OI Oke, Peter/0000-0002-3163-5610; Yang, Xiaosong/0000-0003-3154-605X FU JSPS KAKENHI [24740324] FX We are very grateful to two reviewers for their constructive comments. We also thank Drs D. Anderson and T. Suga, and other members of science organizing committee of the TPOS2020 workshop, as well as their secretary, Dr K. Hill, for their fruitful advice and suggestions on the article. Parts of the data used were collected and made freely available by the International Argo Program and the national programs that contribute to it. (http://www.argo.ucsd.edu; accessed 24 May 2015, http://www.jcommops.org/argo; accessed 1 July 2015). The Argo Program is part of the Global Ocean Observing System. This work was partly supported by JSPS KAKENHI grant number 24740324. NR 86 TC 1 Z9 1 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD OCT PY 2015 VL 141 IS 692 BP 2481 EP 2496 DI 10.1002/qj.2579 PN A PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU9LJ UT WOS:000363865700002 ER PT J AU Todling, R AF Todling, Ricardo TI A complementary note to "A lag-1 smoother approach to system-error estimation': the intrinsic limitations of residual diagnostics SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE Kalman filtering; fixed-lag smoothing; innovations process; model error; observation-error correlations; covariance estimation ID ATMOSPHERIC DATA ASSIMILATION; CURRENT SOUNDER RADIANCES; SIMULATION; MODEL AB Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework. C1 [Todling, Ricardo] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Todling, R (reprint author), NASA Goddard Space Flight Ctr, Code 610-1, Greenbelt, MD 20771 USA. EM Ricardo.Todling@nasa.gov NR 17 TC 4 Z9 4 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD OCT PY 2015 VL 141 IS 692 BP 2917 EP 2922 DI 10.1002/qj.2546 PN A PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU9LJ UT WOS:000363865700037 ER PT J AU Ade, PAR Ahmed, Z Aikin, RW Alexander, KD Barkats, D Benton, SJ Bischoff, CA Bock, JJ Brevik, JA Buder, I Bullock, E Buza, V Connors, J Crill, BP Dowell, CD Dvorkin, C Duband, L Filippini, JP Fliescher, S Golwala, SR Halpern, M Harrison, S Hasselfield, M Hildebrandt, SR Hilton, GC Hristov, VV Hui, H Irwin, KD Karkare, KS Kaufman, JP Keating, BG Kefeli, S Kernasovskiy, SA Kovac, JM Kuo, CL Leitch, EM Lueker, M Mason, P Megerian, KG Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Orlando, A Pryke, C Reintsema, CD Richter, S Schwarz, R Sheehy, CD Staniszewski, ZK Sudiwala, RV Teply, GP Thompson, KL Tolan, JE Turner, AD Vieregg, AG Weber, AC Willmert, J Wong, CL Yoon, KW AF Ade, P. A. R. Ahmed, Z. Aikin, R. W. Alexander, K. D. Barkats, D. Benton, S. J. Bischoff, C. A. Bock, J. J. Brevik, J. A. Buder, I. Bullock, E. Buza, V. Connors, J. Crill, B. P. Dowell, C. D. Dvorkin, C. Duband, L. Filippini, J. P. Fliescher, S. Golwala, S. R. Halpern, M. Harrison, S. Hasselfield, M. Hildebrandt, S. R. Hilton, G. C. Hristov, V. V. Hui, H. Irwin, K. D. Karkare, K. S. Kaufman, J. P. Keating, B. G. Kefeli, S. Kernasovskiy, S. A. Kovac, J. M. Kuo, C. L. Leitch, E. M. Lueker, M. Mason, P. Megerian, K. G. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Orlando, A. Pryke, C. Reintsema, C. D. Richter, S. Schwarz, R. Sheehy, C. D. Staniszewski, Z. K. Sudiwala, R. V. Teply, G. P. Thompson, K. L. Tolan, J. E. Turner, A. D. Vieregg, A. G. Weber, A. C. Willmert, J. Wong, C. L. Yoon, K. W. CA Keck Array Collaboration Bicep2 Collaboration TI BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; gravitational waves; inflation; polarization ID MICROWAVE BACKGROUND POLARIZATION; TRANSITION-EDGE SENSORS; PROBE WMAP OBSERVATIONS; POWER SPECTRA; GRAVITY-WAVES; TEMPERATURE; QUAD; IMAGER; CAPMAP; MAPS AB The Keck Array is a system of cosmic microwave background polarimeters, each similar to the BICEP2 experiment. In this paper we report results from the 2012 to 2013 observing seasons, during which the Keck Array consisted of five receivers all operating in the same (150 GHz) frequency band and observing field as BICEP2. We again find an excess of B-mode power over the lensed-.CDM expectation of >5 sigma in the range 30 < l < 150 and confirm that this is not due to systematics using jackknife tests and simulations based on detailed calibration measurements. In map difference and spectral difference tests these new data are shown to be consistent with BICEP2. Finally, we combine the maps from the two experiments to produce final Q and U maps which have a depth of 57 nK deg (3.4 mu K arcmin) over an effective area of 400 deg(2) for an equivalent survey weight of 250,000 mu K-2. The final BB band powers have noise uncertainty a factor of 2.3 times better than the previous results, and a significance of detection of excess power of >6 sigma. C1 [Ade, P. A. R.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Ahmed, Z.; Irwin, K. D.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Crill, B. P.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hristov, V. V.; Hui, H.; Kefeli, S.; Lueker, M.; Mason, P.; Staniszewski, Z. K.; Teply, G. P.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Alexander, K. D.; Bischoff, C. A.; Buder, I.; Buza, V.; Connors, J.; Dvorkin, C.; Harrison, S.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barkats, D.] ESO, Joint ALMA Observ, Santiago, Chile. [Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Bock, J. J.; Crill, B. P.; Dowell, C. D.; Hildebrandt, S. R.; Megerian, K. G.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Turner, A. D.; Weber, A. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bullock, E.; Pryke, C.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Duband, L.] Commissariat Energie Atom, SBT, Grenoble, France. [Filippini, J. P.] Univ Illinois, Dept Phys, Champaign, IL 61820 USA. [Fliescher, S.; Pryke, C.; Schwarz, R.; Willmert, J.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.] NIST, Boulder, CO 80305 USA. [Irwin, K. D.; Kuo, C. L.; Ogburn, R. W.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Kaufman, J. P.; Keating, B. G.; Orlando, A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Leitch, E. M.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Leitch, E. M.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON, Canada. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM sstokes@stanford.edu OI Alexander, Kate/0000-0002-8297-2473; Orlando, Angiola/0000-0001-8004-5054; Karkare, Kirit/0000-0002-5215-6993; Bischoff, Colin/0000-0001-9185-6514; Barkats, Denis/0000-0002-8971-1954 FU National Science Foundation (Harvard) [ANT-1145172]; Keck Foundation (Caltech); NASA APRA program [06-ARPA206-0040, 10-SAT10-0017]; NASA SAT program [06-ARPA206-0040, 10-SAT10-0017]; Canada Foundation for Innovation; National Science Foundation (Minnesota) [ANT-1145143]; National Science Foundation (Stanford) [ANT-1145248] FX The Keck Array project has been made possible through support from the National Science Foundation under Grants ANT-1145172 (Harvard), ANT-1145143 (Minnesota) & ANT-1145248 (Stanford), and from the Keck Foundation (Caltech). The development of antenna-coupled detector technology was supported by the JPL Research and Technology Development Fund and Grants No. 06-ARPA206-0040 and 10-SAT10-0017 from the NASA APRA and SAT programs. The development and testing of focal planes were supported by the Gordon and Betty Moore Foundation at Caltech. Readout electronics were supported by a Canada Foundation for Innovation grant to UBC. The computations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University. The analysis effort at Stanford and SLAC is partially supported by the U.S. Department of Energy Office of Science. We thank the staff of the U.S. Antarctic Program and in particular the South Pole Station without whose help this research would not have been possible. Most special thanks go to our heroic winter-overs Robert Schwarz and Steffen Richter. We thank all those who have contributed past efforts to the BICEP-Keck Array series of experiments, including the BICEP1 team. NR 58 TC 27 Z9 27 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 126 DI 10.1088/0004-637X/811/2/126 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800054 ER PT J AU Bradshaw, SJ Klimchuk, JA AF Bradshaw, S. J. Klimchuk, J. A. TI CHROMOSPHERIC NANOFLARES AS A SOURCE OF CORONAL PLASMA. II. REPEATING NANOFLARES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: chromosphere; Sun: corona; Sun: UV radiation ID X-RAY TELESCOPE; FLARING ACTIVE-REGION; HOT PLASMA; SOLAR CORONA; TRANSITION-REGION; DOPPLER SHIFTS; SPECTROSCOPIC OBSERVATIONS; QUIET SUN; LOOPS; EMISSION AB The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work, we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe XII and XIV emission lines. In the present work, we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series of hydrodynamic experiments and predict the Fe XII and XIV line intensities, Doppler-shifts, and red/blue asymmetries. We find that our predicted quantities disagree dramatically with observations and fully developed loop structures cannot be created by intermediate-or high-frequency chromospheric nanoflares. We conclude that the mechanism ultimately responsible for producing coronal plasma operates above the chromosphere, but this does not preclude the possibility of a similar mechanism powering the chromosphere, extreme examples of which may be responsible for heating chromospheric plasma to transition region temperatures (e.g., type II spicules). C1 [Bradshaw, S. J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bradshaw, SJ (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM stephen.bradshaw@rice.edu; James.A.Klimchuk@nasa.gov FU NASA Supporting Research and Technology Program FX This work was supported by the NASA Supporting Research and Technology Program. The authors also benefited from participating in the team hosted by the International Space Science Institute, Bern, on Using Observables to Settle the Question of Steady versus Impulsive Coronal Heating, led by S.J.B. and Helen Mason. We also thank the referee for suggestions which helped us to clarify several points. NR 60 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 129 DI 10.1088/0004-637X/811/2/129 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800057 ER PT J AU Desch, SJ Turner, NJ AF Desch, Steven J. Turner, Neal J. TI HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; protoplanetary disks ID X-RAY IONIZATION; SOLAR NEBULA SHOCKS; T-TAURI STARS; MAGNETOROTATIONAL INSTABILITY; LAYERED ACCRETION; MAGNETOHYDRODYNAMIC SIMULATIONS; AMBIPOLAR DIFFUSION; PROTOSTELLAR DISKS; OHMIC DISSIPATION; MAGNETIZED DISKS AB We calculate the abundances of electrons and ions in the hot (greater than or similar to 500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains' work functions. The charged species' abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks' dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value approximate to 1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the "short-circuit" instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters. C1 [Desch, Steven J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Desch, SJ (reprint author), Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. FU National Aeronautics and Space Administration; Solar Systems Origins program [13-OSS13-0114]; NASA Emerging Worlds program [14-EW_2-0130] FX We thank the organizers of the August 2014 meeting "Non-ideal magnetohydrodynamics, stability, and dissipation in protoplanetary disks" at the Niels Bohr International Academy in Copenhagen, for providing a forum for our collaboration. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and with the support of grant number 13-OSS13-0114 from the Solar Systems Origins program. We acknowledge the support of grant No. 14-EW_2-0130 (PI B. Weiss) from the NASA Emerging Worlds program. NR 68 TC 14 Z9 14 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 156 DI 10.1088/0004-637X/811/2/156 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800084 ER PT J AU Hathaway, DH Teil, T Norton, AA Kitiashvili, I AF Hathaway, David H. Teil, Thibaud Norton, Aimee A. Kitiashvili, Irina TI THE SUN'S PHOTOSPHERIC CONVECTION SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; Sun: granulation; Sun: interior; Sun: photosphere ID SPHERICAL HARMONIC-ANALYSIS; SOLAR ATMOSPHERE; VELOCITY FIELDS; SURFACE FLOWS; SUPERGRANULATION; MESOGRANULATION; GRANULATION; SCALES AB Spectra of the cellular photospheric flows are determined from full-disk Doppler velocity observations acquired by the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory spacecraft. Three different analysis methods are used to separately determine spectral coefficients representing the poloidal flows, the toroidal flows, and the radial flows. The amplitudes of these spectral coefficients are constrained by simulated data analyzed with the same procedures as the HMI data. We find that the total velocity spectrum rises smoothly to a peak at a wavenumber of about 120 (wavelength of about 35Mm), which is typical of supergranules. The spectrum levels off out to wavenumbers of about 400, and then rises again to a peak at a wavenumber of about 3500 (wavelength of about 1200 km), which is typical of granules. The velocity spectrum is dominated by the poloidal flow component (horizontal flows with divergence but no curl) at wavenumbers above 30. The toroidal flow component (horizontal flows with curl but no divergence) dominates at wavenumbers less than 30. The radial flow velocity is only about 3% of the total flow velocity at the lowest wavenumbers, but increases in strength to become about 50% at wavenumbers near 4000. The spectrum compares well with the spectrum of giant cell flows at the lowest wavenumbers and with the spectrum of granulation from a 3D radiative-hydrodynamic simulation at the highest wavenumbers. C1 [Hathaway, David H.; Teil, Thibaud; Kitiashvili, Irina] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Norton, Aimee A.] Stanford Univ, WW Hansen Expt Phys Lab, Palo Alto, CA 94305 USA. RP Hathaway, DH (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM david.hathaway@nasa.gov; thibaud.teil@gmail.com; aanorton@stanford.edu; irina.n.kitiashvili@nasa.gov OI Hathaway, David/0000-0003-1191-3748; Kitiashvili, Irina/0000-0003-4144-2270; Norton, Aimee/0000-0003-2622-7310 FU NASA FX The authors were supported by a grant from the NASA Living with a Star Program to Ames Research Center. The HMI data used are courtesy of the NASA/SDO and the HMI science teams. We gratefully acknowledge many useful discussions with Nagi Mansour, Alan Wray, Alexander Kosovichev, and Philip Scherrer. NR 26 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 105 DI 10.1088/0004-637X/811/2/105 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800033 ER PT J AU Jones, OC Meixner, M Sargent, BA Boyer, ML Sewilo, M Hony, S Roman-Duval, J AF Jones, Olivia C. Meixner, Margaret Sargent, Benjamin A. Boyer, Martha L. Sewilo, Marta Hony, Sacha Roman-Duval, Julia TI THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; Magellanic Clouds; stars: late-type; stars: mass-loss; submillimeter: stars ID YOUNG STELLAR OBJECTS; SPITZER-SPACE-TELESCOPE; GIANT BRANCH STARS; EMISSION-LINE STARS; POLYCYCLIC AROMATIC-HYDROCARBONS; SPECTRAL ENERGY-DISTRIBUTIONS; POINT-SOURCE CLASSIFICATION; LUMINOUS BLUE VARIABLES; SUPERNOVA REMNANT N132D; LONG-PERIOD VARIABLES AB Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low-to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf-Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material. C1 [Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Meixner, Margaret; Sewilo, Marta] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 366, Baltimore, MD 21218 USA. [Sargent, Benjamin A.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Sargent, Benjamin A.] Rochester Inst Technol, Lab Multiwavelength Astrophys, Rochester, NY 14623 USA. [Boyer, Martha L.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boyer, Martha L.] ORAU, Oak Ridge, TN 37831 USA. [Sewilo, Marta] Space Sci Inst, Boulder, CO 80301 USA. [Hony, Sacha] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, D-69120 Heidelberg, Germany. RP Jones, OC (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. OI Jones, Olivia/0000-0003-4870-5547 FU NASA Herschel Science Center, JPL [1381522, 1381650, 1350371]; NASA [NNX14AN06G, NNX13AD54G] FX We thank the referee Jacco van Loon for their thorough and helpful comments. We acknowledge financial support from the NASA Herschel Science Center, JPL contracts # 1381522, # 1381650 & # 1350371. Jones and Meixner acknowledge support from NASA grant, NNX14AN06G, for this work. Sargent acknowledges support from NASA grant NNX13AD54G. This work is based on observations made with the Herschel Space Observatory, an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA, and the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. This research relied on the following resources: NASA's Astrophysics Data System and the SIMBAD and VizieR databases, operated at the Centre de Donnees astronomiques de Strasbourg. NR 150 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 145 DI 10.1088/0004-637X/811/2/145 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800073 ER PT J AU Mawet, D David, T Bottom, M Hinkley, S Stapelfeldt, K Padgett, D Mennesson, B Serabyn, E Morales, F Kuhn, J AF Mawet, D. David, T. Bottom, M. Hinkley, S. Stapelfeldt, K. Padgett, D. Mennesson, B. Serabyn, E. Morales, F. Kuhn, J. TI DISCOVERY OF A LOW-MASS COMPANION AROUND HR 3549 SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; instrumentation: adaptive optics; instrumentation: high angular resolution; stars: imaging; stars: low-mass ID EARLY-TYPE STARS; STELLAR EVOLUTION; KINEMATIC GROUPS; BETA-PICTORIS; DEBRIS DISKS; A-TYPE; PLANET; AGE; ISOCHRONES; EXOPLANETS AB We report the discovery of a low-mass companion to HR 3549, an A0V star surrounded by a debris disk with a warm excess detected by WISE at 22 mu m (10 sigma significance). We imaged HR 3549 B in the L band with NAOS-CONICA, the adaptive optics infrared camera of the Very Large Telescope, in January 2013 and confirmed its common proper motion in 2015 January. The companion is at a projected separation of similar or equal to 80 AU and position angle of similar or equal to 157 degrees, so it is orbiting well beyond the warm disk inner edge of r > 10 AU. Our age estimate for this system corresponds to a companion mass in the range 15-80 M-J, spanning the brown dwarf regime, and so HR 3549 B is another recent addition to the growing list of brown dwarf desert objects with extreme mass ratios. The simultaneous presence of a warm disk and a brown dwarf around HR 3549 provides interesting empirical constraints on models of the formation of substellar companions. C1 [Mawet, D.; David, T.; Bottom, M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Mawet, D.; Mennesson, B.; Serabyn, E.; Morales, F.; Kuhn, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hinkley, S.] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England. [Stapelfeldt, K.; Padgett, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Mawet, D (reprint author), CALTECH, Dept Astron, 1200 E Calif Blvd,MC 249-17, Pasadena, CA 91125 USA. EM dmawet@astro.caltech.edu RI Kuhn, Jonas/H-2338-2011; OI Kuhn, Jonas/0000-0002-6344-4835; Bottom, Michael/0000-0003-1341-5531; David, Trevor/0000-0001-6534-6246 FU National Science Foundation [DGE1144469]; NASA [NNX13AN42H]; National Aeronautics and Space Administration FX The first author is grateful to Prof. Lynne Hillenbrand (Caltech) and Ben Zuckerman (UCLA) for their advice and comments. T.J.D is supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE1144469. M.B. is supported by a NASA Space Technology Research fellowship, grant No. NNX13AN42H. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 41 TC 7 Z9 7 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 103 DI 10.1088/0004-637X/811/2/103 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800031 ER PT J AU Mehta, V Scarlata, C Colbert, JW Dai, YS Dressler, A Henry, A Malkan, M Rafelski, M Siana, B Teplitz, HI Bagley, M Beck, M Ross, NR Rutkowski, M Wang, Y AF Mehta, Vihang Scarlata, Claudia Colbert, James W. Dai, Y. S. Dressler, Alan Henry, Alaina Malkan, Matt Rafelski, Marc Siana, Brian Teplitz, Harry I. Bagley, Micaela Beck, Melanie Ross, Nathaniel R. Rutkowski, Michael Wang, Yun TI PREDICTING THE REDSHIFT 2 H alpha LUMINOSITY FUNCTION USING [O III] EMISSION LINE GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: luminosity function, mass function; galaxies: statistics ID STAR-FORMING GALAXIES; FORMATION RATE DENSITY; EMITTING GALAXIES; NEARBY GALAXIES; HIZELS; UNIVERSE; SUPERNOVAE; EVOLUTION; EMITTERS; FIELD AB Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure baryonic acoustic oscillations in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the Wide Field Camera 3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8-1.65 mu m wavelength range and allowing the detection of H alpha emitters up to z similar to 1.5 and [O III] emitters to z similar to 2.3. We derive the H alpha-[O III] bivariate line luminosity function (LLF) for WISP galaxies at z similar to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurements and we demonstrate how it can be used to derive the H alpha luminosity function by exclusively fitting [O III] data. Using the z similar to 2 [O III] LLF and assuming that the relation between H alpha and [O III] luminosity does not change significantly over the redshift range, we predict the H alpha number counts at z similar to 2-the upper end of the redshift range of interest for future surveys. For the redshift range 0.7 < z < 2, we expect similar to 3000 galaxies deg(-2) for a flux limit of 3 x 10(-16) erg s(-1) cm(-2) (the proposed depth of the Euclid galaxy redshift survey) and similar to 20,000 galaxies deg(-2) for a flux limit of similar to 10(-16) erg s(-1) cm(-2) (the baseline depth of the WFIRST galaxy redshift survey). C1 [Mehta, Vihang; Scarlata, Claudia; Bagley, Micaela; Beck, Melanie; Rutkowski, Michael] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Colbert, James W.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Dai, Y. S.; Teplitz, Harry I.; Wang, Yun] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dressler, Alan] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Henry, Alaina; Rafelski, Marc] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Malkan, Matt; Ross, Nathaniel R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Siana, Brian] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Wang, Yun] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. RP Mehta, V (reprint author), Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. RI Wang, Yun/B-5724-2011; OI Wang, Yun/0000-0002-4749-2984; Mehta, Vihang/0000-0001-7166-6035 FU NASA through Space Telescope Science Institute [GO-11696, 12283, 12568, 12902]; NASA [NAS5-26555] FX We thank the referee for providing comments that improved the presentation of the results. Support for HST Programs GO-11696, 12283, 12568, 12902 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. NR 37 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 141 DI 10.1088/0004-637X/811/2/141 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800069 ER PT J AU Petigura, EA Schlieder, JE Crossfield, IJM Howard, AW Deck, KM Ciardi, DR Sinukoff, E Allers, KN Best, WMJ Liu, MC Beichman, CA Isaacson, H Hansen, BMS Lepine, S AF Petigura, Erik A. Schlieder, Joshua E. Crossfield, Ian J. M. Howard, Andrew W. Deck, Katherine M. Ciardi, David R. Sinukoff, Evan Allers, Katelyn N. Best, William M. J. Liu, Michael C. Beichman, Charles A. Isaacson, Howard Hansen, Brad M. S. Lepine, Sebastien TI TWO TRANSITING EARTH-SIZE PLANETS NEAR RESONANCE ORBITING A NEARBY COOL STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: detection; stars: individual (EPIC-206011691); techniques: photometric; techniques: spectroscopic ID INFRARED TELESCOPE FACILITY; DIGITAL SKY SURVEY; M-DWARFS; SUPER-EARTHS; TIMING VARIATIONS; LIGHT CURVES; KEPLER; MASS; SYSTEMS; EXOPLANET AB Discoveries from the prime Kepler mission demonstrated that small planets (<3R(circle plus)) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting K2-21, a bright (K = 9.4) M0 dwarf located 65 +/- 6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA's K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, R-P/R-star = 2.60 +/- 0.14% and 3.15 +/- 0.20%, respectively. We obtained follow up NIR spectroscopy of K2-21 to constrain host star properties, which imply planet sizes of 1.59 +/- 0.43 R-circle plus and 1.92 +/- 0.53 R-circle plus, respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and a period ratio P-c/P-b = 1.6624, very near to the 5: 3 mean motion resonance, which may be a record of the system's formation history. Transit timing variations due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures. C1 [Petigura, Erik A.; Deck, Katherine M.; Beichman, Charles A.] CALTECH, Pasadena, CA 91125 USA. [Schlieder, Joshua E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crossfield, Ian J. M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Howard, Andrew W.; Sinukoff, Evan; Best, William M. J.; Liu, Michael C.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Allers, Katelyn N.] Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA. [Isaacson, Howard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hansen, Brad M. S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Lepine, Sebastien] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. RP Petigura, EA (reprint author), CALTECH, Pasadena, CA 91125 USA. EM petigura@caltech.edu OI Best, Will/0000-0003-0562-1511; Ciardi, David/0000-0002-5741-3047 FU NASA - Space Telescope Science Institute [HST-HF2-51365.001-A, NAS 5-26555]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; NASA [NAS5-26555, NNH14CK55B]; NASA Office of Space Science [NNX09AF08G] FX We thank Yoram Lithwick, Kimberly M. Aller, and Brendan Bowler for helpful conversations that improved the manuscript. We thank Lauren M. Weiss for conducting HIRES observations. Support for this work was provided by NASA through Hubble Fellowship grant HST-HF2-51365.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract NAS 5-26555. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract DE-AC02-05CH11231. This work made use of the SIMBAD database (operated at CDS, Strasbourg, France), NASA's Astrophysics Data System Bibliographic Services, and data products from the 2MASS, the APASS database, the SDSS-III project, and the Digitized Sky Survey. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. Some of the data presented herein were obtained at the W. M. Keck Observatory (which is operated as a scientific partnership among Caltech, UC, and NASA) and at the Infrared Telescope Facility (IRTF, operated by UH under NASA contract NNH14CK55B). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 64 TC 17 Z9 17 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 102 DI 10.1088/0004-637X/811/2/102 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800030 ER PT J AU Ruud, TM Fuskeland, U Wehus, IK Vidal, M Araujo, D Bischoff, C Buder, I Chinone, Y Cleary, K Dumoulin, RN Kusaka, A Monsalve, R Naess, SK Newburgh, LB Reeves, RA Zwart, JTL Bronfman, L Davies, RD Davis, R Dickinson, C Eriksen, HK Gaier, T Gundersen, JO Hasegawa, M Hazumi, M Huffenberger, KM Jones, ME Lawrence, CR Leitch, EM Limon, M Miller, AD Pearson, TJ Piccirillo, L Radford, SJE Readhead, ACS Samtleben, D Seiffert, M Shepherd, MC Staggs, ST Tajima, O Thompson, KL AF Ruud, T. M. Fuskeland, U. Wehus, I. K. Vidal, M. Araujo, D. Bischoff, C. Buder, I. Chinone, Y. Cleary, K. Dumoulin, R. N. Kusaka, A. Monsalve, R. Naess, S. K. Newburgh, L. B. Reeves, R. A. Zwart, J. T. L. Bronfman, L. Davies, R. D. Davis, R. Dickinson, C. Eriksen, H. K. Gaier, T. Gundersen, J. O. Hasegawa, M. Hazumi, M. Huffenberger, K. M. Jones, M. E. Lawrence, C. R. Leitch, E. M. Limon, M. Miller, A. D. Pearson, T. J. Piccirillo, L. Radford, S. J. E. Readhead, A. C. S. Samtleben, D. Seiffert, M. Shepherd, M. C. Staggs, S. T. Tajima, O. Thompson, K. L. CA QUIET Collaboration TI THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF THE GALACTIC PLANE AT 43 AND 95 GHz SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; Galaxy: center; Galaxy: general; polarization ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND DATA; RADIO-EMISSION; POWER SPECTRUM; DUST EMISSION; COMPLEX; MAPS; SYNCHROTRON; REGION; IMAGER AB We present polarization observations of two Galactic plane fields centered on Galactic coordinates (l, b) = (0 degrees, 0 degrees) and (329 degrees, 0 degrees) at both Q (43 GHz) and W bands (95 GHz), covering between 301 and 539 square degrees depending on frequency and field. These measurements were made with the QUIET instrument between 2008 October and 2010 December, and include a total of 1263 hr of observations. The resulting maps represent the deepest large-area Galactic polarization observations published to date at the relevant frequencies with instrumental rms noise varying between 1.8 and 2.8 mu K deg, 2.3-6 times deeper than corresponding WMAP and Planck maps. The angular resolution is 27'.3 and 12 8 FWHM at Q and W bands, respectively. We find excellent agreement between the QUIET and WMAP maps over the entire fields, and no compelling evidence for significant residual instrumental systematic errors in either experiment, whereas the Planck 44 GHz map deviates from these in a manner consistent with reported systematic uncertainties for this channel. We combine QUIET and WMAP data to compute inverse-variance-weighted average maps, effectively retaining small angular scales from QUIET and large angular scales from WMAP. From these combined maps, we derive constraints on several important astrophysical quantities, including a robust detection of polarized synchrotron spectral index steepening of approximate to 0.2 off the plane, as well as the Faraday rotation measure toward the Galactic center (RM = -4000 +/- 200 radm(-2)), all of which are consistent with previously published results. Both the raw QUIET and the co-added QUIET+WMAP maps are made publicly available together with all necessary ancillary information. C1 [Ruud, T. M.; Fuskeland, U.; Naess, S. K.; Eriksen, H. K.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Wehus, I. K.; Gaier, T.; Lawrence, C. R.; Leitch, E. M.; Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vidal, M.; Davies, R. D.; Davis, R.; Dickinson, C.; Piccirillo, L.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Araujo, D.; Dumoulin, R. N.; Zwart, J. T. L.; Limon, M.; Miller, A. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Araujo, D.; Dumoulin, R. N.; Zwart, J. T. L.; Limon, M.; Miller, A. D.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Bischoff, C.; Buder, I.; Tajima, O.] Univ Chicago, Kavli Inst Cosmol Phys, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Bischoff, C.; Buder, I.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chinone, Y.; Hasegawa, M.; Hazumi, M.; Tajima, O.] High Energy Accelerator Res Org KEK, Oho, Ibaraki 3050801, Japan. [Chinone, Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cleary, K.; Pearson, T. J.; Radford, S. J. E.; Readhead, A. C. S.; Shepherd, M. C.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Kusaka, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Kusaka, A.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Monsalve, R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Naess, S. K.; Jones, M. E.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Newburgh, L. B.] Univ Toronto, Dunlap Inst, Toronto, ON M5S 3H4, Canada. [Reeves, R. A.] Univ Concepcion, Dept Astron, CePIA, Concepcion, Chile. [Zwart, J. T. L.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. [Zwart, J. T. L.] Univ Cape Town, Dept Astron, Astrophys Cosmol & Grav Ctr, ZA-7701 Rondebosch, South Africa. [Bronfman, L.] Univ Chile, Dept Astron, Santiago, Chile. [Gundersen, J. O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Huffenberger, K. M.] Florida State Univ, Phys, Tallahassee, FL 32306 USA. [Samtleben, D.] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Samtleben, D.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Thompson, K. L.] Stanford Univ, Stanford, CA 94305 USA. [Thompson, K. L.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Ruud, TM (reprint author), Univ Oslo, Inst Theoret Astrophys, POB 1029 Blindern, N-0315 Oslo, Norway. EM t.m.ruud@astro.uio.no RI Bronfman, Leonardo/H-9544-2013; Pearson, Timothy/N-2376-2015; OI Bronfman, Leonardo/0000-0002-9574-8454; Pearson, Timothy/0000-0001-5213-6231; Limon, Michele/0000-0002-5900-2698; radford, simon/0000-0001-9113-1660; Huffenberger, Kevin/0000-0001-7109-0099; Bischoff, Colin/0000-0001-9185-6514; Zwart, Jonathan/0000-0002-4967-946X FU NSF [PHY-0355328, AST-0448909, AST-1010016, PHY-0551142]; KAKENHI [20244041, 20740158, 21111002]; PRODEX [C90284]; KIPAC Enterprise grant; Strategic Alliance for the Implementation of New Technologies (SAINT); JPL R TD program; ERC Starting Grant under FP7; ERC [307209]; STFC (U.K.); South Africa National Research Foundation; CONICYT [PFB-06] FX Support for the QUIET instrument and operation comes through the NSF cooperative agreement AST-0506648. Support was also provided by NSF awards PHY-0355328, AST-0448909, AST-1010016, and PHY-0551142; KAKENHI 20244041, 20740158, and 21111002; PRODEX C90284; a KIPAC Enterprise grant; and by the Strategic Alliance for the Implementation of New Technologies (SAINT). This work was performed on the Abel cluster, owned and maintained by the University of Oslo and NOTUR (the Norwegian High Performance Computing Consortium). Portions of this work were performed at the Jet Propulsion Laboratory (JPL) and California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration. The Q-band polarimeter modules were developed using funding from the JPL R & TD program. H.K.E. acknowledges an ERC Starting Grant under FP7. C.D. and M.V. acknowledge support from an ERC Starting Grant (no. 307209). C.D. also acknowledges support from the STFC (U.K.). J.Z. gratefully acknowledges a South Africa National Research Foundation Square Kilometre Array Research Fellowship. L.B. acknowledges support from CONICYT Grant PFB-06. A.D.M. acknowledges a Sloan Fellowship. NR 58 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 89 DI 10.1088/0004-637X/811/2/89 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800017 ER PT J AU Tchernyshyov, K Meixner, M Seale, J Fox, A Friedman, SD Dwek, E Galliano, F AF Tchernyshyov, Kirill Meixner, Margaret Seale, Jonathan Fox, Andrew Friedman, Scott D. Dwek, Eli Galliano, Frederic TI ELEMENTAL DEPLETIONS IN THE MAGELLANIC CLOUDS AND THE EVOLUTION OF DEPLETIONS WITH METALLICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; galaxies: abundances; ISM: abundances; Magellanic Clouds ID LY-ALPHA SYSTEMS; PRISTINE CNO ABUNDANCES; HUBBLE-SPACE-TELESCOPE; TO-METAL RATIOS; CHEMICAL-COMPOSITION; INTERSTELLAR-MEDIUM; GALAXY EVOLUTION; DUST PROPERTIES; HEAVY-ELEMENTS; STAR-FORMATION AB We present a study of the composition of gas and dust in the Large and Small Magellanic Clouds (LMC and SMC) using UV absorption spectroscopy. We measure P II and Fe II along 84 spatially distributed sightlines toward the MCs using archival Far Ultraviolet Spectroscopic Explorer observations. For 16 of those sightlines, we also measure Si II, Cr II, and Zn II from new Hubble Space Telescope Cosmic Origins Spectrograph observations. We analyze these spectra using a new spectral line analysis technique based on a semi-parametric Voigt profile model. We have combined these measurements with H I and H2 column densities and reference stellar abundances from the literature to derive gas-phase abundances, depletions, and gas-to-dust ratios (GDRs). Of our 84 P and 16 Zn measurements, 80 and 13, respectively, are depleted by more than 0.1 dex, suggesting that P and Zn abundances are not accurate metallicity indicators at and above the metallicity of the SMC. Si, Cr, and Fe are systematically less depleted in the SMC than in the Milky Way (MW) or LMC. The minimum Si depletion in the SMC is consistent with zero. We find GDR ranges of 190-565 in the LMC and 480-2100 in the SMC, which is broadly consistent with GDRs from the literature. These ranges represent actual location to location variation and are evidence of dust destruction and/or growth in the diffuse neutral phase of the interstellar medium. Where they overlap in metallicity, the gas-phase abundances of the MW, LMC, and SMC and damped Lya systems evolve similarly with metallicity. C1 [Tchernyshyov, Kirill; Meixner, Margaret] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Meixner, Margaret; Seale, Jonathan; Fox, Andrew; Friedman, Scott D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Seale, Jonathan] SameGrain, Baltimore, MD 21224 USA. [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Galliano, Frederic] Univ Paris Diderot, Serv Astrophys, IRFU, Lab AIM,CEA, F-91191 Gif Sur Yvette, France. RP Tchernyshyov, K (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. EM kirill@jhu.edu OI Fox, Andrew/0000-0003-0724-4115 FU STScI grant [HST-GO-13004.008]; NASA [NNX13AE36G]; NASA through grants from the Space Telescope Science Institute under NASA [GO-13004, 5-26555] FX We would like to thank the referee for their insightful comments. This research has made extensive use of the SIMBAD database, operated at CDS, Strasbourg, France; NASA's Astrophysics Data System Bibliographic Services; Astropy, a community-developed core Python package for Astronomy (Collaboration et al. 2013), NumPy and SciPy (van der Walt et al. 2011), IPython (Perez & Granger 2007), Matplotlib (Hunter 2007), and Cython (Behnel et al. 2001). We are grateful for financial support for this work from STScI grant HST-GO-13004.008 and NASA grant NNX13AE36G. Support for program GO-13004 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 82 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2015 VL 811 IS 2 AR 78 DI 10.1088/0004-637X/811/2/78 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4QE UT WOS:000363513800006 ER PT J AU Skofronick-Jackson, G Hudak, D Petersen, W Nesbitt, SW Chandrasekar, V Durden, S Gleicher, KJ Huang, GJ Joe, P Kollias, P Reed, KA Schwaller, MR Stewart, R Tanelli, S Tokay, A Wang, JR Wolde, M AF Skofronick-Jackson, Gail Hudak, David Petersen, Walter Nesbitt, Stephen W. Chandrasekar, V. Durden, Stephen Gleicher, Kirstin J. Huang, Gwo-Jong Joe, Paul Kollias, Pavlos Reed, Kimberly A. Schwaller, Mathew R. Stewart, Ronald Tanelli, Simone Tokay, Ali Wang, James R. Wolde, Mengistu TI GLOBAL PRECIPITATION MEASUREMENT COLD SEASON PRECIPITATION EXPERIMENT (GCPEX) For Measurement's Sake, Let It Snow SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID RADAR; DISDROMETER; RETRIEVALS; SYSTEM; GAUGE AB As a component of Earth's hydrologic cycle, and especially at higher latitudes, falling snow creates snowpack accumulation that in turn provides a large proportion of the freshwater resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011/12 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite and radiometers on constellation member satellites. Multiparameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude, and in situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites that in turn were taking in situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx field campaign is described and three illustrative cases detailed. C1 [Skofronick-Jackson, Gail; Schwaller, Mathew R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hudak, David] Environm Canada, King City, ON, Canada. [Petersen, Walter] NASA, Wallops Flight Facil, Wallops Isl, VA USA. [Gleicher, Kirstin J.; Reed, Kimberly A.] Univ Illinois, Urbana, IL 61801 USA. [Chandrasekar, V.; Tanelli, Simone] Colorado State Univ, Ft Collins, CO 80523 USA. [Durden, Stephen; Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Joe, Paul] Environm Canada, Atomospher Environm Serv, Toronto, ON M3H 5T4, Canada. [Kollias, Pavlos] McGill Univ, Montreal, PQ, Canada. [Stewart, Ronald] Univ Manitoba, Winnipeg, MB, Canada. [Tokay, Ali] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, James R.] Sci Syst & Applicat Inc, Lanham, MD USA. [Wolde, Mengistu] Natl Res Council Canada, Ottawa, ON, Canada. RP Skofronick-Jackson, G (reprint author), NASA, Goddard Space Flight Ctr, Code 612,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM gail.s.jackson@nasa.gov RI Skofronick-Jackson, Gail/D-5354-2012; Measurement, Global/C-4698-2015 FU Canadian Space Agency; Environment Canada; National Aeronautics and Space Administration FX The GPM Flight Project funded airborne and ground-based instrument deployments for the NASA component of GCPEx (Ramesh Kakar and Steven Neeck). A portion of this research (Tanelli and Durden) was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Portions of the research (Petersen, Tokay, Huang, Nesbitt) were also supported by NASA Precipitation Measurement Mission Science (Ramesh Kakar). Environment Canada is gratefully acknowledged for its funding support of Canadian ground-based platforms and its outstanding support for managing the deployment logistics of GCPEx. Funds for the Convair C-580 were provided by CSA and NRC with in-kind contributions from EC and NASA Glenn. The authors gratefully acknowledge the contribution of Alexei Korolev of Environment Canada to the analysis of the Convair-580 data; Mike Poellot, Dave Delene, and Andrea Neuman for the 1D Citation probe analysis; Andrew Heymsfield and Aaron Bansemer of NCAR for the 2D Citation probe analysis; Chris Derksen for the CARE snowfall event totals; and Larry Bliven of NASA to the PVI analysis. The Natural Sciences and Engineering Research Council of Canada assisted in supporting the particle photography measurements by Stephen Berg and Neil Fogg. The involvement of Matthew Bastian of National Research Council in the Convair-580 operations, as well as the financial support of the Canadian Space Agency, is also acknowledged. NR 40 TC 3 Z9 3 U1 7 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD OCT PY 2015 VL 96 IS 10 BP 1719 EP 1741 DI 10.1175/BAMS-D-13-00262.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU8AW UT WOS:000363764300004 ER PT J AU Chaplin, WJ Lund, MN Handberg, R Basu, S Buchhave, LA Campante, TL Davies, GR Huber, D Latham, DW Latham, CA Serenelli, A Antia, HM Appourchaux, T Ball, WH Benomar, O Casagrande, L Christensen-Dalsgaard, J Coelho, HR Creevey, OL Elsworth, Y Garcia, RA Gaulme, P Hekker, S Kallinger, T Karoff, C Kawaler, SD Kjeldsen, H Lundkvist, MS Marcadon, F Mathur, S Miglio, A Mosser, B Regulo, C Roxburgh, IW Aguirre, VS Stello, D Verma, K White, TR Bedding, TR Barclay, T Buzasi, DL Dehuevels, S Gizon, L Houdek, G Howell, SB Salabert, D Soderblom, DR AF Chaplin, W. J. Lund, M. N. Handberg, R. Basu, S. Buchhave, L. A. Campante, T. L. Davies, G. R. Huber, D. Latham, D. W. Latham, C. A. Serenelli, A. Antia, H. M. Appourchaux, T. Ball, W. H. Benomar, O. Casagrande, L. Christensen-Dalsgaard, J. Coelho, H. R. Creevey, O. L. Elsworth, Y. Garcia, R. A. Gaulme, P. Hekker, S. Kallinger, T. Karoff, C. Kawaler, S. D. Kjeldsen, H. Lundkvist, M. S. Marcadon, F. Mathur, S. Miglio, A. Mosser, B. Regulo, C. Roxburgh, I. W. Aguirre, V. Silva Stello, D. Verma, K. White, T. R. Bedding, T. R. Barclay, T. Buzasi, D. L. Dehuevels, S. Gizon, L. Houdek, G. Howell, S. B. Salabert, D. Soderblom, D. R. TI Asteroseismology of Solar-Type Stars with K2: Detection of Oscillations in C1 Data SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID CANDIDATE HOST STARS; MAIN-SEQUENCE STARS; RED-GIANT STARS; BOLOMETRIC CORRECTIONS; FUNDAMENTAL PROPERTIES; KEPLER; PARAMETERS; MISSION; DETECTABILITY; AMPLITUDES AB We present the first detections by the NASA K2 mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign 1 (C1). We understand the asteroseismic detection thresholds for Cl-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around 1000 mu Hz. Changes to the operation of the fine-guidance sensors are expected to give significant improvements in the high-frequency performance from C3 onwards. A reduction in the excess high-frequency noise by a factor of 2.5 in amplitude would bring main-sequence stars with dominant oscillation frequencies as high as similar or equal to 2500 mu Hz into play as potential asteroseismic targets for K2. C1 [Chaplin, W. J.; Lund, M. N.; Handberg, R.; Campante, T. L.; Davies, G. R.; Coelho, H. R.; Elsworth, Y.; Miglio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Chaplin, W. J.; Lund, M. N.; Handberg, R.; Campante, T. L.; Davies, G. R.; Huber, D.; Christensen-Dalsgaard, J.; Coelho, H. R.; Elsworth, Y.; Hekker, S.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. S.; Miglio, A.; Aguirre, V. Silva; Stello, D.; Bedding, T. R.; Houdek, G.] Aarhus Univ, Dept Phys & Astron, SAC, DK-8000 Aarhus C, Denmark. [Basu, S.] Yale Univ, Dept & Astron, New Haven, CT 06520 USA. [Buchhave, L. A.; Latham, D. W.; Latham, C. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Buchhave, L. A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Huber, D.; Stello, D.; Bedding, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Huber, D.] SETI Inst, Mountain View, CA 94043 USA. [Serenelli, A.] Inst Ciencias Espacio ICE CSIC IEEC, Cerdanyola Del Valles 08193, Spain. [Antia, H. M.; Verma, K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Appourchaux, T.; Marcadon, F.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Ball, W. H.; White, T. R.; Gizon, L.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Benomar, O.] Univ Tokyo, Tokyo 1130033, Japan. [Casagrande, L.] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Creevey, O. L.] Univ Nice Sophia Antipolis, Lab Lagrange, UMR 7293, CNRS, Nice, France. [Creevey, O. L.] Observ Cote Azur, F-06003 Nice, France. [Garcia, R. A.; Salabert, D.] Univ Paris Diderot, Ctr Saclay, Lab AIM Paris Saclay, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Gaulme, P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Gaulme, P.] Apache Point Observ, Sunspot, NM 88349 USA. [Hekker, S.; Gizon, L.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Mathur, S.] Space Sci Inst, Boulder, CO 80301 USA. [Mosser, B.] PSL Res Univ, Observ Paris, LESIA, CNRS, F-92195 Meudon, France. [Mosser, B.] Univ Paris 06, Univ Denis Diderot, F-92195 Meudon, France. [Regulo, C.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Regulo, C.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Roxburgh, I. W.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Barclay, T.; Howell, S. B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, T.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Buzasi, D. L.] Florida Gulf Coast Univ, Dept Chem & Phys, South Ft Myers, FL 33965 USA. [Dehuevels, S.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse, France. [Gizon, L.] New York Univ, Ctr Space Sci, Abu Dhabi, U Arab Emirates. [Soderblom, D. R.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Soderblom, D. R.] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. RP Chaplin, WJ (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. OI Buchhave, Lars A./0000-0003-1605-5666; Bedding, Tim/0000-0001-5222-4661; Serenelli, Aldo/0000-0001-6359-2769; Lund, Mikkel Norup/0000-0001-9214-5642; Lundkvist, Mia Sloth/0000-0002-8661-2571; Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors wish to thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1. NR 51 TC 9 Z9 9 U1 1 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT PY 2015 VL 127 IS 956 BP 1038 EP 1044 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU5VM UT WOS:000363600100007 ER PT J AU Rizzo, MJ Mundy, LG Dhabal, A Fixsen, DJ Rinehart, SA Benford, DJ Leisawitz, D Silverberg, R Veach, T Juanola-Parramon, R AF Rizzo, Maxime J. Mundy, Lee G. Dhabal, Arnab Fixsen, Dale J. Rinehart, Stephen A. Benford, Dominic J. Leisawitz, David Silverberg, Robert Veach, Todd Juanola-Parramon, Roser TI Far-Infrared Double-Fourier Interferometers and their Spectral Sensitivity SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID SPACE; MISSION; RESOLUTION; TELESCOPE; SPECTROSCOPY; FIELD AB Double-Fourier interferometry is the most viable path to subarcsecond spatial resolution for future astronomical instruments that will observe the universe at far-infrared wavelengths. The double transform spatio-spectral interferometry couples pupil plane beam combination with detector arrays to enable imaging spectroscopy of wide fields, that will be key to accomplishing top-level science goals. The wide field of view and the necessity for these instruments to fly above the opaque atmosphere create unique characteristics and requirements compared to instruments on ground-based telescopes. In this paper, we discuss some characteristics of single-baseline spatio-spectral interferometers. We investigate the impact of intensity and optical path difference noise on the interferogram and the spectral signal-to-noise ratio. We apply our findings to the special case of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), a balloon payload that will be a first application of this technique at far-infrared wavelengths on a flying platform. C1 [Rizzo, Maxime J.; Mundy, Lee G.; Dhabal, Arnab; Fixsen, Dale J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Rinehart, Stephen A.; Benford, Dominic J.; Leisawitz, David; Silverberg, Robert; Veach, Todd] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Juanola-Parramon, Roser] UCL, London WC1E 6BT, England. RP Rizzo, MJ (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM mrizzo@astro.umd.edu RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NASA Science Mission Directorate through ROSES/APRA program; NASA Goddard Space Flight Center; NASA GSFC grant [NNX11AG92A]; NASA Postdoctoral Program at GSFC; STFC PPRP grant [ST/K002775/1] FX The material presented in this paper is based upon work supported by NASA Science Mission Directorate through the ROSES/APRA program, with additional support from NASA Goddard Space Flight Center, and NASA GSFC grant NNX11AG92A to the University of Maryland. Work by T. Veach was supported by an appointment to the NASA Postdoctoral Program at GSFC, administered by the Oak Ridge Associated Universities under contract with NASA. The work of R. Juanola-Parramon was funded through the STFC PPRP grant ST/K002775/1. We would like to thank the anonymous referee for suggested improvements to the paper. NR 32 TC 4 Z9 4 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT PY 2015 VL 127 IS 956 BP 1045 EP 1060 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU5VM UT WOS:000363600100008 ER PT J AU Raines, JM DiBraccio, GA Cassidy, TA Delcourt, DC Fujimoto, M Jia, X Mangano, V Milillo, A Sarantos, M Slavin, JA Wurz, P AF Raines, J. M. DiBraccio, G. A. Cassidy, T. A. Delcourt, D. C. Fujimoto, M. Jia, X. Mangano, V. Milillo, A. Sarantos, M. Slavin, J. A. Wurz, P. TI Plasma Sources in Planetary Magnetospheres: Mercury SO SPACE SCIENCE REVIEWS LA English DT Review ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; PHOTON-STIMULATED DESORPTION; MESSENGER ORBITAL OBSERVATIONS; SOLAR-WIND INTERACTION; ION MASS-SPECTROMETRY; NEUTRAL SODIUM ATOMS; FLUX-TRANSFER EVENTS; MAGNETIC-FIELD; POTASSIUM ATMOSPHERES; SPATIAL-DISTRIBUTION C1 [Raines, J. M.; DiBraccio, G. A.; Jia, X.; Slavin, J. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [DiBraccio, G. A.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Cassidy, T. A.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Delcourt, D. C.] Univ Paris 06, CNRS, Ecole Polytech, LPP, F-75252 Paris, France. [Fujimoto, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Mangano, V.; Milillo, A.] INAF, Inst Space Astrophys & Planetol, Rome, Italy. [Sarantos, M.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Raines, JM (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM jraines@umich.edu RI Jia, Xianzhe/C-5171-2012; Slavin, James/H-3170-2012; OI Milillo, Anna/0000-0002-0266-2556; Jia, Xianzhe/0000-0002-8685-1484; Slavin, James/0000-0002-9206-724X; MANGANO, VALERIA/0000-0002-9903-4053 FU NASA Planetary Atmospheres program [NNX14AJ46G]; Solar System Workings program [NNX15AH28G]; Heliophysics Supporting Research program [NNX15AJ68G]; Discovery Data Analysis program [NNX15AK88G, NNX15AL01G]; NASA Discovery Program [NASW-00002, NAS5-97271] FX This work was supported by the NASA Planetary Atmospheres program through grant NNX14AJ46G. Additional support was provided through the Solar System Workings program through grant NNX15AH28G, the Heliophysics Supporting Research program through grant NNX15AJ68G and the Discovery Data Analysis program through grants NNX15AK88G and NNX15AL01G. The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to the Johns Hopkins University Applied Physics Laboratory. NR 220 TC 2 Z9 2 U1 3 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2015 VL 192 IS 1-4 BP 91 EP 144 DI 10.1007/s11214-015-0193-4 PG 54 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU7MF UT WOS:000363723000004 ER PT J AU Granot, J Piran, T Bromberg, O Racusin, JL Daigne, F AF Granot, Jonathan Piran, Tsvi Bromberg, Omer Racusin, Judith L. Daigne, Frederic TI Gamma-Ray Bursts as Sources of Strong Magnetic Fields SO SPACE SCIENCE REVIEWS LA English DT Review DE Gamma-ray bursts; Magnetic fields; MHD; Neutron stars; Jets; Radiation mechanisms: non-thermal ID AFTERGLOW LIGHT CURVES; BROAD-BAND OBSERVATIONS; POWER-DENSITY SPECTRA; INTERNAL SHOCK MODEL; HIGH-ENERGY EMISSION; STRIPED PULSAR WIND; E-P EVOLUTION; PROMPT EMISSION; RELATIVISTIC JETS; GRB 130427A AB Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their -ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years. C1 [Granot, Jonathan] Open Univ Israel, Dept Nat Sci, IL-4353701 Raanana, Israel. [Piran, Tsvi] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Bromberg, Omer] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Racusin, Judith L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Daigne, Frederic] Univ Paris 06, UMR 7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France. RP Granot, J (reprint author), Open Univ Israel, Dept Nat Sci, 1 Univ Rd,POB 808, IL-4353701 Raanana, Israel. EM granot@openu.ac.il; tsvi@phys.huji.ac.il; omerb@astro.princeton.edu; judith.racusin@nasa.gov; daigne@iap.fr FU ISF [719/14]; I-CORE Program-ISF [1829/12]; ISA [3-10417]; ISF-CNSF FX The authors acknowledge support from the ISF grant 719/14 (JG), as well as from the I-CORE Program-ISF grant 1829/12, the ISA grant 3-10417, and an ISF-CNSF grant (TP). NR 252 TC 5 Z9 5 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2015 VL 191 IS 1-4 BP 471 EP 518 DI 10.1007/s11214-015-0191-6 PG 48 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU7MD UT WOS:000363722700014 ER PT J AU Solomos, S Amiridis, V Zanis, P Gerasopoulos, E Sofiou, FI Herekakis, T Brioude, J Stohl, A Kahn, RA Kontoes, C AF Solomos, S. Amiridis, V. Zanis, P. Gerasopoulos, E. Sofiou, F. I. Herekakis, T. Brioude, J. Stohl, A. Kahn, R. A. Kontoes, C. TI Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations - The Fire Hub platform SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Fire smoke; Injection height; Smoke dispersion modeling; FireHub ID BOREAL FOREST-FIRE; INJECTION HEIGHTS; EASTERN-EUROPE; AIR-POLLUTION; EMISSIONS; CLIMATE; SYSTEM; IMPACT; TRANSPORT; AEROSOLS AB A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002-2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 x 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Solomos, S.; Amiridis, V.; Sofiou, F. I.; Herekakis, T.; Kontoes, C.] Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Athens, Greece. [Zanis, P.] Aristotle Univ Thessaloniki, Sch Geol, Dept Meteorol & Climatol, GR-54006 Thessaloniki, Greece. [Gerasopoulos, E.] Natl Observ Athens, Inst Environm Res & Sustainable Dev, Athens, Greece. [Brioude, J.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Brioude, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Stohl, A.] Norwegian Inst Air Res, Dept Atmospher & Climate Res, Kjeller, Norway. [Kahn, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Solomos, S (reprint author), Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Athens, Greece. EM stavros@noa.gr RI Stohl, Andreas/A-7535-2008; Amiridis, Vassilis/G-6769-2012; Solomos, Stavros/C-4889-2014; Zanis, Prodromos/B-5598-2015; KONTOES, Charalampos (Haris)/L-5514-2013; Manager, CSD Publications/B-2789-2015 OI Stohl, Andreas/0000-0002-2524-5755; Amiridis, Vassilis/0000-0002-1544-7812; Solomos, Stavros/0000-0001-9125-3334; FU European Union Seventh Framework Programme, in the framework of the project BEYOND (BEYOND Building Capacity for a Centre of Excellence for EO-based monitoring of Natural Disasters) [FP7-REGPOT-2012-2013-1, 316210] FX The publication was supported by the European Union Seventh Framework Programme (FP7-REGPOT-2012-2013-1), in the framework of the project BEYOND, under Grant Agreement No. 316210 (BEYOND Building Capacity for a Centre of Excellence for EO-based monitoring of Natural Disasters, http://ocean.space.noa.gr/BEYONDsite). MISR plume-height data were obtained with the MINX code, with MISR data obtained from the NASA Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov). http://misrjpl.nasa.gov/getDatalaccessData/MisrMinxPlumes/index.cfm. NR 39 TC 2 Z9 3 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2015 VL 119 BP 348 EP 361 DI 10.1016/j.atmosenv.2015.08.066 PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CT8PJ UT WOS:000363078200034 ER PT J AU Bennett, SA Van Dover, C Breier, JA Coleman, M AF Bennett, Sarah A. Van Dover, Cindy Breier, John A. Coleman, Max TI Effect of depth and vent fluid composition on the carbon sources at two neighboring deep-sea hydrothermal vent fields (Mid-Cayman Rise) SO DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS LA English DT Article DE Hydrothermal; Seeps; Food Web; Stable Isotopes; Cayman ID SHRIMP RIMICARIS-EXOCULATA; SPREADING CENTER; ATLANTIC RIDGE; FOOD WEBS; VESTIMENTIFERAN TUBEWORMS; PACIFIC-OCEAN; MARIANA ARC; COLD SEEPS; BACTERIA; DELTA-N-15 AB In this study, we have used stable isotopes of megafauna, microbial mats and particulate organic matter to examine the effect of depth and vent fluid composition on the carbon sources at two proximal, chemically distinct hydrothermal vent fields along the Mid-Cayman Rise. The basalt hosted Piccard vent field (4980 m) is twice as deep as the ultramafic hosted Von Damm vent field (2300 m) and has very different faunal assemblages. Of particular note is the presence of seep-associated fauna, Escarpia and Lamellibrachia tubeworms, at the Von Damm vent field. We identify a greater range of carbon sources and a suggestion of increased photosynthetic inputs to the Von Damm vent field compared to Piccard vent field. Rimicaris hybisae shrimp are the only abundant species shared between the two vent fields with delta C-13 values ranging between -22.7 and -10.1 parts per thousand. Higher concentrations of hydrogen sulfide in the vent fluids at Piccard is proposed to be responsible for varying the relative contributions of the carbon fixation cycles used by their epibionts. Seep-associated fauna at Von Damm rely on elevated, thermogenic hydrocarbon content of the vent fluids for their carbon source (delta C-13 values ranging from -21.3 to 11.6 parts per thousand). They also derive energy from hydrogen sulfide formed by the microbial reduction of sulfide (delta S-34 values ranging from -10.2 to -6.9 parts per thousand). The tubeworms have very short roots (buried at most a centimeter into rubble), suggesting that microbial sulfate reduction must be occurring either in the shallow subsurface and/or in the anterior part of the tube. Overall, megafauna at Von Damm vent field appear to have a smaller food chain length (smaller delta N-15 range) but a greater breadth of trophic resources compared to the megafauna at the Piccard vent field. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved. C1 [Bennett, Sarah A.; Coleman, Max] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. [Bennett, Sarah A.] British Geol Survey, NERC Isotope Geosci Lab, Nottingham NG12 5GG, England. [Van Dover, Cindy] Duke Univ, Marine Lab, Nicholas Sch Environm, Beaufort, NC 28516 USA. [Breier, John A.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Coleman, Max] NASA Astrobiol Inst, Pasadena, CA 91109 USA. RP Bennett, SA (reprint author), Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England. EM S.Bennett.1@warwick.ac.uk FU National Science Foundation [NSF OCE-1061863]; NASA's ASTEP Program [NNX09AB75G]; Gordon and Betty Moore Foundation [GBMF2764]; NASA FX We thank Chris German and the scientists and crew on board the R/V Atlantis (AT18-16), together with the ROV Jason team, without whom this work would not have been possible. We thank James Kinsey for the map (Fig. 1). We thank the Associate Editor, Andy Gooday, and two anonymous reviewers for their constructive comments. This research was supported by the National Science Foundation (NSF OCE-1061863) and NASA's ASTEP Program (Grant #NNX09AB75G). The contributions of JB were funded by the Gordon and Betty Moore Foundation through Grant GBMF2764 to JB. The contributions of SB and MC were carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautical and Space Administration (NASA) with support from the NASA ASTEP Program. NR 74 TC 1 Z9 1 U1 12 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0637 EI 1879-0119 J9 DEEP-SEA RES PT I JI Deep-Sea Res. Part I-Oceanogr. Res. Pap. PD OCT PY 2015 VL 104 BP 122 EP 133 DI 10.1016/j.dsr.2015.06.005 PG 12 WC Oceanography SC Oceanography GA CT8PM UT WOS:000363078500010 ER PT J AU Sudek, S Everroad, RC Gehman, ALM Smith, JM Poirier, CL Chavez, FP Worden, AZ AF Sudek, Sebastian Everroad, R. Craig Gehman, Alyssa-Lois M. Smith, Jason M. Poirier, Camille L. Chavez, Francisco P. Worden, Alexandra Z. TI Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; CENTRAL CALIFORNIA CURRENT; SINGLE-CELL GENOMICS; MARINE SYNECHOCOCCUS; PROCHLOROCOCCUS ECOTYPES; PHYLOGENETIC DIVERSITY; NONMARINE PICOCYANOBACTERIA; MICROBIAL ASSEMBLAGES; MAXIMUM-LIKELIHOOD; SEQUENCE-ANALYSIS AB The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling SynechococcusI and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. SynechococcusEPC2. In addition to supporting observations that ProchlorococcusLLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system. C1 [Sudek, Sebastian; Gehman, Alyssa-Lois M.; Smith, Jason M.; Poirier, Camille L.; Chavez, Francisco P.; Worden, Alexandra Z.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Everroad, R. Craig] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Worden, Alexandra Z.] Canadian Inst Adv Res, Integrated Microbial Biodivers Program, Toronto, ON M5G 1Z8, Canada. RP Worden, AZ (reprint author), Monterey Bay Aquarium Res Inst, 7700 Sandholdt Rd, Moss Landing, CA 95039 USA. EM azworden@mbari.org OI Smith, Jason Michel/0000-0002-3452-6460 FU Lucile and David Packard Foundation; Gordon and Betty Moore Foundation [GBMF1668, GBMF3788]; NSF [0843119] FX We thank E. Demir-Hilton, M.P. Simmons, D. McRose, R. Welsh, L. Deng and the captain and crew of R/V Western Flyer. We are grateful to A. Zimmerman for statistical advice and to S. Giovannoni, B. Beszteri, K. Vergin, A. Monier and F. Kilpert for the initial pipeline development collaboration (Vergin et al., 2013) and subsequent discussions. This work was supported by grants from the Lucile and David Packard Foundation, Gordon and Betty Moore Foundation GBMF1668 and GBMF3788 and NSF 0843119 to AZW. NR 83 TC 6 Z9 6 U1 2 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD OCT PY 2015 VL 17 IS 10 SI SI BP 3692 EP 3707 DI 10.1111/1462-2920.12742 PG 16 WC Microbiology SC Microbiology GA CU3TO UT WOS:000363448500020 PM 25522910 ER PT J AU Ladbury, R Campola, MJ AF Ladbury, R. Campola, M. J. TI Statistical Modeling for Radiation Hardness Assurance: Toward Bigger Data SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Probabilistic risk assessment; quality assurance radiation effects; radiation hardness assurance methodology; reliability estimation ID INTEGRATED-CIRCUITS; DEVICES; PREDICTION AB New approaches to statistical modeling in radiation hardness assurance are discussed. These approaches yield quantitative bounds on flight-part radiation performance even in the absence of conventional data sources. This allows the analyst to bound radiation risk at all stages and for all decisions in the RHA process. It also allows optimization of RHA procedures for the project's risk tolerance. C1 [Ladbury, R.; Campola, M. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ladbury, R (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Raymond.L.Ladbury@nasa.gov; Micael.J.Campola@nasa.gov FU NASA projects and programs FX This work was supported by NASA projects and programs. NR 22 TC 1 Z9 1 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2015 VL 62 IS 5 BP 2141 EP 2154 DI 10.1109/TNS.2015.2462754 PN 2 PG 14 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CU0XU UT WOS:000363243200005 ER PT J AU Carlson, RW Hand, KP AF Carlson, Robert W. Hand, Kevin P. TI Radiation Noise Effects at Jupiter's Moon Europa: In-Situ and Laboratory Measurements and Radiation Transport Calculations SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Europa; infrared detectors; Jupiter; magnetosphere; radiation effects; transient effects ID INFRARED MAPPING SPECTROMETER; STATE IMAGING-SYSTEM; DETECTOR ARRAYS; GALILEO; CALIBRATION; MISSION; ENERGY; PERFORMANCE; SATELLITES; CAMERA AB There is great scientific interest of Jupiter's moon Europa and in performing further spacecraft investigations. However, successful measurements at this satellite are difficult because transient charge pulses produced by Jupiter's magnetospheric radiation can significantly degrade signals. In order to develop shielding and mitigation approaches for future Europa missions, we investigated the radiation noise produced in the Galileo spacecraft's Near Infrared Mapping Spectrometer (NIMS) in the jovian magnetosphere. We then analyzed the radiation-transport characteristics of the NIMS shield and calculated the shielding efficiencies for thicker shields. Major findings are (1) NIMS data obtained at the orbital radius of Europa yield a rate of transient charge pulses ("hits") of 1.5 x 10(6) cm(-2) s(-1) behind 5 mm of Ta shielding, (2) radiation transport calculations indicate a decrease in the hit rate with increased shielding, achieving a factor of 10 reduction for 30 mm thick walls, (3) gamma-ray photons produced in the shield (and possibly the surrounding instrument and the spacecraft itself) are equally or more important in generating radiation noise, and (4) gamma-rays, with their mean-free-paths greater than the range of electrons with the same energy, are difficult to shield so heavier shielding is less beneficial than previously predicted. C1 [Carlson, Robert W.; Hand, Kevin P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Carlson, RW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.W.Carlson@jpl.nasa.gov; Kevin.P.Hand@jpl.nasa.gov FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 43 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2015 VL 62 IS 5 BP 2273 EP 2282 DI 10.1109/TNS.2015.2460674 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA CU0XU UT WOS:000363243200018 ER EF